Spaces:
Running
Running
Delete similarity.py
Browse files- similarity.py +0 -40
similarity.py
DELETED
@@ -1,40 +0,0 @@
|
|
1 |
-
import base64
|
2 |
-
import io
|
3 |
-
from typing import List
|
4 |
-
from skimage.metrics import structural_similarity as ssim
|
5 |
-
import cv2
|
6 |
-
import numpy as np
|
7 |
-
import requests
|
8 |
-
from PIL import Image
|
9 |
-
|
10 |
-
from models import RequestModel, ResponseModel
|
11 |
-
|
12 |
-
|
13 |
-
def load_image_url(source):
|
14 |
-
if source.startswith('http'):
|
15 |
-
img = Image.open(requests.get(source, stream=True).raw)
|
16 |
-
else:
|
17 |
-
img_data = base64.b64decode(source)
|
18 |
-
img = Image.open(io.BytesIO(img_data))
|
19 |
-
|
20 |
-
img = np.array(img.convert('L'))
|
21 |
-
return img
|
22 |
-
|
23 |
-
|
24 |
-
def check_similarity(images: List[RequestModel]):
|
25 |
-
print(f'checking similarity...')
|
26 |
-
|
27 |
-
original_image = load_image_url(images[0].source)
|
28 |
-
original_image_shape = original_image.shape
|
29 |
-
|
30 |
-
results = []
|
31 |
-
|
32 |
-
for i in range(1, len(images)):
|
33 |
-
image = load_image_url(images[i].source)
|
34 |
-
image = cv2.resize(image, original_image_shape[::-1])
|
35 |
-
s, _ = ssim(original_image, image, full=True)
|
36 |
-
similarity_score = (s + 1) * 50
|
37 |
-
response = ResponseModel(originId=images[i].originId, sequence=images[i].sequence,
|
38 |
-
assetCode=images[i].assetCode, similarity=similarity_score)
|
39 |
-
results.append(response)
|
40 |
-
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|