DockerApp / app.py
Queensly's picture
Create app.py
abecc86
raw
history blame
1.97 kB
# Import the required Libraries
import gradio as gr
import numpy as np
import transformers
from transformers import AutoTokenizer, AutoConfig, AutoModelForSequenceClassification, TFAutoModelForSequenceClassification
from scipy.special import softmax
# Requirements
model_path = "Queensly/finetuned_albert_base_v2"
tokenizer = AutoTokenizer.from_pretrained(model_path)
config = AutoConfig.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
# Preprocess text (username and link placeholders)
def preprocess(text):
new_text = []
for t in text.split(" "):
t = "@user" if t.startswith("@") and len(t) > 1 else t
t = "http" if t.startswith("http") else t
new_text.append(t)
return " ".join(new_text)
#Function to process the input and return prediction
def sentiment_analysis(text):
text = preprocess(text)
encoded_input = tokenizer(text, return_tensors = "pt") # for PyTorch-based models
output = model(**encoded_input)
scores_ = output[0][0].detach().numpy()
scores_ = softmax(scores_)
#Output of scores by converting a list of labels and scores into a dictionary format
labels = ["Negative", "Neutral", "Positive"]
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
return scores
#App interface with gradio
app = gr.Interface(fn = sentiment_analysis,
inputs = gr.Textbox("Write your text or tweet here..."),
outputs = "label",
title = "Sentiment Analysis of Tweets on COVID-19 Vaccines",
description = "This app analyzes sentiment of text based on tweets about COVID-19 Vaccines using a fine-tuned albert_base_v2 model",
interpretation = "default",
examples=[["covid vaccines are great!"]]
)
# app.launch()
demo.launch(server_name = "0.0.0.0.", server_port = 7860)
if __name__=="__app__":
run()