File size: 9,359 Bytes
73d131e
 
 
 
 
 
 
 
 
 
6fc2b3e
aa071f3
bab6bde
 
 
 
 
 
 
73d131e
 
 
 
0aedcf3
bab6bde
1fecd54
73d131e
6fc2b3e
aa071f3
e4b41bd
 
 
 
 
c52e28a
bab6bde
0aedcf3
a6f9a33
 
0aedcf3
e4b41bd
 
 
bab6bde
e4b41bd
 
 
 
 
 
 
 
 
 
 
 
4bec1a3
e4b41bd
 
 
eb15d7d
bab6bde
e4b41bd
 
bab6bde
e4b41bd
 
 
 
 
 
 
 
 
 
bab6bde
e4b41bd
 
eb15d7d
73d131e
 
 
 
 
bab6bde
73d131e
 
4bec1a3
e9359a4
4bec1a3
 
 
 
 
 
e9359a4
 
 
eb15d7d
e9359a4
 
458e97c
e9359a4
eb15d7d
 
e9359a4
 
 
4bec1a3
 
e9359a4
 
4bec1a3
 
 
ce21cab
eb15d7d
 
bab6bde
77c0aba
eb15d7d
0aedcf3
bab6bde
eb15d7d
bab6bde
8f78162
04fd3ea
8f78162
aa071f3
6fc2b3e
908672e
 
 
059f61a
 
 
 
908672e
059f61a
 
 
908672e
6fc2b3e
908672e
6fc2b3e
908672e
6fc2b3e
 
059f61a
6fc2b3e
059f61a
908672e
 
059f61a
 
908672e
6fc2b3e
aa071f3
908672e
8f78162
6fc2b3e
 
 
8f78162
eb15d7d
77c0aba
4bec1a3
eb15d7d
73d131e
bab6bde
0aedcf3
73d131e
 
0aedcf3
 
a6f9a33
 
bab6bde
 
0aedcf3
 
73d131e
 
 
 
 
 
0aedcf3
73d131e
bab6bde
73d131e
 
0aedcf3
 
bab6bde
0aedcf3
 
 
bab6bde
0aedcf3
bab6bde
0aedcf3
 
73d131e
 
bab6bde
eb15d7d
 
 
 
 
 
 
bab6bde
eb15d7d
73d131e
 
 
8cf3fe8
 
 
6fc2b3e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#!/usr/bin/env python3
import os
import json
import time
import threading
import multiprocessing
from concurrent.futures import ThreadPoolExecutor
import pika
from typing import Tuple, Dict, Any
from mineru_single import Processor
from topic_extr import TopicExtractionProcessor

import logging

logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s [%(levelname)s] %(name)s - %(message)s"
)
logger = logging.getLogger(__name__)

class RabbitMQWorker:
    def __init__(self, num_workers: int = 1):
        self.num_workers = num_workers
        self.rabbit_url = os.getenv("RABBITMQ_URL")
        logger.info("Initializing RabbitMQWorker")
        self.processor = Processor()

        self.topic_processor = TopicExtractionProcessor()

        self.publisher_connection = None
        self.publisher_channel = None


    def setup_publisher(self):
        if not self.publisher_connection or self.publisher_connection.is_closed:
            logger.info("Setting up publisher connection to RabbitMQ.")
            connection_params = pika.URLParameters(self.rabbit_url)
            connection_params.heartbeat = 1000 # Match the consumer heartbeat
            connection_params.blocked_connection_timeout = 500  # Increase timeout
            
            self.publisher_connection = pika.BlockingConnection(connection_params)
            self.publisher_channel = self.publisher_connection.channel()
            self.publisher_channel.queue_declare(queue="ml_server", durable=True)
            logger.info("Publisher connection/channel established successfully.")
    
    def publish_message(self, body_dict: dict, headers: dict):
        """Use persistent connection for publishing"""
        max_retries = 3
        for attempt in range(max_retries):
            try:
                # Ensure publisher connection is setup
                self.setup_publisher()
                
                self.publisher_channel.basic_publish(
                    exchange="",
                    routing_key="ml_server",
                    body=json.dumps(body_dict).encode('utf-8'),
                    properties=pika.BasicProperties(
                        headers=headers
                    )
                )
                logger.info("Published message to ml_server queue (attempt=%d).", attempt + 1)
                return True
            except Exception as e:
                logger.error("Publish attempt %d failed: %s", attempt + 1, e)
                # Close failed connection
                if self.publisher_connection and not self.publisher_connection.is_closed:
                    try:
                        self.publisher_connection.close()
                    except:
                        pass
                self.publisher_connection = None
                self.publisher_channel = None
                
                if attempt == max_retries - 1:
                    logger.error("Failed to publish after %d attempts", max_retries)
                    return False
                time.sleep(2) 

    def callback(self, ch, method, properties, body):
        """Handle incoming RabbitMQ messages"""
        thread_id = threading.current_thread().name
        headers = properties.headers or {}

        logger.info("[Worker %s] Received message: %s, headers: %s", thread_id, body, headers)

        try:
            contexts = []

            body_dict = json.loads(body)
            
            pattern = body_dict.get("pattern")
            if pattern == "process_files":
                data = body_dict.get("data")
                input_files = data.get("input_files")
                logger.info("[Worker %s] Found %d file(s) to process.", thread_id, len(input_files))

                for files in input_files:
                    try:
                        context = {
                            "key": files["key"],
                            "body": self.processor.process(files["url"], properties.headers["request_id"])
                        }
                        contexts.append(context)
                    except Exception as e:
                        err_str = f"Error processing file {files.get('key', '')}: {e}"
                        logger.error(err_str)
                        contexts.append({"key": files.get("key", ""), "body": err_str})
    
    
                data["md_context"] = contexts
                # topics = data.get("topics", [])
    
                body_dict["pattern"] = "question_extraction_update_from_gpu_server"
                body_dict["data"] = data
                
                # Publish results
                if self.publish_message(body_dict, headers):
                    logger.info("[Worker %s] Successfully published results to ml_server.", thread_id)
                    ch.basic_ack(delivery_tag=method.delivery_tag)
                else:
                    ch.basic_nack(delivery_tag=method.delivery_tag, requeue=True)
                    logger.error("[Worker %s] Failed to publish results.", thread_id)
                
                logger.info("[Worker %s] Contexts: %s", thread_id, contexts)

            elif pattern == "topic_extraction":
                data = body_dict.get("data")
                input_files = data.get("input_files")
                logger.info("[Worker %s] Found %d file(s) for topic extraction.", thread_id, len(input_files))

                for file in input_files:
                    try:
                        # Process the file and get markdown content
                        markdown_content = self.topic_processor.process(file)
                        
                        # Create context with the markdown content
                        context = {
                            "key": file["key"] + ".md",
                            # "body": self.topic_processor.process(file)
                            "body": markdown_content
                        }
                        contexts.append(context)
                    except Exception as e:
                        err_str = f"Error processing file {file.get('key', '')}: {e}"
                        logger.error(err_str)
                        contexts.append({"key": file.get("key", ""), "body": err_str})

                # Add the markdown contexts to the data
                data["md_context"] = contexts

                body_dict["pattern"] = "topic_extraction_update_from_gpu_server"
                body_dict["data"] = data
                
                # Publish the results back to the ML server
                if self.publish_message(body_dict, headers):
                    logger.info("[Worker %s] Published topic extraction results to ml_server.", thread_id)
                    ch.basic_ack(delivery_tag=method.delivery_tag)
                else:
                    ch.basic_nack(delivery_tag=method.delivery_tag, requeue=True)
                    logger.error("[Worker %s] Failed to publish topic results.", thread_id)

                logger.info("[Worker %s] Topic contexts: %s", thread_id, contexts)

            else:
                ch.basic_ack(delivery_tag=method.delivery_tag, requeue=False)
                logger.warning("[Worker %s] Unknown pattern type in headers: %s", thread_id, pattern)
                
        except Exception as e:
            logger.error("Error in callback: %s", e)
            ch.basic_nack(delivery_tag=method.delivery_tag, requeue=True)

    def connect_to_rabbitmq(self):
        """Establish connection to RabbitMQ with heartbeat"""
        connection_params = pika.URLParameters(self.rabbit_url)
        connection_params.heartbeat = 1000
        connection_params.blocked_connection_timeout = 500
        logger.info("Connecting to RabbitMQ for consumer with heartbeat=1000.")

        
        connection = pika.BlockingConnection(connection_params)
        channel = connection.channel()

        channel.queue_declare(queue="gpu_server", durable=True)
        channel.basic_qos(prefetch_count=1)
        channel.basic_consume(
            queue="gpu_server",
            on_message_callback=self.callback
        )
        logger.info("Consumer connected. Listening on queue='gpu_server'...")
        return connection, channel

    def worker(self, channel):
        """Worker function"""
        logger.info("Worker thread started. Beginning consuming...")
        try:
            channel.start_consuming()
        except Exception as e:
            logger.error("Worker thread encountered an error: %s", e)
        finally:
            logger.info("Worker thread shutting down. Closing channel.")
            channel.close()

    def start(self):
        """Start the worker threads"""
        logger.info("Starting %d workers in a ThreadPoolExecutor.", self.num_workers)
        while True:
            try:
                with ThreadPoolExecutor(max_workers=self.num_workers) as executor:
                    for _ in range(self.num_workers):
                        connection, channel = self.connect_to_rabbitmq()
                        executor.submit(self.worker, channel)
            except Exception as e:
                logger.error("Connection lost, reconnecting... Error: %s", e)
                time.sleep(5)  # Wait before reconnecting

def main():
    worker = RabbitMQWorker()
    worker.start()

if __name__ == "__main__":
    main()