Spaces:
Sleeping
Sleeping
import time | |
from fastapi import FastAPI, UploadFile | |
from fastapi.middleware.cors import CORSMiddleware | |
import torch | |
from transformers import pipeline | |
app = FastAPI(docs_url="/api/docs") | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_methods=["*"], | |
allow_headers=["*"], | |
allow_credentials=True, | |
) | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
BATCH_SIZE = 8 | |
pipe = pipeline("automatic-speech-recognition", | |
"openai/whisper-large-v3", | |
torch_dtype=torch_dtype, | |
device=device) | |
def getDevice(): | |
start_time = time.time() | |
print("Time took to process the request and return response is {} sec".format( | |
time.time() - start_time)) | |
return device | |
def transcribe(soundFile: UploadFile, task="transcribe"): | |
start_time = time.time() | |
if soundFile is None: | |
raise "No audio file submitted! Please upload or record an audio file before submitting your request." | |
inputFile = soundFile.file.read() | |
text = pipe(inputFile, batch_size=BATCH_SIZE, generate_kwargs={ | |
"task": task}, return_timestamps=True)["text"] | |
print("Time took to process the request and return response is {} sec".format( | |
time.time() - start_time)) | |
return text | |