Spaces:
Sleeping
Sleeping
Create Zero-Shot Image Classification
Browse files
Zero-Shot Image Classification
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import necessary libraries
|
2 |
+
from transformers import AutoProcessor, AutoModelForZeroShotImageClassification
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
import torch
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
|
8 |
+
# Load the pre-trained model and processor
|
9 |
+
checkpoint = "openai/clip-vit-large-patch14"
|
10 |
+
model = AutoModelForZeroShotImageClassification.from_pretrained(checkpoint)
|
11 |
+
processor = AutoProcessor.from_pretrained(checkpoint)
|
12 |
+
|
13 |
+
# Load and display the image
|
14 |
+
url = "URL_of_the_image"
|
15 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
16 |
+
plt.imshow(image)
|
17 |
+
plt.show()
|
18 |
+
|
19 |
+
# Specify candidate labels for zero-shot classification
|
20 |
+
candidate_labels = ["tree", "car", "bike", "cat"]
|
21 |
+
|
22 |
+
# Prepare inputs for the model
|
23 |
+
inputs = processor(text=candidate_labels, images=image, return_tensors="pt", padding=True)
|
24 |
+
|
25 |
+
# Make predictions
|
26 |
+
outputs = model(**inputs)
|
27 |
+
logits = outputs.logits_per_image # shape: [batch_size, num_classes]
|
28 |
+
probs = logits.softmax(dim=1) # Convert to probabilities
|
29 |
+
|
30 |
+
# Get and print the most likely class
|
31 |
+
predicted_class_idx = probs.argmax(-1).item()
|
32 |
+
predicted_class = candidate_labels[predicted_class_idx]
|
33 |
+
print(f'Predicted class: {predicted_class}')
|