correct JSON and filtering
Browse files- __pycache__/inference_svm_model.cpython-310.pyc +0 -0
- __pycache__/mineru_single.cpython-310.pyc +0 -0
- __pycache__/table_row_extraction.cpython-310.pyc +0 -0
- __pycache__/topic_extraction.cpython-310.pyc +0 -0
- __pycache__/worker.cpython-310.pyc +0 -0
- pearson_json/subtopics.json +914 -0
- table_row_extraction.py +167 -149
- topic_extr.py +213 -289
- topic_extraction.log +311 -0
__pycache__/inference_svm_model.cpython-310.pyc
CHANGED
Binary files a/__pycache__/inference_svm_model.cpython-310.pyc and b/__pycache__/inference_svm_model.cpython-310.pyc differ
|
|
__pycache__/mineru_single.cpython-310.pyc
CHANGED
Binary files a/__pycache__/mineru_single.cpython-310.pyc and b/__pycache__/mineru_single.cpython-310.pyc differ
|
|
__pycache__/table_row_extraction.cpython-310.pyc
CHANGED
Binary files a/__pycache__/table_row_extraction.cpython-310.pyc and b/__pycache__/table_row_extraction.cpython-310.pyc differ
|
|
__pycache__/topic_extraction.cpython-310.pyc
CHANGED
Binary files a/__pycache__/topic_extraction.cpython-310.pyc and b/__pycache__/topic_extraction.cpython-310.pyc differ
|
|
__pycache__/worker.cpython-310.pyc
CHANGED
Binary files a/__pycache__/worker.cpython-310.pyc and b/__pycache__/worker.cpython-310.pyc differ
|
|
pearson_json/subtopics.json
ADDED
@@ -0,0 +1,914 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"title": "1 Statistical sampling",
|
4 |
+
"contents": [
|
5 |
+
{
|
6 |
+
"type": "image",
|
7 |
+
"key": "/topic-extraction/cells/img_1.jpg_r1_c0.png"
|
8 |
+
},
|
9 |
+
{
|
10 |
+
"type": "image",
|
11 |
+
"key": "/topic-extraction/cells/img_19.jpg_r2_c0.png"
|
12 |
+
}
|
13 |
+
],
|
14 |
+
"children": [
|
15 |
+
{
|
16 |
+
"title": "1.1",
|
17 |
+
"contents": [
|
18 |
+
{
|
19 |
+
"type": "image",
|
20 |
+
"key": "/topic-extraction/cells/img_1.jpg_r1_c1.png"
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"type": "image",
|
24 |
+
"key": "/topic-extraction/cells/img_19.jpg_r2_c1.png"
|
25 |
+
}
|
26 |
+
],
|
27 |
+
"children": []
|
28 |
+
}
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"title": "2 Data presentation and interpretation",
|
33 |
+
"contents": [
|
34 |
+
{
|
35 |
+
"type": "image",
|
36 |
+
"key": "/topic-extraction/cells/img_2.jpg_r1_c0.png"
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"type": "image",
|
40 |
+
"key": "/topic-extraction/cells/img_3.jpg_r1_c0.png"
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"type": "image",
|
44 |
+
"key": "/topic-extraction/cells/img_4.jpg_r2_c0.png"
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"type": "image",
|
48 |
+
"key": "/topic-extraction/cells/img_5.jpg_r1_c0.png"
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"type": "image",
|
52 |
+
"key": "/topic-extraction/cells/img_6.jpg_r1_c0.png"
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"type": "image",
|
56 |
+
"key": "/topic-extraction/cells/img_20.jpg_r1_c0.png"
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"type": "image",
|
60 |
+
"key": "/topic-extraction/cells/img_21.jpg_r1_c0.png"
|
61 |
+
}
|
62 |
+
],
|
63 |
+
"children": [
|
64 |
+
{
|
65 |
+
"title": "2.1",
|
66 |
+
"contents": [
|
67 |
+
{
|
68 |
+
"type": "image",
|
69 |
+
"key": "/topic-extraction/cells/img_2.jpg_r1_c1.png"
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"type": "image",
|
73 |
+
"key": "/topic-extraction/cells/img_19.jpg_r3_c1.png"
|
74 |
+
}
|
75 |
+
],
|
76 |
+
"children": []
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"title": "2.2",
|
80 |
+
"contents": [
|
81 |
+
{
|
82 |
+
"type": "image",
|
83 |
+
"key": "/topic-extraction/cells/img_2.jpg_r2_c0.png"
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"type": "image",
|
87 |
+
"key": "/topic-extraction/cells/img_20.jpg_r1_c1.png"
|
88 |
+
}
|
89 |
+
],
|
90 |
+
"children": []
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"title": "2.3",
|
94 |
+
"contents": [
|
95 |
+
{
|
96 |
+
"type": "image",
|
97 |
+
"key": "/topic-extraction/cells/img_2.jpg_r3_c0.png"
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"type": "image",
|
101 |
+
"key": "/topic-extraction/cells/img_20.jpg_r2_c0.png"
|
102 |
+
}
|
103 |
+
],
|
104 |
+
"children": []
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"title": "2.4",
|
108 |
+
"contents": [
|
109 |
+
{
|
110 |
+
"type": "image",
|
111 |
+
"key": "/topic-extraction/cells/img_2.jpg_r4_c0.png"
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"type": "image",
|
115 |
+
"key": "/topic-extraction/cells/img_21.jpg_r1_c1.png"
|
116 |
+
}
|
117 |
+
],
|
118 |
+
"children": []
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"title": "2.5",
|
122 |
+
"contents": [
|
123 |
+
{
|
124 |
+
"type": "image",
|
125 |
+
"key": "/topic-extraction/cells/img_3.jpg_r1_c1.png"
|
126 |
+
}
|
127 |
+
],
|
128 |
+
"children": []
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"title": "2.6",
|
132 |
+
"contents": [
|
133 |
+
{
|
134 |
+
"type": "image",
|
135 |
+
"key": "/topic-extraction/cells/img_3.jpg_r2_c0.png"
|
136 |
+
}
|
137 |
+
],
|
138 |
+
"children": []
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"title": "2.7",
|
142 |
+
"contents": [
|
143 |
+
{
|
144 |
+
"type": "image",
|
145 |
+
"key": "/topic-extraction/cells/img_4.jpg_r2_c1.png"
|
146 |
+
}
|
147 |
+
],
|
148 |
+
"children": []
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"title": "2.8",
|
152 |
+
"contents": [
|
153 |
+
{
|
154 |
+
"type": "image",
|
155 |
+
"key": "/topic-extraction/cells/img_5.jpg_r1_c1.png"
|
156 |
+
}
|
157 |
+
],
|
158 |
+
"children": []
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"title": "2.9",
|
162 |
+
"contents": [
|
163 |
+
{
|
164 |
+
"type": "image",
|
165 |
+
"key": "/topic-extraction/cells/img_5.jpg_r2_c0.png"
|
166 |
+
}
|
167 |
+
],
|
168 |
+
"children": []
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"title": "2.10",
|
172 |
+
"contents": [
|
173 |
+
{
|
174 |
+
"type": "image",
|
175 |
+
"key": "/topic-extraction/cells/img_5.jpg_r3_c0.png"
|
176 |
+
}
|
177 |
+
],
|
178 |
+
"children": []
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"title": "2.11",
|
182 |
+
"contents": [
|
183 |
+
{
|
184 |
+
"type": "image",
|
185 |
+
"key": "/topic-extraction/cells/img_6.jpg_r1_c1.png"
|
186 |
+
}
|
187 |
+
],
|
188 |
+
"children": []
|
189 |
+
}
|
190 |
+
]
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"title": "3 Coordinate geometry in the (x, y) plane",
|
194 |
+
"contents": [
|
195 |
+
{
|
196 |
+
"type": "image",
|
197 |
+
"key": "/topic-extraction/cells/img_7.jpg_r1_c0.png"
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"type": "image",
|
201 |
+
"key": "/topic-extraction/cells/img_22.jpg_r1_c0.png"
|
202 |
+
}
|
203 |
+
],
|
204 |
+
"children": [
|
205 |
+
{
|
206 |
+
"title": "3.1",
|
207 |
+
"contents": [
|
208 |
+
{
|
209 |
+
"type": "image",
|
210 |
+
"key": "/topic-extraction/cells/img_6.jpg_r2_c1.png"
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"type": "image",
|
214 |
+
"key": "/topic-extraction/cells/img_21.jpg_r2_c1.png"
|
215 |
+
}
|
216 |
+
],
|
217 |
+
"children": []
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"title": "3.2",
|
221 |
+
"contents": [
|
222 |
+
{
|
223 |
+
"type": "image",
|
224 |
+
"key": "/topic-extraction/cells/img_6.jpg_r3_c0.png"
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"type": "image",
|
228 |
+
"key": "/topic-extraction/cells/img_21.jpg_r3_c0.png"
|
229 |
+
}
|
230 |
+
],
|
231 |
+
"children": []
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"title": "3.3",
|
235 |
+
"contents": [
|
236 |
+
{
|
237 |
+
"type": "image",
|
238 |
+
"key": "/topic-extraction/cells/img_7.jpg_r1_c1.png"
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"type": "image",
|
242 |
+
"key": "/topic-extraction/cells/img_22.jpg_r1_c1.png"
|
243 |
+
}
|
244 |
+
],
|
245 |
+
"children": []
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"title": "3.4",
|
249 |
+
"contents": [
|
250 |
+
{
|
251 |
+
"type": "image",
|
252 |
+
"key": "/topic-extraction/cells/img_7.jpg_r2_c0.png"
|
253 |
+
}
|
254 |
+
],
|
255 |
+
"children": []
|
256 |
+
}
|
257 |
+
]
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"title": "4 Statistical distributions",
|
261 |
+
"contents": [
|
262 |
+
{
|
263 |
+
"type": "image",
|
264 |
+
"key": "/topic-extraction/cells/img_8.jpg_r2_c0.png"
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"type": "image",
|
268 |
+
"key": "/topic-extraction/cells/img_23.jpg_r1_c0.png"
|
269 |
+
}
|
270 |
+
],
|
271 |
+
"children": [
|
272 |
+
{
|
273 |
+
"title": "4.1",
|
274 |
+
"contents": [
|
275 |
+
{
|
276 |
+
"type": "image",
|
277 |
+
"key": "/topic-extraction/cells/img_7.jpg_r3_c1.png"
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"type": "image",
|
281 |
+
"key": "/topic-extraction/cells/img_22.jpg_r2_c1.png"
|
282 |
+
}
|
283 |
+
],
|
284 |
+
"children": []
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"title": "4.2",
|
288 |
+
"contents": [
|
289 |
+
{
|
290 |
+
"type": "image",
|
291 |
+
"key": "/topic-extraction/cells/img_8.jpg_r2_c1.png"
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"type": "image",
|
295 |
+
"key": "/topic-extraction/cells/img_22.jpg_r3_c0.png"
|
296 |
+
}
|
297 |
+
],
|
298 |
+
"children": []
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"title": "4.3",
|
302 |
+
"contents": [
|
303 |
+
{
|
304 |
+
"type": "image",
|
305 |
+
"key": "/topic-extraction/cells/img_8.jpg_r3_c0.png"
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"type": "image",
|
309 |
+
"key": "/topic-extraction/cells/img_23.jpg_r1_c1.png"
|
310 |
+
}
|
311 |
+
],
|
312 |
+
"children": []
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"title": "4.4",
|
316 |
+
"contents": [
|
317 |
+
{
|
318 |
+
"type": "image",
|
319 |
+
"key": "/topic-extraction/cells/img_8.jpg_r4_c0.png"
|
320 |
+
}
|
321 |
+
],
|
322 |
+
"children": []
|
323 |
+
},
|
324 |
+
{
|
325 |
+
"title": "4.5",
|
326 |
+
"contents": [
|
327 |
+
{
|
328 |
+
"type": "image",
|
329 |
+
"key": "/topic-extraction/cells/img_8.jpg_r5_c0.png"
|
330 |
+
}
|
331 |
+
],
|
332 |
+
"children": []
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"title": "4.6",
|
336 |
+
"contents": [
|
337 |
+
{
|
338 |
+
"type": "image",
|
339 |
+
"key": "/topic-extraction/cells/img_8.jpg_r6_c0.png"
|
340 |
+
}
|
341 |
+
],
|
342 |
+
"children": []
|
343 |
+
}
|
344 |
+
]
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"title": "5 Statistical hypothesis testing",
|
348 |
+
"contents": [
|
349 |
+
{
|
350 |
+
"type": "image",
|
351 |
+
"key": "/topic-extraction/cells/img_9.jpg_r1_c0.png"
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"type": "image",
|
355 |
+
"key": "/topic-extraction/cells/img_10.jpg_r1_c0.png"
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"type": "image",
|
359 |
+
"key": "/topic-extraction/cells/img_24.jpg_r2_c0.png"
|
360 |
+
}
|
361 |
+
],
|
362 |
+
"children": [
|
363 |
+
{
|
364 |
+
"title": "5.1",
|
365 |
+
"contents": [
|
366 |
+
{
|
367 |
+
"type": "image",
|
368 |
+
"key": "/topic-extraction/cells/img_9.jpg_r1_c1.png"
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"type": "image",
|
372 |
+
"key": "/topic-extraction/cells/img_23.jpg_r2_c1.png"
|
373 |
+
}
|
374 |
+
],
|
375 |
+
"children": []
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"title": "5.2",
|
379 |
+
"contents": [
|
380 |
+
{
|
381 |
+
"type": "image",
|
382 |
+
"key": "/topic-extraction/cells/img_9.jpg_r2_c0.png"
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"type": "image",
|
386 |
+
"key": "/topic-extraction/cells/img_24.jpg_r2_c1.png"
|
387 |
+
}
|
388 |
+
],
|
389 |
+
"children": []
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"title": "5.3",
|
393 |
+
"contents": [
|
394 |
+
{
|
395 |
+
"type": "image",
|
396 |
+
"key": "/topic-extraction/cells/img_9.jpg_r3_c0.png"
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"type": "image",
|
400 |
+
"key": "/topic-extraction/cells/img_24.jpg_r3_c0.png"
|
401 |
+
}
|
402 |
+
],
|
403 |
+
"children": []
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"title": "5.4",
|
407 |
+
"contents": [
|
408 |
+
{
|
409 |
+
"type": "image",
|
410 |
+
"key": "/topic-extraction/cells/img_9.jpg_r4_c0.png"
|
411 |
+
}
|
412 |
+
],
|
413 |
+
"children": []
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"title": "5.5",
|
417 |
+
"contents": [
|
418 |
+
{
|
419 |
+
"type": "image",
|
420 |
+
"key": "/topic-extraction/cells/img_10.jpg_r1_c1.png"
|
421 |
+
}
|
422 |
+
],
|
423 |
+
"children": []
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"title": "5.6",
|
427 |
+
"contents": [
|
428 |
+
{
|
429 |
+
"type": "image",
|
430 |
+
"key": "/topic-extraction/cells/img_10.jpg_r2_c0.png"
|
431 |
+
}
|
432 |
+
],
|
433 |
+
"children": []
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"title": "5.7",
|
437 |
+
"contents": [
|
438 |
+
{
|
439 |
+
"type": "image",
|
440 |
+
"key": "/topic-extraction/cells/img_10.jpg_r3_c0.png"
|
441 |
+
}
|
442 |
+
],
|
443 |
+
"children": []
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"title": "5.8",
|
447 |
+
"contents": [
|
448 |
+
{
|
449 |
+
"type": "image",
|
450 |
+
"key": "/topic-extraction/cells/img_10.jpg_r4_c0.png"
|
451 |
+
}
|
452 |
+
],
|
453 |
+
"children": []
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"title": "5.9",
|
457 |
+
"contents": [
|
458 |
+
{
|
459 |
+
"type": "image",
|
460 |
+
"key": "/topic-extraction/cells/img_10.jpg_r5_c0.png"
|
461 |
+
}
|
462 |
+
],
|
463 |
+
"children": []
|
464 |
+
}
|
465 |
+
]
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"title": "6 Exponentials and logarithms",
|
469 |
+
"contents": [
|
470 |
+
{
|
471 |
+
"type": "image",
|
472 |
+
"key": "/topic-extraction/cells/img_12.jpg_r2_c0.png"
|
473 |
+
}
|
474 |
+
],
|
475 |
+
"children": [
|
476 |
+
{
|
477 |
+
"title": "6.1",
|
478 |
+
"contents": [
|
479 |
+
{
|
480 |
+
"type": "image",
|
481 |
+
"key": "/topic-extraction/cells/img_11.jpg_r1_c0.png"
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"type": "image",
|
485 |
+
"key": "/topic-extraction/cells/img_24.jpg_r4_c1.png"
|
486 |
+
}
|
487 |
+
],
|
488 |
+
"children": []
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"title": "6.2",
|
492 |
+
"contents": [
|
493 |
+
{
|
494 |
+
"type": "image",
|
495 |
+
"key": "/topic-extraction/cells/img_11.jpg_r2_c0.png"
|
496 |
+
}
|
497 |
+
],
|
498 |
+
"children": []
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"title": "6.3",
|
502 |
+
"contents": [
|
503 |
+
{
|
504 |
+
"type": "image",
|
505 |
+
"key": "/topic-extraction/cells/img_11.jpg_r3_c0.png"
|
506 |
+
}
|
507 |
+
],
|
508 |
+
"children": []
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"title": "6.4",
|
512 |
+
"contents": [
|
513 |
+
{
|
514 |
+
"type": "image",
|
515 |
+
"key": "/topic-extraction/cells/img_11.jpg_r4_c0.png"
|
516 |
+
}
|
517 |
+
],
|
518 |
+
"children": []
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"title": "6.5",
|
522 |
+
"contents": [
|
523 |
+
{
|
524 |
+
"type": "image",
|
525 |
+
"key": "/topic-extraction/cells/img_11.jpg_r5_c0.png"
|
526 |
+
}
|
527 |
+
],
|
528 |
+
"children": []
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"title": "6.6",
|
532 |
+
"contents": [
|
533 |
+
{
|
534 |
+
"type": "image",
|
535 |
+
"key": "/topic-extraction/cells/img_11.jpg_r6_c0.png"
|
536 |
+
}
|
537 |
+
],
|
538 |
+
"children": []
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"title": "6.7",
|
542 |
+
"contents": [
|
543 |
+
{
|
544 |
+
"type": "image",
|
545 |
+
"key": "/topic-extraction/cells/img_12.jpg_r2_c1.png"
|
546 |
+
}
|
547 |
+
],
|
548 |
+
"children": []
|
549 |
+
}
|
550 |
+
]
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"title": "7 Differentiation",
|
554 |
+
"contents": [
|
555 |
+
{
|
556 |
+
"type": "image",
|
557 |
+
"key": "/topic-extraction/cells/img_13.jpg_r2_c0.png"
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"type": "image",
|
561 |
+
"key": "/topic-extraction/cells/img_14.jpg_r1_c0.png"
|
562 |
+
}
|
563 |
+
],
|
564 |
+
"children": [
|
565 |
+
{
|
566 |
+
"title": "7.1",
|
567 |
+
"contents": [
|
568 |
+
{
|
569 |
+
"type": "image",
|
570 |
+
"key": "/topic-extraction/cells/img_13.jpg_r2_c1.png"
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"type": "image",
|
574 |
+
"key": "/topic-extraction/cells/img_25.jpg_r1_c0.png"
|
575 |
+
},
|
576 |
+
{
|
577 |
+
"type": "image",
|
578 |
+
"key": "/topic-extraction/cells/img_12.jpg_r3_c1.png"
|
579 |
+
}
|
580 |
+
],
|
581 |
+
"children": []
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"title": "7.2",
|
585 |
+
"contents": [
|
586 |
+
{
|
587 |
+
"type": "image",
|
588 |
+
"key": "/topic-extraction/cells/img_13.jpg_r3_c0.png"
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"type": "image",
|
592 |
+
"key": "/topic-extraction/cells/img_25.jpg_r2_c0.png"
|
593 |
+
}
|
594 |
+
],
|
595 |
+
"children": []
|
596 |
+
},
|
597 |
+
{
|
598 |
+
"title": "7.3",
|
599 |
+
"contents": [
|
600 |
+
{
|
601 |
+
"type": "image",
|
602 |
+
"key": "/topic-extraction/cells/img_13.jpg_r5_c0.png"
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"type": "image",
|
606 |
+
"key": "/topic-extraction/cells/img_25.jpg_r3_c0.png"
|
607 |
+
}
|
608 |
+
],
|
609 |
+
"children": []
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"title": "7.4",
|
613 |
+
"contents": [
|
614 |
+
{
|
615 |
+
"type": "image",
|
616 |
+
"key": "/topic-extraction/cells/img_14.jpg_r1_c1.png"
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"type": "image",
|
620 |
+
"key": "/topic-extraction/cells/img_25.jpg_r4_c0.png"
|
621 |
+
}
|
622 |
+
],
|
623 |
+
"children": []
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"title": "7.5",
|
627 |
+
"contents": [
|
628 |
+
{
|
629 |
+
"type": "image",
|
630 |
+
"key": "/topic-extraction/cells/img_14.jpg_r2_c0.png"
|
631 |
+
},
|
632 |
+
{
|
633 |
+
"type": "image",
|
634 |
+
"key": "/topic-extraction/cells/img_25.jpg_r5_c0.png"
|
635 |
+
}
|
636 |
+
],
|
637 |
+
"children": []
|
638 |
+
},
|
639 |
+
{
|
640 |
+
"title": "7.6",
|
641 |
+
"contents": [
|
642 |
+
{
|
643 |
+
"type": "image",
|
644 |
+
"key": "/topic-extraction/cells/img_14.jpg_r3_c0.png"
|
645 |
+
}
|
646 |
+
],
|
647 |
+
"children": []
|
648 |
+
}
|
649 |
+
]
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"title": "8 Forces and Newton's laws",
|
653 |
+
"contents": [
|
654 |
+
{
|
655 |
+
"type": "image",
|
656 |
+
"key": "/topic-extraction/cells/img_15.jpg_r1_c0.png"
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"type": "image",
|
660 |
+
"key": "/topic-extraction/cells/img_16.jpg_r2_c0.png"
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"type": "image",
|
664 |
+
"key": "/topic-extraction/cells/img_26.jpg_r1_c0.png"
|
665 |
+
},
|
666 |
+
{
|
667 |
+
"type": "image",
|
668 |
+
"key": "/topic-extraction/cells/img_27.jpg_r1_c0.png"
|
669 |
+
}
|
670 |
+
],
|
671 |
+
"children": [
|
672 |
+
{
|
673 |
+
"title": "8.1",
|
674 |
+
"contents": [
|
675 |
+
{
|
676 |
+
"type": "image",
|
677 |
+
"key": "/topic-extraction/cells/img_26.jpg_r1_c1.png"
|
678 |
+
},
|
679 |
+
{
|
680 |
+
"type": "image",
|
681 |
+
"key": "/topic-extraction/cells/img_14.jpg_r4_c1.png"
|
682 |
+
}
|
683 |
+
],
|
684 |
+
"children": []
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"title": "8.2",
|
688 |
+
"contents": [
|
689 |
+
{
|
690 |
+
"type": "image",
|
691 |
+
"key": "/topic-extraction/cells/img_26.jpg_r2_c0.png"
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"type": "image",
|
695 |
+
"key": "/topic-extraction/cells/img_14.jpg_r5_c0.png"
|
696 |
+
}
|
697 |
+
],
|
698 |
+
"children": []
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"title": "8.3",
|
702 |
+
"contents": [
|
703 |
+
{
|
704 |
+
"type": "image",
|
705 |
+
"key": "/topic-extraction/cells/img_15.jpg_r1_c1.png"
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"type": "image",
|
709 |
+
"key": "/topic-extraction/cells/img_26.jpg_r3_c0.png"
|
710 |
+
}
|
711 |
+
],
|
712 |
+
"children": []
|
713 |
+
},
|
714 |
+
{
|
715 |
+
"title": "8.4",
|
716 |
+
"contents": [
|
717 |
+
{
|
718 |
+
"type": "image",
|
719 |
+
"key": "/topic-extraction/cells/img_15.jpg_r2_c0.png"
|
720 |
+
},
|
721 |
+
{
|
722 |
+
"type": "image",
|
723 |
+
"key": "/topic-extraction/cells/img_27.jpg_r1_c1.png"
|
724 |
+
}
|
725 |
+
],
|
726 |
+
"children": []
|
727 |
+
},
|
728 |
+
{
|
729 |
+
"title": "8.5",
|
730 |
+
"contents": [
|
731 |
+
{
|
732 |
+
"type": "image",
|
733 |
+
"key": "/topic-extraction/cells/img_15.jpg_r3_c0.png"
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"type": "image",
|
737 |
+
"key": "/topic-extraction/cells/img_27.jpg_r2_c0.png"
|
738 |
+
}
|
739 |
+
],
|
740 |
+
"children": []
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"title": "8.6",
|
744 |
+
"contents": [
|
745 |
+
{
|
746 |
+
"type": "image",
|
747 |
+
"key": "/topic-extraction/cells/img_15.jpg_r4_c0.png"
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"type": "image",
|
751 |
+
"key": "/topic-extraction/cells/img_27.jpg_r3_c0.png"
|
752 |
+
}
|
753 |
+
],
|
754 |
+
"children": []
|
755 |
+
},
|
756 |
+
{
|
757 |
+
"title": "8.7",
|
758 |
+
"contents": [
|
759 |
+
{
|
760 |
+
"type": "image",
|
761 |
+
"key": "/topic-extraction/cells/img_16.jpg_r2_c1.png"
|
762 |
+
}
|
763 |
+
],
|
764 |
+
"children": []
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"title": "8.8",
|
768 |
+
"contents": [
|
769 |
+
{
|
770 |
+
"type": "image",
|
771 |
+
"key": "/topic-extraction/cells/img_16.jpg_r3_c0.png"
|
772 |
+
}
|
773 |
+
],
|
774 |
+
"children": []
|
775 |
+
}
|
776 |
+
]
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"title": "9 Numerical methods",
|
780 |
+
"contents": [
|
781 |
+
{
|
782 |
+
"type": "image",
|
783 |
+
"key": "/topic-extraction/cells/img_17.jpg_r1_c0.png"
|
784 |
+
}
|
785 |
+
],
|
786 |
+
"children": [
|
787 |
+
{
|
788 |
+
"title": "9.1",
|
789 |
+
"contents": [
|
790 |
+
{
|
791 |
+
"type": "image",
|
792 |
+
"key": "/topic-extraction/cells/img_16.jpg_r4_c1.png"
|
793 |
+
},
|
794 |
+
{
|
795 |
+
"type": "image",
|
796 |
+
"key": "/topic-extraction/cells/img_27.jpg_r4_c1.png"
|
797 |
+
}
|
798 |
+
],
|
799 |
+
"children": []
|
800 |
+
},
|
801 |
+
{
|
802 |
+
"title": "9.2",
|
803 |
+
"contents": [
|
804 |
+
{
|
805 |
+
"type": "image",
|
806 |
+
"key": "/topic-extraction/cells/img_16.jpg_r5_c0.png"
|
807 |
+
}
|
808 |
+
],
|
809 |
+
"children": []
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"title": "9.3",
|
813 |
+
"contents": [
|
814 |
+
{
|
815 |
+
"type": "image",
|
816 |
+
"key": "/topic-extraction/cells/img_16.jpg_r6_c0.png"
|
817 |
+
}
|
818 |
+
],
|
819 |
+
"children": []
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"title": "9.4",
|
823 |
+
"contents": [
|
824 |
+
{
|
825 |
+
"type": "image",
|
826 |
+
"key": "/topic-extraction/cells/img_17.jpg_r1_c1.png"
|
827 |
+
}
|
828 |
+
],
|
829 |
+
"children": []
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"title": "9.5",
|
833 |
+
"contents": [
|
834 |
+
{
|
835 |
+
"type": "image",
|
836 |
+
"key": "/topic-extraction/cells/img_17.jpg_r2_c0.png"
|
837 |
+
}
|
838 |
+
],
|
839 |
+
"children": []
|
840 |
+
}
|
841 |
+
]
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"title": "10 Vectors",
|
845 |
+
"contents": [
|
846 |
+
{
|
847 |
+
"type": "image",
|
848 |
+
"key": "/topic-extraction/cells/img_18.jpg_r2_c0.png"
|
849 |
+
}
|
850 |
+
],
|
851 |
+
"children": [
|
852 |
+
{
|
853 |
+
"title": "10.1",
|
854 |
+
"contents": [
|
855 |
+
{
|
856 |
+
"type": "image",
|
857 |
+
"key": "/topic-extraction/cells/img_17.jpg_r3_c1.png"
|
858 |
+
}
|
859 |
+
],
|
860 |
+
"children": []
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"title": "10.2",
|
864 |
+
"contents": [
|
865 |
+
{
|
866 |
+
"type": "image",
|
867 |
+
"key": "/topic-extraction/cells/img_17.jpg_r4_c0.png"
|
868 |
+
}
|
869 |
+
],
|
870 |
+
"children": []
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"title": "10.3",
|
874 |
+
"contents": [
|
875 |
+
{
|
876 |
+
"type": "image",
|
877 |
+
"key": "/topic-extraction/cells/img_17.jpg_r5_c0.png"
|
878 |
+
}
|
879 |
+
],
|
880 |
+
"children": []
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"title": "10.4",
|
884 |
+
"contents": [
|
885 |
+
{
|
886 |
+
"type": "image",
|
887 |
+
"key": "/topic-extraction/cells/img_17.jpg_r6_c0.png"
|
888 |
+
}
|
889 |
+
],
|
890 |
+
"children": []
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"title": "10.5",
|
894 |
+
"contents": [
|
895 |
+
{
|
896 |
+
"type": "image",
|
897 |
+
"key": "/topic-extraction/cells/img_18.jpg_r2_c1.png"
|
898 |
+
}
|
899 |
+
],
|
900 |
+
"children": []
|
901 |
+
}
|
902 |
+
]
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"title": "A01",
|
906 |
+
"contents": [
|
907 |
+
{
|
908 |
+
"type": "image",
|
909 |
+
"key": "/topic-extraction/cells/img_28.jpg_r1_c0.png"
|
910 |
+
}
|
911 |
+
],
|
912 |
+
"children": []
|
913 |
+
}
|
914 |
+
]
|
table_row_extraction.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import cv2
|
2 |
import numpy as np
|
|
|
3 |
import logging
|
4 |
from pathlib import Path
|
5 |
from typing import List, Tuple
|
@@ -10,10 +11,27 @@ logger = logging.getLogger(__name__)
|
|
10 |
# if you are working with 3-column tables, change `merge_two_col_rows` and `enable_subtopic_merge` to False
|
11 |
# otherwise set them to True if you are working with 2-column tables (currently hardcoded, just test)
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
class TableExtractor:
|
14 |
def __init__(
|
15 |
self,
|
16 |
-
#
|
17 |
denoise_h: int = 10,
|
18 |
clahe_clip: float = 3.0,
|
19 |
clahe_grid: int = 8,
|
@@ -23,44 +41,40 @@ class TableExtractor:
|
|
23 |
thresh_block_size: int = 21,
|
24 |
thresh_C: int = 7,
|
25 |
|
26 |
-
# Row detection
|
27 |
horizontal_scale: int = 20,
|
28 |
-
row_morph_iterations: int =
|
29 |
-
min_row_height: int =
|
30 |
min_row_density: float = 0.01,
|
31 |
|
32 |
-
#
|
|
|
|
|
|
|
|
|
|
|
33 |
vertical_scale: int = 20,
|
34 |
col_morph_iterations: int = 2,
|
35 |
min_col_height_ratio: float = 0.5,
|
36 |
min_col_density: float = 0.01,
|
37 |
|
38 |
-
#
|
39 |
padding: int = 0,
|
40 |
skip_header: bool = True,
|
41 |
|
42 |
-
# Two-column & subtopic merges
|
43 |
-
merge_two_col_rows: bool =
|
44 |
-
enable_subtopic_merge: bool =
|
45 |
subtopic_threshold: float = 0.2,
|
46 |
|
47 |
-
#
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
):
|
55 |
-
"""
|
56 |
-
:param merge_two_col_rows: If True, a row with exactly 1 vertical line => merges into 1 bounding box.
|
57 |
-
:param enable_subtopic_merge: If True, a row with 2 vertical lines => 3 columns can become 2 if left is narrow.
|
58 |
-
:param subtopic_threshold: Fraction of row width for subtopic detection.
|
59 |
-
:param std_threshold_for_artifacts: Grayscale std dev < this => skip as artifact.
|
60 |
-
:param line_removal_scale: Larger => more aggressive line detection inside the cell.
|
61 |
-
:param line_removal_iterations: Morphological iterations for line removal.
|
62 |
-
:param min_text_ratio_after_line_removal: If fraction of text after removing lines < this => skip cell.
|
63 |
-
"""
|
64 |
# Preprocessing
|
65 |
self.denoise_h = denoise_h
|
66 |
self.clahe_clip = clahe_clip
|
@@ -75,6 +89,11 @@ class TableExtractor:
|
|
75 |
self.min_row_height = min_row_height
|
76 |
self.min_row_density = min_row_density
|
77 |
|
|
|
|
|
|
|
|
|
|
|
78 |
# Column detection
|
79 |
self.vertical_scale = vertical_scale
|
80 |
self.col_morph_iterations = col_morph_iterations
|
@@ -85,28 +104,31 @@ class TableExtractor:
|
|
85 |
self.padding = padding
|
86 |
self.skip_header = skip_header
|
87 |
|
88 |
-
# Two-column
|
89 |
self.merge_two_col_rows = merge_two_col_rows
|
90 |
self.enable_subtopic_merge = enable_subtopic_merge
|
91 |
self.subtopic_threshold = subtopic_threshold
|
92 |
|
93 |
-
#
|
94 |
-
self.
|
95 |
-
|
96 |
-
|
97 |
-
self.
|
98 |
-
self.
|
99 |
-
self.
|
100 |
|
101 |
def preprocess(self, img: np.ndarray) -> np.ndarray:
|
102 |
-
"""
|
|
|
|
|
103 |
if img.ndim == 3:
|
104 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
105 |
else:
|
106 |
gray = img.copy()
|
107 |
|
108 |
denoised = cv2.fastNlMeansDenoising(gray, h=self.denoise_h)
|
109 |
-
clahe = cv2.createCLAHE(clipLimit=self.clahe_clip,
|
|
|
110 |
enhanced = clahe.apply(denoised)
|
111 |
sharpened = cv2.filter2D(enhanced, -1, self.sharpen_kernel)
|
112 |
|
@@ -120,75 +142,95 @@ class TableExtractor:
|
|
120 |
return binarized
|
121 |
|
122 |
def detect_full_rows(self, bin_img: np.ndarray) -> List[Tuple[int, int]]:
|
123 |
-
"""Find horizontal row boundaries in the binarized image."""
|
124 |
h_kernel_size = max(1, bin_img.shape[1] // self.horizontal_scale)
|
125 |
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (h_kernel_size, 1))
|
|
|
|
|
|
|
|
|
126 |
|
127 |
-
horizontal_lines = cv2.morphologyEx(bin_img, cv2.MORPH_OPEN, horizontal_kernel,
|
128 |
-
iterations=self.row_morph_iterations)
|
129 |
row_projection = np.sum(horizontal_lines, axis=1)
|
130 |
max_val = np.max(row_projection) if len(row_projection) else 0
|
131 |
|
132 |
-
# If no lines, treat entire image as one row (opt)
|
133 |
if max_val < 1e-5:
|
134 |
return [(0, bin_img.shape[0])]
|
135 |
|
136 |
-
threshold_val =
|
137 |
line_indices = np.where(row_projection > threshold_val)[0]
|
138 |
-
|
139 |
if len(line_indices) < 2:
|
140 |
return [(0, bin_img.shape[0])]
|
141 |
|
142 |
-
# Group consecutive indices
|
143 |
lines = []
|
144 |
-
|
145 |
for i in range(1, len(line_indices)):
|
146 |
-
if line_indices[i] - line_indices[i - 1] <=
|
147 |
-
|
148 |
else:
|
149 |
-
lines.append(int(np.mean(
|
150 |
-
|
151 |
-
if
|
152 |
-
lines.append(int(np.mean(
|
153 |
|
154 |
-
|
155 |
for i in range(len(lines) - 1):
|
156 |
y1 = lines[i]
|
157 |
y2 = lines[i + 1]
|
158 |
-
if (y2 - y1)
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
-
|
|
|
|
|
|
|
|
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
171 |
row_height = (y2 - y1)
|
172 |
row_width = row_img.shape[1]
|
173 |
|
174 |
-
# Morph kernel for vertical lines
|
175 |
v_kernel_size = max(1, row_height // self.vertical_scale)
|
176 |
vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, v_kernel_size))
|
177 |
|
178 |
-
vertical_lines = cv2.morphologyEx(
|
179 |
-
|
180 |
-
|
|
|
|
|
|
|
|
|
181 |
|
182 |
# Find contours => x positions
|
183 |
-
contours, _ = cv2.findContours(vertical_lines,
|
|
|
|
|
184 |
x_positions = []
|
185 |
for c in contours:
|
186 |
-
x,
|
187 |
-
# Must be at least half the row height to be
|
188 |
if h >= self.min_col_height_ratio * row_height:
|
189 |
x_positions.append(x)
|
190 |
-
x_positions = sorted(set(x_positions))
|
191 |
|
|
|
192 |
# Keep at most 2 vertical lines
|
193 |
if len(x_positions) > 2:
|
194 |
x_positions = x_positions[:2]
|
@@ -209,14 +251,12 @@ class TableExtractor:
|
|
209 |
(0, y1, x1, row_height),
|
210 |
(x1, y1, row_width - x1, row_height)
|
211 |
]
|
212 |
-
|
213 |
else:
|
214 |
# 2 lines => normally 3 bounding boxes
|
215 |
x1, x2 = sorted(x_positions)
|
216 |
if self.enable_subtopic_merge:
|
217 |
-
# If left bounding box is very narrow => treat as subtopic => 2
|
218 |
-
|
219 |
-
if left_box_width < (self.subtopic_threshold * row_width):
|
220 |
boxes = [
|
221 |
(0, y1, x1, row_height),
|
222 |
(x1, y1, row_width - x1, row_height)
|
@@ -239,12 +279,12 @@ class TableExtractor:
|
|
239 |
for (x, y, w, h) in boxes:
|
240 |
if w <= 0:
|
241 |
continue
|
242 |
-
subregion = row_img[:, x
|
243 |
white_pixels = np.sum(subregion == 255)
|
244 |
total_pixels = subregion.size
|
245 |
if total_pixels == 0:
|
246 |
continue
|
247 |
-
density = white_pixels / total_pixels
|
248 |
if density >= self.min_col_density:
|
249 |
filtered.append((x, y, w, h))
|
250 |
|
@@ -253,9 +293,9 @@ class TableExtractor:
|
|
253 |
def process_image(self, image_path: str) -> List[List[Tuple[int, int, int, int]]]:
|
254 |
"""
|
255 |
1) Preprocess => bin_img
|
256 |
-
2) Detect row segments
|
257 |
3) Filter out rows by density
|
258 |
-
|
259 |
5) For each row => detect columns => bounding boxes
|
260 |
"""
|
261 |
img = cv2.imread(image_path)
|
@@ -273,15 +313,15 @@ class TableExtractor:
|
|
273 |
if area == 0:
|
274 |
continue
|
275 |
white_pixels = np.sum(row_region == 255)
|
276 |
-
density = white_pixels / area
|
277 |
if density >= self.min_row_density:
|
278 |
valid_rows.append((y1, y2))
|
279 |
|
280 |
-
#
|
281 |
if self.skip_header and len(valid_rows) > 1:
|
282 |
valid_rows = valid_rows[1:]
|
283 |
|
284 |
-
# Detect columns in each row
|
285 |
all_rows_boxes = []
|
286 |
for (y1, y2) in valid_rows:
|
287 |
row_img = bin_img[y1:y2, :]
|
@@ -291,8 +331,12 @@ class TableExtractor:
|
|
291 |
|
292 |
return all_rows_boxes
|
293 |
|
294 |
-
def extract_box_image(self,
|
295 |
-
|
|
|
|
|
|
|
|
|
296 |
x, y, w, h = box
|
297 |
Y1 = max(0, y - self.padding)
|
298 |
Y2 = min(original.shape[0], y + h + self.padding)
|
@@ -300,59 +344,47 @@ class TableExtractor:
|
|
300 |
X2 = min(original.shape[1], x + w + self.padding)
|
301 |
return original[Y1:Y2, X1:X2]
|
302 |
|
303 |
-
def
|
304 |
"""
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
# 1) horizontal line detection
|
309 |
-
horiz_kernel_size = max(1, gray_bin.shape[1] // self.line_removal_scale)
|
310 |
-
horiz_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (horiz_kernel_size, 1))
|
311 |
-
horizontal = cv2.morphologyEx(gray_bin, cv2.MORPH_OPEN, horiz_kernel, iterations=self.line_removal_iterations)
|
312 |
-
|
313 |
-
# 2) vertical line detection
|
314 |
-
vert_kernel_size = max(1, gray_bin.shape[0] // self.line_removal_scale)
|
315 |
-
vert_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, vert_kernel_size))
|
316 |
-
vertical = cv2.morphologyEx(gray_bin, cv2.MORPH_OPEN, vert_kernel, iterations=self.line_removal_iterations)
|
317 |
-
|
318 |
-
# Combine lines
|
319 |
-
lines = cv2.bitwise_or(horizontal, vertical)
|
320 |
-
# Subtract from the original => text-only
|
321 |
-
text_only = cv2.bitwise_and(gray_bin, cv2.bitwise_not(lines))
|
322 |
-
return text_only
|
323 |
-
|
324 |
-
def is_grey_artifact(self, cell_img: np.ndarray) -> bool:
|
325 |
-
"""
|
326 |
-
1) If grayscale std dev < std_threshold_for_artifacts => skip as uniform.
|
327 |
-
2) Otherwise, remove lines from an Otsu-binarized version of the cell
|
328 |
-
and check if there's enough text left. If not, skip as artifact.
|
329 |
"""
|
330 |
if cell_img.size == 0:
|
331 |
return True
|
332 |
|
333 |
-
|
334 |
-
|
335 |
-
if
|
336 |
return True
|
337 |
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
|
346 |
-
|
347 |
-
|
|
|
|
|
|
|
|
|
348 |
return True
|
349 |
|
350 |
return False
|
351 |
|
352 |
def save_extracted_cells(
|
353 |
-
|
|
|
|
|
|
|
354 |
):
|
355 |
-
"""
|
|
|
|
|
356 |
out_path = Path(output_dir)
|
357 |
out_path.mkdir(exist_ok=True, parents=True)
|
358 |
|
@@ -365,14 +397,15 @@ class TableExtractor:
|
|
365 |
row_dir.mkdir(exist_ok=True)
|
366 |
for j, box in enumerate(row):
|
367 |
cell_img = self.extract_box_image(original, box)
|
368 |
-
|
369 |
-
|
370 |
-
|
|
|
371 |
continue
|
372 |
|
373 |
out_file = row_dir / f"col_{j}.png"
|
374 |
cv2.imwrite(str(out_file), cell_img)
|
375 |
-
logger.info(f"Saved cell
|
376 |
|
377 |
class TableExtractorApp:
|
378 |
def __init__(self, extractor: TableExtractor):
|
@@ -384,39 +417,24 @@ class TableExtractorApp:
|
|
384 |
self.extractor.save_extracted_cells(input_image, row_boxes, output_folder)
|
385 |
logger.info("Done. Check the output folder for results.")
|
386 |
|
387 |
-
|
388 |
if __name__ == "__main__":
|
389 |
-
input_image = "images/test/
|
390 |
-
output_folder = "
|
391 |
|
392 |
extractor = TableExtractor(
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
thresh_block_size=21,
|
397 |
-
thresh_C=7,
|
398 |
-
|
399 |
-
horizontal_scale=20,
|
400 |
-
row_morph_iterations=2,
|
401 |
-
min_row_height=30,
|
402 |
-
min_row_density=0.01,
|
403 |
-
|
404 |
-
vertical_scale=20,
|
405 |
-
col_morph_iterations=2,
|
406 |
-
min_col_height_ratio=0.5,
|
407 |
-
min_col_density=0.01,
|
408 |
-
|
409 |
-
padding=1,
|
410 |
-
skip_header=True,
|
411 |
|
412 |
merge_two_col_rows=True,
|
413 |
enable_subtopic_merge=True,
|
414 |
subtopic_threshold=0.2,
|
415 |
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
|
|
420 |
)
|
421 |
|
422 |
app = TableExtractorApp(extractor)
|
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
+
import math
|
4 |
import logging
|
5 |
from pathlib import Path
|
6 |
from typing import List, Tuple
|
|
|
11 |
# if you are working with 3-column tables, change `merge_two_col_rows` and `enable_subtopic_merge` to False
|
12 |
# otherwise set them to True if you are working with 2-column tables (currently hardcoded, just test)
|
13 |
|
14 |
+
|
15 |
+
def color_distance(c1: Tuple[float, float, float],
|
16 |
+
c2: Tuple[float, float, float]) -> float:
|
17 |
+
"""
|
18 |
+
Euclidean distance between two BGR colors c1 and c2.
|
19 |
+
"""
|
20 |
+
return math.sqrt((c1[0] - c2[0])**2 + (c1[1] - c2[1])**2 + (c1[2] - c2[2])**2)
|
21 |
+
|
22 |
+
def average_bgr(cell_img: np.ndarray) -> Tuple[float, float, float]:
|
23 |
+
"""
|
24 |
+
Return the average BGR color of the entire cell_img.
|
25 |
+
"""
|
26 |
+
b_mean = np.mean(cell_img[:, :, 0])
|
27 |
+
g_mean = np.mean(cell_img[:, :, 1])
|
28 |
+
r_mean = np.mean(cell_img[:, :, 2])
|
29 |
+
return (b_mean, g_mean, r_mean)
|
30 |
+
|
31 |
class TableExtractor:
|
32 |
def __init__(
|
33 |
self,
|
34 |
+
# --- Preprocessing ---
|
35 |
denoise_h: int = 10,
|
36 |
clahe_clip: float = 3.0,
|
37 |
clahe_grid: int = 8,
|
|
|
41 |
thresh_block_size: int = 21,
|
42 |
thresh_C: int = 7,
|
43 |
|
44 |
+
# --- Row detection ---
|
45 |
horizontal_scale: int = 20,
|
46 |
+
row_morph_iterations: int = 1,
|
47 |
+
min_row_height: int = 15,
|
48 |
min_row_density: float = 0.01,
|
49 |
|
50 |
+
# Additional row detection parameters
|
51 |
+
faint_line_threshold_factor: float = 0.1,
|
52 |
+
top_line_grouping_px: int = 8,
|
53 |
+
some_minimum_text_pixels: int = 50,
|
54 |
+
|
55 |
+
# --- Column detection ---
|
56 |
vertical_scale: int = 20,
|
57 |
col_morph_iterations: int = 2,
|
58 |
min_col_height_ratio: float = 0.5,
|
59 |
min_col_density: float = 0.01,
|
60 |
|
61 |
+
# --- Bbox extraction ---
|
62 |
padding: int = 0,
|
63 |
skip_header: bool = True,
|
64 |
|
65 |
+
# --- Two-column & subtopic merges ---
|
66 |
+
merge_two_col_rows: bool = True,
|
67 |
+
enable_subtopic_merge: bool = True,
|
68 |
subtopic_threshold: float = 0.2,
|
69 |
|
70 |
+
# --- Color-based artifact filter ---
|
71 |
+
artifact_color_a6: Tuple[int, int, int] = (166, 166, 166),
|
72 |
+
artifact_color_a7: Tuple[int, int, int] = (180, 180, 180),
|
73 |
+
artifact_color_a8: Tuple[int, int, int] = (80, 48, 0),
|
74 |
+
artifact_color_a9: Tuple[int, int, int] = (223, 153, 180),
|
75 |
+
artifact_color_a10: Tuple[int, int, int] = (0, 0, 0),
|
76 |
+
color_tolerance: float = 30.0
|
77 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
# Preprocessing
|
79 |
self.denoise_h = denoise_h
|
80 |
self.clahe_clip = clahe_clip
|
|
|
89 |
self.min_row_height = min_row_height
|
90 |
self.min_row_density = min_row_density
|
91 |
|
92 |
+
# Additional row detection
|
93 |
+
self.faint_line_threshold_factor = faint_line_threshold_factor
|
94 |
+
self.top_line_grouping_px = top_line_grouping_px
|
95 |
+
self.some_minimum_text_pixels = some_minimum_text_pixels
|
96 |
+
|
97 |
# Column detection
|
98 |
self.vertical_scale = vertical_scale
|
99 |
self.col_morph_iterations = col_morph_iterations
|
|
|
104 |
self.padding = padding
|
105 |
self.skip_header = skip_header
|
106 |
|
107 |
+
# Two-column & subtopic merges
|
108 |
self.merge_two_col_rows = merge_two_col_rows
|
109 |
self.enable_subtopic_merge = enable_subtopic_merge
|
110 |
self.subtopic_threshold = subtopic_threshold
|
111 |
|
112 |
+
# Color-based artifact filter
|
113 |
+
self.artifact_color_a6 = artifact_color_a6
|
114 |
+
self.artifact_color_a7 = artifact_color_a7
|
115 |
+
self.artifact_color_a8 = artifact_color_a8
|
116 |
+
self.artifact_color_a9 = artifact_color_a9
|
117 |
+
self.artifact_color_a10 = artifact_color_a10
|
118 |
+
self.color_tolerance = color_tolerance
|
119 |
|
120 |
def preprocess(self, img: np.ndarray) -> np.ndarray:
|
121 |
+
"""
|
122 |
+
Grayscale, denoise, CLAHE, sharpen, then adaptive threshold (binary_inv).
|
123 |
+
"""
|
124 |
if img.ndim == 3:
|
125 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
126 |
else:
|
127 |
gray = img.copy()
|
128 |
|
129 |
denoised = cv2.fastNlMeansDenoising(gray, h=self.denoise_h)
|
130 |
+
clahe = cv2.createCLAHE(clipLimit=self.clahe_clip,
|
131 |
+
tileGridSize=(self.clahe_grid, self.clahe_grid))
|
132 |
enhanced = clahe.apply(denoised)
|
133 |
sharpened = cv2.filter2D(enhanced, -1, self.sharpen_kernel)
|
134 |
|
|
|
142 |
return binarized
|
143 |
|
144 |
def detect_full_rows(self, bin_img: np.ndarray) -> List[Tuple[int, int]]:
|
|
|
145 |
h_kernel_size = max(1, bin_img.shape[1] // self.horizontal_scale)
|
146 |
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (h_kernel_size, 1))
|
147 |
+
horizontal_lines = cv2.morphologyEx(
|
148 |
+
bin_img, cv2.MORPH_OPEN, horizontal_kernel,
|
149 |
+
iterations=self.row_morph_iterations
|
150 |
+
)
|
151 |
|
|
|
|
|
152 |
row_projection = np.sum(horizontal_lines, axis=1)
|
153 |
max_val = np.max(row_projection) if len(row_projection) else 0
|
154 |
|
|
|
155 |
if max_val < 1e-5:
|
156 |
return [(0, bin_img.shape[0])]
|
157 |
|
158 |
+
threshold_val = self.faint_line_threshold_factor * max_val
|
159 |
line_indices = np.where(row_projection > threshold_val)[0]
|
|
|
160 |
if len(line_indices) < 2:
|
161 |
return [(0, bin_img.shape[0])]
|
162 |
|
|
|
163 |
lines = []
|
164 |
+
group = [line_indices[0]]
|
165 |
for i in range(1, len(line_indices)):
|
166 |
+
if (line_indices[i] - line_indices[i - 1]) <= self.top_line_grouping_px:
|
167 |
+
group.append(line_indices[i])
|
168 |
else:
|
169 |
+
lines.append(int(np.mean(group)))
|
170 |
+
group = [line_indices[i]]
|
171 |
+
if group:
|
172 |
+
lines.append(int(np.mean(group)))
|
173 |
|
174 |
+
potential_bounds = []
|
175 |
for i in range(len(lines) - 1):
|
176 |
y1 = lines[i]
|
177 |
y2 = lines[i + 1]
|
178 |
+
if (y2 - y1) > 0:
|
179 |
+
potential_bounds.append((y1, y2))
|
180 |
+
|
181 |
+
if potential_bounds:
|
182 |
+
if potential_bounds[0][0] > 0:
|
183 |
+
potential_bounds.insert(0, (0, potential_bounds[0][0]))
|
184 |
+
if potential_bounds[-1][1] < bin_img.shape[0]:
|
185 |
+
potential_bounds.append((potential_bounds[-1][1], bin_img.shape[0]))
|
186 |
+
else:
|
187 |
+
potential_bounds = [(0, bin_img.shape[0])]
|
188 |
|
189 |
+
final_rows = []
|
190 |
+
for (y1, y2) in potential_bounds:
|
191 |
+
height = (y2 - y1)
|
192 |
+
region = bin_img[y1:y2, :]
|
193 |
+
white_count = np.sum(region == 255)
|
194 |
|
195 |
+
if height < self.min_row_height:
|
196 |
+
if white_count >= self.some_minimum_text_pixels:
|
197 |
+
final_rows.append((y1, y2))
|
198 |
+
else:
|
199 |
+
final_rows.append((y1, y2))
|
200 |
+
|
201 |
+
final_rows = sorted(final_rows, key=lambda x: x[0])
|
202 |
+
return final_rows if final_rows else [(0, bin_img.shape[0])]
|
203 |
+
|
204 |
+
def detect_columns_in_row(self,
|
205 |
+
row_img: np.ndarray,
|
206 |
+
y1: int,
|
207 |
+
y2: int) -> List[Tuple[int, int, int, int]]:
|
208 |
row_height = (y2 - y1)
|
209 |
row_width = row_img.shape[1]
|
210 |
|
|
|
211 |
v_kernel_size = max(1, row_height // self.vertical_scale)
|
212 |
vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, v_kernel_size))
|
213 |
|
214 |
+
vertical_lines = cv2.morphologyEx(
|
215 |
+
row_img, cv2.MORPH_OPEN, vertical_kernel,
|
216 |
+
iterations=self.col_morph_iterations
|
217 |
+
)
|
218 |
+
vertical_lines = cv2.dilate(vertical_lines,
|
219 |
+
np.ones((3, 3), np.uint8),
|
220 |
+
iterations=1)
|
221 |
|
222 |
# Find contours => x positions
|
223 |
+
contours, _ = cv2.findContours(vertical_lines,
|
224 |
+
cv2.RETR_EXTERNAL,
|
225 |
+
cv2.CHAIN_APPROX_SIMPLE)
|
226 |
x_positions = []
|
227 |
for c in contours:
|
228 |
+
x, _, w, h = cv2.boundingRect(c)
|
229 |
+
# Must be at least half the row height to be a real divider
|
230 |
if h >= self.min_col_height_ratio * row_height:
|
231 |
x_positions.append(x)
|
|
|
232 |
|
233 |
+
x_positions = sorted(set(x_positions))
|
234 |
# Keep at most 2 vertical lines
|
235 |
if len(x_positions) > 2:
|
236 |
x_positions = x_positions[:2]
|
|
|
251 |
(0, y1, x1, row_height),
|
252 |
(x1, y1, row_width - x1, row_height)
|
253 |
]
|
|
|
254 |
else:
|
255 |
# 2 lines => normally 3 bounding boxes
|
256 |
x1, x2 = sorted(x_positions)
|
257 |
if self.enable_subtopic_merge:
|
258 |
+
# If left bounding box is very narrow => treat as subtopic => 2 boxes
|
259 |
+
if x1 < (self.subtopic_threshold * row_width):
|
|
|
260 |
boxes = [
|
261 |
(0, y1, x1, row_height),
|
262 |
(x1, y1, row_width - x1, row_height)
|
|
|
279 |
for (x, y, w, h) in boxes:
|
280 |
if w <= 0:
|
281 |
continue
|
282 |
+
subregion = row_img[:, x:x+w]
|
283 |
white_pixels = np.sum(subregion == 255)
|
284 |
total_pixels = subregion.size
|
285 |
if total_pixels == 0:
|
286 |
continue
|
287 |
+
density = white_pixels / float(total_pixels)
|
288 |
if density >= self.min_col_density:
|
289 |
filtered.append((x, y, w, h))
|
290 |
|
|
|
293 |
def process_image(self, image_path: str) -> List[List[Tuple[int, int, int, int]]]:
|
294 |
"""
|
295 |
1) Preprocess => bin_img
|
296 |
+
2) Detect row segments (with faint-line logic)
|
297 |
3) Filter out rows by density
|
298 |
+
4) Optionally skip the first row (header)
|
299 |
5) For each row => detect columns => bounding boxes
|
300 |
"""
|
301 |
img = cv2.imread(image_path)
|
|
|
313 |
if area == 0:
|
314 |
continue
|
315 |
white_pixels = np.sum(row_region == 255)
|
316 |
+
density = white_pixels / float(area)
|
317 |
if density >= self.min_row_density:
|
318 |
valid_rows.append((y1, y2))
|
319 |
|
320 |
+
# skip header row
|
321 |
if self.skip_header and len(valid_rows) > 1:
|
322 |
valid_rows = valid_rows[1:]
|
323 |
|
324 |
+
# Detect columns in each valid row
|
325 |
all_rows_boxes = []
|
326 |
for (y1, y2) in valid_rows:
|
327 |
row_img = bin_img[y1:y2, :]
|
|
|
331 |
|
332 |
return all_rows_boxes
|
333 |
|
334 |
+
def extract_box_image(self,
|
335 |
+
original: np.ndarray,
|
336 |
+
box: Tuple[int, int, int, int]) -> np.ndarray:
|
337 |
+
"""
|
338 |
+
Crop bounding box from original with optional padding.
|
339 |
+
"""
|
340 |
x, y, w, h = box
|
341 |
Y1 = max(0, y - self.padding)
|
342 |
Y2 = min(original.shape[0], y + h + self.padding)
|
|
|
344 |
X2 = min(original.shape[1], x + w + self.padding)
|
345 |
return original[Y1:Y2, X1:X2]
|
346 |
|
347 |
+
def is_artifact_by_color(self, cell_img: np.ndarray) -> bool:
|
348 |
"""
|
349 |
+
Revert to the *exact* color-based artifact logic from the first script:
|
350 |
+
1) If the average color is near #a6a6a6 or #a7a7a7 (within color_tolerance),
|
351 |
+
skip it. Otherwise, keep it.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
"""
|
353 |
if cell_img.size == 0:
|
354 |
return True
|
355 |
|
356 |
+
avg_col = average_bgr(cell_img)
|
357 |
+
dist_a6 = color_distance(avg_col, self.artifact_color_a6)
|
358 |
+
if dist_a6 < self.color_tolerance:
|
359 |
return True
|
360 |
|
361 |
+
dist_a7 = color_distance(avg_col, self.artifact_color_a7)
|
362 |
+
if dist_a7 < self.color_tolerance:
|
363 |
+
return True
|
364 |
|
365 |
+
dist_a8 = color_distance(avg_col, self.artifact_color_a8)
|
366 |
+
if dist_a8 < self.color_tolerance:
|
367 |
+
return True
|
368 |
|
369 |
+
dist_a9 = color_distance(avg_col, self.artifact_color_a9)
|
370 |
+
if dist_a9 < self.color_tolerance:
|
371 |
+
return True
|
372 |
+
|
373 |
+
dist_a10 = color_distance(avg_col, self.artifact_color_a10)
|
374 |
+
if dist_a10 < self.color_tolerance:
|
375 |
return True
|
376 |
|
377 |
return False
|
378 |
|
379 |
def save_extracted_cells(
|
380 |
+
self,
|
381 |
+
image_path: str,
|
382 |
+
row_boxes: List[List[Tuple[int, int, int, int]]],
|
383 |
+
output_dir: str
|
384 |
):
|
385 |
+
"""
|
386 |
+
Save each cell from the original image, skipping if it's near #a6a6a6 or #a7a7a7.
|
387 |
+
"""
|
388 |
out_path = Path(output_dir)
|
389 |
out_path.mkdir(exist_ok=True, parents=True)
|
390 |
|
|
|
397 |
row_dir.mkdir(exist_ok=True)
|
398 |
for j, box in enumerate(row):
|
399 |
cell_img = self.extract_box_image(original, box)
|
400 |
+
|
401 |
+
# Check color-based artifact
|
402 |
+
if self.is_artifact_by_color(cell_img):
|
403 |
+
logger.info(f"Skipping artifact cell at row={i}, col={j} (color near #a6a6a6/#a7a7a7).")
|
404 |
continue
|
405 |
|
406 |
out_file = row_dir / f"col_{j}.png"
|
407 |
cv2.imwrite(str(out_file), cell_img)
|
408 |
+
logger.info(f"Saved cell row={i}, col={j} -> {out_file}")
|
409 |
|
410 |
class TableExtractorApp:
|
411 |
def __init__(self, extractor: TableExtractor):
|
|
|
417 |
self.extractor.save_extracted_cells(input_image, row_boxes, output_folder)
|
418 |
logger.info("Done. Check the output folder for results.")
|
419 |
|
|
|
420 |
if __name__ == "__main__":
|
421 |
+
input_image = "images/test/img_9.png"
|
422 |
+
output_folder = "combined_outputs"
|
423 |
|
424 |
extractor = TableExtractor(
|
425 |
+
row_morph_iterations=1,
|
426 |
+
min_row_height=15,
|
427 |
+
skip_header=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
428 |
|
429 |
merge_two_col_rows=True,
|
430 |
enable_subtopic_merge=True,
|
431 |
subtopic_threshold=0.2,
|
432 |
|
433 |
+
faint_line_threshold_factor=0.4,
|
434 |
+
top_line_grouping_px=12,
|
435 |
+
some_minimum_text_pixels=50,
|
436 |
+
|
437 |
+
color_tolerance=30.0
|
438 |
)
|
439 |
|
440 |
app = TableExtractorApp(extractor)
|
topic_extr.py
CHANGED
@@ -35,6 +35,7 @@ logger.addHandler(file_handler)
|
|
35 |
|
36 |
_GEMINI_CLIENT = None
|
37 |
|
|
|
38 |
def unify_whitespace(text: str) -> str:
|
39 |
return re.sub(r"\s+", " ", text).strip()
|
40 |
|
@@ -66,6 +67,123 @@ def create_subset_pdf(original_pdf_bytes: bytes, page_indices: List[int]) -> byt
|
|
66 |
doc.close()
|
67 |
return subset_bytes
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
class s3Writer:
|
70 |
def __init__(self, ak: str, sk: str, bucket: str, endpoint_url: str):
|
71 |
self.bucket = bucket
|
@@ -114,15 +232,20 @@ def call_gemini_for_table_classification(image_data: bytes, api_key: str, max_re
|
|
114 |
prompt = """You are given an image. Determine if it shows a table that has exactly 2 or 3 columns.
|
115 |
The three-column 'table' image includes such key features:
|
116 |
- Three columns header
|
117 |
-
- Headers like 'Topics', 'Content', 'Guidelines'
|
118 |
- Possibly sections (e.g. 8.4, 9.1)
|
119 |
The two-column 'table' image includes such key features:
|
120 |
- Two columns
|
121 |
-
- Headers like 'Subject content'
|
122 |
-
- Possibly sections (e.g. 2.1, 3.4)
|
|
|
|
|
|
|
|
|
|
|
123 |
If the image is a relevant table with 2 columns, respond with 'TWO_COLUMN'.
|
124 |
If the image is a relevant table with 3 columns, respond with 'THREE_COLUMN'.
|
125 |
-
If the image does not show a table
|
126 |
Return only one of these exact labels.
|
127 |
"""
|
128 |
global _GEMINI_CLIENT
|
@@ -153,6 +276,8 @@ Return only one of these exact labels.
|
|
153 |
return "THREE_COLUMN"
|
154 |
elif "TWO" in classification:
|
155 |
return "TWO_COLUMN"
|
|
|
|
|
156 |
return "NO_TABLE"
|
157 |
except Exception as e:
|
158 |
logger.error(f"Gemini table classification error: {e}")
|
@@ -172,54 +297,86 @@ def call_gemini_for_subtopic_identification_image(image_data: bytes, api_key: st
|
|
172 |
for attempt in range(max_retries + 1):
|
173 |
try:
|
174 |
prompt = """
|
175 |
-
|
176 |
1) A main topic heading in the format: "<number> <Topic Name>", for example "2 Algebra and functions continued".
|
177 |
2) A subtopic heading in the format "<number>.<number>", for example "2.5", "2.6", or "3.4".
|
178 |
-
3)
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
"""
|
|
|
223 |
global _GEMINI_CLIENT
|
224 |
if _GEMINI_CLIENT is None:
|
225 |
_GEMINI_CLIENT = genai.Client(api_key=api_key)
|
@@ -242,13 +399,13 @@ If you cannot recognize any text matching these patterns, or if nothing is found
|
|
242 |
],
|
243 |
config=types.GenerateContentConfig(temperature=0.0)
|
244 |
)
|
245 |
-
|
246 |
-
|
247 |
if not resp or not resp.text:
|
248 |
logger.warning("Gemini returned an empty response for subtopic extraction.")
|
249 |
return {"title": "", "subtopics": []}
|
250 |
|
251 |
raw = resp.text.strip()
|
|
|
252 |
raw = raw.replace("```json", "").replace("```", "").strip()
|
253 |
data = json.loads(raw)
|
254 |
|
@@ -310,6 +467,10 @@ class S3ImageWriter(DataWriter):
|
|
310 |
info['final_alt'] = "HAS TO BE PROCESSED - two column table"
|
311 |
elif cls == "THREE_COLUMN":
|
312 |
info['final_alt'] = "HAS TO BE PROCESSED - three column table"
|
|
|
|
|
|
|
|
|
313 |
else:
|
314 |
info['final_alt'] = "NO_TABLE image"
|
315 |
md_content = md_content.replace(f"", f"![{info['final_alt']}]({info['s3_path']})")
|
@@ -445,123 +606,6 @@ class S3ImageWriter(DataWriter):
|
|
445 |
def post_process(self, key: str, md_content: str) -> str:
|
446 |
return asyncio.run(self.post_process_async(key, md_content))
|
447 |
|
448 |
-
class LocalImageWriter(DataWriter):
|
449 |
-
def __init__(self, output_folder: str, gemini_api_key: str):
|
450 |
-
self.output_folder = output_folder
|
451 |
-
os.makedirs(self.output_folder, exist_ok=True)
|
452 |
-
self.descriptions = {}
|
453 |
-
self._img_count = 0
|
454 |
-
self.gemini_api_key = gemini_api_key
|
455 |
-
self.extracted_tables = {}
|
456 |
-
|
457 |
-
def write(self, path: str, data: bytes) -> None:
|
458 |
-
self._img_count += 1
|
459 |
-
unique_id = f"img_{self._img_count}.jpg"
|
460 |
-
self.descriptions[path] = {
|
461 |
-
"data": data,
|
462 |
-
"relative_path": unique_id,
|
463 |
-
"table_classification": "NO_TABLE",
|
464 |
-
"final_alt": ""
|
465 |
-
}
|
466 |
-
image_path = os.path.join(self.output_folder, unique_id)
|
467 |
-
with open(image_path, "wb") as f:
|
468 |
-
f.write(data)
|
469 |
-
|
470 |
-
async def post_process_async(self, key: str, md_content: str) -> str:
|
471 |
-
logger.info("Classifying images to detect tables.")
|
472 |
-
tasks = []
|
473 |
-
for p, info in self.descriptions.items():
|
474 |
-
tasks.append((p, classify_image_async(info["data"], self.gemini_api_key)))
|
475 |
-
for p, task in tasks:
|
476 |
-
try:
|
477 |
-
classification = await task
|
478 |
-
self.descriptions[p]['table_classification'] = classification
|
479 |
-
except Exception as e:
|
480 |
-
logger.error(f"Table classification error: {e}")
|
481 |
-
self.descriptions[p]['table_classification'] = "NO_TABLE"
|
482 |
-
for p, info in self.descriptions.items():
|
483 |
-
cls = info['table_classification']
|
484 |
-
if cls == "TWO_COLUMN":
|
485 |
-
info['final_alt'] = "HAS TO BE PROCESSED - two column table"
|
486 |
-
elif cls == "THREE_COLUMN":
|
487 |
-
info['final_alt'] = "HAS TO BE PROCESSED - three column table"
|
488 |
-
else:
|
489 |
-
info['final_alt'] = "NO_TABLE image"
|
490 |
-
md_content = md_content.replace(f"", f"![{info['final_alt']}]({info['relative_path']})")
|
491 |
-
md_content = self._process_table_images_in_markdown(md_content)
|
492 |
-
final_lines = []
|
493 |
-
for line in md_content.split("\n"):
|
494 |
-
if re.match(r"^\!\[.*\]\(.*\)", line.strip()):
|
495 |
-
final_lines.append(line.strip())
|
496 |
-
return "\n".join(final_lines)
|
497 |
-
|
498 |
-
def _process_table_images_in_markdown(self, md_content: str) -> str:
|
499 |
-
pat = r"!\[HAS TO BE PROCESSED - (two|three) column table\]\(([^)]+)\)"
|
500 |
-
matches = re.findall(pat, md_content, flags=re.IGNORECASE)
|
501 |
-
if not matches:
|
502 |
-
return md_content
|
503 |
-
for (col_type, image_id) in matches:
|
504 |
-
logger.info(f"Processing table image => {image_id}, columns={col_type}")
|
505 |
-
temp_path = os.path.join(self.output_folder, image_id)
|
506 |
-
desc_item = None
|
507 |
-
for k, val in self.descriptions.items():
|
508 |
-
if val["relative_path"] == image_id:
|
509 |
-
desc_item = val
|
510 |
-
break
|
511 |
-
if not desc_item:
|
512 |
-
logger.warning(f"No matching image data for {image_id}, skipping extraction.")
|
513 |
-
continue
|
514 |
-
if not os.path.exists(temp_path):
|
515 |
-
with open(temp_path, "wb") as f:
|
516 |
-
f.write(desc_item["data"])
|
517 |
-
try:
|
518 |
-
if col_type.lower() == 'two': #check for table_row_extr script for more details
|
519 |
-
extractor = TableExtractor(
|
520 |
-
skip_header=True,
|
521 |
-
merge_two_col_rows=True,
|
522 |
-
enable_subtopic_merge=True,
|
523 |
-
subtopic_threshold=0.2
|
524 |
-
)
|
525 |
-
else:
|
526 |
-
extractor = TableExtractor(
|
527 |
-
skip_header=True,
|
528 |
-
merge_two_col_rows=False,
|
529 |
-
enable_subtopic_merge=False,
|
530 |
-
subtopic_threshold=0.2
|
531 |
-
)
|
532 |
-
row_boxes = extractor.process_image(temp_path)
|
533 |
-
out_folder = temp_path + "_rows"
|
534 |
-
os.makedirs(out_folder, exist_ok=True)
|
535 |
-
extractor.save_extracted_cells(temp_path, row_boxes, out_folder)
|
536 |
-
# List all extracted cell images relative to the output folder.
|
537 |
-
extracted_cells = []
|
538 |
-
for root, dirs, files in os.walk(out_folder):
|
539 |
-
for file in files:
|
540 |
-
rel_path = os.path.relpath(os.path.join(root, file), self.output_folder)
|
541 |
-
extracted_cells.append(rel_path)
|
542 |
-
# Save mapping for testing.
|
543 |
-
self.extracted_tables[image_id] = extracted_cells
|
544 |
-
snippet = ["**Extracted table cells:**"]
|
545 |
-
for i, row in enumerate(row_boxes):
|
546 |
-
row_dir = os.path.join(out_folder, f"row_{i}")
|
547 |
-
for j, _ in enumerate(row):
|
548 |
-
cell_file = f"col_{j}.jpg"
|
549 |
-
cell_path = os.path.join(row_dir, cell_file)
|
550 |
-
relp = os.path.relpath(cell_path, self.output_folder)
|
551 |
-
snippet.append(f"")
|
552 |
-
new_snip = "\n".join(snippet)
|
553 |
-
old_line = f""
|
554 |
-
md_content = md_content.replace(old_line, new_snip)
|
555 |
-
except Exception as e:
|
556 |
-
logger.error(f"Error processing table image {image_id}: {e}")
|
557 |
-
finally:
|
558 |
-
if os.path.exists(temp_path):
|
559 |
-
os.remove(temp_path)
|
560 |
-
return md_content
|
561 |
-
|
562 |
-
def post_process(self, key: str, md_content: str) -> str:
|
563 |
-
return asyncio.run(self.post_process_async(key, md_content))
|
564 |
-
|
565 |
class GeminiTopicExtractor:
|
566 |
def __init__(self, api_key: str = None, num_pages: int = 14):
|
567 |
self.api_key = api_key or os.getenv("GEMINI_API_KEY", "")
|
@@ -782,119 +826,6 @@ class MineruNoTextProcessor:
|
|
782 |
except Exception as e:
|
783 |
logger.error(f"Error during GPU cleanup: {e}")
|
784 |
|
785 |
-
def unify_topic_name(raw_title: str, children_subtopics: list) -> str:
|
786 |
-
"""
|
787 |
-
Produce a cleaned-up topic name, removing any trailing '... continued'
|
788 |
-
and fixing partial or empty titles if it’s obvious from the subtopic numbering.
|
789 |
-
E.g. 'gonometry' with children '5.1', '5.2' → '5 Trigonometry'
|
790 |
-
"""
|
791 |
-
title = raw_title.strip()
|
792 |
-
|
793 |
-
# Remove trailing " continued"
|
794 |
-
# E.g. "2 Algebra and functions continued" -> "2 Algebra and functions"
|
795 |
-
title = re.sub(r"\s+continued\s*$", "", title, flags=re.IGNORECASE)
|
796 |
-
|
797 |
-
# If the entire title is missing or obviously broken (like "gonometry"),
|
798 |
-
# guess a fix from the subtopics if they share a leading integer.
|
799 |
-
# e.g. if subtopics start with "5." => rename to "5 Trigonometry".
|
800 |
-
# You can add more sophisticated logic as needed.
|
801 |
-
if not title or title.lower().strip() in {"gonometry"}:
|
802 |
-
# Try to deduce from subtopic numbering
|
803 |
-
# Example: if children are "5.1", "5.2", that suggests a "5 Trigonometry"
|
804 |
-
all_subs = [child["title"] for child in children_subtopics]
|
805 |
-
# We'll parse the integer part from e.g. "5.1", "5.2"
|
806 |
-
# and guess "5 Trigonometry" if they're all "5.xxx".
|
807 |
-
if all_subs:
|
808 |
-
# Grab the first subtopic
|
809 |
-
first_sub = all_subs[0].strip()
|
810 |
-
m = re.match(r"^(\d+)\.", first_sub)
|
811 |
-
if m:
|
812 |
-
parent_num = m.group(1)
|
813 |
-
if parent_num == "5":
|
814 |
-
title = "5 Trigonometry"
|
815 |
-
elif parent_num == "2":
|
816 |
-
title = "2 Algebra and functions"
|
817 |
-
elif parent_num == "3":
|
818 |
-
title = "3 Coordinate geometry in the (x, y) plane"
|
819 |
-
elif parent_num == "4":
|
820 |
-
title = "4 Statistical distributions"
|
821 |
-
# etc., adapt to your needs
|
822 |
-
# or leave as e.g. f"{parent_num} ???" if you cannot guess.
|
823 |
-
|
824 |
-
return title
|
825 |
-
|
826 |
-
|
827 |
-
def merge_topics(subtopic_list: list) -> list:
|
828 |
-
"""
|
829 |
-
1. Cleans up each topic's title (remove " continued", fix partial titles).
|
830 |
-
2. Merges subtopics under the same cleaned-up parent name.
|
831 |
-
3. Sorts final output in ascending numeric order of the parent's leading number.
|
832 |
-
4. Sorts each parent's children in ascending numeric subtopic order.
|
833 |
-
"""
|
834 |
-
# Dictionary keyed by *cleaned* parent title => {"title": "...", "contents": [...], "children": [...]}
|
835 |
-
merged = {}
|
836 |
-
|
837 |
-
for topic_obj in subtopic_list:
|
838 |
-
raw_title = topic_obj.get("title", "")
|
839 |
-
children = topic_obj.get("children", [])
|
840 |
-
contents = topic_obj.get("contents", [])
|
841 |
-
|
842 |
-
# Clean up the parent's title
|
843 |
-
new_title = unify_topic_name(raw_title, children)
|
844 |
-
|
845 |
-
# If we have already seen this (cleaned) title, merge
|
846 |
-
if new_title not in merged:
|
847 |
-
merged[new_title] = {
|
848 |
-
"title": new_title,
|
849 |
-
"contents": list(contents), # copy
|
850 |
-
"children": list(children),
|
851 |
-
}
|
852 |
-
else:
|
853 |
-
# Merge contents and children
|
854 |
-
merged[new_title]["contents"].extend(contents)
|
855 |
-
merged[new_title]["children"].extend(children)
|
856 |
-
|
857 |
-
# Next, for each parent's children, we might want to remove duplicates
|
858 |
-
# or unify them more. Here we simply unify if they have the same "title".
|
859 |
-
# If you have no duplicates, you can skip this loop.
|
860 |
-
for par_title, par_info in merged.items():
|
861 |
-
# Turn child list into map for merging
|
862 |
-
child_map = {}
|
863 |
-
for ch in par_info["children"]:
|
864 |
-
ctitle = ch.get("title", "").strip()
|
865 |
-
if ctitle not in child_map:
|
866 |
-
child_map[ctitle] = ch
|
867 |
-
else:
|
868 |
-
# Merge the "contents" and "children" if needed
|
869 |
-
child_map[ctitle]["contents"].extend(ch.get("contents", []))
|
870 |
-
child_map[ctitle]["children"].extend(ch.get("children", []))
|
871 |
-
# Overwrite the parent's children list with the merged versions
|
872 |
-
par_info["children"] = list(child_map.values())
|
873 |
-
|
874 |
-
# Sort the top-level topics by leading integer (e.g. "2 Algebra" < "5 Trigonometry")
|
875 |
-
# We'll parse the first integer from the parent's title, or push them last if no integer found.
|
876 |
-
def parse_parent_num(t):
|
877 |
-
match = re.match(r"^(\d+)", t)
|
878 |
-
return int(match.group(1)) if match else 9999
|
879 |
-
|
880 |
-
# Build the final list
|
881 |
-
final_list = list(merged.values())
|
882 |
-
final_list.sort(key=lambda x: parse_parent_num(x["title"]))
|
883 |
-
|
884 |
-
# Sort each parent's children by their numeric portion. E.g. "2.1" < "2.2" < "3.1"
|
885 |
-
def parse_subtopic_num(subtitle):
|
886 |
-
# "2.11" => (2, 11), "10.5" => (10, 5)
|
887 |
-
# or just parse all groups of digits
|
888 |
-
digits = re.findall(r"\d+", subtitle)
|
889 |
-
if not digits:
|
890 |
-
return (9999,) # if no digits, push to end
|
891 |
-
return tuple(int(d) for d in digits)
|
892 |
-
|
893 |
-
for par_info in final_list:
|
894 |
-
par_info["children"].sort(key=lambda ch: parse_subtopic_num(ch["title"]))
|
895 |
-
|
896 |
-
return final_list
|
897 |
-
|
898 |
def process(self, pdf_path: str) -> Dict[str, Any]:
|
899 |
logger.info(f"Processing PDF: {pdf_path}")
|
900 |
try:
|
@@ -972,9 +903,6 @@ class MineruNoTextProcessor:
|
|
972 |
)
|
973 |
#S3
|
974 |
writer = S3ImageWriter(self.s3_writer, "/topic-extraction", self.gemini_api_key)
|
975 |
-
|
976 |
-
#local
|
977 |
-
# writer = LocalImageWriter(self.output_folder, self.gemini_api_key)
|
978 |
|
979 |
md_prefix = "/topic-extraction/"
|
980 |
pipe_result = inference.pipe_ocr_mode(writer, lang=self.language)
|
@@ -984,11 +912,7 @@ class MineruNoTextProcessor:
|
|
984 |
subtopic_list = list(writer.extracted_subtopics.values())
|
985 |
subtopic_list = merge_topics(subtopic_list)
|
986 |
|
987 |
-
|
988 |
-
# with open(out_path, "w", encoding="utf-8") as f:
|
989 |
-
# json.dump(subtopic_list, f, indent=2)
|
990 |
-
# logger.info(f"Final subtopics JSON saved locally at {out_path}")
|
991 |
-
out_path = os.path.join(self.output_folder, "final_subtopics.json")
|
992 |
with open(out_path, "w", encoding="utf-8") as f:
|
993 |
json.dump(subtopic_list, f, indent=2)
|
994 |
logger.info(f"Final subtopics JSON saved locally at {out_path}")
|
|
|
35 |
|
36 |
_GEMINI_CLIENT = None
|
37 |
|
38 |
+
#helper functions, also global
|
39 |
def unify_whitespace(text: str) -> str:
|
40 |
return re.sub(r"\s+", " ", text).strip()
|
41 |
|
|
|
67 |
doc.close()
|
68 |
return subset_bytes
|
69 |
|
70 |
+
def unify_topic_name(raw_title: str, children_subtopics: list) -> str:
|
71 |
+
"""
|
72 |
+
Clean up a topic title:
|
73 |
+
- Remove any trailing "continued".
|
74 |
+
- If the title does not start with a number but children provide a consistent numeric prefix,
|
75 |
+
then prepend that prefix.
|
76 |
+
"""
|
77 |
+
title = raw_title.strip()
|
78 |
+
# Remove trailing "continued"
|
79 |
+
title = re.sub(r"\s+continued\s*$", "", title, flags=re.IGNORECASE)
|
80 |
+
|
81 |
+
# If title already starts with a number, use it as is.
|
82 |
+
if re.match(r"^\d+", title):
|
83 |
+
return title
|
84 |
+
|
85 |
+
# Otherwise, try to deduce a numeric prefix from the children.
|
86 |
+
prefixes = []
|
87 |
+
for child in children_subtopics:
|
88 |
+
child_title = child.get("title", "").strip()
|
89 |
+
m = re.match(r"^(\d+)\.", child_title)
|
90 |
+
if m:
|
91 |
+
prefixes.append(m.group(1))
|
92 |
+
if prefixes:
|
93 |
+
# If all numeric prefixes in children are the same, use that prefix.
|
94 |
+
if all(p == prefixes[0] for p in prefixes):
|
95 |
+
# If title is non-empty, prepend the number; otherwise, use a fallback.
|
96 |
+
if title:
|
97 |
+
title = f"{prefixes[0]} {title}"
|
98 |
+
else:
|
99 |
+
title = f"{prefixes[0]} Topic"
|
100 |
+
# Optionally, handle known broken titles explicitly.
|
101 |
+
if title.lower() in {"gonometry"}:
|
102 |
+
# For example, if children indicate "5.X", set to "5 Trigonometry"
|
103 |
+
if prefixes and prefixes[0] == "5":
|
104 |
+
title = "5 Trigonometry"
|
105 |
+
return title
|
106 |
+
|
107 |
+
|
108 |
+
def merge_topics(subtopic_list: list) -> list:
|
109 |
+
"""
|
110 |
+
Merge topics with an enhanced logic:
|
111 |
+
1. Clean up each topic's title using unify_topic_name.
|
112 |
+
2. Group topics by the parent's numeric prefix (if available). Topics without a numeric prefix use their title.
|
113 |
+
3. Reassign children: for each child whose title (e.g. "3.1") does not match its current parent's numeric prefix,
|
114 |
+
move it to the parent with the matching prefix if available.
|
115 |
+
4. Remove duplicate children by merging contents.
|
116 |
+
5. Sort parent topics and each parent's children by their numeric ordering.
|
117 |
+
"""
|
118 |
+
# First, merge topics by parent's numeric prefix.
|
119 |
+
merged = {}
|
120 |
+
for topic_obj in subtopic_list:
|
121 |
+
raw_title = topic_obj.get("title", "")
|
122 |
+
children = topic_obj.get("children", [])
|
123 |
+
contents = topic_obj.get("contents", [])
|
124 |
+
new_title = unify_topic_name(raw_title, children)
|
125 |
+
# Extract parent's numeric prefix, if present.
|
126 |
+
m = re.match(r"^(\d+)", new_title)
|
127 |
+
parent_prefix = m.group(1) if m else None
|
128 |
+
key = parent_prefix if parent_prefix is not None else new_title
|
129 |
+
|
130 |
+
if key not in merged:
|
131 |
+
merged[key] = {
|
132 |
+
"title": new_title,
|
133 |
+
"contents": list(contents),
|
134 |
+
"children": list(children),
|
135 |
+
}
|
136 |
+
else:
|
137 |
+
# Merge contents and children; choose the longer title.
|
138 |
+
if len(new_title) > len(merged[key]["title"]):
|
139 |
+
merged[key]["title"] = new_title
|
140 |
+
merged[key]["contents"].extend(contents)
|
141 |
+
merged[key]["children"].extend(children)
|
142 |
+
|
143 |
+
# Build a lookup of merged topics by their numeric prefix.
|
144 |
+
parent_lookup = merged # keys are numeric prefixes or the full title for non-numeric ones.
|
145 |
+
|
146 |
+
# Reassign children to the correct parent based on their numeric prefix.
|
147 |
+
for key, topic in merged.items():
|
148 |
+
new_children = []
|
149 |
+
for child in topic["children"]:
|
150 |
+
child_title = child.get("title", "").strip()
|
151 |
+
m_child = re.match(r"^(\d+)\.", child_title)
|
152 |
+
if m_child:
|
153 |
+
child_prefix = m_child.group(1)
|
154 |
+
if key != child_prefix and child_prefix in parent_lookup:
|
155 |
+
# Reassign this child to the proper parent.
|
156 |
+
parent_lookup[child_prefix]["children"].append(child)
|
157 |
+
continue
|
158 |
+
new_children.append(child)
|
159 |
+
topic["children"] = new_children
|
160 |
+
|
161 |
+
# Remove duplicate children by merging their contents.
|
162 |
+
for topic in merged.values():
|
163 |
+
child_map = {}
|
164 |
+
for child in topic["children"]:
|
165 |
+
ctitle = child.get("title", "").strip()
|
166 |
+
if ctitle not in child_map:
|
167 |
+
child_map[ctitle] = child
|
168 |
+
else:
|
169 |
+
child_map[ctitle]["contents"].extend(child.get("contents", []))
|
170 |
+
child_map[ctitle]["children"].extend(child.get("children", []))
|
171 |
+
topic["children"] = list(child_map.values())
|
172 |
+
|
173 |
+
# Sort children by full numeric order (e.g. "2.1" < "2.10" < "2.2").
|
174 |
+
def parse_subtopic_num(subtitle):
|
175 |
+
digits = re.findall(r"\d+", subtitle)
|
176 |
+
return tuple(int(d) for d in digits) if digits else (9999,)
|
177 |
+
topic["children"].sort(key=lambda ch: parse_subtopic_num(ch.get("title", "")))
|
178 |
+
|
179 |
+
# Convert merged topics to a sorted list.
|
180 |
+
def parse_parent_num(topic):
|
181 |
+
m = re.match(r"^(\d+)", topic.get("title", ""))
|
182 |
+
return int(m.group(1)) if m else 9999
|
183 |
+
final_list = list(merged.values())
|
184 |
+
final_list.sort(key=lambda topic: parse_parent_num(topic))
|
185 |
+
return final_list
|
186 |
+
|
187 |
class s3Writer:
|
188 |
def __init__(self, ak: str, sk: str, bucket: str, endpoint_url: str):
|
189 |
self.bucket = bucket
|
|
|
232 |
prompt = """You are given an image. Determine if it shows a table that has exactly 2 or 3 columns.
|
233 |
The three-column 'table' image includes such key features:
|
234 |
- Three columns header
|
235 |
+
- Headers like 'Topics', 'Content', 'Guidelines', 'Amplification', 'Additional guidance notes', 'Area of Study'
|
236 |
- Possibly sections (e.g. 8.4, 9.1)
|
237 |
The two-column 'table' image includes such key features:
|
238 |
- Two columns
|
239 |
+
- Headers like 'Subject content', 'Additional information'
|
240 |
+
- Possibly sections (e.g. 2.1, 3.4, G2, G3, )
|
241 |
+
The empty image include such key features:
|
242 |
+
- Does not include anything at all (like a blank white or black image)
|
243 |
+
- Truncated image with words like 'Subject content', 'What students need to learn' with blue background.
|
244 |
+
- Truncated image with words like 'Topics', 'What students need to learn', 'Content' with grey background ((166, 166, 166) or (180,180,180) RGB color code).
|
245 |
+
If the image is an empty image, respond with 'EMPTY_IMAGE'.
|
246 |
If the image is a relevant table with 2 columns, respond with 'TWO_COLUMN'.
|
247 |
If the image is a relevant table with 3 columns, respond with 'THREE_COLUMN'.
|
248 |
+
If the image is non-empty but does not show a table, respond with 'NO_TABLE'.
|
249 |
Return only one of these exact labels.
|
250 |
"""
|
251 |
global _GEMINI_CLIENT
|
|
|
276 |
return "THREE_COLUMN"
|
277 |
elif "TWO" in classification:
|
278 |
return "TWO_COLUMN"
|
279 |
+
elif "EMPTY" in classification:
|
280 |
+
return "EMPTY_IMAGE"
|
281 |
return "NO_TABLE"
|
282 |
except Exception as e:
|
283 |
logger.error(f"Gemini table classification error: {e}")
|
|
|
297 |
for attempt in range(max_retries + 1):
|
298 |
try:
|
299 |
prompt = """
|
300 |
+
You are given an image from an educational curriculum specification. The image may contain:
|
301 |
1) A main topic heading in the format: "<number> <Topic Name>", for example "2 Algebra and functions continued".
|
302 |
2) A subtopic heading in the format "<number>.<number>", for example "2.5", "2.6", or "3.4".
|
303 |
+
3) A label-like title in the left column of a two-column table, for example "G2", "G3", "Scarcity, choice and opportunity cost", or similar text without explicit numeric patterns (2.1, 3.4, etc.).
|
304 |
+
4) Possibly no relevant text at all.
|
305 |
+
|
306 |
+
Your task is to extract:
|
307 |
+
- **"title"**: A recognized main topic or heading text.
|
308 |
+
- **"subtopics"**: Any recognized subtopic numbers (e.g. "2.5", "2.6", "3.4"), as an array of strings.
|
309 |
+
|
310 |
+
Follow these rules:
|
311 |
+
|
312 |
+
(1) **If the cell shows a main topic in the format "<number> <Topic Name>",** for example "2 Algebra and functions continued", then:
|
313 |
+
- Put that text (without the word "continued") in "title". (e.g. "2 Algebra and functions")
|
314 |
+
- "subtopics" should be an empty array, unless you also see smaller subtopic numbers.
|
315 |
+
|
316 |
+
(2) **If the cell shows one or more subtopic numbers** in the format "<number>.<number>", for example "2.5", "2.6", or "3.4", then:
|
317 |
+
- Collect those exact strings in the JSON key "subtopics" (an array of strings).
|
318 |
+
- "title" in this case should be an empty string if you only detect subtopics.
|
319 |
+
(Example: If text is "2.5 Solve linear inequalities...", then "title" = "", "subtopics" = ["2.5"]).
|
320 |
+
|
321 |
+
(3) **If neither a main topic nor a subtopic is detected,** return empty values:
|
322 |
+
{
|
323 |
+
"title": "",
|
324 |
+
"subtopics": []
|
325 |
+
}
|
326 |
+
|
327 |
+
(4) **If there is no numeric value in the left column** (e.g. "2.1" or "2 <Topic name>" not found) but the left column text appears to be a heading (for instance "Scarcity, choice and opportunity cost"), then:
|
328 |
+
- Use the **left column text** as "title".
|
329 |
+
- "subtopics" remains empty.
|
330 |
+
Example:
|
331 |
+
If the left column is "Scarcity, choice and opportunity cost" and the right column has definitions, your output is:
|
332 |
+
{
|
333 |
+
"title": "Scarcity, choice and opportunity cost",
|
334 |
+
"subtopics": []
|
335 |
+
}
|
336 |
+
|
337 |
+
(5) **If there is a character + digit pattern** in the left column for a two-column table (for example "G2", "G3", "G4", "C1"), treat that as a topic-like label:
|
338 |
+
- Put that label text into "title" (e.g. "G2").
|
339 |
+
- "subtopics" remains empty unless you also see actual subtopic formats like "2.5", "3.4" inside the same cell.
|
340 |
+
|
341 |
+
(6) **Output must be valid JSON** in this exact structure, with no extra text or explanation:
|
342 |
+
{
|
343 |
+
"title": "...",
|
344 |
+
"subtopics": [...]
|
345 |
+
}
|
346 |
+
|
347 |
+
**Examples**:
|
348 |
+
|
349 |
+
- If the image text is `"2 Algebra and functions continued"`, return:
|
350 |
+
{
|
351 |
+
"title": "2 Algebra and functions",
|
352 |
+
"subtopics": []
|
353 |
+
}
|
354 |
+
|
355 |
+
- If the image text is `"2.5 Solve linear and quadratic inequalities ..."`, return:
|
356 |
+
{
|
357 |
+
"title": "",
|
358 |
+
"subtopics": ["2.5"]
|
359 |
+
}
|
360 |
+
|
361 |
+
- If the image text is `"Scarcity, choice and opportunity cost"` (with no numeric patterns at all), return:
|
362 |
+
{
|
363 |
+
"title": "Scarcity, choice and opportunity cost",
|
364 |
+
"subtopics": []
|
365 |
+
}
|
366 |
+
|
367 |
+
- If the left column says `"G2"` and the right column has details, but no subtopic numbers, return:
|
368 |
+
{
|
369 |
+
"title": "G2",
|
370 |
+
"subtopics": []
|
371 |
+
}
|
372 |
+
|
373 |
+
- If you cannot recognize any text matching these patterns, or if nothing is found, return:
|
374 |
+
{
|
375 |
+
"title": "",
|
376 |
+
"subtopics": []
|
377 |
+
}
|
378 |
"""
|
379 |
+
|
380 |
global _GEMINI_CLIENT
|
381 |
if _GEMINI_CLIENT is None:
|
382 |
_GEMINI_CLIENT = genai.Client(api_key=api_key)
|
|
|
399 |
],
|
400 |
config=types.GenerateContentConfig(temperature=0.0)
|
401 |
)
|
402 |
+
|
|
|
403 |
if not resp or not resp.text:
|
404 |
logger.warning("Gemini returned an empty response for subtopic extraction.")
|
405 |
return {"title": "", "subtopics": []}
|
406 |
|
407 |
raw = resp.text.strip()
|
408 |
+
# Remove any markdown fences if present
|
409 |
raw = raw.replace("```json", "").replace("```", "").strip()
|
410 |
data = json.loads(raw)
|
411 |
|
|
|
467 |
info['final_alt'] = "HAS TO BE PROCESSED - two column table"
|
468 |
elif cls == "THREE_COLUMN":
|
469 |
info['final_alt'] = "HAS TO BE PROCESSED - three column table"
|
470 |
+
elif cls == "EMPTY_IMAGE":
|
471 |
+
md_content = md_content.replace(f"", "")
|
472 |
+
del self.descriptions[p]
|
473 |
+
continue
|
474 |
else:
|
475 |
info['final_alt'] = "NO_TABLE image"
|
476 |
md_content = md_content.replace(f"", f"![{info['final_alt']}]({info['s3_path']})")
|
|
|
606 |
def post_process(self, key: str, md_content: str) -> str:
|
607 |
return asyncio.run(self.post_process_async(key, md_content))
|
608 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
609 |
class GeminiTopicExtractor:
|
610 |
def __init__(self, api_key: str = None, num_pages: int = 14):
|
611 |
self.api_key = api_key or os.getenv("GEMINI_API_KEY", "")
|
|
|
826 |
except Exception as e:
|
827 |
logger.error(f"Error during GPU cleanup: {e}")
|
828 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
829 |
def process(self, pdf_path: str) -> Dict[str, Any]:
|
830 |
logger.info(f"Processing PDF: {pdf_path}")
|
831 |
try:
|
|
|
903 |
)
|
904 |
#S3
|
905 |
writer = S3ImageWriter(self.s3_writer, "/topic-extraction", self.gemini_api_key)
|
|
|
|
|
|
|
906 |
|
907 |
md_prefix = "/topic-extraction/"
|
908 |
pipe_result = inference.pipe_ocr_mode(writer, lang=self.language)
|
|
|
912 |
subtopic_list = list(writer.extracted_subtopics.values())
|
913 |
subtopic_list = merge_topics(subtopic_list)
|
914 |
|
915 |
+
out_path = os.path.join(self.output_folder, "subtopics.json")
|
|
|
|
|
|
|
|
|
916 |
with open(out_path, "w", encoding="utf-8") as f:
|
917 |
json.dump(subtopic_list, f, indent=2)
|
918 |
logger.info(f"Final subtopics JSON saved locally at {out_path}")
|
topic_extraction.log
CHANGED
@@ -5558,3 +5558,314 @@ and series'. Using page 7.
|
|
5558 |
2025-03-03 18:09:13,257 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_28.jpg_r2_c0.png
|
5559 |
2025-03-03 18:09:15,022 [INFO] __main__ - GPU memory cleaned up.
|
5560 |
2025-03-03 18:09:15,023 [ERROR] __main__ - Processing failed: name 'merge_topics' is not defined
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5558 |
2025-03-03 18:09:13,257 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_28.jpg_r2_c0.png
|
5559 |
2025-03-03 18:09:15,022 [INFO] __main__ - GPU memory cleaned up.
|
5560 |
2025-03-03 18:09:15,023 [ERROR] __main__ - Processing failed: name 'merge_topics' is not defined
|
5561 |
+
2025-03-04 14:56:39,218 [INFO] __main__ - Processing PDF: /home/user/app/input_output/a-level-pearson-mathematics-specification.pdf
|
5562 |
+
2025-03-04 14:56:40,018 [INFO] __main__ - Gemini returned subtopics: {'Paper 1 and Paper 2: Pure Mathematics': [11, 29], 'Paper 3: Statistics and Mechanics': [30, 40]}
|
5563 |
+
2025-03-04 14:56:40,019 [INFO] __main__ - Loaded 1135473 bytes from local file '/home/user/app/input_output/a-level-pearson-mathematics-specification.pdf'
|
5564 |
+
2025-03-04 14:56:40,316 [INFO] __main__ - Computed global offset: 4
|
5565 |
+
2025-03-04 14:56:40,316 [INFO] __main__ - Processing pages (0-based): [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]
|
5566 |
+
2025-03-04 14:58:48,246 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_1.jpg
|
5567 |
+
2025-03-04 14:58:50,037 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_2.jpg
|
5568 |
+
2025-03-04 14:58:50,583 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_3.jpg
|
5569 |
+
2025-03-04 14:58:51,114 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_4.jpg
|
5570 |
+
2025-03-04 14:58:51,657 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_5.jpg
|
5571 |
+
2025-03-04 14:58:52,211 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_6.jpg
|
5572 |
+
2025-03-04 14:58:52,686 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_7.jpg
|
5573 |
+
2025-03-04 14:58:53,167 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_8.jpg
|
5574 |
+
2025-03-04 14:58:53,667 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_9.jpg
|
5575 |
+
2025-03-04 14:58:54,285 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_10.jpg
|
5576 |
+
2025-03-04 14:58:54,850 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_11.jpg
|
5577 |
+
2025-03-04 14:58:55,401 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_12.jpg
|
5578 |
+
2025-03-04 14:58:55,916 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_13.jpg
|
5579 |
+
2025-03-04 14:58:56,524 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_14.jpg
|
5580 |
+
2025-03-04 14:58:56,999 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_15.jpg
|
5581 |
+
2025-03-04 14:58:57,542 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_16.jpg
|
5582 |
+
2025-03-04 14:58:58,071 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_17.jpg
|
5583 |
+
2025-03-04 14:58:58,366 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_18.jpg
|
5584 |
+
2025-03-04 14:58:58,849 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_19.jpg
|
5585 |
+
2025-03-04 14:58:59,428 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_20.jpg
|
5586 |
+
2025-03-04 14:58:59,995 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_21.jpg
|
5587 |
+
2025-03-04 14:59:00,597 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_22.jpg
|
5588 |
+
2025-03-04 14:59:01,070 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_23.jpg
|
5589 |
+
2025-03-04 14:59:01,567 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_24.jpg
|
5590 |
+
2025-03-04 14:59:02,141 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_25.jpg
|
5591 |
+
2025-03-04 14:59:02,569 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_26.jpg
|
5592 |
+
2025-03-04 14:59:03,024 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_27.jpg
|
5593 |
+
2025-03-04 14:59:03,607 [INFO] __main__ - Uploaded to S3: /topic-extraction/img_28.jpg
|
5594 |
+
2025-03-04 14:59:04,016 [INFO] __main__ - Classifying images to detect tables.
|
5595 |
+
2025-03-04 14:59:20,581 [INFO] __main__ - Processing table image: /topic-extraction/img_1.jpg, columns=three
|
5596 |
+
2025-03-04 14:59:23,252 [WARNING] __main__ - Cell image not found: /tmp/tmpijzc040v.jpg_rows/row_0/col_0.png
|
5597 |
+
2025-03-04 14:59:23,252 [WARNING] __main__ - Cell image not found: /tmp/tmpijzc040v.jpg_rows/row_0/col_1.png
|
5598 |
+
2025-03-04 14:59:23,748 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_1.jpg_r1_c0.png
|
5599 |
+
2025-03-04 14:59:25,146 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_1.jpg_r1_c1.png
|
5600 |
+
2025-03-04 14:59:26,469 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_1.jpg_r2_c0.png
|
5601 |
+
2025-03-04 14:59:27,272 [INFO] __main__ - Processing table image: /topic-extraction/img_2.jpg, columns=three
|
5602 |
+
2025-03-04 14:59:30,158 [WARNING] __main__ - Cell image not found: /tmp/tmplbse6rk2.jpg_rows/row_0/col_0.png
|
5603 |
+
2025-03-04 14:59:30,158 [WARNING] __main__ - Cell image not found: /tmp/tmplbse6rk2.jpg_rows/row_0/col_1.png
|
5604 |
+
2025-03-04 14:59:30,420 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_2.jpg_r1_c0.png
|
5605 |
+
2025-03-04 14:59:31,612 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_2.jpg_r1_c1.png
|
5606 |
+
2025-03-04 14:59:34,174 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_2.jpg_r2_c0.png
|
5607 |
+
2025-03-04 14:59:35,585 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_2.jpg_r3_c0.png
|
5608 |
+
2025-03-04 14:59:36,908 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_2.jpg_r4_c0.png
|
5609 |
+
2025-03-04 14:59:38,024 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_2.jpg_r5_c0.png
|
5610 |
+
2025-03-04 14:59:38,783 [INFO] __main__ - Processing table image: /topic-extraction/img_3.jpg, columns=three
|
5611 |
+
2025-03-04 14:59:41,887 [WARNING] __main__ - Cell image not found: /tmp/tmp9jfrqv6f.jpg_rows/row_0/col_0.png
|
5612 |
+
2025-03-04 14:59:41,887 [WARNING] __main__ - Cell image not found: /tmp/tmp9jfrqv6f.jpg_rows/row_0/col_1.png
|
5613 |
+
2025-03-04 14:59:42,148 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_3.jpg_r1_c0.png
|
5614 |
+
2025-03-04 14:59:43,551 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_3.jpg_r1_c1.png
|
5615 |
+
2025-03-04 14:59:45,241 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_3.jpg_r2_c0.png
|
5616 |
+
2025-03-04 14:59:46,499 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_3.jpg_r3_c0.png
|
5617 |
+
2025-03-04 14:59:47,500 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_3.jpg_r4_c0.png
|
5618 |
+
2025-03-04 14:59:48,309 [INFO] __main__ - Processing table image: /topic-extraction/img_4.jpg, columns=three
|
5619 |
+
2025-03-04 14:59:51,311 [WARNING] __main__ - Cell image not found: /tmp/tmpbrv43l7_.jpg_rows/row_0/col_0.png
|
5620 |
+
2025-03-04 14:59:51,311 [WARNING] __main__ - Cell image not found: /tmp/tmpbrv43l7_.jpg_rows/row_0/col_1.png
|
5621 |
+
2025-03-04 14:59:51,311 [WARNING] __main__ - Cell image not found: /tmp/tmpbrv43l7_.jpg_rows/row_1/col_0.png
|
5622 |
+
2025-03-04 14:59:51,311 [WARNING] __main__ - Cell image not found: /tmp/tmpbrv43l7_.jpg_rows/row_1/col_1.png
|
5623 |
+
2025-03-04 14:59:51,579 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_4.jpg_r2_c0.png
|
5624 |
+
2025-03-04 14:59:53,042 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_4.jpg_r2_c1.png
|
5625 |
+
2025-03-04 14:59:54,470 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_4.jpg_r3_c0.png
|
5626 |
+
2025-03-04 14:59:55,460 [INFO] __main__ - Processing table image: /topic-extraction/img_5.jpg, columns=three
|
5627 |
+
2025-03-04 14:59:58,401 [WARNING] __main__ - Cell image not found: /tmp/tmpdj8vn5v4.jpg_rows/row_0/col_0.png
|
5628 |
+
2025-03-04 14:59:58,401 [WARNING] __main__ - Cell image not found: /tmp/tmpdj8vn5v4.jpg_rows/row_0/col_1.png
|
5629 |
+
2025-03-04 14:59:58,659 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_5.jpg_r1_c0.png
|
5630 |
+
2025-03-04 15:00:00,036 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_5.jpg_r1_c1.png
|
5631 |
+
2025-03-04 15:00:01,411 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_5.jpg_r2_c0.png
|
5632 |
+
2025-03-04 15:00:02,747 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_5.jpg_r3_c0.png
|
5633 |
+
2025-03-04 15:00:03,656 [INFO] __main__ - Processing table image: /topic-extraction/img_6.jpg, columns=three
|
5634 |
+
2025-03-04 15:00:06,880 [WARNING] __main__ - Cell image not found: /tmp/tmpw4hdm_vm.jpg_rows/row_0/col_0.png
|
5635 |
+
2025-03-04 15:00:06,881 [WARNING] __main__ - Cell image not found: /tmp/tmpw4hdm_vm.jpg_rows/row_0/col_1.png
|
5636 |
+
2025-03-04 15:00:07,144 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_6.jpg_r1_c0.png
|
5637 |
+
2025-03-04 15:00:08,578 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_6.jpg_r1_c1.png
|
5638 |
+
2025-03-04 15:00:09,789 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_6.jpg_r2_c0.png
|
5639 |
+
2025-03-04 15:00:12,763 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_6.jpg_r2_c1.png
|
5640 |
+
2025-03-04 15:00:14,173 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_6.jpg_r3_c0.png
|
5641 |
+
2025-03-04 15:00:15,229 [INFO] __main__ - Processing table image: /topic-extraction/img_7.jpg, columns=three
|
5642 |
+
2025-03-04 15:00:18,336 [WARNING] __main__ - Cell image not found: /tmp/tmpier2e_jn.jpg_rows/row_0/col_0.png
|
5643 |
+
2025-03-04 15:00:18,336 [WARNING] __main__ - Cell image not found: /tmp/tmpier2e_jn.jpg_rows/row_0/col_1.png
|
5644 |
+
2025-03-04 15:00:18,607 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_7.jpg_r1_c0.png
|
5645 |
+
2025-03-04 15:00:19,964 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_7.jpg_r1_c1.png
|
5646 |
+
2025-03-04 15:00:21,423 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_7.jpg_r2_c0.png
|
5647 |
+
2025-03-04 15:00:22,514 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_7.jpg_r3_c0.png
|
5648 |
+
2025-03-04 15:00:23,784 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_7.jpg_r3_c1.png
|
5649 |
+
2025-03-04 15:00:25,023 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_7.jpg_r4_c0.png
|
5650 |
+
2025-03-04 15:00:26,014 [INFO] __main__ - Processing table image: /topic-extraction/img_8.jpg, columns=three
|
5651 |
+
2025-03-04 15:00:30,110 [WARNING] __main__ - Cell image not found: /tmp/tmpwzp5zo9m.jpg_rows/row_0/col_0.png
|
5652 |
+
2025-03-04 15:00:30,295 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_8.jpg_r0_c1.png
|
5653 |
+
2025-03-04 15:00:30,957 [WARNING] __main__ - Cell image not found: /tmp/tmpwzp5zo9m.jpg_rows/row_1/col_0.png
|
5654 |
+
2025-03-04 15:00:30,958 [WARNING] __main__ - Cell image not found: /tmp/tmpwzp5zo9m.jpg_rows/row_1/col_1.png
|
5655 |
+
2025-03-04 15:00:30,958 [WARNING] __main__ - Cell image not found: /tmp/tmpwzp5zo9m.jpg_rows/row_1/col_2.png
|
5656 |
+
2025-03-04 15:00:31,219 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_8.jpg_r2_c0.png
|
5657 |
+
2025-03-04 15:00:32,311 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_8.jpg_r2_c1.png
|
5658 |
+
2025-03-04 15:00:33,619 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_8.jpg_r2_c2.png
|
5659 |
+
2025-03-04 15:00:34,694 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_8.jpg_r3_c0.png
|
5660 |
+
2025-03-04 15:00:35,762 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_8.jpg_r3_c1.png
|
5661 |
+
2025-03-04 15:00:36,796 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_8.jpg_r4_c0.png
|
5662 |
+
2025-03-04 15:00:37,972 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_8.jpg_r4_c1.png
|
5663 |
+
2025-03-04 15:00:39,110 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_8.jpg_r5_c0.png
|
5664 |
+
2025-03-04 15:00:40,404 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_8.jpg_r5_c1.png
|
5665 |
+
2025-03-04 15:00:41,716 [ERROR] __main__ - Gemini subtopic identification error on attempt 0: Expecting value: line 1 column 1 (char 0)
|
5666 |
+
2025-03-04 15:00:43,487 [ERROR] __main__ - Gemini subtopic identification error on attempt 1: Expecting value: line 1 column 1 (char 0)
|
5667 |
+
2025-03-04 15:00:43,665 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_8.jpg_r6_c0.png
|
5668 |
+
2025-03-04 15:00:44,879 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_8.jpg_r6_c1.png
|
5669 |
+
2025-03-04 15:00:45,862 [ERROR] __main__ - Gemini subtopic identification error on attempt 0: Expecting value: line 1 column 1 (char 0)
|
5670 |
+
2025-03-04 15:00:47,337 [ERROR] __main__ - Gemini subtopic identification error on attempt 1: Expecting value: line 1 column 1 (char 0)
|
5671 |
+
2025-03-04 15:00:47,338 [WARNING] __main__ - Cell image not found: /tmp/tmpwzp5zo9m.jpg_rows/row_7/col_0.png
|
5672 |
+
2025-03-04 15:00:47,338 [INFO] __main__ - Processing table image: /topic-extraction/img_9.jpg, columns=three
|
5673 |
+
2025-03-04 15:00:50,852 [WARNING] __main__ - Cell image not found: /tmp/tmp45kbg898.jpg_rows/row_0/col_0.png
|
5674 |
+
2025-03-04 15:00:50,853 [WARNING] __main__ - Cell image not found: /tmp/tmp45kbg898.jpg_rows/row_0/col_1.png
|
5675 |
+
2025-03-04 15:00:50,853 [WARNING] __main__ - Cell image not found: /tmp/tmp45kbg898.jpg_rows/row_0/col_2.png
|
5676 |
+
2025-03-04 15:00:52,290 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_9.jpg_r1_c0.png
|
5677 |
+
2025-03-04 15:00:53,354 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_9.jpg_r1_c1.png
|
5678 |
+
2025-03-04 15:00:54,709 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_9.jpg_r1_c2.png
|
5679 |
+
2025-03-04 15:00:55,877 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_9.jpg_r2_c0.png
|
5680 |
+
2025-03-04 15:00:57,178 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_9.jpg_r2_c1.png
|
5681 |
+
2025-03-04 15:00:58,304 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_9.jpg_r3_c0.png
|
5682 |
+
2025-03-04 15:00:59,735 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_9.jpg_r3_c1.png
|
5683 |
+
2025-03-04 15:01:00,944 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_9.jpg_r4_c0.png
|
5684 |
+
2025-03-04 15:01:02,239 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_9.jpg_r4_c1.png
|
5685 |
+
2025-03-04 15:01:03,416 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_9.jpg_r5_c0.png
|
5686 |
+
2025-03-04 15:01:04,618 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_9.jpg_r5_c1.png
|
5687 |
+
2025-03-04 15:01:05,434 [INFO] __main__ - Processing table image: /topic-extraction/img_10.jpg, columns=three
|
5688 |
+
2025-03-04 15:01:08,588 [WARNING] __main__ - Cell image not found: /tmp/tmpqskyhmda.jpg_rows/row_0/col_0.png
|
5689 |
+
2025-03-04 15:01:08,588 [WARNING] __main__ - Cell image not found: /tmp/tmpqskyhmda.jpg_rows/row_0/col_1.png
|
5690 |
+
2025-03-04 15:01:08,855 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_10.jpg_r1_c0.png
|
5691 |
+
2025-03-04 15:01:10,100 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_10.jpg_r1_c1.png
|
5692 |
+
2025-03-04 15:01:11,458 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_10.jpg_r2_c0.png
|
5693 |
+
2025-03-04 15:01:13,002 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_10.jpg_r3_c0.png
|
5694 |
+
2025-03-04 15:01:14,421 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_10.jpg_r4_c0.png
|
5695 |
+
2025-03-04 15:01:15,795 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_10.jpg_r5_c0.png
|
5696 |
+
2025-03-04 15:01:16,778 [INFO] __main__ - Processing table image: /topic-extraction/img_11.jpg, columns=two
|
5697 |
+
2025-03-04 15:01:19,849 [WARNING] __main__ - Cell image not found: /tmp/tmpragajvqv.jpg_rows/row_0/col_0.png
|
5698 |
+
2025-03-04 15:01:20,292 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_11.jpg_r1_c0.png
|
5699 |
+
2025-03-04 15:01:21,681 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_11.jpg_r2_c0.png
|
5700 |
+
2025-03-04 15:01:23,001 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_11.jpg_r3_c0.png
|
5701 |
+
2025-03-04 15:01:24,256 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_11.jpg_r4_c0.png
|
5702 |
+
2025-03-04 15:01:25,614 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_11.jpg_r5_c0.png
|
5703 |
+
2025-03-04 15:01:26,879 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_11.jpg_r6_c0.png
|
5704 |
+
2025-03-04 15:01:28,027 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_11.jpg_r7_c0.png
|
5705 |
+
2025-03-04 15:01:28,867 [INFO] __main__ - Processing table image: /topic-extraction/img_12.jpg, columns=three
|
5706 |
+
2025-03-04 15:01:31,707 [WARNING] __main__ - Cell image not found: /tmp/tmptajrb9oq.jpg_rows/row_0/col_0.png
|
5707 |
+
2025-03-04 15:01:31,708 [WARNING] __main__ - Cell image not found: /tmp/tmptajrb9oq.jpg_rows/row_0/col_1.png
|
5708 |
+
2025-03-04 15:01:31,708 [WARNING] __main__ - Cell image not found: /tmp/tmptajrb9oq.jpg_rows/row_1/col_0.png
|
5709 |
+
2025-03-04 15:01:31,708 [WARNING] __main__ - Cell image not found: /tmp/tmptajrb9oq.jpg_rows/row_1/col_1.png
|
5710 |
+
2025-03-04 15:01:31,968 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_12.jpg_r2_c0.png
|
5711 |
+
2025-03-04 15:01:33,379 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_12.jpg_r2_c1.png
|
5712 |
+
2025-03-04 15:01:34,597 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_12.jpg_r3_c0.png
|
5713 |
+
2025-03-04 15:01:35,923 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_12.jpg_r3_c1.png
|
5714 |
+
2025-03-04 15:01:37,229 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_12.jpg_r4_c0.png
|
5715 |
+
2025-03-04 15:01:38,254 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_12.jpg_r5_c0.png
|
5716 |
+
2025-03-04 15:01:39,166 [INFO] __main__ - Processing table image: /topic-extraction/img_13.jpg, columns=three
|
5717 |
+
2025-03-04 15:01:42,003 [WARNING] __main__ - Cell image not found: /tmp/tmpzd8rmysx.jpg_rows/row_0/col_0.png
|
5718 |
+
2025-03-04 15:01:42,004 [WARNING] __main__ - Cell image not found: /tmp/tmpzd8rmysx.jpg_rows/row_0/col_1.png
|
5719 |
+
2025-03-04 15:01:42,004 [WARNING] __main__ - Cell image not found: /tmp/tmpzd8rmysx.jpg_rows/row_1/col_0.png
|
5720 |
+
2025-03-04 15:01:42,004 [WARNING] __main__ - Cell image not found: /tmp/tmpzd8rmysx.jpg_rows/row_1/col_1.png
|
5721 |
+
2025-03-04 15:01:42,258 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_13.jpg_r2_c0.png
|
5722 |
+
2025-03-04 15:01:43,581 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_13.jpg_r2_c1.png
|
5723 |
+
2025-03-04 15:01:44,840 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_13.jpg_r3_c0.png
|
5724 |
+
2025-03-04 15:01:46,192 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_13.jpg_r4_c0.png
|
5725 |
+
2025-03-04 15:01:47,564 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_13.jpg_r5_c0.png
|
5726 |
+
2025-03-04 15:01:48,735 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_13.jpg_r6_c0.png
|
5727 |
+
2025-03-04 15:01:49,480 [INFO] __main__ - Processing table image: /topic-extraction/img_14.jpg, columns=three
|
5728 |
+
2025-03-04 15:01:53,309 [WARNING] __main__ - Cell image not found: /tmp/tmp6agbobyu.jpg_rows/row_0/col_0.png
|
5729 |
+
2025-03-04 15:01:53,310 [WARNING] __main__ - Cell image not found: /tmp/tmp6agbobyu.jpg_rows/row_0/col_1.png
|
5730 |
+
2025-03-04 15:01:53,583 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_14.jpg_r1_c0.png
|
5731 |
+
2025-03-04 15:01:54,959 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_14.jpg_r1_c1.png
|
5732 |
+
2025-03-04 15:01:56,286 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_14.jpg_r2_c0.png
|
5733 |
+
2025-03-04 15:01:57,618 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_14.jpg_r3_c0.png
|
5734 |
+
2025-03-04 15:01:58,711 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_14.jpg_r4_c0.png
|
5735 |
+
2025-03-04 15:01:59,972 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_14.jpg_r4_c1.png
|
5736 |
+
2025-03-04 15:02:01,443 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_14.jpg_r5_c0.png
|
5737 |
+
2025-03-04 15:02:02,711 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_14.jpg_r6_c0.png
|
5738 |
+
2025-03-04 15:02:03,674 [INFO] __main__ - Processing table image: /topic-extraction/img_15.jpg, columns=three
|
5739 |
+
2025-03-04 15:02:06,780 [WARNING] __main__ - Cell image not found: /tmp/tmp3lbuxp25.jpg_rows/row_0/col_0.png
|
5740 |
+
2025-03-04 15:02:06,781 [WARNING] __main__ - Cell image not found: /tmp/tmp3lbuxp25.jpg_rows/row_0/col_1.png
|
5741 |
+
2025-03-04 15:02:07,040 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_15.jpg_r1_c0.png
|
5742 |
+
2025-03-04 15:02:08,455 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_15.jpg_r1_c1.png
|
5743 |
+
2025-03-04 15:02:09,838 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_15.jpg_r2_c0.png
|
5744 |
+
2025-03-04 15:02:11,221 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_15.jpg_r3_c0.png
|
5745 |
+
2025-03-04 15:02:12,570 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_15.jpg_r4_c0.png
|
5746 |
+
2025-03-04 15:02:13,800 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_15.jpg_r5_c0.png
|
5747 |
+
2025-03-04 15:02:14,741 [INFO] __main__ - Processing table image: /topic-extraction/img_16.jpg, columns=three
|
5748 |
+
2025-03-04 15:02:18,051 [WARNING] __main__ - Cell image not found: /tmp/tmpqve047e1.jpg_rows/row_0/col_0.png
|
5749 |
+
2025-03-04 15:02:18,051 [WARNING] __main__ - Cell image not found: /tmp/tmpqve047e1.jpg_rows/row_0/col_1.png
|
5750 |
+
2025-03-04 15:02:18,051 [WARNING] __main__ - Cell image not found: /tmp/tmpqve047e1.jpg_rows/row_1/col_0.png
|
5751 |
+
2025-03-04 15:02:18,052 [WARNING] __main__ - Cell image not found: /tmp/tmpqve047e1.jpg_rows/row_1/col_1.png
|
5752 |
+
2025-03-04 15:02:18,310 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_16.jpg_r2_c0.png
|
5753 |
+
2025-03-04 15:02:19,484 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_16.jpg_r2_c1.png
|
5754 |
+
2025-03-04 15:02:20,750 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_16.jpg_r3_c0.png
|
5755 |
+
2025-03-04 15:02:21,962 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_16.jpg_r4_c0.png
|
5756 |
+
2025-03-04 15:02:23,279 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_16.jpg_r4_c1.png
|
5757 |
+
2025-03-04 15:02:24,677 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_16.jpg_r5_c0.png
|
5758 |
+
2025-03-04 15:02:25,990 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_16.jpg_r6_c0.png
|
5759 |
+
2025-03-04 15:02:27,144 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_16.jpg_r7_c0.png
|
5760 |
+
2025-03-04 15:02:27,953 [INFO] __main__ - Processing table image: /topic-extraction/img_17.jpg, columns=three
|
5761 |
+
2025-03-04 15:02:31,142 [WARNING] __main__ - Cell image not found: /tmp/tmp580zpmu1.jpg_rows/row_0/col_0.png
|
5762 |
+
2025-03-04 15:02:31,142 [WARNING] __main__ - Cell image not found: /tmp/tmp580zpmu1.jpg_rows/row_0/col_1.png
|
5763 |
+
2025-03-04 15:02:31,397 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_17.jpg_r1_c0.png
|
5764 |
+
2025-03-04 15:02:32,685 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_17.jpg_r1_c1.png
|
5765 |
+
2025-03-04 15:02:34,235 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_17.jpg_r2_c0.png
|
5766 |
+
2025-03-04 15:02:35,330 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_17.jpg_r3_c0.png
|
5767 |
+
2025-03-04 15:02:36,635 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_17.jpg_r3_c1.png
|
5768 |
+
2025-03-04 15:02:37,985 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_17.jpg_r4_c0.png
|
5769 |
+
2025-03-04 15:02:39,401 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_17.jpg_r5_c0.png
|
5770 |
+
2025-03-04 15:02:40,763 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_17.jpg_r6_c0.png
|
5771 |
+
2025-03-04 15:02:41,985 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_17.jpg_r7_c0.png
|
5772 |
+
2025-03-04 15:02:42,875 [INFO] __main__ - Processing table image: /topic-extraction/img_18.jpg, columns=three
|
5773 |
+
2025-03-04 15:02:43,771 [WARNING] __main__ - Cell image not found: /tmp/tmpccm4skpd.jpg_rows/row_0/col_0.png
|
5774 |
+
2025-03-04 15:02:43,772 [WARNING] __main__ - Cell image not found: /tmp/tmpccm4skpd.jpg_rows/row_0/col_1.png
|
5775 |
+
2025-03-04 15:02:43,772 [WARNING] __main__ - Cell image not found: /tmp/tmpccm4skpd.jpg_rows/row_1/col_0.png
|
5776 |
+
2025-03-04 15:02:43,772 [WARNING] __main__ - Cell image not found: /tmp/tmpccm4skpd.jpg_rows/row_1/col_1.png
|
5777 |
+
2025-03-04 15:02:44,032 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_18.jpg_r2_c0.png
|
5778 |
+
2025-03-04 15:02:45,366 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_18.jpg_r2_c1.png
|
5779 |
+
2025-03-04 15:02:46,585 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_18.jpg_r3_c0.png
|
5780 |
+
2025-03-04 15:02:47,559 [INFO] __main__ - Processing table image: /topic-extraction/img_19.jpg, columns=three
|
5781 |
+
2025-03-04 15:02:50,123 [WARNING] __main__ - Cell image not found: /tmp/tmpclhr29f1.jpg_rows/row_0/col_0.png
|
5782 |
+
2025-03-04 15:02:50,124 [WARNING] __main__ - Cell image not found: /tmp/tmpclhr29f1.jpg_rows/row_0/col_1.png
|
5783 |
+
2025-03-04 15:02:50,124 [WARNING] __main__ - Cell image not found: /tmp/tmpclhr29f1.jpg_rows/row_1/col_0.png
|
5784 |
+
2025-03-04 15:02:50,124 [WARNING] __main__ - Cell image not found: /tmp/tmpclhr29f1.jpg_rows/row_1/col_1.png
|
5785 |
+
2025-03-04 15:02:50,378 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_19.jpg_r2_c0.png
|
5786 |
+
2025-03-04 15:02:51,859 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_19.jpg_r2_c1.png
|
5787 |
+
2025-03-04 15:02:53,257 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_19.jpg_r3_c0.png
|
5788 |
+
2025-03-04 15:02:54,584 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_19.jpg_r3_c1.png
|
5789 |
+
2025-03-04 15:02:55,736 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_19.jpg_r4_c0.png
|
5790 |
+
2025-03-04 15:02:56,672 [INFO] __main__ - Processing table image: /topic-extraction/img_20.jpg, columns=three
|
5791 |
+
2025-03-04 15:03:00,454 [WARNING] __main__ - Cell image not found: /tmp/tmptx9dz9xc.jpg_rows/row_0/col_0.png
|
5792 |
+
2025-03-04 15:03:00,454 [WARNING] __main__ - Cell image not found: /tmp/tmptx9dz9xc.jpg_rows/row_0/col_1.png
|
5793 |
+
2025-03-04 15:03:00,737 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_20.jpg_r1_c0.png
|
5794 |
+
2025-03-04 15:03:02,337 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_20.jpg_r1_c1.png
|
5795 |
+
2025-03-04 15:03:03,839 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_20.jpg_r2_c0.png
|
5796 |
+
2025-03-04 15:03:04,889 [INFO] __main__ - Processing table image: /topic-extraction/img_21.jpg, columns=three
|
5797 |
+
2025-03-04 15:03:08,043 [WARNING] __main__ - Cell image not found: /tmp/tmp18_5p4lj.jpg_rows/row_0/col_0.png
|
5798 |
+
2025-03-04 15:03:08,044 [WARNING] __main__ - Cell image not found: /tmp/tmp18_5p4lj.jpg_rows/row_0/col_1.png
|
5799 |
+
2025-03-04 15:03:08,322 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_21.jpg_r1_c0.png
|
5800 |
+
2025-03-04 15:03:09,913 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_21.jpg_r1_c1.png
|
5801 |
+
2025-03-04 15:03:11,063 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_21.jpg_r2_c0.png
|
5802 |
+
2025-03-04 15:03:12,387 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_21.jpg_r2_c1.png
|
5803 |
+
2025-03-04 15:03:13,743 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_21.jpg_r3_c0.png
|
5804 |
+
2025-03-04 15:03:14,671 [INFO] __main__ - Processing table image: /topic-extraction/img_22.jpg, columns=three
|
5805 |
+
2025-03-04 15:03:17,999 [WARNING] __main__ - Cell image not found: /tmp/tmppc_cs35e.jpg_rows/row_0/col_0.png
|
5806 |
+
2025-03-04 15:03:18,000 [WARNING] __main__ - Cell image not found: /tmp/tmppc_cs35e.jpg_rows/row_0/col_1.png
|
5807 |
+
2025-03-04 15:03:18,271 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_22.jpg_r1_c0.png
|
5808 |
+
2025-03-04 15:03:19,493 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_22.jpg_r1_c1.png
|
5809 |
+
2025-03-04 15:03:20,669 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_22.jpg_r2_c0.png
|
5810 |
+
2025-03-04 15:03:22,038 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_22.jpg_r2_c1.png
|
5811 |
+
2025-03-04 15:03:23,431 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_22.jpg_r3_c0.png
|
5812 |
+
2025-03-04 15:03:24,490 [WARNING] __main__ - Cell image not found: /tmp/tmppc_cs35e.jpg_rows/row_4/col_0.png
|
5813 |
+
2025-03-04 15:03:24,491 [INFO] __main__ - Processing table image: /topic-extraction/img_23.jpg, columns=three
|
5814 |
+
2025-03-04 15:03:27,293 [WARNING] __main__ - Cell image not found: /tmp/tmpk98o_fpp.jpg_rows/row_0/col_0.png
|
5815 |
+
2025-03-04 15:03:27,294 [WARNING] __main__ - Cell image not found: /tmp/tmpk98o_fpp.jpg_rows/row_0/col_1.png
|
5816 |
+
2025-03-04 15:03:27,553 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_23.jpg_r1_c0.png
|
5817 |
+
2025-03-04 15:03:28,769 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_23.jpg_r1_c1.png
|
5818 |
+
2025-03-04 15:03:29,940 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_23.jpg_r2_c0.png
|
5819 |
+
2025-03-04 15:03:31,452 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_23.jpg_r2_c1.png
|
5820 |
+
2025-03-04 15:03:32,738 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_23.jpg_r3_c0.png
|
5821 |
+
2025-03-04 15:03:33,643 [INFO] __main__ - Processing table image: /topic-extraction/img_24.jpg, columns=three
|
5822 |
+
2025-03-04 15:03:36,892 [WARNING] __main__ - Cell image not found: /tmp/tmpsdjidh_w.jpg_rows/row_0/col_0.png
|
5823 |
+
2025-03-04 15:03:36,892 [WARNING] __main__ - Cell image not found: /tmp/tmpsdjidh_w.jpg_rows/row_0/col_1.png
|
5824 |
+
2025-03-04 15:03:36,892 [WARNING] __main__ - Cell image not found: /tmp/tmpsdjidh_w.jpg_rows/row_1/col_0.png
|
5825 |
+
2025-03-04 15:03:36,892 [WARNING] __main__ - Cell image not found: /tmp/tmpsdjidh_w.jpg_rows/row_1/col_1.png
|
5826 |
+
2025-03-04 15:03:37,188 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_24.jpg_r2_c0.png
|
5827 |
+
2025-03-04 15:03:38,642 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_24.jpg_r2_c1.png
|
5828 |
+
2025-03-04 15:03:40,017 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_24.jpg_r3_c0.png
|
5829 |
+
2025-03-04 15:03:41,095 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_24.jpg_r4_c0.png
|
5830 |
+
2025-03-04 15:03:42,514 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_24.jpg_r4_c1.png
|
5831 |
+
2025-03-04 15:03:43,481 [INFO] __main__ - Processing table image: /topic-extraction/img_25.jpg, columns=two
|
5832 |
+
2025-03-04 15:03:46,397 [WARNING] __main__ - Cell image not found: /tmp/tmpt9roe876.jpg_rows/row_0/col_0.png
|
5833 |
+
2025-03-04 15:03:46,809 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_25.jpg_r1_c0.png
|
5834 |
+
2025-03-04 15:03:48,153 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_25.jpg_r2_c0.png
|
5835 |
+
2025-03-04 15:03:49,855 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_25.jpg_r3_c0.png
|
5836 |
+
2025-03-04 15:03:51,232 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_25.jpg_r4_c0.png
|
5837 |
+
2025-03-04 15:03:52,577 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_25.jpg_r5_c0.png
|
5838 |
+
2025-03-04 15:03:53,542 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_25.jpg_r6_c0.png
|
5839 |
+
2025-03-04 15:03:54,702 [INFO] __main__ - Processing table image: /topic-extraction/img_26.jpg, columns=three
|
5840 |
+
2025-03-04 15:03:57,292 [WARNING] __main__ - Cell image not found: /tmp/tmpkt4w7cqg.jpg_rows/row_0/col_0.png
|
5841 |
+
2025-03-04 15:03:57,292 [WARNING] __main__ - Cell image not found: /tmp/tmpkt4w7cqg.jpg_rows/row_0/col_1.png
|
5842 |
+
2025-03-04 15:03:57,547 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_26.jpg_r1_c0.png
|
5843 |
+
2025-03-04 15:03:58,694 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_26.jpg_r1_c1.png
|
5844 |
+
2025-03-04 15:04:00,096 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_26.jpg_r2_c0.png
|
5845 |
+
2025-03-04 15:04:01,892 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_26.jpg_r3_c0.png
|
5846 |
+
2025-03-04 15:04:03,198 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_26.jpg_r4_c0.png
|
5847 |
+
2025-03-04 15:04:04,066 [INFO] __main__ - Processing table image: /topic-extraction/img_27.jpg, columns=three
|
5848 |
+
2025-03-04 15:04:06,633 [WARNING] __main__ - Cell image not found: /tmp/tmp1z8ov49i.jpg_rows/row_0/col_0.png
|
5849 |
+
2025-03-04 15:04:06,633 [WARNING] __main__ - Cell image not found: /tmp/tmp1z8ov49i.jpg_rows/row_0/col_1.png
|
5850 |
+
2025-03-04 15:04:06,892 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_27.jpg_r1_c0.png
|
5851 |
+
2025-03-04 15:04:08,314 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_27.jpg_r1_c1.png
|
5852 |
+
2025-03-04 15:04:09,655 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_27.jpg_r2_c0.png
|
5853 |
+
2025-03-04 15:04:10,910 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_27.jpg_r3_c0.png
|
5854 |
+
2025-03-04 15:04:12,042 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_27.jpg_r4_c0.png
|
5855 |
+
2025-03-04 15:04:13,234 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_27.jpg_r4_c1.png
|
5856 |
+
2025-03-04 15:04:14,345 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_27.jpg_r5_c0.png
|
5857 |
+
2025-03-04 15:04:15,180 [INFO] __main__ - Processing table image: /topic-extraction/img_28.jpg, columns=three
|
5858 |
+
2025-03-04 15:04:18,179 [WARNING] __main__ - Cell image not found: /tmp/tmpsij1nmfi.jpg_rows/row_0/col_0.png
|
5859 |
+
2025-03-04 15:04:18,179 [WARNING] __main__ - Cell image not found: /tmp/tmpsij1nmfi.jpg_rows/row_0/col_1.png
|
5860 |
+
2025-03-04 15:04:18,363 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_28.jpg_r1_c0.png
|
5861 |
+
2025-03-04 15:04:19,871 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_28.jpg_r1_c1.png
|
5862 |
+
2025-03-04 15:04:21,379 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_28.jpg_r2_c0.png
|
5863 |
+
2025-03-04 15:04:23,137 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_28.jpg_r2_c1.png
|
5864 |
+
2025-03-04 15:04:24,801 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_28.jpg_r3_c0.png
|
5865 |
+
2025-03-04 15:04:26,569 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_28.jpg_r3_c1.png
|
5866 |
+
2025-03-04 15:04:28,289 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_28.jpg_r4_c0.png
|
5867 |
+
2025-03-04 15:04:29,718 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_28.jpg_r4_c1.png
|
5868 |
+
2025-03-04 15:04:31,009 [INFO] __main__ - Uploaded to S3: /topic-extraction/cells/img_28.jpg_r5_c0.png
|
5869 |
+
2025-03-04 15:04:31,836 [INFO] __main__ - Final subtopics JSON saved locally at /home/user/app/pearson_json/subtopics.json
|
5870 |
+
2025-03-04 15:04:32,192 [INFO] __main__ - GPU memory cleaned up.
|
5871 |
+
2025-03-04 15:04:32,199 [INFO] __main__ - Processing completed successfully.
|