File size: 16,019 Bytes
1116a38 73c3b4e 1116a38 67ee2ac 1116a38 67ee2ac 1116a38 67ee2ac 1116a38 67ee2ac 1116a38 67ee2ac 1116a38 4f23add 1116a38 dbd3d89 1116a38 67ee2ac 1116a38 67ee2ac 1116a38 aa23348 73c3b4e aa23348 1116a38 73c3b4e a00a164 5e981a8 73c3b4e 67ee2ac 73c3b4e 17f9a87 67ee2ac 1116a38 17f9a87 1116a38 5e981a8 1116a38 a00a164 4f23add 1116a38 67ee2ac 1116a38 67ee2ac a00a164 67ee2ac 5783dae 67ee2ac 1116a38 17f9a87 67ee2ac e1710da 67ee2ac 8d284aa 67ee2ac 5c0022c 17f9a87 aa23348 5c0022c 67ee2ac 8d284aa 67ee2ac 17f9a87 aa23348 17f9a87 aa23348 8e381ca aa23348 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
#!/usr/bin/env python3
import os
import uuid
import json
import requests
import logging
import torch
import gc
from magic_pdf.data.dataset import PymuDocDataset
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
from magic_pdf.data.io.s3 import S3Writer
from magic_pdf.data.data_reader_writer.base import DataWriter
from inference_svm_model import SVMModel
import concurrent.futures
import boto3
from io import BytesIO
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(name)s - %(message)s",
handlers=[
logging.StreamHandler(), # This will output to console
logging.FileHandler('mineru.log') # This will save to a file
]
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO) # Ensure logger level is set to INFO
class Processor:
def __init__(self):
try:
self.s3_writer = s3Writer(
ak=os.getenv("S3_ACCESS_KEY"),
sk=os.getenv("S3_SECRET_KEY"),
bucket=os.getenv("S3_BUCKET_NAME"),
endpoint_url=os.getenv("S3_ENDPOINT"),
)
self.svm_model = SVMModel()
logger.info("Classification model initialized successfully")
with open("/home/user/magic-pdf.json", "r") as f:
config = json.load(f)
# self.layout_mode = "doclayout_yolo"
self.layout_mode = config["layout-config"]["model"]
self.formula_enable = config["formula-config"]["enable"]
self.table_enable = False
self.language = "en"
endpoint = os.getenv("S3_ENDPOINT", "").rstrip("/")
bucket = os.getenv("S3_BUCKET_NAME", "")
self.prefix = "document-extracts/"
logger.info("Processor initialized successfully")
except Exception as e:
logger.error("Failed to initialize Processor: %s", str(e))
raise
def cleanup_gpu(self):
"""
Releases GPU memory, use garbage collection to clear PyTorch's CUDA cache.
This helps prevent VRAM accumulation.
"""
try:
gc.collect() #garbage collection
torch.cuda.empty_cache() # Clear memory cache on GPU
logger.info("GPU memory cleaned up.")
except Exception as e:
logger.error("Error during GPU cleanup: %s", e)
def process(self, file_url: str, key: str) -> str:
"""
Process a single PDF, returning final Markdown with irrelevant images removed.
"""
logger.info("Processing file: %s", file_url)
try:
response = requests.get(file_url)
if response.status_code != 200:
logger.error("Failed to download PDF from %s. Status code: %d", file_url, response.status_code)
raise Exception(f"Failed to download PDF: {file_url}")
pdf_bytes = response.content
logger.info("Downloaded %d bytes for file_url='%s'", len(pdf_bytes), file_url)
# Analyze PDF with OCR
dataset = PymuDocDataset(pdf_bytes)
inference = doc_analyze(
dataset,
ocr=True,
lang=self.language,
layout_model=self.layout_mode,
formula_enable=self.formula_enable,
table_enable=self.table_enable
)
logger.info("doc_analyze complete for key='%s'. Started extracting images...", key)
# Classify images and remove irrelevant ones
# image_writer = ImageWriter(self.s3_writer)
image_writer = ImageWriter(self.s3_writer, f"{self.prefix}{key}/", self.svm_model) # Pass base path to ImageWriter
pipe_result = inference.pipe_ocr_mode(image_writer, lang=self.language)
logger.info("OCR pipeline completed for key='%s'.", key)
md_content = pipe_result.get_markdown(f"{self.prefix}{key}/")
final_markdown = image_writer.post_process(f"{self.prefix}{key}/",md_content)
logger.info("Completed PDF process for key='%s'. Final MD length=%d", key, len(final_markdown))
return final_markdown
finally:
# GPU memory is cleaned up after each processing.
self.cleanup_gpu()
class s3Writer:
def __init__(self, ak: str, sk: str, bucket: str, endpoint_url: str):
self.bucket = bucket
self.client = boto3.client('s3',
aws_access_key_id=ak,
aws_secret_access_key=sk,
endpoint_url=endpoint_url
)
def write(self, path: str, data: bytes) -> None:
"""Upload data to S3 using proper keyword arguments"""
try:
# Convert bytes to file-like object
file_obj = BytesIO(data)
# Upload using upload_fileobj
self.client.upload_fileobj(
file_obj,
self.bucket,
path
)
except Exception as e:
logger.error(f"Failed to upload to S3: {str(e)}")
raise
class ImageWriter(DataWriter):
"""
Receives each extracted image. Classifies it, uploads if relevant, or flags
it for removal if irrelevant.
"""
def __init__(self, s3_writer: s3Writer, base_path: str, svm_model: SVMModel):
self.s3_writer = s3_writer
self.base_path = base_path
self.svm_model = svm_model
self._redundant_images_paths = []
self.descriptions = {}
"""
{
"{path}": {
"description": "{description}",
"full_path": "{full_path}"
}
}
"""
def write(self, path: str, data: bytes) -> None:
"""
Called for each extracted image. If relevant, upload to S3; otherwise mark for removal.
"""
full_path = f"{self.base_path}" + path.split("/")[-1]
self.s3_writer.write(full_path, data)
self.descriptions[path] = {
"data": data,
"full_path": full_path
}
def post_process(self, key: str, md_content: str) -> str:
max_workers = len(self.descriptions)
with concurrent.futures.ThreadPoolExecutor(max_workers=max(max_workers, 1)) as executor:
future_to_file = {
executor.submit(
call_gemini_for_image_description,
self.descriptions[path]['data']
): path for path in self.descriptions.keys()
}
for future in concurrent.futures.as_completed(future_to_file):
path = future_to_file[future]
try:
description = future.result()
if description:
self.descriptions[path]['description'] = description
except Exception as e:
logger.error(f"[ERROR] Processing {path}: {str(e)}")
for path, info in self.descriptions.items():
description = info['description']
full_path = info['full_path']
md_content = md_content.replace(f"", f"")
return md_content
def call_gemini_for_image_description(image_data: bytes) -> str:
"""Convert image bytes to Gemini-compatible format and get description"""
from google import genai
from google.genai import types
import base64
try:
# Initialize Gemini client
client = genai.Client(api_key="AIzaSyDtoakpXa2pjJwcQB6TJ5QaXHNSA5JxcrU")
# Generate content with proper image format
response = client.models.generate_content(
model="gemini-2.0-flash",
config=types.GenerateContentConfig(temperature=0.),
contents=[
{
"parts": [
{"text": """The provided image is a part of a question paper or markscheme.
Extract all the necessary information from the image to be able to identify the question.
To identify the question, we only need the following: question number and question part.
Don't include redundant information.
For example, if image contains text like: "Q1 Part A Answer: Life on earth was created by diety..."
you should return just "Q1 Part A Mark Scheme"
If there is no text on this image, return the description of the image. 20 words max.
If there are not enough data, consider information from the surrounding context.
Additionally, if the image contains a truncated part, you must describe it and mark as a
part of some another image that goes before or after current image.
If the image is of a multiple-choice question’s options, then modify your answer by appending
'MCQ: A [option] B [option] C [option] D [option]' (replacing [option] with the actual options).
Otherwise, follow the above instructions strictly.
"""},
{
"inline_data": {
"mime_type": "image/jpeg",
"data": base64.b64encode(image_data).decode('utf-8')
}
}
]
}
]
)
# Get the response text
description = response.text.strip() if response and response.text else "Image description unavailable"
return description
except Exception as e:
logger.error(f"Error getting image description: {str(e)}")
return ("error", "Error describing image", None)
# if __name__ == "__main__":
# processor = Processor()
# single_url = "https://quextro-resources.s3.eu-west-2.amazonaws.com/1739967958667-643657-mark-scheme-computer-principles.pdf?response-content-disposition=inline&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEJT%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCWV1LXdlc3QtMiJGMEQCIARfSyuot0h2RNrcqVQkc2T%2B1fJZ64NfjmkmAFgCkTG6AiArmbJDAUr7T85HdqAT2RbyLhmiIgpSo3ci4%2FUtSap2wCrUAwi8%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAAaDDUwOTM5OTYxODAzMCIMkfFm%2FgBrHsH1qh59KqgDjfZd1%2BKGzxkn7JorfQ07dL%2BL5fjCA6kmNAzCnCjDpTLnNjBfB1vnO2ZLvtC8RNvnaewY6tFWUfl39dC62ldnfajHeFmxkZqBcbDf3oOGnuO2PIvBgb5%2BvppVDkYjWz7vv5TzpgC2sVzjA38QMwxAnausYWDgspap7qjlfoLJUiBOq9SIMZyKVsfeAf4OiUl0TDc2nheqvNXOJy9TPh94KWbBT35vP3fU9A7ZdF4sElm4nVZMnOPdbR7%2Ba6F57nPLZvUaLZC5Nb011ef6%2BhAxr9yeONh5MAoTGUH2qzedDmN%2FbKannddBy%2FNIaP%2BhF7lWUkKemQrM5vajwU6k2Q45pLruKWRkjtrWxdmkQE4zb67ETj5eGL%2BlPPj%2BPtQWzF7UaoWPUH4tGBZ%2Bqdu479rU1ZSg%2B15lR%2F8SAgP%2BydATGwyRtXEvMRJZIiUems8i6ehxWC%2FscY2%2FtCk9OREKhLwOEEdJDAR4vqt68lnnvVomHrVjwNQvyP9A4V8Ct%2B0SjxP%2F86kJnX3o%2FVEoFT44JWICuMuf8kwoelUbZGPl6SaftGsRSUvoy7PV5TCN3du9BjrlAjKhLpjsCwgp1rJ8cPBFcUgOmL3iXrtHs3FhDLljxbXRZ%2FadHkxAlzf%2BXym%2BFBnhdCkDfmWcMEH3GAOFfv%2FlE5SsZMO1JoXbzQlO3OX6nrUacj7LF7ZoO8TYMVoTyEZSLEABNOU7KCILaFeDGRDJ8Ia5I3jnXvOVouFn2VnhykCuWPTunjkMEQBiHa3mbZP0mVcSviujHXatN11INiR%2BPwAN5oxKXeT25B%2FCCI3wib5Av2tzp8zuw8joib5PWNXOYfRgMR7R0Sj%2FjW5SxWr%2BTD9TAD3%2Fqj5pj3Oo13dNGdv5RwGqk1iHd8okpkFYlxEmXD2tTanpxX8ON1%2FLHz%2BNEUJDOogx8TLw5I6mkVs3zjoMhhwn2%2BWrlnNa%2F3i9lAGyLY6Ps4U23Hv7b4gpH4%2BeJN72Z95hrNtcumq4uuf0pRoJPQ9pjiZttjeDwNZzb7d3XuiEQeOgK8rpTeEgduxhdJOOLwZGrg%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=ASIAXNGUVKHXFLYKHBHD%2F20250220%2Feu-west-2%2Fs3%2Faws4_request&X-Amz-Date=20250220T111935Z&X-Amz-Expires=10800&X-Amz-SignedHeaders=host&X-Amz-Signature=64aa008fdafe72f1a693078156451c0f6f702e89e546954d6b3d61abf9f73ec8"
# markdown_result = processor.process(single_url, key="1234323")
# print("Single file Markdown:\n", markdown_result)
# if __name__ == "__main__":
# with open("./test_image.jpg", "rb") as file:
# test_image = file.read()
# print(call_gemini_for_image_description(test_image))
if __name__ == "__main__":
class Processor:
def __init__(self):
try:
self.s3_writer = s3Writer(
ak=os.getenv("S3_ACCESS_KEY"),
sk=os.getenv("S3_SECRET_KEY"),
bucket=os.getenv("S3_BUCKET_NAME"),
endpoint_url=os.getenv("S3_ENDPOINT"),
)
self.svm_model = SVMModel()
logger.info("Classification model initialized successfully")
with open("/home/user/magic-pdf.json", "r") as f:
config = json.load(f)
self.layout_mode = config["layout-config"]["model"]
self.formula_enable = config["formula-config"]["enable"]
self.table_enable = False
self.language = "en"
self.prefix = "document-extracts/"
logger.info("Processor initialized successfully")
except Exception as e:
logger.error("Failed to initialize Processor: %s", str(e))
raise
def cleanup_gpu(self):
"""
Releases GPU memory, uses garbage collection to clear PyTorch's CUDA cache.
This helps prevent VRAM accumulation.
"""
try:
gc.collect() # Garbage collection
torch.cuda.empty_cache() # Clear memory cache on GPU
logger.info("GPU memory cleaned up.")
except Exception as e:
logger.error("Error during GPU cleanup: %s", e)
def process(self, file_path: str, key: str) -> str:
"""
Process a single PDF file from a local path, returning final Markdown with irrelevant images removed.
"""
logger.info("Processing file: %s", file_path)
try:
# Read PDF file from the given file path
with open(file_path, "rb") as f:
pdf_bytes = f.read()
logger.info("Loaded %d bytes from file_path='%s'", len(pdf_bytes), file_path)
# Analyze PDF with OCR
dataset = PymuDocDataset(pdf_bytes)
inference = doc_analyze(
dataset,
ocr=True,
lang=self.language,
layout_model=self.layout_mode,
formula_enable=self.formula_enable,
table_enable=self.table_enable
)
logger.info("doc_analyze complete for key='%s'. Started extracting images...", key)
# Classify images and remove irrelevant ones
image_writer = ImageWriter(self.s3_writer, f"{self.prefix}{key}/", self.svm_model) # Pass base path to ImageWriter
pipe_result = inference.pipe_ocr_mode(image_writer, lang=self.language)
logger.info("OCR pipeline completed for key='%s'.", key)
md_content = pipe_result.get_markdown(f"{self.prefix}{key}/")
final_markdown = image_writer.post_process(f"{self.prefix}{key}/", md_content)
logger.info("Completed PDF process for key='%s'. Final MD length=%d", key, len(final_markdown))
return final_markdown
finally:
# GPU memory is cleaned up after each processing.
self.cleanup_gpu()
processor = Processor()
file_path = "./output1.pdf"
markdown_result = processor.process(file_path, key="1234323")
print("Single file Markdown:\n", markdown_result)
|