File size: 10,868 Bytes
e31742a
caef49d
 
 
 
 
 
 
 
 
 
 
 
 
e31742a
 
 
caef49d
 
1eb5cf2
 
 
 
caef49d
 
 
 
3dce0a6
caef49d
 
 
 
 
 
 
 
 
 
 
0567750
 
 
e31742a
0567750
 
 
 
 
e31742a
0567750
 
 
 
 
e31742a
 
0567750
 
 
 
 
 
caef49d
 
e31742a
 
caef49d
 
 
 
 
 
 
 
 
 
 
e31742a
 
 
 
 
 
 
 
caef49d
 
e31742a
 
 
0567750
 
e31742a
0567750
 
 
 
 
 
 
 
 
caef49d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0567750
 
 
 
caef49d
0567750
caef49d
0567750
 
 
caef49d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ee3acf
caef49d
 
23ec80e
caef49d
 
 
 
 
 
0567750
 
 
 
 
9090bf4
 
caef49d
 
 
 
 
 
 
 
 
 
 
 
0567750
caef49d
 
0567750
caef49d
0567750
caef49d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0567750
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

import streamlit as st
from streamlit_chat import message as st_message
import pandas as pd
import numpy as np
import datetime
import gspread
import pickle
import os
import csv
import json
import torch
from tqdm.auto import tqdm
from langchain.text_splitter import RecursiveCharacterTextSplitter
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter


from transformers import AutoModel
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM



from langchain import HuggingFacePipeline

from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferWindowMemory


from langchain.chains import LLMChain
from langchain.chains import ConversationalRetrievalChain
from langchain.chains.question_answering import load_qa_chain
from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT




# from langchain.vectorstores import Chroma
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceInstructEmbeddings,OpenAIEmbeddings


from langchain.chains import RetrievalQA






prompt_template = """

You are the chatbot and the advanced legal assitant that can give answers to all the legal questions a common citizen would have . Your job is to give answers when questions about General legal information, Family law, Employment law, Consumer rights, Housing and tenancy, Personal injury, Wills and estates, Criminal law are asked.
Your job is to answer questions only and only related to Legal aspect. Anything unrelated should be responded with the fact that your main job is solely to provide assistance regarding Legality.
MUST only use the following pieces of context to answer the question at the end. If the answers are not in the context or you are not sure of the answer, just say that you don't know, don't try to make up an answer.
{context}
Question: {question}
When encountering abusive, offensive, or harmful language, such as fuck, bitch,etc,  just politely ask the users to maintain appropriate behaviours.
Always make sure to elaborate your response and use vibrant, positive tone to represent good branding of the school.
Never answer with any unfinished response
Answer:
"""


PROMPT = PromptTemplate(
    template=prompt_template, input_variables=["context", "question"]
)
chain_type_kwargs = {"prompt": PROMPT}


st.set_page_config(
    page_title = '👨‍⚖️Seon\'s Legal QA For Dummies ⚖️',
    page_icon = '🕵')


@st.cache_data
def get_pdf_text(pdf_docs):
    text = ""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            text += page.extract_text()
    return text

@st.cache_resource
def get_vectorstore(text_chunks):
    embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
    vector_database = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    return vector_database


@st.cache_resource
def load_llm_model():
    llm = HuggingFacePipeline.from_model_id(model_id= 'PyaeSoneK/pythia_70m_legalQA', 
                                        task= 'text2text-generation',
                                        
                                        model_kwargs={ "max_length": 256, "temperature": 0,
                                                      "torch_dtype":torch.float32,
                                                    "repetition_penalty": 1.3})
    return llm


@st.cache_resource
def load_conversational_qa_memory_retriever():

    question_generator = LLMChain(llm=llm_model, prompt=CONDENSE_QUESTION_PROMPT)
    doc_chain = load_qa_chain(llm_model, chain_type="stuff", prompt = PROMPT)
    memory = ConversationBufferWindowMemory(k = 3,  memory_key="chat_history", return_messages=True,  output_key='answer')
    
    
    
    conversational_qa_memory_retriever = ConversationalRetrievalChain(
        retriever=vector_database.as_retriever(),
        question_generator=question_generator,
        combine_docs_chain=doc_chain,
        return_source_documents=True,
        memory = memory,
        get_chat_history=lambda h :h)
    return conversational_qa_memory_retriever, question_generator

def load_retriever(llm, db):
    qa_retriever = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff",
                            retriever=db.as_retriever(),
                            chain_type_kwargs= chain_type_kwargs)

    return qa_retriever

def retrieve_document(query_input):
    related_doc = vector_database.similarity_search(query_input)
    return related_doc



def retrieve_answer():
    prompt_answer=  st.session_state.my_text_input
    answer = qa_retriever.run(prompt_answer)
    log = {"timestamp": datetime.datetime.now(),
        "question":st.session_state.my_text_input,
        "generated_answer": answer[6:],
        "rating":0 }

    st.session_state.history.append(log)
    update_worksheet_qa()
    st.session_state.chat_history.append({"message": st.session_state.my_text_input, "is_user": True})
    st.session_state.chat_history.append({"message": answer[6:] , "is_user": False})

    st.session_state.my_text_input = ""

    return answer[6:] #this positional slicing helps remove "<pad> " at the beginning


def new_retrieve_answer():
    prompt_answer=  st.session_state.my_text_input + ". Try to be elaborate and informative in your answer."
    answer = conversational_qa_memory_retriever({"question": prompt_answer, })
    log = {"timestamp": datetime.datetime.now(),
        "question":st.session_state.my_text_input,
        "generated_answer": answer['answer'][6:],
        "rating":0 }

    print(f"condensed quesion : {question_generator.run({'chat_history': answer['chat_history'], 'question' : prompt_answer})}")

    print(answer["chat_history"])
    st.session_state.history.append(log)
    update_worksheet_qa()
    st.session_state.chat_history.append({"message": st.session_state.my_text_input, "is_user": True})
    st.session_state.chat_history.append({"message": answer['answer'][6:] , "is_user": False})

    st.session_state.my_text_input = ""

    return answer['answer'][6:] #this positional slicing helps remove "<pad> " at the beginning
    
# def update_score():
#     st.session_state.session_rating = st.session_state.rating


def update_worksheet_qa():
    # st.session_state.session_rating = st.session_state.rating
    #This if helps validate the initiated rating, if 0, then the google sheet would not be updated
    #(edited) now even with the score of 0, we still want to store the log because some users do not give the score to complete the logging
    # if st.session_state.session_rating  == 0:
    worksheet_qa.append_row([st.session_state.history[-1]['timestamp'].strftime(datetime_format), 
                            st.session_state.history[-1]['question'],
                            st.session_state.history[-1]['generated_answer'],
                             0])
    # else:
    #     worksheet_qa.append_row([st.session_state.history[-1]['timestamp'].strftime(datetime_format), 
    #                             st.session_state.history[-1]['question'],
    #                             st.session_state.history[-1]['generated_answer'], 
    #                             st.session_state.session_rating 
    #                             ])
        
def update_worksheet_comment():
    worksheet_comment.append_row([datetime.datetime.now().strftime(datetime_format),
                                feedback_input])
    success_message = st.success('Feedback successfully submitted, thank you', icon="✅",
               )
    time.sleep(3)
    success_message.empty()


def clean_chat_history():
    st.session_state.chat_history = []
    conversational_qa_memory_retriever.memory.chat_memory.clear() #add this to remove

#--------------


if "history" not in st.session_state: #this one is for the google sheet logging
    st.session_state.history = []


if "chat_history" not in st.session_state: #this one is to pass previous messages into chat flow
    st.session_state.chat_history = []
# if "session_rating" not in st.session_state:
#     st.session_state.session_rating = 0


credentials= json.loads(st.secrets['google_sheet_credential'])

service_account = gspread.service_account_from_dict(credentials)
workbook= service_account.open("legalQA-log")
worksheet_qa = workbook.worksheet("Sheet1")
worksheet_comment = workbook.worksheet("Sheet2")
datetime_format= "%Y-%m-%d %H:%M:%S"



load_scraped_web_info()
embedding_model = load_embedding_model()
vector_database = load_faiss_index()
llm_model = load_llm_model()
qa_retriever = load_retriever(llm= llm_model, db= vector_database)
conversational_qa_memory_retriever, question_generator = load_conversational_qa_memory_retriever()
print("all load done")


# Try adding this to set to clear the memory in each session
if st.session_state.chat_history == []:
    conversational_qa_memory_retriever.memory.chat_memory.clear()
#Addional things for Conversation flows






st.write("🦜Seon's Legal QA For Dummies 🔗 ")
st.markdown("""
         ####This Legal QA is designed for normal people trying to get the legal answers orbiting around in their life.  
        The goal of this chatbot is to provide answers and advice with quick access information on Legality : Law and Regulations: what's right or wrong in general!
          """)
st.write(' ⚠️ Please expect to wait **~ 5-10 seconds per question** as thi app is running on CPU against 70-million-parameter LLM')

st.markdown("---")
st.write(" ")
st.write("""
         ### ❔ Ask a question
         """)


for chat in st.session_state.chat_history:
    st_message(**chat)

query_input = st.text_input(label= 'Boraden Your General Legal Knowledge Here!' , key = 'my_text_input', on_change= new_retrieve_answer )
# generate_button = st.button(label = 'Ask question!')

# if generate_button:
#     answer = retrieve_answer(query_input)
#     log = {"timestamp": datetime.datetime.now(),
#         "question":query_input,
#         "generated_answer": answer,
#         "rating":0 }

#     st.session_state.history.append(log)
#     update_worksheet_qa()
#     st.session_state.chat_history.append({"message": query_input, "is_user": True})
#     st.session_state.chat_history.append({"message": answer, "is_user": False})

#     print(st.session_state.chat_history)


clear_button = st.button("Start new convo",
                         on_click=clean_chat_history)


st.write(" ")
st.write(" ")

st.markdown("---")
st.write("""
         ### 💌 Your voice matters
         """)

feedback_input = st.text_area(label= 'please leave your feedback or any ideas to make this bot more knowledgeable and fun')
feedback_button = st.button(label = 'Submit feedback!')

if feedback_button:
    update_worksheet_comment()