File size: 1,687 Bytes
11551ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#!/usr/bin/env python3
import os
import sys
import torch
import logging
import multiprocessing as mp

from mineru_single import to_markdown

logging.basicConfig(level=logging.INFO)

def worker(worker_id, gpu_id, pdf_list, output_dir):
    """

    Worker function:

    1) Assigns CUDA to this process (if available).

    2) Calls `to_markdown` for each file.

    """
    os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)

    for pdf_path in pdf_list:
        try:
            logging.info(f"Worker {worker_id}, GPU {gpu_id} -> {pdf_path}")
            to_markdown(
                file_path=pdf_path,
                output_dir=output_dir
            )
        except Exception as e:
            logging.error(f"Worker {worker_id} error on {pdf_path}: {e}")

def process_batch_in_parallel(pdf_paths, output_dir="./output", num_workers=2, num_gpus=1):
    """

    Takes a list of PDF file paths, spawns `num_workers` processes, each processing a chunk.

    """
    if not pdf_paths:
        logging.info("No PDFs to process.")
        return

    # chunk the pdf_paths
    chunk_size = (len(pdf_paths) + num_workers - 1) // num_workers
    processes = []

    for worker_id in range(num_workers):
        start_idx = worker_id * chunk_size
        end_idx = start_idx + chunk_size
        subset = pdf_paths[start_idx:end_idx]
        if not subset:
            break

        gpu_id = worker_id % num_gpus
        p = mp.Process(target=worker, args=(worker_id, gpu_id, subset, output_dir))
        p.start()
        processes.append(p)

    for p in processes:
        p.join()

    logging.info("All parallel processing complete.")