Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- .gitattributes +2 -0
- app.py +48 -0
- data_final.csv +3 -0
- requirements.txt +1 -0
- vectors.txt +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
data_final.csv filter=lfs diff=lfs merge=lfs -text
|
37 |
+
vectors.txt filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from transformers import AutoTokenizer, AutoModel
|
6 |
+
from sklearn.metrics.pairwise import pairwise_distances, cosine_similarity
|
7 |
+
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("cointegrated/rubert-tiny2")
|
9 |
+
model = AutoModel.from_pretrained("cointegrated/rubert-tiny2")
|
10 |
+
|
11 |
+
df = pd.read_csv('data_final.csv')
|
12 |
+
|
13 |
+
MAX_LEN = 300
|
14 |
+
|
15 |
+
# @st.cache_resource
|
16 |
+
def embed_bert_cls(text, model, tokenizer):
|
17 |
+
t = tokenizer(text, padding=True, truncation=True, return_tensors='pt', max_length=MAX_LEN)
|
18 |
+
with torch.no_grad():
|
19 |
+
model_output = model(**{k: v.to(model.device) for k, v in t.items()})
|
20 |
+
embeddings = model_output.last_hidden_state[:, 0, :]
|
21 |
+
embeddings = torch.nn.functional.normalize(embeddings)
|
22 |
+
return embeddings[0].cpu().numpy()
|
23 |
+
|
24 |
+
books_vector = np.loadtxt('vectors.txt')
|
25 |
+
|
26 |
+
st.title('Приложение для рекомендации книг')
|
27 |
+
|
28 |
+
text = st.text_input('Введите запрос:')
|
29 |
+
num_results = st.number_input('Введите количество рекомендаций:', min_value=1, max_value=50, value=1)
|
30 |
+
|
31 |
+
recommend_button = st.button('Найти')
|
32 |
+
|
33 |
+
if text and recommend_button:
|
34 |
+
user_text_pred = embed_bert_cls(text, model, tokenizer)
|
35 |
+
list_ = pairwise_distances(user_text_pred.reshape(1, -1), books_vector).argsort()[0][:num_results]
|
36 |
+
|
37 |
+
st.subheader('Топ рекомендуемых книг:')
|
38 |
+
|
39 |
+
for i in list_:
|
40 |
+
col_1, col_2 = st.columns([1, 3])
|
41 |
+
|
42 |
+
with col_1:
|
43 |
+
st.image(df['image_url'][i], use_column_width=True)
|
44 |
+
with col_2:
|
45 |
+
st.write(f'Название книги: {df["title"][i]}')
|
46 |
+
st.write(f'Название книги: {df["author"][i]}')
|
47 |
+
st.write(f'Название книги: {df["annotation"][i]}')
|
48 |
+
st.write(f'{df["page_url"][i]}')
|
data_final.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0134e0f425d7cde2b5a1c063b600f91a19e0a402305bdd836d7c4c6f62063ee
|
3 |
+
size 13156346
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
torch==2.0.1
|
vectors.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2cd2885b9809cf7b6fd597bdd76d1d38d7a96ef1273fac87a418881c6afbf836
|
3 |
+
size 32849065
|