update
Browse files
worker.py
CHANGED
@@ -6,174 +6,121 @@ import threading
|
|
6 |
import multiprocessing
|
7 |
from concurrent.futures import ThreadPoolExecutor
|
8 |
import pika
|
|
|
9 |
|
10 |
from mineru_single import Processor
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
"body": out_body
|
72 |
-
}
|
73 |
-
|
74 |
-
return json.dumps(final_json, ensure_ascii=False), final_json
|
75 |
-
|
76 |
-
def callback(ch, method, properties, body):
|
77 |
-
"""
|
78 |
-
This function is invoked for each incoming RabbitMQ message.
|
79 |
-
"""
|
80 |
-
thread_id = threading.current_thread().name
|
81 |
-
headers = properties.headers or {}
|
82 |
-
|
83 |
-
print(f"[Worker {thread_id}] Received message: {body}, headers: {headers}")
|
84 |
-
|
85 |
-
# If the header "process" is "topic_extraction", we run our pipeline
|
86 |
-
if headers.get("process") == "topic_extraction":
|
87 |
-
raw_text_outputs, parsed_json_outputs = run_pipeline(body)
|
88 |
-
# Do something with the result, e.g. print or store in DB
|
89 |
-
print(f"[Worker {thread_id}] Pipeline result:\n{raw_text_outputs}")
|
90 |
-
else:
|
91 |
-
# Fallback if "process" is something else
|
92 |
-
print(f"[Worker {thread_id}] Unknown process, sleeping 10s.")
|
93 |
-
time.sleep(10)
|
94 |
-
print("[Worker] Done")
|
95 |
-
|
96 |
-
def worker(channel):
|
97 |
-
try:
|
98 |
-
channel.start_consuming()
|
99 |
-
except Exception as e:
|
100 |
-
print(f"[Worker] Error: {e}")
|
101 |
-
|
102 |
-
def connect_to_rabbitmq():
|
103 |
-
rabbit_url = os.getenv("RABBITMQ_URL", "amqp://guest:guest@localhost:5672/")
|
104 |
-
connection = pika.BlockingConnection(pika.URLParameters(rabbit_url))
|
105 |
-
channel = connection.channel()
|
106 |
-
|
107 |
-
# Declare the queue
|
108 |
-
channel.queue_declare(queue="ml_server", durable=True)
|
109 |
-
|
110 |
-
# Limit messages per worker
|
111 |
-
channel.basic_qos(prefetch_count=1)
|
112 |
-
|
113 |
-
# auto_ack=True for simplicity, else you must ack manually
|
114 |
-
channel.basic_consume(
|
115 |
-
queue="ml_server",
|
116 |
-
on_message_callback=callback,
|
117 |
-
auto_ack=True
|
118 |
-
)
|
119 |
-
return connection, channel
|
120 |
-
|
121 |
-
def main():
|
122 |
-
"""
|
123 |
-
Main entry: starts multiple worker threads to consume from the queue.
|
124 |
-
"""
|
125 |
-
num_workers = 2 # hard code for now
|
126 |
-
print(f"Starting {num_workers} workers")
|
127 |
-
|
128 |
-
with ThreadPoolExecutor(max_workers=num_workers) as executor:
|
129 |
-
for _ in range(num_workers):
|
130 |
-
connection, channel = connect_to_rabbitmq()
|
131 |
-
executor.submit(worker, channel)
|
132 |
-
|
133 |
-
if __name__ == "__main__":
|
134 |
-
"""
|
135 |
-
If run directly, we also publish a test message, then start the workers.
|
136 |
-
"""
|
137 |
-
rabbit_url = os.getenv("RABBITMQ_URL", "amqp://guest:guest@localhost:5672/")
|
138 |
-
connection = pika.BlockingConnection(pika.URLParameters(rabbit_url))
|
139 |
-
channel = connection.channel()
|
140 |
-
channel.queue_declare(queue="ml_server", durable=True)
|
141 |
-
|
142 |
-
sample_message = {
|
143 |
-
"headers": {
|
144 |
-
"request_type": "process_files",
|
145 |
-
"request_id": "abc123"
|
146 |
-
},
|
147 |
-
"body": {
|
148 |
-
"input_files": [
|
149 |
-
{
|
150 |
-
"key": "file1",
|
151 |
-
"url": "https://example.com/file1.pdf",
|
152 |
-
"type": "mark_scheme"
|
153 |
-
},
|
154 |
-
{
|
155 |
-
"key": "file2",
|
156 |
-
"url": "https://example.com/file2.pdf",
|
157 |
-
"type": "question"
|
158 |
-
}
|
159 |
-
],
|
160 |
-
"topics": [
|
161 |
-
{
|
162 |
-
"title": "Algebra",
|
163 |
-
"id": 123
|
164 |
-
}
|
165 |
-
]
|
166 |
}
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
)
|
176 |
-
|
177 |
-
connection.close()
|
178 |
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import multiprocessing
|
7 |
from concurrent.futures import ThreadPoolExecutor
|
8 |
import pika
|
9 |
+
from typing import Tuple, Dict, Any
|
10 |
|
11 |
from mineru_single import Processor
|
12 |
|
13 |
+
class MessageProcessor:
|
14 |
+
def __init__(self):
|
15 |
+
self.processor = Processor()
|
16 |
+
|
17 |
+
def process_message(self, body_bytes: bytes) -> Tuple[str, Dict[str, Any]]:
|
18 |
+
"""Process incoming message and return processed results"""
|
19 |
+
body_str = body_bytes.decode("utf-8")
|
20 |
+
data = json.loads(body_str)
|
21 |
+
|
22 |
+
headers = data.get("headers", {})
|
23 |
+
request_type = headers.get("request_type", "")
|
24 |
+
request_id = headers.get("request_id", "")
|
25 |
+
body = data.get("body", {})
|
26 |
+
|
27 |
+
if request_type != "process_files":
|
28 |
+
return "No processing done", data
|
29 |
+
|
30 |
+
input_files = body.get("input_files", [])
|
31 |
+
topics = body.get("topics", [])
|
32 |
+
|
33 |
+
urls, file_key_map = self._extract_urls_and_keys(input_files)
|
34 |
+
batch_results = self.processor.process_batch(urls)
|
35 |
+
md_context = self._create_markdown_context(batch_results, file_key_map)
|
36 |
+
|
37 |
+
final_json = self._create_response_json(request_id, input_files, topics, md_context)
|
38 |
+
return json.dumps(final_json, ensure_ascii=False), final_json
|
39 |
+
|
40 |
+
def _extract_urls_and_keys(self, input_files: list) -> Tuple[list, dict]:
|
41 |
+
"""Extract URLs and create file key mapping"""
|
42 |
+
urls = []
|
43 |
+
file_key_map = {}
|
44 |
+
for f in input_files:
|
45 |
+
key = f.get("key", "")
|
46 |
+
url = f.get("url", "")
|
47 |
+
urls.append(url)
|
48 |
+
file_key_map[url] = key
|
49 |
+
return urls, file_key_map
|
50 |
+
|
51 |
+
def _create_markdown_context(self, batch_results: dict, file_key_map: dict) -> list:
|
52 |
+
"""Create markdown context from batch results"""
|
53 |
+
md_context = []
|
54 |
+
for url, md_content in batch_results.items():
|
55 |
+
key = file_key_map.get(url, "")
|
56 |
+
md_context.append({"key": key, "body": md_content})
|
57 |
+
return md_context
|
58 |
+
|
59 |
+
def _create_response_json(self, request_id: str, input_files: list,
|
60 |
+
topics: list, md_context: list) -> dict:
|
61 |
+
"""Create the final response JSON"""
|
62 |
+
return {
|
63 |
+
"headers": {
|
64 |
+
"request_type": "question_extraction_update_from_gpu_server",
|
65 |
+
"request_id": request_id
|
66 |
+
},
|
67 |
+
"body": {
|
68 |
+
"input_files": input_files,
|
69 |
+
"topics": topics,
|
70 |
+
"md_context": md_context
|
71 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
}
|
73 |
+
|
74 |
+
class RabbitMQWorker:
|
75 |
+
def __init__(self, num_workers: int = 1):
|
76 |
+
self.num_workers = num_workers
|
77 |
+
self.message_processor = MessageProcessor()
|
78 |
+
|
79 |
+
def callback(self, ch, method, properties, body):
|
80 |
+
"""Handle incoming RabbitMQ messages"""
|
81 |
+
thread_id = threading.current_thread().name
|
82 |
+
headers = properties.headers or {}
|
83 |
+
|
84 |
+
print(f"[Worker {thread_id}] Received message: {body}, headers: {headers}")
|
85 |
+
|
86 |
+
if headers.get("process") == "topic_extraction":
|
87 |
+
raw_text_outputs, parsed_json_outputs = self.message_processor.process_message(body)
|
88 |
+
print(f"[Worker {thread_id}] Pipeline result:\n{raw_text_outputs}")
|
89 |
+
else:
|
90 |
+
print(f"[Worker {thread_id}] Unknown process, sleeping 10s.")
|
91 |
+
time.sleep(10)
|
92 |
+
print("[Worker] Done")
|
93 |
+
|
94 |
+
def worker(self, channel):
|
95 |
+
"""Worker process to consume messages"""
|
96 |
+
try:
|
97 |
+
channel.start_consuming()
|
98 |
+
except Exception as e:
|
99 |
+
print(f"[Worker] Error: {e}")
|
100 |
+
|
101 |
+
def connect_to_rabbitmq(self):
|
102 |
+
"""Establish connection to RabbitMQ"""
|
103 |
+
rabbit_url = os.getenv("RABBITMQ_URL", "amqp://guest:guest@localhost:5672/")
|
104 |
+
connection = pika.BlockingConnection(pika.URLParameters(rabbit_url))
|
105 |
+
channel = connection.channel()
|
106 |
+
|
107 |
+
channel.queue_declare(queue="ml_server", durable=True)
|
108 |
+
channel.basic_qos(prefetch_count=1)
|
109 |
+
channel.basic_consume(
|
110 |
+
queue="ml_server",
|
111 |
+
on_message_callback=self.callback,
|
112 |
+
auto_ack=True
|
113 |
)
|
114 |
+
return connection, channel
|
|
|
115 |
|
116 |
+
def start(self):
|
117 |
+
"""Start the worker threads"""
|
118 |
+
print(f"Starting {self.num_workers} workers")
|
119 |
+
with ThreadPoolExecutor(max_workers=self.num_workers) as executor:
|
120 |
+
for _ in range(self.num_workers):
|
121 |
+
connection, channel = self.connect_to_rabbitmq()
|
122 |
+
executor.submit(self.worker, channel)
|
123 |
+
|
124 |
+
def main():
|
125 |
+
worker = RabbitMQWorker()
|
126 |
+
worker.start()
|