lukawskikacper commited on
Commit
958cc77
·
1 Parent(s): 40011a0

Initial commit

Browse files

(cherry picked from commit 180c34177b38d123d03b31577048d242fb784ba0)

Files changed (6) hide show
  1. .gitignore +178 -0
  2. .scripts/run-qdrant.sh +25 -0
  3. README.md +118 -1
  4. poetry.lock +7 -0
  5. poetry.toml +2 -0
  6. pyproject.toml +22 -0
.gitignore ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # UV
98
+ # Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ #uv.lock
102
+
103
+ # poetry
104
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
105
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
106
+ # commonly ignored for libraries.
107
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
108
+ #poetry.lock
109
+
110
+ # pdm
111
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
112
+ #pdm.lock
113
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
114
+ # in version control.
115
+ # https://pdm.fming.dev/latest/usage/project/#working-with-version-control
116
+ .pdm.toml
117
+ .pdm-python
118
+ .pdm-build/
119
+
120
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
121
+ __pypackages__/
122
+
123
+ # Celery stuff
124
+ celerybeat-schedule
125
+ celerybeat.pid
126
+
127
+ # SageMath parsed files
128
+ *.sage.py
129
+
130
+ # Environments
131
+ .env
132
+ .venv
133
+ env/
134
+ venv/
135
+ ENV/
136
+ env.bak/
137
+ venv.bak/
138
+
139
+ # Spyder project settings
140
+ .spyderproject
141
+ .spyproject
142
+
143
+ # Rope project settings
144
+ .ropeproject
145
+
146
+ # mkdocs documentation
147
+ /site
148
+
149
+ # mypy
150
+ .mypy_cache/
151
+ .dmypy.json
152
+ dmypy.json
153
+
154
+ # Pyre type checker
155
+ .pyre/
156
+
157
+ # pytype static type analyzer
158
+ .pytype/
159
+
160
+ # Cython debug symbols
161
+ cython_debug/
162
+
163
+ # PyCharm
164
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
165
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
166
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
167
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
168
+ .idea/
169
+
170
+ # Ruff stuff:
171
+ .ruff_cache/
172
+
173
+ # PyPI configuration file
174
+ .pypirc
175
+
176
+ # Qdrant storage
177
+ .scripts/qdrant_storage
178
+
.scripts/run-qdrant.sh ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Get the directory of this script
2
+ script_dir="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
3
+ parent_dir="$(dirname "$script_dir")"
4
+ data_dir="$parent_dir/.data"
5
+ snapshot_file="$(cd "$data_dir" && pwd)/mcp-server-qdrant-knowledge-base.snapshot"
6
+
7
+ # Start the container
8
+ docker run -d \
9
+ --name "qdrant" \
10
+ -p 6333:6333 -p 6334:6334 \
11
+ -v "$(pwd)/qdrant_storage:/qdrant/storage:z" \
12
+ "qdrant/qdrant:v1.13.4"
13
+
14
+ # Wait for Qdrant to start
15
+ until $(curl --output /dev/null --silent --fail http://localhost:6333/healthz); do
16
+ printf '.'
17
+ sleep 5
18
+ done
19
+
20
+ # Load the data snapshot into Qdrant
21
+ curl -X POST \
22
+ -H "Content-Type: multipart/form-data" \
23
+ -F "snapshot=@$snapshot_file" \
24
+ http://localhost:6333/collections/mcp-server-qdrant-knowledge-base/snapshots/upload?priority=snapshot
25
+
README.md CHANGED
@@ -9,4 +9,121 @@ license: apache-2.0
9
  short_description: YouTube In-Video Search
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  short_description: YouTube In-Video Search
10
  ---
11
 
12
+ # webinar-vibe-coding-rag
13
+
14
+ **This repository contains materials for the hands-on "[Letting LLMs Write RAG
15
+ Applications](https://try.qdrant.tech/llm-rag)" webinar.**
16
+
17
+ ## Project Overview: YouTube In-Video Search
18
+
19
+ When learning a new skill, YouTube videos can be a great resource. However, in-depth content is often lengthy and may
20
+ assume no prior knowledge. What if you could have a smart assistant to help you navigate through videos and find exactly
21
+ what you need? This project creates a search engine for video content, helping you skim through and focus on what
22
+ matters specifically to you.
23
+
24
+ Retrieval Augmented Generation (RAG) is perfect for this task. By indexing a video's transcript, we provide an interface
25
+ to search through its content. Users can click on search results to jump to the exact timestamp where a topic is
26
+ discussed.
27
+
28
+ ### How It Works
29
+
30
+ The application has two main views:
31
+
32
+ 1. **Input View**:
33
+ - User provides a YouTube video URL
34
+ - Backend processes the video by:
35
+ - Extracting the transcript
36
+ - Dividing it into 30-second chunks with 10-second overlaps
37
+ - Creating embeddings using SentenceTransformers
38
+ - Storing these vectors in Qdrant
39
+
40
+ 2. **Video View**:
41
+ - Displays the video alongside its transcription
42
+ - Allows clicking on timestamps to jump to specific parts
43
+ - Provides a search bar to filter content
44
+ - When a query is submitted, backend returns the most relevant video segments
45
+ - Results appear as clickable links, while hiding irrelevant parts of the transcript
46
+
47
+ If a video has been processed previously, the application uses existing embeddings without reprocessing.
48
+
49
+ ### Technologies Used
50
+
51
+ This project uses the following tools:
52
+
53
+ - [Qdrant](https://qdrant.tech/) - Vector search engine for both coding and in-video search
54
+ - [SentenceTransformers](https://www.sbert.net/) - Pre-trained models for sentence embeddings (using
55
+ `sentence-transformers/static-retrieval-mrl-en-v1`)
56
+ - [FastAPI](https://fastapi.tiangolo.com/) - Framework for the REST API and serving the frontend
57
+ - [DaisyUI](https://daisyui.com/) - Reusable frontend components for Tailwind CSS
58
+ - Pure HTML, CSS, and vanilla JavaScript
59
+
60
+ ## Setup Instructions
61
+
62
+ ### Setting up mcp-server-qdrant
63
+
64
+ The `mcp-server-qdrant` exposes two tools that interact with Qdrant:
65
+
66
+ - `qdrant-find` - Search for similar entries in the Qdrant index
67
+ - `qdrant-store` - Store new entries in the Qdrant index for future reference
68
+
69
+ The LLM decides when to use these tools based on their descriptions.
70
+
71
+ #### Configuring Tool Descriptions
72
+
73
+ Configure the tools using environmental variables:
74
+
75
+ ```bash
76
+ export TOOL_FIND_DESCRIPTION="Use this tool ALWAYS before generating any FRONTEND code. \
77
+ It lets you search for relevant code snippets based on natural language descriptions. \
78
+ The 'query' parameter should describe what you're looking for, and the tool will return the most relevant code \
79
+ snippets. If this tool finds something similar, then create your code so it is consistent. Reuse existing code \
80
+ as much as you can."
81
+
82
+ export TOOL_STORE_DESCRIPTION="Store reusable FRONTEND code snippets for later retrieval. \
83
+ The 'information' parameter should contain a natural language description of what the code does, while the actual \
84
+ code should be included in the 'metadata' parameter as a 'code' property. The value of 'metadata' is a Python \
85
+ dictionary with strings as keys. Use this always when you generate some code to store it for further reference."
86
+ ```
87
+
88
+ **Note:** You can customize these descriptions to better suit your specific use case.
89
+
90
+ #### Adding MCP Server to Claude Code
91
+
92
+ Add the `mcp-server-qdrant` to available tools in Claude Code:
93
+
94
+ ```bash
95
+ claude mcp add qdrant-code-search \
96
+ -e QDRANT_URL="http://localhost:6333" \
97
+ -e COLLECTION_NAME="mcp-server-qdrant-knowledge-base" \
98
+ -e TOOL_FIND_DESCRIPTION="$TOOL_FIND_DESCRIPTION" \
99
+ -e TOOL_STORE_DESCRIPTION="$TOOL_STORE_DESCRIPTION" \
100
+ -- uvx mcp-server-qdrant
101
+ ```
102
+
103
+ Claude Code should always use the `qdrant-code-search` MCP before generating any code. When we accept generated code,
104
+ it should store it in the `qdrant-code-search` server for future reference.
105
+
106
+ ### Initializing the Component Knowledge Base
107
+
108
+ We'll use a specific version of [DaisyUI](https://daisyui.com/) that the LLM may not be trained on. Qdrant will serve as
109
+ a knowledge base for the LLM by storing DaisyUI components.
110
+
111
+ Run the `.scripts/run-qdrant.sh` script to load DaisyUI components into Qdrant. You can view the collection's content in
112
+ the Web UI at [http://localhost:6333/dashboard](http://localhost:6333/dashboard).
113
+
114
+ ## Running the Application
115
+
116
+ Now we can start the actual vibe coding. **Note: We cannot guarantee the LLM will generate code that works out of the
117
+ box, but let's try!**
118
+
119
+ ### Example YouTube Videos
120
+
121
+ Andrej Karpathy publishes many interesting but lengthy videos on his YouTube channel. Here are some examples you can use
122
+ with this application:
123
+
124
+ - [\[1hr Talk\] Intro to Large Language Models](https://www.youtube.com/watch?v=zjkBMFhNj_g)
125
+ - [Deep Dive into LLMs like ChatGPT](https://www.youtube.com/watch?v=7xTGNNLPyMI)
126
+ - [How I use LLMs](https://www.youtube.com/watch?v=EWvNQjAaOHw)
127
+
128
+ If our vibe coding session is successful, we should be able to process these videos and search through their content
129
+ effectively.
poetry.lock ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ # This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand.
2
+ package = []
3
+
4
+ [metadata]
5
+ lock-version = "2.0"
6
+ python-versions = "^3.10"
7
+ content-hash = "53f2eabc9c26446fbcc00d348c47878e118afc2054778c3c803a0a8028af27d9"
poetry.toml ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ [virtualenvs]
2
+ in-project = true
pyproject.toml ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [tool.poetry]
2
+ name = "webinar-vibe-coding-rag"
3
+ version = "0.1.0"
4
+ description = "An attempt to live code a working Retrieval Augmented Generation app with AI coding tools"
5
+ authors = ["Kacper Łukawski <[email protected]>"]
6
+ readme = "README.md"
7
+ package-mode = false
8
+
9
+ [tool.poetry.dependencies]
10
+ python = "^3.10"
11
+ torch = {version = "^2.6.0+cpu", source = "pytorch-cpu"}
12
+ sentence-transformers = "^3.4.1"
13
+ qdrant-client = "^1.13.3"
14
+
15
+ [[tool.poetry.source]]
16
+ name = "pytorch-cpu"
17
+ url = "https://download.pytorch.org/whl/cpu"
18
+ priority = "explicit"
19
+
20
+ [build-system]
21
+ requires = ["poetry-core"]
22
+ build-backend = "poetry.core.masonry.api"