File size: 7,292 Bytes
38a2ef1
 
 
 
0d2544a
 
de0f224
 
e963852
 
 
 
1ff63a0
 
 
 
 
45b771c
38a2ef1
45b771c
 
 
38a2ef1
 
 
 
 
 
 
 
35d85ac
38a2ef1
45b771c
38a2ef1
45b771c
1ff63a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef851b3
a0787f2
 
 
 
 
 
 
 
 
 
 
 
 
9c36111
38a2ef1
55f7150
38a2ef1
55f7150
0d2544a
14b8c90
c8aef77
 
38a2ef1
a0787f2
 
45b771c
 
1ff63a0
 
45b771c
 
 
80f59d0
1ff63a0
45b771c
 
 
 
1ff63a0
45b771c
c8aef77
45b771c
0d2544a
 
 
 
 
 
 
 
 
 
 
38a2ef1
 
0d2544a
 
 
 
38a2ef1
0d2544a
 
38a2ef1
0d2544a
 
 
8f0b65d
2a8236b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f0b65d
2a8236b
8f0b65d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38a2ef1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from typing import List
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from models import RequestModel
import os
import json
import cv2
import numpy as np
import base64
import requests
from PIL import Image
from io import BytesIO
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing.image import img_to_array
from sklearn.metrics.pairwise import cosine_similarity

BASE_DIR = "saved_data"
app = FastAPI()

def orb_sim(img1, img2):
    # ORB
    orb = cv2.ORB_create()
    kp_a, desc_a = orb.detectAndCompute(img1, None)
    kp_b, desc_b = orb.detectAndCompute(img2, None)

    # Brute-force matcher
    bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
    matches = bf.match(desc_a, desc_b)
    similar_regions = [i for i in matches if i.distance < 20]
    if len(matches) == 0:
        return 0
    return len(similar_regions) / len(matches)

def preprocess_image_for_mobilenet(image):
    # Garantir que a imagem tem 3 canais
    if len(image.shape) == 2:
        image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
    elif image.shape[2] == 1:
        image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
    else:
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

    # Redimensionar e preparar imagem
    image = cv2.resize(image, (224, 224))
    image = img_to_array(image)
    image = np.expand_dims(image, axis=0)
    image = preprocess_input(image)

    return image
    
def mobilenet_similarity(img1, img2):
    try:
        img1_proc = preprocess_image_for_mobilenet(img1)
        img2_proc = preprocess_image_for_mobilenet(img2)

        feat1 = mobilenet.predict(img1_proc, verbose=0)
        feat2 = mobilenet.predict(img2_proc, verbose=0)

        sim = cosine_similarity(feat1, feat2)[0][0]  # Valor entre -1 e 1
        sim_score = (sim + 1) * 50  # Escalar para 0-100
        logging.info(f"MobileNet similarity score is {sim_score}")
        return sim_score
    except Exception as e:
        logging.error("Erro ao calcular similaridade com MobileNet", exc_info=True)
        return 0

def load_image(source):
    Image.MAX_IMAGE_PIXELS = None

    if source.startswith('http'):
        response = requests.get(source)
        img = np.asarray(bytearray(response.content), dtype=np.uint8)
        img = cv2.imdecode(img, cv2.IMREAD_GRAYSCALE)
    else:
        img = base64.b64decode(source)
        img = Image.open(BytesIO(img))
        img = np.array(img)
        img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

    return img

app = FastAPI()

BASE_DIR = "/tmp/data"

@app.post("/save")
async def save(image_data: RequestModel):
    os.makedirs(BASE_DIR, exist_ok=True)
    filename = os.path.join(BASE_DIR, f"{image_data.originId}_{image_data.assetCode}.json")

    img1 = load_image(image_data.originSource)
    img2 = load_image(image_data.source)

    similarity_orb = None
    similarity_mobilenet = None

    if img1 is not None and img2 is not None:
        similarity_orb = orb_sim(img1, img2)
        print(f"Similaridade ORB entre {image_data.originSource} e {image_data.source}: {similarity_orb}")
        similarity_mobilenet = mobilenet_similarity(img1, img2)
        print(f"Similaridade Mobilenet entre {image_data.originSource} e {image_data.source}: {similarity_mobilenet}")

    data_to_save = image_data.dict()
    if similarity_orb is not None:
        data_to_save["similarityOrb"] = similarity_orb
        data_to_save["similarityMobilenet"] = similarity_mobilenet

    with open(filename, "w") as f:
        json.dump(data_to_save, f, indent=4)
    return True

@app.get("/files")
async def list_files():
    try:
        files_data = []
        for filename in os.listdir(BASE_DIR):
            filepath = os.path.join(BASE_DIR, filename)
            if os.path.isfile(filepath):
                try:
                    with open(filepath, "r") as f:
                        file_content = f.read()  # Lê o conteúdo do ficheiro
                        # Tenta decodificar o conteúdo como JSON, se possível
                        try:
                            file_content_json = json.loads(file_content)
                            files_data.append({"filename": filename, "content": file_content_json})
                        except json.JSONDecodeError:
                            files_data.append({"filename": filename, "content": file_content}) # Se não for JSON, retorna o texto
                except (IOError, OSError) as e:
                    raise HTTPException(status_code=500, detail=f"Erro ao ler o ficheiro {filename}: {e}")

        return JSONResponse({"files_data": files_data})
    except FileNotFoundError:
        raise HTTPException(status_code=404, detail="Diretório de dados não encontrado")

@app.get("/files/similar")
async def list_similar_files():
    try:
        files_data = []
        for filename in os.listdir(BASE_DIR):
            filepath = os.path.join(BASE_DIR, filename)
            if os.path.isfile(filepath):
                try:
                    with open(filepath, "r") as f:
                        file_content = f.read()
                        try:
                            file_content_json = json.loads(file_content)
                            # Check for similarityOrb and filter
                            if "similarityOrb" in file_content_json and file_content_json["similarityOrb"] > 0:
                                files_data.append({"filename": filename, "content": file_content_json})
                        except json.JSONDecodeError:
                            pass  # Skip files that are not valid JSON
                except (IOError, OSError) as e:
                    raise HTTPException(status_code=500, detail=f"Erro ao ler o ficheiro {filename}: {e}")
        return JSONResponse({"files_data": files_data})
    except FileNotFoundError:
        raise HTTPException(status_code=404, detail="Diretório de dados não encontrado")

@app.get("/files/find/{origin_id}")
async def get_file_by_origin_id(origin_id: int):
    try:
        for filename in os.listdir(BASE_DIR):
            if filename.startswith(f"{origin_id}_") and filename.endswith(".json"):
                filepath = os.path.join(BASE_DIR, filename)
                if os.path.isfile(filepath):
                    try:
                        with open(filepath, "r") as f:
                            file_content = f.read()
                            try:
                                file_content_json = json.loads(file_content)
                                return JSONResponse({"filename": filename, "content": file_content_json})
                            except json.JSONDecodeError:
                                return JSONResponse({"filename": filename, "content": file_content})
                    except (IOError, OSError) as e:
                        raise HTTPException(status_code=500, detail=f"Erro ao ler o ficheiro {filename}: {e}")
        raise HTTPException(status_code=404, detail=f"Ficheiro com originId '{origin_id}' não encontrado")
    except FileNotFoundError:
        raise HTTPException(status_code=404, detail="Diretório de dados não encontrado")