Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base") | |
infer = AutoModelForSeq2SeqLM.from_pretrained("Qilex/bart-largeEN-ME") | |
def translate(sentence): | |
input_ids = tokenizer(sentence, return_tensors="pt").input_ids | |
outputs = infer.generate(input_ids, max_new_tokens = len(sentence.split(' '))*10) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
def translate_multiline(sentence): | |
# if len(sentence.split()) > 300: | |
# print('Please insert less text') | |
if '\n' in sentence: | |
lines = sentence.split('\n') | |
translated_lines = [translate(line) for line in lines if len(line) > 0] | |
return '\n'.join(translated_lines) | |
else: | |
return translate(sentence) | |
title = "Modern English to Middle English Translator" | |
description = """ | |
This translator is trained on about 70,000 English/Middle English paired sentences. | |
<br> | |
It's still a work in progress. | |
<br> | |
""" | |
article = ''' | |
<br> | |
You can improve results by removing contractions (hadn't -> had not) | |
''' | |
gr.Interface( | |
fn=translate_multiline, | |
inputs=gr.Textbox(lines=1, placeholder="Enter text to translate."), | |
outputs="text", | |
title=title, | |
description=description, | |
article = article, | |
).launch() | |