File size: 7,640 Bytes
f81cfef
 
 
 
9351a05
f81cfef
 
 
9351a05
6fc2b3e
 
f81cfef
 
 
 
6fc2b3e
 
 
 
 
 
 
 
f81cfef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9351a05
f81cfef
 
 
 
 
9351a05
f81cfef
 
 
 
 
 
 
9351a05
 
f81cfef
 
9351a05
f81cfef
 
 
9351a05
 
 
 
f81cfef
6fc2b3e
 
 
 
 
 
 
 
9351a05
6fc2b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f81cfef
 
 
 
 
 
 
6fc2b3e
 
 
 
 
 
da94345
6fc2b3e
da94345
 
6fc2b3e
 
 
 
 
 
 
 
da94345
 
 
 
 
059f61a
6fc2b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9351a05
6fc2b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9351a05
 
6fc2b3e
 
 
 
 
9351a05
f81cfef
6fc2b3e
9351a05
6fc2b3e
 
 
 
 
 
 
f81cfef
 
6fc2b3e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#!/usr/bin/env python3
import os
import json
import logging
import gc
import fitz
import requests
import torch
import boto3
from io import BytesIO
from typing import Dict, List, Any

from magic_pdf.data.dataset import PymuDocDataset
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze

logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s [%(levelname)s] %(name)s - %(message)s",
    handlers=[
        logging.StreamHandler(),
        logging.FileHandler('topic_processor.log')
    ]
)
logger = logging.getLogger(__name__)

class s3Writer:
    def __init__(self, ak: str, sk: str, bucket: str, endpoint_url: str):
        self.bucket = bucket
        self.client = boto3.client(
            's3',
            aws_access_key_id=ak,
            aws_secret_access_key=sk,
            endpoint_url=endpoint_url
        )

    def write(self, path: str, data: bytes) -> None:
        try:
            file_obj = BytesIO(data)
            self.client.upload_fileobj(file_obj, self.bucket, path)
            logger.info(f"Uploaded to S3: {path}")
        except Exception as e:
            logger.error(f"Failed to upload to S3: {str(e)}")
            raise

class S3ImageWriter:
    def __init__(self, s3_writer: s3Writer, base_path: str, gemini_api_key: str):
        self.s3_writer = s3_writer
        self.base_path = base_path if base_path.endswith("/") else base_path + "/"
        self.gemini_api_key = gemini_api_key
        self.descriptions = {}

    def write(self, path: str, data: bytes) -> None:
        full_path = f"{self.base_path}{os.path.basename(path)}"
        self.s3_writer.write(full_path, data)
        self.descriptions[path] = {
            "data": data,
            "s3_path": full_path
        }

    def post_process(self, key: str, md_content: str) -> str:
        for path, info in self.descriptions.items():
            s3_path = info.get("s3_path")
            md_content = md_content.replace(f"![]({key}{path})", f"![]({s3_path})")
        return md_content

def delete_non_heading_text(md_content: str) -> str:
    filtered_lines = []
    for line in md_content.splitlines():
        stripped = line.lstrip()
        if stripped.startswith('#') or stripped.startswith('![]('):
            filtered_lines.append(line)
    return "\n".join(filtered_lines)

class TopicExtractionProcessor:
    def __init__(self, gemini_api_key: str = None):
        try:
            self.s3_writer = s3Writer(
                ak=os.getenv("S3_ACCESS_KEY"),
                sk=os.getenv("S3_SECRET_KEY"),
                bucket="quextro-resources",
                endpoint_url=os.getenv("S3_ENDPOINT")
            )
            
            config_path = "/home/user/magic-pdf.json"
            if os.path.exists(config_path):
                with open(config_path, "r") as f:
                    config = json.load(f)
                self.layout_model = config.get("layout-config", {}).get("model", "doclayout_yolo")
                self.formula_enable = config.get("formula-config", {}).get("enable", True)
            else:
                self.layout_model = "doclayout_yolo"
                self.formula_enable = True
                
            self.table_enable = False
            self.language = "en"
            self.gemini_api_key = gemini_api_key or os.getenv("GEMINI_API_KEY", "AIzaSyDtoakpXa2pjJwcQB6TJ5QaXHNSA5JxcrU")
            
            logger.info("TopicExtractionProcessor initialized successfully")
        except Exception as e:
            logger.error("Failed to initialize TopicExtractionProcessor: %s", str(e))
            raise

    def cleanup_gpu(self):
        try:
            gc.collect()
            torch.cuda.empty_cache()
            logger.info("GPU memory cleaned up.")
        except Exception as e:
            logger.error("Error during GPU cleanup: %s", e)

    def process(self, input_file: Dict[str, Any]) -> str:
        try:
            key = input_file.get("key", "")
            url = input_file.get("url", "")
            pages = input_file.get("page", [])

            if not url or not pages:
                raise ValueError("Missing required 'url' or 'page' in input file")

            if url.startswith(("http://", "https://")):
                response = requests.get(url)
                response.raise_for_status()
                pdf_bytes = response.content
            else:
                with open(url, "rb") as f:
                    pdf_bytes = f.read()
            
            pages = self.parse_page_range(pages)
            logger.info("Processing %s with pages %s", key, pages)

            subset_pdf = self.create_subset_pdf(pdf_bytes, pages)
            logger.info(f"Created subset PDF with size: {len(subset_pdf)} bytes")

            
            dataset = PymuDocDataset(subset_pdf)
            inference = doc_analyze(
                dataset,
                ocr=True,
                lang=self.language,
                layout_model=self.layout_model,
                formula_enable=self.formula_enable,
                table_enable=self.table_enable
            )
            
            base_path = f"/topic-extraction/{key}/"
            writer = S3ImageWriter(self.s3_writer, "/topic-extraction/", self.gemini_api_key)
            md_prefix = "/topic-extraction/"
            pipe_result = inference.pipe_ocr_mode(writer, lang=self.language)
            md_content = pipe_result.get_markdown(md_prefix)
            post_processed = writer.post_process(md_prefix, md_content)
            
            #remove non-heading text from the markdown output
            final_markdown = delete_non_heading_text(post_processed)
            
            return final_markdown
            
        except Exception as e:
            logger.error("Processing failed for %s: %s", key, str(e))
            raise
        finally:
            self.cleanup_gpu()

    def create_subset_pdf(self, pdf_bytes: bytes, page_indices: List[int]) -> bytes:
        """Create a PDF subset from specified pages"""
        doc = fitz.open(stream=pdf_bytes, filetype="pdf")
        new_doc = fitz.open()
        
        try:
            for p in sorted(set(page_indices)):
                if 0 <= p < doc.page_count:
                    new_doc.insert_pdf(doc, from_page=p, to_page=p)
                else:
                    raise ValueError(f"Page index {p} out of range (0-{doc.page_count-1})")
            return new_doc.tobytes()
        finally:
            new_doc.close()
            doc.close()

    def parse_page_range(self, page_field) -> List[int]:
        """Parse page range from input (1-indexed to 0-indexed)"""
        if isinstance(page_field, list):
            return [int(p) - 1 for p in page_field]
        if isinstance(page_field, str):
            parts = [p.strip() for p in page_field.split(',')]
            return [int(p) - 1 for p in parts]
        raise ValueError("Invalid page field type")

def main():
    """Local test execution without RabbitMQ"""
    test_input = {
        "key": "local_test",
        "url": "/home/user/app/input_output/a-level-pearson-mathematics-specification.pdf",  # Local PDF path
        "page":[15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42]
    }

    processor = TopicExtractionProcessor()
    
    try:
        logger.info("Starting test processing.")
        result = processor.process(test_input)
        logger.info("Processing completed successfully")
        print("Markdown:\n", result)
    except Exception as e:
        logger.error("Test failed: %s", str(e))

if __name__ == "__main__":
    main()