Spaces:
Runtime error
Runtime error
File size: 10,868 Bytes
e31742a caef49d e31742a caef49d 1eb5cf2 caef49d 3dce0a6 caef49d 0567750 e31742a 0567750 e31742a 0567750 e31742a 0567750 caef49d e31742a caef49d e31742a caef49d e31742a 0567750 e31742a 0567750 caef49d 0567750 caef49d 0567750 caef49d 0567750 caef49d 4ee3acf caef49d 23ec80e caef49d 0567750 9090bf4 caef49d 0567750 caef49d 0567750 caef49d 0567750 caef49d 0567750 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import streamlit as st
from streamlit_chat import message as st_message
import pandas as pd
import numpy as np
import datetime
import gspread
import pickle
import os
import csv
import json
import torch
from tqdm.auto import tqdm
from langchain.text_splitter import RecursiveCharacterTextSplitter
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from transformers import AutoModel
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
from langchain import HuggingFacePipeline
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferWindowMemory
from langchain.chains import LLMChain
from langchain.chains import ConversationalRetrievalChain
from langchain.chains.question_answering import load_qa_chain
from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT
# from langchain.vectorstores import Chroma
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceInstructEmbeddings,OpenAIEmbeddings
from langchain.chains import RetrievalQA
prompt_template = """
You are the chatbot and the advanced legal assitant that can give answers to all the legal questions a common citizen would have . Your job is to give answers when questions about General legal information, Family law, Employment law, Consumer rights, Housing and tenancy, Personal injury, Wills and estates, Criminal law are asked.
Your job is to answer questions only and only related to Legal aspect. Anything unrelated should be responded with the fact that your main job is solely to provide assistance regarding Legality.
MUST only use the following pieces of context to answer the question at the end. If the answers are not in the context or you are not sure of the answer, just say that you don't know, don't try to make up an answer.
{context}
Question: {question}
When encountering abusive, offensive, or harmful language, such as fuck, bitch,etc, just politely ask the users to maintain appropriate behaviours.
Always make sure to elaborate your response and use vibrant, positive tone to represent good branding of the school.
Never answer with any unfinished response
Answer:
"""
PROMPT = PromptTemplate(
template=prompt_template, input_variables=["context", "question"]
)
chain_type_kwargs = {"prompt": PROMPT}
st.set_page_config(
page_title = '👨⚖️Seon\'s Legal QA For Dummies ⚖️',
page_icon = '🕵')
@st.cache_data
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
@st.cache_resource
def get_vectorstore(text_chunks):
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
vector_database = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vector_database
@st.cache_resource
def load_llm_model():
llm = HuggingFacePipeline.from_model_id(model_id= 'PyaeSoneK/pythia_70m_legalQA',
task= 'text2text-generation',
model_kwargs={ "max_length": 256, "temperature": 0,
"torch_dtype":torch.float32,
"repetition_penalty": 1.3})
return llm
@st.cache_resource
def load_conversational_qa_memory_retriever():
question_generator = LLMChain(llm=llm_model, prompt=CONDENSE_QUESTION_PROMPT)
doc_chain = load_qa_chain(llm_model, chain_type="stuff", prompt = PROMPT)
memory = ConversationBufferWindowMemory(k = 3, memory_key="chat_history", return_messages=True, output_key='answer')
conversational_qa_memory_retriever = ConversationalRetrievalChain(
retriever=vector_database.as_retriever(),
question_generator=question_generator,
combine_docs_chain=doc_chain,
return_source_documents=True,
memory = memory,
get_chat_history=lambda h :h)
return conversational_qa_memory_retriever, question_generator
def load_retriever(llm, db):
qa_retriever = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff",
retriever=db.as_retriever(),
chain_type_kwargs= chain_type_kwargs)
return qa_retriever
def retrieve_document(query_input):
related_doc = vector_database.similarity_search(query_input)
return related_doc
def retrieve_answer():
prompt_answer= st.session_state.my_text_input
answer = qa_retriever.run(prompt_answer)
log = {"timestamp": datetime.datetime.now(),
"question":st.session_state.my_text_input,
"generated_answer": answer[6:],
"rating":0 }
st.session_state.history.append(log)
update_worksheet_qa()
st.session_state.chat_history.append({"message": st.session_state.my_text_input, "is_user": True})
st.session_state.chat_history.append({"message": answer[6:] , "is_user": False})
st.session_state.my_text_input = ""
return answer[6:] #this positional slicing helps remove "<pad> " at the beginning
def new_retrieve_answer():
prompt_answer= st.session_state.my_text_input + ". Try to be elaborate and informative in your answer."
answer = conversational_qa_memory_retriever({"question": prompt_answer, })
log = {"timestamp": datetime.datetime.now(),
"question":st.session_state.my_text_input,
"generated_answer": answer['answer'][6:],
"rating":0 }
print(f"condensed quesion : {question_generator.run({'chat_history': answer['chat_history'], 'question' : prompt_answer})}")
print(answer["chat_history"])
st.session_state.history.append(log)
update_worksheet_qa()
st.session_state.chat_history.append({"message": st.session_state.my_text_input, "is_user": True})
st.session_state.chat_history.append({"message": answer['answer'][6:] , "is_user": False})
st.session_state.my_text_input = ""
return answer['answer'][6:] #this positional slicing helps remove "<pad> " at the beginning
# def update_score():
# st.session_state.session_rating = st.session_state.rating
def update_worksheet_qa():
# st.session_state.session_rating = st.session_state.rating
#This if helps validate the initiated rating, if 0, then the google sheet would not be updated
#(edited) now even with the score of 0, we still want to store the log because some users do not give the score to complete the logging
# if st.session_state.session_rating == 0:
worksheet_qa.append_row([st.session_state.history[-1]['timestamp'].strftime(datetime_format),
st.session_state.history[-1]['question'],
st.session_state.history[-1]['generated_answer'],
0])
# else:
# worksheet_qa.append_row([st.session_state.history[-1]['timestamp'].strftime(datetime_format),
# st.session_state.history[-1]['question'],
# st.session_state.history[-1]['generated_answer'],
# st.session_state.session_rating
# ])
def update_worksheet_comment():
worksheet_comment.append_row([datetime.datetime.now().strftime(datetime_format),
feedback_input])
success_message = st.success('Feedback successfully submitted, thank you', icon="✅",
)
time.sleep(3)
success_message.empty()
def clean_chat_history():
st.session_state.chat_history = []
conversational_qa_memory_retriever.memory.chat_memory.clear() #add this to remove
#--------------
if "history" not in st.session_state: #this one is for the google sheet logging
st.session_state.history = []
if "chat_history" not in st.session_state: #this one is to pass previous messages into chat flow
st.session_state.chat_history = []
# if "session_rating" not in st.session_state:
# st.session_state.session_rating = 0
credentials= json.loads(st.secrets['google_sheet_credential'])
service_account = gspread.service_account_from_dict(credentials)
workbook= service_account.open("legalQA-log")
worksheet_qa = workbook.worksheet("Sheet1")
worksheet_comment = workbook.worksheet("Sheet2")
datetime_format= "%Y-%m-%d %H:%M:%S"
load_scraped_web_info()
embedding_model = load_embedding_model()
vector_database = load_faiss_index()
llm_model = load_llm_model()
qa_retriever = load_retriever(llm= llm_model, db= vector_database)
conversational_qa_memory_retriever, question_generator = load_conversational_qa_memory_retriever()
print("all load done")
# Try adding this to set to clear the memory in each session
if st.session_state.chat_history == []:
conversational_qa_memory_retriever.memory.chat_memory.clear()
#Addional things for Conversation flows
st.write("🦜Seon's Legal QA For Dummies 🔗 ")
st.markdown("""
####This Legal QA is designed for normal people trying to get the legal answers orbiting around in their life.
The goal of this chatbot is to provide answers and advice with quick access information on Legality : Law and Regulations: what's right or wrong in general!
""")
st.write(' ⚠️ Please expect to wait **~ 5-10 seconds per question** as thi app is running on CPU against 70-million-parameter LLM')
st.markdown("---")
st.write(" ")
st.write("""
### ❔ Ask a question
""")
for chat in st.session_state.chat_history:
st_message(**chat)
query_input = st.text_input(label= 'Boraden Your General Legal Knowledge Here!' , key = 'my_text_input', on_change= new_retrieve_answer )
# generate_button = st.button(label = 'Ask question!')
# if generate_button:
# answer = retrieve_answer(query_input)
# log = {"timestamp": datetime.datetime.now(),
# "question":query_input,
# "generated_answer": answer,
# "rating":0 }
# st.session_state.history.append(log)
# update_worksheet_qa()
# st.session_state.chat_history.append({"message": query_input, "is_user": True})
# st.session_state.chat_history.append({"message": answer, "is_user": False})
# print(st.session_state.chat_history)
clear_button = st.button("Start new convo",
on_click=clean_chat_history)
st.write(" ")
st.write(" ")
st.markdown("---")
st.write("""
### 💌 Your voice matters
""")
feedback_input = st.text_area(label= 'please leave your feedback or any ideas to make this bot more knowledgeable and fun')
feedback_button = st.button(label = 'Submit feedback!')
if feedback_button:
update_worksheet_comment()
|