File size: 4,376 Bytes
8751c2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from langchain.chains import LLMChain, SequentialChain # our langchain is going to allow us to run our topic through our prompt template and then run it through our llm chain and then run it through our sequential chain(generate our response)
from langchain.memory import ConversationBufferMemory
import streamlit as st 

from transformers import AutoModel
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained("PyaeSoneK/LlamaV2LegalFineTuned",
                                    device_map='auto',
                                  torch_dtype=torch.float16,
                                  use_auth_token= st.secrets['hf_access_token'],)
                                            #  load_in_4bit=True

tokenizer = AutoTokenizer.from_pretrained("PyaeSoneK/LlamaV2LegalFineTuned",
                                          use_auth_token=st.secrets['hf_access_token'],)

# Use a pipeline for later
from transformers import pipeline

pipe = pipeline("text-generation",
                model=model,
                tokenizer= tokenizer,
                torch_dtype=torch.bfloat16,
                device_map="auto",
                max_new_tokens = 512,
                do_sample=True,
                top_k=30,
                num_return_sequences=1,
                eos_token_id=tokenizer.eos_token_id
                )

import json
import textwrap
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<>\n", "\n<>\n\n"
DEFAULT_SYSTEM_PROMPT = """\
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.

If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."""


def get_prompt(instruction, new_system_prompt=DEFAULT_SYSTEM_PROMPT, citation=None):
    SYSTEM_PROMPT = B_SYS + new_system_prompt + E_SYS
    prompt_template =  B_INST + SYSTEM_PROMPT + instruction + E_INST

    if citation:
        prompt_template += f"\n\nCitation: {citation}"  # Insert citation here

    return prompt_template

def cut_off_text(text, prompt):
    cutoff_phrase = prompt
    index = text.find(cutoff_phrase)
    if index != -1:
        return text[:index]
    else:
        return text

def remove_substring(string, substring):
    return string.replace(substring, "")

def generate(text, citation=None):
    prompt = get_prompt(text, citation=citation)
    inputs = tokenizer(prompt, return_tensors="pt")
    with torch.no_grad():
        outputs = model.generate(**inputs,
                                 max_length=512,
                                 eos_token_id=tokenizer.eos_token_id,
                                 pad_token_id=tokenizer.eos_token_id,
                                 )
        final_outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
        final_outputs = cut_off_text(final_outputs, '')
        final_outputs = remove_substring(final_outputs, prompt)

    return final_outputs

def parse_text(text):
    wrapped_text = textwrap.fill(text, width=100)
    print(wrapped_text + '\n\n')
    # return assistant_text

    
from langchain import HuggingFacePipeline
from langchain import PromptTemplate,  LLMChain

llm = HuggingFacePipeline(pipeline = pipe, model_kwargs = {'temperature':0})


system_prompt = "You are an advanced legal assistant that excels at giving advice. "
instruction = "Convert the following input text from stupid to legally reasoned and step-by-step throughout advice:\n\n {text}"
template = get_prompt(instruction, system_prompt)
print(template)


# App framework
st.title('🦜Seon\'s Legal QA For Dummies 🔗 ')
prompt = PromptTemplate(template=template, input_variables=["text"])
llm_chain = LLMChain(prompt=prompt, llm=llm)


text = st.text_input('Plug in your prompt here') 
# Instantiate the prompt template # this will show stuff to the screen if there's a prompt 
if text:
    response = llm_chain.run(text)
    st.write(parse_text(response))