similarity_image / similarity.py
ricardo238costa's picture
Create similarity.py
2ad5883 verified
import base64
import io
from typing import List
from skimage.metrics import structural_similarity as ssim
import cv2
import numpy as np
import requests
from PIL import Image
from models import RequestModel, ResponseModel
def load_image_url(source):
if source.startswith('http'):
img = Image.open(requests.get(source, stream=True).raw)
else:
img_data = base64.b64decode(source)
img = Image.open(io.BytesIO(img_data))
img = np.array(img.convert('L'))
return img
def check_similarity(images: List[RequestModel]):
print(f'checking similarity...')
original_image = load_image_url(images[0].source)
original_image_shape = original_image.shape
results = []
for i in range(1, len(images)):
image = load_image_url(images[i].source)
image = cv2.resize(image, original_image_shape[::-1])
s, _ = ssim(original_image, image, full=True)
similarity_score = (s + 1) * 50
response = ResponseModel(originId=images[i].originId, sequence=images[i].sequence,
assetCode=images[i].assetCode, similarity=similarity_score)
results.append(response)
return results