Spaces:
Running
Running
PushkarA07
commited on
Commit
·
27e311e
1
Parent(s):
61ffd48
Update web_app.py
Browse files- web_app.py +0 -15
web_app.py
CHANGED
@@ -4,9 +4,6 @@ from fastai.vision.learner import create_body
|
|
4 |
import streamlit as st
|
5 |
from PIL import Image
|
6 |
import cv2 as cv
|
7 |
-
|
8 |
-
# ---------Backend--------------------------------------------------------------
|
9 |
-
|
10 |
import os
|
11 |
import glob
|
12 |
import time
|
@@ -58,8 +55,6 @@ class ColorizationDataset(Dataset):
|
|
58 |
def __len__(self):
|
59 |
return len(self.paths)
|
60 |
|
61 |
-
|
62 |
-
# A handy function to make our dataloaders
|
63 |
def make_dataloaders(batch_size=16, n_workers=4, pin_memory=True, **kwargs):
|
64 |
dataset = ColorizationDataset(**kwargs)
|
65 |
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=n_workers,
|
@@ -313,10 +308,6 @@ def update_losses(model, loss_meter_dict, count):
|
|
313 |
|
314 |
|
315 |
def lab_to_rgb(L, ab):
|
316 |
-
"""
|
317 |
-
Takes a batch of images
|
318 |
-
"""
|
319 |
-
|
320 |
L = (L + 1.) * 50.
|
321 |
ab = ab * 110.
|
322 |
Lab = torch.cat([L, ab], dim=1).permute(0, 2, 3, 1).cpu().numpy()
|
@@ -352,10 +343,6 @@ def log_results(loss_meter_dict):
|
|
352 |
for loss_name, loss_meter in loss_meter_dict.items():
|
353 |
print(f"{loss_name}: {loss_meter.avg:.5f}")
|
354 |
|
355 |
-
|
356 |
-
# pip install fastai==2.4
|
357 |
-
|
358 |
-
|
359 |
def build_res_unet(n_input=1, n_output=2, size=256):
|
360 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
361 |
body = create_body(resnet18(), pretrained=True, n_in=n_input, cut=-2)
|
@@ -388,8 +375,6 @@ class MyDataset(torch.utils.data.Dataset):
|
|
388 |
ab = img_lab[[1, 2], ...] / 110.
|
389 |
return {'L': L, 'ab': ab}
|
390 |
|
391 |
-
|
392 |
-
# A handy function to make our dataloaders
|
393 |
def make_dataloaders2(batch_size=16, n_workers=4, pin_memory=True, **kwargs):
|
394 |
dataset = MyDataset(**kwargs)
|
395 |
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=n_workers,
|
|
|
4 |
import streamlit as st
|
5 |
from PIL import Image
|
6 |
import cv2 as cv
|
|
|
|
|
|
|
7 |
import os
|
8 |
import glob
|
9 |
import time
|
|
|
55 |
def __len__(self):
|
56 |
return len(self.paths)
|
57 |
|
|
|
|
|
58 |
def make_dataloaders(batch_size=16, n_workers=4, pin_memory=True, **kwargs):
|
59 |
dataset = ColorizationDataset(**kwargs)
|
60 |
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=n_workers,
|
|
|
308 |
|
309 |
|
310 |
def lab_to_rgb(L, ab):
|
|
|
|
|
|
|
|
|
311 |
L = (L + 1.) * 50.
|
312 |
ab = ab * 110.
|
313 |
Lab = torch.cat([L, ab], dim=1).permute(0, 2, 3, 1).cpu().numpy()
|
|
|
343 |
for loss_name, loss_meter in loss_meter_dict.items():
|
344 |
print(f"{loss_name}: {loss_meter.avg:.5f}")
|
345 |
|
|
|
|
|
|
|
|
|
346 |
def build_res_unet(n_input=1, n_output=2, size=256):
|
347 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
348 |
body = create_body(resnet18(), pretrained=True, n_in=n_input, cut=-2)
|
|
|
375 |
ab = img_lab[[1, 2], ...] / 110.
|
376 |
return {'L': L, 'ab': ab}
|
377 |
|
|
|
|
|
378 |
def make_dataloaders2(batch_size=16, n_workers=4, pin_memory=True, **kwargs):
|
379 |
dataset = MyDataset(**kwargs)
|
380 |
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=n_workers,
|