Queue-Tip commited on
Commit
30a8590
·
verified ·
1 Parent(s): 57942f6

Create Zero-Shot Image Classification

Browse files
Files changed (1) hide show
  1. Zero-Shot Image Classification +33 -0
Zero-Shot Image Classification ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import necessary libraries
2
+ from transformers import AutoProcessor, AutoModelForZeroShotImageClassification
3
+ from PIL import Image
4
+ import requests
5
+ import torch
6
+ import matplotlib.pyplot as plt
7
+
8
+ # Load the pre-trained model and processor
9
+ checkpoint = "openai/clip-vit-large-patch14"
10
+ model = AutoModelForZeroShotImageClassification.from_pretrained(checkpoint)
11
+ processor = AutoProcessor.from_pretrained(checkpoint)
12
+
13
+ # Load and display the image
14
+ url = "URL_of_the_image"
15
+ image = Image.open(requests.get(url, stream=True).raw)
16
+ plt.imshow(image)
17
+ plt.show()
18
+
19
+ # Specify candidate labels for zero-shot classification
20
+ candidate_labels = ["tree", "car", "bike", "cat"]
21
+
22
+ # Prepare inputs for the model
23
+ inputs = processor(text=candidate_labels, images=image, return_tensors="pt", padding=True)
24
+
25
+ # Make predictions
26
+ outputs = model(**inputs)
27
+ logits = outputs.logits_per_image # shape: [batch_size, num_classes]
28
+ probs = logits.softmax(dim=1) # Convert to probabilities
29
+
30
+ # Get and print the most likely class
31
+ predicted_class_idx = probs.argmax(-1).item()
32
+ predicted_class = candidate_labels[predicted_class_idx]
33
+ print(f'Predicted class: {predicted_class}')