Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -8,6 +8,12 @@ import cv2
|
|
8 |
import numpy as np
|
9 |
import base64
|
10 |
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
from PIL import Image
|
12 |
from io import BytesIO
|
13 |
from tensorflow.keras.applications import MobileNetV2
|
@@ -70,17 +76,58 @@ def mobilenet_similarity(img1, img2):
|
|
70 |
def load_image(source):
|
71 |
Image.MAX_IMAGE_PIXELS = None
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
if source.startswith('http'):
|
|
|
|
|
|
|
|
|
|
|
74 |
response = requests.get(source)
|
75 |
img = np.asarray(bytearray(response.content), dtype=np.uint8)
|
76 |
img = cv2.imdecode(img, cv2.IMREAD_GRAYSCALE)
|
77 |
-
|
78 |
-
img = base64.b64decode(source)
|
79 |
-
img = Image.open(BytesIO(img))
|
80 |
-
img = np.array(img)
|
81 |
-
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
82 |
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
app = FastAPI()
|
86 |
|
|
|
8 |
import numpy as np
|
9 |
import base64
|
10 |
import requests
|
11 |
+
|
12 |
+
import mimetypes
|
13 |
+
import tempfile
|
14 |
+
import subprocess
|
15 |
+
|
16 |
+
|
17 |
from PIL import Image
|
18 |
from io import BytesIO
|
19 |
from tensorflow.keras.applications import MobileNetV2
|
|
|
76 |
def load_image(source):
|
77 |
Image.MAX_IMAGE_PIXELS = None
|
78 |
|
79 |
+
def extract_frame_from_video(video_path_or_url, time_sec):
|
80 |
+
with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as temp_frame:
|
81 |
+
frame_path = temp_frame.name
|
82 |
+
|
83 |
+
command = [
|
84 |
+
ffmpeg_path,
|
85 |
+
"-ss", str(time_sec),
|
86 |
+
"-i", video_path_or_url,
|
87 |
+
"-frames:v", "1",
|
88 |
+
"-q:v", "2",
|
89 |
+
"-y",
|
90 |
+
frame_path
|
91 |
+
]
|
92 |
+
subprocess.run(command, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
|
93 |
+
|
94 |
+
if not os.path.exists(frame_path):
|
95 |
+
raise ValueError("Failed to extract frame from video.")
|
96 |
+
|
97 |
+
frame = cv2.imread(frame_path, cv2.IMREAD_GRAYSCALE)
|
98 |
+
os.remove(frame_path)
|
99 |
+
return frame
|
100 |
+
|
101 |
if source.startswith('http'):
|
102 |
+
mime_type, _ = mimetypes.guess_type(source)
|
103 |
+
if mime_type and mime_type.startswith('video'):
|
104 |
+
return extract_frame_from_video(source, frame_time)
|
105 |
+
|
106 |
+
# Assume imagem
|
107 |
response = requests.get(source)
|
108 |
img = np.asarray(bytearray(response.content), dtype=np.uint8)
|
109 |
img = cv2.imdecode(img, cv2.IMREAD_GRAYSCALE)
|
110 |
+
return img
|
|
|
|
|
|
|
|
|
111 |
|
112 |
+
else:
|
113 |
+
try:
|
114 |
+
img_bytes = base64.b64decode(source)
|
115 |
+
mime_type = mimetypes.guess_type("data")[0] # fallback
|
116 |
+
|
117 |
+
# Tenta abrir como imagem
|
118 |
+
img = Image.open(BytesIO(img_bytes))
|
119 |
+
img = np.array(img)
|
120 |
+
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
121 |
+
return img
|
122 |
+
except Exception:
|
123 |
+
# Se falhar, assumimos que é vídeo em base64 e extraímos frame
|
124 |
+
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_video:
|
125 |
+
temp_video.write(base64.b64decode(source))
|
126 |
+
temp_video_path = temp_video.name
|
127 |
+
|
128 |
+
frame = extract_frame_from_video(temp_video_path, frame_time)
|
129 |
+
os.remove(temp_video_path)
|
130 |
+
return frame
|
131 |
|
132 |
app = FastAPI()
|
133 |
|