# Import the required Libraries import gradio as gr import numpy as np import transformers from transformers import AutoTokenizer, AutoConfig, AutoModelForSequenceClassification, TFAutoModelForSequenceClassification from scipy.special import softmax # Requirements model_path = "Queensly/finetuned_albert_base_v2" tokenizer = AutoTokenizer.from_pretrained(model_path) config = AutoConfig.from_pretrained(model_path) model = AutoModelForSequenceClassification.from_pretrained(model_path) # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = "@user" if t.startswith("@") and len(t) > 1 else t t = "http" if t.startswith("http") else t new_text.append(t) return " ".join(new_text) #Function to process the input and return prediction def sentiment_analysis(text): text = preprocess(text) encoded_input = tokenizer(text, return_tensors = "pt") # for PyTorch-based models output = model(**encoded_input) scores_ = output[0][0].detach().numpy() scores_ = softmax(scores_) #Output of scores by converting a list of labels and scores into a dictionary format labels = ["Negative", "Neutral", "Positive"] scores = {l:float(s) for (l,s) in zip(labels, scores_) } return scores #App interface with gradio demo = gr.Interface(fn = sentiment_analysis, inputs = gr.Textbox("Write your text or tweet here..."), outputs = "label", title = "Sentiment Analysis of Tweets on COVID-19 Vaccines", description = "This app analyzes sentiment of text based on tweets about COVID-19 Vaccines using a fine-tuned albert_base_v2 model", interpretation = "default", examples=[["covid vaccines are great!"]] ) # app.launch() demo.launch(server_name = "0.0.0.0.", server_port = 7860) if __name__=="__app__": run()