File size: 11,972 Bytes
56fed24
 
dbe4e7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# Adapted from https://github.com/AMontgomerie/question_generator

import os
import sys
import math
import numpy as np
import torch
import spacy
import re
import random
import json
import en_core_web_sm
from transformers import (
    AutoTokenizer,
    AutoModelForSeq2SeqLM,
    AutoModelForSequenceClassification,
)


class QuestionGenerator:
    def __init__(self, model_dir=None):

        QG_PRETRAINED = "iarfmoose/t5-base-question-generator"
        self.ANSWER_TOKEN = "<answer>"
        self.CONTEXT_TOKEN = "<context>"
        self.SEQ_LENGTH = 512

        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

        self.qg_tokenizer = AutoTokenizer.from_pretrained(QG_PRETRAINED, use_fast=False)
        self.qg_model = AutoModelForSeq2SeqLM.from_pretrained(QG_PRETRAINED)
        self.qg_model.to(self.device)

        self.qa_evaluator = QAEvaluator(model_dir)

    def generate(
        self, article, use_evaluator=True, num_questions=None, answer_style="all"
    ):

        print("Generating questions...\n")

        qg_inputs, qg_answers = self.generate_qg_inputs(article, answer_style)
        generated_questions = self.generate_questions_from_inputs(qg_inputs)

        message = "{} questions doesn't match {} answers".format(
            len(generated_questions), len(qg_answers)
        )
        assert len(generated_questions) == len(qg_answers), message

        if use_evaluator:

            print("Evaluating QA pairs...\n")

            encoded_qa_pairs = self.qa_evaluator.encode_qa_pairs(
                generated_questions, qg_answers
            )
            scores = self.qa_evaluator.get_scores(encoded_qa_pairs)
            if num_questions:
                qa_list = self._get_ranked_qa_pairs(
                    generated_questions, qg_answers, scores, num_questions
                )
            else:
                qa_list = self._get_ranked_qa_pairs(
                    generated_questions, qg_answers, scores
                )

        else:
            print("Skipping evaluation step.\n")
            qa_list = self._get_all_qa_pairs(generated_questions, qg_answers)

        return qa_list

    def generate_qg_inputs(self, text, answer_style):

        VALID_ANSWER_STYLES = ["all", "sentences", "multiple_choice"]

        if answer_style not in VALID_ANSWER_STYLES:
            raise ValueError(
                "Invalid answer style {}. Please choose from {}".format(
                    answer_style, VALID_ANSWER_STYLES
                )
            )

        inputs = []
        answers = []

        if answer_style == "sentences" or answer_style == "all":
            segments = self._split_into_segments(text)
            for segment in segments:
                sentences = self._split_text(segment)
                prepped_inputs, prepped_answers = self._prepare_qg_inputs(
                    sentences, segment
                )
                inputs.extend(prepped_inputs)
                answers.extend(prepped_answers)

        if answer_style == "multiple_choice" or answer_style == "all":
            sentences = self._split_text(text)
            prepped_inputs, prepped_answers = self._prepare_qg_inputs_MC(sentences)
            inputs.extend(prepped_inputs)
            answers.extend(prepped_answers)

        return inputs, answers

    def generate_questions_from_inputs(self, qg_inputs):
        generated_questions = []

        for qg_input in qg_inputs:
            question = self._generate_question(qg_input)
            generated_questions.append(question)

        return generated_questions

    def _split_text(self, text):
        MAX_SENTENCE_LEN = 128

        sentences = re.findall(".*?[.!\?]", text)

        cut_sentences = []
        for sentence in sentences:
            if len(sentence) > MAX_SENTENCE_LEN:
                cut_sentences.extend(re.split("[,;:)]", sentence))
        # temporary solution to remove useless post-quote sentence fragments
        cut_sentences = [s for s in sentences if len(s.split(" ")) > 5]
        sentences = sentences + cut_sentences

        return list(set([s.strip(" ") for s in sentences]))

    def _split_into_segments(self, text):
        MAX_TOKENS = 490

        paragraphs = text.split("\n")
        tokenized_paragraphs = [
            self.qg_tokenizer(p)["input_ids"] for p in paragraphs if len(p) > 0
        ]

        segments = []
        while len(tokenized_paragraphs) > 0:
            segment = []
            while len(segment) < MAX_TOKENS and len(tokenized_paragraphs) > 0:
                paragraph = tokenized_paragraphs.pop(0)
                segment.extend(paragraph)
            segments.append(segment)
        return [self.qg_tokenizer.decode(s) for s in segments]

    def _prepare_qg_inputs(self, sentences, text):
        inputs = []
        answers = []

        for sentence in sentences:
            qg_input = "{} {} {} {}".format(
                self.ANSWER_TOKEN, sentence, self.CONTEXT_TOKEN, text
            )
            inputs.append(qg_input)
            answers.append(sentence)

        return inputs, answers

    def _prepare_qg_inputs_MC(self, sentences):

        spacy_nlp = en_core_web_sm.load()
        docs = list(spacy_nlp.pipe(sentences, disable=["parser"]))
        inputs_from_text = []
        answers_from_text = []

        for i in range(len(sentences)):
            entities = docs[i].ents
            if entities:
                for entity in entities:
                    qg_input = "{} {} {} {}".format(
                        self.ANSWER_TOKEN, entity, self.CONTEXT_TOKEN, sentences[i]
                    )
                    answers = self._get_MC_answers(entity, docs)
                    inputs_from_text.append(qg_input)
                    answers_from_text.append(answers)

        return inputs_from_text, answers_from_text

    def _get_MC_answers(self, correct_answer, docs):

        entities = []
        for doc in docs:
            entities.extend([{"text": e.text, "label_": e.label_} for e in doc.ents])

        # remove duplicate elements
        entities_json = [json.dumps(kv) for kv in entities]
        pool = set(entities_json)
        num_choices = (
            min(4, len(pool)) - 1
        )  # -1 because we already have the correct answer

        # add the correct answer
        final_choices = []
        correct_label = correct_answer.label_
        final_choices.append({"answer": correct_answer.text, "correct": True})
        pool.remove(
            json.dumps({"text": correct_answer.text, "label_": correct_answer.label_})
        )

        # find answers with the same NER label
        matches = [e for e in pool if correct_label in e]

        # if we don't have enough then add some other random answers
        if len(matches) < num_choices:
            choices = matches
            pool = pool.difference(set(choices))
            choices.extend(random.sample(pool, num_choices - len(choices)))
        else:
            choices = random.sample(matches, num_choices)

        choices = [json.loads(s) for s in choices]
        for choice in choices:
            final_choices.append({"answer": choice["text"], "correct": False})
        random.shuffle(final_choices)
        return final_choices

    def _generate_question(self, qg_input):
        self.qg_model.eval()
        encoded_input = self._encode_qg_input(qg_input)
        with torch.no_grad():
            output = self.qg_model.generate(input_ids=encoded_input["input_ids"])
        question = self.qg_tokenizer.decode(output[0], skip_special_tokens=True)
        return question

    def _encode_qg_input(self, qg_input):
        return self.qg_tokenizer(
            qg_input,
            padding='max_length',
            max_length=self.SEQ_LENGTH,
            truncation=True,
            return_tensors="pt",
        ).to(self.device)

    def _get_ranked_qa_pairs(
        self, generated_questions, qg_answers, scores, num_questions=10
    ):
        if num_questions > len(scores):
            num_questions = len(scores)
            print(
                "\nWas only able to generate {} questions. For more questions, please input a longer text.".format(
                    num_questions
                )
            )

        qa_list = []
        for i in range(num_questions):
            index = scores[i]
            qa = self._make_dict(
                generated_questions[index].split("?")[0] + "?", qg_answers[index]
            )
            qa_list.append(qa)
        return qa_list

    def _get_all_qa_pairs(self, generated_questions, qg_answers):
        qa_list = []
        for i in range(len(generated_questions)):
            qa = self._make_dict(
                generated_questions[i].split("?")[0] + "?", qg_answers[i]
            )
            qa_list.append(qa)
        return qa_list

    def _make_dict(self, question, answer):
        qa = {}
        qa["question"] = question
        qa["answer"] = answer
        return qa


class QAEvaluator:
    def __init__(self, model_dir=None):

        QAE_PRETRAINED = "iarfmoose/bert-base-cased-qa-evaluator"
        self.SEQ_LENGTH = 512

        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

        self.qae_tokenizer = AutoTokenizer.from_pretrained(QAE_PRETRAINED)
        self.qae_model = AutoModelForSequenceClassification.from_pretrained(
            QAE_PRETRAINED
        )
        self.qae_model.to(self.device)

    def encode_qa_pairs(self, questions, answers):
        encoded_pairs = []
        for i in range(len(questions)):
            encoded_qa = self._encode_qa(questions[i], answers[i])
            encoded_pairs.append(encoded_qa.to(self.device))
        return encoded_pairs

    def get_scores(self, encoded_qa_pairs):
        scores = {}
        self.qae_model.eval()
        with torch.no_grad():
            for i in range(len(encoded_qa_pairs)):
                scores[i] = self._evaluate_qa(encoded_qa_pairs[i])

        return [
            k for k, v in sorted(scores.items(), key=lambda item: item[1], reverse=True)
        ]

    def _encode_qa(self, question, answer):
        if type(answer) is list:
            for a in answer:
                if a["correct"]:
                    correct_answer = a["answer"]
        else:
            correct_answer = answer
        return self.qae_tokenizer(
            text=question,
            text_pair=correct_answer,
            padding="max_length",
            max_length=self.SEQ_LENGTH,
            truncation=True,
            return_tensors="pt",
        )

    def _evaluate_qa(self, encoded_qa_pair):
        output = self.qae_model(**encoded_qa_pair)
        return output[0][0][1]


def print_qa(qa_list, show_answers=True):
    for i in range(len(qa_list)):
        space = " " * int(np.where(i < 9, 3, 4))  # wider space for 2 digit q nums

        print("{}) Q: {}".format(i + 1, qa_list[i]["question"]))

        answer = qa_list[i]["answer"]

        # print a list of multiple choice answers
        if type(answer) is list:

            if show_answers:
                print(
                    "{}A: 1.".format(space),
                    answer[0]["answer"],
                    np.where(answer[0]["correct"], "(correct)", ""),
                )
                for j in range(1, len(answer)):
                    print(
                        "{}{}.".format(space + "   ", j + 1),
                        answer[j]["answer"],
                        np.where(answer[j]["correct"] == True, "(correct)", ""),
                    )

            else:
                print("{}A: 1.".format(space), answer[0]["answer"])
                for j in range(1, len(answer)):
                    print("{}{}.".format(space + "   ", j + 1), answer[j]["answer"])
            print("")

        # print full sentence answers
        else:
            if show_answers:
                print("{}A:".format(space), answer, "\n")