File size: 24,033 Bytes
342ea2f
74cf6bd
 
 
 
 
 
 
342ea2f
74cf6bd
 
 
 
 
0ad6b1b
 
 
74cf6bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342ea2f
 
 
 
 
 
 
 
 
 
 
 
74cf6bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
import os
import uuid
from typing import List, Dict, Any, Optional
import re
from datetime import datetime
from sentence_transformers import SentenceTransformer
from qdrant_client.http import models
from youtube_transcript_api import YouTubeTranscriptApi
from youtube_transcript_api.proxies import WebshareProxyConfig
import yt_dlp
from app.models.video import VideoSegment, Video, SearchResult
from app.services.qdrant_service import qdrant_client

# Initialize the sentence transformer model
model = SentenceTransformer(
    "sentence-transformers/static-retrieval-mrl-en-v1", cache_folder="/tmp"
)

# Collection names
COLLECTION_NAME = "video_segments"
PROCESSED_VIDEOS_COLLECTION = "processed_videos"


def _fetch_youtube_metadata(video_id: str, video: Optional[Video] = None) -> Video:
    """Helper function to fetch video metadata from YouTube using yt-dlp."""
    import logging

    if not video:
        video = Video(video_id=video_id)

    try:
        logging.info(f"Fetching metadata for video {video_id} from YouTube")

        # Configure yt-dlp options
        ydl_opts = {
            "skip_download": True,  # Don't download the video
            "quiet": True,  # Don't print progress
            "no_warnings": True,  # Don't print warnings
            "extract_flat": True,  # Don't extract videos in playlists
            "format": "best",  # Best quality (doesn't matter since we're not downloading)
        }

        # Use yt-dlp to extract video info
        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            info = ydl.extract_info(
                f"https://www.youtube.com/watch?v={video_id}", download=False
            )

            # Set video properties if available
            if info.get("title"):
                video.title = info.get("title")

            if info.get("description"):
                video.description = info.get("description")

            if info.get("uploader"):
                video.channel = info.get("uploader")

        logging.info(
            f"Successfully retrieved video metadata: title='{video.title}', channel='{video.channel}'"
        )
    except Exception as meta_error:
        logging.warning(f"Could not fetch metadata from YouTube: {str(meta_error)}")
        if not video.title:
            video.title = f"Video {video_id}"

    return video


# Ensure collections exist
def ensure_collection_exists():
    """Ensure the required collections exist in Qdrant."""
    import logging

    try:
        logging.info("Checking Qdrant collections")
        collections = qdrant_client.get_collections().collections
        collection_names = [collection.name for collection in collections]
        logging.info(f"Existing collections: {collection_names}")

        # Create video segments collection if it doesn't exist
        if COLLECTION_NAME not in collection_names:
            logging.info(f"Creating collection: {COLLECTION_NAME}")
            vector_size = model.get_sentence_embedding_dimension()
            qdrant_client.create_collection(
                collection_name=COLLECTION_NAME,
                vectors_config=models.VectorParams(
                    size=vector_size,
                    distance=models.Distance.COSINE,
                ),
            )
            logging.info(
                f"Successfully created {COLLECTION_NAME} collection with vector size {vector_size}"
            )

        # Create processed videos collection if it doesn't exist
        if PROCESSED_VIDEOS_COLLECTION not in collection_names:
            logging.info(f"Creating collection: {PROCESSED_VIDEOS_COLLECTION}")
            vector_size = model.get_sentence_embedding_dimension()
            qdrant_client.create_collection(
                collection_name=PROCESSED_VIDEOS_COLLECTION,
                vectors_config=models.VectorParams(
                    size=vector_size,
                    distance=models.Distance.COSINE,
                ),
            )
            qdrant_client.create_payload_index(
                collection_name=PROCESSED_VIDEOS_COLLECTION,
                field_name="video_id",
                field_schema=models.PayloadSchemaType.KEYWORD,
            )
            qdrant_client.create_payload_index(
                collection_name=PROCESSED_VIDEOS_COLLECTION,
                field_name="created_at",
                field_schema=models.IntegerIndexParams(
                    type=models.IntegerIndexType.INTEGER,
                    range=True,
                ),
            )
            logging.info(
                f"Successfully created {PROCESSED_VIDEOS_COLLECTION} collection with vector size {vector_size}"
            )
    except Exception as e:
        import traceback

        logging.error(f"Error ensuring collections exist: {str(e)}")
        logging.error(traceback.format_exc())
        raise


def get_embeddings(text: str) -> List[float]:
    """Get embeddings for the given text using SentenceTransformer."""
    return model.encode(text).tolist()


def extract_video_id(youtube_url: str) -> str:
    """Extract YouTube video ID from URL."""
    import logging

    logging.info(f"Extracting video ID from URL: {youtube_url}")

    # Match patterns like: https://www.youtube.com/watch?v=VIDEO_ID or https://youtu.be/VIDEO_ID
    patterns = [
        r"(?:youtube\.com/watch\?v=|youtu\.be/)([\w-]+)",
        r"(?:youtube\.com/embed/)([\w-]+)",
        r"(?:youtube\.com/v/)([\w-]+)",
    ]

    for pattern in patterns:
        match = re.search(pattern, youtube_url)
        if match:
            video_id = match.group(1)
            logging.info(f"Extracted video ID: {video_id}")
            return video_id

    # If no pattern matches, assume the input might be a direct video ID
    if re.match(r"^[\w-]+$", youtube_url):
        logging.info(f"Using direct video ID: {youtube_url}")
        return youtube_url

    logging.error(f"Failed to extract video ID from URL: {youtube_url}")
    raise ValueError(f"Could not extract video ID from URL: {youtube_url}")


def get_video_transcript(video_id: str) -> List[Dict[str, Any]]:
    """
    Get transcript for a YouTube video in any available language.
    Will try to get transcripts in this priority:
    1. English transcript (if available)
    2. Any available transcript translated to English (if translatable)
    3. Any available transcript in its original language
    """
    import logging
    import traceback

    try:
        # Try to get available transcript languages
        webshare_username = os.environ.get("WEBSHARE_USERNAME")
        webshare_password = os.environ.get("WEBSHARE_PASSWORD")
        if webshare_username and webshare_password:
            yt_transcript_api = YouTubeTranscriptApi(
                proxy_config=WebshareProxyConfig(
                    proxy_username=webshare_username,
                    proxy_password=webshare_password,
                )
            )
        else:
            yt_transcript_api = YouTubeTranscriptApi()
        transcript_list = yt_transcript_api.list(video_id)

        # First, look for English transcript
        english_transcript = None
        other_transcripts = []

        # Categorize available transcripts
        for transcript_item in transcript_list:
            if transcript_item.language_code == "en":
                english_transcript = transcript_item
            else:
                other_transcripts.append(transcript_item)

        # 1. Try English first if available
        if english_transcript:
            try:
                logging.info("Found English transcript, using it directly")
                return english_transcript.fetch()
            except Exception as e:
                logging.warning(f"Failed to fetch English transcript: {str(e)}")

        # 2. Try translatable transcripts
        translatable_transcripts = [t for t in other_transcripts if t.is_translatable]
        for transcript_item in translatable_transcripts:
            try:
                logging.info(
                    f"Trying to translate {transcript_item.language_code} transcript to English"
                )
                translated = transcript_item.translate("en").fetch()
                logging.info(
                    f"Successfully translated {transcript_item.language_code} transcript to English"
                )
                return translated
            except Exception as e:
                logging.warning(
                    f"Failed to translate {transcript_item.language_code} transcript: {str(e)}"
                )

        # 3. Try any transcript in original language
        for transcript_item in other_transcripts:
            try:
                logging.info(
                    f"Using non-translated {transcript_item.language_code} transcript"
                )
                return transcript_item.fetch()
            except Exception as e:
                logging.warning(
                    f"Failed to fetch {transcript_item.language_code} transcript: {str(e)}"
                )

        # If we get here, no transcripts worked
        available_langs = [t.language_code for t in transcript_list]
        raise ValueError(
            f"No usable transcripts found for video {video_id}. Available languages: {available_langs}"
        )

    except Exception as e:
        logging.error(f"Transcript API error for video {video_id}: {str(e)}")
        logging.error(traceback.format_exc())
        raise ValueError(f"Could not get transcript for video {video_id}: {str(e)}")


def store_processed_video(video: Video) -> bool:
    """Store a processed video in Qdrant."""
    try:
        # Get a simple embedding for the video ID
        vector = get_embeddings(f"video_{video.video_id}")

        # Prepare payload
        payload = video.model_dump()

        # Store in Qdrant
        qdrant_client.upsert(
            collection_name=PROCESSED_VIDEOS_COLLECTION,
            points=[
                models.PointStruct(
                    id=uuid.uuid4().hex,
                    vector=vector,
                    payload=payload,
                ),
            ],
        )
        return True
    except Exception as e:
        print(f"Error storing processed video: {e}")
        return False


def get_processed_videos(limit: int = 10) -> List[Video]:
    """Get recently processed videos ordered by creation time."""
    try:
        # Scroll through the processed videos collection
        scroll_result = qdrant_client.scroll(
            collection_name=PROCESSED_VIDEOS_COLLECTION,
            limit=limit,
            with_payload=True,
            order_by=models.OrderBy(key="created_at", direction=models.Direction.DESC),
        )

        # Extract videos from the result
        videos = []
        for point in scroll_result[0]:
            # Convert payload to Video
            video = Video(**point.payload)
            videos.append(video)

        # Sort by created_at timestamp (most recent first)
        videos.sort(key=lambda x: x.created_at or "", reverse=True)

        return videos[:limit]
    except Exception as e:
        print(f"Error getting processed videos: {e}")
        return []


def process_video(youtube_url: str) -> Video:
    """Process a YouTube video to extract and store transcript segments."""
    import logging
    import traceback

    logging.info(f"Processing video URL: {youtube_url}")
    transcript = None
    video_id = None

    # Extract video ID and get transcript
    try:
        # Extract video ID
        video_id = extract_video_id(youtube_url)
        logging.info(f"Successfully extracted video ID: {video_id}")

        # Check if video has already been processed
        existing_video = get_video_by_id(video_id)
        if existing_video and existing_video.processed:
            logging.info(
                f"Video {video_id} has already been processed. Skipping processing."
            )
            return existing_video

        # Create basic video object with current timestamp
        current_time = int(datetime.utcnow().timestamp())
        video = Video(video_id=video_id, created_at=current_time)

        # Get video metadata from YouTube using the helper function
        try:
            video = _fetch_youtube_metadata(video_id, video)
        except Exception as meta_error:
            logging.warning(
                f"Error fetching YouTube metadata during processing: {str(meta_error)}"
            )
            # Continue with processing even if metadata fetch fails

        # Get transcript
        logging.info(f"Fetching transcript for video ID: {video_id}")
        transcript = get_video_transcript(video_id)
        logging.info(
            f"Successfully retrieved transcript with {len(transcript)} entries"
        )

        # If we couldn't get metadata and have a transcript, try to extract a title from transcript
        if (
            (not video.title or video.title == f"Video {video_id}")
            and transcript
            and len(transcript) > 0
        ):
            # Handle different transcript formats
            try:
                # Check if transcript is a list of dictionaries (original format)
                if isinstance(transcript[0], dict) and "text" in transcript[0]:
                    video.title = f"{transcript[0]['text'][:30]}..."
                # Check if transcript is a list of objects with text attribute
                elif hasattr(transcript[0], "text"):
                    video.title = f"{transcript[0].text[:30]}..."
                # If it's another format, just use the string representation of first item
                else:
                    first_item_str = str(transcript[0])[:30]
                    video.title = f"{first_item_str}..."
                logging.info(f"Set video title from transcript: {video.title}")
            except Exception as title_error:
                logging.warning(
                    f"Could not set title from transcript: {str(title_error)}"
                )
    except Exception as e:
        logging.error(f"Error in initial video processing: {str(e)}")
        logging.error(traceback.format_exc())
        raise

    # Process transcript into segments
    try:
        # Process transcript into overlapping 30-second segments with 10-second overlap
        logging.info(f"Processing {len(transcript)} transcript entries into segments")
        segments = []

        # First, normalize the transcript to a standard format
        normalized_transcript = []
        for item in transcript:
            if (
                isinstance(item, dict)
                and "text" in item
                and "start" in item
                and "duration" in item
            ):
                # Original dictionary format
                normalized_transcript.append(
                    {
                        "text": item["text"],
                        "start": item["start"],
                        "duration": item["duration"],
                    }
                )
            elif (
                hasattr(item, "text")
                and hasattr(item, "start")
                and hasattr(item, "duration")
            ):
                # Object with attributes
                normalized_transcript.append(
                    {"text": item.text, "start": item.start, "duration": item.duration}
                )
            else:
                # Unknown format, try to extract what we can
                logging.warning(
                    f"Encountered unknown transcript item format: {type(item)}"
                )
                try:
                    # Convert to string if we can't determine the structure
                    text = str(item)
                    # Use index as a timestamp approximation
                    idx = transcript.index(item)
                    normalized_transcript.append(
                        {
                            "text": text,
                            "start": float(idx * 5),  # Approximate 5 seconds per item
                            "duration": 5.0,
                        }
                    )
                except Exception as e:
                    logging.error(f"Failed to normalize transcript item: {str(e)}")
                    continue

        # Use the normalized transcript for segment processing
        for i in range(len(normalized_transcript)):
            # Find segments that form approximately 30 seconds
            segment_text = []
            start_time = normalized_transcript[i]["start"]
            end_time = start_time
            current_index = i

            while (
                current_index < len(normalized_transcript)
                and end_time - start_time < 30
            ):
                segment_text.append(normalized_transcript[current_index]["text"])
                end_time = (
                    normalized_transcript[current_index]["start"]
                    + normalized_transcript[current_index]["duration"]
                )
                current_index += 1

            if segment_text:  # Only create segment if we have text
                segment_id = f"{video_id}_{i}"
                text = " ".join(segment_text)

                # Create VideoSegment
                segment = VideoSegment(
                    text=text,
                    start=start_time,
                    end=end_time,
                    segment_id=segment_id,
                    video_id=video_id,
                )

                segments.append(segment)

            # Skip forward with 10-second overlap (if we're not at the end)
            if (
                i + 1 < len(normalized_transcript)
                and normalized_transcript[i + 1]["start"] < end_time - 10
            ):
                # Find the next segment that starts at least 20 seconds after our current start
                while (
                    i + 1 < len(normalized_transcript)
                    and normalized_transcript[i + 1]["start"] < start_time + 20
                ):
                    i += 1

        logging.info(f"Created {len(segments)} segments from transcript")

        # Store segments in Qdrant
        logging.info("Ensuring Qdrant collections exist")
        ensure_collection_exists()

        # Store each segment
        logging.info(f"Storing {len(segments)} segments in Qdrant")
        for segment in segments:
            store_segment(segment)
    except Exception as e:
        logging.error(f"Error processing transcript segments: {str(e)}")
        logging.error(traceback.format_exc())
        raise

    # Mark video as processed and store it
    try:
        logging.info(f"Marking video {video_id} as processed")
        video.processed = True

        # Store the processed video in Qdrant
        logging.info("Storing processed video in Qdrant")
        store_result = store_processed_video(video)
        if store_result:
            logging.info(f"Successfully stored processed video: {video_id}")
        else:
            logging.warning(f"Failed to store processed video in Qdrant: {video_id}")

        return video
    except Exception as e:
        logging.error(f"Error storing processed video: {str(e)}")
        logging.error(traceback.format_exc())
        raise


def store_segment(segment: VideoSegment) -> bool:
    """Store a video segment in Qdrant."""
    import logging

    try:
        # Get embeddings
        logging.debug(f"Getting embeddings for segment {segment.segment_id}")
        vector = get_embeddings(segment.text)

        # Prepare payload
        payload = segment.model_dump()

        # Store in Qdrant
        point_id = uuid.uuid4().hex
        logging.debug(
            f"Storing segment {segment.segment_id} in Qdrant with point ID {point_id}"
        )
        qdrant_client.upsert(
            collection_name=COLLECTION_NAME,
            points=[
                models.PointStruct(
                    id=point_id,
                    vector=vector,
                    payload=payload,
                ),
            ],
        )
        return True
    except Exception as e:
        import traceback

        logging.error(f"Error storing segment {segment.segment_id}: {str(e)}")
        logging.error(traceback.format_exc())
        return False


def search_video_segments(
    query: str, video_id: Optional[str] = None, limit: int = 5
) -> List[SearchResult]:
    """Search for video segments based on the provided query."""
    # Get query embeddings
    query_vector = get_embeddings(query)

    # Prepare filter if video_id is provided
    filter_param = None
    if video_id:
        filter_param = models.Filter(
            must=[
                models.FieldCondition(
                    key="video_id",
                    match=models.MatchValue(value=video_id),
                ),
            ],
        )

    # Search in Qdrant
    search_result = qdrant_client.search(
        collection_name=COLLECTION_NAME,
        query_vector=query_vector,
        limit=limit,
        query_filter=filter_param,
    )

    # Format results
    results = []
    for scored_point in search_result:
        # Convert payload to VideoSegment
        segment = VideoSegment(**scored_point.payload)

        # Create SearchResult
        result = SearchResult(
            score=scored_point.score,
            segment=segment,
        )
        results.append(result)

    return results


def get_all_segments(video_id: str) -> List[VideoSegment]:
    """Get all segments for a specific video, ordered by start time."""
    # Prepare filter for the video_id
    filter_param = models.Filter(
        must=[
            models.FieldCondition(
                key="video_id",
                match=models.MatchValue(value=video_id),
            ),
        ],
    )

    # Search in Qdrant without vector, just to get all segments
    scroll_result = qdrant_client.scroll(
        collection_name=COLLECTION_NAME,
        scroll_filter=filter_param,
        limit=10000,  # Adjust based on expected maximum segments
    )

    # Format results
    segments = []
    for point in scroll_result[0]:
        # Convert payload to VideoSegment
        segment = VideoSegment(**point.payload)
        segments.append(segment)

    # Sort by start time
    segments.sort(key=lambda x: x.start)

    return segments


def get_video_by_id(video_id: str) -> Optional[Video]:
    """Get a specific video by its video_id. If not found in database, attempt to fetch from YouTube."""
    import logging

    try:
        # Create filter for the video_id
        filter_param = models.Filter(
            must=[
                models.FieldCondition(
                    key="video_id",
                    match=models.MatchValue(value=video_id),
                ),
            ],
        )

        # Search in the processed_videos collection
        scroll_result = qdrant_client.scroll(
            collection_name=PROCESSED_VIDEOS_COLLECTION,
            scroll_filter=filter_param,
            limit=1,  # We only need one result
            with_payload=True,
        )

        # Check if any results were found
        if scroll_result[0]:
            # Convert payload to Video
            video = Video(**scroll_result[0][0].payload)

            # If video exists but doesn't have title, try to fetch it from YouTube
            if not video.title or video.title == f"Video {video_id}":
                video = _fetch_youtube_metadata(video_id, video)

            return video

        # If video not found in database, fetch basic metadata from YouTube
        logging.info(f"Video {video_id} not found in database, fetching from YouTube")
        video = Video(video_id=video_id)
        return _fetch_youtube_metadata(video_id, video)

    except Exception as e:
        logging.error(f"Error getting video by ID {video_id}: {str(e)}")
        # Return a basic video object with just the ID
        return Video(video_id=video_id, title=f"Video {video_id}")