diff --git a/__pycache__/mineru_single.cpython-310.pyc b/__pycache__/mineru_single.cpython-310.pyc index dce279428f3afb41c1662e175ef1ea8f6b0b1673..2b17167e1e23fd245d4fb5200d08b19e48d64a8f 100644 Binary files a/__pycache__/mineru_single.cpython-310.pyc and b/__pycache__/mineru_single.cpython-310.pyc differ diff --git a/app.py b/app.py index 1d3a436c5ca661899477d9dcb802289ac7072074..6e9196bd1c6a67bfc624bb40d138b87398ec785e 100755 --- a/app.py +++ b/app.py @@ -5,14 +5,9 @@ import logging import uvicorn from fastapi import FastAPI, File, UploadFile, Header, HTTPException from fastapi.middleware.cors import CORSMiddleware +from mineru_single import Processor -# This ensures our models are downloaded and config is set before anything -# Alternatively you can do this in a "startup" event handler -os.system("python download_models_hf.py") - -from mineru_single import to_markdown -# Or if you want single-file approach, from miner_single import to_markdown - +processor = Processor() app = FastAPI() logging.basicConfig(level=logging.INFO) @@ -25,10 +20,6 @@ app.add_middleware( allow_headers=["*"], # Allows all headers ) -INBOX_DIR = "./inbox" -OUTPUT_DIR = "./output" -os.makedirs(INBOX_DIR, exist_ok=True) -os.makedirs(OUTPUT_DIR, exist_ok=True) @app.get("/") async def root(): @@ -37,7 +28,7 @@ async def root(): @app.post("/process") async def process_pdf( - file: UploadFile = File(...), + file_url: str, x_api_key: str = Header(None, alias="X-API-Key") ): # Get the secret key from environment variable @@ -49,12 +40,8 @@ async def process_pdf( if x_api_key != api_key: raise HTTPException(status_code=401, detail="Invalid API key") - file_path = os.path.join(INBOX_DIR, file.filename) - with open(file_path, "wb") as out_file: - shutil.copyfileobj(file.file, out_file) - # Process the file and wait for completion - markdown_text = to_markdown(file_path) + markdown_text = processor.process(file_url) return { "message": "Processing completed", diff --git a/app_gradio.py b/app_gradio.py deleted file mode 100644 index 2c05af03b7fbba317f13b2e52556a0c83b1c269c..0000000000000000000000000000000000000000 --- a/app_gradio.py +++ /dev/null @@ -1,252 +0,0 @@ -# Copyright (c) Opendatalab. All rights reserved. - -import base64 -import json -import os -import time -import zipfile -from pathlib import Path -import re -import uuid -import pymupdf - -# os.system('pip install -U magic-pdf==0.10.5') -os.system('pip uninstall -y magic-pdf') -os.system('pip install git+https://github.com/opendatalab/MinerU.git@dev') -# os.system('pip install git+https://github.com/myhloli/Magic-PDF.git@dev') - -os.system('wget https://github.com/opendatalab/MinerU/raw/dev/scripts/download_models_hf.py -O download_models_hf.py') -os.system('python download_models_hf.py') - -with open('/home/user/magic-pdf.json', 'r') as file: - data = json.load(file) - -data['device-mode'] = "cuda" -if os.getenv('apikey'): - data['llm-aided-config']['title_aided']['api_key'] = os.getenv('apikey') - data['llm-aided-config']['title_aided']['enable'] = True - -with open('/home/user/magic-pdf.json', 'w') as file: - json.dump(data, file, indent=4) - -os.system('cp -r paddleocr /home/user/.paddleocr') -from gradio_pdf import PDF - -import gradio as gr -from loguru import logger - -from magic_pdf.data.data_reader_writer import FileBasedDataReader -from magic_pdf.libs.hash_utils import compute_sha256 -from magic_pdf.tools.common import do_parse, prepare_env - - -def read_fn(path): - disk_rw = FileBasedDataReader(os.path.dirname(path)) - return disk_rw.read(os.path.basename(path)) - - -def parse_pdf(doc_path, output_dir, end_page_id, is_ocr, layout_mode, formula_enable, table_enable, language): - os.makedirs(output_dir, exist_ok=True) - - try: - file_name = f"{str(Path(doc_path).stem)}_{time.time()}" - pdf_data = read_fn(doc_path) - if is_ocr: - parse_method = "ocr" - else: - parse_method = "auto" - local_image_dir, local_md_dir = prepare_env(output_dir, file_name, parse_method) - do_parse( - output_dir, - file_name, - pdf_data, - [], - parse_method, - False, - end_page_id=end_page_id, - layout_model=layout_mode, - formula_enable=formula_enable, - table_enable=table_enable, - lang=language, - f_dump_orig_pdf=False, - ) - return local_md_dir, file_name - except Exception as e: - logger.exception(e) - - -def compress_directory_to_zip(directory_path, output_zip_path): - """ - 压缩指定目录到一个 ZIP 文件。 - - :param directory_path: 要压缩的目录路径 - :param output_zip_path: 输出的 ZIP 文件路径 - """ - try: - with zipfile.ZipFile(output_zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: - - # 遍历目录中的所有文件和子目录 - for root, dirs, files in os.walk(directory_path): - for file in files: - # 构建完整的文件路径 - file_path = os.path.join(root, file) - # 计算相对路径 - arcname = os.path.relpath(file_path, directory_path) - # 添加文件到 ZIP 文件 - zipf.write(file_path, arcname) - return 0 - except Exception as e: - logger.exception(e) - return -1 - - -def image_to_base64(image_path): - with open(image_path, "rb") as image_file: - return base64.b64encode(image_file.read()).decode('utf-8') - - -def replace_image_with_base64(markdown_text, image_dir_path): - # 匹配Markdown中的图片标签 - pattern = r'\!\[(?:[^\]]*)\]\(([^)]+)\)' - - # 替换图片链接 - def replace(match): - relative_path = match.group(1) - full_path = os.path.join(image_dir_path, relative_path) - base64_image = image_to_base64(full_path) - return f"![{relative_path}](data:image/jpeg;base64,{base64_image})" - - # 应用替换 - return re.sub(pattern, replace, markdown_text) - - -def to_markdown(file_path, end_pages, is_ocr, layout_mode, formula_enable, table_enable, language): - file_path = to_pdf(file_path) - if end_pages > 20: - end_pages = 20 - # 获取识别的md文件以及压缩包文件路径 - local_md_dir, file_name = parse_pdf(file_path, './output', end_pages - 1, is_ocr, - layout_mode, formula_enable, table_enable, language) - archive_zip_path = os.path.join("./output", compute_sha256(local_md_dir) + ".zip") - zip_archive_success = compress_directory_to_zip(local_md_dir, archive_zip_path) - if zip_archive_success == 0: - logger.info("压缩成功") - else: - logger.error("压缩失败") - md_path = os.path.join(local_md_dir, file_name + ".md") - with open(md_path, 'r', encoding='utf-8') as f: - txt_content = f.read() - md_content = replace_image_with_base64(txt_content, local_md_dir) - # 返回转换后的PDF路径 - new_pdf_path = os.path.join(local_md_dir, file_name + "_layout.pdf") - - return md_content, txt_content, archive_zip_path, new_pdf_path - - -latex_delimiters = [{"left": "$$", "right": "$$", "display": True}, - {"left": '$', "right": '$', "display": False}] - - -def init_model(): - from magic_pdf.model.doc_analyze_by_custom_model import ModelSingleton - try: - model_manager = ModelSingleton() - txt_model = model_manager.get_model(False, False) - logger.info(f"txt_model init final") - ocr_model = model_manager.get_model(True, False) - logger.info(f"ocr_model init final") - return 0 - except Exception as e: - logger.exception(e) - return -1 - - -model_init = init_model() -logger.info(f"model_init: {model_init}") - - -with open("header.html", "r") as file: - header = file.read() - - -latin_lang = [ - 'af', 'az', 'bs', 'cs', 'cy', 'da', 'de', 'es', 'et', 'fr', 'ga', 'hr', - 'hu', 'id', 'is', 'it', 'ku', 'la', 'lt', 'lv', 'mi', 'ms', 'mt', 'nl', - 'no', 'oc', 'pi', 'pl', 'pt', 'ro', 'rs_latin', 'sk', 'sl', 'sq', 'sv', - 'sw', 'tl', 'tr', 'uz', 'vi', 'french', 'german' -] -arabic_lang = ['ar', 'fa', 'ug', 'ur'] -cyrillic_lang = [ - 'ru', 'rs_cyrillic', 'be', 'bg', 'uk', 'mn', 'abq', 'ady', 'kbd', 'ava', - 'dar', 'inh', 'che', 'lbe', 'lez', 'tab' -] -devanagari_lang = [ - 'hi', 'mr', 'ne', 'bh', 'mai', 'ang', 'bho', 'mah', 'sck', 'new', 'gom', - 'sa', 'bgc' -] -other_lang = ['ch', 'en', 'korean', 'japan', 'chinese_cht', 'ta', 'te', 'ka'] - -all_lang = ['', 'auto'] -all_lang.extend([*other_lang, *latin_lang, *arabic_lang, *cyrillic_lang, *devanagari_lang]) - - -def to_pdf(file_path): - with pymupdf.open(file_path) as f: - if f.is_pdf: - return file_path - else: - pdf_bytes = f.convert_to_pdf() - # 将pdfbytes 写入到uuid.pdf中 - # 生成唯一的文件名 - unique_filename = f"{uuid.uuid4()}.pdf" - - # 构建完整的文件路径 - tmp_file_path = os.path.join(os.path.dirname(file_path), unique_filename) - - # 将字节数据写入文件 - with open(tmp_file_path, 'wb') as tmp_pdf_file: - tmp_pdf_file.write(pdf_bytes) - - return tmp_file_path - - -if __name__ == "__main__": - with gr.Blocks() as demo: - gr.HTML(header) - with gr.Row(): - with gr.Column(variant='panel', scale=5): - file = gr.File(label="Please upload a PDF or image", file_types=[".pdf", ".png", ".jpeg", ".jpg"]) - max_pages = gr.Slider(1, 20, 10, step=1, label='Max convert pages') - with gr.Row(): - layout_mode = gr.Dropdown(["layoutlmv3", "doclayout_yolo"], label="Layout model", value="doclayout_yolo") - language = gr.Dropdown(all_lang, label="Language", value='auto') - with gr.Row(): - formula_enable = gr.Checkbox(label="Enable formula recognition", value=True) - is_ocr = gr.Checkbox(label="Force enable OCR", value=False) - table_enable = gr.Checkbox(label="Enable table recognition(test)", value=True) - with gr.Row(): - change_bu = gr.Button("Convert") - clear_bu = gr.ClearButton(value="Clear") - pdf_show = PDF(label='PDF preview', interactive=False, visible=True, height=800) - with gr.Accordion("Examples:"): - example_root = os.path.join(os.path.dirname(__file__), "examples") - gr.Examples( - examples=[os.path.join(example_root, _) for _ in os.listdir(example_root) if - _.endswith("pdf")], - inputs=file - ) - - with gr.Column(variant='panel', scale=5): - output_file = gr.File(label="convert result", interactive=False) - with gr.Tabs(): - with gr.Tab("Markdown rendering"): - md = gr.Markdown(label="Markdown rendering", height=1100, show_copy_button=True, - latex_delimiters=latex_delimiters, line_breaks=True) - with gr.Tab("Markdown text"): - md_text = gr.TextArea(lines=45, show_copy_button=True) - file.change(fn=to_pdf, inputs=file, outputs=pdf_show) - change_bu.click(fn=to_markdown, inputs=[file, max_pages, is_ocr, layout_mode, formula_enable, table_enable, language], - outputs=[md, md_text, output_file, pdf_show], api_name=False) - clear_bu.add([file, md, pdf_show, md_text, output_file, is_ocr]) - - demo.launch(ssr_mode=True) \ No newline at end of file diff --git a/examples/2list_1table.pdf b/examples/2list_1table.pdf deleted file mode 100644 index a5646e384d974ef03f0107b12be9ab8bf92d94bd..0000000000000000000000000000000000000000 --- a/examples/2list_1table.pdf +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:06bb167c3ec35cee3cf7cc08f7743547349e105db20447e7b56fedd79e182fb1 -size 88358 diff --git a/examples/3list_1table.pdf b/examples/3list_1table.pdf deleted file mode 100644 index c349ee492f588f035c42b485eee4ac983e4e776d..0000000000000000000000000000000000000000 --- a/examples/3list_1table.pdf +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f1b6fa0d8112260f22eb8e6125e1e530dfd2962148ae9e9fefbce6cff1e53482 -size 109869 diff --git a/examples/academic_paper_formula.pdf b/examples/academic_paper_formula.pdf deleted file mode 100644 index 83568e8467ae3af544091b24d5893c5c144dde2d..0000000000000000000000000000000000000000 --- a/examples/academic_paper_formula.pdf +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2462f60cd8d20fe624b8d407dff307cb9d41aebcc7f52ba83e476049d5f731bf -size 42069 diff --git a/examples/academic_paper_img_formula.pdf b/examples/academic_paper_img_formula.pdf deleted file mode 100644 index f48f0c79c6afd233265b0fc36c9fea245e975ad8..0000000000000000000000000000000000000000 --- a/examples/academic_paper_img_formula.pdf +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f37c7207c47845fe49124c7e72baa88c94f375d922e102e8d834e76f153a45f5 -size 63165 diff --git a/examples/academic_paper_list.pdf b/examples/academic_paper_list.pdf deleted file mode 100644 index d6107cc82ab39decb9a89fdaf04ff4b7a8635b58..0000000000000000000000000000000000000000 --- a/examples/academic_paper_list.pdf +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4f790f93594f0c2daefc7dff093a7dcc3aa35cfe0f6d27f8b38785f7bf085ed4 -size 48208 diff --git a/examples/complex_layout.pdf b/examples/complex_layout.pdf deleted file mode 100644 index 65a162cc6bbb9bb083dc45605d131c58b4fbca81..0000000000000000000000000000000000000000 --- a/examples/complex_layout.pdf +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e07cf4723ae522b5fb678e5318a68c67a2fe7caeba99add878c86c5b6c77eed3 -size 824998 diff --git a/examples/complex_layout_para_split_list.pdf b/examples/complex_layout_para_split_list.pdf deleted file mode 100644 index 22f924c7a51ddb3db84f5083dff6656d6a500a52..0000000000000000000000000000000000000000 --- a/examples/complex_layout_para_split_list.pdf +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b80b4052a49f3f2eabcc3023f35e569facc206be611079b46171187968927457 -size 43137 diff --git a/examples/garbled_formula.pdf b/examples/garbled_formula.pdf deleted file mode 100644 index 431625112b39f12c45e1d44358b4733bf185c31f..0000000000000000000000000000000000000000 --- a/examples/garbled_formula.pdf +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e93230a179c1c62b3650da00da9b130dff5c9fae6159f36a0ab7adabf27e5d39 -size 216566 diff --git a/examples/magazine_complex_layout_images_list.pdf b/examples/magazine_complex_layout_images_list.pdf deleted file mode 100644 index ef1f006c765a8577b7ce79a8fc1f133be31d8955..0000000000000000000000000000000000000000 --- a/examples/magazine_complex_layout_images_list.pdf +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5b223f2bdc401b6e7d327e551e4bb92e5b03711eca8181b8506570b438e108f2 -size 391373 diff --git a/examples/scanned.pdf b/examples/scanned.pdf deleted file mode 100644 index 56ba7b2b7499f858adf5023b9e12f6a3f31a99a2..0000000000000000000000000000000000000000 --- a/examples/scanned.pdf +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:76a0ecf678a975d1e311fde18a7b5ef66389c66f483c89aab074c485f627f0ea -size 107464 diff --git a/mineru_single.py b/mineru_single.py index 520ab7eb647476f5e3b3c9f1cb8fa22a6544cb82..3c3d6560dfc32efc99c219e95138a5d571f0eb08 100644 --- a/mineru_single.py +++ b/mineru_single.py @@ -7,132 +7,95 @@ import re import uuid from pathlib import Path from loguru import logger - +import requests from magic_pdf.data.data_reader_writer import FileBasedDataReader from magic_pdf.tools.common import do_parse, prepare_env import pymupdf - - -def read_fn(path): - disk_rw = FileBasedDataReader(os.path.dirname(path)) - return disk_rw.read(os.path.basename(path)) - - -def parse_pdf( - doc_path, - output_dir, - end_page_id, - is_ocr, - layout_mode, - formula_enable, - table_enable, - language, -): - """ - Core function that calls MinerU to parse a single PDF into Markdown + images. - """ - os.makedirs(output_dir, exist_ok=True) - try: - file_name = f"{Path(doc_path).stem}_{int(time.time())}" - pdf_data = read_fn(doc_path) - - parse_method = "ocr" if is_ocr else "auto" - - local_image_dir, local_md_dir = prepare_env(output_dir, file_name, parse_method) - - do_parse( - output_dir, - file_name, - pdf_data, - [], - parse_method, - False, - end_page_id=end_page_id, # zero-based indexing - layout_model=layout_mode, - formula_enable=formula_enable, - table_enable=table_enable, - lang=language, - f_dump_orig_pdf=False, +from magic_pdf.data.data_reader_writer.base import DataWriter +from magic_pdf.data.dataset import PymuDocDataset +from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze +from magic_pdf.data.io.s3 import S3Writer + + +# def to_pdf(file_path): +# """ +# If input is not PDF, convert it to PDF using PyMuPDF +# """ +# with pymupdf.open(file_path) as doc: +# if doc.is_pdf: +# return file_path +# else: +# pdf_bytes = doc.convert_to_pdf() +# unique_filename = f"{uuid.uuid4()}.pdf" +# tmp_file_path = os.path.join(os.path.dirname(file_path), unique_filename) +# with open(tmp_file_path, "wb") as tmp_pdf_file: +# tmp_pdf_file.write(pdf_bytes) +# return tmp_file_path + + +class Processor: + def __init__(self): + self.s3_writer = S3Writer( + ak=os.getenv("S3_ACCESS_KEY"), + sk=os.getenv("S3_SECRET_KEY"), + bucket=os.getenv("S3_BUCKET_NAME"), + endpoint_url=os.getenv("S3_ENDPOINT"), ) - return local_md_dir, file_name - except Exception as e: - logger.exception(e) - raise - - -def image_to_base64(image_path): - with open(image_path, "rb") as image_file: - return base64.b64encode(image_file.read()).decode("utf-8") - - -def replace_image_with_base64(markdown_text, image_dir_path): - """ - Replaces local image references in the Markdown with base64-embedded images - """ - pattern = r'\!\[(?:[^\]]*)\]\(([^)]+)\)' - - def replace(match): - relative_path = match.group(1) - full_path = os.path.join(image_dir_path, relative_path) - base64_image = image_to_base64(full_path) - return f"![{relative_path}](data:image/jpeg;base64,{base64_image})" - - return re.sub(pattern, replace, markdown_text) - - -def to_pdf(file_path): - """ - If input is not PDF, convert it to PDF using PyMuPDF - """ - with pymupdf.open(file_path) as doc: - if doc.is_pdf: - return file_path + self.image_writer = ImageWriter(self.s3_writer) + + with open("/home/user/magic-pdf.json", "r") as f: + config = json.load(f) + self.layout_mode = config["layout-config"]["model"] + self.formula_enable = config["formula-config"]["enable"] + self.table_enable = config["table-config"]["enable"] + self.language = "en" + self.prefix = os.getenv("S3_ENDPOINT") + os.getenv("S3_BUCKET_NAME") + "/" + "document-extracts/" + self._init_model() + + def _init_model(self): + os.system('pip uninstall -y magic-pdf') + os.system('pip install git+https://github.com/opendatalab/MinerU.git@dev') + # os.system('pip install git+https://github.com/myhloli/Magic-PDF.git@dev') + + os.system('wget https://github.com/opendatalab/MinerU/raw/dev/scripts/download_models_hf.py -O download_models_hf.py') + os.system('python download_models_hf.py') + + def process(self, file_link: str, file_name: str = str(uuid.uuid4())): + print("Processing file") + response = requests.get(file_link) + if response.status_code != 200: + raise Exception(f"Failed to download file from {file_link}") + pdf_bytes = response.content + + dataset = PymuDocDataset(pdf_bytes) + inference = doc_analyze(dataset, ocr=True, lang=self.language, layout_model=self.layout_mode, formula_enable=self.formula_enable, table_enable=self.table_enable) + pipe_result = inference.pipe_ocr_mode(self.image_writer, lang=self.language) + md_content = pipe_result.get_markdown(self.prefix + file_name + "/") + return self.image_writer.remove_redundant_images(md_content) + + +class ImageWriter(DataWriter): + def __init__(self, s3_client: S3Writer): + self.s3_client = s3_client + self._redundant_images_paths = [] + + def _process_image(self, data: bytes) -> str: + # TODO: actually process image + return True + + def write(self, path: str, data: bytes) -> None: + # process image, if it is a vialbe image, upload it to s3, otherwise save the path to that image as redundant + if self._process_image(data): + self.s3_client.write(path, data) else: - pdf_bytes = doc.convert_to_pdf() - unique_filename = f"{uuid.uuid4()}.pdf" - tmp_file_path = os.path.join(os.path.dirname(file_path), unique_filename) - with open(tmp_file_path, "wb") as tmp_pdf_file: - tmp_pdf_file.write(pdf_bytes) - return tmp_file_path - - -def to_markdown( - file_path, - end_pages=None, - is_ocr=False, - layout_mode="doclayout_yolo", - formula_enable=True, - table_enable=True, - language="en", - output_dir="./output", -): - """ - High-level entry point to parse one PDF -> Markdown (plus images). - Returns the path to the final .md file with images embedded as base64. - """ - # Convert to PDF if needed - file_path = to_pdf(file_path) - - # If no end_page, read total from PyMuPDF - with pymupdf.open(file_path) as doc: - if end_pages is None: - end_pages = len(doc) - - local_md_dir, file_name = parse_pdf( - doc_path=file_path, - output_dir=output_dir, - end_page_id=end_pages - 1, - is_ocr=is_ocr, - layout_mode=layout_mode, - formula_enable=formula_enable, - table_enable=table_enable, - language=language, - ) - - md_path = os.path.join(local_md_dir, file_name + ".md") - with open(md_path, "r", encoding="utf-8") as f: - original_md_content = f.read() + self._redundant_images_paths.append(path) - md_content_with_embeds = replace_image_with_base64(original_md_content, local_md_dir) + def remove_redundant_images(self, md_content: str): + for path in self._redundant_images_paths: + md_content = md_content.replace(f"![]({path})", "") + return md_content - return md_content_with_embeds \ No newline at end of file +if __name__ == "__main__": + processor = Processor() + URL = "" + print(processor.process(URL)) \ No newline at end of file diff --git a/parallel_multiproc.py b/parallel_multiproc.py deleted file mode 100644 index dc301fee1947f65da6f9055d8607564a82e72b56..0000000000000000000000000000000000000000 --- a/parallel_multiproc.py +++ /dev/null @@ -1,57 +0,0 @@ -#!/usr/bin/env python3 -import os -import sys -import torch -import logging -import multiprocessing as mp - -from mineru_single import to_markdown - -logging.basicConfig(level=logging.INFO) - -def worker(worker_id, gpu_id, pdf_list, output_dir): - """ - Worker function: - 1) Assigns CUDA to this process (if available). - 2) Calls `to_markdown` for each file. - """ - os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id) - - for pdf_path in pdf_list: - try: - logging.info(f"Worker {worker_id}, GPU {gpu_id} -> {pdf_path}") - to_markdown( - file_path=pdf_path, - output_dir=output_dir - ) - except Exception as e: - logging.error(f"Worker {worker_id} error on {pdf_path}: {e}") - -def process_batch_in_parallel(pdf_paths, output_dir="./output", num_workers=2, num_gpus=1): - """ - Takes a list of PDF file paths, spawns `num_workers` processes, each processing a chunk. - """ - if not pdf_paths: - logging.info("No PDFs to process.") - return - - # chunk the pdf_paths - chunk_size = (len(pdf_paths) + num_workers - 1) // num_workers - processes = [] - - for worker_id in range(num_workers): - start_idx = worker_id * chunk_size - end_idx = start_idx + chunk_size - subset = pdf_paths[start_idx:end_idx] - if not subset: - break - - gpu_id = worker_id % num_gpus - p = mp.Process(target=worker, args=(worker_id, gpu_id, subset, output_dir)) - p.start() - processes.append(p) - - for p in processes: - p.join() - - logging.info("All parallel processing complete.") \ No newline at end of file diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/7192_2_June_2020_1739552314.md b/pdf_output/7192_2_June_2020_1739552314/auto/7192_2_June_2020_1739552314.md deleted file mode 100644 index 3859e0e9f95afa4db9e6e1776e29811e69c66e4e..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/7192_2_June_2020_1739552314.md +++ /dev/null @@ -1,794 +0,0 @@ -# A-level SOCIOLOGY - -Paper 2 Topics in Sociology - -Tuesday 2 June 2020 - -# Afternoon - -Time allowed: 2 hours - -# Materials - -For this paper you must have: an AQA 16-page answer book. - -# Instructions - -• Use black ink or black ball-point pen. -• Write the information required on the front of your answer book. The Paper Reference is 7192/2. -• Answer all questions from one topic in Section A and all questions from one topic in Section B. -• Do all rough work in your answer book. Cross through any work you do not want to be marked. - -# Information - -The marks for questions are shown in brackets. -• The maximum mark for this paper is 80. -Questions should be answered in continuous prose. You will be marked on your ability to: use good English organise information clearly use specialist vocabulary where appropriate. - -# Section A - -Choose one topic from this section and answer all the questions on that topic. - -# Topic A1 Culture and Identity - -Outline and explain two ways in which social class may have become less important in shaping identities. - -[10 marks] - -Read Item A below and answer the question that follows. - -# Item A - -Mass culture is usually seen as commercially produced by businesses for profit rather than being created by ordinary people or reflecting their experiences. Mass culture is also seen as oversimplified, requiring little thought or evaluation. - -Mass culture may prevent social change. - -Applying material from Item A, analyse two ways in which mass culture may prevent social change. - -[10 marks] - -Read Item B below and answer the question that follows. - -# Item B - -Feminist sociologists often emphasise the ways in which the socialisation process encourages people to conform to hegemonic masculine and feminine identities that reinforce patriarchy. - -However, other sociologists have argued that people actively construct their gender identities, and that gender identities have become much more fluid. - -Applying material from Item B and your knowledge, evaluate feminist views of the extent to which the socialisation process reinforces patriarchy. - -# Topic A2 Families and Households - -Outline and explain two ways in which changing childbearing patterns may have influenced gender roles and relationships within families and households. - -[10 marks] - -Read Item C below and answer the question that follows. - -# Item C - -Globalisation involves the growing inter-connectedness between countries through increased travel opportunities. It enables more freedom of choice in terms of lifestyles and personal relationships. - -Globalisation may influence families and households. - -Applying material from Item C, analyse two ways in which globalisation may influence families and households. - -[10 marks] - -Read Item D below and answer the question that follows. - -# Item D - -Some sociologists argue that UK society has become more child-centred. Children today are more privileged than they have ever been. There are a large range of laws and policies in place to protect them and there is an increasing emphasis now placed on children’s rights. - -However, other sociologists argue that the extent of child-centredness is exaggerated, and that childhood can be a negative experience for some children. - -Applying material from Item D and your knowledge, evaluate the view that UK society has become more child-centred. - -[20 marks] - -Turn over for the next question - -Turn over - -# Topic A3 Health - -Outline and explain two reasons for social class differences in consumer choices of health care. - -[10 marks] - -Read Item E below and answer the question that follows. - -# Item E - -Black and other minority ethnic groups in the UK are more likely than the majority to experience low incomes and live in disadvantaged areas. The cultural values of these groups often prioritise support from the family and community rather than outside support. - -There are inequalities between ethnic groups in their health chances. - -Applying material from Item E, analyse two reasons for inequalities between ethnic groups in their health chances. - -[10 marks] - -Read Item F below and answer the question that follows. - -# Item F - -Rates of mental illness vary between different social groups, such as those based on social class, gender and ethnicity. Some explanations of mental illness point to social issues such as racism, sexism, poor housing and poverty as contributing factors. - -Others argue that mental illness is a label applied to deviant behaviour. Mental illness is socially constructed through interpretations made by others. - -Applying material from Item F and your knowledge, evaluate sociological explanations of the differences in rates of mental illness between social groups. - -[20 marks] - -# Topic A4 Work, Poverty and Welfare - -Outline and explain two ways in which government policies have affected the distribution of income in the UK. - -[10 marks] - -Read Item G below and answer the question that follows. - -# Item G - -The values and attitudes of some members of the working class may lead to them accepting their position in society. Patriarchal values mean that females can be disadvantaged. - -Some social groups are more likely than others to experience poverty. - -Applying material from Item G, analyse two reasons why some social groups are more likely than others to experience poverty. - -[10 marks] - -Read Item H below and answer the question that follows. - -# Item H - -Worklessness affects retired people and those unable to work as well as unemployed people. People without work are more likely to be disadvantaged than those in work. They are excluded from some aspects of social life and their life chances are diminished. There are others who do not work because they have sufficient wealth. - -However, some sociologists argue that work is now less important as a source of identity and that worklessness has become less significant. - -Applying material from Item H and your knowledge, evaluate sociological explanations of the effects of worklessness on people’s lives and life chances. - -Turn over for the next question - -Turn over - -# Section B - -Choose one topic from this section and answer all the questions on that topic. - -# Topic B1 Beliefs in Society - -Outline and explain two reasons why women are more likely than men to participate in New Age movements. - -[10 marks] - -Read Item I below and answer the question that follows. - -# Item I - -Secularisation theory explains the decline in religious participation across parts of Europe, but it does not explain why religion continues to be popular in other parts of the world. It also fails to recognise that religion may be changing rather than declining. - -The extent of secularisation may have been exaggerated. - -Applying material from Item I, analyse two reasons why the extent of secularisation may have been exaggerated. - -[10 marks] - -Read Item J below and answer the question that follows. - -# Item J - -Some sociologists argue that religion acts as a force for social change. It can be used to challenge mainstream beliefs and values, and inspire protest against the existing social order. - -However, other sociologists suggest that the relationship between religion and social change is not straightforward and that religion can even prevent social change. - -Applying material from Item J and your knowledge, evaluate the view that religion acts as a force for social change. - -# Topic B2 Global Development - -Outline and explain two ways in which development can lead to demographic changes. [10 marks] - -Read Item K below and answer the question that follows. - -# Item K - -Development can lead to new ways for previously exploited groups to improve their situation. It can also cause powerful groups to feel threatened by changes and lead them to assert what are seen as traditional attitudes and practices. - -Development can affect gender inequalities. - -Applying material from Item K, analyse two ways in which development can affect gender inequalities. - -[10 marks] - -Read Item L below and answer the question that follows. - -# Item L - -According to some sociologists, aid is essential for development because it helps countries reach take-off and industrialise. - -However, other sociologists are critical of aid and point out that many countries receiving aid have made little progress. Others argue that the real purpose of aid is to ensure a free market system that creates underdevelopment. - -Applying material from Item L and your knowledge, evaluate the view that aid is essential for development. - -Turn over for the next question - -Turn over - -# Topic B3 The Media - -Outline and explain two ways in which new media may have affected the selection and presentation of news. - -[10 marks] - -Read Item M below and answer the question that follows. - -# Item M - -Media corporations have the power to produce images of lifestyles through which people form their identities. The wide reach of these corporations has led to local cultures becoming less important. - -Media corporations may contribute to a growth in global culture. - -Applying material from Item M, analyse two ways in which media corporations may contribute to a growth in global culture. - -[10 marks] - -Read Item N below and answer the question that follows. - -# Item N - -Some sociologists argue that audiences control media content through their choices as consumers. They claim that competition between media for audiences means that owners and companies have limited power over content. - -However, other sociologists argue that those who own and work in the media control the content. This means that the content can be biased and reflect dominant ideologies. - -Applying material from Item N and your knowledge, evaluate the view that the media reflect the views of their audiences. - -# Topic B4 Stratification and Differentiation - -Outline and explain two factors which may lead to some members of the working class achieving upward social mobility. - -[10 marks] - -Read Item O below and answer the question that follows. - -# Item O - -Sociologists have increasingly recognised age as a dimension of inequality. For example, young people do not have all the same rights that adults do. Many older people are no longer in paid employment. - -Age may affect an individual’s status. - -Applying material from Item O, analyse two ways in which age may affect an individual’s status. - -[10 marks] - -Read Item P below and answer the question that follows. - -# Item P - -Feminist sociologists argue that gender is the most important dimension of inequality today. This is despite some improvements in the social position of women. - -However, other sociologists see gender inequalities as natural and inevitable, or argue that other dimensions of inequality are more important. - -Applying material from Item P and your knowledge, evaluate the view that gender is the most important dimension of inequality today. - -# There are no questions printed on this page - -# There are no questions printed on this page - -# There are no questions printed on this page - -# Copyright information - -For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk. - -Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team. - -AQA - - -A-LEVEL -SOCIOLOGY -7192/2 -Paper 2 Topics in Sociology - -Mark scheme June 2020 - -Version: 1.0 Final Mark Scheme - -Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students’ responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students’ scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer. - -It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark schemes on the basis of one year’s document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper. - -Further copies of this mark scheme are available from aqa.org.uk - -# Copyright information - -AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre. - -Copyright $\circledcirc$ 2020 AQA and its licensors. All rights reserved. - -# Level of response marking instructions - -Level of response mark schemes are broken down into levels, each of which has a descriptor. The descriptor for the level shows the average performance for the level. There are marks in each level. - -Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as instructed) to show the qualities that are being looked for. You can then apply the mark scheme. - -# Step 1 Determine a level - -Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer. With practice and familiarity you will find that for better answers you will be able to quickly skip through the lower levels of the mark scheme. - -When assigning a level you should look at the overall quality of the answer and not look to pick holes in small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level and then use the variability of the response to help decide the mark within the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be placed in level 3 but be awarded a mark near the top of the level because of the level 4 content. - -# Step 2 Determine a mark - -Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate marks can help with this. The exemplar materials used during standardisation will help. There will be an answer in the standardising materials which will correspond with each level of the mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer with the example to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner’s mark on the example. - -You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate. - -Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be exhaustive and you must credit other valid points. Students do not have to cover all of the points mentioned in the Indicative content to reach the highest level of the mark scheme. - -An answer which contains nothing of relevance to the question must be awarded no marks. - -# Annotating Scripts - -Please use the following annotations: - -
eMarker-2 symbolUse of symbol
ANAnalysis (all questions)
APP]Application (for use of the item in 10 mark Analyse question answers)
AAO1 - knowledge and understanding e.g. sociological concepts, theories, names of sociologists
A02AO2 - application
A03AO3- analysisandevaluation
Correct/good point
EVALEvaluation
EGExample
creditUnderlining tool- use this or AO1 for concepts etc or for any point deserving
Incorrect
KUKnowledge and understanding
Unclear
Missing
NAQNot answering question
NRNo response (use e.g. if candidate has put question number in margin but
xampleTexinot written anything) Text box. Please include a brief text box comment for each question, and
other text boxes as appropriate. Red rectangle. Can be used for highlighting.
appropriate.
W1Way 1. Use in 10 mark analyse question answers for the first way (or factor, reason etc)identified
W2Way 2. Use in 10 mark analyse question answers for the second way (or factor, reason etc) identified
- -# Section A Topic A1 Culture and Identity - -
QuMarking guidanceTotal marks
- -
01Outline and explain two ways in which social class may have become less important in shaping identities.10
- -
MarksLevel Descriptors
8-10There will be two applications of relevant material, eg socialisation into class-based subcultures influencing values; middle class concepts of taste providing a sense of difference and superiority. There will be appropriate analysis, eg of the extent to which social class is important in
4-7shaping identities. Answers in this band will show a reasonable to good knowledge and understanding of one s s g s There will be one or two applications of relevant material, eg ways in which income and wealth enable or limit choices about lifestyle and consumption. There will be some basic analysis.
1-3question or the material. There will be limited focus on the question, eg a drift into discussion of identities in general.
0There will be little or no analysis. No relevant points.
- -# Indicative content - -Answers may include the following and/or other relevant points: - -• economic aspects of social class such as income and wealth -• cultural aspects of social class such as leisure activities, interests and tastes -• social and cultural capital and identities -• association of high culture with higher classes and mass/popular culture with working class • class differences in attitudes eg to the value of education -• decline of traditional working class identities -• class subcultures. - -
Sources may include the following or other relevant ones:
Bourdieu; Bradley; Carter and Coleman; Giddens and Diamond; Goldthorpe; Lash and Urry;
Mackintosh and Mooney; Marx; McKenzie et al; Murray; Palkulski and Waters; Roberts; Saunders;
Savage;Scott;Skeggs.
- -
QuMarking guidanceTotal marks
- -
02Applying material from Item A, analyse two ways in which mass culture may prevent social change.10
- -# Item A - -Mass culture is usually seen as commercially produced by businesses for profit rather than being created by ordinary people or reflecting their experiences. Mass culture is also seen as oversimplified, requiring little thought or evaluation. - -Mass culture may prevent social change. - -
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on businesses persuading people that want and need trivial products; mass culture promotes There will be appropriate analysis/evaluation of two ways eg the extent to which mass
4-7culture can educate and inform about important social issues. Answers in this band will show a basic to reasonable knowledge and understanding of one or two ways in which mass culture prevents social change. people less likely to challenge those in power.
1-3There will be some analysis/evaluation. Answers in this band will show limited knowledge and understanding of one or two ways in which mass culture prevents social change. There will be limited application of material from the item. Some material may be at a tangent to the question, eg there may be some drift into descriptive accounts of mass culture. There will be limited or no analysis/evaluation.
- -
0No relevant points.
- -
Sources may include the following or other relevant ones:
Adorno; Bourdieu; Giddens; Gramsci; Leavis; Livingstone; MacDonald; Marcuse; Strinati.
- -
QuMarking guidanceTotal marks
- -
03Applying material from Item B and your knowledge, evaluate feminist views of 20 the extent to which the socialisation process reinforces patriarchy.
- -# Item B - -Feminist sociologists often emphasise the ways in which the socialisation process encourages people to conform to hegemonic masculine and feminine identities that reinforce patriarchy. - -However, other sociologists have argued that people actively construct their gender identities, and that gender identities have become much more fluid. - -
MarksLevel Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on feminist views on how the socialisation process reinforces patriarchy. Sophisticated understanding of the question and of the presented material will be shown. Appropriate material will be applied accurately and with sensitivity to the issues raised by the question. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for example through comparing different theoretical perspectives on socialisation.Analysis wil
13-16show clear explanation. Appropriate conclusions will be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. Application of material is largely explicitly relevant to the question, though some material maybeinadequatelyfocused. Some limited explicit evaluation, eg discussion of different definitions of types of feminist
9-12presentedmaterial. Answers in this band will show largely accurate knowledge but limited range and depth, eg broadly accurate, if basic, account of some feminist views onhowthe socialisationprocess reinforces patriarchy. Understands some limited but significant aspects of the question; superficial understanding of the presented material.
- -
Applying listed material from the general topic area but with limited regard for its relevance to the issues raised by the question, or applying a narrow range of more relevant material. Evaluation will take the form of juxtaposition of competing positions or to one or two isolated
5-8simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question. Very limited or no evaluation. Attempts at analysis, if any, are thin and disjointed.
1-4Answers in this band will show very limited knowledge, eg one or two very insubstantial points about socialisation in general. Very little/no understanding of the question and of the presentedmaterial.
0No analysis or evaluation. No relevant points.
- -# Indicative content - -Concepts and issues such as the following may appear: - -agencies of socialisation; sex and gender; gender roles; gender codes; stereotype; hegemonic masculinity; hegemonic femininity; expressive and instrumental roles; manipulation; canalisation; appellations; heterosexuality; sexual orientation; hidden curriculum; ‘new man’; metrosexuals; crisis of masculinity; lads and ladettes. - -# Sources may include the following or other relevant ones: - -Billington et al; Coleman-Fountain; Collier; Connell; Connolly; de Beauvoir; Dorais; Jackson; Lees; -Mac an Ghaill; Mead; Mort; Oakley; Ortner; Taylor; Walby; Walter; Weeks; Wilkinson; Willis. - -Topic A2 Families and Households - - -
QuMarking guidanceTotal marks
- -
0410 influenced gender roles and relationships within families and households.
- -
MarksLevel Descriptors
8-10withinfamiliesandhouseholds. There will be two applications of relevant material, eg the increase in women remaining childfree influencing women's involvement in the labour market; how smaller families may
4-7Answers in this band will show a reasonable to good knowledge and understanding of one and relationshipswithinfamilies andhouseholds. There will be one or two applications of relevant material, eg changes in division of domestic labour. There will be some basic analysis.
1-3question or the material. There will be limited focus on the question, eg a drift into discussion of reasons for changing childbearing patterns. There will be little or no analysis.
0No relevant points.
- -# Indicative content - -Answers may include the following and/or other relevant points: - -decision making -power relationships -increase in women’s involvement in the labour market increase in joint conjugal roles -men taking on expressive role -financial control -dual shift/triple shift. - -
Sources may include the following or other relevant ones: Boulton; Braun, Vincent and Ball; Dex
and Warde; Duncome and Marsden; Ganley and Schechter; Gershuny; Laurie and Gershuny;
McRobbie; Pahl; Wardeand Hetherington.
- -
QuTotal Marking guidance marks
- -
05Applying material from Item C, analyse two ways in which globalisation may influencefamiliesandhouseholds.10
- -
ItemC
Globalisation involves the growing inter-connectedness between countries through increased travel opportunities. It enables more freedom of choice in terms of lifestyles and personal relationships.
Globalisation may influence families and households.
- -
MarksLevelDescriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on There will be two developed applications of material from the item, eg increase in migration may mean families live in different parts of the world; freedom of choice creating more complex family and household structures, such as divorce extended families, negotiated families.
4-7and choice over lifestyles/personal relationships in postmodern society. Answers in this band will show a basic to reasonable knowledge and understanding of one partners. Therewill besome analysis/evaluation.
1-3Answers in this band will show limited knowledge and understanding of one or two ways in which globalisation may influence families and households. There will be limited application of material from the item. Some material may be at a There will be limited or no analysis/evaluation.
0No relevant points.
- -
Sources may include the following or other relevant ones: Beck; Chambers; Cheal; Ehrenreich
and Hochschild; Einasdottir; Eriksen; Giddens; Morgan; Shutes; Smart; Stacey; Vertovec; Weeks; Weston.
- -
QuMarking guidanceTotal marks
- -
06Applying material from Item D and your knowledge, evaluate the view that UK society has become more child-centred.20
- -
ItemD
Some sociologists argue that UK society has become more child-centred. Children today are more privileged than they have ever been. There are a large range of laws and policies in place to protect them and there is an increasing emphasis now placed on children's rights.
However, other sociologists argue that the extent of child-centredness is exaggerated, and that
childhood canbe a negative experience for some children.
- -
MarksLevel Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of of the question and of the presented material will be shown. Appropriate material will be applied accurately and with sensitivity to the issues raised by the question. Analysisandevaluationwillbeexplicitandrelevant.Evaluationmaybedeveloped,for example through a discussion of the extent to which society hasbecome more child conclusions will be drawn.
13-16Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. Application of material is largely explicitly relevant to the question, though some material may be inadequately focused. Some limited explicit evaluation, eg discussion of inequalities between children based on
9-12some of the presented material. Answers in this band will show largely accurate knowledge but limited range and depth, eg more child-centred. Understands some limited but significant aspects of the question; superficial understanding of the presented material.
- -
Applying listed material from the general topic area but with limited regard for its relevance a o u e e o s a ssi Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
5-8Answers in this band will show limited undeveloped knowledge, eg two or three insubstantial points about childhood in general. Understands only limited aspects of the question; simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question.
1-4points about childhood in general. Very little/no understanding of the question and of the presented material. Significant errors and/or omissions in application of material.
0No analysis or evaluation. No relevant points.
- -# Indicative content - -Concepts and issues such as the following may appear; policies restricting child labour; exclusion of children from paid work; compulsory education; growth of children’s rights; declining family size; lower infant mortality rate; increased medical knowledge around child development; child protection and welfare policies; age patriarchy; child neglect and abuse; control over children’s space, time and bodies; information hierarchy; toxic childhood; disappearance of childhood; impact of divorce; march of progress; conflict view. - -Sources may include the following or other relevant ones: Ariés; Bhatti; Bonke; Brannen; -Cunningham; Firestone and Holt; Garber; Gittins; Howard; Jenks; Opie; Palmer; Pilcher; Postman; -Rees; Wagg; Womack. - -# Topic A3 Health - -
QuMarking guidanceTotal marks
- -
07Outline and explain two reasons for social class differences in consumer choices ofhealthcare.10
- -
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two reasons for differences between social classes in taking advantage of consumer choice in health care. There will be two applications of relevant material, eg social classes have different levels of access to the information needed to make informed choices; working class may place greater trust in the advice of professionals and not seek alternative views. There will be appropriate analysis, eg of different choices available within health care.
4-7Answers in this band will show a reasonable to good knowledge and understanding of one or two reasons for differences between social classes in taking advantage of consumer choice in health care. There will be one or two applications of relevant material, eg higher classes are able to afford private health care.
1-3There will be some basic analysis. question or the material. differencesinhealthcarechoices.
0There will be little or no analysis No relevant points.
- -# Indicative content - -Answers may include the following and/or other relevant points: - -• middle class are able to afford private care, medical tourism etc -• working class lack knowledge and expertise to make informed choices -• middle class have greater access to knowledge of available choices -• different levels of social and cultural capital -• availability of choices by region/location -class differences in attitudes to the construction of bodies and identities through consumption and lifestyle - -• different levels of trust in health professionals class differences in attitudes to complementary and alternative medicine. - -# Sources may include the following or other relevant ones: - -Cattrell; Conrad; Ernst; Giddens; Goldacre; Law; Lunt et al; Lyotard; Nettleton; Senior; Shaw et al; -Skountridaki; Stevenson et al; Swayne; Wilkinson and Pickett. - -
QuTotal Marking guidance marks
- -
08Applying material from Item E, analyse two reasons for inequalities between ethnic groups in their health chances.10
- -# Item E - -Black and other minority ethnic groups in the UK are more likely than the majority to experience low incomes and live in disadvantaged areas. The cultural values of these groups often prioritise support from the family and community rather than outside support. - -There are inequalities between ethnic groups and their health chances. - -
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on accessible healthcare services in deprived areas; some groups may think they should not seek healthcare until their condition is serious. There will be appropriate analysis/evaluation of two ways eg differences between minority ethnic groups.
4-7or two reasons for inequalities between ethnic groups in their health chances. There will be some successful application of material from the item, eg low income associatedwithpoordiet and unhealthylifestyle. There will be some analysis/evaluation.
1-3Answers in this band will show limited knowledge and understanding of one or two reasons for inequalities between ethnic groups in their health chances. There will be limited application of material from the item. Some material may be at a
- -
There will be limited or no analysis/evaluation.
ONo relevantpoints.
- -
Sources may include the following or other relevant ones:
Balarajan; Davey Smith et al; Moriarty; Nazroo; Nettleton; Parry et al; Sproston and Mindell; Wilkinson.
- -
QuMarking guidanceTotal marks
- -
09Applying material from Item F and your knowledge, evaluate sociological20
- -# Item F - -Rates of mental illness vary between different social groups, such as those based on social class, gender and ethnicity. Some explanations of mental illness point to social issues such as racism, sexism, poor housing and poverty as contributing factors. - -Others argue that mental illness is a label applied to deviant behaviour. Mental illness is socially constructed through interpretations made by others. - -
MarksLevelDescriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on sociological explanations of the differences in rates of mental illness between social groups. Sophisticated understanding of the question and of the presented materialwillbeshown. Appropriate material will be applied accurately and with sensitivity to the issues raised by the question. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for example through a debate between social realist and social constructionist models of
13-16Appropriate conclusionswill be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presented material. maybe inadequatelyfocused. presented material.
9-12Answers in this band will show largely accurate knowledge but limited range and depth, eg broadly accurate, if basic, account of labelling approaches to mental illness applied to different social groups. Understands some limited but significant aspects of the question; superficial understanding of the presented material. Applying listed material from the general topic area but with limited regard for its relevance o u e 'ob p ss
- -
Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
5-8Answers in this band will show limited undeveloped knowledge, eg two or three insubstantial points about mental illness and different social groups. Understands only n o s s of the question.
1-4Answers in this band will show very limited knowledge, eg one or two very insubstantial points about mental illness in general. Very little/no understanding of the question and of the presented material. Significant errors and/or omissions in application of material. No analysis or evaluation.
0No relevant points.
- -# Indicative content - -Concepts and issues such as the following may appear: - -biomedical approaches; social realist and structuralist approaches; interactionism; labelling; social constructionism; feminism; social class; gender; ethnicity; discrimination; stigma; spurious interaction; mortification of self; total institution; cognitive therapy. - -# Sources may include the following or other relevant ones: - -Appignanensi; Becker; Brown and Harris; Busfield; Chesler; Foucault; Goffman; Laing; Mackenzie et al; Mallet et al; Moncrieff; Morrison; Nazroo; Pickett et al; Rehman and Owen; Rosenhan; Scheff; Shaw and Ward; Szasz. - -Topic A4 Work, Poverty and Welfare - - -
QuTotal Marking guidance marks
- -
10Outline and explain two ways in which government policies have affected the distributionof income intheUK.10
- -
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two ways in which government policies have affected the distribution of income in the UK. There will be two applications of relevant material, eg stopping/reducing benefits has led to more poverty; taxation policies have reduced income of some groups more than others.
4-7distribution of income in theUK. Answers in this band will show a reasonable to good knowledge and understanding of one or two ways in which government policies have affected the distribution of income in the UK. There will be one or two applications of relevant material, eg welfare state policies have not led to redistribution of income.
1-3There will be some basic analysis. question or the material. There will be limited focus on the question, eg a drift into discussion of poverty in general.
0There will be little or no analysis. No relevant points.
- -# Indicative content - -Answers may include the following and/or other relevant points: - -• social democratic/welfare state policies intended to be redistributive -• New Right policies eg sanctioning, tackling alleged dependency culture -• means testing/selective benefits vs universal benefits -• wages policies e.g. minimum wage -• policies limiting the ability of trade unions to campaign for higher incomes for their members -• tax policies – progressive and regressive taxes, tax evasion and avoidance - -
Sources may include the following or other relevant ones:
- -
Abel-Smith and Townsend; Blackman; Craine; Davis and Moore; Foucault; Gans; Lister et al;
- -
QuMarking guidanceTotal
marks
- -
11Applying g material from Item G, analyse two reasons why some social groups aremore likely than others to experiencepoverty.10
- -
ItemG
The values and attitudes of some members of the working class may lead to them accepting their position in society. Patriarchal values mean that females can be disadvantaged.
- -
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on two reasons why some social groups are more likely than others to experience poverty. There will be two developed applications of material from the item, eg that fatalistic attitudes poverty; that patriarchal values lead to social arrangements such as the unequal distribution of caring roles, contributing to the feminisation of poverty. There will be appropriate analysis/evaluation of two ways eg the extent to which the
4-7Answers in this band will show a basic to reasonable knowledge and understanding of one There will be some successful application of material from the item,eg that economic circumstances explain poverty better than attitudes. There will be some analysis/evaluation.
1-3Answers in this band will show limited knowledge and understanding of one or two criticisms of cultural explanations of poverty. There will be limited application of material from the item. Some material may be at a tangent to the question, eg definitions of poverty.
0There will be limited or no analysis/evaluation No relevant points.
- -
Sources may include the following or other relevant ones:
- -
Baumberg, Bell and Gaffney; Blanden and Gibbons; Coates and Silburn; Field; Lewis; Marsland; Murray; Rutter and Madge; Shildrick et al.
- -
QuTotal Marking guidance marks
- -
12Applying material from Item H and your knowledge, evaluate sociological explanations of the effects of worklessness on people's lives and life chances.20
- -
ItemH
aspects of social life and their life chances are diminished. There are others who do not work because
theyhavesufficientwealth. However, some sociologists argue that work is now less important as a source of identity and that
worklessnesshasbecomelesssignificant.
- -
MarksLevel Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on sociological explanations of the significance of worklessness for people's lives and life chances. Sophisticated understanding of the question and of the presentedmaterialwillbeshown. the question. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for example throughthe debatesbetween different explanations of the relationshipbetween worklessness and people's lives and life chances (eg Marxism, postmodernism, feminism).
13-16Analysis will show clear explanation. Appropriate conclusions will be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. maybeinadequatelyfocused.
9-12Some limited explicit evaluation, eg discussion of the significance of worklessness for different life chances and/or some appropriate analysis, eg clear explanations of some of the presented material. Answers in this band will show largely accurate knowledge but limited range and depth, eg broadly accurate, if basic, account of some types of worklessness. Understands some
- -
material. Applying listed material from the general topic area but with limited regard for its relevance
5-8Answers in this band will show limited undeveloped knowledge, eg two or three insubstantial points about worklessness. Understands only limited aspects of the question; simplistic understandingof thepresentedmaterial. the question.
1-4points about worklessness in general. Very little/no understanding of the question and of the presentedmaterial. Significant errors and/or omissions in application of material.
0Noanalysisorevaluation. No relevant points.
- -# Indicative content - -Concepts and issues such as the following may appear: - -unemployment; underemployment; economically active; claimant count; retirement; disability; poverty; -labour market; NEETs; deindustrialisation; marginalisation; disengagement theory; stigmatisation; -stereotype; repression; social exclusion; consumer society; reserve army of labour; alienation; anomie. - -# Sources may include the following or other relevant ones: - -Bauman; Craine; Cumming and Henry; Dahrendorf; Dorling; Durkheim; Fagin and Little; Garrod; Gini; Gulliford et al; Harper; Hockey and James; MacDonald, Sheldrake and Furlong; Marx; Riach and Loretto. - -# Section B Topic B1 Beliefs in Society - -
QuMarking guidanceTotal marks
- -
13Outline and explain two reasons why women are more likely than men to participate in NewAge movements.10
- -
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two reasons There will be two applications of relevant material, eg women are more associated with gender roles encouraged by traditional religion. There will be appropriate analysis, eg the extent to which men may also participate in New Age movements.
4-7 s s movements. There will be one or two applications of relevant material, eg New Age movements appeal to expressive role of women rather than instrumental role of men. There will be some basic analysis.
1-3Answers in this band will show limited knowledge and little or no understanding of the question or the material. sects. Therewill be little or no analysis.
0No relevant points.
- -# Indicative content - -Answers may include the following and/or other relevant points: - -socialisation of women into expressive role -patriarchal gender roles within traditional religion – loss of faith in traditional religion -emphasis on personal experience -emphasis on autonomy and authenticity -women more likely to be in part-time employment/full-time carers -women closer to nature and cycle of life/death - -emphasis on celebrating nature and healing role of women higher status of traditional female qualities in New Age movements individual sphere of New Age movements. - -Sources may include the following or other relevant ones: Armstrong; Brown; Bruce; Davie; -Drane; El Saadawi; Greeley; Heelas; Heelas and Woodhead; Miller and Hoffman. - -
QuMarking guidanceTotal marks
- -
14Applying material from Item I, analyse two reasons why the extent of secularisation may have been exaggerated.10
- -
ItemI
Secularisation theory explains the decline in religious participation across parts of Europe, but it does not explain why religion continues to be popular in other parts of the world. It also fails to recognise
that religion may be changing rather than declining.
The extent of secularisation may have been exaggerated.
- -
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on There will be two developed applications of material from the item, eg high levels of religion in countries such as the USA linked to supply and demand and the diversity of beliefs and practices that are on offer; apparent decline of traditional religion but change in the way people practice, believing without belonging. There will be appropriate analysis/evaluation of two ways, eg religious diversity not always
4-7leading to higher levels of religion; extent of belief without belonging. Answers in this band will show a basic to reasonable knowledge and understanding of one There will be some successful application of material from the item, eg religious belief now changing to a more spiritual focus.
1-3There will be some analysis/evaluation. Answers in this band will show limited knowledge and understanding of one or two reasons There will be limited application of material from the item. Some material may be at a There will be limited or no analysis/evaluation.
0No relevant points.
- -
Sources may include the following or other relevant ones: Berger; Bruce; Davie; Day; Finke; Gill
and Lundegarde; Hadaway; Heelas and Woodhead; Hervieu-Leger; Lyon; Norris and Inglehart; Stark andBainbridge;Vasquez;VoasandCrockett.
- -
QuMarking guidanceTotal marks
- -
15Applying material from Item J and your knowledge, evaluate the view that religion acts as a force for social change.20
- -
ItemJ
Some sociologists argue that religion acts as a force for social change. It can be used to challenge mainstream beliefs and values, and inspire protest against the existing social order.
However, other sociologists suggest that the relationship between religion and social change is not straightforward and that religion can even prevent social change.
- -
MarksLevelDescriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of the question. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for
13-16Answers in this band will show largely accurate, broad or deep but incomplete knowledge. presentedmaterial. maybeinadequatelyfocused.
9-12broadly accurate, if basic, account of some aspects of religion acting as a force for social change. Understands some limited but significant aspects of the question; superficial understanding of the presented material. Applying listed material from the general topic area but with limited regard for its relevance Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
- -
5-8the question; simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question.
1-4points about religion in general. Very little/no understanding of the question and of the presentedmaterial. Significant errors and/or omissions in application of material. No analysis or evaluation.
0No relevant points.
- -# Indicative content - -Concepts and issues such as the following may appear: - -religion as an ideological resource; hegemony; counter hegemony; organic intellectuals; principle of hope; millenarian movements; cargo cults; Liberation Theology; religious feminism; religious fundamentalism; televangelism; the spirit of capitalism; religion as a conservative force; traditional beliefs and values; stabilising society; conservative beliefs; patriarchal ideology; bourgeois ideology. - -Sources may include the following or other relevant ones: Armstrong; Billings; Bruce; Brusco; -Casanova; Durkheim; El Saadawi; Gramsci; Maduro; Marx; Lowy; Weber; Woodhead; Worsley. - -# Topic B2 Global Development - -
QuMarking guidanceTotal marks
- -
16Outline and explain two ways in which development can lead to demographic changes.10
- -
MarksLevel Descriptors
8-10ways in which development can lead to demographic changes. There will be two applications of relevant material, eg development can lead to the
4-7Answers in this band will show a reasonable to good knowledge and understanding of one There will be one or two applications of relevant material, eg women may have fewer children.
1-3There will be some basic analysis Answers in this band will show limited knowledge and litle or no understanding of the questionor the material. There will be limited focus on the question, eg there may be some drift into discussion of demography in general.
0There will be little or no analysis. No relevant points.
- -# Indicative content - -Answers may include the following and/or other relevant points: - -• the demographic transition -falling birth rates falling mortality rates increase in life expectancy -lower fertility rates smaller family sizes changing age structure – ageing population increased migration. - -
Sources may include the following or other relevant ones:
Adamson; Chrispin and Jegede; Cohen and Kennedy; Eberstadt; Ehrlich; Harrison; Hewitt and Smith;
Kaplan;Malthus;Richards;Robeyetal;Rosling;Webster.
- -
QuTotal Marking guidance marks
- -
17Applying material from Item K, analyse two ways in which development can affect gender inequalities.10
- -
ItemK
Development can lead to new ways for previously exploited groups to improve their situation. It can also cause powerful groups tofeel threatened by changes and lead them toassert what are seen as traditionalattitudesandpractices.
Developmentcanaffectgenderinequalities
- -
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on to a backlash reasserting patriarchal values. There will be appropriate analysis/evaluation of two ways eg of the extent to which
4-7Answers in this band will show a basic to reasonable knowledge and understanding of one There will be some successful application of material from the item, eg education for girls has led to greater employment opportunities. Therewill be some analysis/evaluation
1-3Answers in this band will show limited knowledge and understanding of one or two ways in which development can affect gender inequalities. There will be limited application of material from the item. Some material may be at a tangent to the question, eg there may be some drift into accounts of inequalities in general.
0There will be limited or no analysis/evaluation. No relevant points.
- -
Sources may include the following or other relevant ones:
Boserup; Cohen and Kennedy; Ehrenreich and Hochschild; Foster-Carter; Hunt; Leonard; Mies; Pearson;Seager;Shiva;vanderGaag;VanZeijl.
- -
QuMarking guidanceTotal marks
- -
18Applying material from Item L and your knowledge, evaluate the view that aid is essentialfordevelopment.20
- -# Item L - -According to some sociologists, aid is essential for development because it helps countries reach take-off and industrialise. - -However, other sociologists are critical of aid and point out that many countries receiving aid have made little progress. Others argue that the real purpose of aid is to ensure a free market system that creates underdevelopment. - -
Marks Level Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on the view that aid is essential for development. Sophisticated the question. example through a debatebetween dependency and modernisation or other theories.
13-16Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. Application of material is largely explicitly relevant to the question, though some material maybeinadequatelyfocused.
9-12Answers in this band will show largely accurate knowledge but limited range and depth, eg broadly accurate, if basic, account of some aid projects. Understands some limited but significant aspects of the question; superficial understanding of the presented material.
- -
Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
5-8Answers in this band will show limited undeveloped knowledge, eg two or three insubstantial points about aid. Understands only limited aspects of the question; simplistic understanding of thepresented material. the question.
1-4Very limited or no evaluation. Attempts at analysis, if any, are thin and disjointed. points about development in general. Very little/no understanding of the question and of the presented material. Significant errors and/or omissions in application of material. No analysis or evaluation.
0No relevant points.
- -# Indicative content - -Concepts and issues such as the following may appear: - -ODA (Official Development Assistance); NGOs; World Bank and International Monetary Fund; -structural adjustment programmes; multilateral and bilateral aid; emergency aid and development aid; -tied aid and conditionality; grass roots development; dependency; modernisation; gender inequalities; -transparency and accountability; aid as imperialism; aid as business; debt; trade. - -# Sources may include the following or other relevant ones: - -Alibhai-Brown; Bauer; Calderisi; Collier; Easterley; Erixon; Hancock; Hayter; Moyo; Norberg; Riddell; -Sachs; Samura. - -# Topic B3 The Media - -
QuMarking guidanceTotal marks
- -
19Outline and explain two ways in which new media may have affected the selection and presentation of news.10
- -
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two ways in which There will be two applications of relevant material, eg citizen journalism enables members of the public to report and spread news stories; news media have to provide more immediacy through instantaneous coverage of events.
4-7There will be appropriate analysis, eg of ways new media change news values. Answers in this band will show a reasonable to good knowledge and understanding of one or There will be one or two applications of relevant material, eg traditional news media have become more accountable because of audience responses using new media.
1-3Therewill besomebasic analysis Answers in this band will show limited knowledge and little or no understanding of the question or the material. There will be limited focus on the question, eg a drift into discussions of media in general.
0There will be little or no analysis. No relevant points.
- -# Indicative content - -Answers may include the following and/or other relevant points: - -• proliferation of fake news stories, lack of regulation -• new media becoming the news eg a tweet by Trump -• changes in the traditional news flow cycle -• heightened accountability -• participatory culture – news producers and consumers no longer have separate roles • citizen journalism – citizens more able to contribute eg uploading video footage • wider range of sources and of opinion on news, easily available -• changes in news values eg greater emphasis on immediacy, celebrity. - -Sources may include the following or other relevant ones: Bivens; Boyle; Curran and Seaton; Dutton and Blank; Itzoe; Jenkins; MacKinnon; McNair; Philo. - -
QuTotal Marking guidance marks
- -
20Applying material from Item M, analyse two ways in which media corporations may contribute to a growth in global culture.10
- -
ItemM
Media corporations have the power to produce images of lifestyles through which people form their identities. The wide reach of these corporations has led to local cultures becoming less important.
Media corporations may contribute to a growth in global culture.
- -
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on There will be two developed applications of material from the item, eg Western/American media spread an ideology of consumerism so that people around the world aspire to the same ideas, values and products; global brands are promoted and recognised around the world, weakening local cultures. There will be appropriate analysis/evaluation of two ways eg the extent to which local cultures absorb and transform external influences.
4-7Answers in this band will show a basic to reasonable knowledge and understanding of one There will be some successful application of material from the item eg the same media productsareavailablearoundtheworld. There will be some analysis/evaluation.
1-3Answers in this band will show limited knowledge and understanding of one or two ways in There will be limited application of material from the item. Some material may be at a tangent to the question, eg there may be some drift into accounts of media effects. There will be limited or no analysis/evaluation.
0No relevant points.
- -
Sources may include the following or other relevant ones:
Bagdikian; Baudrillard; Compaine; Fenton; Flew; Herman and Chomsky; Kellner; Putnam; Rosenau;
Schiller; Sklair; Strinati; Thompson;Thussu.
- -
QuTotal Marking guidance marks
- -
21Applying material from Item N and your knowledge, evaluate the view that the mediareflect theviewsoftheiraudiences.20
- -
ItemN
Some sociologists argue that audiences control media content through their choices as consumers. They claim that competitionbetween media for audiences means that owners and companies have limitedpowerovercontent.
However, other sociologists argue that those who own and work in the media control the content. This means that the content can be biased and reflect dominant ideologies.
- -
MarksLevel Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on the view that the media reflect the views of their audiences. Sophisticated understanding of the question and of the presented material will be shown. Appropriate material will be applied accurately and with sensitivity to the issues raised by the question. Analysisandevaluationwillbeexplicitandrelevant.Evaluationmaybedeveloped,for the media and their audiences (eg Marxism, pluralism, feminisms). Analysis will show clear
13-16explanation. Appropriate conclusions will be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. Application of material is largely explicitly relevant to the question, though some material maybeinadequatelyfocused. Some limited explicit evaluation, eg discussion of audiences for different media and/or some
9-12broadly accurate, if basic, account of some explanations of the relationship between the media and their audiences. Understands some limited but significant aspects of the question; superficial understanding of the presented material. Applying listed material from the general topic area but with limited regard for its relevance to the issues raised by the question, or applying a narrow range of more relevant material.
- -
Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
5-8insubstantial points about media audiences. Understands only limited aspects of the question; simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question. Very limited or no evaluation. Attempts at analysis, if any, are thin and disjointed.
1-4Answers in this band will show very limited knowledge, eg one or two very insubstantial points about the media.Very little/no understanding of the question and of the presented material. Significant errors and/or omissions in application of material.
0No analysisor evaluation. No relevant points.
- -# Indicative content - -Concepts and issues such as the following may appear: - -Pluralism; hegemonic Marxism/neo-Marxism; manipulative/instrumental Marxism; feminism; competition and choice; ideology; bias; media diversity; media conglomerates; agenda setting; propaganda model; active and passive audiences; uses and gratifications; cultural effects; reception analysis; hypodermic syringe model; two-step flow model. - -# Sources may include the following or other relevant ones: - -Bagdikian; Blumer and McQuail; Chomsky; Couldry et al; Curran; Davies; Edwards and Cromwell; -Fisk; Glasgow University Media Group; Hall; Herman and Chomsky; Katz and Lazarsfeld; McChesney; -Philo; Whale. - -Topic B4 Stratification and Differentiation - - -
QuTotal Marking guidance marks
- -
22Outline and explain two factors which may lead to some members of the working class achieving upward social mobility.10
- -
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two factors There will be two applications of relevant material, eg educational policies enable some occupations and structure may create opportunities for upward social mobility. There will be appropriate analysis, eg the extent to which there has been working class upward mobility.
4-7or two factors which may lead to some members of the working class achieving upward social mobility. being able to buy property. There will be some basic analysis.
1-3Answers in this band will show limited knowledge and little or no understanding of the question or the material. There will be limited focus on the question, eg there may be some drift into descriptions of class. Therewill be little or no analysis.
0No relevant points.
- -# Indicative content - -Answers may include the following and/or other relevant points: - -• meritocratic education –working class pupils can gain qualification positive discrimination policies e.g. university admissions parental aspirations -• changes in the occupational structure -• compensatory education -• marrying up -• acquisition of wealth e.g home ownership, shares - -
Sources may include the following or other relevant ones:
Blanden et al; Davis and Moore; Dorling et al; Glass; Goldthorpe; Heath and Brittan; Marshall et al; McKnight; Payne; Roberts; Saunders; Savage; Sutton Trust.
- -
QuMarking guidanceTotal marks
- -
23Applying material from Item O, analyse two ways in which age may affect an individual'sstatus.10
- -# Item O - -Sociologists have increasingly recognised age as a dimension of inequality. For example, young people do not have all the same rights that adults do. Many older people are no longer in paid employment. - -Age may affect an individual’s status. - -
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on s There will be two developed applications of material from the item, eg for young people, not having the right to work full time reduces income and independence; for older people, There will be appropriate analysis/evaluation of two problems eg of the extent to which age
4-7Answers in this band will show a basic to reasonable knowledge and understanding of one or two ways in which age may affect an individual's status. There will be some successful application of material from the item, eg reduced income in old age.
1-3There will be some analysis/evaluation. Answers in this band will show limited knowledge and understanding of one or two ways in which age may affect an individual's status. There will be limited application of material from the item. Some material may be at a There will be limited or no analysis/evaluation.
0No relevant points.
- -Sources may include the following or other relevant ones: -Abercrombie and Warde; Binner et al; Blaikie; Bradley; Bulman; Butler; Campbell; Davidson; Greengross; Pilcher; Ray et al; Scase and Scales. - -
QuMarking guidanceTotal marks
- -
Applying material from Item P and your knowledge, evaluate the view that gender is the most important dimension of inequality today.20
- -
ItemP
despite some improvements in the social position of women.
However, other sociologists see gender inequalities as natural and inevitable, or argue that other
dimensionsof inequalityaremoreimportant.
- -
MarksLevelDescriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of today. Sophisticated understanding of the question and of the presented material will be shown. Appropriate material will be applied accurately and with sensitivity to the issues raised by thequestion. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for example throughdebates over the relative importance ofgender compared toother dimensions of inequality such as ethnicity and social class. Analysis will show clear
13-16explanation. Appropriate conclusions will be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. maybe inadequatelyfocused.
9-12and/or some appropriate analysis, eg clear explanations of some of the presented material. Answers in this band will show largely accurate knowledge but limited range and depth, eg Applying listed material from the general topic area but with limited regard for its relevance isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
- -
5-8insubstantial points about gender inequality today. Understands only limited aspects of the question; simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question. Very limited or no evaluation. Attempts at analysis, if any, are thin and disjointed.
1-4points about gender in general. Very little/no understanding of the question and of the presentedmaterial. Significant errors and/or omissions in application of material. No analysis or evaluation.
0No relevant points.
- -# Indicative content - -Concepts and issues such as the following may appear: - -Gender; feminisms; postfeminism; patriarchy; gender socialisation; discrimination; feminisation of poverty; expressive role; instrumental role; dual burden; triple shift; domestic division of labour; dual labour market; reserve army of labour; glass ceiling; genderquake; hegemonic femininity and hegemonic masculinity; crisis of masculinity; gender regimes. - -# Sources may include the following or other relevant ones: - -Ansley; Benston; Bradley; Bryson; Delamont; Delphy; Firestone; Hakim; Hills et al; Mead; Mirza; -Oakley; Ortner; Pilcher and Whelehan; Platt; Pollert; Sharpe; Walby. - -# Assessment objective grid - -
A01A02A03Total
Section A
Q01, Q04, Q07, Q1053210
Q02, Q05, Q08, Q1134310
Q03, Q06, Q09. Q1289920
Section B
Q13, Q16, Q19, Q2253210
Q14, Q17, Q20, Q2334310
Q15, Q18, Q21, Q2489920
Totals32262280
\ No newline at end of file diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/7192_2_June_2020_1739552314_content_list.json b/pdf_output/7192_2_June_2020_1739552314/auto/7192_2_June_2020_1739552314_content_list.json deleted file mode 100644 index 5569b4af9f5c17702bcfe4f10a0f659bc3ab3568..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/7192_2_June_2020_1739552314_content_list.json +++ /dev/null @@ -1,2227 +0,0 @@ -[ - { - "type": "text", - "text": "A-level SOCIOLOGY ", - "text_level": 1, - "page_idx": 0 - }, - { - "type": "text", - "text": "Paper 2 Topics in Sociology ", - "page_idx": 0 - }, - { - "type": "text", - "text": "Tuesday 2 June 2020 ", - "page_idx": 0 - }, - { - "type": "text", - "text": "Afternoon ", - "text_level": 1, - "page_idx": 0 - }, - { - "type": "text", - "text": "Time allowed: 2 hours ", - "page_idx": 0 - }, - { - "type": "text", - "text": "Materials ", - "text_level": 1, - "page_idx": 0 - }, - { - "type": "text", - "text": "For this paper you must have: an AQA 16-page answer book. ", - "page_idx": 0 - }, - { - "type": "text", - "text": "Instructions ", - "text_level": 1, - "page_idx": 0 - }, - { - "type": "text", - "text": "• Use black ink or black ball-point pen. \n• Write the information required on the front of your answer book. The Paper Reference is 7192/2. \n• Answer all questions from one topic in Section A and all questions from one topic in Section B. \n• Do all rough work in your answer book. Cross through any work you do not want to be marked. ", - "page_idx": 0 - }, - { - "type": "text", - "text": "Information ", - "text_level": 1, - "page_idx": 0 - }, - { - "type": "text", - "text": "The marks for questions are shown in brackets. \n• The maximum mark for this paper is 80. \nQuestions should be answered in continuous prose. You will be marked on your ability to: use good English organise information clearly use specialist vocabulary where appropriate. ", - "page_idx": 0 - }, - { - "type": "text", - "text": "Section A ", - "text_level": 1, - "page_idx": 1 - }, - { - "type": "text", - "text": "Choose one topic from this section and answer all the questions on that topic. ", - "page_idx": 1 - }, - { - "type": "text", - "text": "Topic A1 Culture and Identity ", - "text_level": 1, - "page_idx": 1 - }, - { - "type": "text", - "text": "Outline and explain two ways in which social class may have become less important in shaping identities. ", - "page_idx": 1 - }, - { - "type": "text", - "text": "[10 marks] ", - "page_idx": 1 - }, - { - "type": "text", - "text": "Read Item A below and answer the question that follows. ", - "page_idx": 1 - }, - { - "type": "text", - "text": "Item A ", - "text_level": 1, - "page_idx": 1 - }, - { - "type": "text", - "text": "Mass culture is usually seen as commercially produced by businesses for profit rather than being created by ordinary people or reflecting their experiences. Mass culture is also seen as oversimplified, requiring little thought or evaluation. ", - "page_idx": 1 - }, - { - "type": "text", - "text": "Mass culture may prevent social change. ", - "page_idx": 1 - }, - { - "type": "text", - "text": "Applying material from Item A, analyse two ways in which mass culture may prevent social change. ", - "page_idx": 1 - }, - { - "type": "text", - "text": "[10 marks] ", - "page_idx": 1 - }, - { - "type": "text", - "text": "Read Item B below and answer the question that follows. ", - "page_idx": 1 - }, - { - "type": "text", - "text": "Item B ", - "text_level": 1, - "page_idx": 1 - }, - { - "type": "text", - "text": "Feminist sociologists often emphasise the ways in which the socialisation process encourages people to conform to hegemonic masculine and feminine identities that reinforce patriarchy. ", - "page_idx": 1 - }, - { - "type": "text", - "text": "However, other sociologists have argued that people actively construct their gender identities, and that gender identities have become much more fluid. ", - "page_idx": 1 - }, - { - "type": "text", - "text": "Applying material from Item B and your knowledge, evaluate feminist views of the extent to which the socialisation process reinforces patriarchy. ", - "page_idx": 1 - }, - { - "type": "text", - "text": "Topic A2 Families and Households ", - "text_level": 1, - "page_idx": 2 - }, - { - "type": "text", - "text": "Outline and explain two ways in which changing childbearing patterns may have influenced gender roles and relationships within families and households. ", - "page_idx": 2 - }, - { - "type": "text", - "text": "[10 marks] ", - "page_idx": 2 - }, - { - "type": "text", - "text": "Read Item C below and answer the question that follows. ", - "page_idx": 2 - }, - { - "type": "text", - "text": "Item C ", - "text_level": 1, - "page_idx": 2 - }, - { - "type": "text", - "text": "Globalisation involves the growing inter-connectedness between countries through increased travel opportunities. It enables more freedom of choice in terms of lifestyles and personal relationships. ", - "page_idx": 2 - }, - { - "type": "text", - "text": "Globalisation may influence families and households. ", - "page_idx": 2 - }, - { - "type": "text", - "text": "Applying material from Item C, analyse two ways in which globalisation may influence families and households. ", - "page_idx": 2 - }, - { - "type": "text", - "text": "[10 marks] ", - "page_idx": 2 - }, - { - "type": "text", - "text": "Read Item D below and answer the question that follows. ", - "page_idx": 2 - }, - { - "type": "text", - "text": "Item D ", - "text_level": 1, - "page_idx": 2 - }, - { - "type": "text", - "text": "Some sociologists argue that UK society has become more child-centred. Children today are more privileged than they have ever been. There are a large range of laws and policies in place to protect them and there is an increasing emphasis now placed on children’s rights. ", - "page_idx": 2 - }, - { - "type": "text", - "text": "However, other sociologists argue that the extent of child-centredness is exaggerated, and that childhood can be a negative experience for some children. ", - "page_idx": 2 - }, - { - "type": "text", - "text": "Applying material from Item D and your knowledge, evaluate the view that UK society has become more child-centred. ", - "page_idx": 2 - }, - { - "type": "text", - "text": "[20 marks] ", - "page_idx": 2 - }, - { - "type": "text", - "text": "Turn over for the next question ", - "page_idx": 2 - }, - { - "type": "text", - "text": "Turn over ", - "page_idx": 2 - }, - { - "type": "text", - "text": "Topic A3 Health ", - "text_level": 1, - "page_idx": 3 - }, - { - "type": "text", - "text": "Outline and explain two reasons for social class differences in consumer choices of health care. ", - "page_idx": 3 - }, - { - "type": "text", - "text": "[10 marks] ", - "page_idx": 3 - }, - { - "type": "text", - "text": "Read Item E below and answer the question that follows. ", - "page_idx": 3 - }, - { - "type": "text", - "text": "Item E ", - "text_level": 1, - "page_idx": 3 - }, - { - "type": "text", - "text": "Black and other minority ethnic groups in the UK are more likely than the majority to experience low incomes and live in disadvantaged areas. The cultural values of these groups often prioritise support from the family and community rather than outside support. ", - "page_idx": 3 - }, - { - "type": "text", - "text": "There are inequalities between ethnic groups in their health chances. ", - "page_idx": 3 - }, - { - "type": "text", - "text": "Applying material from Item E, analyse two reasons for inequalities between ethnic groups in their health chances. ", - "page_idx": 3 - }, - { - "type": "text", - "text": "[10 marks] ", - "page_idx": 3 - }, - { - "type": "text", - "text": "Read Item F below and answer the question that follows. ", - "page_idx": 3 - }, - { - "type": "text", - "text": "Item F ", - "text_level": 1, - "page_idx": 3 - }, - { - "type": "text", - "text": "Rates of mental illness vary between different social groups, such as those based on social class, gender and ethnicity. Some explanations of mental illness point to social issues such as racism, sexism, poor housing and poverty as contributing factors. ", - "page_idx": 3 - }, - { - "type": "text", - "text": "Others argue that mental illness is a label applied to deviant behaviour. Mental illness is socially constructed through interpretations made by others. ", - "page_idx": 3 - }, - { - "type": "text", - "text": "Applying material from Item F and your knowledge, evaluate sociological explanations of the differences in rates of mental illness between social groups. ", - "page_idx": 3 - }, - { - "type": "text", - "text": "[20 marks] ", - "page_idx": 3 - }, - { - "type": "text", - "text": "Topic A4 Work, Poverty and Welfare ", - "text_level": 1, - "page_idx": 4 - }, - { - "type": "text", - "text": "Outline and explain two ways in which government policies have affected the distribution of income in the UK. ", - "page_idx": 4 - }, - { - "type": "text", - "text": "[10 marks] ", - "page_idx": 4 - }, - { - "type": "text", - "text": "Read Item G below and answer the question that follows. ", - "page_idx": 4 - }, - { - "type": "text", - "text": "Item G ", - "text_level": 1, - "page_idx": 4 - }, - { - "type": "text", - "text": "The values and attitudes of some members of the working class may lead to them accepting their position in society. Patriarchal values mean that females can be disadvantaged. ", - "page_idx": 4 - }, - { - "type": "text", - "text": "Some social groups are more likely than others to experience poverty. ", - "page_idx": 4 - }, - { - "type": "text", - "text": "Applying material from Item G, analyse two reasons why some social groups are more likely than others to experience poverty. ", - "page_idx": 4 - }, - { - "type": "text", - "text": "[10 marks] ", - "page_idx": 4 - }, - { - "type": "text", - "text": "Read Item H below and answer the question that follows. ", - "page_idx": 4 - }, - { - "type": "text", - "text": "Item H ", - "text_level": 1, - "page_idx": 4 - }, - { - "type": "text", - "text": "Worklessness affects retired people and those unable to work as well as unemployed people. People without work are more likely to be disadvantaged than those in work. They are excluded from some aspects of social life and their life chances are diminished. There are others who do not work because they have sufficient wealth. ", - "page_idx": 4 - }, - { - "type": "text", - "text": "However, some sociologists argue that work is now less important as a source of identity and that worklessness has become less significant. ", - "page_idx": 4 - }, - { - "type": "text", - "text": "Applying material from Item H and your knowledge, evaluate sociological explanations of the effects of worklessness on people’s lives and life chances. ", - "page_idx": 4 - }, - { - "type": "text", - "text": "Turn over for the next question ", - "page_idx": 4 - }, - { - "type": "text", - "text": "Turn over ", - "page_idx": 4 - }, - { - "type": "text", - "text": "Section B ", - "text_level": 1, - "page_idx": 5 - }, - { - "type": "text", - "text": "Choose one topic from this section and answer all the questions on that topic. ", - "page_idx": 5 - }, - { - "type": "text", - "text": "Topic B1 Beliefs in Society ", - "text_level": 1, - "page_idx": 5 - }, - { - "type": "text", - "text": "Outline and explain two reasons why women are more likely than men to participate in New Age movements. ", - "page_idx": 5 - }, - { - "type": "text", - "text": "[10 marks] ", - "page_idx": 5 - }, - { - "type": "text", - "text": "Read Item I below and answer the question that follows. ", - "page_idx": 5 - }, - { - "type": "text", - "text": "Item I ", - "text_level": 1, - "page_idx": 5 - }, - { - "type": "text", - "text": "Secularisation theory explains the decline in religious participation across parts of Europe, but it does not explain why religion continues to be popular in other parts of the world. It also fails to recognise that religion may be changing rather than declining. ", - "page_idx": 5 - }, - { - "type": "text", - "text": "The extent of secularisation may have been exaggerated. ", - "page_idx": 5 - }, - { - "type": "text", - "text": "Applying material from Item I, analyse two reasons why the extent of secularisation may have been exaggerated. ", - "page_idx": 5 - }, - { - "type": "text", - "text": "[10 marks] ", - "page_idx": 5 - }, - { - "type": "text", - "text": "Read Item J below and answer the question that follows. ", - "page_idx": 5 - }, - { - "type": "text", - "text": "Item J ", - "text_level": 1, - "page_idx": 5 - }, - { - "type": "text", - "text": "Some sociologists argue that religion acts as a force for social change. It can be used to challenge mainstream beliefs and values, and inspire protest against the existing social order. ", - "page_idx": 5 - }, - { - "type": "text", - "text": "However, other sociologists suggest that the relationship between religion and social change is not straightforward and that religion can even prevent social change. ", - "page_idx": 5 - }, - { - "type": "text", - "text": "Applying material from Item J and your knowledge, evaluate the view that religion acts as a force for social change. ", - "page_idx": 5 - }, - { - "type": "text", - "text": "Topic B2 Global Development ", - "text_level": 1, - "page_idx": 6 - }, - { - "type": "text", - "text": "Outline and explain two ways in which development can lead to demographic changes. [10 marks] ", - "page_idx": 6 - }, - { - "type": "text", - "text": "", - "page_idx": 6 - }, - { - "type": "text", - "text": "Read Item K below and answer the question that follows. ", - "page_idx": 6 - }, - { - "type": "text", - "text": "Item K ", - "text_level": 1, - "page_idx": 6 - }, - { - "type": "text", - "text": "Development can lead to new ways for previously exploited groups to improve their situation. It can also cause powerful groups to feel threatened by changes and lead them to assert what are seen as traditional attitudes and practices. ", - "page_idx": 6 - }, - { - "type": "text", - "text": "Development can affect gender inequalities. ", - "page_idx": 6 - }, - { - "type": "text", - "text": "Applying material from Item K, analyse two ways in which development can affect gender inequalities. ", - "page_idx": 6 - }, - { - "type": "text", - "text": "[10 marks] ", - "page_idx": 6 - }, - { - "type": "text", - "text": "Read Item L below and answer the question that follows. ", - "page_idx": 6 - }, - { - "type": "text", - "text": "Item L ", - "text_level": 1, - "page_idx": 6 - }, - { - "type": "text", - "text": "According to some sociologists, aid is essential for development because it helps countries reach take-off and industrialise. ", - "page_idx": 6 - }, - { - "type": "text", - "text": "However, other sociologists are critical of aid and point out that many countries receiving aid have made little progress. Others argue that the real purpose of aid is to ensure a free market system that creates underdevelopment. ", - "page_idx": 6 - }, - { - "type": "text", - "text": "Applying material from Item L and your knowledge, evaluate the view that aid is essential for development. ", - "page_idx": 6 - }, - { - "type": "text", - "text": "Turn over for the next question ", - "page_idx": 6 - }, - { - "type": "text", - "text": "Turn over ", - "page_idx": 6 - }, - { - "type": "text", - "text": "Topic B3 The Media ", - "text_level": 1, - "page_idx": 7 - }, - { - "type": "text", - "text": "Outline and explain two ways in which new media may have affected the selection and presentation of news. ", - "page_idx": 7 - }, - { - "type": "text", - "text": "[10 marks] ", - "page_idx": 7 - }, - { - "type": "text", - "text": "Read Item M below and answer the question that follows. ", - "page_idx": 7 - }, - { - "type": "text", - "text": "Item M ", - "text_level": 1, - "page_idx": 7 - }, - { - "type": "text", - "text": "Media corporations have the power to produce images of lifestyles through which people form their identities. The wide reach of these corporations has led to local cultures becoming less important. ", - "page_idx": 7 - }, - { - "type": "text", - "text": "Media corporations may contribute to a growth in global culture. ", - "page_idx": 7 - }, - { - "type": "text", - "text": "Applying material from Item M, analyse two ways in which media corporations may contribute to a growth in global culture. ", - "page_idx": 7 - }, - { - "type": "text", - "text": "[10 marks] ", - "page_idx": 7 - }, - { - "type": "text", - "text": "Read Item N below and answer the question that follows. ", - "page_idx": 7 - }, - { - "type": "text", - "text": "Item N ", - "text_level": 1, - "page_idx": 7 - }, - { - "type": "text", - "text": "Some sociologists argue that audiences control media content through their choices as consumers. They claim that competition between media for audiences means that owners and companies have limited power over content. ", - "page_idx": 7 - }, - { - "type": "text", - "text": "However, other sociologists argue that those who own and work in the media control the content. This means that the content can be biased and reflect dominant ideologies. ", - "page_idx": 7 - }, - { - "type": "text", - "text": "Applying material from Item N and your knowledge, evaluate the view that the media reflect the views of their audiences. ", - "page_idx": 7 - }, - { - "type": "text", - "text": "Topic B4 Stratification and Differentiation ", - "text_level": 1, - "page_idx": 8 - }, - { - "type": "text", - "text": "Outline and explain two factors which may lead to some members of the working class achieving upward social mobility. ", - "page_idx": 8 - }, - { - "type": "text", - "text": "[10 marks] ", - "page_idx": 8 - }, - { - "type": "text", - "text": "Read Item O below and answer the question that follows. ", - "page_idx": 8 - }, - { - "type": "text", - "text": "Item O ", - "text_level": 1, - "page_idx": 8 - }, - { - "type": "text", - "text": "Sociologists have increasingly recognised age as a dimension of inequality. For example, young people do not have all the same rights that adults do. Many older people are no longer in paid employment. ", - "page_idx": 8 - }, - { - "type": "text", - "text": "Age may affect an individual’s status. ", - "page_idx": 8 - }, - { - "type": "text", - "text": "Applying material from Item O, analyse two ways in which age may affect an individual’s status. ", - "page_idx": 8 - }, - { - "type": "text", - "text": "[10 marks] ", - "page_idx": 8 - }, - { - "type": "text", - "text": "Read Item P below and answer the question that follows. ", - "page_idx": 8 - }, - { - "type": "text", - "text": "Item P ", - "text_level": 1, - "page_idx": 8 - }, - { - "type": "text", - "text": "Feminist sociologists argue that gender is the most important dimension of inequality today. This is despite some improvements in the social position of women. ", - "page_idx": 8 - }, - { - "type": "text", - "text": "However, other sociologists see gender inequalities as natural and inevitable, or argue that other dimensions of inequality are more important. ", - "page_idx": 8 - }, - { - "type": "text", - "text": "Applying material from Item P and your knowledge, evaluate the view that gender is the most important dimension of inequality today. ", - "page_idx": 8 - }, - { - "type": "text", - "text": "There are no questions printed on this page ", - "text_level": 1, - "page_idx": 9 - }, - { - "type": "text", - "text": "There are no questions printed on this page ", - "text_level": 1, - "page_idx": 10 - }, - { - "type": "text", - "text": "There are no questions printed on this page ", - "text_level": 1, - "page_idx": 11 - }, - { - "type": "text", - "text": "Copyright information ", - "text_level": 1, - "page_idx": 11 - }, - { - "type": "text", - "text": "For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk. ", - "page_idx": 11 - }, - { - "type": "text", - "text": "Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team. ", - "page_idx": 11 - }, - { - "type": "text", - "text": "AQA - ", - "page_idx": 12 - }, - { - "type": "text", - "text": "A-LEVEL \nSOCIOLOGY \n7192/2 \nPaper 2 Topics in Sociology ", - "page_idx": 12 - }, - { - "type": "text", - "text": "Mark scheme June 2020 ", - "page_idx": 12 - }, - { - "type": "text", - "text": "Version: 1.0 Final Mark Scheme ", - "page_idx": 12 - }, - { - "type": "text", - "text": "Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students’ responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students’ scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer. ", - "page_idx": 13 - }, - { - "type": "text", - "text": "It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark schemes on the basis of one year’s document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper. ", - "page_idx": 13 - }, - { - "type": "text", - "text": "Further copies of this mark scheme are available from aqa.org.uk ", - "page_idx": 13 - }, - { - "type": "text", - "text": "Copyright information ", - "text_level": 1, - "page_idx": 13 - }, - { - "type": "text", - "text": "AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre. ", - "page_idx": 13 - }, - { - "type": "text", - "text": "Copyright $\\circledcirc$ 2020 AQA and its licensors. All rights reserved. ", - "page_idx": 13 - }, - { - "type": "text", - "text": "Level of response marking instructions ", - "text_level": 1, - "page_idx": 14 - }, - { - "type": "text", - "text": "Level of response mark schemes are broken down into levels, each of which has a descriptor. The descriptor for the level shows the average performance for the level. There are marks in each level. ", - "page_idx": 14 - }, - { - "type": "text", - "text": "Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as instructed) to show the qualities that are being looked for. You can then apply the mark scheme. ", - "page_idx": 14 - }, - { - "type": "text", - "text": "Step 1 Determine a level ", - "text_level": 1, - "page_idx": 14 - }, - { - "type": "text", - "text": "Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer. With practice and familiarity you will find that for better answers you will be able to quickly skip through the lower levels of the mark scheme. ", - "page_idx": 14 - }, - { - "type": "text", - "text": "When assigning a level you should look at the overall quality of the answer and not look to pick holes in small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level and then use the variability of the response to help decide the mark within the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be placed in level 3 but be awarded a mark near the top of the level because of the level 4 content. ", - "page_idx": 14 - }, - { - "type": "text", - "text": "Step 2 Determine a mark ", - "text_level": 1, - "page_idx": 14 - }, - { - "type": "text", - "text": "Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate marks can help with this. The exemplar materials used during standardisation will help. There will be an answer in the standardising materials which will correspond with each level of the mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer with the example to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner’s mark on the example. ", - "page_idx": 14 - }, - { - "type": "text", - "text": "You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate. ", - "page_idx": 14 - }, - { - "type": "text", - "text": "Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be exhaustive and you must credit other valid points. Students do not have to cover all of the points mentioned in the Indicative content to reach the highest level of the mark scheme. ", - "page_idx": 14 - }, - { - "type": "text", - "text": "An answer which contains nothing of relevance to the question must be awarded no marks. ", - "page_idx": 14 - }, - { - "type": "text", - "text": "Annotating Scripts ", - "text_level": 1, - "page_idx": 15 - }, - { - "type": "text", - "text": "Please use the following annotations: ", - "page_idx": 15 - }, - { - "type": "table", - "img_path": "images/e79b8fc5f77d8cd4ccf50e24d10dcb974832140d60897580e90f2c6de30f8b40.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
eMarker-2 symbolUse of symbol
ANAnalysis (all questions)
APP]Application (for use of the item in 10 mark Analyse question answers)
AAO1 - knowledge and understanding e.g. sociological concepts, theories, names of sociologists
A02AO2 - application
A03AO3- analysisandevaluation
Correct/good point
EVALEvaluation
EGExample
creditUnderlining tool- use this or AO1 for concepts etc or for any point deserving
Incorrect
KUKnowledge and understanding
Unclear
Missing
NAQNot answering question
NRNo response (use e.g. if candidate has put question number in margin but
xampleTexinot written anything) Text box. Please include a brief text box comment for each question, and
other text boxes as appropriate. Red rectangle. Can be used for highlighting.
appropriate.
W1Way 1. Use in 10 mark analyse question answers for the first way (or factor, reason etc)identified
W2Way 2. Use in 10 mark analyse question answers for the second way (or factor, reason etc) identified
\n\n", - "page_idx": 15 - }, - { - "type": "text", - "text": "Section A Topic A1 Culture and Identity ", - "text_level": 1, - "page_idx": 16 - }, - { - "type": "table", - "img_path": "images/8dfdd5bfc137aea68414207e84707b3ab3c957e2c5b597a7661e6fd6e1d4c734.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuMarking guidanceTotal marks
\n\n", - "page_idx": 16 - }, - { - "type": "table", - "img_path": "images/277ead22442bea9b765ea51d9a2a31033db318a6e8b3fa36dc64e9d4443a3204.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
01Outline and explain two ways in which social class may have become less important in shaping identities.10
\n\n", - "page_idx": 16 - }, - { - "type": "table", - "img_path": "images/f3cb51af128e815cc3163f69e47d9927926d8d203beea95cbcb56feb92642c15.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
MarksLevel Descriptors
8-10There will be two applications of relevant material, eg socialisation into class-based subcultures influencing values; middle class concepts of taste providing a sense of difference and superiority. There will be appropriate analysis, eg of the extent to which social class is important in
4-7shaping identities. Answers in this band will show a reasonable to good knowledge and understanding of one s s g s There will be one or two applications of relevant material, eg ways in which income and wealth enable or limit choices about lifestyle and consumption. There will be some basic analysis.
1-3question or the material. There will be limited focus on the question, eg a drift into discussion of identities in general.
0There will be little or no analysis. No relevant points.
\n\n", - "page_idx": 16 - }, - { - "type": "text", - "text": "Indicative content ", - "text_level": 1, - "page_idx": 16 - }, - { - "type": "text", - "text": "Answers may include the following and/or other relevant points: ", - "page_idx": 16 - }, - { - "type": "text", - "text": "• economic aspects of social class such as income and wealth \n• cultural aspects of social class such as leisure activities, interests and tastes \n• social and cultural capital and identities \n• association of high culture with higher classes and mass/popular culture with working class • class differences in attitudes eg to the value of education \n• decline of traditional working class identities \n• class subcultures. ", - "page_idx": 16 - }, - { - "type": "table", - "img_path": "images/d0c0d8bd2fd5668ac8e8da354bdc6e99d259db489817d9d0a8c8220e36f53293.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Sources may include the following or other relevant ones:
Bourdieu; Bradley; Carter and Coleman; Giddens and Diamond; Goldthorpe; Lash and Urry;
Mackintosh and Mooney; Marx; McKenzie et al; Murray; Palkulski and Waters; Roberts; Saunders;
Savage;Scott;Skeggs.
\n\n", - "page_idx": 17 - }, - { - "type": "table", - "img_path": "images/7773cd316df8c388693a4839c3fa40e4186cd508eb265785006d5221c71bd2b4.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuMarking guidanceTotal marks
\n\n", - "page_idx": 17 - }, - { - "type": "table", - "img_path": "images/0643d79c650b6be514095bdcff9b69bd3114a7b93b35a0a84b0ab42637e0e882.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
02Applying material from Item A, analyse two ways in which mass culture may prevent social change.10
\n\n", - "page_idx": 17 - }, - { - "type": "text", - "text": "Item A ", - "text_level": 1, - "page_idx": 17 - }, - { - "type": "text", - "text": "Mass culture is usually seen as commercially produced by businesses for profit rather than being created by ordinary people or reflecting their experiences. Mass culture is also seen as oversimplified, requiring little thought or evaluation. ", - "page_idx": 17 - }, - { - "type": "text", - "text": "Mass culture may prevent social change. ", - "page_idx": 17 - }, - { - "type": "table", - "img_path": "images/ec53347474ad26e4c9b1688547f29a30d1dbf7c6c6929b0ce83f06b39c06833b.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on businesses persuading people that want and need trivial products; mass culture promotes There will be appropriate analysis/evaluation of two ways eg the extent to which mass
4-7culture can educate and inform about important social issues. Answers in this band will show a basic to reasonable knowledge and understanding of one or two ways in which mass culture prevents social change. people less likely to challenge those in power.
1-3There will be some analysis/evaluation. Answers in this band will show limited knowledge and understanding of one or two ways in which mass culture prevents social change. There will be limited application of material from the item. Some material may be at a tangent to the question, eg there may be some drift into descriptive accounts of mass culture. There will be limited or no analysis/evaluation.
\n\n", - "page_idx": 17 - }, - { - "type": "table", - "img_path": "images/6dd52e17b88cc87ea79444a0ee7486412d44441b8edbc9ba6b626c453c94f1fa.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
0No relevant points.
\n\n", - "page_idx": 18 - }, - { - "type": "table", - "img_path": "images/be5e5dff3f06f738e732265ac4473d86db464c31888348b76ebad735f2c00869.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Sources may include the following or other relevant ones:
Adorno; Bourdieu; Giddens; Gramsci; Leavis; Livingstone; MacDonald; Marcuse; Strinati.
\n\n", - "page_idx": 18 - }, - { - "type": "table", - "img_path": "images/62000c1dfbeabea65ca53073497a7deda7a6941867b5a9518139e82f1705dd28.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuMarking guidanceTotal marks
\n\n", - "page_idx": 18 - }, - { - "type": "table", - "img_path": "images/c6008c0830addba15b90d5ebb19caa5d061db86ed7c2f82cf9f7bd67f17a7c52.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
03Applying material from Item B and your knowledge, evaluate feminist views of 20 the extent to which the socialisation process reinforces patriarchy.
\n\n", - "page_idx": 18 - }, - { - "type": "text", - "text": "Item B ", - "text_level": 1, - "page_idx": 18 - }, - { - "type": "text", - "text": "Feminist sociologists often emphasise the ways in which the socialisation process encourages people to conform to hegemonic masculine and feminine identities that reinforce patriarchy. ", - "page_idx": 18 - }, - { - "type": "text", - "text": "However, other sociologists have argued that people actively construct their gender identities, and that gender identities have become much more fluid. ", - "page_idx": 18 - }, - { - "type": "table", - "img_path": "images/9bccc9fd40ef0e8422ec325366ca0d934f388522c1577413b69f02edbd3248b8.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
MarksLevel Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on feminist views on how the socialisation process reinforces patriarchy. Sophisticated understanding of the question and of the presented material will be shown. Appropriate material will be applied accurately and with sensitivity to the issues raised by the question. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for example through comparing different theoretical perspectives on socialisation.Analysis wil
13-16show clear explanation. Appropriate conclusions will be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. Application of material is largely explicitly relevant to the question, though some material maybeinadequatelyfocused. Some limited explicit evaluation, eg discussion of different definitions of types of feminist
9-12presentedmaterial. Answers in this band will show largely accurate knowledge but limited range and depth, eg broadly accurate, if basic, account of some feminist views onhowthe socialisationprocess reinforces patriarchy. Understands some limited but significant aspects of the question; superficial understanding of the presented material.
\n\n", - "page_idx": 18 - }, - { - "type": "table", - "img_path": "images/83b8dbf1607651dae37e10a17a8e66fa8b19c4679aebe230bb52a86e9d322350.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Applying listed material from the general topic area but with limited regard for its relevance to the issues raised by the question, or applying a narrow range of more relevant material. Evaluation will take the form of juxtaposition of competing positions or to one or two isolated
5-8simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question. Very limited or no evaluation. Attempts at analysis, if any, are thin and disjointed.
1-4Answers in this band will show very limited knowledge, eg one or two very insubstantial points about socialisation in general. Very little/no understanding of the question and of the presentedmaterial.
0No analysis or evaluation. No relevant points.
\n\n", - "page_idx": 19 - }, - { - "type": "text", - "text": "Indicative content ", - "text_level": 1, - "page_idx": 19 - }, - { - "type": "text", - "text": "Concepts and issues such as the following may appear: ", - "page_idx": 19 - }, - { - "type": "text", - "text": "agencies of socialisation; sex and gender; gender roles; gender codes; stereotype; hegemonic masculinity; hegemonic femininity; expressive and instrumental roles; manipulation; canalisation; appellations; heterosexuality; sexual orientation; hidden curriculum; ‘new man’; metrosexuals; crisis of masculinity; lads and ladettes. ", - "page_idx": 19 - }, - { - "type": "text", - "text": "Sources may include the following or other relevant ones: ", - "text_level": 1, - "page_idx": 19 - }, - { - "type": "text", - "text": "Billington et al; Coleman-Fountain; Collier; Connell; Connolly; de Beauvoir; Dorais; Jackson; Lees; \nMac an Ghaill; Mead; Mort; Oakley; Ortner; Taylor; Walby; Walter; Weeks; Wilkinson; Willis. ", - "page_idx": 19 - }, - { - "type": "table", - "img_path": "images/a27af9702f9dd940ca91b9d3240a911584acb47478398449145f729339b5fb2c.jpg", - "table_caption": [ - "Topic A2 Families and Households " - ], - "table_footnote": [], - "table_body": "\n\n
QuMarking guidanceTotal marks
\n\n", - "page_idx": 20 - }, - { - "type": "table", - "img_path": "images/b71836e7bc9041948ceef002b9828bd7a85ceed98304c0dcfcd9e0a9c851fab5.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
0410 influenced gender roles and relationships within families and households.
\n\n", - "page_idx": 20 - }, - { - "type": "table", - "img_path": "images/d07b729627f9132d6a8aca2a6896cdd7f323cf76fc3b64351775a43c8bb2ca1d.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
MarksLevel Descriptors
8-10withinfamiliesandhouseholds. There will be two applications of relevant material, eg the increase in women remaining childfree influencing women's involvement in the labour market; how smaller families may
4-7Answers in this band will show a reasonable to good knowledge and understanding of one and relationshipswithinfamilies andhouseholds. There will be one or two applications of relevant material, eg changes in division of domestic labour. There will be some basic analysis.
1-3question or the material. There will be limited focus on the question, eg a drift into discussion of reasons for changing childbearing patterns. There will be little or no analysis.
0No relevant points.
\n\n", - "page_idx": 20 - }, - { - "type": "text", - "text": "Indicative content ", - "text_level": 1, - "page_idx": 20 - }, - { - "type": "text", - "text": "Answers may include the following and/or other relevant points: ", - "page_idx": 20 - }, - { - "type": "text", - "text": "decision making \npower relationships \nincrease in women’s involvement in the labour market increase in joint conjugal roles \nmen taking on expressive role \nfinancial control \ndual shift/triple shift. ", - "page_idx": 20 - }, - { - "type": "table", - "img_path": "images/d99dbc2af444c4de4c9d2c497665d440579faa2e5c3193721574b27a6b81c509.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Sources may include the following or other relevant ones: Boulton; Braun, Vincent and Ball; Dex
and Warde; Duncome and Marsden; Ganley and Schechter; Gershuny; Laurie and Gershuny;
McRobbie; Pahl; Wardeand Hetherington.
\n\n", - "page_idx": 21 - }, - { - "type": "table", - "img_path": "images/d0b802581f1ef9baf9cc3c1f8f8898ad54ce3e95817b6886893772db1ad35fec.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuTotal Marking guidance marks
\n\n", - "page_idx": 21 - }, - { - "type": "table", - "img_path": "images/0a6f6b341d2ae5bc80f6082c543864de68520ccd901d835f1030f7b619f5a155.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
05Applying material from Item C, analyse two ways in which globalisation may influencefamiliesandhouseholds.10
\n\n", - "page_idx": 21 - }, - { - "type": "table", - "img_path": "images/91dc57b985fc2c9bb6f747dc12bfb87b92a1c522be4c6833eb287bc9893cd2e7.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
ItemC
Globalisation involves the growing inter-connectedness between countries through increased travel opportunities. It enables more freedom of choice in terms of lifestyles and personal relationships.
Globalisation may influence families and households.
\n\n", - "page_idx": 21 - }, - { - "type": "table", - "img_path": "images/32f824e8904610bde1b87344b84d4ee94e46f79358786f8d3482c92f2d87f242.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
MarksLevelDescriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on There will be two developed applications of material from the item, eg increase in migration may mean families live in different parts of the world; freedom of choice creating more complex family and household structures, such as divorce extended families, negotiated families.
4-7and choice over lifestyles/personal relationships in postmodern society. Answers in this band will show a basic to reasonable knowledge and understanding of one partners. Therewill besome analysis/evaluation.
1-3Answers in this band will show limited knowledge and understanding of one or two ways in which globalisation may influence families and households. There will be limited application of material from the item. Some material may be at a There will be limited or no analysis/evaluation.
0No relevant points.
\n\n", - "page_idx": 21 - }, - { - "type": "table", - "img_path": "images/abf905d9b1317f351cdb0743110606cff08a58b645d183eefecdce64052c3012.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Sources may include the following or other relevant ones: Beck; Chambers; Cheal; Ehrenreich
and Hochschild; Einasdottir; Eriksen; Giddens; Morgan; Shutes; Smart; Stacey; Vertovec; Weeks; Weston.
\n\n", - "page_idx": 22 - }, - { - "type": "table", - "img_path": "images/d2762c94913958a44ae06c29d1366317a096cd889c73569ef7fee40716e8d5f2.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuMarking guidanceTotal marks
\n\n", - "page_idx": 22 - }, - { - "type": "table", - "img_path": "images/938b2e0363f93dde35d066a9dc0ec10bd50c5d8583b5a23fe87190507de4f09e.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
06Applying material from Item D and your knowledge, evaluate the view that UK society has become more child-centred.20
\n\n", - "page_idx": 22 - }, - { - "type": "table", - "img_path": "images/c7e37ba514605cb00b38b7e391f3fe3007b1486c270aaf6747c6051e406850da.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
ItemD
Some sociologists argue that UK society has become more child-centred. Children today are more privileged than they have ever been. There are a large range of laws and policies in place to protect them and there is an increasing emphasis now placed on children's rights.
However, other sociologists argue that the extent of child-centredness is exaggerated, and that
childhood canbe a negative experience for some children.
\n\n", - "page_idx": 22 - }, - { - "type": "table", - "img_path": "images/f81cc2e13aa1bc06c03f5b336c31c0612d9b47e60be19357a86e1ae286868e4e.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
MarksLevel Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of of the question and of the presented material will be shown. Appropriate material will be applied accurately and with sensitivity to the issues raised by the question. Analysisandevaluationwillbeexplicitandrelevant.Evaluationmaybedeveloped,for example through a discussion of the extent to which society hasbecome more child conclusions will be drawn.
13-16Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. Application of material is largely explicitly relevant to the question, though some material may be inadequately focused. Some limited explicit evaluation, eg discussion of inequalities between children based on
9-12some of the presented material. Answers in this band will show largely accurate knowledge but limited range and depth, eg more child-centred. Understands some limited but significant aspects of the question; superficial understanding of the presented material.
\n\n", - "page_idx": 22 - }, - { - "type": "table", - "img_path": "images/d3e7dffcc166a530bf5479296ce53041818ec89ad6111fcce5a4237a644b610f.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Applying listed material from the general topic area but with limited regard for its relevance a o u e e o s a ssi Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
5-8Answers in this band will show limited undeveloped knowledge, eg two or three insubstantial points about childhood in general. Understands only limited aspects of the question; simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question.
1-4points about childhood in general. Very little/no understanding of the question and of the presented material. Significant errors and/or omissions in application of material.
0No analysis or evaluation. No relevant points.
\n\n", - "page_idx": 23 - }, - { - "type": "text", - "text": "Indicative content ", - "text_level": 1, - "page_idx": 23 - }, - { - "type": "text", - "text": "Concepts and issues such as the following may appear; policies restricting child labour; exclusion of children from paid work; compulsory education; growth of children’s rights; declining family size; lower infant mortality rate; increased medical knowledge around child development; child protection and welfare policies; age patriarchy; child neglect and abuse; control over children’s space, time and bodies; information hierarchy; toxic childhood; disappearance of childhood; impact of divorce; march of progress; conflict view. ", - "page_idx": 23 - }, - { - "type": "text", - "text": "Sources may include the following or other relevant ones: Ariés; Bhatti; Bonke; Brannen; \nCunningham; Firestone and Holt; Garber; Gittins; Howard; Jenks; Opie; Palmer; Pilcher; Postman; \nRees; Wagg; Womack. ", - "page_idx": 23 - }, - { - "type": "text", - "text": "Topic A3 Health ", - "text_level": 1, - "page_idx": 24 - }, - { - "type": "table", - "img_path": "images/fb927d397b66297da309fdbaec19007c9b66fdb77855ed873bdda88c7d179ac3.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuMarking guidanceTotal marks
\n\n", - "page_idx": 24 - }, - { - "type": "table", - "img_path": "images/55b2059b7deeec43050a662090670651b1fe752598b674f262c244259e81b57a.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
07Outline and explain two reasons for social class differences in consumer choices ofhealthcare.10
\n\n", - "page_idx": 24 - }, - { - "type": "table", - "img_path": "images/cc9068eace815b08119d28c25aa5af6eb96d17097887d58957661683a7c04614.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two reasons for differences between social classes in taking advantage of consumer choice in health care. There will be two applications of relevant material, eg social classes have different levels of access to the information needed to make informed choices; working class may place greater trust in the advice of professionals and not seek alternative views. There will be appropriate analysis, eg of different choices available within health care.
4-7Answers in this band will show a reasonable to good knowledge and understanding of one or two reasons for differences between social classes in taking advantage of consumer choice in health care. There will be one or two applications of relevant material, eg higher classes are able to afford private health care.
1-3There will be some basic analysis. question or the material. differencesinhealthcarechoices.
0There will be little or no analysis No relevant points.
\n\n", - "page_idx": 24 - }, - { - "type": "text", - "text": "Indicative content ", - "text_level": 1, - "page_idx": 24 - }, - { - "type": "text", - "text": "Answers may include the following and/or other relevant points: ", - "page_idx": 24 - }, - { - "type": "text", - "text": "• middle class are able to afford private care, medical tourism etc \n• working class lack knowledge and expertise to make informed choices \n• middle class have greater access to knowledge of available choices \n• different levels of social and cultural capital \n• availability of choices by region/location \nclass differences in attitudes to the construction of bodies and identities through consumption and lifestyle ", - "page_idx": 24 - }, - { - "type": "text", - "text": "• different levels of trust in health professionals class differences in attitudes to complementary and alternative medicine. ", - "page_idx": 25 - }, - { - "type": "text", - "text": "Sources may include the following or other relevant ones: ", - "text_level": 1, - "page_idx": 25 - }, - { - "type": "text", - "text": "Cattrell; Conrad; Ernst; Giddens; Goldacre; Law; Lunt et al; Lyotard; Nettleton; Senior; Shaw et al; \nSkountridaki; Stevenson et al; Swayne; Wilkinson and Pickett. ", - "page_idx": 25 - }, - { - "type": "table", - "img_path": "images/df9178c9b950b35ad7c696a21060b227d6ced16dbc1514e8afff415c98af2778.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuTotal Marking guidance marks
\n\n", - "page_idx": 25 - }, - { - "type": "table", - "img_path": "images/568457a68a056a9defebfd89d2f9491880c154d462507d20239664bba77fbb05.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
08Applying material from Item E, analyse two reasons for inequalities between ethnic groups in their health chances.10
\n\n", - "page_idx": 25 - }, - { - "type": "text", - "text": "Item E ", - "text_level": 1, - "page_idx": 25 - }, - { - "type": "text", - "text": "Black and other minority ethnic groups in the UK are more likely than the majority to experience low incomes and live in disadvantaged areas. The cultural values of these groups often prioritise support from the family and community rather than outside support. ", - "page_idx": 25 - }, - { - "type": "text", - "text": "There are inequalities between ethnic groups and their health chances. ", - "page_idx": 25 - }, - { - "type": "table", - "img_path": "images/5dc3eec24506bf1c6fecfaa0569749b49212f2f4cf00cc58dd69530a3391ff93.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on accessible healthcare services in deprived areas; some groups may think they should not seek healthcare until their condition is serious. There will be appropriate analysis/evaluation of two ways eg differences between minority ethnic groups.
4-7or two reasons for inequalities between ethnic groups in their health chances. There will be some successful application of material from the item, eg low income associatedwithpoordiet and unhealthylifestyle. There will be some analysis/evaluation.
1-3Answers in this band will show limited knowledge and understanding of one or two reasons for inequalities between ethnic groups in their health chances. There will be limited application of material from the item. Some material may be at a
\n\n", - "page_idx": 25 - }, - { - "type": "table", - "img_path": "images/2e82dbb47c38ca77bd98d49a93e5dc5037af7b31b7e84c7ca877fe5730d28c0c.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
There will be limited or no analysis/evaluation.
ONo relevantpoints.
\n\n", - "page_idx": 26 - }, - { - "type": "table", - "img_path": "images/89ee6b9d25a96fadf3f601b3466d4565225b57d264bad8880eb1fb28580ee6b3.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Sources may include the following or other relevant ones:
Balarajan; Davey Smith et al; Moriarty; Nazroo; Nettleton; Parry et al; Sproston and Mindell; Wilkinson.
\n\n", - "page_idx": 26 - }, - { - "type": "table", - "img_path": "images/0640ca6ee30004a984dc8edf51689178bf011d2190068448ae0c92e7dfbc44f5.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuMarking guidanceTotal marks
\n\n", - "page_idx": 27 - }, - { - "type": "table", - "img_path": "images/bb6a8201793f6aa86dd507270d42ab4bae8716e04fc2e0cd728475481547ee64.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
09Applying material from Item F and your knowledge, evaluate sociological20
\n\n", - "page_idx": 27 - }, - { - "type": "text", - "text": "Item F ", - "text_level": 1, - "page_idx": 27 - }, - { - "type": "text", - "text": "Rates of mental illness vary between different social groups, such as those based on social class, gender and ethnicity. Some explanations of mental illness point to social issues such as racism, sexism, poor housing and poverty as contributing factors. ", - "page_idx": 27 - }, - { - "type": "text", - "text": "Others argue that mental illness is a label applied to deviant behaviour. Mental illness is socially constructed through interpretations made by others. ", - "page_idx": 27 - }, - { - "type": "table", - "img_path": "images/2e66035d10a99fd1d2fac79e0aa4744b58f04828efd52968c8dafac786a81469.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
MarksLevelDescriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on sociological explanations of the differences in rates of mental illness between social groups. Sophisticated understanding of the question and of the presented materialwillbeshown. Appropriate material will be applied accurately and with sensitivity to the issues raised by the question. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for example through a debate between social realist and social constructionist models of
13-16Appropriate conclusionswill be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presented material. maybe inadequatelyfocused. presented material.
9-12Answers in this band will show largely accurate knowledge but limited range and depth, eg broadly accurate, if basic, account of labelling approaches to mental illness applied to different social groups. Understands some limited but significant aspects of the question; superficial understanding of the presented material. Applying listed material from the general topic area but with limited regard for its relevance o u e 'ob p ss
\n\n", - "page_idx": 27 - }, - { - "type": "table", - "img_path": "images/f8938390bbee3adeed66cd5794cd8eb3c805c68d5e9c1ae4db9740d535249774.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
5-8Answers in this band will show limited undeveloped knowledge, eg two or three insubstantial points about mental illness and different social groups. Understands only n o s s of the question.
1-4Answers in this band will show very limited knowledge, eg one or two very insubstantial points about mental illness in general. Very little/no understanding of the question and of the presented material. Significant errors and/or omissions in application of material. No analysis or evaluation.
0No relevant points.
\n\n", - "page_idx": 28 - }, - { - "type": "text", - "text": "Indicative content ", - "text_level": 1, - "page_idx": 28 - }, - { - "type": "text", - "text": "Concepts and issues such as the following may appear: ", - "page_idx": 28 - }, - { - "type": "text", - "text": "biomedical approaches; social realist and structuralist approaches; interactionism; labelling; social constructionism; feminism; social class; gender; ethnicity; discrimination; stigma; spurious interaction; mortification of self; total institution; cognitive therapy. ", - "page_idx": 28 - }, - { - "type": "text", - "text": "Sources may include the following or other relevant ones: ", - "text_level": 1, - "page_idx": 28 - }, - { - "type": "text", - "text": "Appignanensi; Becker; Brown and Harris; Busfield; Chesler; Foucault; Goffman; Laing; Mackenzie et al; Mallet et al; Moncrieff; Morrison; Nazroo; Pickett et al; Rehman and Owen; Rosenhan; Scheff; Shaw and Ward; Szasz. ", - "page_idx": 28 - }, - { - "type": "table", - "img_path": "images/f934bb20cd81148ae4457f83c87d51a0717e7d77c8f7142257247a72e8441ac2.jpg", - "table_caption": [ - "Topic A4 Work, Poverty and Welfare " - ], - "table_footnote": [], - "table_body": "\n\n
QuTotal Marking guidance marks
\n\n", - "page_idx": 29 - }, - { - "type": "table", - "img_path": "images/e160c87d27d6eb1f2d34d2d1e8ad581832bf6170fa34e859696d47282c18f459.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
10Outline and explain two ways in which government policies have affected the distributionof income intheUK.10
\n\n", - "page_idx": 29 - }, - { - "type": "table", - "img_path": "images/784e14e2998ac2e087f691227efff240611b22f68b324ee3b62c296f269cf58a.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two ways in which government policies have affected the distribution of income in the UK. There will be two applications of relevant material, eg stopping/reducing benefits has led to more poverty; taxation policies have reduced income of some groups more than others.
4-7distribution of income in theUK. Answers in this band will show a reasonable to good knowledge and understanding of one or two ways in which government policies have affected the distribution of income in the UK. There will be one or two applications of relevant material, eg welfare state policies have not led to redistribution of income.
1-3There will be some basic analysis. question or the material. There will be limited focus on the question, eg a drift into discussion of poverty in general.
0There will be little or no analysis. No relevant points.
\n\n", - "page_idx": 29 - }, - { - "type": "text", - "text": "Indicative content ", - "text_level": 1, - "page_idx": 29 - }, - { - "type": "text", - "text": "Answers may include the following and/or other relevant points: ", - "page_idx": 29 - }, - { - "type": "text", - "text": "• social democratic/welfare state policies intended to be redistributive \n• New Right policies eg sanctioning, tackling alleged dependency culture \n• means testing/selective benefits vs universal benefits \n• wages policies e.g. minimum wage \n• policies limiting the ability of trade unions to campaign for higher incomes for their members \n• tax policies – progressive and regressive taxes, tax evasion and avoidance ", - "page_idx": 29 - }, - { - "type": "table", - "img_path": "images/1d2b392d2453ec1f021d0c331e6f7b561009b48e7e69cf669b3dd7f258607782.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Sources may include the following or other relevant ones:
\n\n", - "page_idx": 29 - }, - { - "type": "table", - "img_path": "images/10097d3a35c1e9450d485ec86ce76be6559f86550a4657148b85a554144660be.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Abel-Smith and Townsend; Blackman; Craine; Davis and Moore; Foucault; Gans; Lister et al;
\n\n", - "page_idx": 30 - }, - { - "type": "table", - "img_path": "images/4455381b2fbf75083032c447f74e00eb614d001c5844da9c1eba65d5895f4942.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuMarking guidanceTotal
marks
\n\n", - "page_idx": 30 - }, - { - "type": "table", - "img_path": "images/5a7a1c94ffa043eda2001b6172190504b8a24d78d7e700acc8146d3f6eded6fe.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
11Applying g material from Item G, analyse two reasons why some social groups aremore likely than others to experiencepoverty.10
\n\n", - "page_idx": 30 - }, - { - "type": "table", - "img_path": "images/ce792d0223b0a85857e57a466d8f57b4e961cb61a9864402e807a476cc5b85a9.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
ItemG
The values and attitudes of some members of the working class may lead to them accepting their position in society. Patriarchal values mean that females can be disadvantaged.
\n\n", - "page_idx": 30 - }, - { - "type": "table", - "img_path": "images/b9e00c253c4ddaaca4b11084d041c85e04ad1d96d4ea24950cd25a43d7ec48fb.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on two reasons why some social groups are more likely than others to experience poverty. There will be two developed applications of material from the item, eg that fatalistic attitudes poverty; that patriarchal values lead to social arrangements such as the unequal distribution of caring roles, contributing to the feminisation of poverty. There will be appropriate analysis/evaluation of two ways eg the extent to which the
4-7Answers in this band will show a basic to reasonable knowledge and understanding of one There will be some successful application of material from the item,eg that economic circumstances explain poverty better than attitudes. There will be some analysis/evaluation.
1-3Answers in this band will show limited knowledge and understanding of one or two criticisms of cultural explanations of poverty. There will be limited application of material from the item. Some material may be at a tangent to the question, eg definitions of poverty.
0There will be limited or no analysis/evaluation No relevant points.
\n\n", - "page_idx": 30 - }, - { - "type": "table", - "img_path": "images/8d0792d880249e96327ddab71c0eee7b6f2d2017578b6670ed7d0db6efa1712f.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Sources may include the following or other relevant ones:
\n\n", - "page_idx": 30 - }, - { - "type": "table", - "img_path": "images/e5b3dff80734ecddd947629d5cc23a025f426c7166cd0479ec9745186b298c15.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Baumberg, Bell and Gaffney; Blanden and Gibbons; Coates and Silburn; Field; Lewis; Marsland; Murray; Rutter and Madge; Shildrick et al.
\n\n", - "page_idx": 31 - }, - { - "type": "table", - "img_path": "images/a1e5a19ce69460fba767eb4e7e8335fc1017e4ee0fc136ba27b4e8371855efaa.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuTotal Marking guidance marks
\n\n", - "page_idx": 31 - }, - { - "type": "table", - "img_path": "images/84631ed4da7878f7e0faabadcf8321eba03cb390cbd3eb559a26b9bfe5ceb5bd.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
12Applying material from Item H and your knowledge, evaluate sociological explanations of the effects of worklessness on people's lives and life chances.20
\n\n", - "page_idx": 31 - }, - { - "type": "table", - "img_path": "images/237548171c785a0680e3e5887e5a7982d4f93eaedae1ff94f590d428d68076db.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
ItemH
aspects of social life and their life chances are diminished. There are others who do not work because
theyhavesufficientwealth. However, some sociologists argue that work is now less important as a source of identity and that
worklessnesshasbecomelesssignificant.
\n\n", - "page_idx": 31 - }, - { - "type": "table", - "img_path": "images/a3d31fcae2ce545786ff2e74ef0b0ce7a6a37b449d02dfec6ad0f8552d376b64.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
MarksLevel Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on sociological explanations of the significance of worklessness for people's lives and life chances. Sophisticated understanding of the question and of the presentedmaterialwillbeshown. the question. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for example throughthe debatesbetween different explanations of the relationshipbetween worklessness and people's lives and life chances (eg Marxism, postmodernism, feminism).
13-16Analysis will show clear explanation. Appropriate conclusions will be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. maybeinadequatelyfocused.
9-12Some limited explicit evaluation, eg discussion of the significance of worklessness for different life chances and/or some appropriate analysis, eg clear explanations of some of the presented material. Answers in this band will show largely accurate knowledge but limited range and depth, eg broadly accurate, if basic, account of some types of worklessness. Understands some
\n\n", - "page_idx": 31 - }, - { - "type": "table", - "img_path": "images/dead323be217495cd3c88eacebe981ff673fe793388876d9e3ca03e9ac36eda0.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
material. Applying listed material from the general topic area but with limited regard for its relevance
5-8Answers in this band will show limited undeveloped knowledge, eg two or three insubstantial points about worklessness. Understands only limited aspects of the question; simplistic understandingof thepresentedmaterial. the question.
1-4points about worklessness in general. Very little/no understanding of the question and of the presentedmaterial. Significant errors and/or omissions in application of material.
0Noanalysisorevaluation. No relevant points.
\n\n", - "page_idx": 32 - }, - { - "type": "text", - "text": "Indicative content ", - "text_level": 1, - "page_idx": 32 - }, - { - "type": "text", - "text": "Concepts and issues such as the following may appear: ", - "page_idx": 32 - }, - { - "type": "text", - "text": "unemployment; underemployment; economically active; claimant count; retirement; disability; poverty; \nlabour market; NEETs; deindustrialisation; marginalisation; disengagement theory; stigmatisation; \nstereotype; repression; social exclusion; consumer society; reserve army of labour; alienation; anomie. ", - "page_idx": 32 - }, - { - "type": "text", - "text": "Sources may include the following or other relevant ones: ", - "text_level": 1, - "page_idx": 32 - }, - { - "type": "text", - "text": "Bauman; Craine; Cumming and Henry; Dahrendorf; Dorling; Durkheim; Fagin and Little; Garrod; Gini; Gulliford et al; Harper; Hockey and James; MacDonald, Sheldrake and Furlong; Marx; Riach and Loretto. ", - "page_idx": 32 - }, - { - "type": "text", - "text": "Section B Topic B1 Beliefs in Society ", - "text_level": 1, - "page_idx": 33 - }, - { - "type": "table", - "img_path": "images/e99ac2cacbbd4416eccaa25d65fb96aaa1a07f7761dda45e0c834ea5c84a5912.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuMarking guidanceTotal marks
\n\n", - "page_idx": 33 - }, - { - "type": "table", - "img_path": "images/acf6e0d167cdd52b1c7900d91bac6c371e269fe0d5ee504eda8decb1a62a7052.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
13Outline and explain two reasons why women are more likely than men to participate in NewAge movements.10
\n\n", - "page_idx": 33 - }, - { - "type": "table", - "img_path": "images/b383e158e5e26bf235d1404837b08d98e4f0d2e6799854bd0981cdb049f5a9e2.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two reasons There will be two applications of relevant material, eg women are more associated with gender roles encouraged by traditional religion. There will be appropriate analysis, eg the extent to which men may also participate in New Age movements.
4-7 s s movements. There will be one or two applications of relevant material, eg New Age movements appeal to expressive role of women rather than instrumental role of men. There will be some basic analysis.
1-3Answers in this band will show limited knowledge and little or no understanding of the question or the material. sects. Therewill be little or no analysis.
0No relevant points.
\n\n", - "page_idx": 33 - }, - { - "type": "text", - "text": "Indicative content ", - "text_level": 1, - "page_idx": 33 - }, - { - "type": "text", - "text": "Answers may include the following and/or other relevant points: ", - "page_idx": 33 - }, - { - "type": "text", - "text": "socialisation of women into expressive role \npatriarchal gender roles within traditional religion – loss of faith in traditional religion \nemphasis on personal experience \nemphasis on autonomy and authenticity \nwomen more likely to be in part-time employment/full-time carers \nwomen closer to nature and cycle of life/death ", - "page_idx": 33 - }, - { - "type": "text", - "text": "emphasis on celebrating nature and healing role of women higher status of traditional female qualities in New Age movements individual sphere of New Age movements. ", - "page_idx": 34 - }, - { - "type": "text", - "text": "Sources may include the following or other relevant ones: Armstrong; Brown; Bruce; Davie; \nDrane; El Saadawi; Greeley; Heelas; Heelas and Woodhead; Miller and Hoffman. ", - "page_idx": 34 - }, - { - "type": "table", - "img_path": "images/f5f29b2b6999000e28c6a859950601a4f8936875bc09b03a9030230b0cb23ff0.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuMarking guidanceTotal marks
\n\n", - "page_idx": 35 - }, - { - "type": "table", - "img_path": "images/c5bd056081be91f99ed528c82edae9ed45729b22a1fa7111546778ddfd709cd9.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
14Applying material from Item I, analyse two reasons why the extent of secularisation may have been exaggerated.10
\n\n", - "page_idx": 35 - }, - { - "type": "table", - "img_path": "images/e67b063f76718ec38a816a4e7f1b88fd510d1662954a90f7ec5fedb5da383a6b.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
ItemI
Secularisation theory explains the decline in religious participation across parts of Europe, but it does not explain why religion continues to be popular in other parts of the world. It also fails to recognise
that religion may be changing rather than declining.
The extent of secularisation may have been exaggerated.
\n\n", - "page_idx": 35 - }, - { - "type": "table", - "img_path": "images/a04761a11f424d03f003a88e279fdd440bcb64ac199a55e9e8e3875553b3c080.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on There will be two developed applications of material from the item, eg high levels of religion in countries such as the USA linked to supply and demand and the diversity of beliefs and practices that are on offer; apparent decline of traditional religion but change in the way people practice, believing without belonging. There will be appropriate analysis/evaluation of two ways, eg religious diversity not always
4-7leading to higher levels of religion; extent of belief without belonging. Answers in this band will show a basic to reasonable knowledge and understanding of one There will be some successful application of material from the item, eg religious belief now changing to a more spiritual focus.
1-3There will be some analysis/evaluation. Answers in this band will show limited knowledge and understanding of one or two reasons There will be limited application of material from the item. Some material may be at a There will be limited or no analysis/evaluation.
0No relevant points.
\n\n", - "page_idx": 35 - }, - { - "type": "table", - "img_path": "images/b22ed4ad640f5fa17e3c5f7855c639f8973ccc64f17aaa3d49753a9b8a89fccd.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Sources may include the following or other relevant ones: Berger; Bruce; Davie; Day; Finke; Gill
and Lundegarde; Hadaway; Heelas and Woodhead; Hervieu-Leger; Lyon; Norris and Inglehart; Stark andBainbridge;Vasquez;VoasandCrockett.
\n\n", - "page_idx": 35 - }, - { - "type": "table", - "img_path": "images/3a3690542caac254555a042e4374663554ac52ef4ea53bde4c6fa599f1144b40.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuMarking guidanceTotal marks
\n\n", - "page_idx": 36 - }, - { - "type": "table", - "img_path": "images/73fb3c29e7b45cd42cd14f6d86a3d63b94e5dff735042380f80541da50b7bef4.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
15Applying material from Item J and your knowledge, evaluate the view that religion acts as a force for social change.20
\n\n", - "page_idx": 36 - }, - { - "type": "table", - "img_path": "images/f84e42255018e4e1ee58a9483349c4e4fc1741072447f7b535528cbab5130616.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
ItemJ
Some sociologists argue that religion acts as a force for social change. It can be used to challenge mainstream beliefs and values, and inspire protest against the existing social order.
However, other sociologists suggest that the relationship between religion and social change is not straightforward and that religion can even prevent social change.
\n\n", - "page_idx": 36 - }, - { - "type": "table", - "img_path": "images/5499b5568a18706df7153b5fc42cf17d2b3e05ada08cc16da1dd87d1ff0a924f.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
MarksLevelDescriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of the question. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for
13-16Answers in this band will show largely accurate, broad or deep but incomplete knowledge. presentedmaterial. maybeinadequatelyfocused.
9-12broadly accurate, if basic, account of some aspects of religion acting as a force for social change. Understands some limited but significant aspects of the question; superficial understanding of the presented material. Applying listed material from the general topic area but with limited regard for its relevance Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
\n\n", - "page_idx": 36 - }, - { - "type": "table", - "img_path": "images/da54f83fff84d051ea8e0c164e51ac833ad0c51e7ab752969b1744e1288fb4b0.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
5-8the question; simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question.
1-4points about religion in general. Very little/no understanding of the question and of the presentedmaterial. Significant errors and/or omissions in application of material. No analysis or evaluation.
0No relevant points.
\n\n", - "page_idx": 37 - }, - { - "type": "text", - "text": "Indicative content ", - "text_level": 1, - "page_idx": 37 - }, - { - "type": "text", - "text": "Concepts and issues such as the following may appear: ", - "page_idx": 37 - }, - { - "type": "text", - "text": "religion as an ideological resource; hegemony; counter hegemony; organic intellectuals; principle of hope; millenarian movements; cargo cults; Liberation Theology; religious feminism; religious fundamentalism; televangelism; the spirit of capitalism; religion as a conservative force; traditional beliefs and values; stabilising society; conservative beliefs; patriarchal ideology; bourgeois ideology. ", - "page_idx": 37 - }, - { - "type": "text", - "text": "Sources may include the following or other relevant ones: Armstrong; Billings; Bruce; Brusco; \nCasanova; Durkheim; El Saadawi; Gramsci; Maduro; Marx; Lowy; Weber; Woodhead; Worsley. ", - "page_idx": 37 - }, - { - "type": "text", - "text": "Topic B2 Global Development ", - "text_level": 1, - "page_idx": 38 - }, - { - "type": "table", - "img_path": "images/c2589e5233afc89a68ae3e99361c8bc67b18b4c52959ee3355787fb49f203e54.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuMarking guidanceTotal marks
\n\n", - "page_idx": 38 - }, - { - "type": "table", - "img_path": "images/ade7e9731efd8f759ef3d051cc9eaa8c8270cbcb8eaf2086af3e72dbae7b9218.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
16Outline and explain two ways in which development can lead to demographic changes.10
\n\n", - "page_idx": 38 - }, - { - "type": "table", - "img_path": "images/be69e4743723914676bf9c8fb17da3c207677c18d16e2f17f9131327503ac48c.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
MarksLevel Descriptors
8-10ways in which development can lead to demographic changes. There will be two applications of relevant material, eg development can lead to the
4-7Answers in this band will show a reasonable to good knowledge and understanding of one There will be one or two applications of relevant material, eg women may have fewer children.
1-3There will be some basic analysis Answers in this band will show limited knowledge and litle or no understanding of the questionor the material. There will be limited focus on the question, eg there may be some drift into discussion of demography in general.
0There will be little or no analysis. No relevant points.
\n\n", - "page_idx": 38 - }, - { - "type": "text", - "text": "Indicative content ", - "text_level": 1, - "page_idx": 38 - }, - { - "type": "text", - "text": "Answers may include the following and/or other relevant points: ", - "page_idx": 38 - }, - { - "type": "text", - "text": "• the demographic transition \nfalling birth rates falling mortality rates increase in life expectancy \nlower fertility rates smaller family sizes changing age structure – ageing population increased migration. ", - "page_idx": 38 - }, - { - "type": "table", - "img_path": "images/1868b0f7f5adc1b457a29e7424ca0ef12fe0ffdbb4a6094c446d20bf365ee948.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Sources may include the following or other relevant ones:
Adamson; Chrispin and Jegede; Cohen and Kennedy; Eberstadt; Ehrlich; Harrison; Hewitt and Smith;
Kaplan;Malthus;Richards;Robeyetal;Rosling;Webster.
\n\n", - "page_idx": 39 - }, - { - "type": "table", - "img_path": "images/bf29b48f606c3a93f30f58fef3c38a4a244bf121b8334b1719c700228d59c246.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuTotal Marking guidance marks
\n\n", - "page_idx": 39 - }, - { - "type": "table", - "img_path": "images/efbeae9d1a149e666a45cf7837d76f113e043d18544c3f31038b42a7bf617b20.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
17Applying material from Item K, analyse two ways in which development can affect gender inequalities.10
\n\n", - "page_idx": 39 - }, - { - "type": "table", - "img_path": "images/08e3760476341311f2bf4e9d2d5f5592291993d7ebd2ba9a6dd3fe323592d755.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
ItemK
Development can lead to new ways for previously exploited groups to improve their situation. It can also cause powerful groups tofeel threatened by changes and lead them toassert what are seen as traditionalattitudesandpractices.
Developmentcanaffectgenderinequalities
\n\n", - "page_idx": 39 - }, - { - "type": "table", - "img_path": "images/732f98332709676d006ed40595b5373c467477a7944247979387028951d6b31a.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on to a backlash reasserting patriarchal values. There will be appropriate analysis/evaluation of two ways eg of the extent to which
4-7Answers in this band will show a basic to reasonable knowledge and understanding of one There will be some successful application of material from the item, eg education for girls has led to greater employment opportunities. Therewill be some analysis/evaluation
1-3Answers in this band will show limited knowledge and understanding of one or two ways in which development can affect gender inequalities. There will be limited application of material from the item. Some material may be at a tangent to the question, eg there may be some drift into accounts of inequalities in general.
0There will be limited or no analysis/evaluation. No relevant points.
\n\n", - "page_idx": 39 - }, - { - "type": "table", - "img_path": "images/9d53cc0dddc812921e754b39051fe0f48b21572d7429f81747b8b659a0f6cd38.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Sources may include the following or other relevant ones:
Boserup; Cohen and Kennedy; Ehrenreich and Hochschild; Foster-Carter; Hunt; Leonard; Mies; Pearson;Seager;Shiva;vanderGaag;VanZeijl.
\n\n", - "page_idx": 40 - }, - { - "type": "table", - "img_path": "images/eab7360e6f9761b763a2163f487a93b1ab3427620b24a85c049efd4dc81476bf.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuMarking guidanceTotal marks
\n\n", - "page_idx": 40 - }, - { - "type": "table", - "img_path": "images/765da57723cea137ebd3cdbeca39ceb342fd314d6a6c2b2fd5d8d52d200e1ba7.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
18Applying material from Item L and your knowledge, evaluate the view that aid is essentialfordevelopment.20
\n\n", - "page_idx": 40 - }, - { - "type": "text", - "text": "Item L ", - "text_level": 1, - "page_idx": 40 - }, - { - "type": "text", - "text": "According to some sociologists, aid is essential for development because it helps countries reach take-off and industrialise. ", - "page_idx": 40 - }, - { - "type": "text", - "text": "However, other sociologists are critical of aid and point out that many countries receiving aid have made little progress. Others argue that the real purpose of aid is to ensure a free market system that creates underdevelopment. ", - "page_idx": 40 - }, - { - "type": "table", - "img_path": "images/c7fe2087a442b4a35e64cfbfbdd1a00fdc64bb929eb6206595b048580accbee5.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Marks Level Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on the view that aid is essential for development. Sophisticated the question. example through a debatebetween dependency and modernisation or other theories.
13-16Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. Application of material is largely explicitly relevant to the question, though some material maybeinadequatelyfocused.
9-12Answers in this band will show largely accurate knowledge but limited range and depth, eg broadly accurate, if basic, account of some aid projects. Understands some limited but significant aspects of the question; superficial understanding of the presented material.
\n\n", - "page_idx": 40 - }, - { - "type": "table", - "img_path": "images/0f222e0c3a3a8e48c0dca02ea1d5bc1f677cba60e48bef756ede443ff7e59712.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
5-8Answers in this band will show limited undeveloped knowledge, eg two or three insubstantial points about aid. Understands only limited aspects of the question; simplistic understanding of thepresented material. the question.
1-4Very limited or no evaluation. Attempts at analysis, if any, are thin and disjointed. points about development in general. Very little/no understanding of the question and of the presented material. Significant errors and/or omissions in application of material. No analysis or evaluation.
0No relevant points.
\n\n", - "page_idx": 41 - }, - { - "type": "text", - "text": "Indicative content ", - "text_level": 1, - "page_idx": 41 - }, - { - "type": "text", - "text": "Concepts and issues such as the following may appear: ", - "page_idx": 41 - }, - { - "type": "text", - "text": "ODA (Official Development Assistance); NGOs; World Bank and International Monetary Fund; \nstructural adjustment programmes; multilateral and bilateral aid; emergency aid and development aid; \ntied aid and conditionality; grass roots development; dependency; modernisation; gender inequalities; \ntransparency and accountability; aid as imperialism; aid as business; debt; trade. ", - "page_idx": 41 - }, - { - "type": "text", - "text": "Sources may include the following or other relevant ones: ", - "text_level": 1, - "page_idx": 41 - }, - { - "type": "text", - "text": "Alibhai-Brown; Bauer; Calderisi; Collier; Easterley; Erixon; Hancock; Hayter; Moyo; Norberg; Riddell; \nSachs; Samura. ", - "page_idx": 41 - }, - { - "type": "text", - "text": "Topic B3 The Media ", - "text_level": 1, - "page_idx": 42 - }, - { - "type": "table", - "img_path": "images/f27fde3b1b1a7365df785eb3a8eba4e230dc8216442e34e1669711e9f8cc7dc1.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuMarking guidanceTotal marks
\n\n", - "page_idx": 42 - }, - { - "type": "table", - "img_path": "images/aa86ebbc4351743def5043d7f440789d1b0eea2dbd398a205cb0fe6cb7b1b15e.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
19Outline and explain two ways in which new media may have affected the selection and presentation of news.10
\n\n", - "page_idx": 42 - }, - { - "type": "table", - "img_path": "images/f88716d8f35322e9de9890b68dd4bdf46c84428f14c487a1e433871888c89e12.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two ways in which There will be two applications of relevant material, eg citizen journalism enables members of the public to report and spread news stories; news media have to provide more immediacy through instantaneous coverage of events.
4-7There will be appropriate analysis, eg of ways new media change news values. Answers in this band will show a reasonable to good knowledge and understanding of one or There will be one or two applications of relevant material, eg traditional news media have become more accountable because of audience responses using new media.
1-3Therewill besomebasic analysis Answers in this band will show limited knowledge and little or no understanding of the question or the material. There will be limited focus on the question, eg a drift into discussions of media in general.
0There will be little or no analysis. No relevant points.
\n\n", - "page_idx": 42 - }, - { - "type": "text", - "text": "Indicative content ", - "text_level": 1, - "page_idx": 42 - }, - { - "type": "text", - "text": "Answers may include the following and/or other relevant points: ", - "page_idx": 42 - }, - { - "type": "text", - "text": "• proliferation of fake news stories, lack of regulation \n• new media becoming the news eg a tweet by Trump \n• changes in the traditional news flow cycle \n• heightened accountability \n• participatory culture – news producers and consumers no longer have separate roles • citizen journalism – citizens more able to contribute eg uploading video footage • wider range of sources and of opinion on news, easily available \n• changes in news values eg greater emphasis on immediacy, celebrity. ", - "page_idx": 42 - }, - { - "type": "text", - "text": "Sources may include the following or other relevant ones: Bivens; Boyle; Curran and Seaton; Dutton and Blank; Itzoe; Jenkins; MacKinnon; McNair; Philo. ", - "page_idx": 42 - }, - { - "type": "table", - "img_path": "images/23d13ff65c06e2a162a7023252fe399505ed2a93efc52937a00a66ecfe717345.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuTotal Marking guidance marks
\n\n", - "page_idx": 43 - }, - { - "type": "table", - "img_path": "images/380c7251f5db1b38b7de13204a2c1ed816785c31ee3dcac64cfc71d00666cd42.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
20Applying material from Item M, analyse two ways in which media corporations may contribute to a growth in global culture.10
\n\n", - "page_idx": 43 - }, - { - "type": "table", - "img_path": "images/92dd1ef4bb7819f61c347a60580d2b049b96db363916c9e8f9aa499cd46d363f.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
ItemM
Media corporations have the power to produce images of lifestyles through which people form their identities. The wide reach of these corporations has led to local cultures becoming less important.
Media corporations may contribute to a growth in global culture.
\n\n", - "page_idx": 43 - }, - { - "type": "table", - "img_path": "images/f27c54012a3e068ddf6dfe5292394c58f2d5f64cb4419d71b23795e6d49a06e6.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on There will be two developed applications of material from the item, eg Western/American media spread an ideology of consumerism so that people around the world aspire to the same ideas, values and products; global brands are promoted and recognised around the world, weakening local cultures. There will be appropriate analysis/evaluation of two ways eg the extent to which local cultures absorb and transform external influences.
4-7Answers in this band will show a basic to reasonable knowledge and understanding of one There will be some successful application of material from the item eg the same media productsareavailablearoundtheworld. There will be some analysis/evaluation.
1-3Answers in this band will show limited knowledge and understanding of one or two ways in There will be limited application of material from the item. Some material may be at a tangent to the question, eg there may be some drift into accounts of media effects. There will be limited or no analysis/evaluation.
0No relevant points.
\n\n", - "page_idx": 43 - }, - { - "type": "table", - "img_path": "images/91a6157c946f87bd49705928014b650585c8b213caf3bae5a76d6a85e21cc70d.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Sources may include the following or other relevant ones:
Bagdikian; Baudrillard; Compaine; Fenton; Flew; Herman and Chomsky; Kellner; Putnam; Rosenau;
Schiller; Sklair; Strinati; Thompson;Thussu.
\n\n", - "page_idx": 43 - }, - { - "type": "table", - "img_path": "images/3c124a8d003a153f50d0748f0ffb9a81cf4de5c038df220259fc18c8c6c30cbb.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuTotal Marking guidance marks
\n\n", - "page_idx": 44 - }, - { - "type": "table", - "img_path": "images/a3f8b002bd534f99ca42c3ac374aed780d2fe8febff6faa1411d05f74b759546.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
21Applying material from Item N and your knowledge, evaluate the view that the mediareflect theviewsoftheiraudiences.20
\n\n", - "page_idx": 44 - }, - { - "type": "table", - "img_path": "images/71695cba0926fb8e18b5ca83714d8fb518d9341d74927afc183e09bdc4ba6452.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
ItemN
Some sociologists argue that audiences control media content through their choices as consumers. They claim that competitionbetween media for audiences means that owners and companies have limitedpowerovercontent.
However, other sociologists argue that those who own and work in the media control the content. This means that the content can be biased and reflect dominant ideologies.
\n\n", - "page_idx": 44 - }, - { - "type": "table", - "img_path": "images/ab9cec6f4d15ea7105a05678663c06b1b68a42c84abec958edf2c88851862f78.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
MarksLevel Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on the view that the media reflect the views of their audiences. Sophisticated understanding of the question and of the presented material will be shown. Appropriate material will be applied accurately and with sensitivity to the issues raised by the question. Analysisandevaluationwillbeexplicitandrelevant.Evaluationmaybedeveloped,for the media and their audiences (eg Marxism, pluralism, feminisms). Analysis will show clear
13-16explanation. Appropriate conclusions will be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. Application of material is largely explicitly relevant to the question, though some material maybeinadequatelyfocused. Some limited explicit evaluation, eg discussion of audiences for different media and/or some
9-12broadly accurate, if basic, account of some explanations of the relationship between the media and their audiences. Understands some limited but significant aspects of the question; superficial understanding of the presented material. Applying listed material from the general topic area but with limited regard for its relevance to the issues raised by the question, or applying a narrow range of more relevant material.
\n\n", - "page_idx": 44 - }, - { - "type": "table", - "img_path": "images/875bf0fea8370ba6e8fb904abacec294a6529d502d76c9d22d1c5c5f14052100.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
5-8insubstantial points about media audiences. Understands only limited aspects of the question; simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question. Very limited or no evaluation. Attempts at analysis, if any, are thin and disjointed.
1-4Answers in this band will show very limited knowledge, eg one or two very insubstantial points about the media.Very little/no understanding of the question and of the presented material. Significant errors and/or omissions in application of material.
0No analysisor evaluation. No relevant points.
\n\n", - "page_idx": 45 - }, - { - "type": "text", - "text": "Indicative content ", - "text_level": 1, - "page_idx": 45 - }, - { - "type": "text", - "text": "Concepts and issues such as the following may appear: ", - "page_idx": 45 - }, - { - "type": "text", - "text": "Pluralism; hegemonic Marxism/neo-Marxism; manipulative/instrumental Marxism; feminism; competition and choice; ideology; bias; media diversity; media conglomerates; agenda setting; propaganda model; active and passive audiences; uses and gratifications; cultural effects; reception analysis; hypodermic syringe model; two-step flow model. ", - "page_idx": 45 - }, - { - "type": "text", - "text": "Sources may include the following or other relevant ones: ", - "text_level": 1, - "page_idx": 45 - }, - { - "type": "text", - "text": "Bagdikian; Blumer and McQuail; Chomsky; Couldry et al; Curran; Davies; Edwards and Cromwell; \nFisk; Glasgow University Media Group; Hall; Herman and Chomsky; Katz and Lazarsfeld; McChesney; \nPhilo; Whale. ", - "page_idx": 45 - }, - { - "type": "table", - "img_path": "images/690ef40a1daa0c9bf686a527a40ce50a88774835c1a8fb4e7b21ab21506677f8.jpg", - "table_caption": [ - "Topic B4 Stratification and Differentiation " - ], - "table_footnote": [], - "table_body": "\n\n
QuTotal Marking guidance marks
\n\n", - "page_idx": 46 - }, - { - "type": "table", - "img_path": "images/e37b744bed7c009f693d603bc381ed255dffd0d144a1cd732b94dfad8c6d6f62.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
22Outline and explain two factors which may lead to some members of the working class achieving upward social mobility.10
\n\n", - "page_idx": 46 - }, - { - "type": "table", - "img_path": "images/e6f09d0fcb89f90fbfc54d3aedb95565639a271e152d92af5aaf5c3869129345.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two factors There will be two applications of relevant material, eg educational policies enable some occupations and structure may create opportunities for upward social mobility. There will be appropriate analysis, eg the extent to which there has been working class upward mobility.
4-7or two factors which may lead to some members of the working class achieving upward social mobility. being able to buy property. There will be some basic analysis.
1-3Answers in this band will show limited knowledge and little or no understanding of the question or the material. There will be limited focus on the question, eg there may be some drift into descriptions of class. Therewill be little or no analysis.
0No relevant points.
\n\n", - "page_idx": 46 - }, - { - "type": "text", - "text": "Indicative content ", - "text_level": 1, - "page_idx": 46 - }, - { - "type": "text", - "text": "Answers may include the following and/or other relevant points: ", - "page_idx": 46 - }, - { - "type": "text", - "text": "• meritocratic education –working class pupils can gain qualification positive discrimination policies e.g. university admissions parental aspirations \n• changes in the occupational structure \n• compensatory education \n• marrying up \n• acquisition of wealth e.g home ownership, shares ", - "page_idx": 46 - }, - { - "type": "table", - "img_path": "images/78ddbaa9ccc998e66ddfd77161b3d6a069381ea35725e09a04d8cd8286f6f64a.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Sources may include the following or other relevant ones:
Blanden et al; Davis and Moore; Dorling et al; Glass; Goldthorpe; Heath and Brittan; Marshall et al; McKnight; Payne; Roberts; Saunders; Savage; Sutton Trust.
\n\n", - "page_idx": 47 - }, - { - "type": "table", - "img_path": "images/4a1b81fb1a0b021ceffeea8c4878c63811eb563c5050040f4eb3441192a0e90f.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuMarking guidanceTotal marks
\n\n", - "page_idx": 47 - }, - { - "type": "table", - "img_path": "images/9636965f5fb4dfb8334931deb98b56a559bab425af1487df11c7950ebc0f6741.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
23Applying material from Item O, analyse two ways in which age may affect an individual'sstatus.10
\n\n", - "page_idx": 47 - }, - { - "type": "text", - "text": "Item O ", - "text_level": 1, - "page_idx": 47 - }, - { - "type": "text", - "text": "Sociologists have increasingly recognised age as a dimension of inequality. For example, young people do not have all the same rights that adults do. Many older people are no longer in paid employment. ", - "page_idx": 47 - }, - { - "type": "text", - "text": "Age may affect an individual’s status. ", - "page_idx": 47 - }, - { - "type": "table", - "img_path": "images/4fe3f4698edb80d949887e7c2c40d4b4317adf3598f1279b96bc621e7cc26c40.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on s There will be two developed applications of material from the item, eg for young people, not having the right to work full time reduces income and independence; for older people, There will be appropriate analysis/evaluation of two problems eg of the extent to which age
4-7Answers in this band will show a basic to reasonable knowledge and understanding of one or two ways in which age may affect an individual's status. There will be some successful application of material from the item, eg reduced income in old age.
1-3There will be some analysis/evaluation. Answers in this band will show limited knowledge and understanding of one or two ways in which age may affect an individual's status. There will be limited application of material from the item. Some material may be at a There will be limited or no analysis/evaluation.
0No relevant points.
\n\n", - "page_idx": 47 - }, - { - "type": "text", - "text": "Sources may include the following or other relevant ones: \nAbercrombie and Warde; Binner et al; Blaikie; Bradley; Bulman; Butler; Campbell; Davidson; Greengross; Pilcher; Ray et al; Scase and Scales. ", - "page_idx": 48 - }, - { - "type": "table", - "img_path": "images/49db5b12a9b6ba6e1bbf9a660a9db19aeaddb7bec8b02fbe782cd754558b0282.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuMarking guidanceTotal marks
\n\n", - "page_idx": 49 - }, - { - "type": "table", - "img_path": "images/cbc6558806f2536c1e0b9b6bf8fb2604146422ee7624cc80a16cd142a2d2733d.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Applying material from Item P and your knowledge, evaluate the view that gender is the most important dimension of inequality today.20
\n\n", - "page_idx": 49 - }, - { - "type": "table", - "img_path": "images/ffd495052bdd695fe3030a6a5961509cd9aa628a64036394dd98a0a414dccc07.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
ItemP
despite some improvements in the social position of women.
However, other sociologists see gender inequalities as natural and inevitable, or argue that other
dimensionsof inequalityaremoreimportant.
\n\n", - "page_idx": 49 - }, - { - "type": "table", - "img_path": "images/1173723369daf1967a89f48c1c1dfbe87aa7f6648202e2734095eba7c2f64998.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
MarksLevelDescriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of today. Sophisticated understanding of the question and of the presented material will be shown. Appropriate material will be applied accurately and with sensitivity to the issues raised by thequestion. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for example throughdebates over the relative importance ofgender compared toother dimensions of inequality such as ethnicity and social class. Analysis will show clear
13-16explanation. Appropriate conclusions will be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. maybe inadequatelyfocused.
9-12and/or some appropriate analysis, eg clear explanations of some of the presented material. Answers in this band will show largely accurate knowledge but limited range and depth, eg Applying listed material from the general topic area but with limited regard for its relevance isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
\n\n", - "page_idx": 49 - }, - { - "type": "table", - "img_path": "images/21c9f356353df5f7b79c2bd17506e9fd92099748181068c54b7706a0af544983.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
5-8insubstantial points about gender inequality today. Understands only limited aspects of the question; simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question. Very limited or no evaluation. Attempts at analysis, if any, are thin and disjointed.
1-4points about gender in general. Very little/no understanding of the question and of the presentedmaterial. Significant errors and/or omissions in application of material. No analysis or evaluation.
0No relevant points.
\n\n", - "page_idx": 50 - }, - { - "type": "text", - "text": "Indicative content ", - "text_level": 1, - "page_idx": 50 - }, - { - "type": "text", - "text": "Concepts and issues such as the following may appear: ", - "page_idx": 50 - }, - { - "type": "text", - "text": "Gender; feminisms; postfeminism; patriarchy; gender socialisation; discrimination; feminisation of poverty; expressive role; instrumental role; dual burden; triple shift; domestic division of labour; dual labour market; reserve army of labour; glass ceiling; genderquake; hegemonic femininity and hegemonic masculinity; crisis of masculinity; gender regimes. ", - "page_idx": 50 - }, - { - "type": "text", - "text": "Sources may include the following or other relevant ones: ", - "text_level": 1, - "page_idx": 50 - }, - { - "type": "text", - "text": "Ansley; Benston; Bradley; Bryson; Delamont; Delphy; Firestone; Hakim; Hills et al; Mead; Mirza; \nOakley; Ortner; Pilcher and Whelehan; Platt; Pollert; Sharpe; Walby. ", - "page_idx": 50 - }, - { - "type": "text", - "text": "Assessment objective grid ", - "text_level": 1, - "page_idx": 51 - }, - { - "type": "table", - "img_path": "images/e5537f035fca6930add3816101894a85161b96b31bc87a86e6cabd256a54399a.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
A01A02A03Total
Section A
Q01, Q04, Q07, Q1053210
Q02, Q05, Q08, Q1134310
Q03, Q06, Q09. Q1289920
Section B
Q13, Q16, Q19, Q2253210
Q14, Q17, Q20, Q2334310
Q15, Q18, Q21, Q2489920
Totals32262280
\n\n", - "page_idx": 51 - } -] \ No newline at end of file diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/7192_2_June_2020_1739552314_layout.pdf b/pdf_output/7192_2_June_2020_1739552314/auto/7192_2_June_2020_1739552314_layout.pdf deleted file mode 100644 index 0653c48aa8237bdbe52db158235719956cebd95c..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/7192_2_June_2020_1739552314_layout.pdf +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:048b79ddef21bc211fdaf1a2c33d9b6c5f2a9fefdcdd5d8c945a45c4cbfa7e02 -size 798530 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/7192_2_June_2020_1739552314_middle.json b/pdf_output/7192_2_June_2020_1739552314/auto/7192_2_June_2020_1739552314_middle.json deleted file mode 100644 index 9e0efcd9a8fb5492c3469728809a38b3bbea2fe3..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/7192_2_June_2020_1739552314_middle.json +++ /dev/null @@ -1,62082 +0,0 @@ -{ - "pdf_info": [ - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 43, - 110, - 188, - 175 - ], - "lines": [ - { - "bbox": [ - 44, - 112, - 130, - 136 - ], - "spans": [ - { - "bbox": [ - 44, - 112, - 130, - 136 - ], - "score": 1.0, - "content": "A-level", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 47, - 149, - 185, - 171 - ], - "spans": [ - { - "bbox": [ - 47, - 149, - 185, - 171 - ], - "score": 1.0, - "content": "SOCIOLOGY", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 44, - 183, - 238, - 201 - ], - "lines": [ - { - "bbox": [ - 44, - 184, - 237, - 202 - ], - "spans": [ - { - "bbox": [ - 44, - 184, - 237, - 202 - ], - "score": 1.0, - "content": "Paper 2 Topics in Sociology", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 45, - 232, - 185, - 250 - ], - "lines": [ - { - "bbox": [ - 45, - 235, - 184, - 249 - ], - "spans": [ - { - "bbox": [ - 45, - 235, - 184, - 249 - ], - "score": 1.0, - "content": "Tuesday 2 June 2020", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "title", - "bbox": [ - 275, - 233, - 340, - 250 - ], - "lines": [ - { - "bbox": [ - 275, - 233, - 341, - 251 - ], - "spans": [ - { - "bbox": [ - 275, - 233, - 341, - 251 - ], - "score": 1.0, - "content": "Afternoon", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 407, - 233, - 550, - 250 - ], - "lines": [ - { - "bbox": [ - 408, - 234, - 551, - 249 - ], - "spans": [ - { - "bbox": [ - 408, - 234, - 551, - 249 - ], - "score": 1.0, - "content": "Time allowed: 2 hours", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "title", - "bbox": [ - 44, - 263, - 98, - 275 - ], - "lines": [ - { - "bbox": [ - 45, - 263, - 98, - 276 - ], - "spans": [ - { - "bbox": [ - 45, - 263, - 98, - 276 - ], - "score": 1.0, - "content": "Materials", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 44, - 277, - 207, - 302 - ], - "lines": [ - { - "bbox": [ - 44, - 276, - 192, - 291 - ], - "spans": [ - { - "bbox": [ - 44, - 276, - 192, - 291 - ], - "score": 1.0, - "content": "For this paper you must have:", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 49, - 291, - 207, - 302 - ], - "spans": [ - { - "bbox": [ - 49, - 291, - 207, - 302 - ], - "score": 1.0, - "content": " an AQA 16-page answer book.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7.5 - }, - { - "type": "title", - "bbox": [ - 44, - 316, - 114, - 327 - ], - "lines": [ - { - "bbox": [ - 44, - 316, - 114, - 327 - ], - "spans": [ - { - "bbox": [ - 44, - 316, - 114, - 327 - ], - "score": 1.0, - "content": "Instructions", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 44, - 329, - 532, - 381 - ], - "lines": [ - { - "bbox": [ - 44, - 329, - 236, - 341 - ], - "spans": [ - { - "bbox": [ - 44, - 329, - 236, - 341 - ], - "score": 1.0, - "content": "• Use black ink or black ball-point pen.", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 45, - 342, - 531, - 354 - ], - "spans": [ - { - "bbox": [ - 45, - 342, - 531, - 354 - ], - "score": 1.0, - "content": "• Write the information required on the front of your answer book. The Paper Reference is 7192/2.", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 45, - 356, - 528, - 367 - ], - "spans": [ - { - "bbox": [ - 45, - 356, - 528, - 367 - ], - "score": 1.0, - "content": "• Answer all questions from one topic in Section A and all questions from one topic in Section B.", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 43, - 367, - 522, - 381 - ], - "spans": [ - { - "bbox": [ - 43, - 367, - 522, - 381 - ], - "score": 1.0, - "content": "• Do all rough work in your answer book. Cross through any work you do not want to be marked. ", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 11.5 - }, - { - "type": "title", - "bbox": [ - 44, - 393, - 112, - 405 - ], - "lines": [ - { - "bbox": [ - 44, - 393, - 112, - 405 - ], - "spans": [ - { - "bbox": [ - 44, - 393, - 112, - 405 - ], - "score": 1.0, - "content": "Information", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 44, - 407, - 309, - 498 - ], - "lines": [ - { - "bbox": [ - 49, - 407, - 288, - 419 - ], - "spans": [ - { - "bbox": [ - 49, - 407, - 288, - 419 - ], - "score": 1.0, - "content": " The marks for questions are shown in brackets.", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 46, - 420, - 251, - 432 - ], - "spans": [ - { - "bbox": [ - 46, - 420, - 251, - 432 - ], - "score": 1.0, - "content": "• The maximum mark for this paper is 80.", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 50, - 433, - 309, - 445 - ], - "spans": [ - { - "bbox": [ - 50, - 433, - 309, - 445 - ], - "score": 1.0, - "content": " Questions should be answered in continuous prose.", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 55, - 446, - 237, - 459 - ], - "spans": [ - { - "bbox": [ - 55, - 446, - 237, - 459 - ], - "score": 1.0, - "content": "You will be marked on your ability to:", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 80, - 460, - 166, - 471 - ], - "spans": [ - { - "bbox": [ - 80, - 460, - 166, - 471 - ], - "score": 1.0, - "content": "use good English", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 80, - 473, - 216, - 484 - ], - "spans": [ - { - "bbox": [ - 80, - 473, - 216, - 484 - ], - "score": 1.0, - "content": "organise information clearly", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 79, - 486, - 298, - 498 - ], - "spans": [ - { - "bbox": [ - 79, - 486, - 298, - 498 - ], - "score": 1.0, - "content": "use specialist vocabulary where appropriate.", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 18 - } - ], - "layout_bboxes": [], - "page_idx": 0, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 43, - 41, - 178, - 91 - ], - "lines": [ - { - "bbox": [ - 44, - 44, - 175, - 89 - ], - "spans": [ - { - "bbox": [ - 44, - 52, - 144, - 89 - ], - "score": 0.9810748100280762, - "content": "AQA", - "type": "text" - }, - { - "bbox": [ - 146, - 44, - 175, - 78 - ], - "score": 0.504779040813446, - "content": "-", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 44, - 820, - 91, - 828 - ], - "lines": [ - { - "bbox": [ - 45, - 821, - 92, - 828 - ], - "spans": [ - { - "bbox": [ - 45, - 821, - 92, - 828 - ], - "score": 1.0, - "content": "IB/M/Jun20/E9", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 478, - 806, - 543, - 827 - ], - "lines": [ - { - "bbox": [ - 478, - 807, - 543, - 826 - ], - "spans": [ - { - "bbox": [ - 478, - 807, - 543, - 826 - ], - "score": 1.0, - "content": "7192/2", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 43, - 110, - 188, - 175 - ], - "lines": [ - { - "bbox": [ - 44, - 112, - 130, - 136 - ], - "spans": [ - { - "bbox": [ - 44, - 112, - 130, - 136 - ], - "score": 1.0, - "content": "A-level", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 47, - 149, - 185, - 171 - ], - "spans": [ - { - "bbox": [ - 47, - 149, - 185, - 171 - ], - "score": 1.0, - "content": "SOCIOLOGY", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 44, - 183, - 238, - 201 - ], - "lines": [ - { - "bbox": [ - 44, - 184, - 237, - 202 - ], - "spans": [ - { - "bbox": [ - 44, - 184, - 237, - 202 - ], - "score": 1.0, - "content": "Paper 2 Topics in Sociology", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 44, - 184, - 237, - 202 - ] - }, - { - "type": "text", - "bbox": [ - 45, - 232, - 185, - 250 - ], - "lines": [ - { - "bbox": [ - 45, - 235, - 184, - 249 - ], - "spans": [ - { - "bbox": [ - 45, - 235, - 184, - 249 - ], - "score": 1.0, - "content": "Tuesday 2 June 2020", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 45, - 235, - 184, - 249 - ] - }, - { - "type": "title", - "bbox": [ - 275, - 233, - 340, - 250 - ], - "lines": [ - { - "bbox": [ - 275, - 233, - 341, - 251 - ], - "spans": [ - { - "bbox": [ - 275, - 233, - 341, - 251 - ], - "score": 1.0, - "content": "Afternoon", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 407, - 233, - 550, - 250 - ], - "lines": [ - { - "bbox": [ - 408, - 234, - 551, - 249 - ], - "spans": [ - { - "bbox": [ - 408, - 234, - 551, - 249 - ], - "score": 1.0, - "content": "Time allowed: 2 hours", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 408, - 234, - 551, - 249 - ] - }, - { - "type": "title", - "bbox": [ - 44, - 263, - 98, - 275 - ], - "lines": [ - { - "bbox": [ - 45, - 263, - 98, - 276 - ], - "spans": [ - { - "bbox": [ - 45, - 263, - 98, - 276 - ], - "score": 1.0, - "content": "Materials", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 44, - 277, - 207, - 302 - ], - "lines": [ - { - "bbox": [ - 44, - 276, - 192, - 291 - ], - "spans": [ - { - "bbox": [ - 44, - 276, - 192, - 291 - ], - "score": 1.0, - "content": "For this paper you must have:", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 49, - 291, - 207, - 302 - ], - "spans": [ - { - "bbox": [ - 49, - 291, - 207, - 302 - ], - "score": 1.0, - "content": " an AQA 16-page answer book.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7.5, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 44, - 276, - 207, - 302 - ] - }, - { - "type": "title", - "bbox": [ - 44, - 316, - 114, - 327 - ], - "lines": [ - { - "bbox": [ - 44, - 316, - 114, - 327 - ], - "spans": [ - { - "bbox": [ - 44, - 316, - 114, - 327 - ], - "score": 1.0, - "content": "Instructions", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 44, - 329, - 532, - 381 - ], - "lines": [ - { - "bbox": [ - 44, - 329, - 236, - 341 - ], - "spans": [ - { - "bbox": [ - 44, - 329, - 236, - 341 - ], - "score": 1.0, - "content": "• Use black ink or black ball-point pen.", - "type": "text" - } - ], - "index": 10, - "is_list_end_line": true - }, - { - "bbox": [ - 45, - 342, - 531, - 354 - ], - "spans": [ - { - "bbox": [ - 45, - 342, - 531, - 354 - ], - "score": 1.0, - "content": "• Write the information required on the front of your answer book. The Paper Reference is 7192/2.", - "type": "text" - } - ], - "index": 11, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 45, - 356, - 528, - 367 - ], - "spans": [ - { - "bbox": [ - 45, - 356, - 528, - 367 - ], - "score": 1.0, - "content": "• Answer all questions from one topic in Section A and all questions from one topic in Section B.", - "type": "text" - } - ], - "index": 12, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 43, - 367, - 522, - 381 - ], - "spans": [ - { - "bbox": [ - 43, - 367, - 522, - 381 - ], - "score": 1.0, - "content": "• Do all rough work in your answer book. Cross through any work you do not want to be marked. ", - "type": "text" - } - ], - "index": 13, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 11.5, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 43, - 329, - 531, - 381 - ] - }, - { - "type": "title", - "bbox": [ - 44, - 393, - 112, - 405 - ], - "lines": [ - { - "bbox": [ - 44, - 393, - 112, - 405 - ], - "spans": [ - { - "bbox": [ - 44, - 393, - 112, - 405 - ], - "score": 1.0, - "content": "Information", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 44, - 407, - 309, - 498 - ], - "lines": [ - { - "bbox": [ - 49, - 407, - 288, - 419 - ], - "spans": [ - { - "bbox": [ - 49, - 407, - 288, - 419 - ], - "score": 1.0, - "content": " The marks for questions are shown in brackets.", - "type": "text" - } - ], - "index": 15, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 46, - 420, - 251, - 432 - ], - "spans": [ - { - "bbox": [ - 46, - 420, - 251, - 432 - ], - "score": 1.0, - "content": "• The maximum mark for this paper is 80.", - "type": "text" - } - ], - "index": 16, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 50, - 433, - 309, - 445 - ], - "spans": [ - { - "bbox": [ - 50, - 433, - 309, - 445 - ], - "score": 1.0, - "content": " Questions should be answered in continuous prose.", - "type": "text" - } - ], - "index": 17, - "is_list_start_line": true - }, - { - "bbox": [ - 55, - 446, - 237, - 459 - ], - "spans": [ - { - "bbox": [ - 55, - 446, - 237, - 459 - ], - "score": 1.0, - "content": "You will be marked on your ability to:", - "type": "text" - } - ], - "index": 18, - "is_list_end_line": true - }, - { - "bbox": [ - 80, - 460, - 166, - 471 - ], - "spans": [ - { - "bbox": [ - 80, - 460, - 166, - 471 - ], - "score": 1.0, - "content": "use good English", - "type": "text" - } - ], - "index": 19, - "is_list_end_line": true - }, - { - "bbox": [ - 80, - 473, - 216, - 484 - ], - "spans": [ - { - "bbox": [ - 80, - 473, - 216, - 484 - ], - "score": 1.0, - "content": "organise information clearly", - "type": "text" - } - ], - "index": 20, - "is_list_end_line": true - }, - { - "bbox": [ - 79, - 486, - 298, - 498 - ], - "spans": [ - { - "bbox": [ - 79, - 486, - 298, - 498 - ], - "score": 1.0, - "content": "use specialist vocabulary where appropriate.", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 18, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 46, - 407, - 309, - 498 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 265, - 65, - 319, - 78 - ], - "lines": [ - { - "bbox": [ - 266, - 65, - 319, - 78 - ], - "spans": [ - { - "bbox": [ - 266, - 65, - 319, - 78 - ], - "score": 1.0, - "content": "Section A", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 99, - 91, - 482, - 105 - ], - "lines": [ - { - "bbox": [ - 101, - 91, - 482, - 104 - ], - "spans": [ - { - "bbox": [ - 101, - 91, - 482, - 104 - ], - "score": 1.0, - "content": "Choose one topic from this section and answer all the questions on that topic.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "title", - "bbox": [ - 213, - 126, - 371, - 140 - ], - "lines": [ - { - "bbox": [ - 213, - 127, - 371, - 140 - ], - "spans": [ - { - "bbox": [ - 213, - 127, - 371, - 140 - ], - "score": 1.0, - "content": "Topic A1 Culture and Identity", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 99, - 166, - 527, - 192 - ], - "lines": [ - { - "bbox": [ - 101, - 166, - 527, - 180 - ], - "spans": [ - { - "bbox": [ - 101, - 166, - 527, - 180 - ], - "score": 1.0, - "content": "Outline and explain two ways in which social class may have become less important in ", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 102, - 181, - 191, - 194 - ], - "spans": [ - { - "bbox": [ - 102, - 181, - 191, - 194 - ], - "score": 1.0, - "content": "shaping identities.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5 - }, - { - "type": "text", - "bbox": [ - 482, - 192, - 539, - 206 - ], - "lines": [ - { - "bbox": [ - 483, - 192, - 540, - 207 - ], - "spans": [ - { - "bbox": [ - 483, - 192, - 540, - 207 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 100, - 233, - 381, - 247 - ], - "lines": [ - { - "bbox": [ - 102, - 234, - 381, - 246 - ], - "spans": [ - { - "bbox": [ - 102, - 234, - 381, - 246 - ], - "score": 1.0, - "content": "Read Item A below and answer the question that follows.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "title", - "bbox": [ - 302, - 267, - 339, - 280 - ], - "lines": [ - { - "bbox": [ - 302, - 267, - 339, - 280 - ], - "spans": [ - { - "bbox": [ - 302, - 267, - 339, - 280 - ], - "score": 1.0, - "content": "Item A ", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 106, - 292, - 526, - 331 - ], - "lines": [ - { - "bbox": [ - 107, - 294, - 525, - 305 - ], - "spans": [ - { - "bbox": [ - 107, - 294, - 525, - 305 - ], - "score": 1.0, - "content": "Mass culture is usually seen as commercially produced by businesses for profit rather", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 107, - 307, - 524, - 319 - ], - "spans": [ - { - "bbox": [ - 107, - 307, - 524, - 319 - ], - "score": 1.0, - "content": "than being created by ordinary people or reflecting their experiences. Mass culture is", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 107, - 320, - 421, - 331 - ], - "spans": [ - { - "bbox": [ - 107, - 320, - 421, - 331 - ], - "score": 1.0, - "content": "also seen as oversimplified, requiring little thought or evaluation.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 106, - 343, - 307, - 357 - ], - "lines": [ - { - "bbox": [ - 107, - 344, - 307, - 356 - ], - "spans": [ - { - "bbox": [ - 107, - 344, - 307, - 356 - ], - "score": 1.0, - "content": "Mass culture may prevent social change.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 100, - 375, - 518, - 402 - ], - "lines": [ - { - "bbox": [ - 102, - 376, - 516, - 389 - ], - "spans": [ - { - "bbox": [ - 102, - 376, - 516, - 389 - ], - "score": 1.0, - "content": "Applying material from Item A, analyse two ways in which mass culture may prevent ", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 100, - 389, - 173, - 403 - ], - "spans": [ - { - "bbox": [ - 100, - 389, - 173, - 403 - ], - "score": 1.0, - "content": "social change.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 12.5 - }, - { - "type": "text", - "bbox": [ - 482, - 401, - 539, - 415 - ], - "lines": [ - { - "bbox": [ - 483, - 401, - 540, - 416 - ], - "spans": [ - { - "bbox": [ - 483, - 401, - 540, - 416 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 100, - 442, - 381, - 455 - ], - "lines": [ - { - "bbox": [ - 101, - 443, - 381, - 455 - ], - "spans": [ - { - "bbox": [ - 101, - 443, - 381, - 455 - ], - "score": 1.0, - "content": "Read Item B below and answer the question that follows.", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "title", - "bbox": [ - 302, - 475, - 338, - 488 - ], - "lines": [ - { - "bbox": [ - 302, - 476, - 339, - 488 - ], - "spans": [ - { - "bbox": [ - 302, - 476, - 339, - 488 - ], - "score": 1.0, - "content": "Item B ", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16 - }, - { - "type": "text", - "bbox": [ - 106, - 501, - 514, - 540 - ], - "lines": [ - { - "bbox": [ - 107, - 503, - 507, - 514 - ], - "spans": [ - { - "bbox": [ - 107, - 503, - 507, - 514 - ], - "score": 1.0, - "content": "Feminist sociologists often emphasise the ways in which the socialisation process ", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 107, - 516, - 514, - 527 - ], - "spans": [ - { - "bbox": [ - 107, - 516, - 514, - 527 - ], - "score": 1.0, - "content": "encourages people to conform to hegemonic masculine and feminine identities that ", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 106, - 528, - 206, - 541 - ], - "spans": [ - { - "bbox": [ - 106, - 528, - 206, - 541 - ], - "score": 1.0, - "content": "reinforce patriarchy.", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 18 - }, - { - "type": "text", - "bbox": [ - 107, - 552, - 517, - 578 - ], - "lines": [ - { - "bbox": [ - 107, - 552, - 515, - 565 - ], - "spans": [ - { - "bbox": [ - 107, - 552, - 515, - 565 - ], - "score": 1.0, - "content": "However, other sociologists have argued that people actively construct their gender ", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 107, - 566, - 435, - 578 - ], - "spans": [ - { - "bbox": [ - 107, - 566, - 435, - 578 - ], - "score": 1.0, - "content": "identities, and that gender identities have become much more fluid.", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 20.5 - }, - { - "type": "text", - "bbox": [ - 100, - 597, - 537, - 623 - ], - "lines": [ - { - "bbox": [ - 101, - 598, - 535, - 610 - ], - "spans": [ - { - "bbox": [ - 101, - 598, - 535, - 610 - ], - "score": 1.0, - "content": "Applying material from Item B and your knowledge, evaluate feminist views of the extent ", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 100, - 609, - 372, - 624 - ], - "spans": [ - { - "bbox": [ - 100, - 609, - 372, - 624 - ], - "score": 1.0, - "content": "to which the socialisation process reinforces patriarchy.", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 22.5 - } - ], - "layout_bboxes": [], - "page_idx": 1, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 44, - 820, - 104, - 828 - ], - "lines": [ - { - "bbox": [ - 44, - 821, - 105, - 828 - ], - "spans": [ - { - "bbox": [ - 44, - 821, - 105, - 828 - ], - "score": 1.0, - "content": "IB/M/Jun20/7192/2", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 44, - 439, - 87, - 457 - ], - "lines": [ - { - "bbox": [ - 51, - 443, - 80, - 454 - ], - "spans": [ - { - "bbox": [ - 51, - 443, - 60, - 454 - ], - "score": 1.0, - "content": "0", - "type": "text" - }, - { - "bbox": [ - 70, - 443, - 80, - 454 - ], - "score": 1.0, - "content": "3", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 44, - 230, - 87, - 249 - ], - "lines": [ - { - "bbox": [ - 51, - 234, - 80, - 245 - ], - "spans": [ - { - "bbox": [ - 51, - 235, - 60, - 244 - ], - "score": 1.0, - "content": "0", - "type": "text" - }, - { - "bbox": [ - 70, - 234, - 80, - 245 - ], - "score": 1.0, - "content": "2", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 288, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 287, - 28, - 297, - 42 - ], - "spans": [ - { - "bbox": [ - 287, - 28, - 297, - 42 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 44, - 163, - 87, - 182 - ], - "lines": [ - { - "bbox": [ - 51, - 168, - 79, - 177 - ], - "spans": [ - { - "bbox": [ - 51, - 168, - 59, - 177 - ], - "score": 1.0, - "content": "0", - "type": "text" - }, - { - "bbox": [ - 71, - 168, - 79, - 177 - ], - "score": 1.0, - "content": "1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 483, - 623, - 539, - 636 - ], - "lines": [ - { - "bbox": [ - 483, - 622, - 540, - 637 - ], - "spans": [ - { - "bbox": [ - 483, - 622, - 540, - 637 - ], - "score": 1.0, - "content": "[20 marks]", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 265, - 65, - 319, - 78 - ], - "lines": [ - { - "bbox": [ - 266, - 65, - 319, - 78 - ], - "spans": [ - { - "bbox": [ - 266, - 65, - 319, - 78 - ], - "score": 1.0, - "content": "Section A", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 99, - 91, - 482, - 105 - ], - "lines": [ - { - "bbox": [ - 101, - 91, - 482, - 104 - ], - "spans": [ - { - "bbox": [ - 101, - 91, - 482, - 104 - ], - "score": 1.0, - "content": "Choose one topic from this section and answer all the questions on that topic.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 101, - 91, - 482, - 104 - ] - }, - { - "type": "title", - "bbox": [ - 213, - 126, - 371, - 140 - ], - "lines": [ - { - "bbox": [ - 213, - 127, - 371, - 140 - ], - "spans": [ - { - "bbox": [ - 213, - 127, - 371, - 140 - ], - "score": 1.0, - "content": "Topic A1 Culture and Identity", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 99, - 166, - 527, - 192 - ], - "lines": [ - { - "bbox": [ - 101, - 166, - 527, - 180 - ], - "spans": [ - { - "bbox": [ - 101, - 166, - 527, - 180 - ], - "score": 1.0, - "content": "Outline and explain two ways in which social class may have become less important in ", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 102, - 181, - 191, - 194 - ], - "spans": [ - { - "bbox": [ - 102, - 181, - 191, - 194 - ], - "score": 1.0, - "content": "shaping identities.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 101, - 166, - 527, - 194 - ] - }, - { - "type": "text", - "bbox": [ - 482, - 192, - 539, - 206 - ], - "lines": [ - { - "bbox": [ - 483, - 192, - 540, - 207 - ], - "spans": [ - { - "bbox": [ - 483, - 192, - 540, - 207 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 483, - 192, - 540, - 207 - ] - }, - { - "type": "text", - "bbox": [ - 100, - 233, - 381, - 247 - ], - "lines": [ - { - "bbox": [ - 102, - 234, - 381, - 246 - ], - "spans": [ - { - "bbox": [ - 102, - 234, - 381, - 246 - ], - "score": 1.0, - "content": "Read Item A below and answer the question that follows.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 102, - 234, - 381, - 246 - ] - }, - { - "type": "title", - "bbox": [ - 302, - 267, - 339, - 280 - ], - "lines": [ - { - "bbox": [ - 302, - 267, - 339, - 280 - ], - "spans": [ - { - "bbox": [ - 302, - 267, - 339, - 280 - ], - "score": 1.0, - "content": "Item A ", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 106, - 292, - 526, - 331 - ], - "lines": [ - { - "bbox": [ - 107, - 294, - 525, - 305 - ], - "spans": [ - { - "bbox": [ - 107, - 294, - 525, - 305 - ], - "score": 1.0, - "content": "Mass culture is usually seen as commercially produced by businesses for profit rather", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 107, - 307, - 524, - 319 - ], - "spans": [ - { - "bbox": [ - 107, - 307, - 524, - 319 - ], - "score": 1.0, - "content": "than being created by ordinary people or reflecting their experiences. Mass culture is", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 107, - 320, - 421, - 331 - ], - "spans": [ - { - "bbox": [ - 107, - 320, - 421, - 331 - ], - "score": 1.0, - "content": "also seen as oversimplified, requiring little thought or evaluation.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 107, - 294, - 525, - 331 - ] - }, - { - "type": "text", - "bbox": [ - 106, - 343, - 307, - 357 - ], - "lines": [ - { - "bbox": [ - 107, - 344, - 307, - 356 - ], - "spans": [ - { - "bbox": [ - 107, - 344, - 307, - 356 - ], - "score": 1.0, - "content": "Mass culture may prevent social change.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 107, - 344, - 307, - 356 - ] - }, - { - "type": "text", - "bbox": [ - 100, - 375, - 518, - 402 - ], - "lines": [ - { - "bbox": [ - 102, - 376, - 516, - 389 - ], - "spans": [ - { - "bbox": [ - 102, - 376, - 516, - 389 - ], - "score": 1.0, - "content": "Applying material from Item A, analyse two ways in which mass culture may prevent ", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 100, - 389, - 173, - 403 - ], - "spans": [ - { - "bbox": [ - 100, - 389, - 173, - 403 - ], - "score": 1.0, - "content": "social change.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 12.5, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 100, - 376, - 516, - 403 - ] - }, - { - "type": "text", - "bbox": [ - 482, - 401, - 539, - 415 - ], - "lines": [ - { - "bbox": [ - 483, - 401, - 540, - 416 - ], - "spans": [ - { - "bbox": [ - 483, - 401, - 540, - 416 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 483, - 401, - 540, - 416 - ] - }, - { - "type": "text", - "bbox": [ - 100, - 442, - 381, - 455 - ], - "lines": [ - { - "bbox": [ - 101, - 443, - 381, - 455 - ], - "spans": [ - { - "bbox": [ - 101, - 443, - 381, - 455 - ], - "score": 1.0, - "content": "Read Item B below and answer the question that follows.", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 101, - 443, - 381, - 455 - ] - }, - { - "type": "title", - "bbox": [ - 302, - 475, - 338, - 488 - ], - "lines": [ - { - "bbox": [ - 302, - 476, - 339, - 488 - ], - "spans": [ - { - "bbox": [ - 302, - 476, - 339, - 488 - ], - "score": 1.0, - "content": "Item B ", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 106, - 501, - 514, - 540 - ], - "lines": [ - { - "bbox": [ - 107, - 503, - 507, - 514 - ], - "spans": [ - { - "bbox": [ - 107, - 503, - 507, - 514 - ], - "score": 1.0, - "content": "Feminist sociologists often emphasise the ways in which the socialisation process ", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 107, - 516, - 514, - 527 - ], - "spans": [ - { - "bbox": [ - 107, - 516, - 514, - 527 - ], - "score": 1.0, - "content": "encourages people to conform to hegemonic masculine and feminine identities that ", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 106, - 528, - 206, - 541 - ], - "spans": [ - { - "bbox": [ - 106, - 528, - 206, - 541 - ], - "score": 1.0, - "content": "reinforce patriarchy.", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 18, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 106, - 503, - 514, - 541 - ] - }, - { - "type": "text", - "bbox": [ - 107, - 552, - 517, - 578 - ], - "lines": [ - { - "bbox": [ - 107, - 552, - 515, - 565 - ], - "spans": [ - { - "bbox": [ - 107, - 552, - 515, - 565 - ], - "score": 1.0, - "content": "However, other sociologists have argued that people actively construct their gender ", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 107, - 566, - 435, - 578 - ], - "spans": [ - { - "bbox": [ - 107, - 566, - 435, - 578 - ], - "score": 1.0, - "content": "identities, and that gender identities have become much more fluid.", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 20.5, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 107, - 552, - 515, - 578 - ] - }, - { - "type": "text", - "bbox": [ - 100, - 597, - 537, - 623 - ], - "lines": [ - { - "bbox": [ - 101, - 598, - 535, - 610 - ], - "spans": [ - { - "bbox": [ - 101, - 598, - 535, - 610 - ], - "score": 1.0, - "content": "Applying material from Item B and your knowledge, evaluate feminist views of the extent ", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 100, - 609, - 372, - 624 - ], - "spans": [ - { - "bbox": [ - 100, - 609, - 372, - 624 - ], - "score": 1.0, - "content": "to which the socialisation process reinforces patriarchy.", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 22.5, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 100, - 598, - 535, - 624 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 199, - 65, - 385, - 79 - ], - "lines": [ - { - "bbox": [ - 199, - 66, - 385, - 78 - ], - "spans": [ - { - "bbox": [ - 199, - 66, - 385, - 78 - ], - "score": 1.0, - "content": "Topic A2 Families and Households", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 100, - 102, - 495, - 129 - ], - "lines": [ - { - "bbox": [ - 101, - 103, - 494, - 116 - ], - "spans": [ - { - "bbox": [ - 101, - 103, - 494, - 116 - ], - "score": 1.0, - "content": "Outline and explain two ways in which changing childbearing patterns may have", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 101, - 116, - 458, - 128 - ], - "spans": [ - { - "bbox": [ - 101, - 116, - 458, - 128 - ], - "score": 1.0, - "content": "influenced gender roles and relationships within families and households.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5 - }, - { - "type": "text", - "bbox": [ - 482, - 129, - 539, - 143 - ], - "lines": [ - { - "bbox": [ - 483, - 129, - 540, - 143 - ], - "spans": [ - { - "bbox": [ - 483, - 129, - 540, - 143 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 100, - 170, - 381, - 183 - ], - "lines": [ - { - "bbox": [ - 102, - 172, - 381, - 182 - ], - "spans": [ - { - "bbox": [ - 102, - 172, - 381, - 182 - ], - "score": 1.0, - "content": "Read Item C below and answer the question that follows.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "title", - "bbox": [ - 302, - 203, - 338, - 215 - ], - "lines": [ - { - "bbox": [ - 302, - 203, - 338, - 216 - ], - "spans": [ - { - "bbox": [ - 302, - 203, - 338, - 216 - ], - "score": 1.0, - "content": "Item C", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 106, - 228, - 529, - 268 - ], - "lines": [ - { - "bbox": [ - 107, - 229, - 510, - 242 - ], - "spans": [ - { - "bbox": [ - 107, - 229, - 510, - 242 - ], - "score": 1.0, - "content": "Globalisation involves the growing inter-connectedness between countries through", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 107, - 243, - 528, - 255 - ], - "spans": [ - { - "bbox": [ - 107, - 243, - 528, - 255 - ], - "score": 1.0, - "content": "increased travel opportunities. It enables more freedom of choice in terms of lifestyles", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 107, - 257, - 238, - 268 - ], - "spans": [ - { - "bbox": [ - 107, - 257, - 238, - 268 - ], - "score": 1.0, - "content": "and personal relationships.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 106, - 281, - 367, - 294 - ], - "lines": [ - { - "bbox": [ - 108, - 282, - 366, - 294 - ], - "spans": [ - { - "bbox": [ - 108, - 282, - 366, - 294 - ], - "score": 1.0, - "content": "Globalisation may influence families and households.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 101, - 313, - 522, - 339 - ], - "lines": [ - { - "bbox": [ - 102, - 314, - 521, - 327 - ], - "spans": [ - { - "bbox": [ - 102, - 314, - 521, - 327 - ], - "score": 1.0, - "content": "Applying material from Item C, analyse two ways in which globalisation may influence", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 101, - 328, - 223, - 338 - ], - "spans": [ - { - "bbox": [ - 101, - 328, - 223, - 338 - ], - "score": 1.0, - "content": "families and households.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5 - }, - { - "type": "text", - "bbox": [ - 482, - 339, - 539, - 353 - ], - "lines": [ - { - "bbox": [ - 483, - 339, - 540, - 353 - ], - "spans": [ - { - "bbox": [ - 483, - 339, - 540, - 353 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 100, - 380, - 381, - 394 - ], - "lines": [ - { - "bbox": [ - 102, - 382, - 380, - 393 - ], - "spans": [ - { - "bbox": [ - 102, - 382, - 380, - 393 - ], - "score": 1.0, - "content": "Read Item D below and answer the question that follows.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "title", - "bbox": [ - 302, - 413, - 338, - 426 - ], - "lines": [ - { - "bbox": [ - 302, - 414, - 338, - 426 - ], - "spans": [ - { - "bbox": [ - 302, - 414, - 338, - 426 - ], - "score": 1.0, - "content": "Item D", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 106, - 439, - 525, - 492 - ], - "lines": [ - { - "bbox": [ - 108, - 441, - 513, - 452 - ], - "spans": [ - { - "bbox": [ - 108, - 441, - 513, - 452 - ], - "score": 1.0, - "content": "Some sociologists argue that UK society has become more child-centred. Children", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 107, - 453, - 522, - 466 - ], - "spans": [ - { - "bbox": [ - 107, - 453, - 522, - 466 - ], - "score": 1.0, - "content": "today are more privileged than they have ever been. There are a large range of laws", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 106, - 466, - 523, - 479 - ], - "spans": [ - { - "bbox": [ - 106, - 466, - 523, - 479 - ], - "score": 1.0, - "content": "and policies in place to protect them and there is an increasing emphasis now placed ", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 107, - 479, - 203, - 492 - ], - "spans": [ - { - "bbox": [ - 107, - 479, - 203, - 492 - ], - "score": 1.0, - "content": "on children’s rights.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 16.5 - }, - { - "type": "text", - "bbox": [ - 106, - 504, - 529, - 531 - ], - "lines": [ - { - "bbox": [ - 107, - 505, - 526, - 518 - ], - "spans": [ - { - "bbox": [ - 107, - 505, - 526, - 518 - ], - "score": 1.0, - "content": "However, other sociologists argue that the extent of child-centredness is exaggerated,", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 107, - 519, - 436, - 531 - ], - "spans": [ - { - "bbox": [ - 107, - 519, - 436, - 531 - ], - "score": 1.0, - "content": "and that childhood can be a negative experience for some children.", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 19.5 - }, - { - "type": "text", - "bbox": [ - 100, - 550, - 519, - 576 - ], - "lines": [ - { - "bbox": [ - 102, - 551, - 519, - 563 - ], - "spans": [ - { - "bbox": [ - 102, - 551, - 519, - 563 - ], - "score": 1.0, - "content": "Applying material from Item D and your knowledge, evaluate the view that UK society", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 101, - 565, - 259, - 575 - ], - "spans": [ - { - "bbox": [ - 101, - 565, - 259, - 575 - ], - "score": 1.0, - "content": "has become more child-centred.", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 21.5 - }, - { - "type": "text", - "bbox": [ - 482, - 576, - 539, - 590 - ], - "lines": [ - { - "bbox": [ - 483, - 575, - 540, - 590 - ], - "spans": [ - { - "bbox": [ - 483, - 575, - 540, - 590 - ], - "score": 1.0, - "content": "[20 marks]", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 23 - }, - { - "type": "text", - "bbox": [ - 210, - 653, - 375, - 665 - ], - "lines": [ - { - "bbox": [ - 210, - 653, - 374, - 665 - ], - "spans": [ - { - "bbox": [ - 210, - 653, - 374, - 665 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 24 - } - ], - "index": 24 - }, - { - "type": "text", - "bbox": [ - 473, - 800, - 536, - 812 - ], - "lines": [ - { - "bbox": [ - 473, - 801, - 528, - 812 - ], - "spans": [ - { - "bbox": [ - 473, - 801, - 528, - 812 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ], - "index": 25 - } - ], - "index": 25 - } - ], - "layout_bboxes": [], - "page_idx": 2, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 44, - 377, - 87, - 395 - ], - "lines": [ - { - "bbox": [ - 51, - 381, - 80, - 392 - ], - "spans": [ - { - "bbox": [ - 51, - 382, - 60, - 391 - ], - "score": 1.0, - "content": "0", - "type": "text" - }, - { - "bbox": [ - 72, - 381, - 80, - 392 - ], - "score": 1.0, - "content": "6", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 44, - 102, - 87, - 120 - ], - "lines": [ - { - "bbox": [ - 51, - 106, - 80, - 116 - ], - "spans": [ - { - "bbox": [ - 51, - 106, - 59, - 116 - ], - "score": 1.0, - "content": "0", - "type": "text" - }, - { - "bbox": [ - 71, - 106, - 80, - 116 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 44, - 167, - 87, - 185 - ], - "lines": [ - { - "bbox": [ - 51, - 171, - 80, - 181 - ], - "spans": [ - { - "bbox": [ - 51, - 171, - 60, - 181 - ], - "score": 1.0, - "content": "0", - "type": "text" - }, - { - "bbox": [ - 71, - 171, - 80, - 181 - ], - "score": 1.0, - "content": "5", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 44, - 820, - 104, - 828 - ], - "lines": [ - { - "bbox": [ - 44, - 821, - 105, - 828 - ], - "spans": [ - { - "bbox": [ - 44, - 821, - 105, - 828 - ], - "score": 1.0, - "content": "IB/M/Jun20/7192/2", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 288, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 287, - 28, - 297, - 41 - ], - "spans": [ - { - "bbox": [ - 287, - 28, - 297, - 41 - ], - "score": 1.0, - "content": "3 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 199, - 65, - 385, - 79 - ], - "lines": [ - { - "bbox": [ - 199, - 66, - 385, - 78 - ], - "spans": [ - { - "bbox": [ - 199, - 66, - 385, - 78 - ], - "score": 1.0, - "content": "Topic A2 Families and Households", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 100, - 102, - 495, - 129 - ], - "lines": [ - { - "bbox": [ - 101, - 103, - 494, - 116 - ], - "spans": [ - { - "bbox": [ - 101, - 103, - 494, - 116 - ], - "score": 1.0, - "content": "Outline and explain two ways in which changing childbearing patterns may have", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 101, - 116, - 458, - 128 - ], - "spans": [ - { - "bbox": [ - 101, - 116, - 458, - 128 - ], - "score": 1.0, - "content": "influenced gender roles and relationships within families and households.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 101, - 103, - 494, - 128 - ] - }, - { - "type": "text", - "bbox": [ - 482, - 129, - 539, - 143 - ], - "lines": [ - { - "bbox": [ - 483, - 129, - 540, - 143 - ], - "spans": [ - { - "bbox": [ - 483, - 129, - 540, - 143 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 483, - 129, - 540, - 143 - ] - }, - { - "type": "text", - "bbox": [ - 100, - 170, - 381, - 183 - ], - "lines": [ - { - "bbox": [ - 102, - 172, - 381, - 182 - ], - "spans": [ - { - "bbox": [ - 102, - 172, - 381, - 182 - ], - "score": 1.0, - "content": "Read Item C below and answer the question that follows.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 102, - 172, - 381, - 182 - ] - }, - { - "type": "title", - "bbox": [ - 302, - 203, - 338, - 215 - ], - "lines": [ - { - "bbox": [ - 302, - 203, - 338, - 216 - ], - "spans": [ - { - "bbox": [ - 302, - 203, - 338, - 216 - ], - "score": 1.0, - "content": "Item C", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 106, - 228, - 529, - 268 - ], - "lines": [ - { - "bbox": [ - 107, - 229, - 510, - 242 - ], - "spans": [ - { - "bbox": [ - 107, - 229, - 510, - 242 - ], - "score": 1.0, - "content": "Globalisation involves the growing inter-connectedness between countries through", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 107, - 243, - 528, - 255 - ], - "spans": [ - { - "bbox": [ - 107, - 243, - 528, - 255 - ], - "score": 1.0, - "content": "increased travel opportunities. It enables more freedom of choice in terms of lifestyles", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 107, - 257, - 238, - 268 - ], - "spans": [ - { - "bbox": [ - 107, - 257, - 238, - 268 - ], - "score": 1.0, - "content": "and personal relationships.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 107, - 229, - 528, - 268 - ] - }, - { - "type": "text", - "bbox": [ - 106, - 281, - 367, - 294 - ], - "lines": [ - { - "bbox": [ - 108, - 282, - 366, - 294 - ], - "spans": [ - { - "bbox": [ - 108, - 282, - 366, - 294 - ], - "score": 1.0, - "content": "Globalisation may influence families and households.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 108, - 282, - 366, - 294 - ] - }, - { - "type": "text", - "bbox": [ - 101, - 313, - 522, - 339 - ], - "lines": [ - { - "bbox": [ - 102, - 314, - 521, - 327 - ], - "spans": [ - { - "bbox": [ - 102, - 314, - 521, - 327 - ], - "score": 1.0, - "content": "Applying material from Item C, analyse two ways in which globalisation may influence", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 101, - 328, - 223, - 338 - ], - "spans": [ - { - "bbox": [ - 101, - 328, - 223, - 338 - ], - "score": 1.0, - "content": "families and households.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 101, - 314, - 521, - 338 - ] - }, - { - "type": "text", - "bbox": [ - 482, - 339, - 539, - 353 - ], - "lines": [ - { - "bbox": [ - 483, - 339, - 540, - 353 - ], - "spans": [ - { - "bbox": [ - 483, - 339, - 540, - 353 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 483, - 339, - 540, - 353 - ] - }, - { - "type": "text", - "bbox": [ - 100, - 380, - 381, - 394 - ], - "lines": [ - { - "bbox": [ - 102, - 382, - 380, - 393 - ], - "spans": [ - { - "bbox": [ - 102, - 382, - 380, - 393 - ], - "score": 1.0, - "content": "Read Item D below and answer the question that follows.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 102, - 382, - 380, - 393 - ] - }, - { - "type": "title", - "bbox": [ - 302, - 413, - 338, - 426 - ], - "lines": [ - { - "bbox": [ - 302, - 414, - 338, - 426 - ], - "spans": [ - { - "bbox": [ - 302, - 414, - 338, - 426 - ], - "score": 1.0, - "content": "Item D", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 106, - 439, - 525, - 492 - ], - "lines": [ - { - "bbox": [ - 108, - 441, - 513, - 452 - ], - "spans": [ - { - "bbox": [ - 108, - 441, - 513, - 452 - ], - "score": 1.0, - "content": "Some sociologists argue that UK society has become more child-centred. Children", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 107, - 453, - 522, - 466 - ], - "spans": [ - { - "bbox": [ - 107, - 453, - 522, - 466 - ], - "score": 1.0, - "content": "today are more privileged than they have ever been. There are a large range of laws", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 106, - 466, - 523, - 479 - ], - "spans": [ - { - "bbox": [ - 106, - 466, - 523, - 479 - ], - "score": 1.0, - "content": "and policies in place to protect them and there is an increasing emphasis now placed ", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 107, - 479, - 203, - 492 - ], - "spans": [ - { - "bbox": [ - 107, - 479, - 203, - 492 - ], - "score": 1.0, - "content": "on children’s rights.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 16.5, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 106, - 441, - 523, - 492 - ] - }, - { - "type": "text", - "bbox": [ - 106, - 504, - 529, - 531 - ], - "lines": [ - { - "bbox": [ - 107, - 505, - 526, - 518 - ], - "spans": [ - { - "bbox": [ - 107, - 505, - 526, - 518 - ], - "score": 1.0, - "content": "However, other sociologists argue that the extent of child-centredness is exaggerated,", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 107, - 519, - 436, - 531 - ], - "spans": [ - { - "bbox": [ - 107, - 519, - 436, - 531 - ], - "score": 1.0, - "content": "and that childhood can be a negative experience for some children.", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 19.5, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 107, - 505, - 526, - 531 - ] - }, - { - "type": "text", - "bbox": [ - 100, - 550, - 519, - 576 - ], - "lines": [ - { - "bbox": [ - 102, - 551, - 519, - 563 - ], - "spans": [ - { - "bbox": [ - 102, - 551, - 519, - 563 - ], - "score": 1.0, - "content": "Applying material from Item D and your knowledge, evaluate the view that UK society", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 101, - 565, - 259, - 575 - ], - "spans": [ - { - "bbox": [ - 101, - 565, - 259, - 575 - ], - "score": 1.0, - "content": "has become more child-centred.", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 21.5, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 101, - 551, - 519, - 575 - ] - }, - { - "type": "text", - "bbox": [ - 482, - 576, - 539, - 590 - ], - "lines": [ - { - "bbox": [ - 483, - 575, - 540, - 590 - ], - "spans": [ - { - "bbox": [ - 483, - 575, - 540, - 590 - ], - "score": 1.0, - "content": "[20 marks]", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 23, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 483, - 575, - 540, - 590 - ] - }, - { - "type": "text", - "bbox": [ - 210, - 653, - 375, - 665 - ], - "lines": [ - { - "bbox": [ - 210, - 653, - 374, - 665 - ], - "spans": [ - { - "bbox": [ - 210, - 653, - 374, - 665 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 24 - } - ], - "index": 24, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 210, - 653, - 374, - 665 - ] - }, - { - "type": "text", - "bbox": [ - 473, - 800, - 536, - 812 - ], - "lines": [ - { - "bbox": [ - 473, - 801, - 528, - 812 - ], - "spans": [ - { - "bbox": [ - 473, - 801, - 528, - 812 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ], - "index": 25 - } - ], - "index": 25, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 473, - 801, - 528, - 812 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 248, - 65, - 336, - 78 - ], - "lines": [ - { - "bbox": [ - 249, - 66, - 336, - 78 - ], - "spans": [ - { - "bbox": [ - 249, - 66, - 336, - 78 - ], - "score": 1.0, - "content": "Topic A3 Health", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 99, - 102, - 513, - 128 - ], - "lines": [ - { - "bbox": [ - 102, - 103, - 509, - 115 - ], - "spans": [ - { - "bbox": [ - 102, - 103, - 509, - 115 - ], - "score": 1.0, - "content": "Outline and explain two reasons for social class differences in consumer choices of", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 100, - 116, - 160, - 129 - ], - "spans": [ - { - "bbox": [ - 100, - 116, - 160, - 129 - ], - "score": 1.0, - "content": "health care.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5 - }, - { - "type": "text", - "bbox": [ - 482, - 129, - 539, - 143 - ], - "lines": [ - { - "bbox": [ - 482, - 128, - 540, - 143 - ], - "spans": [ - { - "bbox": [ - 482, - 128, - 540, - 143 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 100, - 170, - 381, - 183 - ], - "lines": [ - { - "bbox": [ - 102, - 171, - 380, - 182 - ], - "spans": [ - { - "bbox": [ - 102, - 171, - 380, - 182 - ], - "score": 1.0, - "content": "Read Item E below and answer the question that follows.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "title", - "bbox": [ - 303, - 203, - 338, - 215 - ], - "lines": [ - { - "bbox": [ - 302, - 203, - 339, - 216 - ], - "spans": [ - { - "bbox": [ - 302, - 203, - 339, - 216 - ], - "score": 1.0, - "content": "Item E ", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 106, - 228, - 529, - 280 - ], - "lines": [ - { - "bbox": [ - 107, - 229, - 515, - 242 - ], - "spans": [ - { - "bbox": [ - 107, - 229, - 515, - 242 - ], - "score": 1.0, - "content": "Black and other minority ethnic groups in the UK are more likely than the majority to", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 107, - 243, - 528, - 254 - ], - "spans": [ - { - "bbox": [ - 107, - 243, - 528, - 254 - ], - "score": 1.0, - "content": "experience low incomes and live in disadvantaged areas. The cultural values of these", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 107, - 255, - 502, - 267 - ], - "spans": [ - { - "bbox": [ - 107, - 255, - 502, - 267 - ], - "score": 1.0, - "content": "groups often prioritise support from the family and community rather than outside", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 105, - 268, - 149, - 281 - ], - "spans": [ - { - "bbox": [ - 105, - 268, - 149, - 281 - ], - "score": 1.0, - "content": "support.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 7.5 - }, - { - "type": "text", - "bbox": [ - 105, - 292, - 443, - 305 - ], - "lines": [ - { - "bbox": [ - 107, - 293, - 444, - 305 - ], - "spans": [ - { - "bbox": [ - 107, - 293, - 444, - 305 - ], - "score": 1.0, - "content": "There are inequalities between ethnic groups in their health chances.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 102, - 324, - 512, - 350 - ], - "lines": [ - { - "bbox": [ - 101, - 325, - 509, - 338 - ], - "spans": [ - { - "bbox": [ - 101, - 325, - 509, - 338 - ], - "score": 1.0, - "content": "Applying material from Item E, analyse two reasons for inequalities between ethnic ", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 101, - 339, - 252, - 350 - ], - "spans": [ - { - "bbox": [ - 101, - 339, - 252, - 350 - ], - "score": 1.0, - "content": "groups in their health chances.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11.5 - }, - { - "type": "text", - "bbox": [ - 482, - 350, - 539, - 364 - ], - "lines": [ - { - "bbox": [ - 482, - 349, - 540, - 365 - ], - "spans": [ - { - "bbox": [ - 482, - 349, - 540, - 365 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "text", - "bbox": [ - 100, - 391, - 380, - 404 - ], - "lines": [ - { - "bbox": [ - 101, - 392, - 380, - 403 - ], - "spans": [ - { - "bbox": [ - 101, - 392, - 380, - 403 - ], - "score": 1.0, - "content": "Read Item F below and answer the question that follows.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "title", - "bbox": [ - 303, - 424, - 337, - 437 - ], - "lines": [ - { - "bbox": [ - 303, - 425, - 338, - 437 - ], - "spans": [ - { - "bbox": [ - 303, - 425, - 338, - 437 - ], - "score": 1.0, - "content": "Item F", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "text", - "bbox": [ - 106, - 450, - 527, - 489 - ], - "lines": [ - { - "bbox": [ - 106, - 450, - 521, - 464 - ], - "spans": [ - { - "bbox": [ - 106, - 450, - 521, - 464 - ], - "score": 1.0, - "content": "Rates of mental illness vary between different social groups, such as those based on", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 107, - 464, - 526, - 476 - ], - "spans": [ - { - "bbox": [ - 107, - 464, - 526, - 476 - ], - "score": 1.0, - "content": "social class, gender and ethnicity. Some explanations of mental illness point to social", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 107, - 477, - 500, - 489 - ], - "spans": [ - { - "bbox": [ - 107, - 477, - 500, - 489 - ], - "score": 1.0, - "content": "issues such as racism, sexism, poor housing and poverty as contributing factors.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 17 - }, - { - "type": "text", - "bbox": [ - 106, - 501, - 529, - 528 - ], - "lines": [ - { - "bbox": [ - 107, - 502, - 528, - 514 - ], - "spans": [ - { - "bbox": [ - 107, - 502, - 528, - 514 - ], - "score": 1.0, - "content": "Others argue that mental illness is a label applied to deviant behaviour. Mental illness ", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 106, - 515, - 410, - 528 - ], - "spans": [ - { - "bbox": [ - 106, - 515, - 410, - 528 - ], - "score": 1.0, - "content": "is socially constructed through interpretations made by others.", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 19.5 - }, - { - "type": "text", - "bbox": [ - 100, - 546, - 538, - 573 - ], - "lines": [ - { - "bbox": [ - 102, - 547, - 535, - 560 - ], - "spans": [ - { - "bbox": [ - 102, - 547, - 535, - 560 - ], - "score": 1.0, - "content": "Applying material from Item F and your knowledge, evaluate sociological explanations of ", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 101, - 559, - 411, - 573 - ], - "spans": [ - { - "bbox": [ - 101, - 559, - 411, - 573 - ], - "score": 1.0, - "content": "the differences in rates of mental illness between social groups.", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 21.5 - }, - { - "type": "text", - "bbox": [ - 482, - 573, - 539, - 586 - ], - "lines": [ - { - "bbox": [ - 483, - 572, - 540, - 587 - ], - "spans": [ - { - "bbox": [ - 483, - 572, - 540, - 587 - ], - "score": 1.0, - "content": "[20 marks]", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 23 - } - ], - "layout_bboxes": [], - "page_idx": 3, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 44, - 166, - 87, - 185 - ], - "lines": [ - { - "bbox": [ - 51, - 170, - 80, - 181 - ], - "spans": [ - { - "bbox": [ - 51, - 171, - 60, - 181 - ], - "score": 1.0, - "content": "0", - "type": "text" - }, - { - "bbox": [ - 70, - 170, - 80, - 181 - ], - "score": 1.0, - "content": "8", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 44, - 820, - 104, - 828 - ], - "lines": [ - { - "bbox": [ - 44, - 821, - 104, - 828 - ], - "spans": [ - { - "bbox": [ - 44, - 821, - 104, - 828 - ], - "score": 1.0, - "content": "IB/M/Jun20/7192/2", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 44, - 388, - 87, - 406 - ], - "lines": [ - { - "bbox": [ - 51, - 392, - 79, - 402 - ], - "spans": [ - { - "bbox": [ - 51, - 393, - 60, - 402 - ], - "score": 1.0, - "content": "0", - "type": "text" - }, - { - "bbox": [ - 71, - 392, - 79, - 402 - ], - "score": 1.0, - "content": "9", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 44, - 101, - 87, - 120 - ], - "lines": [ - { - "bbox": [ - 52, - 106, - 79, - 116 - ], - "spans": [ - { - "bbox": [ - 52, - 107, - 59, - 115 - ], - "score": 1.0, - "content": "0", - "type": "text" - }, - { - "bbox": [ - 71, - 106, - 79, - 116 - ], - "score": 1.0, - "content": "7", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 288, - 29, - 295, - 39 - ], - "lines": [ - { - "bbox": [ - 287, - 29, - 297, - 41 - ], - "spans": [ - { - "bbox": [ - 287, - 29, - 297, - 41 - ], - "score": 1.0, - "content": "4 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 248, - 65, - 336, - 78 - ], - "lines": [ - { - "bbox": [ - 249, - 66, - 336, - 78 - ], - "spans": [ - { - "bbox": [ - 249, - 66, - 336, - 78 - ], - "score": 1.0, - "content": "Topic A3 Health", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 99, - 102, - 513, - 128 - ], - "lines": [ - { - "bbox": [ - 102, - 103, - 509, - 115 - ], - "spans": [ - { - "bbox": [ - 102, - 103, - 509, - 115 - ], - "score": 1.0, - "content": "Outline and explain two reasons for social class differences in consumer choices of", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 100, - 116, - 160, - 129 - ], - "spans": [ - { - "bbox": [ - 100, - 116, - 160, - 129 - ], - "score": 1.0, - "content": "health care.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 100, - 103, - 509, - 129 - ] - }, - { - "type": "text", - "bbox": [ - 482, - 129, - 539, - 143 - ], - "lines": [ - { - "bbox": [ - 482, - 128, - 540, - 143 - ], - "spans": [ - { - "bbox": [ - 482, - 128, - 540, - 143 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 482, - 128, - 540, - 143 - ] - }, - { - "type": "text", - "bbox": [ - 100, - 170, - 381, - 183 - ], - "lines": [ - { - "bbox": [ - 102, - 171, - 380, - 182 - ], - "spans": [ - { - "bbox": [ - 102, - 171, - 380, - 182 - ], - "score": 1.0, - "content": "Read Item E below and answer the question that follows.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 102, - 171, - 380, - 182 - ] - }, - { - "type": "title", - "bbox": [ - 303, - 203, - 338, - 215 - ], - "lines": [ - { - "bbox": [ - 302, - 203, - 339, - 216 - ], - "spans": [ - { - "bbox": [ - 302, - 203, - 339, - 216 - ], - "score": 1.0, - "content": "Item E ", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 106, - 228, - 529, - 280 - ], - "lines": [ - { - "bbox": [ - 107, - 229, - 515, - 242 - ], - "spans": [ - { - "bbox": [ - 107, - 229, - 515, - 242 - ], - "score": 1.0, - "content": "Black and other minority ethnic groups in the UK are more likely than the majority to", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 107, - 243, - 528, - 254 - ], - "spans": [ - { - "bbox": [ - 107, - 243, - 528, - 254 - ], - "score": 1.0, - "content": "experience low incomes and live in disadvantaged areas. The cultural values of these", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 107, - 255, - 502, - 267 - ], - "spans": [ - { - "bbox": [ - 107, - 255, - 502, - 267 - ], - "score": 1.0, - "content": "groups often prioritise support from the family and community rather than outside", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 105, - 268, - 149, - 281 - ], - "spans": [ - { - "bbox": [ - 105, - 268, - 149, - 281 - ], - "score": 1.0, - "content": "support.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 7.5, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 105, - 229, - 528, - 281 - ] - }, - { - "type": "text", - "bbox": [ - 105, - 292, - 443, - 305 - ], - "lines": [ - { - "bbox": [ - 107, - 293, - 444, - 305 - ], - "spans": [ - { - "bbox": [ - 107, - 293, - 444, - 305 - ], - "score": 1.0, - "content": "There are inequalities between ethnic groups in their health chances.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 107, - 293, - 444, - 305 - ] - }, - { - "type": "text", - "bbox": [ - 102, - 324, - 512, - 350 - ], - "lines": [ - { - "bbox": [ - 101, - 325, - 509, - 338 - ], - "spans": [ - { - "bbox": [ - 101, - 325, - 509, - 338 - ], - "score": 1.0, - "content": "Applying material from Item E, analyse two reasons for inequalities between ethnic ", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 101, - 339, - 252, - 350 - ], - "spans": [ - { - "bbox": [ - 101, - 339, - 252, - 350 - ], - "score": 1.0, - "content": "groups in their health chances.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11.5, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 101, - 325, - 509, - 350 - ] - }, - { - "type": "text", - "bbox": [ - 482, - 350, - 539, - 364 - ], - "lines": [ - { - "bbox": [ - 482, - 349, - 540, - 365 - ], - "spans": [ - { - "bbox": [ - 482, - 349, - 540, - 365 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 482, - 349, - 540, - 365 - ] - }, - { - "type": "text", - "bbox": [ - 100, - 391, - 380, - 404 - ], - "lines": [ - { - "bbox": [ - 101, - 392, - 380, - 403 - ], - "spans": [ - { - "bbox": [ - 101, - 392, - 380, - 403 - ], - "score": 1.0, - "content": "Read Item F below and answer the question that follows.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 101, - 392, - 380, - 403 - ] - }, - { - "type": "title", - "bbox": [ - 303, - 424, - 337, - 437 - ], - "lines": [ - { - "bbox": [ - 303, - 425, - 338, - 437 - ], - "spans": [ - { - "bbox": [ - 303, - 425, - 338, - 437 - ], - "score": 1.0, - "content": "Item F", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 106, - 450, - 527, - 489 - ], - "lines": [ - { - "bbox": [ - 106, - 450, - 521, - 464 - ], - "spans": [ - { - "bbox": [ - 106, - 450, - 521, - 464 - ], - "score": 1.0, - "content": "Rates of mental illness vary between different social groups, such as those based on", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 107, - 464, - 526, - 476 - ], - "spans": [ - { - "bbox": [ - 107, - 464, - 526, - 476 - ], - "score": 1.0, - "content": "social class, gender and ethnicity. Some explanations of mental illness point to social", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 107, - 477, - 500, - 489 - ], - "spans": [ - { - "bbox": [ - 107, - 477, - 500, - 489 - ], - "score": 1.0, - "content": "issues such as racism, sexism, poor housing and poverty as contributing factors.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 17, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 106, - 450, - 526, - 489 - ] - }, - { - "type": "text", - "bbox": [ - 106, - 501, - 529, - 528 - ], - "lines": [ - { - "bbox": [ - 107, - 502, - 528, - 514 - ], - "spans": [ - { - "bbox": [ - 107, - 502, - 528, - 514 - ], - "score": 1.0, - "content": "Others argue that mental illness is a label applied to deviant behaviour. Mental illness ", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 106, - 515, - 410, - 528 - ], - "spans": [ - { - "bbox": [ - 106, - 515, - 410, - 528 - ], - "score": 1.0, - "content": "is socially constructed through interpretations made by others.", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 19.5, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 106, - 502, - 528, - 528 - ] - }, - { - "type": "text", - "bbox": [ - 100, - 546, - 538, - 573 - ], - "lines": [ - { - "bbox": [ - 102, - 547, - 535, - 560 - ], - "spans": [ - { - "bbox": [ - 102, - 547, - 535, - 560 - ], - "score": 1.0, - "content": "Applying material from Item F and your knowledge, evaluate sociological explanations of ", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 101, - 559, - 411, - 573 - ], - "spans": [ - { - "bbox": [ - 101, - 559, - 411, - 573 - ], - "score": 1.0, - "content": "the differences in rates of mental illness between social groups.", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 21.5, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 101, - 547, - 535, - 573 - ] - }, - { - "type": "text", - "bbox": [ - 482, - 573, - 539, - 586 - ], - "lines": [ - { - "bbox": [ - 483, - 572, - 540, - 587 - ], - "spans": [ - { - "bbox": [ - 483, - 572, - 540, - 587 - ], - "score": 1.0, - "content": "[20 marks]", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 23, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 483, - 572, - 540, - 587 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 195, - 65, - 389, - 79 - ], - "lines": [ - { - "bbox": [ - 196, - 66, - 389, - 78 - ], - "spans": [ - { - "bbox": [ - 196, - 66, - 389, - 78 - ], - "score": 1.0, - "content": "Topic A4 Work, Poverty and Welfare", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 98, - 102, - 537, - 129 - ], - "lines": [ - { - "bbox": [ - 101, - 102, - 536, - 116 - ], - "spans": [ - { - "bbox": [ - 101, - 102, - 536, - 116 - ], - "score": 1.0, - "content": "Outline and explain two ways in which government policies have affected the distribution ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 101, - 116, - 202, - 129 - ], - "spans": [ - { - "bbox": [ - 101, - 116, - 202, - 129 - ], - "score": 1.0, - "content": "of income in the UK.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5 - }, - { - "type": "text", - "bbox": [ - 482, - 129, - 539, - 143 - ], - "lines": [ - { - "bbox": [ - 482, - 128, - 540, - 143 - ], - "spans": [ - { - "bbox": [ - 482, - 128, - 540, - 143 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 100, - 170, - 382, - 183 - ], - "lines": [ - { - "bbox": [ - 102, - 171, - 382, - 182 - ], - "spans": [ - { - "bbox": [ - 102, - 171, - 382, - 182 - ], - "score": 1.0, - "content": "Read Item G below and answer the question that follows.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "title", - "bbox": [ - 301, - 203, - 339, - 216 - ], - "lines": [ - { - "bbox": [ - 301, - 204, - 339, - 215 - ], - "spans": [ - { - "bbox": [ - 301, - 204, - 339, - 215 - ], - "score": 1.0, - "content": "Item G", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 106, - 228, - 508, - 267 - ], - "lines": [ - { - "bbox": [ - 107, - 229, - 506, - 241 - ], - "spans": [ - { - "bbox": [ - 107, - 229, - 506, - 241 - ], - "score": 1.0, - "content": "The values and attitudes of some members of the working class may lead to them", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 107, - 243, - 497, - 254 - ], - "spans": [ - { - "bbox": [ - 107, - 243, - 497, - 254 - ], - "score": 1.0, - "content": "accepting their position in society. Patriarchal values mean that females can be", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 107, - 254, - 183, - 268 - ], - "spans": [ - { - "bbox": [ - 107, - 254, - 183, - 268 - ], - "score": 1.0, - "content": "disadvantaged.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 106, - 279, - 448, - 293 - ], - "lines": [ - { - "bbox": [ - 107, - 280, - 448, - 293 - ], - "spans": [ - { - "bbox": [ - 107, - 280, - 448, - 293 - ], - "score": 1.0, - "content": "Some social groups are more likely than others to experience poverty.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 101, - 311, - 527, - 338 - ], - "lines": [ - { - "bbox": [ - 102, - 312, - 526, - 325 - ], - "spans": [ - { - "bbox": [ - 102, - 312, - 526, - 325 - ], - "score": 1.0, - "content": "Applying material from Item G, analyse two reasons why some social groups are more", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 101, - 325, - 296, - 338 - ], - "spans": [ - { - "bbox": [ - 101, - 325, - 296, - 338 - ], - "score": 1.0, - "content": "likely than others to experience poverty.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5 - }, - { - "type": "text", - "bbox": [ - 482, - 337, - 539, - 351 - ], - "lines": [ - { - "bbox": [ - 483, - 336, - 540, - 352 - ], - "spans": [ - { - "bbox": [ - 483, - 336, - 540, - 352 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 100, - 378, - 381, - 392 - ], - "lines": [ - { - "bbox": [ - 102, - 380, - 381, - 390 - ], - "spans": [ - { - "bbox": [ - 102, - 380, - 381, - 390 - ], - "score": 1.0, - "content": "Read Item H below and answer the question that follows.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "title", - "bbox": [ - 302, - 411, - 338, - 424 - ], - "lines": [ - { - "bbox": [ - 302, - 412, - 339, - 424 - ], - "spans": [ - { - "bbox": [ - 302, - 412, - 339, - 424 - ], - "score": 1.0, - "content": "Item H ", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 106, - 437, - 524, - 488 - ], - "lines": [ - { - "bbox": [ - 106, - 437, - 523, - 451 - ], - "spans": [ - { - "bbox": [ - 106, - 437, - 523, - 451 - ], - "score": 1.0, - "content": "Worklessness affects retired people and those unable to work as well as unemployed", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 107, - 451, - 522, - 463 - ], - "spans": [ - { - "bbox": [ - 107, - 451, - 522, - 463 - ], - "score": 1.0, - "content": "people. People without work are more likely to be disadvantaged than those in work.", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 108, - 464, - 482, - 475 - ], - "spans": [ - { - "bbox": [ - 108, - 464, - 482, - 475 - ], - "score": 1.0, - "content": "They are excluded from some aspects of social life and their life chances are", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 108, - 476, - 514, - 488 - ], - "spans": [ - { - "bbox": [ - 108, - 476, - 514, - 488 - ], - "score": 1.0, - "content": "diminished. There are others who do not work because they have sufficient wealth.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 16.5 - }, - { - "type": "text", - "bbox": [ - 105, - 501, - 504, - 527 - ], - "lines": [ - { - "bbox": [ - 107, - 502, - 503, - 514 - ], - "spans": [ - { - "bbox": [ - 107, - 502, - 503, - 514 - ], - "score": 1.0, - "content": "However, some sociologists argue that work is now less important as a source of ", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 107, - 515, - 396, - 527 - ], - "spans": [ - { - "bbox": [ - 107, - 515, - 396, - 527 - ], - "score": 1.0, - "content": "identity and that worklessness has become less significant.", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 19.5 - }, - { - "type": "text", - "bbox": [ - 100, - 546, - 539, - 572 - ], - "lines": [ - { - "bbox": [ - 102, - 547, - 536, - 559 - ], - "spans": [ - { - "bbox": [ - 102, - 547, - 536, - 559 - ], - "score": 1.0, - "content": "Applying material from Item H and your knowledge, evaluate sociological explanations of", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 101, - 559, - 405, - 572 - ], - "spans": [ - { - "bbox": [ - 101, - 559, - 405, - 572 - ], - "score": 1.0, - "content": "the effects of worklessness on people’s lives and life chances.", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 21.5 - }, - { - "type": "text", - "bbox": [ - 210, - 674, - 374, - 686 - ], - "lines": [ - { - "bbox": [ - 210, - 674, - 374, - 686 - ], - "spans": [ - { - "bbox": [ - 210, - 674, - 374, - 686 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 23 - }, - { - "type": "text", - "bbox": [ - 473, - 800, - 536, - 812 - ], - "lines": [ - { - "bbox": [ - 473, - 801, - 528, - 812 - ], - "spans": [ - { - "bbox": [ - 473, - 801, - 528, - 812 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ], - "index": 24 - } - ], - "index": 24 - } - ], - "layout_bboxes": [], - "page_idx": 4, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 44, - 101, - 87, - 120 - ], - "lines": [ - { - "bbox": [ - 71, - 106, - 79, - 116 - ], - "spans": [ - { - "bbox": [ - 71, - 106, - 79, - 116 - ], - "score": 1.0, - "content": "0", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 44, - 820, - 104, - 828 - ], - "lines": [ - { - "bbox": [ - 44, - 821, - 105, - 828 - ], - "spans": [ - { - "bbox": [ - 44, - 821, - 105, - 828 - ], - "score": 1.0, - "content": "IB/M/Jun20/7192/2", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 44, - 375, - 87, - 393 - ], - "lines": [ - { - "bbox": [ - 51, - 379, - 80, - 390 - ], - "spans": [ - { - "bbox": [ - 51, - 379, - 59, - 389 - ], - "score": 1.0, - "content": "1", - "type": "text" - }, - { - "bbox": [ - 70, - 379, - 80, - 390 - ], - "score": 1.0, - "content": "2", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 288, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 287, - 28, - 297, - 41 - ], - "spans": [ - { - "bbox": [ - 287, - 28, - 297, - 41 - ], - "score": 1.0, - "content": "5 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 44, - 166, - 87, - 185 - ], - "lines": [ - { - "bbox": [ - 51, - 171, - 79, - 181 - ], - "spans": [ - { - "bbox": [ - 51, - 171, - 59, - 181 - ], - "score": 1.0, - "content": "1", - "type": "text" - }, - { - "bbox": [ - 71, - 171, - 79, - 181 - ], - "score": 1.0, - "content": "1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 482, - 573, - 539, - 585 - ], - "lines": [ - { - "bbox": [ - 483, - 572, - 540, - 586 - ], - "spans": [ - { - "bbox": [ - 483, - 572, - 540, - 586 - ], - "score": 1.0, - "content": "[20 marks]", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 195, - 65, - 389, - 79 - ], - "lines": [ - { - "bbox": [ - 196, - 66, - 389, - 78 - ], - "spans": [ - { - "bbox": [ - 196, - 66, - 389, - 78 - ], - "score": 1.0, - "content": "Topic A4 Work, Poverty and Welfare", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_4", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 98, - 102, - 537, - 129 - ], - "lines": [ - { - "bbox": [ - 101, - 102, - 536, - 116 - ], - "spans": [ - { - "bbox": [ - 101, - 102, - 536, - 116 - ], - "score": 1.0, - "content": "Outline and explain two ways in which government policies have affected the distribution ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 101, - 116, - 202, - 129 - ], - "spans": [ - { - "bbox": [ - 101, - 116, - 202, - 129 - ], - "score": 1.0, - "content": "of income in the UK.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5, - "page_num": "page_4", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 101, - 102, - 536, - 129 - ] - }, - { - "type": "text", - "bbox": [ - 482, - 129, - 539, - 143 - ], - "lines": [ - { - "bbox": [ - 482, - 128, - 540, - 143 - ], - "spans": [ - { - "bbox": [ - 482, - 128, - 540, - 143 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_4", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 482, - 128, - 540, - 143 - ] - }, - { - "type": "text", - "bbox": [ - 100, - 170, - 382, - 183 - ], - "lines": [ - { - "bbox": [ - 102, - 171, - 382, - 182 - ], - "spans": [ - { - "bbox": [ - 102, - 171, - 382, - 182 - ], - "score": 1.0, - "content": "Read Item G below and answer the question that follows.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_4", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 102, - 171, - 382, - 182 - ] - }, - { - "type": "title", - "bbox": [ - 301, - 203, - 339, - 216 - ], - "lines": [ - { - "bbox": [ - 301, - 204, - 339, - 215 - ], - "spans": [ - { - "bbox": [ - 301, - 204, - 339, - 215 - ], - "score": 1.0, - "content": "Item G", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_4", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 106, - 228, - 508, - 267 - ], - "lines": [ - { - "bbox": [ - 107, - 229, - 506, - 241 - ], - "spans": [ - { - "bbox": [ - 107, - 229, - 506, - 241 - ], - "score": 1.0, - "content": "The values and attitudes of some members of the working class may lead to them", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 107, - 243, - 497, - 254 - ], - "spans": [ - { - "bbox": [ - 107, - 243, - 497, - 254 - ], - "score": 1.0, - "content": "accepting their position in society. Patriarchal values mean that females can be", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 107, - 254, - 183, - 268 - ], - "spans": [ - { - "bbox": [ - 107, - 254, - 183, - 268 - ], - "score": 1.0, - "content": "disadvantaged.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7, - "page_num": "page_4", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 107, - 229, - 506, - 268 - ] - }, - { - "type": "text", - "bbox": [ - 106, - 279, - 448, - 293 - ], - "lines": [ - { - "bbox": [ - 107, - 280, - 448, - 293 - ], - "spans": [ - { - "bbox": [ - 107, - 280, - 448, - 293 - ], - "score": 1.0, - "content": "Some social groups are more likely than others to experience poverty.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_4", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 107, - 280, - 448, - 293 - ] - }, - { - "type": "text", - "bbox": [ - 101, - 311, - 527, - 338 - ], - "lines": [ - { - "bbox": [ - 102, - 312, - 526, - 325 - ], - "spans": [ - { - "bbox": [ - 102, - 312, - 526, - 325 - ], - "score": 1.0, - "content": "Applying material from Item G, analyse two reasons why some social groups are more", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 101, - 325, - 296, - 338 - ], - "spans": [ - { - "bbox": [ - 101, - 325, - 296, - 338 - ], - "score": 1.0, - "content": "likely than others to experience poverty.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5, - "page_num": "page_4", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 101, - 312, - 526, - 338 - ] - }, - { - "type": "text", - "bbox": [ - 482, - 337, - 539, - 351 - ], - "lines": [ - { - "bbox": [ - 483, - 336, - 540, - 352 - ], - "spans": [ - { - "bbox": [ - 483, - 336, - 540, - 352 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_4", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 483, - 336, - 540, - 352 - ] - }, - { - "type": "text", - "bbox": [ - 100, - 378, - 381, - 392 - ], - "lines": [ - { - "bbox": [ - 102, - 380, - 381, - 390 - ], - "spans": [ - { - "bbox": [ - 102, - 380, - 381, - 390 - ], - "score": 1.0, - "content": "Read Item H below and answer the question that follows.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_4", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 102, - 380, - 381, - 390 - ] - }, - { - "type": "title", - "bbox": [ - 302, - 411, - 338, - 424 - ], - "lines": [ - { - "bbox": [ - 302, - 412, - 339, - 424 - ], - "spans": [ - { - "bbox": [ - 302, - 412, - 339, - 424 - ], - "score": 1.0, - "content": "Item H ", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_4", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 106, - 437, - 524, - 488 - ], - "lines": [ - { - "bbox": [ - 106, - 437, - 523, - 451 - ], - "spans": [ - { - "bbox": [ - 106, - 437, - 523, - 451 - ], - "score": 1.0, - "content": "Worklessness affects retired people and those unable to work as well as unemployed", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 107, - 451, - 522, - 463 - ], - "spans": [ - { - "bbox": [ - 107, - 451, - 522, - 463 - ], - "score": 1.0, - "content": "people. People without work are more likely to be disadvantaged than those in work.", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 108, - 464, - 482, - 475 - ], - "spans": [ - { - "bbox": [ - 108, - 464, - 482, - 475 - ], - "score": 1.0, - "content": "They are excluded from some aspects of social life and their life chances are", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 108, - 476, - 514, - 488 - ], - "spans": [ - { - "bbox": [ - 108, - 476, - 514, - 488 - ], - "score": 1.0, - "content": "diminished. There are others who do not work because they have sufficient wealth.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 16.5, - "page_num": "page_4", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 106, - 437, - 523, - 488 - ] - }, - { - "type": "text", - "bbox": [ - 105, - 501, - 504, - 527 - ], - "lines": [ - { - "bbox": [ - 107, - 502, - 503, - 514 - ], - "spans": [ - { - "bbox": [ - 107, - 502, - 503, - 514 - ], - "score": 1.0, - "content": "However, some sociologists argue that work is now less important as a source of ", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 107, - 515, - 396, - 527 - ], - "spans": [ - { - "bbox": [ - 107, - 515, - 396, - 527 - ], - "score": 1.0, - "content": "identity and that worklessness has become less significant.", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 19.5, - "page_num": "page_4", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 107, - 502, - 503, - 527 - ] - }, - { - "type": "text", - "bbox": [ - 100, - 546, - 539, - 572 - ], - "lines": [ - { - "bbox": [ - 102, - 547, - 536, - 559 - ], - "spans": [ - { - "bbox": [ - 102, - 547, - 536, - 559 - ], - "score": 1.0, - "content": "Applying material from Item H and your knowledge, evaluate sociological explanations of", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 101, - 559, - 405, - 572 - ], - "spans": [ - { - "bbox": [ - 101, - 559, - 405, - 572 - ], - "score": 1.0, - "content": "the effects of worklessness on people’s lives and life chances.", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 21.5, - "page_num": "page_4", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 101, - 547, - 536, - 572 - ] - }, - { - "type": "text", - "bbox": [ - 210, - 674, - 374, - 686 - ], - "lines": [ - { - "bbox": [ - 210, - 674, - 374, - 686 - ], - "spans": [ - { - "bbox": [ - 210, - 674, - 374, - 686 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 23, - "page_num": "page_4", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 210, - 674, - 374, - 686 - ] - }, - { - "type": "text", - "bbox": [ - 473, - 800, - 536, - 812 - ], - "lines": [ - { - "bbox": [ - 473, - 801, - 528, - 812 - ], - "spans": [ - { - "bbox": [ - 473, - 801, - 528, - 812 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ], - "index": 24 - } - ], - "index": 24, - "page_num": "page_4", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 473, - 801, - 528, - 812 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 265, - 65, - 319, - 78 - ], - "lines": [ - { - "bbox": [ - 267, - 66, - 318, - 77 - ], - "spans": [ - { - "bbox": [ - 267, - 66, - 318, - 77 - ], - "score": 1.0, - "content": "Section B", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 99, - 91, - 483, - 105 - ], - "lines": [ - { - "bbox": [ - 101, - 91, - 482, - 104 - ], - "spans": [ - { - "bbox": [ - 101, - 91, - 482, - 104 - ], - "score": 1.0, - "content": "Choose one topic from this section and answer all the questions on that topic.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "title", - "bbox": [ - 219, - 126, - 365, - 140 - ], - "lines": [ - { - "bbox": [ - 219, - 127, - 365, - 140 - ], - "spans": [ - { - "bbox": [ - 219, - 127, - 365, - 140 - ], - "score": 1.0, - "content": "Topic B1 Beliefs in Society", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 99, - 164, - 526, - 191 - ], - "lines": [ - { - "bbox": [ - 101, - 165, - 524, - 178 - ], - "spans": [ - { - "bbox": [ - 101, - 165, - 524, - 178 - ], - "score": 1.0, - "content": "Outline and explain two reasons why women are more likely than men to participate in", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 101, - 179, - 210, - 191 - ], - "spans": [ - { - "bbox": [ - 101, - 179, - 210, - 191 - ], - "score": 1.0, - "content": "New Age movements.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5 - }, - { - "type": "text", - "bbox": [ - 482, - 191, - 539, - 205 - ], - "lines": [ - { - "bbox": [ - 482, - 190, - 540, - 205 - ], - "spans": [ - { - "bbox": [ - 482, - 190, - 540, - 205 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 101, - 231, - 376, - 245 - ], - "lines": [ - { - "bbox": [ - 102, - 233, - 376, - 244 - ], - "spans": [ - { - "bbox": [ - 102, - 233, - 376, - 244 - ], - "score": 1.0, - "content": "Read Item I below and answer the question that follows.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "title", - "bbox": [ - 305, - 265, - 336, - 277 - ], - "lines": [ - { - "bbox": [ - 305, - 266, - 337, - 278 - ], - "spans": [ - { - "bbox": [ - 305, - 266, - 337, - 278 - ], - "score": 1.0, - "content": "Item I ", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 106, - 290, - 530, - 330 - ], - "lines": [ - { - "bbox": [ - 107, - 291, - 506, - 304 - ], - "spans": [ - { - "bbox": [ - 107, - 291, - 506, - 304 - ], - "score": 1.0, - "content": "Secularisation theory explains the decline in religious participation across parts of ", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 107, - 305, - 517, - 317 - ], - "spans": [ - { - "bbox": [ - 107, - 305, - 517, - 317 - ], - "score": 1.0, - "content": "Europe, but it does not explain why religion continues to be popular in other parts of ", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 106, - 317, - 530, - 331 - ], - "spans": [ - { - "bbox": [ - 106, - 317, - 530, - 331 - ], - "score": 1.0, - "content": "the world. It also fails to recognise that religion may be changing rather than declining.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 106, - 343, - 388, - 356 - ], - "lines": [ - { - "bbox": [ - 107, - 343, - 388, - 356 - ], - "spans": [ - { - "bbox": [ - 107, - 343, - 388, - 356 - ], - "score": 1.0, - "content": "The extent of secularisation may have been exaggerated.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 101, - 374, - 534, - 401 - ], - "lines": [ - { - "bbox": [ - 101, - 375, - 534, - 389 - ], - "spans": [ - { - "bbox": [ - 101, - 375, - 534, - 389 - ], - "score": 1.0, - "content": "Applying material from Item I, analyse two reasons why the extent of secularisation may ", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 101, - 388, - 221, - 401 - ], - "spans": [ - { - "bbox": [ - 101, - 388, - 221, - 401 - ], - "score": 1.0, - "content": "have been exaggerated.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 12.5 - }, - { - "type": "text", - "bbox": [ - 482, - 401, - 539, - 414 - ], - "lines": [ - { - "bbox": [ - 483, - 400, - 540, - 415 - ], - "spans": [ - { - "bbox": [ - 483, - 400, - 540, - 415 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 101, - 442, - 380, - 455 - ], - "lines": [ - { - "bbox": [ - 102, - 443, - 379, - 453 - ], - "spans": [ - { - "bbox": [ - 102, - 443, - 379, - 453 - ], - "score": 1.0, - "content": "Read Item J below and answer the question that follows.", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "title", - "bbox": [ - 303, - 474, - 337, - 487 - ], - "lines": [ - { - "bbox": [ - 303, - 475, - 338, - 487 - ], - "spans": [ - { - "bbox": [ - 303, - 475, - 338, - 487 - ], - "score": 1.0, - "content": "Item J ", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16 - }, - { - "type": "text", - "bbox": [ - 106, - 501, - 529, - 539 - ], - "lines": [ - { - "bbox": [ - 106, - 501, - 528, - 514 - ], - "spans": [ - { - "bbox": [ - 106, - 501, - 528, - 514 - ], - "score": 1.0, - "content": "Some sociologists argue that religion acts as a force for social change. It can be used", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 106, - 514, - 514, - 528 - ], - "spans": [ - { - "bbox": [ - 106, - 514, - 514, - 528 - ], - "score": 1.0, - "content": "to challenge mainstream beliefs and values, and inspire protest against the existing", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 106, - 528, - 169, - 539 - ], - "spans": [ - { - "bbox": [ - 106, - 528, - 169, - 539 - ], - "score": 1.0, - "content": "social order.", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 18 - }, - { - "type": "text", - "bbox": [ - 106, - 552, - 522, - 579 - ], - "lines": [ - { - "bbox": [ - 107, - 553, - 521, - 567 - ], - "spans": [ - { - "bbox": [ - 107, - 553, - 521, - 567 - ], - "score": 1.0, - "content": "However, other sociologists suggest that the relationship between religion and social ", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 108, - 567, - 491, - 579 - ], - "spans": [ - { - "bbox": [ - 108, - 567, - 491, - 579 - ], - "score": 1.0, - "content": "change is not straightforward and that religion can even prevent social change.", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 20.5 - }, - { - "type": "text", - "bbox": [ - 99, - 597, - 540, - 624 - ], - "lines": [ - { - "bbox": [ - 102, - 599, - 538, - 611 - ], - "spans": [ - { - "bbox": [ - 102, - 599, - 538, - 611 - ], - "score": 1.0, - "content": "Applying material from Item J and your knowledge, evaluate the view that religion acts as", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 101, - 611, - 225, - 625 - ], - "spans": [ - { - "bbox": [ - 101, - 611, - 225, - 625 - ], - "score": 1.0, - "content": "a force for social change.", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 22.5 - } - ], - "layout_bboxes": [], - "page_idx": 5, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 44, - 820, - 104, - 828 - ], - "lines": [ - { - "bbox": [ - 44, - 821, - 105, - 828 - ], - "spans": [ - { - "bbox": [ - 44, - 821, - 105, - 828 - ], - "score": 1.0, - "content": "IB/M/Jun20/7192/2", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 44, - 228, - 87, - 247 - ], - "lines": [ - { - "bbox": [ - 52, - 232, - 80, - 243 - ], - "spans": [ - { - "bbox": [ - 52, - 233, - 59, - 241 - ], - "score": 1.0, - "content": "1", - "type": "text" - }, - { - "bbox": [ - 71, - 232, - 80, - 243 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 44, - 438, - 87, - 457 - ], - "lines": [ - { - "bbox": [ - 52, - 442, - 80, - 452 - ], - "spans": [ - { - "bbox": [ - 52, - 443, - 59, - 451 - ], - "score": 1.0, - "content": "1", - "type": "text" - }, - { - "bbox": [ - 71, - 442, - 80, - 452 - ], - "score": 1.0, - "content": "5", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 287, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 287, - 28, - 297, - 41 - ], - "spans": [ - { - "bbox": [ - 287, - 28, - 297, - 41 - ], - "score": 1.0, - "content": "6 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 44, - 163, - 87, - 182 - ], - "lines": [ - { - "bbox": [ - 51, - 167, - 80, - 178 - ], - "spans": [ - { - "bbox": [ - 51, - 168, - 59, - 177 - ], - "score": 1.0, - "content": "1", - "type": "text" - }, - { - "bbox": [ - 71, - 167, - 80, - 178 - ], - "score": 1.0, - "content": "3", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 482, - 624, - 539, - 637 - ], - "lines": [ - { - "bbox": [ - 483, - 623, - 540, - 638 - ], - "spans": [ - { - "bbox": [ - 483, - 623, - 540, - 638 - ], - "score": 1.0, - "content": "[20 marks]", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 265, - 65, - 319, - 78 - ], - "lines": [ - { - "bbox": [ - 267, - 66, - 318, - 77 - ], - "spans": [ - { - "bbox": [ - 267, - 66, - 318, - 77 - ], - "score": 1.0, - "content": "Section B", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_5", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 99, - 91, - 483, - 105 - ], - "lines": [ - { - "bbox": [ - 101, - 91, - 482, - 104 - ], - "spans": [ - { - "bbox": [ - 101, - 91, - 482, - 104 - ], - "score": 1.0, - "content": "Choose one topic from this section and answer all the questions on that topic.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_5", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 101, - 91, - 482, - 104 - ] - }, - { - "type": "title", - "bbox": [ - 219, - 126, - 365, - 140 - ], - "lines": [ - { - "bbox": [ - 219, - 127, - 365, - 140 - ], - "spans": [ - { - "bbox": [ - 219, - 127, - 365, - 140 - ], - "score": 1.0, - "content": "Topic B1 Beliefs in Society", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_5", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 99, - 164, - 526, - 191 - ], - "lines": [ - { - "bbox": [ - 101, - 165, - 524, - 178 - ], - "spans": [ - { - "bbox": [ - 101, - 165, - 524, - 178 - ], - "score": 1.0, - "content": "Outline and explain two reasons why women are more likely than men to participate in", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 101, - 179, - 210, - 191 - ], - "spans": [ - { - "bbox": [ - 101, - 179, - 210, - 191 - ], - "score": 1.0, - "content": "New Age movements.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5, - "page_num": "page_5", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 101, - 165, - 524, - 191 - ] - }, - { - "type": "text", - "bbox": [ - 482, - 191, - 539, - 205 - ], - "lines": [ - { - "bbox": [ - 482, - 190, - 540, - 205 - ], - "spans": [ - { - "bbox": [ - 482, - 190, - 540, - 205 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_5", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 482, - 190, - 540, - 205 - ] - }, - { - "type": "text", - "bbox": [ - 101, - 231, - 376, - 245 - ], - "lines": [ - { - "bbox": [ - 102, - 233, - 376, - 244 - ], - "spans": [ - { - "bbox": [ - 102, - 233, - 376, - 244 - ], - "score": 1.0, - "content": "Read Item I below and answer the question that follows.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_5", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 102, - 233, - 376, - 244 - ] - }, - { - "type": "title", - "bbox": [ - 305, - 265, - 336, - 277 - ], - "lines": [ - { - "bbox": [ - 305, - 266, - 337, - 278 - ], - "spans": [ - { - "bbox": [ - 305, - 266, - 337, - 278 - ], - "score": 1.0, - "content": "Item I ", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_5", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 106, - 290, - 530, - 330 - ], - "lines": [ - { - "bbox": [ - 107, - 291, - 506, - 304 - ], - "spans": [ - { - "bbox": [ - 107, - 291, - 506, - 304 - ], - "score": 1.0, - "content": "Secularisation theory explains the decline in religious participation across parts of ", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 107, - 305, - 517, - 317 - ], - "spans": [ - { - "bbox": [ - 107, - 305, - 517, - 317 - ], - "score": 1.0, - "content": "Europe, but it does not explain why religion continues to be popular in other parts of ", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 106, - 317, - 530, - 331 - ], - "spans": [ - { - "bbox": [ - 106, - 317, - 530, - 331 - ], - "score": 1.0, - "content": "the world. It also fails to recognise that religion may be changing rather than declining.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9, - "page_num": "page_5", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 106, - 291, - 530, - 331 - ] - }, - { - "type": "text", - "bbox": [ - 106, - 343, - 388, - 356 - ], - "lines": [ - { - "bbox": [ - 107, - 343, - 388, - 356 - ], - "spans": [ - { - "bbox": [ - 107, - 343, - 388, - 356 - ], - "score": 1.0, - "content": "The extent of secularisation may have been exaggerated.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_5", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 107, - 343, - 388, - 356 - ] - }, - { - "type": "text", - "bbox": [ - 101, - 374, - 534, - 401 - ], - "lines": [ - { - "bbox": [ - 101, - 375, - 534, - 389 - ], - "spans": [ - { - "bbox": [ - 101, - 375, - 534, - 389 - ], - "score": 1.0, - "content": "Applying material from Item I, analyse two reasons why the extent of secularisation may ", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 101, - 388, - 221, - 401 - ], - "spans": [ - { - "bbox": [ - 101, - 388, - 221, - 401 - ], - "score": 1.0, - "content": "have been exaggerated.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 12.5, - "page_num": "page_5", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 101, - 375, - 534, - 401 - ] - }, - { - "type": "text", - "bbox": [ - 482, - 401, - 539, - 414 - ], - "lines": [ - { - "bbox": [ - 483, - 400, - 540, - 415 - ], - "spans": [ - { - "bbox": [ - 483, - 400, - 540, - 415 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_5", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 483, - 400, - 540, - 415 - ] - }, - { - "type": "text", - "bbox": [ - 101, - 442, - 380, - 455 - ], - "lines": [ - { - "bbox": [ - 102, - 443, - 379, - 453 - ], - "spans": [ - { - "bbox": [ - 102, - 443, - 379, - 453 - ], - "score": 1.0, - "content": "Read Item J below and answer the question that follows.", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_5", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 102, - 443, - 379, - 453 - ] - }, - { - "type": "title", - "bbox": [ - 303, - 474, - 337, - 487 - ], - "lines": [ - { - "bbox": [ - 303, - 475, - 338, - 487 - ], - "spans": [ - { - "bbox": [ - 303, - 475, - 338, - 487 - ], - "score": 1.0, - "content": "Item J ", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16, - "page_num": "page_5", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 106, - 501, - 529, - 539 - ], - "lines": [ - { - "bbox": [ - 106, - 501, - 528, - 514 - ], - "spans": [ - { - "bbox": [ - 106, - 501, - 528, - 514 - ], - "score": 1.0, - "content": "Some sociologists argue that religion acts as a force for social change. It can be used", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 106, - 514, - 514, - 528 - ], - "spans": [ - { - "bbox": [ - 106, - 514, - 514, - 528 - ], - "score": 1.0, - "content": "to challenge mainstream beliefs and values, and inspire protest against the existing", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 106, - 528, - 169, - 539 - ], - "spans": [ - { - "bbox": [ - 106, - 528, - 169, - 539 - ], - "score": 1.0, - "content": "social order.", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 18, - "page_num": "page_5", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 106, - 501, - 528, - 539 - ] - }, - { - "type": "text", - "bbox": [ - 106, - 552, - 522, - 579 - ], - "lines": [ - { - "bbox": [ - 107, - 553, - 521, - 567 - ], - "spans": [ - { - "bbox": [ - 107, - 553, - 521, - 567 - ], - "score": 1.0, - "content": "However, other sociologists suggest that the relationship between religion and social ", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 108, - 567, - 491, - 579 - ], - "spans": [ - { - "bbox": [ - 108, - 567, - 491, - 579 - ], - "score": 1.0, - "content": "change is not straightforward and that religion can even prevent social change.", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 20.5, - "page_num": "page_5", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 107, - 553, - 521, - 579 - ] - }, - { - "type": "text", - "bbox": [ - 99, - 597, - 540, - 624 - ], - "lines": [ - { - "bbox": [ - 102, - 599, - 538, - 611 - ], - "spans": [ - { - "bbox": [ - 102, - 599, - 538, - 611 - ], - "score": 1.0, - "content": "Applying material from Item J and your knowledge, evaluate the view that religion acts as", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 101, - 611, - 225, - 625 - ], - "spans": [ - { - "bbox": [ - 101, - 611, - 225, - 625 - ], - "score": 1.0, - "content": "a force for social change.", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 22.5, - "page_num": "page_5", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 101, - 599, - 538, - 625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 212, - 65, - 373, - 79 - ], - "lines": [ - { - "bbox": [ - 212, - 66, - 373, - 78 - ], - "spans": [ - { - "bbox": [ - 212, - 66, - 373, - 78 - ], - "score": 1.0, - "content": "Topic B2 Global Development", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 99, - 104, - 531, - 131 - ], - "lines": [ - { - "bbox": [ - 101, - 106, - 527, - 119 - ], - "spans": [ - { - "bbox": [ - 101, - 106, - 527, - 119 - ], - "score": 1.0, - "content": "Outline and explain two ways in which development can lead to demographic changes.", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 482, - 118, - 540, - 132 - ], - "spans": [ - { - "bbox": [ - 482, - 118, - 540, - 132 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5 - }, - { - "type": "text", - "bbox": [ - 482, - 119, - 539, - 132 - ], - "lines": [ - { - "bbox": [ - 482, - 119, - 539, - 132 - ], - "spans": [], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 100, - 159, - 381, - 172 - ], - "lines": [ - { - "bbox": [ - 102, - 160, - 381, - 171 - ], - "spans": [ - { - "bbox": [ - 102, - 160, - 381, - 171 - ], - "score": 1.0, - "content": "Read Item K below and answer the question that follows.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "title", - "bbox": [ - 302, - 192, - 339, - 205 - ], - "lines": [ - { - "bbox": [ - 303, - 193, - 339, - 205 - ], - "spans": [ - { - "bbox": [ - 303, - 193, - 339, - 205 - ], - "score": 1.0, - "content": "Item K ", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 106, - 218, - 518, - 257 - ], - "lines": [ - { - "bbox": [ - 107, - 219, - 513, - 231 - ], - "spans": [ - { - "bbox": [ - 107, - 219, - 513, - 231 - ], - "score": 1.0, - "content": "Development can lead to new ways for previously exploited groups to improve their", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 107, - 232, - 517, - 244 - ], - "spans": [ - { - "bbox": [ - 107, - 232, - 517, - 244 - ], - "score": 1.0, - "content": "situation. It can also cause powerful groups to feel threatened by changes and lead ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 107, - 244, - 431, - 257 - ], - "spans": [ - { - "bbox": [ - 107, - 244, - 431, - 257 - ], - "score": 1.0, - "content": "them to assert what are seen as traditional attitudes and practices.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 106, - 268, - 322, - 282 - ], - "lines": [ - { - "bbox": [ - 108, - 270, - 321, - 282 - ], - "spans": [ - { - "bbox": [ - 108, - 270, - 321, - 282 - ], - "score": 1.0, - "content": "Development can affect gender inequalities.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 101, - 300, - 505, - 327 - ], - "lines": [ - { - "bbox": [ - 102, - 302, - 503, - 314 - ], - "spans": [ - { - "bbox": [ - 102, - 302, - 503, - 314 - ], - "score": 1.0, - "content": "Applying material from Item K, analyse two ways in which development can affect", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 101, - 316, - 198, - 327 - ], - "spans": [ - { - "bbox": [ - 101, - 316, - 198, - 327 - ], - "score": 1.0, - "content": "gender inequalities.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5 - }, - { - "type": "text", - "bbox": [ - 482, - 327, - 539, - 340 - ], - "lines": [ - { - "bbox": [ - 482, - 327, - 540, - 340 - ], - "spans": [ - { - "bbox": [ - 482, - 327, - 540, - 340 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 100, - 367, - 380, - 381 - ], - "lines": [ - { - "bbox": [ - 102, - 369, - 380, - 380 - ], - "spans": [ - { - "bbox": [ - 102, - 369, - 380, - 380 - ], - "score": 1.0, - "content": "Read Item L below and answer the question that follows.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "title", - "bbox": [ - 303, - 401, - 337, - 413 - ], - "lines": [ - { - "bbox": [ - 303, - 401, - 338, - 413 - ], - "spans": [ - { - "bbox": [ - 303, - 401, - 338, - 413 - ], - "score": 1.0, - "content": "Item L", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 105, - 426, - 505, - 452 - ], - "lines": [ - { - "bbox": [ - 107, - 428, - 503, - 440 - ], - "spans": [ - { - "bbox": [ - 107, - 428, - 503, - 440 - ], - "score": 1.0, - "content": "According to some sociologists, aid is essential for development because it helps", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 107, - 441, - 308, - 451 - ], - "spans": [ - { - "bbox": [ - 107, - 441, - 308, - 451 - ], - "score": 1.0, - "content": "countries reach take-off and industrialise.", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 15.5 - }, - { - "type": "text", - "bbox": [ - 105, - 465, - 531, - 503 - ], - "lines": [ - { - "bbox": [ - 107, - 465, - 492, - 478 - ], - "spans": [ - { - "bbox": [ - 107, - 465, - 492, - 478 - ], - "score": 1.0, - "content": "However, other sociologists are critical of aid and point out that many countries", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 107, - 479, - 527, - 491 - ], - "spans": [ - { - "bbox": [ - 107, - 479, - 527, - 491 - ], - "score": 1.0, - "content": "receiving aid have made little progress. Others argue that the real purpose of aid is to", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 107, - 491, - 406, - 503 - ], - "spans": [ - { - "bbox": [ - 107, - 491, - 406, - 503 - ], - "score": 1.0, - "content": "ensure a free market system that creates underdevelopment.", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 18 - }, - { - "type": "text", - "bbox": [ - 99, - 521, - 540, - 548 - ], - "lines": [ - { - "bbox": [ - 101, - 523, - 538, - 535 - ], - "spans": [ - { - "bbox": [ - 101, - 523, - 538, - 535 - ], - "score": 1.0, - "content": "Applying material from Item L and your knowledge, evaluate the view that aid is essential ", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 101, - 536, - 185, - 548 - ], - "spans": [ - { - "bbox": [ - 101, - 536, - 185, - 548 - ], - "score": 1.0, - "content": "for development.", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 20.5 - }, - { - "type": "text", - "bbox": [ - 210, - 650, - 375, - 663 - ], - "lines": [ - { - "bbox": [ - 210, - 651, - 374, - 662 - ], - "spans": [ - { - "bbox": [ - 210, - 651, - 374, - 662 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 22 - }, - { - "type": "text", - "bbox": [ - 473, - 800, - 536, - 812 - ], - "lines": [ - { - "bbox": [ - 473, - 801, - 528, - 812 - ], - "spans": [ - { - "bbox": [ - 473, - 801, - 528, - 812 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 23 - } - ], - "layout_bboxes": [], - "page_idx": 6, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 44, - 102, - 87, - 120 - ], - "lines": [ - { - "bbox": [ - 72, - 106, - 80, - 116 - ], - "spans": [ - { - "bbox": [ - 72, - 106, - 80, - 116 - ], - "score": 1.0, - "content": "6", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 44, - 155, - 87, - 174 - ], - "lines": [ - { - "bbox": [ - 54, - 161, - 79, - 169 - ], - "spans": [ - { - "bbox": [ - 54, - 162, - 56, - 167 - ], - "score": 1.0, - "content": "1", - "type": "text" - }, - { - "bbox": [ - 72, - 161, - 79, - 169 - ], - "score": 1.0, - "content": "7", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 44, - 364, - 87, - 383 - ], - "lines": [ - { - "bbox": [ - 51, - 368, - 80, - 379 - ], - "spans": [ - { - "bbox": [ - 51, - 369, - 59, - 378 - ], - "score": 1.0, - "content": "1", - "type": "text" - }, - { - "bbox": [ - 71, - 368, - 80, - 379 - ], - "score": 1.0, - "content": "8", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 44, - 820, - 104, - 828 - ], - "lines": [ - { - "bbox": [ - 44, - 821, - 105, - 828 - ], - "spans": [ - { - "bbox": [ - 44, - 821, - 105, - 828 - ], - "score": 1.0, - "content": "IB/M/Jun20/7192/2", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 288, - 29, - 295, - 39 - ], - "lines": [ - { - "bbox": [ - 286, - 28, - 297, - 41 - ], - "spans": [ - { - "bbox": [ - 286, - 28, - 297, - 41 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 13, - "width": 11 - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 482, - 548, - 539, - 562 - ], - "lines": [ - { - "bbox": [ - 483, - 547, - 540, - 563 - ], - "spans": [ - { - "bbox": [ - 483, - 547, - 540, - 563 - ], - "score": 1.0, - "content": "[20 marks]", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 212, - 65, - 373, - 79 - ], - "lines": [ - { - "bbox": [ - 212, - 66, - 373, - 78 - ], - "spans": [ - { - "bbox": [ - 212, - 66, - 373, - 78 - ], - "score": 1.0, - "content": "Topic B2 Global Development", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 99, - 104, - 531, - 131 - ], - "lines": [ - { - "bbox": [ - 101, - 106, - 527, - 119 - ], - "spans": [ - { - "bbox": [ - 101, - 106, - 527, - 119 - ], - "score": 1.0, - "content": "Outline and explain two ways in which development can lead to demographic changes.", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 482, - 118, - 540, - 132 - ], - "spans": [ - { - "bbox": [ - 482, - 118, - 540, - 132 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 101, - 106, - 540, - 132 - ] - }, - { - "type": "text", - "bbox": [ - 482, - 119, - 539, - 132 - ], - "lines": [ - { - "bbox": [ - 482, - 119, - 539, - 132 - ], - "spans": [], - "index": 3 - } - ], - "index": 3, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 482, - 119, - 539, - 132 - ] - }, - { - "type": "text", - "bbox": [ - 100, - 159, - 381, - 172 - ], - "lines": [ - { - "bbox": [ - 102, - 160, - 381, - 171 - ], - "spans": [ - { - "bbox": [ - 102, - 160, - 381, - 171 - ], - "score": 1.0, - "content": "Read Item K below and answer the question that follows.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 102, - 160, - 381, - 171 - ] - }, - { - "type": "title", - "bbox": [ - 302, - 192, - 339, - 205 - ], - "lines": [ - { - "bbox": [ - 303, - 193, - 339, - 205 - ], - "spans": [ - { - "bbox": [ - 303, - 193, - 339, - 205 - ], - "score": 1.0, - "content": "Item K ", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 106, - 218, - 518, - 257 - ], - "lines": [ - { - "bbox": [ - 107, - 219, - 513, - 231 - ], - "spans": [ - { - "bbox": [ - 107, - 219, - 513, - 231 - ], - "score": 1.0, - "content": "Development can lead to new ways for previously exploited groups to improve their", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 107, - 232, - 517, - 244 - ], - "spans": [ - { - "bbox": [ - 107, - 232, - 517, - 244 - ], - "score": 1.0, - "content": "situation. It can also cause powerful groups to feel threatened by changes and lead ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 107, - 244, - 431, - 257 - ], - "spans": [ - { - "bbox": [ - 107, - 244, - 431, - 257 - ], - "score": 1.0, - "content": "them to assert what are seen as traditional attitudes and practices.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 107, - 219, - 517, - 257 - ] - }, - { - "type": "text", - "bbox": [ - 106, - 268, - 322, - 282 - ], - "lines": [ - { - "bbox": [ - 108, - 270, - 321, - 282 - ], - "spans": [ - { - "bbox": [ - 108, - 270, - 321, - 282 - ], - "score": 1.0, - "content": "Development can affect gender inequalities.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 108, - 270, - 321, - 282 - ] - }, - { - "type": "text", - "bbox": [ - 101, - 300, - 505, - 327 - ], - "lines": [ - { - "bbox": [ - 102, - 302, - 503, - 314 - ], - "spans": [ - { - "bbox": [ - 102, - 302, - 503, - 314 - ], - "score": 1.0, - "content": "Applying material from Item K, analyse two ways in which development can affect", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 101, - 316, - 198, - 327 - ], - "spans": [ - { - "bbox": [ - 101, - 316, - 198, - 327 - ], - "score": 1.0, - "content": "gender inequalities.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 101, - 302, - 503, - 327 - ] - }, - { - "type": "text", - "bbox": [ - 482, - 327, - 539, - 340 - ], - "lines": [ - { - "bbox": [ - 482, - 327, - 540, - 340 - ], - "spans": [ - { - "bbox": [ - 482, - 327, - 540, - 340 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 482, - 327, - 540, - 340 - ] - }, - { - "type": "text", - "bbox": [ - 100, - 367, - 380, - 381 - ], - "lines": [ - { - "bbox": [ - 102, - 369, - 380, - 380 - ], - "spans": [ - { - "bbox": [ - 102, - 369, - 380, - 380 - ], - "score": 1.0, - "content": "Read Item L below and answer the question that follows.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 102, - 369, - 380, - 380 - ] - }, - { - "type": "title", - "bbox": [ - 303, - 401, - 337, - 413 - ], - "lines": [ - { - "bbox": [ - 303, - 401, - 338, - 413 - ], - "spans": [ - { - "bbox": [ - 303, - 401, - 338, - 413 - ], - "score": 1.0, - "content": "Item L", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 105, - 426, - 505, - 452 - ], - "lines": [ - { - "bbox": [ - 107, - 428, - 503, - 440 - ], - "spans": [ - { - "bbox": [ - 107, - 428, - 503, - 440 - ], - "score": 1.0, - "content": "According to some sociologists, aid is essential for development because it helps", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 107, - 441, - 308, - 451 - ], - "spans": [ - { - "bbox": [ - 107, - 441, - 308, - 451 - ], - "score": 1.0, - "content": "countries reach take-off and industrialise.", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 15.5, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 107, - 428, - 503, - 451 - ] - }, - { - "type": "text", - "bbox": [ - 105, - 465, - 531, - 503 - ], - "lines": [ - { - "bbox": [ - 107, - 465, - 492, - 478 - ], - "spans": [ - { - "bbox": [ - 107, - 465, - 492, - 478 - ], - "score": 1.0, - "content": "However, other sociologists are critical of aid and point out that many countries", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 107, - 479, - 527, - 491 - ], - "spans": [ - { - "bbox": [ - 107, - 479, - 527, - 491 - ], - "score": 1.0, - "content": "receiving aid have made little progress. Others argue that the real purpose of aid is to", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 107, - 491, - 406, - 503 - ], - "spans": [ - { - "bbox": [ - 107, - 491, - 406, - 503 - ], - "score": 1.0, - "content": "ensure a free market system that creates underdevelopment.", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 18, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 107, - 465, - 527, - 503 - ] - }, - { - "type": "text", - "bbox": [ - 99, - 521, - 540, - 548 - ], - "lines": [ - { - "bbox": [ - 101, - 523, - 538, - 535 - ], - "spans": [ - { - "bbox": [ - 101, - 523, - 538, - 535 - ], - "score": 1.0, - "content": "Applying material from Item L and your knowledge, evaluate the view that aid is essential ", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 101, - 536, - 185, - 548 - ], - "spans": [ - { - "bbox": [ - 101, - 536, - 185, - 548 - ], - "score": 1.0, - "content": "for development.", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 20.5, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 101, - 523, - 538, - 548 - ] - }, - { - "type": "text", - "bbox": [ - 210, - 650, - 375, - 663 - ], - "lines": [ - { - "bbox": [ - 210, - 651, - 374, - 662 - ], - "spans": [ - { - "bbox": [ - 210, - 651, - 374, - 662 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 22, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 210, - 651, - 374, - 662 - ] - }, - { - "type": "text", - "bbox": [ - 473, - 800, - 536, - 812 - ], - "lines": [ - { - "bbox": [ - 473, - 801, - 528, - 812 - ], - "spans": [ - { - "bbox": [ - 473, - 801, - 528, - 812 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 23, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 473, - 801, - 528, - 812 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 238, - 65, - 346, - 79 - ], - "lines": [ - { - "bbox": [ - 238, - 66, - 346, - 78 - ], - "spans": [ - { - "bbox": [ - 238, - 66, - 346, - 78 - ], - "score": 1.0, - "content": "Topic B3 The Media", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 99, - 102, - 527, - 128 - ], - "lines": [ - { - "bbox": [ - 102, - 104, - 526, - 116 - ], - "spans": [ - { - "bbox": [ - 102, - 104, - 526, - 116 - ], - "score": 1.0, - "content": "Outline and explain two ways in which new media may have affected the selection and", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 102, - 117, - 207, - 129 - ], - "spans": [ - { - "bbox": [ - 102, - 117, - 207, - 129 - ], - "score": 1.0, - "content": "presentation of news.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5 - }, - { - "type": "text", - "bbox": [ - 482, - 129, - 539, - 143 - ], - "lines": [ - { - "bbox": [ - 482, - 129, - 540, - 143 - ], - "spans": [ - { - "bbox": [ - 482, - 129, - 540, - 143 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 100, - 170, - 383, - 183 - ], - "lines": [ - { - "bbox": [ - 102, - 171, - 382, - 182 - ], - "spans": [ - { - "bbox": [ - 102, - 171, - 382, - 182 - ], - "score": 1.0, - "content": "Read Item M below and answer the question that follows.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "title", - "bbox": [ - 301, - 203, - 339, - 215 - ], - "lines": [ - { - "bbox": [ - 301, - 204, - 339, - 215 - ], - "spans": [ - { - "bbox": [ - 301, - 204, - 339, - 215 - ], - "score": 1.0, - "content": "Item M", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 106, - 228, - 506, - 267 - ], - "lines": [ - { - "bbox": [ - 107, - 230, - 503, - 242 - ], - "spans": [ - { - "bbox": [ - 107, - 230, - 503, - 242 - ], - "score": 1.0, - "content": "Media corporations have the power to produce images of lifestyles through which", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 107, - 242, - 505, - 254 - ], - "spans": [ - { - "bbox": [ - 107, - 242, - 505, - 254 - ], - "score": 1.0, - "content": "people form their identities. The wide reach of these corporations has led to local", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 107, - 255, - 272, - 268 - ], - "spans": [ - { - "bbox": [ - 107, - 255, - 272, - 268 - ], - "score": 1.0, - "content": "cultures becoming less important.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 106, - 280, - 417, - 293 - ], - "lines": [ - { - "bbox": [ - 107, - 280, - 417, - 293 - ], - "spans": [ - { - "bbox": [ - 107, - 280, - 417, - 293 - ], - "score": 1.0, - "content": "Media corporations may contribute to a growth in global culture.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 101, - 311, - 509, - 338 - ], - "lines": [ - { - "bbox": [ - 101, - 312, - 509, - 326 - ], - "spans": [ - { - "bbox": [ - 101, - 312, - 509, - 326 - ], - "score": 1.0, - "content": "Applying material from Item M, analyse two ways in which media corporations may ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 101, - 326, - 292, - 338 - ], - "spans": [ - { - "bbox": [ - 101, - 326, - 292, - 338 - ], - "score": 1.0, - "content": "contribute to a growth in global culture.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5 - }, - { - "type": "text", - "bbox": [ - 482, - 338, - 539, - 352 - ], - "lines": [ - { - "bbox": [ - 483, - 337, - 540, - 352 - ], - "spans": [ - { - "bbox": [ - 483, - 337, - 540, - 352 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 100, - 378, - 381, - 392 - ], - "lines": [ - { - "bbox": [ - 102, - 380, - 381, - 391 - ], - "spans": [ - { - "bbox": [ - 102, - 380, - 381, - 391 - ], - "score": 1.0, - "content": "Read Item N below and answer the question that follows.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "title", - "bbox": [ - 302, - 411, - 338, - 424 - ], - "lines": [ - { - "bbox": [ - 302, - 412, - 339, - 425 - ], - "spans": [ - { - "bbox": [ - 302, - 412, - 339, - 425 - ], - "score": 1.0, - "content": "Item N ", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 106, - 438, - 533, - 476 - ], - "lines": [ - { - "bbox": [ - 108, - 439, - 531, - 451 - ], - "spans": [ - { - "bbox": [ - 108, - 439, - 531, - 451 - ], - "score": 1.0, - "content": "Some sociologists argue that audiences control media content through their choices as", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 107, - 452, - 511, - 463 - ], - "spans": [ - { - "bbox": [ - 107, - 452, - 511, - 463 - ], - "score": 1.0, - "content": "consumers. They claim that competition between media for audiences means that ", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 107, - 464, - 383, - 476 - ], - "spans": [ - { - "bbox": [ - 107, - 464, - 383, - 476 - ], - "score": 1.0, - "content": "owners and companies have limited power over content.", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 16 - }, - { - "type": "text", - "bbox": [ - 107, - 488, - 522, - 528 - ], - "lines": [ - { - "bbox": [ - 107, - 489, - 520, - 501 - ], - "spans": [ - { - "bbox": [ - 107, - 489, - 520, - 501 - ], - "score": 1.0, - "content": "However, other sociologists argue that those who own and work in the media control ", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 107, - 502, - 483, - 514 - ], - "spans": [ - { - "bbox": [ - 107, - 502, - 483, - 514 - ], - "score": 1.0, - "content": "the content. This means that the content can be biased and reflect dominant", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 106, - 514, - 161, - 529 - ], - "spans": [ - { - "bbox": [ - 106, - 514, - 161, - 529 - ], - "score": 1.0, - "content": "ideologies.", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 19 - }, - { - "type": "text", - "bbox": [ - 101, - 547, - 518, - 573 - ], - "lines": [ - { - "bbox": [ - 101, - 547, - 515, - 560 - ], - "spans": [ - { - "bbox": [ - 101, - 547, - 515, - 560 - ], - "score": 1.0, - "content": "Applying material from Item N and your knowledge, evaluate the view that the media", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 101, - 560, - 274, - 573 - ], - "spans": [ - { - "bbox": [ - 101, - 560, - 274, - 573 - ], - "score": 1.0, - "content": "reflect the views of their audiences.", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 21.5 - } - ], - "layout_bboxes": [], - "page_idx": 7, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 44, - 820, - 104, - 828 - ], - "lines": [ - { - "bbox": [ - 44, - 821, - 104, - 828 - ], - "spans": [ - { - "bbox": [ - 44, - 821, - 104, - 828 - ], - "score": 1.0, - "content": "IB/M/Jun20/7192/2", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 44, - 166, - 87, - 185 - ], - "lines": [ - { - "bbox": [ - 50, - 170, - 80, - 181 - ], - "spans": [ - { - "bbox": [ - 50, - 170, - 60, - 181 - ], - "score": 1.0, - "content": "2", - "type": "text" - }, - { - "bbox": [ - 71, - 171, - 80, - 181 - ], - "score": 1.0, - "content": "0", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 44, - 101, - 87, - 120 - ], - "lines": [ - { - "bbox": [ - 52, - 106, - 79, - 116 - ], - "spans": [ - { - "bbox": [ - 52, - 107, - 58, - 114 - ], - "score": 1.0, - "content": "1", - "type": "text" - }, - { - "bbox": [ - 71, - 106, - 79, - 116 - ], - "score": 1.0, - "content": "9", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 288, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 287, - 29, - 297, - 41 - ], - "spans": [ - { - "bbox": [ - 287, - 29, - 297, - 41 - ], - "score": 1.0, - "content": "8 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 44, - 375, - 87, - 394 - ], - "lines": [ - { - "bbox": [ - 50, - 379, - 80, - 390 - ], - "spans": [ - { - "bbox": [ - 50, - 379, - 61, - 390 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - }, - { - "bbox": [ - 70, - 379, - 80, - 390 - ], - "score": 1.0, - "content": "1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 482, - 573, - 539, - 586 - ], - "lines": [ - { - "bbox": [ - 483, - 572, - 540, - 587 - ], - "spans": [ - { - "bbox": [ - 483, - 572, - 540, - 587 - ], - "score": 1.0, - "content": "[20 marks]", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 238, - 65, - 346, - 79 - ], - "lines": [ - { - "bbox": [ - 238, - 66, - 346, - 78 - ], - "spans": [ - { - "bbox": [ - 238, - 66, - 346, - 78 - ], - "score": 1.0, - "content": "Topic B3 The Media", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_7", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 99, - 102, - 527, - 128 - ], - "lines": [ - { - "bbox": [ - 102, - 104, - 526, - 116 - ], - "spans": [ - { - "bbox": [ - 102, - 104, - 526, - 116 - ], - "score": 1.0, - "content": "Outline and explain two ways in which new media may have affected the selection and", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 102, - 117, - 207, - 129 - ], - "spans": [ - { - "bbox": [ - 102, - 117, - 207, - 129 - ], - "score": 1.0, - "content": "presentation of news.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5, - "page_num": "page_7", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 102, - 104, - 526, - 129 - ] - }, - { - "type": "text", - "bbox": [ - 482, - 129, - 539, - 143 - ], - "lines": [ - { - "bbox": [ - 482, - 129, - 540, - 143 - ], - "spans": [ - { - "bbox": [ - 482, - 129, - 540, - 143 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_7", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 482, - 129, - 540, - 143 - ] - }, - { - "type": "text", - "bbox": [ - 100, - 170, - 383, - 183 - ], - "lines": [ - { - "bbox": [ - 102, - 171, - 382, - 182 - ], - "spans": [ - { - "bbox": [ - 102, - 171, - 382, - 182 - ], - "score": 1.0, - "content": "Read Item M below and answer the question that follows.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_7", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 102, - 171, - 382, - 182 - ] - }, - { - "type": "title", - "bbox": [ - 301, - 203, - 339, - 215 - ], - "lines": [ - { - "bbox": [ - 301, - 204, - 339, - 215 - ], - "spans": [ - { - "bbox": [ - 301, - 204, - 339, - 215 - ], - "score": 1.0, - "content": "Item M", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_7", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 106, - 228, - 506, - 267 - ], - "lines": [ - { - "bbox": [ - 107, - 230, - 503, - 242 - ], - "spans": [ - { - "bbox": [ - 107, - 230, - 503, - 242 - ], - "score": 1.0, - "content": "Media corporations have the power to produce images of lifestyles through which", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 107, - 242, - 505, - 254 - ], - "spans": [ - { - "bbox": [ - 107, - 242, - 505, - 254 - ], - "score": 1.0, - "content": "people form their identities. The wide reach of these corporations has led to local", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 107, - 255, - 272, - 268 - ], - "spans": [ - { - "bbox": [ - 107, - 255, - 272, - 268 - ], - "score": 1.0, - "content": "cultures becoming less important.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7, - "page_num": "page_7", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 107, - 230, - 505, - 268 - ] - }, - { - "type": "text", - "bbox": [ - 106, - 280, - 417, - 293 - ], - "lines": [ - { - "bbox": [ - 107, - 280, - 417, - 293 - ], - "spans": [ - { - "bbox": [ - 107, - 280, - 417, - 293 - ], - "score": 1.0, - "content": "Media corporations may contribute to a growth in global culture.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_7", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 107, - 280, - 417, - 293 - ] - }, - { - "type": "text", - "bbox": [ - 101, - 311, - 509, - 338 - ], - "lines": [ - { - "bbox": [ - 101, - 312, - 509, - 326 - ], - "spans": [ - { - "bbox": [ - 101, - 312, - 509, - 326 - ], - "score": 1.0, - "content": "Applying material from Item M, analyse two ways in which media corporations may ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 101, - 326, - 292, - 338 - ], - "spans": [ - { - "bbox": [ - 101, - 326, - 292, - 338 - ], - "score": 1.0, - "content": "contribute to a growth in global culture.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5, - "page_num": "page_7", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 101, - 312, - 509, - 338 - ] - }, - { - "type": "text", - "bbox": [ - 482, - 338, - 539, - 352 - ], - "lines": [ - { - "bbox": [ - 483, - 337, - 540, - 352 - ], - "spans": [ - { - "bbox": [ - 483, - 337, - 540, - 352 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_7", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 483, - 337, - 540, - 352 - ] - }, - { - "type": "text", - "bbox": [ - 100, - 378, - 381, - 392 - ], - "lines": [ - { - "bbox": [ - 102, - 380, - 381, - 391 - ], - "spans": [ - { - "bbox": [ - 102, - 380, - 381, - 391 - ], - "score": 1.0, - "content": "Read Item N below and answer the question that follows.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_7", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 102, - 380, - 381, - 391 - ] - }, - { - "type": "title", - "bbox": [ - 302, - 411, - 338, - 424 - ], - "lines": [ - { - "bbox": [ - 302, - 412, - 339, - 425 - ], - "spans": [ - { - "bbox": [ - 302, - 412, - 339, - 425 - ], - "score": 1.0, - "content": "Item N ", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_7", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 106, - 438, - 533, - 476 - ], - "lines": [ - { - "bbox": [ - 108, - 439, - 531, - 451 - ], - "spans": [ - { - "bbox": [ - 108, - 439, - 531, - 451 - ], - "score": 1.0, - "content": "Some sociologists argue that audiences control media content through their choices as", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 107, - 452, - 511, - 463 - ], - "spans": [ - { - "bbox": [ - 107, - 452, - 511, - 463 - ], - "score": 1.0, - "content": "consumers. They claim that competition between media for audiences means that ", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 107, - 464, - 383, - 476 - ], - "spans": [ - { - "bbox": [ - 107, - 464, - 383, - 476 - ], - "score": 1.0, - "content": "owners and companies have limited power over content.", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 16, - "page_num": "page_7", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 107, - 439, - 531, - 476 - ] - }, - { - "type": "text", - "bbox": [ - 107, - 488, - 522, - 528 - ], - "lines": [ - { - "bbox": [ - 107, - 489, - 520, - 501 - ], - "spans": [ - { - "bbox": [ - 107, - 489, - 520, - 501 - ], - "score": 1.0, - "content": "However, other sociologists argue that those who own and work in the media control ", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 107, - 502, - 483, - 514 - ], - "spans": [ - { - "bbox": [ - 107, - 502, - 483, - 514 - ], - "score": 1.0, - "content": "the content. This means that the content can be biased and reflect dominant", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 106, - 514, - 161, - 529 - ], - "spans": [ - { - "bbox": [ - 106, - 514, - 161, - 529 - ], - "score": 1.0, - "content": "ideologies.", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 19, - "page_num": "page_7", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 106, - 489, - 520, - 529 - ] - }, - { - "type": "text", - "bbox": [ - 101, - 547, - 518, - 573 - ], - "lines": [ - { - "bbox": [ - 101, - 547, - 515, - 560 - ], - "spans": [ - { - "bbox": [ - 101, - 547, - 515, - 560 - ], - "score": 1.0, - "content": "Applying material from Item N and your knowledge, evaluate the view that the media", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 101, - 560, - 274, - 573 - ], - "spans": [ - { - "bbox": [ - 101, - 560, - 274, - 573 - ], - "score": 1.0, - "content": "reflect the views of their audiences.", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 21.5, - "page_num": "page_7", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 101, - 547, - 515, - 573 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 181, - 64, - 403, - 79 - ], - "lines": [ - { - "bbox": [ - 181, - 66, - 403, - 78 - ], - "spans": [ - { - "bbox": [ - 181, - 66, - 403, - 78 - ], - "score": 1.0, - "content": "Topic B4 Stratification and Differentiation", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 99, - 102, - 527, - 129 - ], - "lines": [ - { - "bbox": [ - 102, - 104, - 525, - 116 - ], - "spans": [ - { - "bbox": [ - 102, - 104, - 525, - 116 - ], - "score": 1.0, - "content": "Outline and explain two factors which may lead to some members of the working class", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 102, - 117, - 262, - 129 - ], - "spans": [ - { - "bbox": [ - 102, - 117, - 262, - 129 - ], - "score": 1.0, - "content": "achieving upward social mobility.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5 - }, - { - "type": "text", - "bbox": [ - 482, - 129, - 539, - 143 - ], - "lines": [ - { - "bbox": [ - 482, - 129, - 540, - 143 - ], - "spans": [ - { - "bbox": [ - 482, - 129, - 540, - 143 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 100, - 170, - 382, - 183 - ], - "lines": [ - { - "bbox": [ - 102, - 171, - 381, - 182 - ], - "spans": [ - { - "bbox": [ - 102, - 171, - 381, - 182 - ], - "score": 1.0, - "content": "Read Item O below and answer the question that follows.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "title", - "bbox": [ - 301, - 203, - 339, - 215 - ], - "lines": [ - { - "bbox": [ - 301, - 203, - 339, - 216 - ], - "spans": [ - { - "bbox": [ - 301, - 203, - 339, - 216 - ], - "score": 1.0, - "content": "Item O", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 106, - 228, - 509, - 267 - ], - "lines": [ - { - "bbox": [ - 108, - 230, - 498, - 242 - ], - "spans": [ - { - "bbox": [ - 108, - 230, - 498, - 242 - ], - "score": 1.0, - "content": "Sociologists have increasingly recognised age as a dimension of inequality. For", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 107, - 242, - 508, - 254 - ], - "spans": [ - { - "bbox": [ - 107, - 242, - 508, - 254 - ], - "score": 1.0, - "content": "example, young people do not have all the same rights that adults do. Many older", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 107, - 255, - 310, - 267 - ], - "spans": [ - { - "bbox": [ - 107, - 255, - 310, - 267 - ], - "score": 1.0, - "content": "people are no longer in paid employment.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 106, - 280, - 288, - 293 - ], - "lines": [ - { - "bbox": [ - 107, - 280, - 289, - 292 - ], - "spans": [ - { - "bbox": [ - 107, - 280, - 289, - 292 - ], - "score": 1.0, - "content": "Age may affect an individual’s status.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 100, - 311, - 537, - 337 - ], - "lines": [ - { - "bbox": [ - 101, - 311, - 535, - 325 - ], - "spans": [ - { - "bbox": [ - 101, - 311, - 535, - 325 - ], - "score": 1.0, - "content": "Applying material from Item O, analyse two ways in which age may affect an individual’s ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 101, - 326, - 136, - 338 - ], - "spans": [ - { - "bbox": [ - 101, - 326, - 136, - 338 - ], - "score": 1.0, - "content": "status.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5 - }, - { - "type": "text", - "bbox": [ - 482, - 337, - 539, - 351 - ], - "lines": [ - { - "bbox": [ - 483, - 336, - 540, - 352 - ], - "spans": [ - { - "bbox": [ - 483, - 336, - 540, - 352 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 101, - 378, - 381, - 392 - ], - "lines": [ - { - "bbox": [ - 101, - 379, - 381, - 390 - ], - "spans": [ - { - "bbox": [ - 101, - 379, - 381, - 390 - ], - "score": 1.0, - "content": "Read Item P below and answer the question that follows.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "title", - "bbox": [ - 302, - 411, - 337, - 424 - ], - "lines": [ - { - "bbox": [ - 303, - 412, - 338, - 424 - ], - "spans": [ - { - "bbox": [ - 303, - 412, - 338, - 424 - ], - "score": 1.0, - "content": "Item P", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 106, - 437, - 523, - 463 - ], - "lines": [ - { - "bbox": [ - 107, - 438, - 520, - 451 - ], - "spans": [ - { - "bbox": [ - 107, - 438, - 520, - 451 - ], - "score": 1.0, - "content": "Feminist sociologists argue that gender is the most important dimension of inequality", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 107, - 451, - 473, - 463 - ], - "spans": [ - { - "bbox": [ - 107, - 451, - 473, - 463 - ], - "score": 1.0, - "content": "today. This is despite some improvements in the social position of women.", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 15.5 - }, - { - "type": "text", - "bbox": [ - 104, - 475, - 530, - 501 - ], - "lines": [ - { - "bbox": [ - 107, - 475, - 529, - 488 - ], - "spans": [ - { - "bbox": [ - 107, - 475, - 529, - 488 - ], - "score": 1.0, - "content": "However, other sociologists see gender inequalities as natural and inevitable, or argue", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 106, - 488, - 374, - 501 - ], - "spans": [ - { - "bbox": [ - 106, - 488, - 374, - 501 - ], - "score": 1.0, - "content": "that other dimensions of inequality are more important.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 17.5 - }, - { - "type": "text", - "bbox": [ - 101, - 520, - 530, - 547 - ], - "lines": [ - { - "bbox": [ - 101, - 520, - 529, - 534 - ], - "spans": [ - { - "bbox": [ - 101, - 520, - 529, - 534 - ], - "score": 1.0, - "content": "Applying material from Item P and your knowledge, evaluate the view that gender is the", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 101, - 535, - 323, - 547 - ], - "spans": [ - { - "bbox": [ - 101, - 535, - 323, - 547 - ], - "score": 1.0, - "content": "most important dimension of inequality today.", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 19.5 - } - ], - "layout_bboxes": [], - "page_idx": 8, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 44, - 820, - 104, - 828 - ], - "lines": [ - { - "bbox": [ - 44, - 821, - 105, - 828 - ], - "spans": [ - { - "bbox": [ - 44, - 821, - 105, - 828 - ], - "score": 1.0, - "content": "IB/M/Jun20/7192/2", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 44, - 102, - 87, - 120 - ], - "lines": [ - { - "bbox": [ - 51, - 105, - 80, - 117 - ], - "spans": [ - { - "bbox": [ - 51, - 105, - 60, - 117 - ], - "score": 1.0, - "content": "2", - "type": "text" - }, - { - "bbox": [ - 70, - 105, - 80, - 117 - ], - "score": 1.0, - "content": "2", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 44, - 166, - 87, - 185 - ], - "lines": [ - { - "bbox": [ - 50, - 170, - 80, - 181 - ], - "spans": [ - { - "bbox": [ - 50, - 170, - 60, - 181 - ], - "score": 1.0, - "content": "2", - "type": "text" - }, - { - "bbox": [ - 70, - 170, - 80, - 181 - ], - "score": 1.0, - "content": "3", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 44, - 375, - 87, - 393 - ], - "lines": [ - { - "bbox": [ - 50, - 378, - 81, - 390 - ], - "spans": [ - { - "bbox": [ - 50, - 378, - 61, - 390 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - }, - { - "bbox": [ - 70, - 379, - 81, - 389 - ], - "score": 1.0, - "content": "4 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 288, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 287, - 29, - 296, - 41 - ], - "spans": [ - { - "bbox": [ - 287, - 29, - 296, - 41 - ], - "score": 1.0, - "content": "9", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 233, - 610, - 350, - 624 - ], - "lines": [ - { - "bbox": [ - 234, - 612, - 350, - 622 - ], - "spans": [ - { - "bbox": [ - 234, - 612, - 350, - 622 - ], - "score": 1.0, - "content": "END OF QUESTIONS", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 482, - 546, - 539, - 560 - ], - "lines": [ - { - "bbox": [ - 483, - 545, - 540, - 560 - ], - "spans": [ - { - "bbox": [ - 483, - 545, - 540, - 560 - ], - "score": 1.0, - "content": "[20 marks]", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 181, - 64, - 403, - 79 - ], - "lines": [ - { - "bbox": [ - 181, - 66, - 403, - 78 - ], - "spans": [ - { - "bbox": [ - 181, - 66, - 403, - 78 - ], - "score": 1.0, - "content": "Topic B4 Stratification and Differentiation", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 99, - 102, - 527, - 129 - ], - "lines": [ - { - "bbox": [ - 102, - 104, - 525, - 116 - ], - "spans": [ - { - "bbox": [ - 102, - 104, - 525, - 116 - ], - "score": 1.0, - "content": "Outline and explain two factors which may lead to some members of the working class", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 102, - 117, - 262, - 129 - ], - "spans": [ - { - "bbox": [ - 102, - 117, - 262, - 129 - ], - "score": 1.0, - "content": "achieving upward social mobility.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 102, - 104, - 525, - 129 - ] - }, - { - "type": "text", - "bbox": [ - 482, - 129, - 539, - 143 - ], - "lines": [ - { - "bbox": [ - 482, - 129, - 540, - 143 - ], - "spans": [ - { - "bbox": [ - 482, - 129, - 540, - 143 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 482, - 129, - 540, - 143 - ] - }, - { - "type": "text", - "bbox": [ - 100, - 170, - 382, - 183 - ], - "lines": [ - { - "bbox": [ - 102, - 171, - 381, - 182 - ], - "spans": [ - { - "bbox": [ - 102, - 171, - 381, - 182 - ], - "score": 1.0, - "content": "Read Item O below and answer the question that follows.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 102, - 171, - 381, - 182 - ] - }, - { - "type": "title", - "bbox": [ - 301, - 203, - 339, - 215 - ], - "lines": [ - { - "bbox": [ - 301, - 203, - 339, - 216 - ], - "spans": [ - { - "bbox": [ - 301, - 203, - 339, - 216 - ], - "score": 1.0, - "content": "Item O", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 106, - 228, - 509, - 267 - ], - "lines": [ - { - "bbox": [ - 108, - 230, - 498, - 242 - ], - "spans": [ - { - "bbox": [ - 108, - 230, - 498, - 242 - ], - "score": 1.0, - "content": "Sociologists have increasingly recognised age as a dimension of inequality. For", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 107, - 242, - 508, - 254 - ], - "spans": [ - { - "bbox": [ - 107, - 242, - 508, - 254 - ], - "score": 1.0, - "content": "example, young people do not have all the same rights that adults do. Many older", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 107, - 255, - 310, - 267 - ], - "spans": [ - { - "bbox": [ - 107, - 255, - 310, - 267 - ], - "score": 1.0, - "content": "people are no longer in paid employment.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 107, - 230, - 508, - 267 - ] - }, - { - "type": "text", - "bbox": [ - 106, - 280, - 288, - 293 - ], - "lines": [ - { - "bbox": [ - 107, - 280, - 289, - 292 - ], - "spans": [ - { - "bbox": [ - 107, - 280, - 289, - 292 - ], - "score": 1.0, - "content": "Age may affect an individual’s status.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 107, - 280, - 289, - 292 - ] - }, - { - "type": "text", - "bbox": [ - 100, - 311, - 537, - 337 - ], - "lines": [ - { - "bbox": [ - 101, - 311, - 535, - 325 - ], - "spans": [ - { - "bbox": [ - 101, - 311, - 535, - 325 - ], - "score": 1.0, - "content": "Applying material from Item O, analyse two ways in which age may affect an individual’s ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 101, - 326, - 136, - 338 - ], - "spans": [ - { - "bbox": [ - 101, - 326, - 136, - 338 - ], - "score": 1.0, - "content": "status.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 101, - 311, - 535, - 338 - ] - }, - { - "type": "text", - "bbox": [ - 482, - 337, - 539, - 351 - ], - "lines": [ - { - "bbox": [ - 483, - 336, - 540, - 352 - ], - "spans": [ - { - "bbox": [ - 483, - 336, - 540, - 352 - ], - "score": 1.0, - "content": "[10 marks]", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 483, - 336, - 540, - 352 - ] - }, - { - "type": "text", - "bbox": [ - 101, - 378, - 381, - 392 - ], - "lines": [ - { - "bbox": [ - 101, - 379, - 381, - 390 - ], - "spans": [ - { - "bbox": [ - 101, - 379, - 381, - 390 - ], - "score": 1.0, - "content": "Read Item P below and answer the question that follows.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 101, - 379, - 381, - 390 - ] - }, - { - "type": "title", - "bbox": [ - 302, - 411, - 337, - 424 - ], - "lines": [ - { - "bbox": [ - 303, - 412, - 338, - 424 - ], - "spans": [ - { - "bbox": [ - 303, - 412, - 338, - 424 - ], - "score": 1.0, - "content": "Item P", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 106, - 437, - 523, - 463 - ], - "lines": [ - { - "bbox": [ - 107, - 438, - 520, - 451 - ], - "spans": [ - { - "bbox": [ - 107, - 438, - 520, - 451 - ], - "score": 1.0, - "content": "Feminist sociologists argue that gender is the most important dimension of inequality", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 107, - 451, - 473, - 463 - ], - "spans": [ - { - "bbox": [ - 107, - 451, - 473, - 463 - ], - "score": 1.0, - "content": "today. This is despite some improvements in the social position of women.", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 15.5, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 107, - 438, - 520, - 463 - ] - }, - { - "type": "text", - "bbox": [ - 104, - 475, - 530, - 501 - ], - "lines": [ - { - "bbox": [ - 107, - 475, - 529, - 488 - ], - "spans": [ - { - "bbox": [ - 107, - 475, - 529, - 488 - ], - "score": 1.0, - "content": "However, other sociologists see gender inequalities as natural and inevitable, or argue", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 106, - 488, - 374, - 501 - ], - "spans": [ - { - "bbox": [ - 106, - 488, - 374, - 501 - ], - "score": 1.0, - "content": "that other dimensions of inequality are more important.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 17.5, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 106, - 475, - 529, - 501 - ] - }, - { - "type": "text", - "bbox": [ - 101, - 520, - 530, - 547 - ], - "lines": [ - { - "bbox": [ - 101, - 520, - 529, - 534 - ], - "spans": [ - { - "bbox": [ - 101, - 520, - 529, - 534 - ], - "score": 1.0, - "content": "Applying material from Item P and your knowledge, evaluate the view that gender is the", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 101, - 535, - 323, - 547 - ], - "spans": [ - { - "bbox": [ - 101, - 535, - 323, - 547 - ], - "score": 1.0, - "content": "most important dimension of inequality today.", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 19.5, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 101, - 520, - 529, - 547 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 176, - 66, - 408, - 80 - ], - "lines": [ - { - "bbox": [ - 176, - 66, - 407, - 80 - ], - "spans": [ - { - "bbox": [ - 176, - 66, - 407, - 80 - ], - "score": 1.0, - "content": "There are no questions printed on this page", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - } - ], - "layout_bboxes": [], - "page_idx": 9, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 286, - 29, - 298, - 39 - ], - "lines": [ - { - "bbox": [ - 283, - 28, - 300, - 42 - ], - "spans": [ - { - "bbox": [ - 283, - 28, - 300, - 42 - ], - "score": 1.0, - "content": "10 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 44, - 820, - 104, - 828 - ], - "lines": [ - { - "bbox": [ - 45, - 821, - 104, - 828 - ], - "spans": [ - { - "bbox": [ - 45, - 821, - 104, - 828 - ], - "score": 1.0, - "content": "IB/M/Jun20/7192/2", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 176, - 66, - 408, - 80 - ], - "lines": [ - { - "bbox": [ - 176, - 66, - 407, - 80 - ], - "spans": [ - { - "bbox": [ - 176, - 66, - 407, - 80 - ], - "score": 1.0, - "content": "There are no questions printed on this page", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_9", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 176, - 66, - 408, - 80 - ], - "lines": [ - { - "bbox": [ - 176, - 66, - 407, - 80 - ], - "spans": [ - { - "bbox": [ - 176, - 66, - 407, - 80 - ], - "score": 1.0, - "content": "There are no questions printed on this page", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - } - ], - "layout_bboxes": [], - "page_idx": 10, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 44, - 820, - 104, - 828 - ], - "lines": [ - { - "bbox": [ - 45, - 821, - 104, - 828 - ], - "spans": [ - { - "bbox": [ - 45, - 821, - 104, - 828 - ], - "score": 1.0, - "content": "IB/M/Jun20/7192/2", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 286, - 29, - 297, - 39 - ], - "lines": [ - { - "bbox": [ - 284, - 28, - 300, - 42 - ], - "spans": [ - { - "bbox": [ - 284, - 28, - 300, - 42 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 14, - "width": 16 - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 176, - 66, - 408, - 80 - ], - "lines": [ - { - "bbox": [ - 176, - 66, - 407, - 80 - ], - "spans": [ - { - "bbox": [ - 176, - 66, - 407, - 80 - ], - "score": 1.0, - "content": "There are no questions printed on this page", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_10", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 176, - 66, - 408, - 80 - ], - "lines": [ - { - "bbox": [ - 176, - 66, - 407, - 80 - ], - "spans": [ - { - "bbox": [ - 176, - 66, - 407, - 80 - ], - "score": 1.0, - "content": "There are no questions printed on this page", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "title", - "bbox": [ - 50, - 685, - 130, - 695 - ], - "lines": [ - { - "bbox": [ - 50, - 686, - 130, - 695 - ], - "spans": [ - { - "bbox": [ - 50, - 686, - 130, - 695 - ], - "score": 1.0, - "content": "Copyright information", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 49, - 703, - 517, - 719 - ], - "lines": [ - { - "bbox": [ - 50, - 703, - 516, - 712 - ], - "spans": [ - { - "bbox": [ - 50, - 703, - 516, - 712 - ], - "score": 1.0, - "content": "For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after ", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 50, - 711, - 315, - 720 - ], - "spans": [ - { - "bbox": [ - 50, - 711, - 315, - 720 - ], - "score": 1.0, - "content": "each live examination series and is available for free download from www.aqa.org.uk.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5 - }, - { - "type": "text", - "bbox": [ - 51, - 726, - 513, - 744 - ], - "lines": [ - { - "bbox": [ - 50, - 727, - 512, - 736 - ], - "spans": [ - { - "bbox": [ - 50, - 727, - 512, - 736 - ], - "score": 1.0, - "content": "Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful ", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 50, - 736, - 455, - 745 - ], - "spans": [ - { - "bbox": [ - 50, - 736, - 455, - 745 - ], - "score": 1.0, - "content": "and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5 - } - ], - "layout_bboxes": [], - "page_idx": 11, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 370, - 772, - 535, - 809 - ], - "lines": [ - { - "bbox": [ - 385, - 799, - 516, - 810 - ], - "spans": [ - { - "bbox": [ - 385, - 799, - 516, - 810 - ], - "score": 0.9270450472831726, - "content": "206A7192/2", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 44, - 820, - 104, - 828 - ], - "lines": [ - { - "bbox": [ - 45, - 821, - 105, - 828 - ], - "spans": [ - { - "bbox": [ - 45, - 821, - 105, - 828 - ], - "score": 1.0, - "content": "IB/M/Jun20/7192/2", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 286, - 29, - 298, - 39 - ], - "lines": [ - { - "bbox": [ - 283, - 28, - 301, - 42 - ], - "spans": [ - { - "bbox": [ - 283, - 28, - 301, - 42 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 14, - "width": 18 - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 50, - 751, - 235, - 759 - ], - "lines": [ - { - "bbox": [ - 50, - 751, - 237, - 760 - ], - "spans": [ - { - "bbox": [ - 50, - 751, - 81, - 760 - ], - "score": 1.0, - "content": "Copyright", - "type": "text" - }, - { - "bbox": [ - 81, - 751, - 88, - 758 - ], - "score": 0.62, - "content": "\\copyright", - "type": "inline_equation", - "height": 7, - "width": 7 - }, - { - "bbox": [ - 89, - 751, - 237, - 760 - ], - "score": 1.0, - "content": "2020 AQA and its licensors. All rights reserved.", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 176, - 66, - 408, - 80 - ], - "lines": [ - { - "bbox": [ - 176, - 66, - 407, - 80 - ], - "spans": [ - { - "bbox": [ - 176, - 66, - 407, - 80 - ], - "score": 1.0, - "content": "There are no questions printed on this page", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_11", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 50, - 685, - 130, - 695 - ], - "lines": [ - { - "bbox": [ - 50, - 686, - 130, - 695 - ], - "spans": [ - { - "bbox": [ - 50, - 686, - 130, - 695 - ], - "score": 1.0, - "content": "Copyright information", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_11", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 49, - 703, - 517, - 719 - ], - "lines": [ - { - "bbox": [ - 50, - 703, - 516, - 712 - ], - "spans": [ - { - "bbox": [ - 50, - 703, - 516, - 712 - ], - "score": 1.0, - "content": "For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after ", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 50, - 711, - 315, - 720 - ], - "spans": [ - { - "bbox": [ - 50, - 711, - 315, - 720 - ], - "score": 1.0, - "content": "each live examination series and is available for free download from www.aqa.org.uk.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5, - "page_num": "page_11", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 50, - 703, - 516, - 720 - ] - }, - { - "type": "text", - "bbox": [ - 51, - 726, - 513, - 744 - ], - "lines": [ - { - "bbox": [ - 50, - 727, - 512, - 736 - ], - "spans": [ - { - "bbox": [ - 50, - 727, - 512, - 736 - ], - "score": 1.0, - "content": "Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful ", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 50, - 736, - 455, - 745 - ], - "spans": [ - { - "bbox": [ - 50, - 736, - 455, - 745 - ], - "score": 1.0, - "content": "and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5, - "page_num": "page_11", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 50, - 727, - 512, - 745 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 39, - 25, - 173, - 75 - ], - "lines": [ - { - "bbox": [ - 40, - 30, - 173, - 73 - ], - "spans": [ - { - "bbox": [ - 40, - 36, - 139, - 73 - ], - "score": 0.9767382740974426, - "content": "AQA", - "type": "text" - }, - { - "bbox": [ - 138, - 30, - 173, - 61 - ], - "score": 0.6145317554473877, - "content": "-", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 44, - 159, - 216, - 290 - ], - "lines": [ - { - "bbox": [ - 46, - 163, - 151, - 186 - ], - "spans": [ - { - "bbox": [ - 46, - 163, - 151, - 186 - ], - "score": 1.0, - "content": "A-LEVEL", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 47, - 201, - 187, - 223 - ], - "spans": [ - { - "bbox": [ - 47, - 201, - 187, - 223 - ], - "score": 1.0, - "content": "SOCIOLOGY", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 46, - 236, - 135, - 264 - ], - "spans": [ - { - "bbox": [ - 46, - 236, - 135, - 264 - ], - "score": 1.0, - "content": "7192/2", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 45, - 273, - 215, - 289 - ], - "spans": [ - { - "bbox": [ - 45, - 273, - 215, - 289 - ], - "score": 1.0, - "content": "Paper 2 Topics in Sociology", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 2.5 - }, - { - "type": "text", - "bbox": [ - 45, - 304, - 130, - 341 - ], - "lines": [ - { - "bbox": [ - 46, - 305, - 128, - 320 - ], - "spans": [ - { - "bbox": [ - 46, - 305, - 128, - 320 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 45, - 327, - 101, - 340 - ], - "spans": [ - { - "bbox": [ - 45, - 327, - 101, - 340 - ], - "score": 1.0, - "content": "June 2020", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5.5 - }, - { - "type": "text", - "bbox": [ - 45, - 352, - 205, - 366 - ], - "lines": [ - { - "bbox": [ - 46, - 354, - 204, - 365 - ], - "spans": [ - { - "bbox": [ - 46, - 354, - 204, - 365 - ], - "score": 1.0, - "content": "Version: 1.0 Final Mark Scheme", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - } - ], - "layout_bboxes": [], - "page_idx": 12, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 47, - 762, - 196, - 777 - ], - "lines": [ - { - "bbox": [ - 47, - 763, - 195, - 776 - ], - "spans": [ - { - "bbox": [ - 47, - 763, - 195, - 776 - ], - "score": 1.0, - "content": "*206A7192/2/MS*", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 39, - 25, - 173, - 75 - ], - "lines": [ - { - "bbox": [ - 40, - 30, - 173, - 73 - ], - "spans": [ - { - "bbox": [ - 40, - 36, - 139, - 73 - ], - "score": 0.9767382740974426, - "content": "AQA", - "type": "text" - }, - { - "bbox": [ - 138, - 30, - 173, - 61 - ], - "score": 0.6145317554473877, - "content": "-", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_12", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 30, - 173, - 73 - ] - }, - { - "type": "list", - "bbox": [ - 44, - 159, - 216, - 290 - ], - "lines": [ - { - "bbox": [ - 46, - 163, - 151, - 186 - ], - "spans": [ - { - "bbox": [ - 46, - 163, - 151, - 186 - ], - "score": 1.0, - "content": "A-LEVEL", - "type": "text" - } - ], - "index": 1, - "is_list_start_line": true - }, - { - "bbox": [ - 47, - 201, - 187, - 223 - ], - "spans": [ - { - "bbox": [ - 47, - 201, - 187, - 223 - ], - "score": 1.0, - "content": "SOCIOLOGY", - "type": "text" - } - ], - "index": 2, - "is_list_start_line": true - }, - { - "bbox": [ - 46, - 236, - 135, - 264 - ], - "spans": [ - { - "bbox": [ - 46, - 236, - 135, - 264 - ], - "score": 1.0, - "content": "7192/2", - "type": "text" - } - ], - "index": 3, - "is_list_start_line": true - }, - { - "bbox": [ - 45, - 273, - 215, - 289 - ], - "spans": [ - { - "bbox": [ - 45, - 273, - 215, - 289 - ], - "score": 1.0, - "content": "Paper 2 Topics in Sociology", - "type": "text" - } - ], - "index": 4, - "is_list_start_line": true - } - ], - "index": 2.5, - "page_num": "page_12", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 45, - 163, - 215, - 289 - ] - }, - { - "type": "text", - "bbox": [ - 45, - 304, - 130, - 341 - ], - "lines": [ - { - "bbox": [ - 46, - 305, - 128, - 320 - ], - "spans": [ - { - "bbox": [ - 46, - 305, - 128, - 320 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 45, - 327, - 101, - 340 - ], - "spans": [ - { - "bbox": [ - 45, - 327, - 101, - 340 - ], - "score": 1.0, - "content": "June 2020", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5.5, - "page_num": "page_12", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 45, - 305, - 128, - 340 - ] - }, - { - "type": "text", - "bbox": [ - 45, - 352, - 205, - 366 - ], - "lines": [ - { - "bbox": [ - 46, - 354, - 204, - 365 - ], - "spans": [ - { - "bbox": [ - 46, - 354, - 204, - 365 - ], - "score": 1.0, - "content": "Version: 1.0 Final Mark Scheme", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_12", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 46, - 354, - 204, - 365 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 42, - 84, - 545, - 201 - ], - "lines": [ - { - "bbox": [ - 41, - 85, - 546, - 98 - ], - "spans": [ - { - "bbox": [ - 41, - 85, - 546, - 98 - ], - "score": 1.0, - "content": "Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 42, - 99, - 535, - 111 - ], - "spans": [ - { - "bbox": [ - 42, - 99, - 535, - 111 - ], - "score": 1.0, - "content": "questions, by a panel of subject teachers. This mark scheme includes any amendments made at the ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 42, - 112, - 547, - 123 - ], - "spans": [ - { - "bbox": [ - 42, - 112, - 547, - 123 - ], - "score": 1.0, - "content": "standardisation events which all associates participate in and is the scheme which was used by them in ", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 41, - 125, - 523, - 137 - ], - "spans": [ - { - "bbox": [ - 41, - 125, - 523, - 137 - ], - "score": 1.0, - "content": "this examination. The standardisation process ensures that the mark scheme covers the students’ ", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 40, - 137, - 533, - 151 - ], - "spans": [ - { - "bbox": [ - 40, - 137, - 533, - 151 - ], - "score": 1.0, - "content": "responses to questions and that every associate understands and applies it in the same correct way.", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 41, - 150, - 537, - 163 - ], - "spans": [ - { - "bbox": [ - 41, - 150, - 537, - 163 - ], - "score": 1.0, - "content": "As preparation for standardisation each associate analyses a number of students’ scripts. Alternative ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 40, - 163, - 508, - 176 - ], - "spans": [ - { - "bbox": [ - 40, - 163, - 508, - 176 - ], - "score": 1.0, - "content": "answers not already covered by the mark scheme are discussed and legislated for. If, after the ", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 41, - 176, - 536, - 190 - ], - "spans": [ - { - "bbox": [ - 41, - 176, - 536, - 190 - ], - "score": 1.0, - "content": "standardisation process, associates encounter unusual answers which have not been raised they are ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 41, - 189, - 309, - 203 - ], - "spans": [ - { - "bbox": [ - 41, - 189, - 309, - 203 - ], - "score": 1.0, - "content": "required to refer these to the Lead Assessment Writer. ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 42, - 214, - 541, - 280 - ], - "lines": [ - { - "bbox": [ - 42, - 215, - 535, - 227 - ], - "spans": [ - { - "bbox": [ - 42, - 215, - 535, - 227 - ], - "score": 1.0, - "content": "It must be stressed that a mark scheme is a working document, in many cases further developed and", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 42, - 229, - 524, - 241 - ], - "spans": [ - { - "bbox": [ - 42, - 229, - 524, - 241 - ], - "score": 1.0, - "content": "expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 41, - 242, - 514, - 255 - ], - "spans": [ - { - "bbox": [ - 41, - 242, - 514, - 255 - ], - "score": 1.0, - "content": "schemes on the basis of one year’s document should be avoided; whilst the guiding principles of ", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 41, - 255, - 541, - 267 - ], - "spans": [ - { - "bbox": [ - 41, - 255, - 541, - 267 - ], - "score": 1.0, - "content": "assessment remain constant, details will change, depending on the content of a particular examination", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 40, - 269, - 75, - 280 - ], - "spans": [ - { - "bbox": [ - 40, - 269, - 75, - 280 - ], - "score": 1.0, - "content": "paper.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 42, - 305, - 361, - 318 - ], - "lines": [ - { - "bbox": [ - 41, - 306, - 361, - 319 - ], - "spans": [ - { - "bbox": [ - 41, - 306, - 361, - 319 - ], - "score": 1.0, - "content": "Further copies of this mark scheme are available from aqa.org.uk", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "title", - "bbox": [ - 49, - 705, - 129, - 715 - ], - "lines": [ - { - "bbox": [ - 49, - 706, - 130, - 716 - ], - "spans": [ - { - "bbox": [ - 49, - 706, - 130, - 716 - ], - "score": 1.0, - "content": "Copyright information", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "text", - "bbox": [ - 49, - 723, - 540, - 748 - ], - "lines": [ - { - "bbox": [ - 49, - 723, - 533, - 734 - ], - "spans": [ - { - "bbox": [ - 49, - 723, - 533, - 734 - ], - "score": 1.0, - "content": "AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own ", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 48, - 731, - 540, - 740 - ], - "spans": [ - { - "bbox": [ - 48, - 731, - 540, - 740 - ], - "score": 1.0, - "content": "internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third ", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 49, - 740, - 186, - 749 - ], - "spans": [ - { - "bbox": [ - 49, - 740, - 186, - 749 - ], - "score": 1.0, - "content": "party even for internal use within the centre.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 17 - }, - { - "type": "text", - "bbox": [ - 50, - 755, - 235, - 764 - ], - "lines": [ - { - "bbox": [ - 49, - 755, - 236, - 764 - ], - "spans": [ - { - "bbox": [ - 49, - 755, - 80, - 764 - ], - "score": 1.0, - "content": "Copyright", - "type": "text" - }, - { - "bbox": [ - 81, - 755, - 87, - 763 - ], - "score": 0.52, - "content": "\\circledcirc", - "type": "inline_equation", - "height": 8, - "width": 6 - }, - { - "bbox": [ - 88, - 755, - 236, - 764 - ], - "score": 1.0, - "content": " 2020 AQA and its licensors. All rights reserved.", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 19 - } - ], - "layout_bboxes": [], - "page_idx": 13, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 237, - 35, - 553, - 48 - ], - "lines": [ - { - "bbox": [ - 237, - 35, - 553, - 48 - ], - "spans": [ - { - "bbox": [ - 237, - 35, - 553, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 797, - 47, - 805 - ], - "lines": [ - { - "bbox": [ - 40, - 796, - 49, - 807 - ], - "spans": [ - { - "bbox": [ - 40, - 796, - 49, - 807 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 11, - "width": 9 - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 42, - 84, - 545, - 201 - ], - "lines": [ - { - "bbox": [ - 41, - 85, - 546, - 98 - ], - "spans": [ - { - "bbox": [ - 41, - 85, - 546, - 98 - ], - "score": 1.0, - "content": "Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 42, - 99, - 535, - 111 - ], - "spans": [ - { - "bbox": [ - 42, - 99, - 535, - 111 - ], - "score": 1.0, - "content": "questions, by a panel of subject teachers. This mark scheme includes any amendments made at the ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 42, - 112, - 547, - 123 - ], - "spans": [ - { - "bbox": [ - 42, - 112, - 547, - 123 - ], - "score": 1.0, - "content": "standardisation events which all associates participate in and is the scheme which was used by them in ", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 41, - 125, - 523, - 137 - ], - "spans": [ - { - "bbox": [ - 41, - 125, - 523, - 137 - ], - "score": 1.0, - "content": "this examination. The standardisation process ensures that the mark scheme covers the students’ ", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 40, - 137, - 533, - 151 - ], - "spans": [ - { - "bbox": [ - 40, - 137, - 533, - 151 - ], - "score": 1.0, - "content": "responses to questions and that every associate understands and applies it in the same correct way.", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 41, - 150, - 537, - 163 - ], - "spans": [ - { - "bbox": [ - 41, - 150, - 537, - 163 - ], - "score": 1.0, - "content": "As preparation for standardisation each associate analyses a number of students’ scripts. Alternative ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 40, - 163, - 508, - 176 - ], - "spans": [ - { - "bbox": [ - 40, - 163, - 508, - 176 - ], - "score": 1.0, - "content": "answers not already covered by the mark scheme are discussed and legislated for. If, after the ", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 41, - 176, - 536, - 190 - ], - "spans": [ - { - "bbox": [ - 41, - 176, - 536, - 190 - ], - "score": 1.0, - "content": "standardisation process, associates encounter unusual answers which have not been raised they are ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 41, - 189, - 309, - 203 - ], - "spans": [ - { - "bbox": [ - 41, - 189, - 309, - 203 - ], - "score": 1.0, - "content": "required to refer these to the Lead Assessment Writer. ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 4, - "page_num": "page_13", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 85, - 547, - 203 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 214, - 541, - 280 - ], - "lines": [ - { - "bbox": [ - 42, - 215, - 535, - 227 - ], - "spans": [ - { - "bbox": [ - 42, - 215, - 535, - 227 - ], - "score": 1.0, - "content": "It must be stressed that a mark scheme is a working document, in many cases further developed and", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 42, - 229, - 524, - 241 - ], - "spans": [ - { - "bbox": [ - 42, - 229, - 524, - 241 - ], - "score": 1.0, - "content": "expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 41, - 242, - 514, - 255 - ], - "spans": [ - { - "bbox": [ - 41, - 242, - 514, - 255 - ], - "score": 1.0, - "content": "schemes on the basis of one year’s document should be avoided; whilst the guiding principles of ", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 41, - 255, - 541, - 267 - ], - "spans": [ - { - "bbox": [ - 41, - 255, - 541, - 267 - ], - "score": 1.0, - "content": "assessment remain constant, details will change, depending on the content of a particular examination", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 40, - 269, - 75, - 280 - ], - "spans": [ - { - "bbox": [ - 40, - 269, - 75, - 280 - ], - "score": 1.0, - "content": "paper.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 11, - "page_num": "page_13", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 215, - 541, - 280 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 305, - 361, - 318 - ], - "lines": [ - { - "bbox": [ - 41, - 306, - 361, - 319 - ], - "spans": [ - { - "bbox": [ - 41, - 306, - 361, - 319 - ], - "score": 1.0, - "content": "Further copies of this mark scheme are available from aqa.org.uk", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_13", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 306, - 361, - 319 - ] - }, - { - "type": "title", - "bbox": [ - 49, - 705, - 129, - 715 - ], - "lines": [ - { - "bbox": [ - 49, - 706, - 130, - 716 - ], - "spans": [ - { - "bbox": [ - 49, - 706, - 130, - 716 - ], - "score": 1.0, - "content": "Copyright information", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_13", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 49, - 723, - 540, - 748 - ], - "lines": [ - { - "bbox": [ - 49, - 723, - 533, - 734 - ], - "spans": [ - { - "bbox": [ - 49, - 723, - 533, - 734 - ], - "score": 1.0, - "content": "AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own ", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 48, - 731, - 540, - 740 - ], - "spans": [ - { - "bbox": [ - 48, - 731, - 540, - 740 - ], - "score": 1.0, - "content": "internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third ", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 49, - 740, - 186, - 749 - ], - "spans": [ - { - "bbox": [ - 49, - 740, - 186, - 749 - ], - "score": 1.0, - "content": "party even for internal use within the centre.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 17, - "page_num": "page_13", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 48, - 723, - 540, - 749 - ] - }, - { - "type": "text", - "bbox": [ - 50, - 755, - 235, - 764 - ], - "lines": [ - { - "bbox": [ - 49, - 755, - 236, - 764 - ], - "spans": [ - { - "bbox": [ - 49, - 755, - 80, - 764 - ], - "score": 1.0, - "content": "Copyright", - "type": "text" - }, - { - "bbox": [ - 81, - 755, - 87, - 763 - ], - "score": 0.52, - "content": "\\circledcirc", - "type": "inline_equation", - "height": 8, - "width": 6 - }, - { - "bbox": [ - 88, - 755, - 236, - 764 - ], - "score": 1.0, - "content": " 2020 AQA and its licensors. All rights reserved.", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 19, - "page_num": "page_13", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 49, - 755, - 236, - 764 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 42, - 98, - 325, - 116 - ], - "lines": [ - { - "bbox": [ - 41, - 99, - 324, - 117 - ], - "spans": [ - { - "bbox": [ - 41, - 99, - 324, - 117 - ], - "score": 1.0, - "content": "Level of response marking instructions", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 41, - 129, - 525, - 155 - ], - "lines": [ - { - "bbox": [ - 42, - 131, - 521, - 142 - ], - "spans": [ - { - "bbox": [ - 42, - 131, - 521, - 142 - ], - "score": 1.0, - "content": "Level of response mark schemes are broken down into levels, each of which has a descriptor. The", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 42, - 144, - 525, - 156 - ], - "spans": [ - { - "bbox": [ - 42, - 144, - 525, - 156 - ], - "score": 1.0, - "content": "descriptor for the level shows the average performance for the level. There are marks in each level.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5 - }, - { - "type": "text", - "bbox": [ - 39, - 168, - 539, - 195 - ], - "lines": [ - { - "bbox": [ - 42, - 170, - 536, - 182 - ], - "spans": [ - { - "bbox": [ - 42, - 170, - 536, - 182 - ], - "score": 1.0, - "content": "Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 42, - 183, - 509, - 195 - ], - "spans": [ - { - "bbox": [ - 42, - 183, - 509, - 195 - ], - "score": 1.0, - "content": "instructed) to show the qualities that are being looked for. You can then apply the mark scheme.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5 - }, - { - "type": "title", - "bbox": [ - 42, - 208, - 192, - 223 - ], - "lines": [ - { - "bbox": [ - 42, - 209, - 192, - 222 - ], - "spans": [ - { - "bbox": [ - 42, - 209, - 192, - 222 - ], - "score": 1.0, - "content": "Step 1 Determine a level", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 42, - 236, - 549, - 312 - ], - "lines": [ - { - "bbox": [ - 42, - 237, - 548, - 249 - ], - "spans": [ - { - "bbox": [ - 42, - 237, - 548, - 249 - ], - "score": 1.0, - "content": "Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 41, - 250, - 548, - 263 - ], - "spans": [ - { - "bbox": [ - 41, - 250, - 548, - 263 - ], - "score": 1.0, - "content": "descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 41, - 263, - 531, - 275 - ], - "spans": [ - { - "bbox": [ - 41, - 263, - 531, - 275 - ], - "score": 1.0, - "content": "the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it ", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 42, - 276, - 536, - 287 - ], - "spans": [ - { - "bbox": [ - 42, - 276, - 536, - 287 - ], - "score": 1.0, - "content": "meets this level, and so on, until you have a match between the level descriptor and the answer. With", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 41, - 288, - 534, - 301 - ], - "spans": [ - { - "bbox": [ - 41, - 288, - 534, - 301 - ], - "score": 1.0, - "content": "practice and familiarity you will find that for better answers you will be able to quickly skip through the", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 41, - 302, - 202, - 313 - ], - "spans": [ - { - "bbox": [ - 41, - 302, - 202, - 313 - ], - "score": 1.0, - "content": "lower levels of the mark scheme.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 8.5 - }, - { - "type": "text", - "bbox": [ - 42, - 325, - 551, - 401 - ], - "lines": [ - { - "bbox": [ - 41, - 325, - 545, - 338 - ], - "spans": [ - { - "bbox": [ - 41, - 325, - 545, - 338 - ], - "score": 1.0, - "content": "When assigning a level you should look at the overall quality of the answer and not look to pick holes in", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 41, - 338, - 542, - 351 - ], - "spans": [ - { - "bbox": [ - 41, - 338, - 542, - 351 - ], - "score": 1.0, - "content": "small and specific parts of the answer where the student has not performed quite as well as the rest. If ", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 42, - 352, - 526, - 363 - ], - "spans": [ - { - "bbox": [ - 42, - 352, - 526, - 363 - ], - "score": 1.0, - "content": "the answer covers different aspects of different levels of the mark scheme you should use a best fit ", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 41, - 363, - 552, - 376 - ], - "spans": [ - { - "bbox": [ - 41, - 363, - 552, - 376 - ], - "score": 1.0, - "content": "approach for defining the level and then use the variability of the response to help decide the mark within", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 41, - 376, - 539, - 389 - ], - "spans": [ - { - "bbox": [ - 41, - 376, - 539, - 389 - ], - "score": 1.0, - "content": "the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be ", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 41, - 389, - 508, - 402 - ], - "spans": [ - { - "bbox": [ - 41, - 389, - 508, - 402 - ], - "score": 1.0, - "content": "placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 14.5 - }, - { - "type": "title", - "bbox": [ - 43, - 414, - 195, - 430 - ], - "lines": [ - { - "bbox": [ - 42, - 416, - 194, - 429 - ], - "spans": [ - { - "bbox": [ - 42, - 416, - 194, - 429 - ], - "score": 1.0, - "content": "Step 2 Determine a mark", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18 - }, - { - "type": "text", - "bbox": [ - 42, - 443, - 550, - 519 - ], - "lines": [ - { - "bbox": [ - 41, - 443, - 530, - 456 - ], - "spans": [ - { - "bbox": [ - 41, - 443, - 530, - 456 - ], - "score": 1.0, - "content": "Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 41, - 456, - 547, - 469 - ], - "spans": [ - { - "bbox": [ - 41, - 456, - 547, - 469 - ], - "score": 1.0, - "content": "marks can help with this. The exemplar materials used during standardisation will help. There will be an ", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 41, - 469, - 535, - 482 - ], - "spans": [ - { - "bbox": [ - 41, - 469, - 535, - 482 - ], - "score": 1.0, - "content": "answer in the standardising materials which will correspond with each level of the mark scheme. This ", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 42, - 483, - 541, - 494 - ], - "spans": [ - { - "bbox": [ - 42, - 483, - 541, - 494 - ], - "score": 1.0, - "content": "answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer ", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 41, - 494, - 551, - 507 - ], - "spans": [ - { - "bbox": [ - 41, - 494, - 551, - 507 - ], - "score": 1.0, - "content": "with the example to determine if it is the same standard, better or worse than the example. You can then", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 42, - 508, - 504, - 519 - ], - "spans": [ - { - "bbox": [ - 42, - 508, - 504, - 519 - ], - "score": 1.0, - "content": "use this to allocate a mark for the answer based on the Lead Examiner’s mark on the example.", - "type": "text" - } - ], - "index": 24 - } - ], - "index": 21.5 - }, - { - "type": "text", - "bbox": [ - 40, - 532, - 549, - 557 - ], - "lines": [ - { - "bbox": [ - 42, - 533, - 547, - 545 - ], - "spans": [ - { - "bbox": [ - 42, - 533, - 547, - 545 - ], - "score": 1.0, - "content": "You may well need to read back through the answer as you apply the mark scheme to clarify points and", - "type": "text" - } - ], - "index": 25 - }, - { - "bbox": [ - 42, - 546, - 331, - 558 - ], - "spans": [ - { - "bbox": [ - 42, - 546, - 331, - 558 - ], - "score": 1.0, - "content": "assure yourself that the level and the mark are appropriate.", - "type": "text" - } - ], - "index": 26 - } - ], - "index": 25.5 - }, - { - "type": "text", - "bbox": [ - 42, - 569, - 525, - 608 - ], - "lines": [ - { - "bbox": [ - 42, - 570, - 522, - 583 - ], - "spans": [ - { - "bbox": [ - 42, - 570, - 522, - 583 - ], - "score": 1.0, - "content": "Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be", - "type": "text" - } - ], - "index": 27 - }, - { - "bbox": [ - 41, - 583, - 511, - 595 - ], - "spans": [ - { - "bbox": [ - 41, - 583, - 511, - 595 - ], - "score": 1.0, - "content": "exhaustive and you must credit other valid points. Students do not have to cover all of the points", - "type": "text" - } - ], - "index": 28 - }, - { - "bbox": [ - 41, - 597, - 441, - 608 - ], - "spans": [ - { - "bbox": [ - 41, - 597, - 441, - 608 - ], - "score": 1.0, - "content": "mentioned in the Indicative content to reach the highest level of the mark scheme.", - "type": "text" - } - ], - "index": 29 - } - ], - "index": 28 - }, - { - "type": "text", - "bbox": [ - 40, - 620, - 486, - 633 - ], - "lines": [ - { - "bbox": [ - 42, - 622, - 486, - 633 - ], - "spans": [ - { - "bbox": [ - 42, - 622, - 486, - 633 - ], - "score": 1.0, - "content": "An answer which contains nothing of relevance to the question must be awarded no marks.", - "type": "text" - } - ], - "index": 30 - } - ], - "index": 30 - } - ], - "layout_bboxes": [], - "page_idx": 14, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 237, - 35, - 554, - 48 - ], - "lines": [ - { - "bbox": [ - 237, - 35, - 553, - 48 - ], - "spans": [ - { - "bbox": [ - 237, - 35, - 553, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 547, - 797, - 554, - 805 - ], - "lines": [ - { - "bbox": [ - 547, - 797, - 555, - 807 - ], - "spans": [ - { - "bbox": [ - 547, - 797, - 555, - 807 - ], - "score": 1.0, - "content": "3 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 42, - 98, - 325, - 116 - ], - "lines": [ - { - "bbox": [ - 41, - 99, - 324, - 117 - ], - "spans": [ - { - "bbox": [ - 41, - 99, - 324, - 117 - ], - "score": 1.0, - "content": "Level of response marking instructions", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_14", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 41, - 129, - 525, - 155 - ], - "lines": [ - { - "bbox": [ - 42, - 131, - 521, - 142 - ], - "spans": [ - { - "bbox": [ - 42, - 131, - 521, - 142 - ], - "score": 1.0, - "content": "Level of response mark schemes are broken down into levels, each of which has a descriptor. The", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 42, - 144, - 525, - 156 - ], - "spans": [ - { - "bbox": [ - 42, - 144, - 525, - 156 - ], - "score": 1.0, - "content": "descriptor for the level shows the average performance for the level. There are marks in each level.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5, - "page_num": "page_14", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 131, - 525, - 156 - ] - }, - { - "type": "text", - "bbox": [ - 39, - 168, - 539, - 195 - ], - "lines": [ - { - "bbox": [ - 42, - 170, - 536, - 182 - ], - "spans": [ - { - "bbox": [ - 42, - 170, - 536, - 182 - ], - "score": 1.0, - "content": "Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 42, - 183, - 509, - 195 - ], - "spans": [ - { - "bbox": [ - 42, - 183, - 509, - 195 - ], - "score": 1.0, - "content": "instructed) to show the qualities that are being looked for. You can then apply the mark scheme.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5, - "page_num": "page_14", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 170, - 536, - 195 - ] - }, - { - "type": "title", - "bbox": [ - 42, - 208, - 192, - 223 - ], - "lines": [ - { - "bbox": [ - 42, - 209, - 192, - 222 - ], - "spans": [ - { - "bbox": [ - 42, - 209, - 192, - 222 - ], - "score": 1.0, - "content": "Step 1 Determine a level", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_14", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 236, - 549, - 312 - ], - "lines": [ - { - "bbox": [ - 42, - 237, - 548, - 249 - ], - "spans": [ - { - "bbox": [ - 42, - 237, - 548, - 249 - ], - "score": 1.0, - "content": "Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 41, - 250, - 548, - 263 - ], - "spans": [ - { - "bbox": [ - 41, - 250, - 548, - 263 - ], - "score": 1.0, - "content": "descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 41, - 263, - 531, - 275 - ], - "spans": [ - { - "bbox": [ - 41, - 263, - 531, - 275 - ], - "score": 1.0, - "content": "the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it ", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 42, - 276, - 536, - 287 - ], - "spans": [ - { - "bbox": [ - 42, - 276, - 536, - 287 - ], - "score": 1.0, - "content": "meets this level, and so on, until you have a match between the level descriptor and the answer. With", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 41, - 288, - 534, - 301 - ], - "spans": [ - { - "bbox": [ - 41, - 288, - 534, - 301 - ], - "score": 1.0, - "content": "practice and familiarity you will find that for better answers you will be able to quickly skip through the", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 41, - 302, - 202, - 313 - ], - "spans": [ - { - "bbox": [ - 41, - 302, - 202, - 313 - ], - "score": 1.0, - "content": "lower levels of the mark scheme.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 8.5, - "page_num": "page_14", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 237, - 548, - 313 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 325, - 551, - 401 - ], - "lines": [ - { - "bbox": [ - 41, - 325, - 545, - 338 - ], - "spans": [ - { - "bbox": [ - 41, - 325, - 545, - 338 - ], - "score": 1.0, - "content": "When assigning a level you should look at the overall quality of the answer and not look to pick holes in", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 41, - 338, - 542, - 351 - ], - "spans": [ - { - "bbox": [ - 41, - 338, - 542, - 351 - ], - "score": 1.0, - "content": "small and specific parts of the answer where the student has not performed quite as well as the rest. If ", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 42, - 352, - 526, - 363 - ], - "spans": [ - { - "bbox": [ - 42, - 352, - 526, - 363 - ], - "score": 1.0, - "content": "the answer covers different aspects of different levels of the mark scheme you should use a best fit ", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 41, - 363, - 552, - 376 - ], - "spans": [ - { - "bbox": [ - 41, - 363, - 552, - 376 - ], - "score": 1.0, - "content": "approach for defining the level and then use the variability of the response to help decide the mark within", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 41, - 376, - 539, - 389 - ], - "spans": [ - { - "bbox": [ - 41, - 376, - 539, - 389 - ], - "score": 1.0, - "content": "the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be ", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 41, - 389, - 508, - 402 - ], - "spans": [ - { - "bbox": [ - 41, - 389, - 508, - 402 - ], - "score": 1.0, - "content": "placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 14.5, - "page_num": "page_14", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 325, - 552, - 402 - ] - }, - { - "type": "title", - "bbox": [ - 43, - 414, - 195, - 430 - ], - "lines": [ - { - "bbox": [ - 42, - 416, - 194, - 429 - ], - "spans": [ - { - "bbox": [ - 42, - 416, - 194, - 429 - ], - "score": 1.0, - "content": "Step 2 Determine a mark", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18, - "page_num": "page_14", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 443, - 550, - 519 - ], - "lines": [ - { - "bbox": [ - 41, - 443, - 530, - 456 - ], - "spans": [ - { - "bbox": [ - 41, - 443, - 530, - 456 - ], - "score": 1.0, - "content": "Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 41, - 456, - 547, - 469 - ], - "spans": [ - { - "bbox": [ - 41, - 456, - 547, - 469 - ], - "score": 1.0, - "content": "marks can help with this. The exemplar materials used during standardisation will help. There will be an ", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 41, - 469, - 535, - 482 - ], - "spans": [ - { - "bbox": [ - 41, - 469, - 535, - 482 - ], - "score": 1.0, - "content": "answer in the standardising materials which will correspond with each level of the mark scheme. This ", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 42, - 483, - 541, - 494 - ], - "spans": [ - { - "bbox": [ - 42, - 483, - 541, - 494 - ], - "score": 1.0, - "content": "answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer ", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 41, - 494, - 551, - 507 - ], - "spans": [ - { - "bbox": [ - 41, - 494, - 551, - 507 - ], - "score": 1.0, - "content": "with the example to determine if it is the same standard, better or worse than the example. You can then", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 42, - 508, - 504, - 519 - ], - "spans": [ - { - "bbox": [ - 42, - 508, - 504, - 519 - ], - "score": 1.0, - "content": "use this to allocate a mark for the answer based on the Lead Examiner’s mark on the example.", - "type": "text" - } - ], - "index": 24 - } - ], - "index": 21.5, - "page_num": "page_14", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 443, - 551, - 519 - ] - }, - { - "type": "text", - "bbox": [ - 40, - 532, - 549, - 557 - ], - "lines": [ - { - "bbox": [ - 42, - 533, - 547, - 545 - ], - "spans": [ - { - "bbox": [ - 42, - 533, - 547, - 545 - ], - "score": 1.0, - "content": "You may well need to read back through the answer as you apply the mark scheme to clarify points and", - "type": "text" - } - ], - "index": 25 - }, - { - "bbox": [ - 42, - 546, - 331, - 558 - ], - "spans": [ - { - "bbox": [ - 42, - 546, - 331, - 558 - ], - "score": 1.0, - "content": "assure yourself that the level and the mark are appropriate.", - "type": "text" - } - ], - "index": 26 - } - ], - "index": 25.5, - "page_num": "page_14", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 533, - 547, - 558 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 569, - 525, - 608 - ], - "lines": [ - { - "bbox": [ - 42, - 570, - 522, - 583 - ], - "spans": [ - { - "bbox": [ - 42, - 570, - 522, - 583 - ], - "score": 1.0, - "content": "Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be", - "type": "text" - } - ], - "index": 27 - }, - { - "bbox": [ - 41, - 583, - 511, - 595 - ], - "spans": [ - { - "bbox": [ - 41, - 583, - 511, - 595 - ], - "score": 1.0, - "content": "exhaustive and you must credit other valid points. Students do not have to cover all of the points", - "type": "text" - } - ], - "index": 28 - }, - { - "bbox": [ - 41, - 597, - 441, - 608 - ], - "spans": [ - { - "bbox": [ - 41, - 597, - 441, - 608 - ], - "score": 1.0, - "content": "mentioned in the Indicative content to reach the highest level of the mark scheme.", - "type": "text" - } - ], - "index": 29 - } - ], - "index": 28, - "page_num": "page_14", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 570, - 522, - 608 - ] - }, - { - "type": "text", - "bbox": [ - 40, - 620, - 486, - 633 - ], - "lines": [ - { - "bbox": [ - 42, - 622, - 486, - 633 - ], - "spans": [ - { - "bbox": [ - 42, - 622, - 486, - 633 - ], - "score": 1.0, - "content": "An answer which contains nothing of relevance to the question must be awarded no marks.", - "type": "text" - } - ], - "index": 30 - } - ], - "index": 30, - "page_num": "page_14", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 622, - 486, - 633 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 42, - 84, - 141, - 98 - ], - "lines": [ - { - "bbox": [ - 42, - 85, - 141, - 98 - ], - "spans": [ - { - "bbox": [ - 42, - 85, - 141, - 98 - ], - "score": 1.0, - "content": "Annotating Scripts", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 41, - 110, - 240, - 123 - ], - "lines": [ - { - "bbox": [ - 42, - 111, - 239, - 122 - ], - "spans": [ - { - "bbox": [ - 42, - 111, - 239, - 122 - ], - "score": 1.0, - "content": "Please use the following annotations:", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 44, - 120, - 549, - 741 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 44, - 120, - 549, - 741 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 44, - 120, - 549, - 741 - ], - "spans": [ - { - "bbox": [ - 44, - 120, - 549, - 741 - ], - "score": 0.9, - "html": "
eMarker-2 symbolUse of symbol
ANAnalysis (all questions)
APP]Application (for use of the item in 10 mark Analyse question answers)
AAO1 - knowledge and understanding e.g. sociological concepts, theories, names of sociologists
A02AO2 - application
A03AO3- analysisandevaluation
Correct/good point
EVALEvaluation
EGExample
creditUnderlining tool- use this or AO1 for concepts etc or for any point deserving
Incorrect
KUKnowledge and understanding
Unclear
Missing
NAQNot answering question
NRNo response (use e.g. if candidate has put question number in margin but
xampleTexinot written anything) Text box. Please include a brief text box comment for each question, and
other text boxes as appropriate. Red rectangle. Can be used for highlighting.
appropriate.
W1Way 1. Use in 10 mark analyse question answers for the first way (or factor, reason etc)identified
W2Way 2. Use in 10 mark analyse question answers for the second way (or factor, reason etc) identified
", - "type": "table", - "image_path": "e79b8fc5f77d8cd4ccf50e24d10dcb974832140d60897580e90f2c6de30f8b40.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 44, - 120, - 549, - 327.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 44, - 327.0, - 549, - 534.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 44, - 534.0, - 549, - 741.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3 - } - ], - "layout_bboxes": [], - "page_idx": 15, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 44, - 120, - 549, - 741 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 44, - 120, - 549, - 741 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 44, - 120, - 549, - 741 - ], - "spans": [ - { - "bbox": [ - 44, - 120, - 549, - 741 - ], - "score": 0.9, - "html": "
eMarker-2 symbolUse of symbol
ANAnalysis (all questions)
APP]Application (for use of the item in 10 mark Analyse question answers)
AAO1 - knowledge and understanding e.g. sociological concepts, theories, names of sociologists
A02AO2 - application
A03AO3- analysisandevaluation
Correct/good point
EVALEvaluation
EGExample
creditUnderlining tool- use this or AO1 for concepts etc or for any point deserving
Incorrect
KUKnowledge and understanding
Unclear
Missing
NAQNot answering question
NRNo response (use e.g. if candidate has put question number in margin but
xampleTexinot written anything) Text box. Please include a brief text box comment for each question, and
other text boxes as appropriate. Red rectangle. Can be used for highlighting.
appropriate.
W1Way 1. Use in 10 mark analyse question answers for the first way (or factor, reason etc)identified
W2Way 2. Use in 10 mark analyse question answers for the second way (or factor, reason etc) identified
", - "type": "table", - "image_path": "e79b8fc5f77d8cd4ccf50e24d10dcb974832140d60897580e90f2c6de30f8b40.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 44, - 120, - 549, - 327.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 44, - 327.0, - 549, - 534.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 44, - 534.0, - 549, - 741.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 236, - 35, - 554, - 48 - ], - "lines": [ - { - "bbox": [ - 238, - 37, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 238, - 37, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 797, - 47, - 805 - ], - "lines": [ - { - "bbox": [ - 42, - 798, - 47, - 805 - ], - "spans": [ - { - "bbox": [ - 42, - 798, - 47, - 805 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 42, - 84, - 141, - 98 - ], - "lines": [ - { - "bbox": [ - 42, - 85, - 141, - 98 - ], - "spans": [ - { - "bbox": [ - 42, - 85, - 141, - 98 - ], - "score": 1.0, - "content": "Annotating Scripts", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_15", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 41, - 110, - 240, - 123 - ], - "lines": [ - { - "bbox": [ - 42, - 111, - 239, - 122 - ], - "spans": [ - { - "bbox": [ - 42, - 111, - 239, - 122 - ], - "score": 1.0, - "content": "Please use the following annotations:", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_15", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 111, - 239, - 122 - ] - }, - { - "type": "table", - "bbox": [ - 44, - 120, - 549, - 741 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 44, - 120, - 549, - 741 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 44, - 120, - 549, - 741 - ], - "spans": [ - { - "bbox": [ - 44, - 120, - 549, - 741 - ], - "score": 0.9, - "html": "
eMarker-2 symbolUse of symbol
ANAnalysis (all questions)
APP]Application (for use of the item in 10 mark Analyse question answers)
AAO1 - knowledge and understanding e.g. sociological concepts, theories, names of sociologists
A02AO2 - application
A03AO3- analysisandevaluation
Correct/good point
EVALEvaluation
EGExample
creditUnderlining tool- use this or AO1 for concepts etc or for any point deserving
Incorrect
KUKnowledge and understanding
Unclear
Missing
NAQNot answering question
NRNo response (use e.g. if candidate has put question number in margin but
xampleTexinot written anything) Text box. Please include a brief text box comment for each question, and
other text boxes as appropriate. Red rectangle. Can be used for highlighting.
appropriate.
W1Way 1. Use in 10 mark analyse question answers for the first way (or factor, reason etc)identified
W2Way 2. Use in 10 mark analyse question answers for the second way (or factor, reason etc) identified
", - "type": "table", - "image_path": "e79b8fc5f77d8cd4ccf50e24d10dcb974832140d60897580e90f2c6de30f8b40.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 44, - 120, - 549, - 327.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 44, - 327.0, - 549, - 534.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 44, - 534.0, - 549, - 741.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3, - "page_num": "page_15", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 214, - 86, - 372, - 112 - ], - "lines": [ - { - "bbox": [ - 267, - 87, - 319, - 98 - ], - "spans": [ - { - "bbox": [ - 267, - 87, - 319, - 98 - ], - "score": 1.0, - "content": "Section A", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 214, - 99, - 371, - 112 - ], - "spans": [ - { - "bbox": [ - 214, - 99, - 371, - 112 - ], - "score": 1.0, - "content": "Topic A1 Culture and Identity", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "table", - "bbox": [ - 41, - 113, - 547, - 143 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 113, - 547, - 143 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 113, - 547, - 143 - ], - "spans": [ - { - "bbox": [ - 41, - 113, - 547, - 143 - ], - "score": 0.877, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "8dfdd5bfc137aea68414207e84707b3ab3c957e2c5b597a7661e6fd6e1d4c734.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 41, - 113, - 547, - 123.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 41, - 123.0, - 547, - 133.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 41, - 133.0, - 547, - 143.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3 - }, - { - "type": "table", - "bbox": [ - 39, - 166, - 546, - 206 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 166, - 546, - 206 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 39, - 166, - 546, - 206 - ], - "spans": [ - { - "bbox": [ - 39, - 166, - 546, - 206 - ], - "score": 0.676, - "html": "
01Outline and explain two ways in which social class may have become less important in shaping identities.10
", - "type": "table", - "image_path": "277ead22442bea9b765ea51d9a2a31033db318a6e8b3fa36dc64e9d4443a3204.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 39, - 166, - 546, - 179.33333333333334 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 39, - 179.33333333333334, - 546, - 192.66666666666669 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 39, - 192.66666666666669, - 546, - 206.00000000000003 - ], - "spans": [], - "index": 7 - } - ] - } - ], - "index": 6 - }, - { - "type": "table", - "bbox": [ - 41, - 215, - 546, - 598 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 215, - 546, - 598 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 41, - 215, - 546, - 598 - ], - "spans": [ - { - "bbox": [ - 41, - 215, - 546, - 598 - ], - "score": 0.981, - "html": "
MarksLevel Descriptors
8-10There will be two applications of relevant material, eg socialisation into class-based subcultures influencing values; middle class concepts of taste providing a sense of difference and superiority. There will be appropriate analysis, eg of the extent to which social class is important in
4-7shaping identities. Answers in this band will show a reasonable to good knowledge and understanding of one s s g s There will be one or two applications of relevant material, eg ways in which income and wealth enable or limit choices about lifestyle and consumption. There will be some basic analysis.
1-3question or the material. There will be limited focus on the question, eg a drift into discussion of identities in general.
0There will be little or no analysis. No relevant points.
", - "type": "table", - "image_path": "f3cb51af128e815cc3163f69e47d9927926d8d203beea95cbcb56feb92642c15.jpg" - } - ] - } - ], - "index": 9, - "virtual_lines": [ - { - "bbox": [ - 41, - 215, - 546, - 342.6666666666667 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 41, - 342.6666666666667, - 546, - 470.33333333333337 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 41, - 470.33333333333337, - 546, - 598.0 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 9 - }, - { - "type": "title", - "bbox": [ - 42, - 613, - 139, - 626 - ], - "lines": [ - { - "bbox": [ - 43, - 614, - 138, - 624 - ], - "spans": [ - { - "bbox": [ - 43, - 614, - 138, - 624 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 43, - 638, - 353, - 652 - ], - "lines": [ - { - "bbox": [ - 43, - 640, - 352, - 651 - ], - "spans": [ - { - "bbox": [ - 43, - 640, - 352, - 651 - ], - "score": 1.0, - "content": "Answers may include the following and/or other relevant points:", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 42, - 664, - 499, - 758 - ], - "lines": [ - { - "bbox": [ - 44, - 665, - 352, - 677 - ], - "spans": [ - { - "bbox": [ - 44, - 665, - 352, - 677 - ], - "score": 1.0, - "content": "• economic aspects of social class such as income and wealth", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 42, - 678, - 426, - 690 - ], - "spans": [ - { - "bbox": [ - 42, - 678, - 426, - 690 - ], - "score": 1.0, - "content": "• cultural aspects of social class such as leisure activities, interests and tastes", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 42, - 692, - 247, - 704 - ], - "spans": [ - { - "bbox": [ - 42, - 692, - 247, - 704 - ], - "score": 1.0, - "content": "• social and cultural capital and identities", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 42, - 706, - 497, - 717 - ], - "spans": [ - { - "bbox": [ - 42, - 706, - 497, - 717 - ], - "score": 1.0, - "content": "• association of high culture with higher classes and mass/popular culture with working class", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 42, - 718, - 333, - 731 - ], - "spans": [ - { - "bbox": [ - 42, - 718, - 333, - 731 - ], - "score": 1.0, - "content": "• class differences in attitudes eg to the value of education", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 42, - 732, - 270, - 744 - ], - "spans": [ - { - "bbox": [ - 42, - 732, - 270, - 744 - ], - "score": 1.0, - "content": "• decline of traditional working class identities", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 42, - 746, - 143, - 757 - ], - "spans": [ - { - "bbox": [ - 42, - 746, - 143, - 757 - ], - "score": 1.0, - "content": "• class subcultures.", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 16 - } - ], - "layout_bboxes": [], - "page_idx": 16, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 41, - 113, - 547, - 143 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 113, - 547, - 143 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 113, - 547, - 143 - ], - "spans": [ - { - "bbox": [ - 41, - 113, - 547, - 143 - ], - "score": 0.877, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "8dfdd5bfc137aea68414207e84707b3ab3c957e2c5b597a7661e6fd6e1d4c734.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 41, - 113, - 547, - 123.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 41, - 123.0, - 547, - 133.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 41, - 133.0, - 547, - 143.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3 - }, - { - "type": "table", - "bbox": [ - 39, - 166, - 546, - 206 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 166, - 546, - 206 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 39, - 166, - 546, - 206 - ], - "spans": [ - { - "bbox": [ - 39, - 166, - 546, - 206 - ], - "score": 0.676, - "html": "
01Outline and explain two ways in which social class may have become less important in shaping identities.10
", - "type": "table", - "image_path": "277ead22442bea9b765ea51d9a2a31033db318a6e8b3fa36dc64e9d4443a3204.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 39, - 166, - 546, - 179.33333333333334 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 39, - 179.33333333333334, - 546, - 192.66666666666669 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 39, - 192.66666666666669, - 546, - 206.00000000000003 - ], - "spans": [], - "index": 7 - } - ] - } - ], - "index": 6 - }, - { - "type": "table", - "bbox": [ - 41, - 215, - 546, - 598 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 215, - 546, - 598 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 41, - 215, - 546, - 598 - ], - "spans": [ - { - "bbox": [ - 41, - 215, - 546, - 598 - ], - "score": 0.981, - "html": "
MarksLevel Descriptors
8-10There will be two applications of relevant material, eg socialisation into class-based subcultures influencing values; middle class concepts of taste providing a sense of difference and superiority. There will be appropriate analysis, eg of the extent to which social class is important in
4-7shaping identities. Answers in this band will show a reasonable to good knowledge and understanding of one s s g s There will be one or two applications of relevant material, eg ways in which income and wealth enable or limit choices about lifestyle and consumption. There will be some basic analysis.
1-3question or the material. There will be limited focus on the question, eg a drift into discussion of identities in general.
0There will be little or no analysis. No relevant points.
", - "type": "table", - "image_path": "f3cb51af128e815cc3163f69e47d9927926d8d203beea95cbcb56feb92642c15.jpg" - } - ] - } - ], - "index": 9, - "virtual_lines": [ - { - "bbox": [ - 41, - 215, - 546, - 342.6666666666667 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 41, - 342.6666666666667, - 546, - 470.33333333333337 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 41, - 470.33333333333337, - 546, - 598.0 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 9 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 237, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "spans": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 547, - 797, - 554, - 805 - ], - "lines": [ - { - "bbox": [ - 546, - 796, - 555, - 807 - ], - "spans": [ - { - "bbox": [ - 546, - 796, - 555, - 807 - ], - "score": 1.0, - "content": "5 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 214, - 86, - 372, - 112 - ], - "lines": [ - { - "bbox": [ - 267, - 87, - 319, - 98 - ], - "spans": [ - { - "bbox": [ - 267, - 87, - 319, - 98 - ], - "score": 1.0, - "content": "Section A", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 214, - 99, - 371, - 112 - ], - "spans": [ - { - "bbox": [ - 214, - 99, - 371, - 112 - ], - "score": 1.0, - "content": "Topic A1 Culture and Identity", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_16", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 41, - 113, - 547, - 143 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 113, - 547, - 143 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 113, - 547, - 143 - ], - "spans": [ - { - "bbox": [ - 41, - 113, - 547, - 143 - ], - "score": 0.877, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "8dfdd5bfc137aea68414207e84707b3ab3c957e2c5b597a7661e6fd6e1d4c734.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 41, - 113, - 547, - 123.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 41, - 123.0, - 547, - 133.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 41, - 133.0, - 547, - 143.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3, - "page_num": "page_16", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 39, - 166, - 546, - 206 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 166, - 546, - 206 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 39, - 166, - 546, - 206 - ], - "spans": [ - { - "bbox": [ - 39, - 166, - 546, - 206 - ], - "score": 0.676, - "html": "
01Outline and explain two ways in which social class may have become less important in shaping identities.10
", - "type": "table", - "image_path": "277ead22442bea9b765ea51d9a2a31033db318a6e8b3fa36dc64e9d4443a3204.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 39, - 166, - 546, - 179.33333333333334 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 39, - 179.33333333333334, - 546, - 192.66666666666669 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 39, - 192.66666666666669, - 546, - 206.00000000000003 - ], - "spans": [], - "index": 7 - } - ] - } - ], - "index": 6, - "page_num": "page_16", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 41, - 215, - 546, - 598 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 215, - 546, - 598 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 41, - 215, - 546, - 598 - ], - "spans": [ - { - "bbox": [ - 41, - 215, - 546, - 598 - ], - "score": 0.981, - "html": "
MarksLevel Descriptors
8-10There will be two applications of relevant material, eg socialisation into class-based subcultures influencing values; middle class concepts of taste providing a sense of difference and superiority. There will be appropriate analysis, eg of the extent to which social class is important in
4-7shaping identities. Answers in this band will show a reasonable to good knowledge and understanding of one s s g s There will be one or two applications of relevant material, eg ways in which income and wealth enable or limit choices about lifestyle and consumption. There will be some basic analysis.
1-3question or the material. There will be limited focus on the question, eg a drift into discussion of identities in general.
0There will be little or no analysis. No relevant points.
", - "type": "table", - "image_path": "f3cb51af128e815cc3163f69e47d9927926d8d203beea95cbcb56feb92642c15.jpg" - } - ] - } - ], - "index": 9, - "virtual_lines": [ - { - "bbox": [ - 41, - 215, - 546, - 342.6666666666667 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 41, - 342.6666666666667, - 546, - 470.33333333333337 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 41, - 470.33333333333337, - 546, - 598.0 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 9, - "page_num": "page_16", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 42, - 613, - 139, - 626 - ], - "lines": [ - { - "bbox": [ - 43, - 614, - 138, - 624 - ], - "spans": [ - { - "bbox": [ - 43, - 614, - 138, - 624 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_16", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 43, - 638, - 353, - 652 - ], - "lines": [ - { - "bbox": [ - 43, - 640, - 352, - 651 - ], - "spans": [ - { - "bbox": [ - 43, - 640, - 352, - 651 - ], - "score": 1.0, - "content": "Answers may include the following and/or other relevant points:", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_16", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 43, - 640, - 352, - 651 - ] - }, - { - "type": "list", - "bbox": [ - 42, - 664, - 499, - 758 - ], - "lines": [ - { - "bbox": [ - 44, - 665, - 352, - 677 - ], - "spans": [ - { - "bbox": [ - 44, - 665, - 352, - 677 - ], - "score": 1.0, - "content": "• economic aspects of social class such as income and wealth", - "type": "text" - } - ], - "index": 13, - "is_list_end_line": true - }, - { - "bbox": [ - 42, - 678, - 426, - 690 - ], - "spans": [ - { - "bbox": [ - 42, - 678, - 426, - 690 - ], - "score": 1.0, - "content": "• cultural aspects of social class such as leisure activities, interests and tastes", - "type": "text" - } - ], - "index": 14, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 42, - 692, - 247, - 704 - ], - "spans": [ - { - "bbox": [ - 42, - 692, - 247, - 704 - ], - "score": 1.0, - "content": "• social and cultural capital and identities", - "type": "text" - } - ], - "index": 15, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 42, - 706, - 497, - 717 - ], - "spans": [ - { - "bbox": [ - 42, - 706, - 497, - 717 - ], - "score": 1.0, - "content": "• association of high culture with higher classes and mass/popular culture with working class", - "type": "text" - } - ], - "index": 16, - "is_list_start_line": true - }, - { - "bbox": [ - 42, - 718, - 333, - 731 - ], - "spans": [ - { - "bbox": [ - 42, - 718, - 333, - 731 - ], - "score": 1.0, - "content": "• class differences in attitudes eg to the value of education", - "type": "text" - } - ], - "index": 17, - "is_list_end_line": true - }, - { - "bbox": [ - 42, - 732, - 270, - 744 - ], - "spans": [ - { - "bbox": [ - 42, - 732, - 270, - 744 - ], - "score": 1.0, - "content": "• decline of traditional working class identities", - "type": "text" - } - ], - "index": 18, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 42, - 746, - 143, - 757 - ], - "spans": [ - { - "bbox": [ - 42, - 746, - 143, - 757 - ], - "score": 1.0, - "content": "• class subcultures.", - "type": "text" - } - ], - "index": 19, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 16, - "page_num": "page_16", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 665, - 497, - 757 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 42, - 84, - 544, - 137 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 84, - 544, - 137 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 42, - 84, - 544, - 137 - ], - "spans": [ - { - "bbox": [ - 42, - 84, - 544, - 137 - ], - "score": 0.958, - "html": "
Sources may include the following or other relevant ones:
Bourdieu; Bradley; Carter and Coleman; Giddens and Diamond; Goldthorpe; Lash and Urry;
Mackintosh and Mooney; Marx; McKenzie et al; Murray; Palkulski and Waters; Roberts; Saunders;
Savage;Scott;Skeggs.
", - "type": "table", - "image_path": "d0c0d8bd2fd5668ac8e8da354bdc6e99d259db489817d9d0a8c8220e36f53293.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 42, - 84, - 544, - 101.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 42, - 101.66666666666667, - 544, - 119.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 42, - 119.33333333333334, - 544, - 137.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 40, - 160, - 546, - 191 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 160, - 546, - 191 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 40, - 160, - 546, - 191 - ], - "spans": [ - { - "bbox": [ - 40, - 160, - 546, - 191 - ], - "score": 0.965, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "7773cd316df8c388693a4839c3fa40e4186cd508eb265785006d5221c71bd2b4.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 40, - 160, - 546, - 170.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 40, - 170.33333333333334, - 546, - 180.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 40, - 180.66666666666669, - 546, - 191.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 40, - 202, - 546, - 239 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 202, - 546, - 239 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 40, - 202, - 546, - 239 - ], - "spans": [ - { - "bbox": [ - 40, - 202, - 546, - 239 - ], - "score": 0.965, - "html": "
02Applying material from Item A, analyse two ways in which mass culture may prevent social change.10
", - "type": "table", - "image_path": "0643d79c650b6be514095bdcff9b69bd3114a7b93b35a0a84b0ab42637e0e882.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 40, - 202, - 546, - 214.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 40, - 214.33333333333334, - 546, - 226.66666666666669 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 40, - 226.66666666666669, - 546, - 239.00000000000003 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "title", - "bbox": [ - 273, - 269, - 309, - 282 - ], - "lines": [ - { - "bbox": [ - 273, - 271, - 310, - 282 - ], - "spans": [ - { - "bbox": [ - 273, - 271, - 310, - 282 - ], - "score": 1.0, - "content": "Item A ", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 41, - 295, - 523, - 334 - ], - "lines": [ - { - "bbox": [ - 42, - 295, - 516, - 309 - ], - "spans": [ - { - "bbox": [ - 42, - 295, - 516, - 309 - ], - "score": 1.0, - "content": "Mass culture is usually seen as commercially produced by businesses for profit rather than being", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 42, - 309, - 468, - 322 - ], - "spans": [ - { - "bbox": [ - 42, - 309, - 468, - 322 - ], - "score": 1.0, - "content": "created by ordinary people or reflecting their experiences. Mass culture is also seen as ", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 43, - 323, - 291, - 334 - ], - "spans": [ - { - "bbox": [ - 43, - 323, - 291, - 334 - ], - "score": 1.0, - "content": "oversimplified, requiring little thought or evaluation.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 43, - 346, - 243, - 359 - ], - "lines": [ - { - "bbox": [ - 43, - 347, - 243, - 358 - ], - "spans": [ - { - "bbox": [ - 43, - 347, - 243, - 358 - ], - "score": 1.0, - "content": "Mass culture may prevent social change.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "table", - "bbox": [ - 41, - 386, - 546, - 767 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 386, - 546, - 767 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 41, - 386, - 546, - 767 - ], - "spans": [ - { - "bbox": [ - 41, - 386, - 546, - 767 - ], - "score": 0.983, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on businesses persuading people that want and need trivial products; mass culture promotes There will be appropriate analysis/evaluation of two ways eg the extent to which mass
4-7culture can educate and inform about important social issues. Answers in this band will show a basic to reasonable knowledge and understanding of one or two ways in which mass culture prevents social change. people less likely to challenge those in power.
1-3There will be some analysis/evaluation. Answers in this band will show limited knowledge and understanding of one or two ways in which mass culture prevents social change. There will be limited application of material from the item. Some material may be at a tangent to the question, eg there may be some drift into descriptive accounts of mass culture. There will be limited or no analysis/evaluation.
", - "type": "table", - "image_path": "ec53347474ad26e4c9b1688547f29a30d1dbf7c6c6929b0ce83f06b39c06833b.jpg" - } - ] - } - ], - "index": 15, - "virtual_lines": [ - { - "bbox": [ - 41, - 386, - 546, - 513.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 41, - 513.0, - 546, - 640.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 41, - 640.0, - 546, - 767.0 - ], - "spans": [], - "index": 16 - } - ] - } - ], - "index": 15 - } - ], - "layout_bboxes": [], - "page_idx": 17, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 42, - 84, - 544, - 137 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 84, - 544, - 137 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 42, - 84, - 544, - 137 - ], - "spans": [ - { - "bbox": [ - 42, - 84, - 544, - 137 - ], - "score": 0.958, - "html": "
Sources may include the following or other relevant ones:
Bourdieu; Bradley; Carter and Coleman; Giddens and Diamond; Goldthorpe; Lash and Urry;
Mackintosh and Mooney; Marx; McKenzie et al; Murray; Palkulski and Waters; Roberts; Saunders;
Savage;Scott;Skeggs.
", - "type": "table", - "image_path": "d0c0d8bd2fd5668ac8e8da354bdc6e99d259db489817d9d0a8c8220e36f53293.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 42, - 84, - 544, - 101.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 42, - 101.66666666666667, - 544, - 119.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 42, - 119.33333333333334, - 544, - 137.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 40, - 160, - 546, - 191 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 160, - 546, - 191 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 40, - 160, - 546, - 191 - ], - "spans": [ - { - "bbox": [ - 40, - 160, - 546, - 191 - ], - "score": 0.965, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "7773cd316df8c388693a4839c3fa40e4186cd508eb265785006d5221c71bd2b4.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 40, - 160, - 546, - 170.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 40, - 170.33333333333334, - 546, - 180.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 40, - 180.66666666666669, - 546, - 191.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 40, - 202, - 546, - 239 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 202, - 546, - 239 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 40, - 202, - 546, - 239 - ], - "spans": [ - { - "bbox": [ - 40, - 202, - 546, - 239 - ], - "score": 0.965, - "html": "
02Applying material from Item A, analyse two ways in which mass culture may prevent social change.10
", - "type": "table", - "image_path": "0643d79c650b6be514095bdcff9b69bd3114a7b93b35a0a84b0ab42637e0e882.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 40, - 202, - 546, - 214.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 40, - 214.33333333333334, - 546, - 226.66666666666669 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 40, - 226.66666666666669, - 546, - 239.00000000000003 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 41, - 386, - 546, - 767 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 386, - 546, - 767 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 41, - 386, - 546, - 767 - ], - "spans": [ - { - "bbox": [ - 41, - 386, - 546, - 767 - ], - "score": 0.983, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on businesses persuading people that want and need trivial products; mass culture promotes There will be appropriate analysis/evaluation of two ways eg the extent to which mass
4-7culture can educate and inform about important social issues. Answers in this band will show a basic to reasonable knowledge and understanding of one or two ways in which mass culture prevents social change. people less likely to challenge those in power.
1-3There will be some analysis/evaluation. Answers in this band will show limited knowledge and understanding of one or two ways in which mass culture prevents social change. There will be limited application of material from the item. Some material may be at a tangent to the question, eg there may be some drift into descriptive accounts of mass culture. There will be limited or no analysis/evaluation.
", - "type": "table", - "image_path": "ec53347474ad26e4c9b1688547f29a30d1dbf7c6c6929b0ce83f06b39c06833b.jpg" - } - ] - } - ], - "index": 15, - "virtual_lines": [ - { - "bbox": [ - 41, - 386, - 546, - 513.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 41, - 513.0, - 546, - 640.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 41, - 640.0, - 546, - 767.0 - ], - "spans": [], - "index": 16 - } - ] - } - ], - "index": 15 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 237, - 35, - 554, - 48 - ], - "lines": [ - { - "bbox": [ - 237, - 37, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 237, - 37, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 797, - 48, - 806 - ], - "lines": [ - { - "bbox": [ - 41, - 797, - 49, - 807 - ], - "spans": [ - { - "bbox": [ - 41, - 797, - 49, - 807 - ], - "score": 1.0, - "content": "6 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 42, - 84, - 544, - 137 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 84, - 544, - 137 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 42, - 84, - 544, - 137 - ], - "spans": [ - { - "bbox": [ - 42, - 84, - 544, - 137 - ], - "score": 0.958, - "html": "
Sources may include the following or other relevant ones:
Bourdieu; Bradley; Carter and Coleman; Giddens and Diamond; Goldthorpe; Lash and Urry;
Mackintosh and Mooney; Marx; McKenzie et al; Murray; Palkulski and Waters; Roberts; Saunders;
Savage;Scott;Skeggs.
", - "type": "table", - "image_path": "d0c0d8bd2fd5668ac8e8da354bdc6e99d259db489817d9d0a8c8220e36f53293.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 42, - 84, - 544, - 101.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 42, - 101.66666666666667, - 544, - 119.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 42, - 119.33333333333334, - 544, - 137.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_17", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 40, - 160, - 546, - 191 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 160, - 546, - 191 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 40, - 160, - 546, - 191 - ], - "spans": [ - { - "bbox": [ - 40, - 160, - 546, - 191 - ], - "score": 0.965, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "7773cd316df8c388693a4839c3fa40e4186cd508eb265785006d5221c71bd2b4.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 40, - 160, - 546, - 170.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 40, - 170.33333333333334, - 546, - 180.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 40, - 180.66666666666669, - 546, - 191.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_17", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 40, - 202, - 546, - 239 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 202, - 546, - 239 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 40, - 202, - 546, - 239 - ], - "spans": [ - { - "bbox": [ - 40, - 202, - 546, - 239 - ], - "score": 0.965, - "html": "
02Applying material from Item A, analyse two ways in which mass culture may prevent social change.10
", - "type": "table", - "image_path": "0643d79c650b6be514095bdcff9b69bd3114a7b93b35a0a84b0ab42637e0e882.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 40, - 202, - 546, - 214.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 40, - 214.33333333333334, - 546, - 226.66666666666669 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 40, - 226.66666666666669, - 546, - 239.00000000000003 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_17", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 273, - 269, - 309, - 282 - ], - "lines": [ - { - "bbox": [ - 273, - 271, - 310, - 282 - ], - "spans": [ - { - "bbox": [ - 273, - 271, - 310, - 282 - ], - "score": 1.0, - "content": "Item A ", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_17", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 41, - 295, - 523, - 334 - ], - "lines": [ - { - "bbox": [ - 42, - 295, - 516, - 309 - ], - "spans": [ - { - "bbox": [ - 42, - 295, - 516, - 309 - ], - "score": 1.0, - "content": "Mass culture is usually seen as commercially produced by businesses for profit rather than being", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 42, - 309, - 468, - 322 - ], - "spans": [ - { - "bbox": [ - 42, - 309, - 468, - 322 - ], - "score": 1.0, - "content": "created by ordinary people or reflecting their experiences. Mass culture is also seen as ", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 43, - 323, - 291, - 334 - ], - "spans": [ - { - "bbox": [ - 43, - 323, - 291, - 334 - ], - "score": 1.0, - "content": "oversimplified, requiring little thought or evaluation.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11, - "page_num": "page_17", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 295, - 516, - 334 - ] - }, - { - "type": "text", - "bbox": [ - 43, - 346, - 243, - 359 - ], - "lines": [ - { - "bbox": [ - 43, - 347, - 243, - 358 - ], - "spans": [ - { - "bbox": [ - 43, - 347, - 243, - 358 - ], - "score": 1.0, - "content": "Mass culture may prevent social change.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_17", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 43, - 347, - 243, - 358 - ] - }, - { - "type": "table", - "bbox": [ - 41, - 386, - 546, - 767 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 386, - 546, - 767 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 41, - 386, - 546, - 767 - ], - "spans": [ - { - "bbox": [ - 41, - 386, - 546, - 767 - ], - "score": 0.983, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on businesses persuading people that want and need trivial products; mass culture promotes There will be appropriate analysis/evaluation of two ways eg the extent to which mass
4-7culture can educate and inform about important social issues. Answers in this band will show a basic to reasonable knowledge and understanding of one or two ways in which mass culture prevents social change. people less likely to challenge those in power.
1-3There will be some analysis/evaluation. Answers in this band will show limited knowledge and understanding of one or two ways in which mass culture prevents social change. There will be limited application of material from the item. Some material may be at a tangent to the question, eg there may be some drift into descriptive accounts of mass culture. There will be limited or no analysis/evaluation.
", - "type": "table", - "image_path": "ec53347474ad26e4c9b1688547f29a30d1dbf7c6c6929b0ce83f06b39c06833b.jpg" - } - ] - } - ], - "index": 15, - "virtual_lines": [ - { - "bbox": [ - 41, - 386, - 546, - 513.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 41, - 513.0, - 546, - 640.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 41, - 640.0, - 546, - 767.0 - ], - "spans": [], - "index": 16 - } - ] - } - ], - "index": 15, - "page_num": "page_17", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 42, - 83, - 547, - 113 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 83, - 547, - 113 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 42, - 83, - 547, - 113 - ], - "spans": [ - { - "bbox": [ - 42, - 83, - 547, - 113 - ], - "score": 0.918, - "html": "
0No relevant points.
", - "type": "table", - "image_path": "6dd52e17b88cc87ea79444a0ee7486412d44441b8edbc9ba6b626c453c94f1fa.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 42, - 83, - 547, - 93.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 42, - 93.0, - 547, - 103.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 42, - 103.0, - 547, - 113.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 42, - 125, - 545, - 152 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 125, - 545, - 152 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 42, - 125, - 545, - 152 - ], - "spans": [ - { - "bbox": [ - 42, - 125, - 545, - 152 - ], - "score": 0.663, - "html": "
Sources may include the following or other relevant ones:
Adorno; Bourdieu; Giddens; Gramsci; Leavis; Livingstone; MacDonald; Marcuse; Strinati.
", - "type": "table", - "image_path": "be5e5dff3f06f738e732265ac4473d86db464c31888348b76ebad735f2c00869.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 42, - 125, - 545, - 134.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 42, - 134.0, - 545, - 143.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 42, - 143.0, - 545, - 152.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 41, - 154, - 544, - 186 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 154, - 544, - 186 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 41, - 154, - 544, - 186 - ], - "spans": [ - { - "bbox": [ - 41, - 154, - 544, - 186 - ], - "score": 0.937, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "62000c1dfbeabea65ca53073497a7deda7a6941867b5a9518139e82f1705dd28.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 41, - 154, - 544, - 164.66666666666666 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 41, - 164.66666666666666, - 544, - 175.33333333333331 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 41, - 175.33333333333331, - 544, - 185.99999999999997 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 40, - 198, - 544, - 235 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 198, - 544, - 235 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 40, - 198, - 544, - 235 - ], - "spans": [ - { - "bbox": [ - 40, - 198, - 544, - 235 - ], - "score": 0.954, - "html": "
03Applying material from Item B and your knowledge, evaluate feminist views of 20 the extent to which the socialisation process reinforces patriarchy.
", - "type": "table", - "image_path": "c6008c0830addba15b90d5ebb19caa5d061db86ed7c2f82cf9f7bd67f17a7c52.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 40, - 198, - 544, - 210.33333333333334 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 40, - 210.33333333333334, - 544, - 222.66666666666669 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 40, - 222.66666666666669, - 544, - 235.00000000000003 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "title", - "bbox": [ - 273, - 264, - 309, - 277 - ], - "lines": [ - { - "bbox": [ - 272, - 265, - 309, - 278 - ], - "spans": [ - { - "bbox": [ - 272, - 265, - 309, - 278 - ], - "score": 1.0, - "content": "Item B", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 41, - 290, - 507, - 317 - ], - "lines": [ - { - "bbox": [ - 43, - 291, - 504, - 304 - ], - "spans": [ - { - "bbox": [ - 43, - 291, - 504, - 304 - ], - "score": 1.0, - "content": "Feminist sociologists often emphasise the ways in which the socialisation process encourages ", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 42, - 304, - 489, - 318 - ], - "spans": [ - { - "bbox": [ - 42, - 304, - 489, - 318 - ], - "score": 1.0, - "content": "people to conform to hegemonic masculine and feminine identities that reinforce patriarchy.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 13.5 - }, - { - "type": "text", - "bbox": [ - 43, - 329, - 521, - 355 - ], - "lines": [ - { - "bbox": [ - 42, - 329, - 522, - 343 - ], - "spans": [ - { - "bbox": [ - 42, - 329, - 522, - 343 - ], - "score": 1.0, - "content": "However, other sociologists have argued that people actively construct their gender identities, and ", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 43, - 343, - 300, - 355 - ], - "spans": [ - { - "bbox": [ - 43, - 343, - 300, - 355 - ], - "score": 1.0, - "content": "that gender identities have become much more fluid.", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 15.5 - }, - { - "type": "table", - "bbox": [ - 41, - 381, - 546, - 773 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 381, - 546, - 773 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 41, - 381, - 546, - 773 - ], - "spans": [ - { - "bbox": [ - 41, - 381, - 546, - 773 - ], - "score": 0.983, - "html": "
MarksLevel Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on feminist views on how the socialisation process reinforces patriarchy. Sophisticated understanding of the question and of the presented material will be shown. Appropriate material will be applied accurately and with sensitivity to the issues raised by the question. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for example through comparing different theoretical perspectives on socialisation.Analysis wil
13-16show clear explanation. Appropriate conclusions will be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. Application of material is largely explicitly relevant to the question, though some material maybeinadequatelyfocused. Some limited explicit evaluation, eg discussion of different definitions of types of feminist
9-12presentedmaterial. Answers in this band will show largely accurate knowledge but limited range and depth, eg broadly accurate, if basic, account of some feminist views onhowthe socialisationprocess reinforces patriarchy. Understands some limited but significant aspects of the question; superficial understanding of the presented material.
", - "type": "table", - "image_path": "9bccc9fd40ef0e8422ec325366ca0d934f388522c1577413b69f02edbd3248b8.jpg" - } - ] - } - ], - "index": 18, - "virtual_lines": [ - { - "bbox": [ - 41, - 381, - 546, - 511.66666666666663 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 41, - 511.66666666666663, - 546, - 642.3333333333333 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 41, - 642.3333333333333, - 546, - 772.9999999999999 - ], - "spans": [], - "index": 19 - } - ] - } - ], - "index": 18 - } - ], - "layout_bboxes": [], - "page_idx": 18, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 42, - 83, - 547, - 113 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 83, - 547, - 113 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 42, - 83, - 547, - 113 - ], - "spans": [ - { - "bbox": [ - 42, - 83, - 547, - 113 - ], - "score": 0.918, - "html": "
0No relevant points.
", - "type": "table", - "image_path": "6dd52e17b88cc87ea79444a0ee7486412d44441b8edbc9ba6b626c453c94f1fa.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 42, - 83, - 547, - 93.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 42, - 93.0, - 547, - 103.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 42, - 103.0, - 547, - 113.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 42, - 125, - 545, - 152 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 125, - 545, - 152 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 42, - 125, - 545, - 152 - ], - "spans": [ - { - "bbox": [ - 42, - 125, - 545, - 152 - ], - "score": 0.663, - "html": "
Sources may include the following or other relevant ones:
Adorno; Bourdieu; Giddens; Gramsci; Leavis; Livingstone; MacDonald; Marcuse; Strinati.
", - "type": "table", - "image_path": "be5e5dff3f06f738e732265ac4473d86db464c31888348b76ebad735f2c00869.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 42, - 125, - 545, - 134.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 42, - 134.0, - 545, - 143.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 42, - 143.0, - 545, - 152.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 41, - 154, - 544, - 186 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 154, - 544, - 186 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 41, - 154, - 544, - 186 - ], - "spans": [ - { - "bbox": [ - 41, - 154, - 544, - 186 - ], - "score": 0.937, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "62000c1dfbeabea65ca53073497a7deda7a6941867b5a9518139e82f1705dd28.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 41, - 154, - 544, - 164.66666666666666 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 41, - 164.66666666666666, - 544, - 175.33333333333331 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 41, - 175.33333333333331, - 544, - 185.99999999999997 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 40, - 198, - 544, - 235 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 198, - 544, - 235 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 40, - 198, - 544, - 235 - ], - "spans": [ - { - "bbox": [ - 40, - 198, - 544, - 235 - ], - "score": 0.954, - "html": "
03Applying material from Item B and your knowledge, evaluate feminist views of 20 the extent to which the socialisation process reinforces patriarchy.
", - "type": "table", - "image_path": "c6008c0830addba15b90d5ebb19caa5d061db86ed7c2f82cf9f7bd67f17a7c52.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 40, - 198, - 544, - 210.33333333333334 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 40, - 210.33333333333334, - 544, - 222.66666666666669 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 40, - 222.66666666666669, - 544, - 235.00000000000003 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "table", - "bbox": [ - 41, - 381, - 546, - 773 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 381, - 546, - 773 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 41, - 381, - 546, - 773 - ], - "spans": [ - { - "bbox": [ - 41, - 381, - 546, - 773 - ], - "score": 0.983, - "html": "
MarksLevel Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on feminist views on how the socialisation process reinforces patriarchy. Sophisticated understanding of the question and of the presented material will be shown. Appropriate material will be applied accurately and with sensitivity to the issues raised by the question. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for example through comparing different theoretical perspectives on socialisation.Analysis wil
13-16show clear explanation. Appropriate conclusions will be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. Application of material is largely explicitly relevant to the question, though some material maybeinadequatelyfocused. Some limited explicit evaluation, eg discussion of different definitions of types of feminist
9-12presentedmaterial. Answers in this band will show largely accurate knowledge but limited range and depth, eg broadly accurate, if basic, account of some feminist views onhowthe socialisationprocess reinforces patriarchy. Understands some limited but significant aspects of the question; superficial understanding of the presented material.
", - "type": "table", - "image_path": "9bccc9fd40ef0e8422ec325366ca0d934f388522c1577413b69f02edbd3248b8.jpg" - } - ] - } - ], - "index": 18, - "virtual_lines": [ - { - "bbox": [ - 41, - 381, - 546, - 511.66666666666663 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 41, - 511.66666666666663, - 546, - 642.3333333333333 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 41, - 642.3333333333333, - 546, - 772.9999999999999 - ], - "spans": [], - "index": 19 - } - ] - } - ], - "index": 18 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 236, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "spans": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 547, - 797, - 554, - 805 - ], - "lines": [ - { - "bbox": [ - 546, - 796, - 555, - 807 - ], - "spans": [ - { - "bbox": [ - 546, - 796, - 555, - 807 - ], - "score": 1.0, - "content": "7 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 42, - 83, - 547, - 113 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 83, - 547, - 113 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 42, - 83, - 547, - 113 - ], - "spans": [ - { - "bbox": [ - 42, - 83, - 547, - 113 - ], - "score": 0.918, - "html": "
0No relevant points.
", - "type": "table", - "image_path": "6dd52e17b88cc87ea79444a0ee7486412d44441b8edbc9ba6b626c453c94f1fa.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 42, - 83, - 547, - 93.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 42, - 93.0, - 547, - 103.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 42, - 103.0, - 547, - 113.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_18", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 42, - 125, - 545, - 152 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 125, - 545, - 152 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 42, - 125, - 545, - 152 - ], - "spans": [ - { - "bbox": [ - 42, - 125, - 545, - 152 - ], - "score": 0.663, - "html": "
Sources may include the following or other relevant ones:
Adorno; Bourdieu; Giddens; Gramsci; Leavis; Livingstone; MacDonald; Marcuse; Strinati.
", - "type": "table", - "image_path": "be5e5dff3f06f738e732265ac4473d86db464c31888348b76ebad735f2c00869.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 42, - 125, - 545, - 134.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 42, - 134.0, - 545, - 143.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 42, - 143.0, - 545, - 152.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_18", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 41, - 154, - 544, - 186 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 154, - 544, - 186 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 41, - 154, - 544, - 186 - ], - "spans": [ - { - "bbox": [ - 41, - 154, - 544, - 186 - ], - "score": 0.937, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "62000c1dfbeabea65ca53073497a7deda7a6941867b5a9518139e82f1705dd28.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 41, - 154, - 544, - 164.66666666666666 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 41, - 164.66666666666666, - 544, - 175.33333333333331 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 41, - 175.33333333333331, - 544, - 185.99999999999997 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_18", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 40, - 198, - 544, - 235 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 198, - 544, - 235 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 40, - 198, - 544, - 235 - ], - "spans": [ - { - "bbox": [ - 40, - 198, - 544, - 235 - ], - "score": 0.954, - "html": "
03Applying material from Item B and your knowledge, evaluate feminist views of 20 the extent to which the socialisation process reinforces patriarchy.
", - "type": "table", - "image_path": "c6008c0830addba15b90d5ebb19caa5d061db86ed7c2f82cf9f7bd67f17a7c52.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 40, - 198, - 544, - 210.33333333333334 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 40, - 210.33333333333334, - 544, - 222.66666666666669 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 40, - 222.66666666666669, - 544, - 235.00000000000003 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10, - "page_num": "page_18", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 273, - 264, - 309, - 277 - ], - "lines": [ - { - "bbox": [ - 272, - 265, - 309, - 278 - ], - "spans": [ - { - "bbox": [ - 272, - 265, - 309, - 278 - ], - "score": 1.0, - "content": "Item B", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_18", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 41, - 290, - 507, - 317 - ], - "lines": [ - { - "bbox": [ - 43, - 291, - 504, - 304 - ], - "spans": [ - { - "bbox": [ - 43, - 291, - 504, - 304 - ], - "score": 1.0, - "content": "Feminist sociologists often emphasise the ways in which the socialisation process encourages ", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 42, - 304, - 489, - 318 - ], - "spans": [ - { - "bbox": [ - 42, - 304, - 489, - 318 - ], - "score": 1.0, - "content": "people to conform to hegemonic masculine and feminine identities that reinforce patriarchy.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 13.5, - "page_num": "page_18", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 291, - 504, - 318 - ] - }, - { - "type": "text", - "bbox": [ - 43, - 329, - 521, - 355 - ], - "lines": [ - { - "bbox": [ - 42, - 329, - 522, - 343 - ], - "spans": [ - { - "bbox": [ - 42, - 329, - 522, - 343 - ], - "score": 1.0, - "content": "However, other sociologists have argued that people actively construct their gender identities, and ", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 43, - 343, - 300, - 355 - ], - "spans": [ - { - "bbox": [ - 43, - 343, - 300, - 355 - ], - "score": 1.0, - "content": "that gender identities have become much more fluid.", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 15.5, - "page_num": "page_18", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 329, - 522, - 355 - ] - }, - { - "type": "table", - "bbox": [ - 41, - 381, - 546, - 773 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 381, - 546, - 773 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 41, - 381, - 546, - 773 - ], - "spans": [ - { - "bbox": [ - 41, - 381, - 546, - 773 - ], - "score": 0.983, - "html": "
MarksLevel Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on feminist views on how the socialisation process reinforces patriarchy. Sophisticated understanding of the question and of the presented material will be shown. Appropriate material will be applied accurately and with sensitivity to the issues raised by the question. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for example through comparing different theoretical perspectives on socialisation.Analysis wil
13-16show clear explanation. Appropriate conclusions will be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. Application of material is largely explicitly relevant to the question, though some material maybeinadequatelyfocused. Some limited explicit evaluation, eg discussion of different definitions of types of feminist
9-12presentedmaterial. Answers in this band will show largely accurate knowledge but limited range and depth, eg broadly accurate, if basic, account of some feminist views onhowthe socialisationprocess reinforces patriarchy. Understands some limited but significant aspects of the question; superficial understanding of the presented material.
", - "type": "table", - "image_path": "9bccc9fd40ef0e8422ec325366ca0d934f388522c1577413b69f02edbd3248b8.jpg" - } - ] - } - ], - "index": 18, - "virtual_lines": [ - { - "bbox": [ - 41, - 381, - 546, - 511.66666666666663 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 41, - 511.66666666666663, - 546, - 642.3333333333333 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 41, - 642.3333333333333, - 546, - 772.9999999999999 - ], - "spans": [], - "index": 19 - } - ] - } - ], - "index": 18, - "page_num": "page_18", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 41, - 85, - 546, - 410 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 85, - 546, - 410 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 85, - 546, - 410 - ], - "spans": [ - { - "bbox": [ - 41, - 85, - 546, - 410 - ], - "score": 0.981, - "html": "
Applying listed material from the general topic area but with limited regard for its relevance to the issues raised by the question, or applying a narrow range of more relevant material. Evaluation will take the form of juxtaposition of competing positions or to one or two isolated
5-8simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question. Very limited or no evaluation. Attempts at analysis, if any, are thin and disjointed.
1-4Answers in this band will show very limited knowledge, eg one or two very insubstantial points about socialisation in general. Very little/no understanding of the question and of the presentedmaterial.
0No analysis or evaluation. No relevant points.
", - "type": "table", - "image_path": "83b8dbf1607651dae37e10a17a8e66fa8b19c4679aebe230bb52a86e9d322350.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 41, - 85, - 546, - 193.33333333333331 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 41, - 193.33333333333331, - 546, - 301.66666666666663 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 41, - 301.66666666666663, - 546, - 409.99999999999994 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "title", - "bbox": [ - 42, - 426, - 139, - 440 - ], - "lines": [ - { - "bbox": [ - 43, - 428, - 138, - 438 - ], - "spans": [ - { - "bbox": [ - 43, - 428, - 138, - 438 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 43, - 452, - 316, - 465 - ], - "lines": [ - { - "bbox": [ - 43, - 452, - 316, - 466 - ], - "spans": [ - { - "bbox": [ - 43, - 452, - 316, - 466 - ], - "score": 1.0, - "content": "Concepts and issues such as the following may appear:", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 43, - 477, - 528, - 528 - ], - "lines": [ - { - "bbox": [ - 43, - 479, - 504, - 491 - ], - "spans": [ - { - "bbox": [ - 43, - 479, - 504, - 491 - ], - "score": 1.0, - "content": "agencies of socialisation; sex and gender; gender roles; gender codes; stereotype; hegemonic", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 43, - 491, - 514, - 503 - ], - "spans": [ - { - "bbox": [ - 43, - 491, - 514, - 503 - ], - "score": 1.0, - "content": "masculinity; hegemonic femininity; expressive and instrumental roles; manipulation; canalisation;", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 42, - 503, - 528, - 516 - ], - "spans": [ - { - "bbox": [ - 42, - 503, - 528, - 516 - ], - "score": 1.0, - "content": "appellations; heterosexuality; sexual orientation; hidden curriculum; ‘new man’; metrosexuals; crisis ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 43, - 516, - 203, - 528 - ], - "spans": [ - { - "bbox": [ - 43, - 516, - 203, - 528 - ], - "score": 1.0, - "content": "of masculinity; lads and ladettes.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 6.5 - }, - { - "type": "title", - "bbox": [ - 42, - 550, - 347, - 564 - ], - "lines": [ - { - "bbox": [ - 44, - 551, - 347, - 563 - ], - "spans": [ - { - "bbox": [ - 44, - 551, - 347, - 563 - ], - "score": 1.0, - "content": "Sources may include the following or other relevant ones:", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 42, - 575, - 525, - 601 - ], - "lines": [ - { - "bbox": [ - 43, - 576, - 522, - 588 - ], - "spans": [ - { - "bbox": [ - 43, - 576, - 522, - 588 - ], - "score": 1.0, - "content": "Billington et al; Coleman-Fountain; Collier; Connell; Connolly; de Beauvoir; Dorais; Jackson; Lees;", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 42, - 588, - 494, - 601 - ], - "spans": [ - { - "bbox": [ - 42, - 588, - 494, - 601 - ], - "score": 1.0, - "content": "Mac an Ghaill; Mead; Mort; Oakley; Ortner; Taylor; Walby; Walter; Weeks; Wilkinson; Willis.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5 - } - ], - "layout_bboxes": [], - "page_idx": 19, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 41, - 85, - 546, - 410 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 85, - 546, - 410 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 85, - 546, - 410 - ], - "spans": [ - { - "bbox": [ - 41, - 85, - 546, - 410 - ], - "score": 0.981, - "html": "
Applying listed material from the general topic area but with limited regard for its relevance to the issues raised by the question, or applying a narrow range of more relevant material. Evaluation will take the form of juxtaposition of competing positions or to one or two isolated
5-8simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question. Very limited or no evaluation. Attempts at analysis, if any, are thin and disjointed.
1-4Answers in this band will show very limited knowledge, eg one or two very insubstantial points about socialisation in general. Very little/no understanding of the question and of the presentedmaterial.
0No analysis or evaluation. No relevant points.
", - "type": "table", - "image_path": "83b8dbf1607651dae37e10a17a8e66fa8b19c4679aebe230bb52a86e9d322350.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 41, - 85, - 546, - 193.33333333333331 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 41, - 193.33333333333331, - 546, - 301.66666666666663 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 41, - 301.66666666666663, - 546, - 409.99999999999994 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 237, - 35, - 554, - 48 - ], - "lines": [ - { - "bbox": [ - 237, - 35, - 553, - 48 - ], - "spans": [ - { - "bbox": [ - 237, - 35, - 553, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 797, - 47, - 805 - ], - "lines": [ - { - "bbox": [ - 41, - 797, - 49, - 807 - ], - "spans": [ - { - "bbox": [ - 41, - 797, - 49, - 807 - ], - "score": 1.0, - "content": "8 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 41, - 85, - 546, - 410 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 85, - 546, - 410 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 85, - 546, - 410 - ], - "spans": [ - { - "bbox": [ - 41, - 85, - 546, - 410 - ], - "score": 0.981, - "html": "
Applying listed material from the general topic area but with limited regard for its relevance to the issues raised by the question, or applying a narrow range of more relevant material. Evaluation will take the form of juxtaposition of competing positions or to one or two isolated
5-8simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question. Very limited or no evaluation. Attempts at analysis, if any, are thin and disjointed.
1-4Answers in this band will show very limited knowledge, eg one or two very insubstantial points about socialisation in general. Very little/no understanding of the question and of the presentedmaterial.
0No analysis or evaluation. No relevant points.
", - "type": "table", - "image_path": "83b8dbf1607651dae37e10a17a8e66fa8b19c4679aebe230bb52a86e9d322350.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 41, - 85, - 546, - 193.33333333333331 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 41, - 193.33333333333331, - 546, - 301.66666666666663 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 41, - 301.66666666666663, - 546, - 409.99999999999994 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 42, - 426, - 139, - 440 - ], - "lines": [ - { - "bbox": [ - 43, - 428, - 138, - 438 - ], - "spans": [ - { - "bbox": [ - 43, - 428, - 138, - 438 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 43, - 452, - 316, - 465 - ], - "lines": [ - { - "bbox": [ - 43, - 452, - 316, - 466 - ], - "spans": [ - { - "bbox": [ - 43, - 452, - 316, - 466 - ], - "score": 1.0, - "content": "Concepts and issues such as the following may appear:", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 43, - 452, - 316, - 466 - ] - }, - { - "type": "text", - "bbox": [ - 43, - 477, - 528, - 528 - ], - "lines": [ - { - "bbox": [ - 43, - 479, - 504, - 491 - ], - "spans": [ - { - "bbox": [ - 43, - 479, - 504, - 491 - ], - "score": 1.0, - "content": "agencies of socialisation; sex and gender; gender roles; gender codes; stereotype; hegemonic", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 43, - 491, - 514, - 503 - ], - "spans": [ - { - "bbox": [ - 43, - 491, - 514, - 503 - ], - "score": 1.0, - "content": "masculinity; hegemonic femininity; expressive and instrumental roles; manipulation; canalisation;", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 42, - 503, - 528, - 516 - ], - "spans": [ - { - "bbox": [ - 42, - 503, - 528, - 516 - ], - "score": 1.0, - "content": "appellations; heterosexuality; sexual orientation; hidden curriculum; ‘new man’; metrosexuals; crisis ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 43, - 516, - 203, - 528 - ], - "spans": [ - { - "bbox": [ - 43, - 516, - 203, - 528 - ], - "score": 1.0, - "content": "of masculinity; lads and ladettes.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 6.5, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 479, - 528, - 528 - ] - }, - { - "type": "title", - "bbox": [ - 42, - 550, - 347, - 564 - ], - "lines": [ - { - "bbox": [ - 44, - 551, - 347, - 563 - ], - "spans": [ - { - "bbox": [ - 44, - 551, - 347, - 563 - ], - "score": 1.0, - "content": "Sources may include the following or other relevant ones:", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 42, - 575, - 525, - 601 - ], - "lines": [ - { - "bbox": [ - 43, - 576, - 522, - 588 - ], - "spans": [ - { - "bbox": [ - 43, - 576, - 522, - 588 - ], - "score": 1.0, - "content": "Billington et al; Coleman-Fountain; Collier; Connell; Connolly; de Beauvoir; Dorais; Jackson; Lees;", - "type": "text" - } - ], - "index": 10, - "is_list_end_line": true - }, - { - "bbox": [ - 42, - 588, - 494, - 601 - ], - "spans": [ - { - "bbox": [ - 42, - 588, - 494, - 601 - ], - "score": 1.0, - "content": "Mac an Ghaill; Mead; Mort; Oakley; Ortner; Taylor; Walby; Walter; Weeks; Wilkinson; Willis.", - "type": "text" - } - ], - "index": 11, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 10.5, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 576, - 522, - 601 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 40, - 112, - 546, - 143 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 199, - 92, - 387, - 106 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 199, - 93, - 386, - 105 - ], - "spans": [ - { - "bbox": [ - 199, - 93, - 386, - 105 - ], - "score": 1.0, - "content": "Topic A2 Families and Households", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table_body", - "bbox": [ - 40, - 112, - 546, - 143 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 40, - 112, - 546, - 143 - ], - "spans": [ - { - "bbox": [ - 40, - 112, - 546, - 143 - ], - "score": 0.96, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "a27af9702f9dd940ca91b9d3240a911584acb47478398449145f729339b5fb2c.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 40, - 112, - 546, - 122.33333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 40, - 122.33333333333333, - 546, - 132.66666666666666 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 40, - 132.66666666666666, - 546, - 143.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 1.0 - }, - { - "type": "table", - "bbox": [ - 39, - 166, - 545, - 203 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 166, - 545, - 203 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 39, - 166, - 545, - 203 - ], - "spans": [ - { - "bbox": [ - 39, - 166, - 545, - 203 - ], - "score": 0.947, - "html": "
0410 influenced gender roles and relationships within families and households.
", - "type": "table", - "image_path": "b71836e7bc9041948ceef002b9828bd7a85ceed98304c0dcfcd9e0a9c851fab5.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 39, - 166, - 545, - 178.33333333333334 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 39, - 178.33333333333334, - 545, - 190.66666666666669 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 39, - 190.66666666666669, - 545, - 203.00000000000003 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5 - }, - { - "type": "table", - "bbox": [ - 41, - 210, - 546, - 636 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 210, - 546, - 636 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 41, - 210, - 546, - 636 - ], - "spans": [ - { - "bbox": [ - 41, - 210, - 546, - 636 - ], - "score": 0.981, - "html": "
MarksLevel Descriptors
8-10withinfamiliesandhouseholds. There will be two applications of relevant material, eg the increase in women remaining childfree influencing women's involvement in the labour market; how smaller families may
4-7Answers in this band will show a reasonable to good knowledge and understanding of one and relationshipswithinfamilies andhouseholds. There will be one or two applications of relevant material, eg changes in division of domestic labour. There will be some basic analysis.
1-3question or the material. There will be limited focus on the question, eg a drift into discussion of reasons for changing childbearing patterns. There will be little or no analysis.
0No relevant points.
", - "type": "table", - "image_path": "d07b729627f9132d6a8aca2a6896cdd7f323cf76fc3b64351775a43c8bb2ca1d.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 41, - 210, - 546, - 352.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 41, - 352.0, - 546, - 494.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 41, - 494.0, - 546, - 636.0 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 8 - }, - { - "type": "title", - "bbox": [ - 44, - 649, - 140, - 660 - ], - "lines": [ - { - "bbox": [ - 45, - 650, - 140, - 660 - ], - "spans": [ - { - "bbox": [ - 45, - 650, - 140, - 660 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 45, - 661, - 354, - 674 - ], - "lines": [ - { - "bbox": [ - 44, - 662, - 354, - 674 - ], - "spans": [ - { - "bbox": [ - 44, - 662, - 354, - 674 - ], - "score": 1.0, - "content": "Answers may include the following and/or other relevant points:", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 61, - 675, - 345, - 768 - ], - "lines": [ - { - "bbox": [ - 80, - 674, - 161, - 688 - ], - "spans": [ - { - "bbox": [ - 80, - 674, - 161, - 688 - ], - "score": 1.0, - "content": "decision making", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 81, - 690, - 176, - 700 - ], - "spans": [ - { - "bbox": [ - 81, - 690, - 176, - 700 - ], - "score": 1.0, - "content": "power relationships", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 80, - 703, - 344, - 713 - ], - "spans": [ - { - "bbox": [ - 80, - 703, - 344, - 713 - ], - "score": 1.0, - "content": "increase in women’s involvement in the labour market", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 80, - 716, - 229, - 728 - ], - "spans": [ - { - "bbox": [ - 80, - 716, - 229, - 728 - ], - "score": 1.0, - "content": "increase in joint conjugal roles", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 80, - 729, - 228, - 740 - ], - "spans": [ - { - "bbox": [ - 80, - 729, - 228, - 740 - ], - "score": 1.0, - "content": "men taking on expressive role", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 80, - 743, - 159, - 753 - ], - "spans": [ - { - "bbox": [ - 80, - 743, - 159, - 753 - ], - "score": 1.0, - "content": "financial control", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 81, - 756, - 178, - 767 - ], - "spans": [ - { - "bbox": [ - 81, - 756, - 178, - 767 - ], - "score": 1.0, - "content": "dual shift/triple shift.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 15 - } - ], - "layout_bboxes": [], - "page_idx": 20, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 40, - 112, - 546, - 143 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 199, - 92, - 387, - 106 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 199, - 93, - 386, - 105 - ], - "spans": [ - { - "bbox": [ - 199, - 93, - 386, - 105 - ], - "score": 1.0, - "content": "Topic A2 Families and Households", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table_body", - "bbox": [ - 40, - 112, - 546, - 143 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 40, - 112, - 546, - 143 - ], - "spans": [ - { - "bbox": [ - 40, - 112, - 546, - 143 - ], - "score": 0.96, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "a27af9702f9dd940ca91b9d3240a911584acb47478398449145f729339b5fb2c.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 40, - 112, - 546, - 122.33333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 40, - 122.33333333333333, - 546, - 132.66666666666666 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 40, - 132.66666666666666, - 546, - 143.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 1.0 - }, - { - "type": "table", - "bbox": [ - 39, - 166, - 545, - 203 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 166, - 545, - 203 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 39, - 166, - 545, - 203 - ], - "spans": [ - { - "bbox": [ - 39, - 166, - 545, - 203 - ], - "score": 0.947, - "html": "
0410 influenced gender roles and relationships within families and households.
", - "type": "table", - "image_path": "b71836e7bc9041948ceef002b9828bd7a85ceed98304c0dcfcd9e0a9c851fab5.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 39, - 166, - 545, - 178.33333333333334 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 39, - 178.33333333333334, - 545, - 190.66666666666669 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 39, - 190.66666666666669, - 545, - 203.00000000000003 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5 - }, - { - "type": "table", - "bbox": [ - 41, - 210, - 546, - 636 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 210, - 546, - 636 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 41, - 210, - 546, - 636 - ], - "spans": [ - { - "bbox": [ - 41, - 210, - 546, - 636 - ], - "score": 0.981, - "html": "
MarksLevel Descriptors
8-10withinfamiliesandhouseholds. There will be two applications of relevant material, eg the increase in women remaining childfree influencing women's involvement in the labour market; how smaller families may
4-7Answers in this band will show a reasonable to good knowledge and understanding of one and relationshipswithinfamilies andhouseholds. There will be one or two applications of relevant material, eg changes in division of domestic labour. There will be some basic analysis.
1-3question or the material. There will be limited focus on the question, eg a drift into discussion of reasons for changing childbearing patterns. There will be little or no analysis.
0No relevant points.
", - "type": "table", - "image_path": "d07b729627f9132d6a8aca2a6896cdd7f323cf76fc3b64351775a43c8bb2ca1d.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 41, - 210, - 546, - 352.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 41, - 352.0, - 546, - 494.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 41, - 494.0, - 546, - 636.0 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 8 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 236, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "spans": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 547, - 797, - 554, - 805 - ], - "lines": [ - { - "bbox": [ - 547, - 797, - 554, - 807 - ], - "spans": [ - { - "bbox": [ - 547, - 797, - 554, - 807 - ], - "score": 1.0, - "content": "9 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 40, - 112, - 546, - 143 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 199, - 92, - 387, - 106 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 199, - 93, - 386, - 105 - ], - "spans": [ - { - "bbox": [ - 199, - 93, - 386, - 105 - ], - "score": 1.0, - "content": "Topic A2 Families and Households", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table_body", - "bbox": [ - 40, - 112, - 546, - 143 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 40, - 112, - 546, - 143 - ], - "spans": [ - { - "bbox": [ - 40, - 112, - 546, - 143 - ], - "score": 0.96, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "a27af9702f9dd940ca91b9d3240a911584acb47478398449145f729339b5fb2c.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 40, - 112, - 546, - 122.33333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 40, - 122.33333333333333, - 546, - 132.66666666666666 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 40, - 132.66666666666666, - 546, - 143.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 1.0, - "page_num": "page_20", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 39, - 166, - 545, - 203 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 166, - 545, - 203 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 39, - 166, - 545, - 203 - ], - "spans": [ - { - "bbox": [ - 39, - 166, - 545, - 203 - ], - "score": 0.947, - "html": "
0410 influenced gender roles and relationships within families and households.
", - "type": "table", - "image_path": "b71836e7bc9041948ceef002b9828bd7a85ceed98304c0dcfcd9e0a9c851fab5.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 39, - 166, - 545, - 178.33333333333334 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 39, - 178.33333333333334, - 545, - 190.66666666666669 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 39, - 190.66666666666669, - 545, - 203.00000000000003 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5, - "page_num": "page_20", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 41, - 210, - 546, - 636 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 210, - 546, - 636 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 41, - 210, - 546, - 636 - ], - "spans": [ - { - "bbox": [ - 41, - 210, - 546, - 636 - ], - "score": 0.981, - "html": "
MarksLevel Descriptors
8-10withinfamiliesandhouseholds. There will be two applications of relevant material, eg the increase in women remaining childfree influencing women's involvement in the labour market; how smaller families may
4-7Answers in this band will show a reasonable to good knowledge and understanding of one and relationshipswithinfamilies andhouseholds. There will be one or two applications of relevant material, eg changes in division of domestic labour. There will be some basic analysis.
1-3question or the material. There will be limited focus on the question, eg a drift into discussion of reasons for changing childbearing patterns. There will be little or no analysis.
0No relevant points.
", - "type": "table", - "image_path": "d07b729627f9132d6a8aca2a6896cdd7f323cf76fc3b64351775a43c8bb2ca1d.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 41, - 210, - 546, - 352.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 41, - 352.0, - 546, - 494.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 41, - 494.0, - 546, - 636.0 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 8, - "page_num": "page_20", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 44, - 649, - 140, - 660 - ], - "lines": [ - { - "bbox": [ - 45, - 650, - 140, - 660 - ], - "spans": [ - { - "bbox": [ - 45, - 650, - 140, - 660 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_20", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 45, - 661, - 354, - 674 - ], - "lines": [ - { - "bbox": [ - 44, - 662, - 354, - 674 - ], - "spans": [ - { - "bbox": [ - 44, - 662, - 354, - 674 - ], - "score": 1.0, - "content": "Answers may include the following and/or other relevant points:", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_20", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 44, - 662, - 354, - 674 - ] - }, - { - "type": "list", - "bbox": [ - 61, - 675, - 345, - 768 - ], - "lines": [ - { - "bbox": [ - 80, - 674, - 161, - 688 - ], - "spans": [ - { - "bbox": [ - 80, - 674, - 161, - 688 - ], - "score": 1.0, - "content": "decision making", - "type": "text" - } - ], - "index": 12, - "is_list_end_line": true - }, - { - "bbox": [ - 81, - 690, - 176, - 700 - ], - "spans": [ - { - "bbox": [ - 81, - 690, - 176, - 700 - ], - "score": 1.0, - "content": "power relationships", - "type": "text" - } - ], - "index": 13, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 80, - 703, - 344, - 713 - ], - "spans": [ - { - "bbox": [ - 80, - 703, - 344, - 713 - ], - "score": 1.0, - "content": "increase in women’s involvement in the labour market", - "type": "text" - } - ], - "index": 14, - "is_list_start_line": true - }, - { - "bbox": [ - 80, - 716, - 229, - 728 - ], - "spans": [ - { - "bbox": [ - 80, - 716, - 229, - 728 - ], - "score": 1.0, - "content": "increase in joint conjugal roles", - "type": "text" - } - ], - "index": 15, - "is_list_end_line": true - }, - { - "bbox": [ - 80, - 729, - 228, - 740 - ], - "spans": [ - { - "bbox": [ - 80, - 729, - 228, - 740 - ], - "score": 1.0, - "content": "men taking on expressive role", - "type": "text" - } - ], - "index": 16, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 80, - 743, - 159, - 753 - ], - "spans": [ - { - "bbox": [ - 80, - 743, - 159, - 753 - ], - "score": 1.0, - "content": "financial control", - "type": "text" - } - ], - "index": 17, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 81, - 756, - 178, - 767 - ], - "spans": [ - { - "bbox": [ - 81, - 756, - 178, - 767 - ], - "score": 1.0, - "content": "dual shift/triple shift.", - "type": "text" - } - ], - "index": 18, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 15, - "page_num": "page_20", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 80, - 674, - 344, - 767 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 41, - 97, - 543, - 137 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 97, - 543, - 137 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 97, - 543, - 137 - ], - "spans": [ - { - "bbox": [ - 41, - 97, - 543, - 137 - ], - "score": 0.943, - "html": "
Sources may include the following or other relevant ones: Boulton; Braun, Vincent and Ball; Dex
and Warde; Duncome and Marsden; Ganley and Schechter; Gershuny; Laurie and Gershuny;
McRobbie; Pahl; Wardeand Hetherington.
", - "type": "table", - "image_path": "d99dbc2af444c4de4c9d2c497665d440579faa2e5c3193721574b27a6b81c509.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 41, - 97, - 543, - 110.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 41, - 110.33333333333333, - 543, - 123.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 41, - 123.66666666666666, - 543, - 137.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 42, - 159, - 545, - 191 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 159, - 545, - 191 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 42, - 159, - 545, - 191 - ], - "spans": [ - { - "bbox": [ - 42, - 159, - 545, - 191 - ], - "score": 0.966, - "html": "
QuTotal Marking guidance marks
", - "type": "table", - "image_path": "d0b802581f1ef9baf9cc3c1f8f8898ad54ce3e95817b6886893772db1ad35fec.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 42, - 159, - 545, - 169.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 42, - 169.66666666666666, - 545, - 180.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 42, - 180.33333333333331, - 545, - 190.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 40, - 214, - 545, - 251 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 214, - 545, - 251 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 40, - 214, - 545, - 251 - ], - "spans": [ - { - "bbox": [ - 40, - 214, - 545, - 251 - ], - "score": 0.964, - "html": "
05Applying material from Item C, analyse two ways in which globalisation may influencefamiliesandhouseholds.10
", - "type": "table", - "image_path": "0a6f6b341d2ae5bc80f6082c543864de68520ccd901d835f1030f7b619f5a155.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 40, - 214, - 545, - 226.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 40, - 226.33333333333334, - 545, - 238.66666666666669 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 40, - 238.66666666666669, - 545, - 251.00000000000003 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 40, - 262, - 541, - 363 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 262, - 541, - 363 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 40, - 262, - 541, - 363 - ], - "spans": [ - { - "bbox": [ - 40, - 262, - 541, - 363 - ], - "score": 0.729, - "html": "
ItemC
Globalisation involves the growing inter-connectedness between countries through increased travel opportunities. It enables more freedom of choice in terms of lifestyles and personal relationships.
Globalisation may influence families and households.
", - "type": "table", - "image_path": "91dc57b985fc2c9bb6f747dc12bfb87b92a1c522be4c6833eb287bc9893cd2e7.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 40, - 262, - 541, - 295.6666666666667 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 40, - 295.6666666666667, - 541, - 329.33333333333337 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 40, - 329.33333333333337, - 541, - 363.00000000000006 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "table", - "bbox": [ - 40, - 373, - 546, - 782 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 373, - 546, - 782 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 40, - 373, - 546, - 782 - ], - "spans": [ - { - "bbox": [ - 40, - 373, - 546, - 782 - ], - "score": 0.983, - "html": "
MarksLevelDescriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on There will be two developed applications of material from the item, eg increase in migration may mean families live in different parts of the world; freedom of choice creating more complex family and household structures, such as divorce extended families, negotiated families.
4-7and choice over lifestyles/personal relationships in postmodern society. Answers in this band will show a basic to reasonable knowledge and understanding of one partners. Therewill besome analysis/evaluation.
1-3Answers in this band will show limited knowledge and understanding of one or two ways in which globalisation may influence families and households. There will be limited application of material from the item. Some material may be at a There will be limited or no analysis/evaluation.
0No relevant points.
", - "type": "table", - "image_path": "32f824e8904610bde1b87344b84d4ee94e46f79358786f8d3482c92f2d87f242.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 40, - 373, - 546, - 509.33333333333337 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 40, - 509.33333333333337, - 546, - 645.6666666666667 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 40, - 645.6666666666667, - 546, - 782.0000000000001 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - } - ], - "layout_bboxes": [], - "page_idx": 21, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 41, - 97, - 543, - 137 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 97, - 543, - 137 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 97, - 543, - 137 - ], - "spans": [ - { - "bbox": [ - 41, - 97, - 543, - 137 - ], - "score": 0.943, - "html": "
Sources may include the following or other relevant ones: Boulton; Braun, Vincent and Ball; Dex
and Warde; Duncome and Marsden; Ganley and Schechter; Gershuny; Laurie and Gershuny;
McRobbie; Pahl; Wardeand Hetherington.
", - "type": "table", - "image_path": "d99dbc2af444c4de4c9d2c497665d440579faa2e5c3193721574b27a6b81c509.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 41, - 97, - 543, - 110.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 41, - 110.33333333333333, - 543, - 123.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 41, - 123.66666666666666, - 543, - 137.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 42, - 159, - 545, - 191 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 159, - 545, - 191 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 42, - 159, - 545, - 191 - ], - "spans": [ - { - "bbox": [ - 42, - 159, - 545, - 191 - ], - "score": 0.966, - "html": "
QuTotal Marking guidance marks
", - "type": "table", - "image_path": "d0b802581f1ef9baf9cc3c1f8f8898ad54ce3e95817b6886893772db1ad35fec.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 42, - 159, - 545, - 169.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 42, - 169.66666666666666, - 545, - 180.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 42, - 180.33333333333331, - 545, - 190.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 40, - 214, - 545, - 251 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 214, - 545, - 251 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 40, - 214, - 545, - 251 - ], - "spans": [ - { - "bbox": [ - 40, - 214, - 545, - 251 - ], - "score": 0.964, - "html": "
05Applying material from Item C, analyse two ways in which globalisation may influencefamiliesandhouseholds.10
", - "type": "table", - "image_path": "0a6f6b341d2ae5bc80f6082c543864de68520ccd901d835f1030f7b619f5a155.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 40, - 214, - 545, - 226.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 40, - 226.33333333333334, - 545, - 238.66666666666669 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 40, - 238.66666666666669, - 545, - 251.00000000000003 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 40, - 262, - 541, - 363 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 262, - 541, - 363 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 40, - 262, - 541, - 363 - ], - "spans": [ - { - "bbox": [ - 40, - 262, - 541, - 363 - ], - "score": 0.729, - "html": "
ItemC
Globalisation involves the growing inter-connectedness between countries through increased travel opportunities. It enables more freedom of choice in terms of lifestyles and personal relationships.
Globalisation may influence families and households.
", - "type": "table", - "image_path": "91dc57b985fc2c9bb6f747dc12bfb87b92a1c522be4c6833eb287bc9893cd2e7.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 40, - 262, - 541, - 295.6666666666667 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 40, - 295.6666666666667, - 541, - 329.33333333333337 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 40, - 329.33333333333337, - 541, - 363.00000000000006 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "table", - "bbox": [ - 40, - 373, - 546, - 782 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 373, - 546, - 782 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 40, - 373, - 546, - 782 - ], - "spans": [ - { - "bbox": [ - 40, - 373, - 546, - 782 - ], - "score": 0.983, - "html": "
MarksLevelDescriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on There will be two developed applications of material from the item, eg increase in migration may mean families live in different parts of the world; freedom of choice creating more complex family and household structures, such as divorce extended families, negotiated families.
4-7and choice over lifestyles/personal relationships in postmodern society. Answers in this band will show a basic to reasonable knowledge and understanding of one partners. Therewill besome analysis/evaluation.
1-3Answers in this band will show limited knowledge and understanding of one or two ways in which globalisation may influence families and households. There will be limited application of material from the item. Some material may be at a There will be limited or no analysis/evaluation.
0No relevant points.
", - "type": "table", - "image_path": "32f824e8904610bde1b87344b84d4ee94e46f79358786f8d3482c92f2d87f242.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 40, - 373, - 546, - 509.33333333333337 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 40, - 509.33333333333337, - 546, - 645.6666666666667 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 40, - 645.6666666666667, - 546, - 782.0000000000001 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 236, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "spans": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 797, - 52, - 806 - ], - "lines": [ - { - "bbox": [ - 40, - 796, - 54, - 808 - ], - "spans": [ - { - "bbox": [ - 40, - 796, - 54, - 808 - ], - "score": 1.0, - "content": "10 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 41, - 97, - 543, - 137 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 97, - 543, - 137 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 97, - 543, - 137 - ], - "spans": [ - { - "bbox": [ - 41, - 97, - 543, - 137 - ], - "score": 0.943, - "html": "
Sources may include the following or other relevant ones: Boulton; Braun, Vincent and Ball; Dex
and Warde; Duncome and Marsden; Ganley and Schechter; Gershuny; Laurie and Gershuny;
McRobbie; Pahl; Wardeand Hetherington.
", - "type": "table", - "image_path": "d99dbc2af444c4de4c9d2c497665d440579faa2e5c3193721574b27a6b81c509.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 41, - 97, - 543, - 110.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 41, - 110.33333333333333, - 543, - 123.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 41, - 123.66666666666666, - 543, - 137.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_21", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 42, - 159, - 545, - 191 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 159, - 545, - 191 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 42, - 159, - 545, - 191 - ], - "spans": [ - { - "bbox": [ - 42, - 159, - 545, - 191 - ], - "score": 0.966, - "html": "
QuTotal Marking guidance marks
", - "type": "table", - "image_path": "d0b802581f1ef9baf9cc3c1f8f8898ad54ce3e95817b6886893772db1ad35fec.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 42, - 159, - 545, - 169.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 42, - 169.66666666666666, - 545, - 180.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 42, - 180.33333333333331, - 545, - 190.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_21", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 40, - 214, - 545, - 251 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 214, - 545, - 251 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 40, - 214, - 545, - 251 - ], - "spans": [ - { - "bbox": [ - 40, - 214, - 545, - 251 - ], - "score": 0.964, - "html": "
05Applying material from Item C, analyse two ways in which globalisation may influencefamiliesandhouseholds.10
", - "type": "table", - "image_path": "0a6f6b341d2ae5bc80f6082c543864de68520ccd901d835f1030f7b619f5a155.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 40, - 214, - 545, - 226.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 40, - 226.33333333333334, - 545, - 238.66666666666669 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 40, - 238.66666666666669, - 545, - 251.00000000000003 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_21", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 40, - 262, - 541, - 363 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 262, - 541, - 363 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 40, - 262, - 541, - 363 - ], - "spans": [ - { - "bbox": [ - 40, - 262, - 541, - 363 - ], - "score": 0.729, - "html": "
ItemC
Globalisation involves the growing inter-connectedness between countries through increased travel opportunities. It enables more freedom of choice in terms of lifestyles and personal relationships.
Globalisation may influence families and households.
", - "type": "table", - "image_path": "91dc57b985fc2c9bb6f747dc12bfb87b92a1c522be4c6833eb287bc9893cd2e7.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 40, - 262, - 541, - 295.6666666666667 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 40, - 295.6666666666667, - 541, - 329.33333333333337 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 40, - 329.33333333333337, - 541, - 363.00000000000006 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10, - "page_num": "page_21", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 40, - 373, - 546, - 782 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 373, - 546, - 782 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 40, - 373, - 546, - 782 - ], - "spans": [ - { - "bbox": [ - 40, - 373, - 546, - 782 - ], - "score": 0.983, - "html": "
MarksLevelDescriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on There will be two developed applications of material from the item, eg increase in migration may mean families live in different parts of the world; freedom of choice creating more complex family and household structures, such as divorce extended families, negotiated families.
4-7and choice over lifestyles/personal relationships in postmodern society. Answers in this band will show a basic to reasonable knowledge and understanding of one partners. Therewill besome analysis/evaluation.
1-3Answers in this band will show limited knowledge and understanding of one or two ways in which globalisation may influence families and households. There will be limited application of material from the item. Some material may be at a There will be limited or no analysis/evaluation.
0No relevant points.
", - "type": "table", - "image_path": "32f824e8904610bde1b87344b84d4ee94e46f79358786f8d3482c92f2d87f242.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 40, - 373, - 546, - 509.33333333333337 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 40, - 509.33333333333337, - 546, - 645.6666666666667 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 40, - 645.6666666666667, - 546, - 782.0000000000001 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13, - "page_num": "page_21", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 43, - 97, - 537, - 136 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 43, - 97, - 537, - 136 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 43, - 97, - 537, - 136 - ], - "spans": [ - { - "bbox": [ - 43, - 97, - 537, - 136 - ], - "score": 0.85, - "html": "
Sources may include the following or other relevant ones: Beck; Chambers; Cheal; Ehrenreich
and Hochschild; Einasdottir; Eriksen; Giddens; Morgan; Shutes; Smart; Stacey; Vertovec; Weeks; Weston.
", - "type": "table", - "image_path": "abf905d9b1317f351cdb0743110606cff08a58b645d183eefecdce64052c3012.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 43, - 97, - 537, - 110.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 43, - 110.0, - 537, - 123.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 43, - 123.0, - 537, - 136.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 42, - 153, - 541, - 184 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 153, - 541, - 184 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 42, - 153, - 541, - 184 - ], - "spans": [ - { - "bbox": [ - 42, - 153, - 541, - 184 - ], - "score": 0.949, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "d2762c94913958a44ae06c29d1366317a096cd889c73569ef7fee40716e8d5f2.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 42, - 153, - 541, - 163.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 42, - 163.33333333333334, - 541, - 173.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 42, - 173.66666666666669, - 541, - 184.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 39, - 195, - 545, - 231 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 195, - 545, - 231 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 39, - 195, - 545, - 231 - ], - "spans": [ - { - "bbox": [ - 39, - 195, - 545, - 231 - ], - "score": 0.958, - "html": "
06Applying material from Item D and your knowledge, evaluate the view that UK society has become more child-centred.20
", - "type": "table", - "image_path": "938b2e0363f93dde35d066a9dc0ec10bd50c5d8583b5a23fe87190507de4f09e.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 39, - 195, - 545, - 207.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 39, - 207.0, - 545, - 219.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 39, - 219.0, - 545, - 231.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 40, - 242, - 540, - 370 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 242, - 540, - 370 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 40, - 242, - 540, - 370 - ], - "spans": [ - { - "bbox": [ - 40, - 242, - 540, - 370 - ], - "score": 0.872, - "html": "
ItemD
Some sociologists argue that UK society has become more child-centred. Children today are more privileged than they have ever been. There are a large range of laws and policies in place to protect them and there is an increasing emphasis now placed on children's rights.
However, other sociologists argue that the extent of child-centredness is exaggerated, and that
childhood canbe a negative experience for some children.
", - "type": "table", - "image_path": "c7e37ba514605cb00b38b7e391f3fe3007b1486c270aaf6747c6051e406850da.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 40, - 242, - 540, - 284.6666666666667 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 40, - 284.6666666666667, - 540, - 327.33333333333337 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 40, - 327.33333333333337, - 540, - 370.00000000000006 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "table", - "bbox": [ - 41, - 380, - 547, - 786 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 380, - 547, - 786 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 41, - 380, - 547, - 786 - ], - "spans": [ - { - "bbox": [ - 41, - 380, - 547, - 786 - ], - "score": 0.983, - "html": "
MarksLevel Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of of the question and of the presented material will be shown. Appropriate material will be applied accurately and with sensitivity to the issues raised by the question. Analysisandevaluationwillbeexplicitandrelevant.Evaluationmaybedeveloped,for example through a discussion of the extent to which society hasbecome more child conclusions will be drawn.
13-16Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. Application of material is largely explicitly relevant to the question, though some material may be inadequately focused. Some limited explicit evaluation, eg discussion of inequalities between children based on
9-12some of the presented material. Answers in this band will show largely accurate knowledge but limited range and depth, eg more child-centred. Understands some limited but significant aspects of the question; superficial understanding of the presented material.
", - "type": "table", - "image_path": "f81cc2e13aa1bc06c03f5b336c31c0612d9b47e60be19357a86e1ae286868e4e.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 41, - 380, - 547, - 515.3333333333334 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 41, - 515.3333333333334, - 547, - 650.6666666666667 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 41, - 650.6666666666667, - 547, - 786.0000000000001 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - } - ], - "layout_bboxes": [], - "page_idx": 22, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 43, - 97, - 537, - 136 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 43, - 97, - 537, - 136 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 43, - 97, - 537, - 136 - ], - "spans": [ - { - "bbox": [ - 43, - 97, - 537, - 136 - ], - "score": 0.85, - "html": "
Sources may include the following or other relevant ones: Beck; Chambers; Cheal; Ehrenreich
and Hochschild; Einasdottir; Eriksen; Giddens; Morgan; Shutes; Smart; Stacey; Vertovec; Weeks; Weston.
", - "type": "table", - "image_path": "abf905d9b1317f351cdb0743110606cff08a58b645d183eefecdce64052c3012.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 43, - 97, - 537, - 110.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 43, - 110.0, - 537, - 123.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 43, - 123.0, - 537, - 136.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 42, - 153, - 541, - 184 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 153, - 541, - 184 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 42, - 153, - 541, - 184 - ], - "spans": [ - { - "bbox": [ - 42, - 153, - 541, - 184 - ], - "score": 0.949, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "d2762c94913958a44ae06c29d1366317a096cd889c73569ef7fee40716e8d5f2.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 42, - 153, - 541, - 163.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 42, - 163.33333333333334, - 541, - 173.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 42, - 173.66666666666669, - 541, - 184.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 39, - 195, - 545, - 231 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 195, - 545, - 231 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 39, - 195, - 545, - 231 - ], - "spans": [ - { - "bbox": [ - 39, - 195, - 545, - 231 - ], - "score": 0.958, - "html": "
06Applying material from Item D and your knowledge, evaluate the view that UK society has become more child-centred.20
", - "type": "table", - "image_path": "938b2e0363f93dde35d066a9dc0ec10bd50c5d8583b5a23fe87190507de4f09e.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 39, - 195, - 545, - 207.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 39, - 207.0, - 545, - 219.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 39, - 219.0, - 545, - 231.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 40, - 242, - 540, - 370 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 242, - 540, - 370 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 40, - 242, - 540, - 370 - ], - "spans": [ - { - "bbox": [ - 40, - 242, - 540, - 370 - ], - "score": 0.872, - "html": "
ItemD
Some sociologists argue that UK society has become more child-centred. Children today are more privileged than they have ever been. There are a large range of laws and policies in place to protect them and there is an increasing emphasis now placed on children's rights.
However, other sociologists argue that the extent of child-centredness is exaggerated, and that
childhood canbe a negative experience for some children.
", - "type": "table", - "image_path": "c7e37ba514605cb00b38b7e391f3fe3007b1486c270aaf6747c6051e406850da.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 40, - 242, - 540, - 284.6666666666667 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 40, - 284.6666666666667, - 540, - 327.33333333333337 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 40, - 327.33333333333337, - 540, - 370.00000000000006 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "table", - "bbox": [ - 41, - 380, - 547, - 786 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 380, - 547, - 786 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 41, - 380, - 547, - 786 - ], - "spans": [ - { - "bbox": [ - 41, - 380, - 547, - 786 - ], - "score": 0.983, - "html": "
MarksLevel Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of of the question and of the presented material will be shown. Appropriate material will be applied accurately and with sensitivity to the issues raised by the question. Analysisandevaluationwillbeexplicitandrelevant.Evaluationmaybedeveloped,for example through a discussion of the extent to which society hasbecome more child conclusions will be drawn.
13-16Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. Application of material is largely explicitly relevant to the question, though some material may be inadequately focused. Some limited explicit evaluation, eg discussion of inequalities between children based on
9-12some of the presented material. Answers in this band will show largely accurate knowledge but limited range and depth, eg more child-centred. Understands some limited but significant aspects of the question; superficial understanding of the presented material.
", - "type": "table", - "image_path": "f81cc2e13aa1bc06c03f5b336c31c0612d9b47e60be19357a86e1ae286868e4e.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 41, - 380, - 547, - 515.3333333333334 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 41, - 515.3333333333334, - 547, - 650.6666666666667 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 41, - 650.6666666666667, - 547, - 786.0000000000001 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 237, - 35, - 554, - 48 - ], - "lines": [ - { - "bbox": [ - 237, - 37, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 237, - 37, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 544, - 797, - 553, - 806 - ], - "lines": [ - { - "bbox": [ - 542, - 796, - 555, - 807 - ], - "spans": [ - { - "bbox": [ - 542, - 796, - 555, - 807 - ], - "score": 1.0, - "content": "11 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 43, - 97, - 537, - 136 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 43, - 97, - 537, - 136 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 43, - 97, - 537, - 136 - ], - "spans": [ - { - "bbox": [ - 43, - 97, - 537, - 136 - ], - "score": 0.85, - "html": "
Sources may include the following or other relevant ones: Beck; Chambers; Cheal; Ehrenreich
and Hochschild; Einasdottir; Eriksen; Giddens; Morgan; Shutes; Smart; Stacey; Vertovec; Weeks; Weston.
", - "type": "table", - "image_path": "abf905d9b1317f351cdb0743110606cff08a58b645d183eefecdce64052c3012.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 43, - 97, - 537, - 110.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 43, - 110.0, - 537, - 123.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 43, - 123.0, - 537, - 136.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_22", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 42, - 153, - 541, - 184 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 153, - 541, - 184 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 42, - 153, - 541, - 184 - ], - "spans": [ - { - "bbox": [ - 42, - 153, - 541, - 184 - ], - "score": 0.949, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "d2762c94913958a44ae06c29d1366317a096cd889c73569ef7fee40716e8d5f2.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 42, - 153, - 541, - 163.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 42, - 163.33333333333334, - 541, - 173.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 42, - 173.66666666666669, - 541, - 184.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_22", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 39, - 195, - 545, - 231 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 195, - 545, - 231 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 39, - 195, - 545, - 231 - ], - "spans": [ - { - "bbox": [ - 39, - 195, - 545, - 231 - ], - "score": 0.958, - "html": "
06Applying material from Item D and your knowledge, evaluate the view that UK society has become more child-centred.20
", - "type": "table", - "image_path": "938b2e0363f93dde35d066a9dc0ec10bd50c5d8583b5a23fe87190507de4f09e.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 39, - 195, - 545, - 207.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 39, - 207.0, - 545, - 219.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 39, - 219.0, - 545, - 231.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_22", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 40, - 242, - 540, - 370 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 242, - 540, - 370 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 40, - 242, - 540, - 370 - ], - "spans": [ - { - "bbox": [ - 40, - 242, - 540, - 370 - ], - "score": 0.872, - "html": "
ItemD
Some sociologists argue that UK society has become more child-centred. Children today are more privileged than they have ever been. There are a large range of laws and policies in place to protect them and there is an increasing emphasis now placed on children's rights.
However, other sociologists argue that the extent of child-centredness is exaggerated, and that
childhood canbe a negative experience for some children.
", - "type": "table", - "image_path": "c7e37ba514605cb00b38b7e391f3fe3007b1486c270aaf6747c6051e406850da.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 40, - 242, - 540, - 284.6666666666667 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 40, - 284.6666666666667, - 540, - 327.33333333333337 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 40, - 327.33333333333337, - 540, - 370.00000000000006 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10, - "page_num": "page_22", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 41, - 380, - 547, - 786 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 380, - 547, - 786 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 41, - 380, - 547, - 786 - ], - "spans": [ - { - "bbox": [ - 41, - 380, - 547, - 786 - ], - "score": 0.983, - "html": "
MarksLevel Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of of the question and of the presented material will be shown. Appropriate material will be applied accurately and with sensitivity to the issues raised by the question. Analysisandevaluationwillbeexplicitandrelevant.Evaluationmaybedeveloped,for example through a discussion of the extent to which society hasbecome more child conclusions will be drawn.
13-16Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. Application of material is largely explicitly relevant to the question, though some material may be inadequately focused. Some limited explicit evaluation, eg discussion of inequalities between children based on
9-12some of the presented material. Answers in this band will show largely accurate knowledge but limited range and depth, eg more child-centred. Understands some limited but significant aspects of the question; superficial understanding of the presented material.
", - "type": "table", - "image_path": "f81cc2e13aa1bc06c03f5b336c31c0612d9b47e60be19357a86e1ae286868e4e.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 41, - 380, - 547, - 515.3333333333334 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 41, - 515.3333333333334, - 547, - 650.6666666666667 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 41, - 650.6666666666667, - 547, - 786.0000000000001 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13, - "page_num": "page_22", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 41, - 83, - 546, - 424 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 83, - 546, - 424 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 83, - 546, - 424 - ], - "spans": [ - { - "bbox": [ - 41, - 83, - 546, - 424 - ], - "score": 0.981, - "html": "
Applying listed material from the general topic area but with limited regard for its relevance a o u e e o s a ssi Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
5-8Answers in this band will show limited undeveloped knowledge, eg two or three insubstantial points about childhood in general. Understands only limited aspects of the question; simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question.
1-4points about childhood in general. Very little/no understanding of the question and of the presented material. Significant errors and/or omissions in application of material.
0No analysis or evaluation. No relevant points.
", - "type": "table", - "image_path": "d3e7dffcc166a530bf5479296ce53041818ec89ad6111fcce5a4237a644b610f.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 41, - 83, - 546, - 196.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 41, - 196.66666666666669, - 546, - 310.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 41, - 310.33333333333337, - 546, - 424.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "title", - "bbox": [ - 43, - 439, - 138, - 453 - ], - "lines": [ - { - "bbox": [ - 43, - 441, - 138, - 452 - ], - "spans": [ - { - "bbox": [ - 43, - 441, - 138, - 452 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 43, - 465, - 534, - 544 - ], - "lines": [ - { - "bbox": [ - 43, - 466, - 532, - 479 - ], - "spans": [ - { - "bbox": [ - 43, - 466, - 532, - 479 - ], - "score": 1.0, - "content": "Concepts and issues such as the following may appear; policies restricting child labour; exclusion of ", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 43, - 480, - 509, - 493 - ], - "spans": [ - { - "bbox": [ - 43, - 480, - 509, - 493 - ], - "score": 1.0, - "content": "children from paid work; compulsory education; growth of children’s rights; declining family size;", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 42, - 493, - 528, - 505 - ], - "spans": [ - { - "bbox": [ - 42, - 493, - 528, - 505 - ], - "score": 1.0, - "content": "lower infant mortality rate; increased medical knowledge around child development; child protection ", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 42, - 506, - 534, - 519 - ], - "spans": [ - { - "bbox": [ - 42, - 506, - 534, - 519 - ], - "score": 1.0, - "content": "and welfare policies; age patriarchy; child neglect and abuse; control over children’s space, time and ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 43, - 519, - 532, - 532 - ], - "spans": [ - { - "bbox": [ - 43, - 519, - 532, - 532 - ], - "score": 1.0, - "content": "bodies; information hierarchy; toxic childhood; disappearance of childhood; impact of divorce; march", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 42, - 531, - 169, - 545 - ], - "spans": [ - { - "bbox": [ - 42, - 531, - 169, - 545 - ], - "score": 1.0, - "content": "of progress; conflict view. ", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 6.5 - }, - { - "type": "text", - "bbox": [ - 45, - 573, - 531, - 612 - ], - "lines": [ - { - "bbox": [ - 48, - 575, - 503, - 586 - ], - "spans": [ - { - "bbox": [ - 48, - 575, - 503, - 586 - ], - "score": 1.0, - "content": "Sources may include the following or other relevant ones: Ariés; Bhatti; Bonke; Brannen; ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 47, - 587, - 528, - 600 - ], - "spans": [ - { - "bbox": [ - 47, - 587, - 528, - 600 - ], - "score": 1.0, - "content": "Cunningham; Firestone and Holt; Garber; Gittins; Howard; Jenks; Opie; Palmer; Pilcher; Postman; ", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 47, - 600, - 161, - 613 - ], - "spans": [ - { - "bbox": [ - 47, - 600, - 161, - 613 - ], - "score": 1.0, - "content": "Rees; Wagg; Womack.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11 - } - ], - "layout_bboxes": [], - "page_idx": 23, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 41, - 83, - 546, - 424 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 83, - 546, - 424 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 83, - 546, - 424 - ], - "spans": [ - { - "bbox": [ - 41, - 83, - 546, - 424 - ], - "score": 0.981, - "html": "
Applying listed material from the general topic area but with limited regard for its relevance a o u e e o s a ssi Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
5-8Answers in this band will show limited undeveloped knowledge, eg two or three insubstantial points about childhood in general. Understands only limited aspects of the question; simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question.
1-4points about childhood in general. Very little/no understanding of the question and of the presented material. Significant errors and/or omissions in application of material.
0No analysis or evaluation. No relevant points.
", - "type": "table", - "image_path": "d3e7dffcc166a530bf5479296ce53041818ec89ad6111fcce5a4237a644b610f.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 41, - 83, - 546, - 196.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 41, - 196.66666666666669, - 546, - 310.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 41, - 310.33333333333337, - 546, - 424.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 237, - 35, - 554, - 48 - ], - "lines": [ - { - "bbox": [ - 237, - 35, - 553, - 48 - ], - "spans": [ - { - "bbox": [ - 237, - 35, - 553, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 797, - 52, - 805 - ], - "lines": [ - { - "bbox": [ - 40, - 796, - 53, - 808 - ], - "spans": [ - { - "bbox": [ - 40, - 796, - 53, - 808 - ], - "score": 1.0, - "content": "12 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 41, - 83, - 546, - 424 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 83, - 546, - 424 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 83, - 546, - 424 - ], - "spans": [ - { - "bbox": [ - 41, - 83, - 546, - 424 - ], - "score": 0.981, - "html": "
Applying listed material from the general topic area but with limited regard for its relevance a o u e e o s a ssi Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
5-8Answers in this band will show limited undeveloped knowledge, eg two or three insubstantial points about childhood in general. Understands only limited aspects of the question; simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question.
1-4points about childhood in general. Very little/no understanding of the question and of the presented material. Significant errors and/or omissions in application of material.
0No analysis or evaluation. No relevant points.
", - "type": "table", - "image_path": "d3e7dffcc166a530bf5479296ce53041818ec89ad6111fcce5a4237a644b610f.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 41, - 83, - 546, - 196.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 41, - 196.66666666666669, - 546, - 310.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 41, - 310.33333333333337, - 546, - 424.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_23", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 43, - 439, - 138, - 453 - ], - "lines": [ - { - "bbox": [ - 43, - 441, - 138, - 452 - ], - "spans": [ - { - "bbox": [ - 43, - 441, - 138, - 452 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_23", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 43, - 465, - 534, - 544 - ], - "lines": [ - { - "bbox": [ - 43, - 466, - 532, - 479 - ], - "spans": [ - { - "bbox": [ - 43, - 466, - 532, - 479 - ], - "score": 1.0, - "content": "Concepts and issues such as the following may appear; policies restricting child labour; exclusion of ", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 43, - 480, - 509, - 493 - ], - "spans": [ - { - "bbox": [ - 43, - 480, - 509, - 493 - ], - "score": 1.0, - "content": "children from paid work; compulsory education; growth of children’s rights; declining family size;", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 42, - 493, - 528, - 505 - ], - "spans": [ - { - "bbox": [ - 42, - 493, - 528, - 505 - ], - "score": 1.0, - "content": "lower infant mortality rate; increased medical knowledge around child development; child protection ", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 42, - 506, - 534, - 519 - ], - "spans": [ - { - "bbox": [ - 42, - 506, - 534, - 519 - ], - "score": 1.0, - "content": "and welfare policies; age patriarchy; child neglect and abuse; control over children’s space, time and ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 43, - 519, - 532, - 532 - ], - "spans": [ - { - "bbox": [ - 43, - 519, - 532, - 532 - ], - "score": 1.0, - "content": "bodies; information hierarchy; toxic childhood; disappearance of childhood; impact of divorce; march", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 42, - 531, - 169, - 545 - ], - "spans": [ - { - "bbox": [ - 42, - 531, - 169, - 545 - ], - "score": 1.0, - "content": "of progress; conflict view. ", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 6.5, - "page_num": "page_23", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 466, - 534, - 545 - ] - }, - { - "type": "list", - "bbox": [ - 45, - 573, - 531, - 612 - ], - "lines": [ - { - "bbox": [ - 48, - 575, - 503, - 586 - ], - "spans": [ - { - "bbox": [ - 48, - 575, - 503, - 586 - ], - "score": 1.0, - "content": "Sources may include the following or other relevant ones: Ariés; Bhatti; Bonke; Brannen; ", - "type": "text" - } - ], - "index": 10, - "is_list_end_line": true - }, - { - "bbox": [ - 47, - 587, - 528, - 600 - ], - "spans": [ - { - "bbox": [ - 47, - 587, - 528, - 600 - ], - "score": 1.0, - "content": "Cunningham; Firestone and Holt; Garber; Gittins; Howard; Jenks; Opie; Palmer; Pilcher; Postman; ", - "type": "text" - } - ], - "index": 11, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 47, - 600, - 161, - 613 - ], - "spans": [ - { - "bbox": [ - 47, - 600, - 161, - 613 - ], - "score": 1.0, - "content": "Rees; Wagg; Womack.", - "type": "text" - } - ], - "index": 12, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 11, - "page_num": "page_23", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 47, - 575, - 528, - 613 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 248, - 92, - 336, - 106 - ], - "lines": [ - { - "bbox": [ - 249, - 94, - 336, - 105 - ], - "spans": [ - { - "bbox": [ - 249, - 94, - 336, - 105 - ], - "score": 1.0, - "content": "Topic A3 Health", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table", - "bbox": [ - 40, - 112, - 545, - 143 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 112, - 545, - 143 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 40, - 112, - 545, - 143 - ], - "spans": [ - { - "bbox": [ - 40, - 112, - 545, - 143 - ], - "score": 0.963, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "fb927d397b66297da309fdbaec19007c9b66fdb77855ed873bdda88c7d179ac3.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 40, - 112, - 545, - 122.33333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 40, - 122.33333333333333, - 545, - 132.66666666666666 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 40, - 132.66666666666666, - 545, - 143.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - }, - { - "type": "table", - "bbox": [ - 39, - 166, - 545, - 206 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 166, - 545, - 206 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 39, - 166, - 545, - 206 - ], - "spans": [ - { - "bbox": [ - 39, - 166, - 545, - 206 - ], - "score": 0.948, - "html": "
07Outline and explain two reasons for social class differences in consumer choices ofhealthcare.10
", - "type": "table", - "image_path": "55b2059b7deeec43050a662090670651b1fe752598b674f262c244259e81b57a.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 39, - 166, - 545, - 179.33333333333334 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 39, - 179.33333333333334, - 545, - 192.66666666666669 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 39, - 192.66666666666669, - 545, - 206.00000000000003 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5 - }, - { - "type": "table", - "bbox": [ - 41, - 215, - 546, - 609 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 215, - 546, - 609 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 41, - 215, - 546, - 609 - ], - "spans": [ - { - "bbox": [ - 41, - 215, - 546, - 609 - ], - "score": 0.981, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two reasons for differences between social classes in taking advantage of consumer choice in health care. There will be two applications of relevant material, eg social classes have different levels of access to the information needed to make informed choices; working class may place greater trust in the advice of professionals and not seek alternative views. There will be appropriate analysis, eg of different choices available within health care.
4-7Answers in this band will show a reasonable to good knowledge and understanding of one or two reasons for differences between social classes in taking advantage of consumer choice in health care. There will be one or two applications of relevant material, eg higher classes are able to afford private health care.
1-3There will be some basic analysis. question or the material. differencesinhealthcarechoices.
0There will be little or no analysis No relevant points.
", - "type": "table", - "image_path": "cc9068eace815b08119d28c25aa5af6eb96d17097887d58957661683a7c04614.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 41, - 215, - 546, - 346.33333333333337 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 41, - 346.33333333333337, - 546, - 477.66666666666674 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 41, - 477.66666666666674, - 546, - 609.0000000000001 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 8 - }, - { - "type": "title", - "bbox": [ - 43, - 624, - 140, - 638 - ], - "lines": [ - { - "bbox": [ - 45, - 626, - 139, - 637 - ], - "spans": [ - { - "bbox": [ - 45, - 626, - 139, - 637 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 44, - 650, - 354, - 664 - ], - "lines": [ - { - "bbox": [ - 45, - 652, - 353, - 663 - ], - "spans": [ - { - "bbox": [ - 45, - 652, - 353, - 663 - ], - "score": 1.0, - "content": "Answers may include the following and/or other relevant points:", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 43, - 676, - 535, - 770 - ], - "lines": [ - { - "bbox": [ - 45, - 678, - 366, - 689 - ], - "spans": [ - { - "bbox": [ - 45, - 678, - 366, - 689 - ], - "score": 1.0, - "content": "• middle class are able to afford private care, medical tourism etc", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 45, - 692, - 399, - 703 - ], - "spans": [ - { - "bbox": [ - 45, - 692, - 399, - 703 - ], - "score": 1.0, - "content": "• working class lack knowledge and expertise to make informed choices", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 45, - 704, - 387, - 717 - ], - "spans": [ - { - "bbox": [ - 45, - 704, - 387, - 717 - ], - "score": 1.0, - "content": "• middle class have greater access to knowledge of available choices", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 43, - 717, - 268, - 730 - ], - "spans": [ - { - "bbox": [ - 43, - 717, - 268, - 730 - ], - "score": 1.0, - "content": "• different levels of social and cultural capital ", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 45, - 732, - 250, - 743 - ], - "spans": [ - { - "bbox": [ - 45, - 732, - 250, - 743 - ], - "score": 1.0, - "content": "• availability of choices by region/location", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 48, - 744, - 532, - 757 - ], - "spans": [ - { - "bbox": [ - 48, - 744, - 532, - 757 - ], - "score": 1.0, - "content": " class differences in attitudes to the construction of bodies and identities through consumption and ", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 55, - 756, - 94, - 770 - ], - "spans": [ - { - "bbox": [ - 55, - 756, - 94, - 770 - ], - "score": 1.0, - "content": "lifestyle", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 15 - } - ], - "layout_bboxes": [], - "page_idx": 24, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 40, - 112, - 545, - 143 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 112, - 545, - 143 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 40, - 112, - 545, - 143 - ], - "spans": [ - { - "bbox": [ - 40, - 112, - 545, - 143 - ], - "score": 0.963, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "fb927d397b66297da309fdbaec19007c9b66fdb77855ed873bdda88c7d179ac3.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 40, - 112, - 545, - 122.33333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 40, - 122.33333333333333, - 545, - 132.66666666666666 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 40, - 132.66666666666666, - 545, - 143.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - }, - { - "type": "table", - "bbox": [ - 39, - 166, - 545, - 206 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 166, - 545, - 206 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 39, - 166, - 545, - 206 - ], - "spans": [ - { - "bbox": [ - 39, - 166, - 545, - 206 - ], - "score": 0.948, - "html": "
07Outline and explain two reasons for social class differences in consumer choices ofhealthcare.10
", - "type": "table", - "image_path": "55b2059b7deeec43050a662090670651b1fe752598b674f262c244259e81b57a.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 39, - 166, - 545, - 179.33333333333334 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 39, - 179.33333333333334, - 545, - 192.66666666666669 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 39, - 192.66666666666669, - 545, - 206.00000000000003 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5 - }, - { - "type": "table", - "bbox": [ - 41, - 215, - 546, - 609 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 215, - 546, - 609 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 41, - 215, - 546, - 609 - ], - "spans": [ - { - "bbox": [ - 41, - 215, - 546, - 609 - ], - "score": 0.981, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two reasons for differences between social classes in taking advantage of consumer choice in health care. There will be two applications of relevant material, eg social classes have different levels of access to the information needed to make informed choices; working class may place greater trust in the advice of professionals and not seek alternative views. There will be appropriate analysis, eg of different choices available within health care.
4-7Answers in this band will show a reasonable to good knowledge and understanding of one or two reasons for differences between social classes in taking advantage of consumer choice in health care. There will be one or two applications of relevant material, eg higher classes are able to afford private health care.
1-3There will be some basic analysis. question or the material. differencesinhealthcarechoices.
0There will be little or no analysis No relevant points.
", - "type": "table", - "image_path": "cc9068eace815b08119d28c25aa5af6eb96d17097887d58957661683a7c04614.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 41, - 215, - 546, - 346.33333333333337 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 41, - 346.33333333333337, - 546, - 477.66666666666674 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 41, - 477.66666666666674, - 546, - 609.0000000000001 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 8 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 236, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "spans": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 544, - 797, - 554, - 805 - ], - "lines": [ - { - "bbox": [ - 542, - 796, - 555, - 807 - ], - "spans": [ - { - "bbox": [ - 542, - 796, - 555, - 807 - ], - "score": 1.0, - "content": "13 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 248, - 92, - 336, - 106 - ], - "lines": [ - { - "bbox": [ - 249, - 94, - 336, - 105 - ], - "spans": [ - { - "bbox": [ - 249, - 94, - 336, - 105 - ], - "score": 1.0, - "content": "Topic A3 Health", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_24", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 40, - 112, - 545, - 143 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 112, - 545, - 143 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 40, - 112, - 545, - 143 - ], - "spans": [ - { - "bbox": [ - 40, - 112, - 545, - 143 - ], - "score": 0.963, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "fb927d397b66297da309fdbaec19007c9b66fdb77855ed873bdda88c7d179ac3.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 40, - 112, - 545, - 122.33333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 40, - 122.33333333333333, - 545, - 132.66666666666666 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 40, - 132.66666666666666, - 545, - 143.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2, - "page_num": "page_24", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 39, - 166, - 545, - 206 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 166, - 545, - 206 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 39, - 166, - 545, - 206 - ], - "spans": [ - { - "bbox": [ - 39, - 166, - 545, - 206 - ], - "score": 0.948, - "html": "
07Outline and explain two reasons for social class differences in consumer choices ofhealthcare.10
", - "type": "table", - "image_path": "55b2059b7deeec43050a662090670651b1fe752598b674f262c244259e81b57a.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 39, - 166, - 545, - 179.33333333333334 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 39, - 179.33333333333334, - 545, - 192.66666666666669 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 39, - 192.66666666666669, - 545, - 206.00000000000003 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5, - "page_num": "page_24", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 41, - 215, - 546, - 609 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 215, - 546, - 609 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 41, - 215, - 546, - 609 - ], - "spans": [ - { - "bbox": [ - 41, - 215, - 546, - 609 - ], - "score": 0.981, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two reasons for differences between social classes in taking advantage of consumer choice in health care. There will be two applications of relevant material, eg social classes have different levels of access to the information needed to make informed choices; working class may place greater trust in the advice of professionals and not seek alternative views. There will be appropriate analysis, eg of different choices available within health care.
4-7Answers in this band will show a reasonable to good knowledge and understanding of one or two reasons for differences between social classes in taking advantage of consumer choice in health care. There will be one or two applications of relevant material, eg higher classes are able to afford private health care.
1-3There will be some basic analysis. question or the material. differencesinhealthcarechoices.
0There will be little or no analysis No relevant points.
", - "type": "table", - "image_path": "cc9068eace815b08119d28c25aa5af6eb96d17097887d58957661683a7c04614.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 41, - 215, - 546, - 346.33333333333337 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 41, - 346.33333333333337, - 546, - 477.66666666666674 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 41, - 477.66666666666674, - 546, - 609.0000000000001 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 8, - "page_num": "page_24", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 43, - 624, - 140, - 638 - ], - "lines": [ - { - "bbox": [ - 45, - 626, - 139, - 637 - ], - "spans": [ - { - "bbox": [ - 45, - 626, - 139, - 637 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_24", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 44, - 650, - 354, - 664 - ], - "lines": [ - { - "bbox": [ - 45, - 652, - 353, - 663 - ], - "spans": [ - { - "bbox": [ - 45, - 652, - 353, - 663 - ], - "score": 1.0, - "content": "Answers may include the following and/or other relevant points:", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_24", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 45, - 652, - 353, - 663 - ] - }, - { - "type": "list", - "bbox": [ - 43, - 676, - 535, - 770 - ], - "lines": [ - { - "bbox": [ - 45, - 678, - 366, - 689 - ], - "spans": [ - { - "bbox": [ - 45, - 678, - 366, - 689 - ], - "score": 1.0, - "content": "• middle class are able to afford private care, medical tourism etc", - "type": "text" - } - ], - "index": 12, - "is_list_start_line": true - }, - { - "bbox": [ - 45, - 692, - 399, - 703 - ], - "spans": [ - { - "bbox": [ - 45, - 692, - 399, - 703 - ], - "score": 1.0, - "content": "• working class lack knowledge and expertise to make informed choices", - "type": "text" - } - ], - "index": 13, - "is_list_start_line": true - }, - { - "bbox": [ - 45, - 704, - 387, - 717 - ], - "spans": [ - { - "bbox": [ - 45, - 704, - 387, - 717 - ], - "score": 1.0, - "content": "• middle class have greater access to knowledge of available choices", - "type": "text" - } - ], - "index": 14, - "is_list_start_line": true - }, - { - "bbox": [ - 43, - 717, - 268, - 730 - ], - "spans": [ - { - "bbox": [ - 43, - 717, - 268, - 730 - ], - "score": 1.0, - "content": "• different levels of social and cultural capital ", - "type": "text" - } - ], - "index": 15, - "is_list_start_line": true - }, - { - "bbox": [ - 45, - 732, - 250, - 743 - ], - "spans": [ - { - "bbox": [ - 45, - 732, - 250, - 743 - ], - "score": 1.0, - "content": "• availability of choices by region/location", - "type": "text" - } - ], - "index": 16, - "is_list_start_line": true - }, - { - "bbox": [ - 48, - 744, - 532, - 757 - ], - "spans": [ - { - "bbox": [ - 48, - 744, - 532, - 757 - ], - "score": 1.0, - "content": " class differences in attitudes to the construction of bodies and identities through consumption and ", - "type": "text" - } - ], - "index": 17, - "is_list_start_line": true - }, - { - "bbox": [ - 55, - 756, - 94, - 770 - ], - "spans": [ - { - "bbox": [ - 55, - 756, - 94, - 770 - ], - "score": 1.0, - "content": "lifestyle", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 15, - "page_num": "page_24", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 43, - 678, - 532, - 770 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 43, - 90, - 411, - 116 - ], - "lines": [ - { - "bbox": [ - 47, - 91, - 277, - 102 - ], - "spans": [ - { - "bbox": [ - 47, - 91, - 277, - 102 - ], - "score": 1.0, - "content": "• different levels of trust in health professionals", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 50, - 104, - 411, - 115 - ], - "spans": [ - { - "bbox": [ - 50, - 104, - 411, - 115 - ], - "score": 1.0, - "content": " class differences in attitudes to complementary and alternative medicine.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "title", - "bbox": [ - 43, - 124, - 348, - 138 - ], - "lines": [ - { - "bbox": [ - 45, - 126, - 348, - 137 - ], - "spans": [ - { - "bbox": [ - 45, - 126, - 348, - 137 - ], - "score": 1.0, - "content": "Sources may include the following or other relevant ones:", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 43, - 149, - 522, - 177 - ], - "lines": [ - { - "bbox": [ - 44, - 150, - 522, - 163 - ], - "spans": [ - { - "bbox": [ - 44, - 150, - 522, - 163 - ], - "score": 1.0, - "content": "Cattrell; Conrad; Ernst; Giddens; Goldacre; Law; Lunt et al; Lyotard; Nettleton; Senior; Shaw et al;", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 43, - 163, - 347, - 176 - ], - "spans": [ - { - "bbox": [ - 43, - 163, - 347, - 176 - ], - "score": 1.0, - "content": "Skountridaki; Stevenson et al; Swayne; Wilkinson and Pickett.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5 - }, - { - "type": "table", - "bbox": [ - 38, - 204, - 544, - 235 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 38, - 204, - 544, - 235 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 38, - 204, - 544, - 235 - ], - "spans": [ - { - "bbox": [ - 38, - 204, - 544, - 235 - ], - "score": 0.959, - "html": "
QuTotal Marking guidance marks
", - "type": "table", - "image_path": "df9178c9b950b35ad7c696a21060b227d6ced16dbc1514e8afff415c98af2778.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 38, - 204, - 544, - 214.33333333333334 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 38, - 214.33333333333334, - 544, - 224.66666666666669 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 38, - 224.66666666666669, - 544, - 235.00000000000003 - ], - "spans": [], - "index": 7 - } - ] - } - ], - "index": 6 - }, - { - "type": "table", - "bbox": [ - 40, - 258, - 544, - 295 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 258, - 544, - 295 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 40, - 258, - 544, - 295 - ], - "spans": [ - { - "bbox": [ - 40, - 258, - 544, - 295 - ], - "score": 0.966, - "html": "
08Applying material from Item E, analyse two reasons for inequalities between ethnic groups in their health chances.10
", - "type": "table", - "image_path": "568457a68a056a9defebfd89d2f9491880c154d462507d20239664bba77fbb05.jpg" - } - ] - } - ], - "index": 9, - "virtual_lines": [ - { - "bbox": [ - 40, - 258, - 544, - 270.3333333333333 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 40, - 270.3333333333333, - 544, - 282.66666666666663 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 40, - 282.66666666666663, - 544, - 294.99999999999994 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 9 - }, - { - "type": "title", - "bbox": [ - 273, - 326, - 308, - 339 - ], - "lines": [ - { - "bbox": [ - 273, - 327, - 309, - 338 - ], - "spans": [ - { - "bbox": [ - 273, - 327, - 309, - 338 - ], - "score": 1.0, - "content": "Item E ", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 42, - 351, - 537, - 391 - ], - "lines": [ - { - "bbox": [ - 43, - 353, - 528, - 366 - ], - "spans": [ - { - "bbox": [ - 43, - 353, - 528, - 366 - ], - "score": 1.0, - "content": "Black and other minority ethnic groups in the UK are more likely than the majority to experience low", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 42, - 366, - 534, - 379 - ], - "spans": [ - { - "bbox": [ - 42, - 366, - 534, - 379 - ], - "score": 1.0, - "content": "incomes and live in disadvantaged areas. The cultural values of these groups often prioritise support ", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 42, - 377, - 332, - 391 - ], - "spans": [ - { - "bbox": [ - 42, - 377, - 332, - 391 - ], - "score": 1.0, - "content": "from the family and community rather than outside support.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 13 - }, - { - "type": "text", - "bbox": [ - 43, - 402, - 389, - 416 - ], - "lines": [ - { - "bbox": [ - 43, - 403, - 390, - 415 - ], - "spans": [ - { - "bbox": [ - 43, - 403, - 390, - 415 - ], - "score": 1.0, - "content": "There are inequalities between ethnic groups and their health chances.", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "table", - "bbox": [ - 40, - 446, - 546, - 785 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 446, - 546, - 785 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 40, - 446, - 546, - 785 - ], - "spans": [ - { - "bbox": [ - 40, - 446, - 546, - 785 - ], - "score": 0.982, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on accessible healthcare services in deprived areas; some groups may think they should not seek healthcare until their condition is serious. There will be appropriate analysis/evaluation of two ways eg differences between minority ethnic groups.
4-7or two reasons for inequalities between ethnic groups in their health chances. There will be some successful application of material from the item, eg low income associatedwithpoordiet and unhealthylifestyle. There will be some analysis/evaluation.
1-3Answers in this band will show limited knowledge and understanding of one or two reasons for inequalities between ethnic groups in their health chances. There will be limited application of material from the item. Some material may be at a
", - "type": "table", - "image_path": "5dc3eec24506bf1c6fecfaa0569749b49212f2f4cf00cc58dd69530a3391ff93.jpg" - } - ] - } - ], - "index": 17, - "virtual_lines": [ - { - "bbox": [ - 40, - 446, - 546, - 559.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 40, - 559.0, - 546, - 672.0 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 40, - 672.0, - 546, - 785.0 - ], - "spans": [], - "index": 18 - } - ] - } - ], - "index": 17 - } - ], - "layout_bboxes": [], - "page_idx": 25, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 38, - 204, - 544, - 235 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 38, - 204, - 544, - 235 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 38, - 204, - 544, - 235 - ], - "spans": [ - { - "bbox": [ - 38, - 204, - 544, - 235 - ], - "score": 0.959, - "html": "
QuTotal Marking guidance marks
", - "type": "table", - "image_path": "df9178c9b950b35ad7c696a21060b227d6ced16dbc1514e8afff415c98af2778.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 38, - 204, - 544, - 214.33333333333334 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 38, - 214.33333333333334, - 544, - 224.66666666666669 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 38, - 224.66666666666669, - 544, - 235.00000000000003 - ], - "spans": [], - "index": 7 - } - ] - } - ], - "index": 6 - }, - { - "type": "table", - "bbox": [ - 40, - 258, - 544, - 295 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 258, - 544, - 295 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 40, - 258, - 544, - 295 - ], - "spans": [ - { - "bbox": [ - 40, - 258, - 544, - 295 - ], - "score": 0.966, - "html": "
08Applying material from Item E, analyse two reasons for inequalities between ethnic groups in their health chances.10
", - "type": "table", - "image_path": "568457a68a056a9defebfd89d2f9491880c154d462507d20239664bba77fbb05.jpg" - } - ] - } - ], - "index": 9, - "virtual_lines": [ - { - "bbox": [ - 40, - 258, - 544, - 270.3333333333333 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 40, - 270.3333333333333, - 544, - 282.66666666666663 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 40, - 282.66666666666663, - 544, - 294.99999999999994 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 9 - }, - { - "type": "table", - "bbox": [ - 40, - 446, - 546, - 785 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 446, - 546, - 785 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 40, - 446, - 546, - 785 - ], - "spans": [ - { - "bbox": [ - 40, - 446, - 546, - 785 - ], - "score": 0.982, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on accessible healthcare services in deprived areas; some groups may think they should not seek healthcare until their condition is serious. There will be appropriate analysis/evaluation of two ways eg differences between minority ethnic groups.
4-7or two reasons for inequalities between ethnic groups in their health chances. There will be some successful application of material from the item, eg low income associatedwithpoordiet and unhealthylifestyle. There will be some analysis/evaluation.
1-3Answers in this band will show limited knowledge and understanding of one or two reasons for inequalities between ethnic groups in their health chances. There will be limited application of material from the item. Some material may be at a
", - "type": "table", - "image_path": "5dc3eec24506bf1c6fecfaa0569749b49212f2f4cf00cc58dd69530a3391ff93.jpg" - } - ] - } - ], - "index": 17, - "virtual_lines": [ - { - "bbox": [ - 40, - 446, - 546, - 559.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 40, - 559.0, - 546, - 672.0 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 40, - 672.0, - 546, - 785.0 - ], - "spans": [], - "index": 18 - } - ] - } - ], - "index": 17 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 236, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "spans": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 797, - 52, - 805 - ], - "lines": [ - { - "bbox": [ - 40, - 796, - 54, - 807 - ], - "spans": [ - { - "bbox": [ - 40, - 796, - 54, - 807 - ], - "score": 1.0, - "content": "14 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 43, - 90, - 411, - 116 - ], - "lines": [ - { - "bbox": [ - 47, - 91, - 277, - 102 - ], - "spans": [ - { - "bbox": [ - 47, - 91, - 277, - 102 - ], - "score": 1.0, - "content": "• different levels of trust in health professionals", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 50, - 104, - 411, - 115 - ], - "spans": [ - { - "bbox": [ - 50, - 104, - 411, - 115 - ], - "score": 1.0, - "content": " class differences in attitudes to complementary and alternative medicine.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_25", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 47, - 91, - 411, - 115 - ] - }, - { - "type": "title", - "bbox": [ - 43, - 124, - 348, - 138 - ], - "lines": [ - { - "bbox": [ - 45, - 126, - 348, - 137 - ], - "spans": [ - { - "bbox": [ - 45, - 126, - 348, - 137 - ], - "score": 1.0, - "content": "Sources may include the following or other relevant ones:", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_25", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 43, - 149, - 522, - 177 - ], - "lines": [ - { - "bbox": [ - 44, - 150, - 522, - 163 - ], - "spans": [ - { - "bbox": [ - 44, - 150, - 522, - 163 - ], - "score": 1.0, - "content": "Cattrell; Conrad; Ernst; Giddens; Goldacre; Law; Lunt et al; Lyotard; Nettleton; Senior; Shaw et al;", - "type": "text" - } - ], - "index": 3, - "is_list_end_line": true - }, - { - "bbox": [ - 43, - 163, - 347, - 176 - ], - "spans": [ - { - "bbox": [ - 43, - 163, - 347, - 176 - ], - "score": 1.0, - "content": "Skountridaki; Stevenson et al; Swayne; Wilkinson and Pickett.", - "type": "text" - } - ], - "index": 4, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 3.5, - "page_num": "page_25", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 43, - 150, - 522, - 176 - ] - }, - { - "type": "table", - "bbox": [ - 38, - 204, - 544, - 235 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 38, - 204, - 544, - 235 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 38, - 204, - 544, - 235 - ], - "spans": [ - { - "bbox": [ - 38, - 204, - 544, - 235 - ], - "score": 0.959, - "html": "
QuTotal Marking guidance marks
", - "type": "table", - "image_path": "df9178c9b950b35ad7c696a21060b227d6ced16dbc1514e8afff415c98af2778.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 38, - 204, - 544, - 214.33333333333334 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 38, - 214.33333333333334, - 544, - 224.66666666666669 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 38, - 224.66666666666669, - 544, - 235.00000000000003 - ], - "spans": [], - "index": 7 - } - ] - } - ], - "index": 6, - "page_num": "page_25", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 40, - 258, - 544, - 295 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 258, - 544, - 295 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 40, - 258, - 544, - 295 - ], - "spans": [ - { - "bbox": [ - 40, - 258, - 544, - 295 - ], - "score": 0.966, - "html": "
08Applying material from Item E, analyse two reasons for inequalities between ethnic groups in their health chances.10
", - "type": "table", - "image_path": "568457a68a056a9defebfd89d2f9491880c154d462507d20239664bba77fbb05.jpg" - } - ] - } - ], - "index": 9, - "virtual_lines": [ - { - "bbox": [ - 40, - 258, - 544, - 270.3333333333333 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 40, - 270.3333333333333, - 544, - 282.66666666666663 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 40, - 282.66666666666663, - 544, - 294.99999999999994 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 9, - "page_num": "page_25", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 273, - 326, - 308, - 339 - ], - "lines": [ - { - "bbox": [ - 273, - 327, - 309, - 338 - ], - "spans": [ - { - "bbox": [ - 273, - 327, - 309, - 338 - ], - "score": 1.0, - "content": "Item E ", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_25", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 351, - 537, - 391 - ], - "lines": [ - { - "bbox": [ - 43, - 353, - 528, - 366 - ], - "spans": [ - { - "bbox": [ - 43, - 353, - 528, - 366 - ], - "score": 1.0, - "content": "Black and other minority ethnic groups in the UK are more likely than the majority to experience low", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 42, - 366, - 534, - 379 - ], - "spans": [ - { - "bbox": [ - 42, - 366, - 534, - 379 - ], - "score": 1.0, - "content": "incomes and live in disadvantaged areas. The cultural values of these groups often prioritise support ", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 42, - 377, - 332, - 391 - ], - "spans": [ - { - "bbox": [ - 42, - 377, - 332, - 391 - ], - "score": 1.0, - "content": "from the family and community rather than outside support.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 13, - "page_num": "page_25", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 353, - 534, - 391 - ] - }, - { - "type": "text", - "bbox": [ - 43, - 402, - 389, - 416 - ], - "lines": [ - { - "bbox": [ - 43, - 403, - 390, - 415 - ], - "spans": [ - { - "bbox": [ - 43, - 403, - 390, - 415 - ], - "score": 1.0, - "content": "There are inequalities between ethnic groups and their health chances.", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_25", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 43, - 403, - 390, - 415 - ] - }, - { - "type": "table", - "bbox": [ - 40, - 446, - 546, - 785 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 446, - 546, - 785 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 40, - 446, - 546, - 785 - ], - "spans": [ - { - "bbox": [ - 40, - 446, - 546, - 785 - ], - "score": 0.982, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on accessible healthcare services in deprived areas; some groups may think they should not seek healthcare until their condition is serious. There will be appropriate analysis/evaluation of two ways eg differences between minority ethnic groups.
4-7or two reasons for inequalities between ethnic groups in their health chances. There will be some successful application of material from the item, eg low income associatedwithpoordiet and unhealthylifestyle. There will be some analysis/evaluation.
1-3Answers in this band will show limited knowledge and understanding of one or two reasons for inequalities between ethnic groups in their health chances. There will be limited application of material from the item. Some material may be at a
", - "type": "table", - "image_path": "5dc3eec24506bf1c6fecfaa0569749b49212f2f4cf00cc58dd69530a3391ff93.jpg" - } - ] - } - ], - "index": 17, - "virtual_lines": [ - { - "bbox": [ - 40, - 446, - 546, - 559.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 40, - 559.0, - 546, - 672.0 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 40, - 672.0, - 546, - 785.0 - ], - "spans": [], - "index": 18 - } - ] - } - ], - "index": 17, - "page_num": "page_25", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 42, - 84, - 546, - 153 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 84, - 546, - 153 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 42, - 84, - 546, - 153 - ], - "spans": [ - { - "bbox": [ - 42, - 84, - 546, - 153 - ], - "score": 0.932, - "html": "
There will be limited or no analysis/evaluation.
ONo relevantpoints.
", - "type": "table", - "image_path": "2e82dbb47c38ca77bd98d49a93e5dc5037af7b31b7e84c7ca877fe5730d28c0c.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 42, - 84, - 546, - 107.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 42, - 107.0, - 546, - 130.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 42, - 130.0, - 546, - 153.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 44, - 165, - 531, - 217 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 44, - 165, - 531, - 217 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 44, - 165, - 531, - 217 - ], - "spans": [ - { - "bbox": [ - 44, - 165, - 531, - 217 - ], - "score": 0.351, - "html": "
Sources may include the following or other relevant ones:
Balarajan; Davey Smith et al; Moriarty; Nazroo; Nettleton; Parry et al; Sproston and Mindell; Wilkinson.
", - "type": "table", - "image_path": "89ee6b9d25a96fadf3f601b3466d4565225b57d264bad8880eb1fb28580ee6b3.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 44, - 165, - 531, - 182.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 44, - 182.33333333333334, - 531, - 199.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 44, - 199.66666666666669, - 531, - 217.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "layout_bboxes": [], - "page_idx": 26, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 42, - 84, - 546, - 153 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 84, - 546, - 153 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 42, - 84, - 546, - 153 - ], - "spans": [ - { - "bbox": [ - 42, - 84, - 546, - 153 - ], - "score": 0.932, - "html": "
There will be limited or no analysis/evaluation.
ONo relevantpoints.
", - "type": "table", - "image_path": "2e82dbb47c38ca77bd98d49a93e5dc5037af7b31b7e84c7ca877fe5730d28c0c.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 42, - 84, - 546, - 107.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 42, - 107.0, - 546, - 130.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 42, - 130.0, - 546, - 153.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 44, - 165, - 531, - 217 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 44, - 165, - 531, - 217 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 44, - 165, - 531, - 217 - ], - "spans": [ - { - "bbox": [ - 44, - 165, - 531, - 217 - ], - "score": 0.351, - "html": "
Sources may include the following or other relevant ones:
Balarajan; Davey Smith et al; Moriarty; Nazroo; Nettleton; Parry et al; Sproston and Mindell; Wilkinson.
", - "type": "table", - "image_path": "89ee6b9d25a96fadf3f601b3466d4565225b57d264bad8880eb1fb28580ee6b3.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 44, - 165, - 531, - 182.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 44, - 182.33333333333334, - 531, - 199.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 44, - 199.66666666666669, - 531, - 217.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 236, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 238, - 36, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 238, - 36, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 544, - 797, - 554, - 805 - ], - "lines": [ - { - "bbox": [ - 542, - 796, - 555, - 807 - ], - "spans": [ - { - "bbox": [ - 542, - 796, - 555, - 807 - ], - "score": 1.0, - "content": "15 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 42, - 84, - 546, - 153 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 84, - 546, - 153 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 42, - 84, - 546, - 153 - ], - "spans": [ - { - "bbox": [ - 42, - 84, - 546, - 153 - ], - "score": 0.932, - "html": "
There will be limited or no analysis/evaluation.
ONo relevantpoints.
", - "type": "table", - "image_path": "2e82dbb47c38ca77bd98d49a93e5dc5037af7b31b7e84c7ca877fe5730d28c0c.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 42, - 84, - 546, - 107.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 42, - 107.0, - 546, - 130.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 42, - 130.0, - 546, - 153.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_26", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 44, - 165, - 531, - 217 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 44, - 165, - 531, - 217 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 44, - 165, - 531, - 217 - ], - "spans": [ - { - "bbox": [ - 44, - 165, - 531, - 217 - ], - "score": 0.351, - "html": "
Sources may include the following or other relevant ones:
Balarajan; Davey Smith et al; Moriarty; Nazroo; Nettleton; Parry et al; Sproston and Mindell; Wilkinson.
", - "type": "table", - "image_path": "89ee6b9d25a96fadf3f601b3466d4565225b57d264bad8880eb1fb28580ee6b3.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 44, - 165, - 531, - 182.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 44, - 182.33333333333334, - 531, - 199.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 44, - 199.66666666666669, - 531, - 217.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_26", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 39, - 83, - 546, - 114 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 83, - 546, - 114 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 39, - 83, - 546, - 114 - ], - "spans": [ - { - "bbox": [ - 39, - 83, - 546, - 114 - ], - "score": 0.961, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "0640ca6ee30004a984dc8edf51689178bf011d2190068448ae0c92e7dfbc44f5.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 39, - 83, - 546, - 93.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 39, - 93.33333333333333, - 546, - 103.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 39, - 103.66666666666666, - 546, - 113.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 39, - 125, - 545, - 163 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 125, - 545, - 163 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 39, - 125, - 545, - 163 - ], - "spans": [ - { - "bbox": [ - 39, - 125, - 545, - 163 - ], - "score": 0.964, - "html": "
09Applying material from Item F and your knowledge, evaluate sociological20
", - "type": "table", - "image_path": "bb6a8201793f6aa86dd507270d42ab4bae8716e04fc2e0cd728475481547ee64.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 39, - 125, - 545, - 137.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 39, - 137.66666666666666, - 545, - 150.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 39, - 150.33333333333331, - 545, - 162.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "title", - "bbox": [ - 273, - 193, - 308, - 206 - ], - "lines": [ - { - "bbox": [ - 273, - 194, - 309, - 206 - ], - "spans": [ - { - "bbox": [ - 273, - 194, - 309, - 206 - ], - "score": 1.0, - "content": "Item F ", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 40, - 219, - 526, - 257 - ], - "lines": [ - { - "bbox": [ - 43, - 219, - 518, - 232 - ], - "spans": [ - { - "bbox": [ - 43, - 219, - 518, - 232 - ], - "score": 1.0, - "content": "Rates of mental illness vary between different social groups, such as those based on social class,", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 42, - 232, - 510, - 246 - ], - "spans": [ - { - "bbox": [ - 42, - 232, - 510, - 246 - ], - "score": 1.0, - "content": "gender and ethnicity. Some explanations of mental illness point to social issues such as racism,", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 42, - 246, - 322, - 258 - ], - "spans": [ - { - "bbox": [ - 42, - 246, - 322, - 258 - ], - "score": 1.0, - "content": "sexism, poor housing and poverty as contributing factors.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 42, - 269, - 512, - 296 - ], - "lines": [ - { - "bbox": [ - 43, - 270, - 510, - 284 - ], - "spans": [ - { - "bbox": [ - 43, - 270, - 510, - 284 - ], - "score": 1.0, - "content": "Others argue that mental illness is a label applied to deviant behaviour. Mental illness is socially", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 43, - 284, - 295, - 296 - ], - "spans": [ - { - "bbox": [ - 43, - 284, - 295, - 296 - ], - "score": 1.0, - "content": "constructed through interpretations made by others.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5 - }, - { - "type": "table", - "bbox": [ - 40, - 318, - 546, - 781 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 318, - 546, - 781 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 40, - 318, - 546, - 781 - ], - "spans": [ - { - "bbox": [ - 40, - 318, - 546, - 781 - ], - "score": 0.982, - "html": "
MarksLevelDescriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on sociological explanations of the differences in rates of mental illness between social groups. Sophisticated understanding of the question and of the presented materialwillbeshown. Appropriate material will be applied accurately and with sensitivity to the issues raised by the question. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for example through a debate between social realist and social constructionist models of
13-16Appropriate conclusionswill be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presented material. maybe inadequatelyfocused. presented material.
9-12Answers in this band will show largely accurate knowledge but limited range and depth, eg broadly accurate, if basic, account of labelling approaches to mental illness applied to different social groups. Understands some limited but significant aspects of the question; superficial understanding of the presented material. Applying listed material from the general topic area but with limited regard for its relevance o u e 'ob p ss
", - "type": "table", - "image_path": "2e66035d10a99fd1d2fac79e0aa4744b58f04828efd52968c8dafac786a81469.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 40, - 318, - 546, - 472.33333333333337 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 40, - 472.33333333333337, - 546, - 626.6666666666667 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 40, - 626.6666666666667, - 546, - 781.0000000000001 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - } - ], - "layout_bboxes": [], - "page_idx": 27, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 39, - 83, - 546, - 114 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 83, - 546, - 114 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 39, - 83, - 546, - 114 - ], - "spans": [ - { - "bbox": [ - 39, - 83, - 546, - 114 - ], - "score": 0.961, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "0640ca6ee30004a984dc8edf51689178bf011d2190068448ae0c92e7dfbc44f5.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 39, - 83, - 546, - 93.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 39, - 93.33333333333333, - 546, - 103.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 39, - 103.66666666666666, - 546, - 113.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 39, - 125, - 545, - 163 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 125, - 545, - 163 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 39, - 125, - 545, - 163 - ], - "spans": [ - { - "bbox": [ - 39, - 125, - 545, - 163 - ], - "score": 0.964, - "html": "
09Applying material from Item F and your knowledge, evaluate sociological20
", - "type": "table", - "image_path": "bb6a8201793f6aa86dd507270d42ab4bae8716e04fc2e0cd728475481547ee64.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 39, - 125, - 545, - 137.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 39, - 137.66666666666666, - 545, - 150.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 39, - 150.33333333333331, - 545, - 162.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 40, - 318, - 546, - 781 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 318, - 546, - 781 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 40, - 318, - 546, - 781 - ], - "spans": [ - { - "bbox": [ - 40, - 318, - 546, - 781 - ], - "score": 0.982, - "html": "
MarksLevelDescriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on sociological explanations of the differences in rates of mental illness between social groups. Sophisticated understanding of the question and of the presented materialwillbeshown. Appropriate material will be applied accurately and with sensitivity to the issues raised by the question. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for example through a debate between social realist and social constructionist models of
13-16Appropriate conclusionswill be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presented material. maybe inadequatelyfocused. presented material.
9-12Answers in this band will show largely accurate knowledge but limited range and depth, eg broadly accurate, if basic, account of labelling approaches to mental illness applied to different social groups. Understands some limited but significant aspects of the question; superficial understanding of the presented material. Applying listed material from the general topic area but with limited regard for its relevance o u e 'ob p ss
", - "type": "table", - "image_path": "2e66035d10a99fd1d2fac79e0aa4744b58f04828efd52968c8dafac786a81469.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 40, - 318, - 546, - 472.33333333333337 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 40, - 472.33333333333337, - 546, - 626.6666666666667 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 40, - 626.6666666666667, - 546, - 781.0000000000001 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 42, - 797, - 52, - 806 - ], - "lines": [ - { - "bbox": [ - 40, - 796, - 54, - 808 - ], - "spans": [ - { - "bbox": [ - 40, - 796, - 54, - 808 - ], - "score": 1.0, - "content": "16 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 236, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "spans": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 39, - 83, - 546, - 114 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 83, - 546, - 114 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 39, - 83, - 546, - 114 - ], - "spans": [ - { - "bbox": [ - 39, - 83, - 546, - 114 - ], - "score": 0.961, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "0640ca6ee30004a984dc8edf51689178bf011d2190068448ae0c92e7dfbc44f5.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 39, - 83, - 546, - 93.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 39, - 93.33333333333333, - 546, - 103.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 39, - 103.66666666666666, - 546, - 113.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_27", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 39, - 125, - 545, - 163 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 125, - 545, - 163 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 39, - 125, - 545, - 163 - ], - "spans": [ - { - "bbox": [ - 39, - 125, - 545, - 163 - ], - "score": 0.964, - "html": "
09Applying material from Item F and your knowledge, evaluate sociological20
", - "type": "table", - "image_path": "bb6a8201793f6aa86dd507270d42ab4bae8716e04fc2e0cd728475481547ee64.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 39, - 125, - 545, - 137.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 39, - 137.66666666666666, - 545, - 150.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 39, - 150.33333333333331, - 545, - 162.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_27", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 273, - 193, - 308, - 206 - ], - "lines": [ - { - "bbox": [ - 273, - 194, - 309, - 206 - ], - "spans": [ - { - "bbox": [ - 273, - 194, - 309, - 206 - ], - "score": 1.0, - "content": "Item F ", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_27", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 40, - 219, - 526, - 257 - ], - "lines": [ - { - "bbox": [ - 43, - 219, - 518, - 232 - ], - "spans": [ - { - "bbox": [ - 43, - 219, - 518, - 232 - ], - "score": 1.0, - "content": "Rates of mental illness vary between different social groups, such as those based on social class,", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 42, - 232, - 510, - 246 - ], - "spans": [ - { - "bbox": [ - 42, - 232, - 510, - 246 - ], - "score": 1.0, - "content": "gender and ethnicity. Some explanations of mental illness point to social issues such as racism,", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 42, - 246, - 322, - 258 - ], - "spans": [ - { - "bbox": [ - 42, - 246, - 322, - 258 - ], - "score": 1.0, - "content": "sexism, poor housing and poverty as contributing factors.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8, - "page_num": "page_27", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 219, - 518, - 258 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 269, - 512, - 296 - ], - "lines": [ - { - "bbox": [ - 43, - 270, - 510, - 284 - ], - "spans": [ - { - "bbox": [ - 43, - 270, - 510, - 284 - ], - "score": 1.0, - "content": "Others argue that mental illness is a label applied to deviant behaviour. Mental illness is socially", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 43, - 284, - 295, - 296 - ], - "spans": [ - { - "bbox": [ - 43, - 284, - 295, - 296 - ], - "score": 1.0, - "content": "constructed through interpretations made by others.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5, - "page_num": "page_27", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 43, - 270, - 510, - 296 - ] - }, - { - "type": "table", - "bbox": [ - 40, - 318, - 546, - 781 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 318, - 546, - 781 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 40, - 318, - 546, - 781 - ], - "spans": [ - { - "bbox": [ - 40, - 318, - 546, - 781 - ], - "score": 0.982, - "html": "
MarksLevelDescriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on sociological explanations of the differences in rates of mental illness between social groups. Sophisticated understanding of the question and of the presented materialwillbeshown. Appropriate material will be applied accurately and with sensitivity to the issues raised by the question. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for example through a debate between social realist and social constructionist models of
13-16Appropriate conclusionswill be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presented material. maybe inadequatelyfocused. presented material.
9-12Answers in this band will show largely accurate knowledge but limited range and depth, eg broadly accurate, if basic, account of labelling approaches to mental illness applied to different social groups. Understands some limited but significant aspects of the question; superficial understanding of the presented material. Applying listed material from the general topic area but with limited regard for its relevance o u e 'ob p ss
", - "type": "table", - "image_path": "2e66035d10a99fd1d2fac79e0aa4744b58f04828efd52968c8dafac786a81469.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 40, - 318, - 546, - 472.33333333333337 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 40, - 472.33333333333337, - 546, - 626.6666666666667 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 40, - 626.6666666666667, - 546, - 781.0000000000001 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13, - "page_num": "page_27", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 41, - 84, - 547, - 386 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 84, - 547, - 386 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 84, - 547, - 386 - ], - "spans": [ - { - "bbox": [ - 41, - 84, - 547, - 386 - ], - "score": 0.981, - "html": "
Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
5-8Answers in this band will show limited undeveloped knowledge, eg two or three insubstantial points about mental illness and different social groups. Understands only n o s s of the question.
1-4Answers in this band will show very limited knowledge, eg one or two very insubstantial points about mental illness in general. Very little/no understanding of the question and of the presented material. Significant errors and/or omissions in application of material. No analysis or evaluation.
0No relevant points.
", - "type": "table", - "image_path": "f8938390bbee3adeed66cd5794cd8eb3c805c68d5e9c1ae4db9740d535249774.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 41, - 84, - 547, - 184.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 41, - 184.66666666666669, - 547, - 285.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 41, - 285.33333333333337, - 547, - 386.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "title", - "bbox": [ - 43, - 401, - 139, - 415 - ], - "lines": [ - { - "bbox": [ - 43, - 403, - 138, - 413 - ], - "spans": [ - { - "bbox": [ - 43, - 403, - 138, - 413 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 43, - 426, - 316, - 440 - ], - "lines": [ - { - "bbox": [ - 43, - 427, - 316, - 440 - ], - "spans": [ - { - "bbox": [ - 43, - 427, - 316, - 440 - ], - "score": 1.0, - "content": "Concepts and issues such as the following may appear:", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 43, - 452, - 527, - 491 - ], - "lines": [ - { - "bbox": [ - 43, - 452, - 525, - 465 - ], - "spans": [ - { - "bbox": [ - 43, - 452, - 525, - 465 - ], - "score": 1.0, - "content": "biomedical approaches; social realist and structuralist approaches; interactionism; labelling; social", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 43, - 465, - 485, - 478 - ], - "spans": [ - { - "bbox": [ - 43, - 465, - 485, - 478 - ], - "score": 1.0, - "content": "constructionism; feminism; social class; gender; ethnicity; discrimination; stigma; spurious", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 41, - 476, - 366, - 493 - ], - "spans": [ - { - "bbox": [ - 41, - 476, - 366, - 493 - ], - "score": 1.0, - "content": "interaction; mortification of self; total institution; cognitive therapy.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6 - }, - { - "type": "title", - "bbox": [ - 42, - 511, - 347, - 525 - ], - "lines": [ - { - "bbox": [ - 44, - 513, - 347, - 524 - ], - "spans": [ - { - "bbox": [ - 44, - 513, - 347, - 524 - ], - "score": 1.0, - "content": "Sources may include the following or other relevant ones:", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 42, - 537, - 536, - 575 - ], - "lines": [ - { - "bbox": [ - 43, - 538, - 534, - 550 - ], - "spans": [ - { - "bbox": [ - 43, - 538, - 534, - 550 - ], - "score": 1.0, - "content": "Appignanensi; Becker; Brown and Harris; Busfield; Chesler; Foucault; Goffman; Laing; Mackenzie et ", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 44, - 551, - 516, - 563 - ], - "spans": [ - { - "bbox": [ - 44, - 551, - 516, - 563 - ], - "score": 1.0, - "content": "al; Mallet et al; Moncrieff; Morrison; Nazroo; Pickett et al; Rehman and Owen; Rosenhan; Scheff;", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 44, - 564, - 161, - 575 - ], - "spans": [ - { - "bbox": [ - 44, - 564, - 161, - 575 - ], - "score": 1.0, - "content": "Shaw and Ward; Szasz.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10 - } - ], - "layout_bboxes": [], - "page_idx": 28, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 41, - 84, - 547, - 386 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 84, - 547, - 386 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 84, - 547, - 386 - ], - "spans": [ - { - "bbox": [ - 41, - 84, - 547, - 386 - ], - "score": 0.981, - "html": "
Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
5-8Answers in this band will show limited undeveloped knowledge, eg two or three insubstantial points about mental illness and different social groups. Understands only n o s s of the question.
1-4Answers in this band will show very limited knowledge, eg one or two very insubstantial points about mental illness in general. Very little/no understanding of the question and of the presented material. Significant errors and/or omissions in application of material. No analysis or evaluation.
0No relevant points.
", - "type": "table", - "image_path": "f8938390bbee3adeed66cd5794cd8eb3c805c68d5e9c1ae4db9740d535249774.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 41, - 84, - 547, - 184.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 41, - 184.66666666666669, - 547, - 285.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 41, - 285.33333333333337, - 547, - 386.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 237, - 35, - 554, - 48 - ], - "lines": [ - { - "bbox": [ - 237, - 35, - 553, - 48 - ], - "spans": [ - { - "bbox": [ - 237, - 35, - 553, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 544, - 797, - 553, - 805 - ], - "lines": [] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 41, - 84, - 547, - 386 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 84, - 547, - 386 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 84, - 547, - 386 - ], - "spans": [ - { - "bbox": [ - 41, - 84, - 547, - 386 - ], - "score": 0.981, - "html": "
Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
5-8Answers in this band will show limited undeveloped knowledge, eg two or three insubstantial points about mental illness and different social groups. Understands only n o s s of the question.
1-4Answers in this band will show very limited knowledge, eg one or two very insubstantial points about mental illness in general. Very little/no understanding of the question and of the presented material. Significant errors and/or omissions in application of material. No analysis or evaluation.
0No relevant points.
", - "type": "table", - "image_path": "f8938390bbee3adeed66cd5794cd8eb3c805c68d5e9c1ae4db9740d535249774.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 41, - 84, - 547, - 184.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 41, - 184.66666666666669, - 547, - 285.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 41, - 285.33333333333337, - 547, - 386.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_28", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 43, - 401, - 139, - 415 - ], - "lines": [ - { - "bbox": [ - 43, - 403, - 138, - 413 - ], - "spans": [ - { - "bbox": [ - 43, - 403, - 138, - 413 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_28", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 43, - 426, - 316, - 440 - ], - "lines": [ - { - "bbox": [ - 43, - 427, - 316, - 440 - ], - "spans": [ - { - "bbox": [ - 43, - 427, - 316, - 440 - ], - "score": 1.0, - "content": "Concepts and issues such as the following may appear:", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_28", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 43, - 427, - 316, - 440 - ] - }, - { - "type": "text", - "bbox": [ - 43, - 452, - 527, - 491 - ], - "lines": [ - { - "bbox": [ - 43, - 452, - 525, - 465 - ], - "spans": [ - { - "bbox": [ - 43, - 452, - 525, - 465 - ], - "score": 1.0, - "content": "biomedical approaches; social realist and structuralist approaches; interactionism; labelling; social", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 43, - 465, - 485, - 478 - ], - "spans": [ - { - "bbox": [ - 43, - 465, - 485, - 478 - ], - "score": 1.0, - "content": "constructionism; feminism; social class; gender; ethnicity; discrimination; stigma; spurious", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 41, - 476, - 366, - 493 - ], - "spans": [ - { - "bbox": [ - 41, - 476, - 366, - 493 - ], - "score": 1.0, - "content": "interaction; mortification of self; total institution; cognitive therapy.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6, - "page_num": "page_28", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 452, - 525, - 493 - ] - }, - { - "type": "title", - "bbox": [ - 42, - 511, - 347, - 525 - ], - "lines": [ - { - "bbox": [ - 44, - 513, - 347, - 524 - ], - "spans": [ - { - "bbox": [ - 44, - 513, - 347, - 524 - ], - "score": 1.0, - "content": "Sources may include the following or other relevant ones:", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_28", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 537, - 536, - 575 - ], - "lines": [ - { - "bbox": [ - 43, - 538, - 534, - 550 - ], - "spans": [ - { - "bbox": [ - 43, - 538, - 534, - 550 - ], - "score": 1.0, - "content": "Appignanensi; Becker; Brown and Harris; Busfield; Chesler; Foucault; Goffman; Laing; Mackenzie et ", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 44, - 551, - 516, - 563 - ], - "spans": [ - { - "bbox": [ - 44, - 551, - 516, - 563 - ], - "score": 1.0, - "content": "al; Mallet et al; Moncrieff; Morrison; Nazroo; Pickett et al; Rehman and Owen; Rosenhan; Scheff;", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 44, - 564, - 161, - 575 - ], - "spans": [ - { - "bbox": [ - 44, - 564, - 161, - 575 - ], - "score": 1.0, - "content": "Shaw and Ward; Szasz.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10, - "page_num": "page_28", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 43, - 538, - 534, - 575 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 41, - 112, - 547, - 143 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 198, - 92, - 391, - 106 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 197, - 93, - 390, - 105 - ], - "spans": [ - { - "bbox": [ - 197, - 93, - 390, - 105 - ], - "score": 1.0, - "content": "Topic A4 Work, Poverty and Welfare", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table_body", - "bbox": [ - 41, - 112, - 547, - 143 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 112, - 547, - 143 - ], - "spans": [ - { - "bbox": [ - 41, - 112, - 547, - 143 - ], - "score": 0.961, - "html": "
QuTotal Marking guidance marks
", - "type": "table", - "image_path": "f934bb20cd81148ae4457f83c87d51a0717e7d77c8f7142257247a72e8441ac2.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 41, - 112, - 547, - 122.33333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 41, - 122.33333333333333, - 547, - 132.66666666666666 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 41, - 132.66666666666666, - 547, - 143.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 1.0 - }, - { - "type": "table", - "bbox": [ - 42, - 166, - 546, - 206 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 166, - 546, - 206 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 42, - 166, - 546, - 206 - ], - "spans": [ - { - "bbox": [ - 42, - 166, - 546, - 206 - ], - "score": 0.938, - "html": "
10Outline and explain two ways in which government policies have affected the distributionof income intheUK.10
", - "type": "table", - "image_path": "e160c87d27d6eb1f2d34d2d1e8ad581832bf6170fa34e859696d47282c18f459.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 42, - 166, - 546, - 179.33333333333334 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 42, - 179.33333333333334, - 546, - 192.66666666666669 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 42, - 192.66666666666669, - 546, - 206.00000000000003 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5 - }, - { - "type": "table", - "bbox": [ - 42, - 217, - 551, - 600 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 217, - 551, - 600 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 42, - 217, - 551, - 600 - ], - "spans": [ - { - "bbox": [ - 42, - 217, - 551, - 600 - ], - "score": 0.962, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two ways in which government policies have affected the distribution of income in the UK. There will be two applications of relevant material, eg stopping/reducing benefits has led to more poverty; taxation policies have reduced income of some groups more than others.
4-7distribution of income in theUK. Answers in this band will show a reasonable to good knowledge and understanding of one or two ways in which government policies have affected the distribution of income in the UK. There will be one or two applications of relevant material, eg welfare state policies have not led to redistribution of income.
1-3There will be some basic analysis. question or the material. There will be limited focus on the question, eg a drift into discussion of poverty in general.
0There will be little or no analysis. No relevant points.
", - "type": "table", - "image_path": "784e14e2998ac2e087f691227efff240611b22f68b324ee3b62c296f269cf58a.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 42, - 217, - 551, - 344.6666666666667 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 42, - 344.6666666666667, - 551, - 472.33333333333337 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 42, - 472.33333333333337, - 551, - 600.0 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 8 - }, - { - "type": "title", - "bbox": [ - 50, - 612, - 147, - 625 - ], - "lines": [ - { - "bbox": [ - 51, - 614, - 147, - 624 - ], - "spans": [ - { - "bbox": [ - 51, - 614, - 147, - 624 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 52, - 637, - 361, - 651 - ], - "lines": [ - { - "bbox": [ - 52, - 639, - 360, - 650 - ], - "spans": [ - { - "bbox": [ - 52, - 639, - 360, - 650 - ], - "score": 1.0, - "content": "Answers may include the following and/or other relevant points:", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 50, - 651, - 513, - 732 - ], - "lines": [ - { - "bbox": [ - 50, - 651, - 393, - 664 - ], - "spans": [ - { - "bbox": [ - 50, - 651, - 393, - 664 - ], - "score": 1.0, - "content": "• social democratic/welfare state policies intended to be redistributive", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 51, - 666, - 410, - 678 - ], - "spans": [ - { - "bbox": [ - 51, - 666, - 410, - 678 - ], - "score": 1.0, - "content": "• New Right policies eg sanctioning, tackling alleged dependency culture", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 50, - 678, - 324, - 691 - ], - "spans": [ - { - "bbox": [ - 50, - 678, - 324, - 691 - ], - "score": 1.0, - "content": "• means testing/selective benefits vs universal benefits ", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 50, - 691, - 235, - 706 - ], - "spans": [ - { - "bbox": [ - 50, - 691, - 235, - 706 - ], - "score": 1.0, - "content": "• wages policies e.g. minimum wage ", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 50, - 705, - 510, - 718 - ], - "spans": [ - { - "bbox": [ - 50, - 705, - 510, - 718 - ], - "score": 1.0, - "content": "• policies limiting the ability of trade unions to campaign for higher incomes for their members", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 50, - 718, - 430, - 733 - ], - "spans": [ - { - "bbox": [ - 50, - 718, - 430, - 733 - ], - "score": 1.0, - "content": "• tax policies – progressive and regressive taxes, tax evasion and avoidance ", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 14.5 - }, - { - "type": "table", - "bbox": [ - 47, - 735, - 551, - 762 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 735, - 551, - 762 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 47, - 736, - 551, - 762 - ], - "spans": [ - { - "bbox": [ - 47, - 736, - 551, - 762 - ], - "score": 0.15, - "html": "
Sources may include the following or other relevant ones:
", - "type": "table", - "image_path": "1d2b392d2453ec1f021d0c331e6f7b561009b48e7e69cf669b3dd7f258607782.jpg" - } - ] - } - ], - "index": 19, - "virtual_lines": [ - { - "bbox": [ - 47, - 735, - 551, - 744.0 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 47, - 744.0, - 551, - 753.0 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 47, - 753.0, - 551, - 762.0 - ], - "spans": [], - "index": 20 - } - ] - } - ], - "index": 19 - } - ], - "layout_bboxes": [], - "page_idx": 29, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 41, - 112, - 547, - 143 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 198, - 92, - 391, - 106 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 197, - 93, - 390, - 105 - ], - "spans": [ - { - "bbox": [ - 197, - 93, - 390, - 105 - ], - "score": 1.0, - "content": "Topic A4 Work, Poverty and Welfare", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table_body", - "bbox": [ - 41, - 112, - 547, - 143 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 112, - 547, - 143 - ], - "spans": [ - { - "bbox": [ - 41, - 112, - 547, - 143 - ], - "score": 0.961, - "html": "
QuTotal Marking guidance marks
", - "type": "table", - "image_path": "f934bb20cd81148ae4457f83c87d51a0717e7d77c8f7142257247a72e8441ac2.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 41, - 112, - 547, - 122.33333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 41, - 122.33333333333333, - 547, - 132.66666666666666 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 41, - 132.66666666666666, - 547, - 143.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 1.0 - }, - { - "type": "table", - "bbox": [ - 42, - 166, - 546, - 206 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 166, - 546, - 206 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 42, - 166, - 546, - 206 - ], - "spans": [ - { - "bbox": [ - 42, - 166, - 546, - 206 - ], - "score": 0.938, - "html": "
10Outline and explain two ways in which government policies have affected the distributionof income intheUK.10
", - "type": "table", - "image_path": "e160c87d27d6eb1f2d34d2d1e8ad581832bf6170fa34e859696d47282c18f459.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 42, - 166, - 546, - 179.33333333333334 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 42, - 179.33333333333334, - 546, - 192.66666666666669 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 42, - 192.66666666666669, - 546, - 206.00000000000003 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5 - }, - { - "type": "table", - "bbox": [ - 42, - 217, - 551, - 600 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 217, - 551, - 600 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 42, - 217, - 551, - 600 - ], - "spans": [ - { - "bbox": [ - 42, - 217, - 551, - 600 - ], - "score": 0.962, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two ways in which government policies have affected the distribution of income in the UK. There will be two applications of relevant material, eg stopping/reducing benefits has led to more poverty; taxation policies have reduced income of some groups more than others.
4-7distribution of income in theUK. Answers in this band will show a reasonable to good knowledge and understanding of one or two ways in which government policies have affected the distribution of income in the UK. There will be one or two applications of relevant material, eg welfare state policies have not led to redistribution of income.
1-3There will be some basic analysis. question or the material. There will be limited focus on the question, eg a drift into discussion of poverty in general.
0There will be little or no analysis. No relevant points.
", - "type": "table", - "image_path": "784e14e2998ac2e087f691227efff240611b22f68b324ee3b62c296f269cf58a.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 42, - 217, - 551, - 344.6666666666667 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 42, - 344.6666666666667, - 551, - 472.33333333333337 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 42, - 472.33333333333337, - 551, - 600.0 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 8 - }, - { - "type": "table", - "bbox": [ - 47, - 735, - 551, - 762 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 735, - 551, - 762 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 47, - 736, - 551, - 762 - ], - "spans": [ - { - "bbox": [ - 47, - 736, - 551, - 762 - ], - "score": 0.15, - "html": "
Sources may include the following or other relevant ones:
", - "type": "table", - "image_path": "1d2b392d2453ec1f021d0c331e6f7b561009b48e7e69cf669b3dd7f258607782.jpg" - } - ] - } - ], - "index": 19, - "virtual_lines": [ - { - "bbox": [ - 47, - 735, - 551, - 744.0 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 47, - 744.0, - 551, - 753.0 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 47, - 753.0, - 551, - 762.0 - ], - "spans": [], - "index": 20 - } - ] - } - ], - "index": 19 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 236, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "spans": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 797, - 52, - 805 - ], - "lines": [ - { - "bbox": [ - 41, - 796, - 54, - 808 - ], - "spans": [ - { - "bbox": [ - 41, - 796, - 54, - 808 - ], - "score": 1.0, - "content": "18 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 41, - 112, - 547, - 143 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 198, - 92, - 391, - 106 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 197, - 93, - 390, - 105 - ], - "spans": [ - { - "bbox": [ - 197, - 93, - 390, - 105 - ], - "score": 1.0, - "content": "Topic A4 Work, Poverty and Welfare", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table_body", - "bbox": [ - 41, - 112, - 547, - 143 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 112, - 547, - 143 - ], - "spans": [ - { - "bbox": [ - 41, - 112, - 547, - 143 - ], - "score": 0.961, - "html": "
QuTotal Marking guidance marks
", - "type": "table", - "image_path": "f934bb20cd81148ae4457f83c87d51a0717e7d77c8f7142257247a72e8441ac2.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 41, - 112, - 547, - 122.33333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 41, - 122.33333333333333, - 547, - 132.66666666666666 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 41, - 132.66666666666666, - 547, - 143.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 1.0, - "page_num": "page_29", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 42, - 166, - 546, - 206 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 166, - 546, - 206 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 42, - 166, - 546, - 206 - ], - "spans": [ - { - "bbox": [ - 42, - 166, - 546, - 206 - ], - "score": 0.938, - "html": "
10Outline and explain two ways in which government policies have affected the distributionof income intheUK.10
", - "type": "table", - "image_path": "e160c87d27d6eb1f2d34d2d1e8ad581832bf6170fa34e859696d47282c18f459.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 42, - 166, - 546, - 179.33333333333334 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 42, - 179.33333333333334, - 546, - 192.66666666666669 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 42, - 192.66666666666669, - 546, - 206.00000000000003 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5, - "page_num": "page_29", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 42, - 217, - 551, - 600 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 217, - 551, - 600 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 42, - 217, - 551, - 600 - ], - "spans": [ - { - "bbox": [ - 42, - 217, - 551, - 600 - ], - "score": 0.962, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two ways in which government policies have affected the distribution of income in the UK. There will be two applications of relevant material, eg stopping/reducing benefits has led to more poverty; taxation policies have reduced income of some groups more than others.
4-7distribution of income in theUK. Answers in this band will show a reasonable to good knowledge and understanding of one or two ways in which government policies have affected the distribution of income in the UK. There will be one or two applications of relevant material, eg welfare state policies have not led to redistribution of income.
1-3There will be some basic analysis. question or the material. There will be limited focus on the question, eg a drift into discussion of poverty in general.
0There will be little or no analysis. No relevant points.
", - "type": "table", - "image_path": "784e14e2998ac2e087f691227efff240611b22f68b324ee3b62c296f269cf58a.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 42, - 217, - 551, - 344.6666666666667 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 42, - 344.6666666666667, - 551, - 472.33333333333337 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 42, - 472.33333333333337, - 551, - 600.0 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 8, - "page_num": "page_29", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 50, - 612, - 147, - 625 - ], - "lines": [ - { - "bbox": [ - 51, - 614, - 147, - 624 - ], - "spans": [ - { - "bbox": [ - 51, - 614, - 147, - 624 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_29", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 52, - 637, - 361, - 651 - ], - "lines": [ - { - "bbox": [ - 52, - 639, - 360, - 650 - ], - "spans": [ - { - "bbox": [ - 52, - 639, - 360, - 650 - ], - "score": 1.0, - "content": "Answers may include the following and/or other relevant points:", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_29", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 52, - 639, - 360, - 650 - ] - }, - { - "type": "list", - "bbox": [ - 50, - 651, - 513, - 732 - ], - "lines": [ - { - "bbox": [ - 50, - 651, - 393, - 664 - ], - "spans": [ - { - "bbox": [ - 50, - 651, - 393, - 664 - ], - "score": 1.0, - "content": "• social democratic/welfare state policies intended to be redistributive", - "type": "text" - } - ], - "index": 12, - "is_list_start_line": true - }, - { - "bbox": [ - 51, - 666, - 410, - 678 - ], - "spans": [ - { - "bbox": [ - 51, - 666, - 410, - 678 - ], - "score": 1.0, - "content": "• New Right policies eg sanctioning, tackling alleged dependency culture", - "type": "text" - } - ], - "index": 13, - "is_list_start_line": true - }, - { - "bbox": [ - 50, - 678, - 324, - 691 - ], - "spans": [ - { - "bbox": [ - 50, - 678, - 324, - 691 - ], - "score": 1.0, - "content": "• means testing/selective benefits vs universal benefits ", - "type": "text" - } - ], - "index": 14, - "is_list_start_line": true - }, - { - "bbox": [ - 50, - 691, - 235, - 706 - ], - "spans": [ - { - "bbox": [ - 50, - 691, - 235, - 706 - ], - "score": 1.0, - "content": "• wages policies e.g. minimum wage ", - "type": "text" - } - ], - "index": 15, - "is_list_start_line": true - }, - { - "bbox": [ - 50, - 705, - 510, - 718 - ], - "spans": [ - { - "bbox": [ - 50, - 705, - 510, - 718 - ], - "score": 1.0, - "content": "• policies limiting the ability of trade unions to campaign for higher incomes for their members", - "type": "text" - } - ], - "index": 16, - "is_list_start_line": true - }, - { - "bbox": [ - 50, - 718, - 430, - 733 - ], - "spans": [ - { - "bbox": [ - 50, - 718, - 430, - 733 - ], - "score": 1.0, - "content": "• tax policies – progressive and regressive taxes, tax evasion and avoidance ", - "type": "text" - } - ], - "index": 17, - "is_list_start_line": true - } - ], - "index": 14.5, - "page_num": "page_29", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 50, - 651, - 510, - 733 - ] - }, - { - "type": "table", - "bbox": [ - 47, - 735, - 551, - 762 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 735, - 551, - 762 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 47, - 736, - 551, - 762 - ], - "spans": [ - { - "bbox": [ - 47, - 736, - 551, - 762 - ], - "score": 0.15, - "html": "
Sources may include the following or other relevant ones:
", - "type": "table", - "image_path": "1d2b392d2453ec1f021d0c331e6f7b561009b48e7e69cf669b3dd7f258607782.jpg" - } - ] - } - ], - "index": 19, - "virtual_lines": [ - { - "bbox": [ - 47, - 735, - 551, - 744.0 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 47, - 744.0, - 551, - 753.0 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 47, - 753.0, - 551, - 762.0 - ], - "spans": [], - "index": 20 - } - ] - } - ], - "index": 19, - "page_num": "page_29", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 49, - 83, - 510, - 112 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 49, - 83, - 510, - 112 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 49, - 83, - 510, - 112 - ], - "spans": [ - { - "bbox": [ - 49, - 83, - 510, - 112 - ], - "score": 0.86, - "html": "
Abel-Smith and Townsend; Blackman; Craine; Davis and Moore; Foucault; Gans; Lister et al;
", - "type": "table", - "image_path": "10097d3a35c1e9450d485ec86ce76be6559f86550a4657148b85a554144660be.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 49, - 83, - 510, - 92.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 49, - 92.66666666666667, - 510, - 102.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 49, - 102.33333333333334, - 510, - 112.00000000000001 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 46, - 129, - 556, - 161 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 129, - 556, - 161 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 46, - 129, - 556, - 161 - ], - "spans": [ - { - "bbox": [ - 46, - 129, - 556, - 161 - ], - "score": 0.929, - "html": "
QuMarking guidanceTotal
marks
", - "type": "table", - "image_path": "4455381b2fbf75083032c447f74e00eb614d001c5844da9c1eba65d5895f4942.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 46, - 129, - 556, - 139.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 46, - 139.66666666666666, - 556, - 150.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 46, - 150.33333333333331, - 556, - 160.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 47, - 172, - 558, - 209 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 172, - 558, - 209 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 47, - 172, - 558, - 209 - ], - "spans": [ - { - "bbox": [ - 47, - 172, - 558, - 209 - ], - "score": 0.945, - "html": "
11Applying g material from Item G, analyse two reasons why some social groups aremore likely than others to experiencepoverty.10
", - "type": "table", - "image_path": "5a7a1c94ffa043eda2001b6172190504b8a24d78d7e700acc8146d3f6eded6fe.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 47, - 172, - 558, - 184.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 47, - 184.33333333333334, - 558, - 196.66666666666669 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 47, - 196.66666666666669, - 558, - 209.00000000000003 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 48, - 219, - 554, - 333 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 48, - 219, - 554, - 333 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 48, - 219, - 554, - 333 - ], - "spans": [ - { - "bbox": [ - 48, - 219, - 554, - 333 - ], - "score": 0.356, - "html": "
ItemG
The values and attitudes of some members of the working class may lead to them accepting their position in society. Patriarchal values mean that females can be disadvantaged.
", - "type": "table", - "image_path": "ce792d0223b0a85857e57a466d8f57b4e961cb61a9864402e807a476cc5b85a9.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 48, - 219, - 554, - 257.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 48, - 257.0, - 554, - 295.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 48, - 295.0, - 554, - 333.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "table", - "bbox": [ - 42, - 340, - 552, - 739 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 340, - 552, - 739 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 42, - 340, - 552, - 739 - ], - "spans": [ - { - "bbox": [ - 42, - 340, - 552, - 739 - ], - "score": 0.912, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on two reasons why some social groups are more likely than others to experience poverty. There will be two developed applications of material from the item, eg that fatalistic attitudes poverty; that patriarchal values lead to social arrangements such as the unequal distribution of caring roles, contributing to the feminisation of poverty. There will be appropriate analysis/evaluation of two ways eg the extent to which the
4-7Answers in this band will show a basic to reasonable knowledge and understanding of one There will be some successful application of material from the item,eg that economic circumstances explain poverty better than attitudes. There will be some analysis/evaluation.
1-3Answers in this band will show limited knowledge and understanding of one or two criticisms of cultural explanations of poverty. There will be limited application of material from the item. Some material may be at a tangent to the question, eg definitions of poverty.
0There will be limited or no analysis/evaluation No relevant points.
", - "type": "table", - "image_path": "b9e00c253c4ddaaca4b11084d041c85e04ad1d96d4ea24950cd25a43d7ec48fb.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 42, - 340, - 552, - 473.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 42, - 473.0, - 552, - 606.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 42, - 606.0, - 552, - 739.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - }, - { - "type": "table", - "bbox": [ - 49, - 749, - 557, - 785 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 49, - 749, - 557, - 785 - ], - "group_id": 5, - "lines": [ - { - "bbox": [ - 49, - 749, - 557, - 785 - ], - "spans": [ - { - "bbox": [ - 49, - 749, - 557, - 785 - ], - "score": 0.516, - "html": "
Sources may include the following or other relevant ones:
", - "type": "table", - "image_path": "8d0792d880249e96327ddab71c0eee7b6f2d2017578b6670ed7d0db6efa1712f.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 49, - 749, - 557, - 761.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 49, - 761.0, - 557, - 773.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 49, - 773.0, - 557, - 785.0 - ], - "spans": [], - "index": 17 - } - ] - } - ], - "index": 16 - } - ], - "layout_bboxes": [], - "page_idx": 30, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 49, - 83, - 510, - 112 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 49, - 83, - 510, - 112 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 49, - 83, - 510, - 112 - ], - "spans": [ - { - "bbox": [ - 49, - 83, - 510, - 112 - ], - "score": 0.86, - "html": "
Abel-Smith and Townsend; Blackman; Craine; Davis and Moore; Foucault; Gans; Lister et al;
", - "type": "table", - "image_path": "10097d3a35c1e9450d485ec86ce76be6559f86550a4657148b85a554144660be.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 49, - 83, - 510, - 92.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 49, - 92.66666666666667, - 510, - 102.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 49, - 102.33333333333334, - 510, - 112.00000000000001 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 46, - 129, - 556, - 161 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 129, - 556, - 161 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 46, - 129, - 556, - 161 - ], - "spans": [ - { - "bbox": [ - 46, - 129, - 556, - 161 - ], - "score": 0.929, - "html": "
QuMarking guidanceTotal
marks
", - "type": "table", - "image_path": "4455381b2fbf75083032c447f74e00eb614d001c5844da9c1eba65d5895f4942.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 46, - 129, - 556, - 139.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 46, - 139.66666666666666, - 556, - 150.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 46, - 150.33333333333331, - 556, - 160.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 47, - 172, - 558, - 209 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 172, - 558, - 209 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 47, - 172, - 558, - 209 - ], - "spans": [ - { - "bbox": [ - 47, - 172, - 558, - 209 - ], - "score": 0.945, - "html": "
11Applying g material from Item G, analyse two reasons why some social groups aremore likely than others to experiencepoverty.10
", - "type": "table", - "image_path": "5a7a1c94ffa043eda2001b6172190504b8a24d78d7e700acc8146d3f6eded6fe.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 47, - 172, - 558, - 184.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 47, - 184.33333333333334, - 558, - 196.66666666666669 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 47, - 196.66666666666669, - 558, - 209.00000000000003 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 48, - 219, - 554, - 333 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 48, - 219, - 554, - 333 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 48, - 219, - 554, - 333 - ], - "spans": [ - { - "bbox": [ - 48, - 219, - 554, - 333 - ], - "score": 0.356, - "html": "
ItemG
The values and attitudes of some members of the working class may lead to them accepting their position in society. Patriarchal values mean that females can be disadvantaged.
", - "type": "table", - "image_path": "ce792d0223b0a85857e57a466d8f57b4e961cb61a9864402e807a476cc5b85a9.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 48, - 219, - 554, - 257.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 48, - 257.0, - 554, - 295.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 48, - 295.0, - 554, - 333.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "table", - "bbox": [ - 42, - 340, - 552, - 739 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 340, - 552, - 739 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 42, - 340, - 552, - 739 - ], - "spans": [ - { - "bbox": [ - 42, - 340, - 552, - 739 - ], - "score": 0.912, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on two reasons why some social groups are more likely than others to experience poverty. There will be two developed applications of material from the item, eg that fatalistic attitudes poverty; that patriarchal values lead to social arrangements such as the unequal distribution of caring roles, contributing to the feminisation of poverty. There will be appropriate analysis/evaluation of two ways eg the extent to which the
4-7Answers in this band will show a basic to reasonable knowledge and understanding of one There will be some successful application of material from the item,eg that economic circumstances explain poverty better than attitudes. There will be some analysis/evaluation.
1-3Answers in this band will show limited knowledge and understanding of one or two criticisms of cultural explanations of poverty. There will be limited application of material from the item. Some material may be at a tangent to the question, eg definitions of poverty.
0There will be limited or no analysis/evaluation No relevant points.
", - "type": "table", - "image_path": "b9e00c253c4ddaaca4b11084d041c85e04ad1d96d4ea24950cd25a43d7ec48fb.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 42, - 340, - 552, - 473.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 42, - 473.0, - 552, - 606.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 42, - 606.0, - 552, - 739.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - }, - { - "type": "table", - "bbox": [ - 49, - 749, - 557, - 785 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 49, - 749, - 557, - 785 - ], - "group_id": 5, - "lines": [ - { - "bbox": [ - 49, - 749, - 557, - 785 - ], - "spans": [ - { - "bbox": [ - 49, - 749, - 557, - 785 - ], - "score": 0.516, - "html": "
Sources may include the following or other relevant ones:
", - "type": "table", - "image_path": "8d0792d880249e96327ddab71c0eee7b6f2d2017578b6670ed7d0db6efa1712f.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 49, - 749, - 557, - 761.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 49, - 761.0, - 557, - 773.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 49, - 773.0, - 557, - 785.0 - ], - "spans": [], - "index": 17 - } - ] - } - ], - "index": 16 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 236, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "spans": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 544, - 797, - 554, - 806 - ], - "lines": [ - { - "bbox": [ - 542, - 796, - 555, - 808 - ], - "spans": [ - { - "bbox": [ - 542, - 796, - 555, - 808 - ], - "score": 1.0, - "content": "19 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 49, - 83, - 510, - 112 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 49, - 83, - 510, - 112 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 49, - 83, - 510, - 112 - ], - "spans": [ - { - "bbox": [ - 49, - 83, - 510, - 112 - ], - "score": 0.86, - "html": "
Abel-Smith and Townsend; Blackman; Craine; Davis and Moore; Foucault; Gans; Lister et al;
", - "type": "table", - "image_path": "10097d3a35c1e9450d485ec86ce76be6559f86550a4657148b85a554144660be.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 49, - 83, - 510, - 92.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 49, - 92.66666666666667, - 510, - 102.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 49, - 102.33333333333334, - 510, - 112.00000000000001 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_30", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 46, - 129, - 556, - 161 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 129, - 556, - 161 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 46, - 129, - 556, - 161 - ], - "spans": [ - { - "bbox": [ - 46, - 129, - 556, - 161 - ], - "score": 0.929, - "html": "
QuMarking guidanceTotal
marks
", - "type": "table", - "image_path": "4455381b2fbf75083032c447f74e00eb614d001c5844da9c1eba65d5895f4942.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 46, - 129, - 556, - 139.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 46, - 139.66666666666666, - 556, - 150.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 46, - 150.33333333333331, - 556, - 160.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_30", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 47, - 172, - 558, - 209 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 172, - 558, - 209 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 47, - 172, - 558, - 209 - ], - "spans": [ - { - "bbox": [ - 47, - 172, - 558, - 209 - ], - "score": 0.945, - "html": "
11Applying g material from Item G, analyse two reasons why some social groups aremore likely than others to experiencepoverty.10
", - "type": "table", - "image_path": "5a7a1c94ffa043eda2001b6172190504b8a24d78d7e700acc8146d3f6eded6fe.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 47, - 172, - 558, - 184.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 47, - 184.33333333333334, - 558, - 196.66666666666669 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 47, - 196.66666666666669, - 558, - 209.00000000000003 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_30", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 48, - 219, - 554, - 333 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 48, - 219, - 554, - 333 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 48, - 219, - 554, - 333 - ], - "spans": [ - { - "bbox": [ - 48, - 219, - 554, - 333 - ], - "score": 0.356, - "html": "
ItemG
The values and attitudes of some members of the working class may lead to them accepting their position in society. Patriarchal values mean that females can be disadvantaged.
", - "type": "table", - "image_path": "ce792d0223b0a85857e57a466d8f57b4e961cb61a9864402e807a476cc5b85a9.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 48, - 219, - 554, - 257.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 48, - 257.0, - 554, - 295.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 48, - 295.0, - 554, - 333.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10, - "page_num": "page_30", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 42, - 340, - 552, - 739 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 340, - 552, - 739 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 42, - 340, - 552, - 739 - ], - "spans": [ - { - "bbox": [ - 42, - 340, - 552, - 739 - ], - "score": 0.912, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on two reasons why some social groups are more likely than others to experience poverty. There will be two developed applications of material from the item, eg that fatalistic attitudes poverty; that patriarchal values lead to social arrangements such as the unequal distribution of caring roles, contributing to the feminisation of poverty. There will be appropriate analysis/evaluation of two ways eg the extent to which the
4-7Answers in this band will show a basic to reasonable knowledge and understanding of one There will be some successful application of material from the item,eg that economic circumstances explain poverty better than attitudes. There will be some analysis/evaluation.
1-3Answers in this band will show limited knowledge and understanding of one or two criticisms of cultural explanations of poverty. There will be limited application of material from the item. Some material may be at a tangent to the question, eg definitions of poverty.
0There will be limited or no analysis/evaluation No relevant points.
", - "type": "table", - "image_path": "b9e00c253c4ddaaca4b11084d041c85e04ad1d96d4ea24950cd25a43d7ec48fb.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 42, - 340, - 552, - 473.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 42, - 473.0, - 552, - 606.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 42, - 606.0, - 552, - 739.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13, - "page_num": "page_30", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 49, - 749, - 557, - 785 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 49, - 749, - 557, - 785 - ], - "group_id": 5, - "lines": [ - { - "bbox": [ - 49, - 749, - 557, - 785 - ], - "spans": [ - { - "bbox": [ - 49, - 749, - 557, - 785 - ], - "score": 0.516, - "html": "
Sources may include the following or other relevant ones:
", - "type": "table", - "image_path": "8d0792d880249e96327ddab71c0eee7b6f2d2017578b6670ed7d0db6efa1712f.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 49, - 749, - 557, - 761.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 49, - 761.0, - 557, - 773.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 49, - 773.0, - 557, - 785.0 - ], - "spans": [], - "index": 17 - } - ] - } - ], - "index": 16, - "page_num": "page_30", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 48, - 84, - 538, - 118 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 48, - 84, - 538, - 118 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 48, - 84, - 538, - 118 - ], - "spans": [ - { - "bbox": [ - 48, - 84, - 538, - 118 - ], - "score": 0.887, - "html": "
Baumberg, Bell and Gaffney; Blanden and Gibbons; Coates and Silburn; Field; Lewis; Marsland; Murray; Rutter and Madge; Shildrick et al.
", - "type": "table", - "image_path": "e5b3dff80734ecddd947629d5cc23a025f426c7166cd0479ec9745186b298c15.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 48, - 84, - 538, - 95.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 48, - 95.33333333333333, - 538, - 106.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 48, - 106.66666666666666, - 538, - 117.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 46, - 131, - 558, - 162 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 131, - 558, - 162 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 46, - 131, - 558, - 162 - ], - "spans": [ - { - "bbox": [ - 46, - 131, - 558, - 162 - ], - "score": 0.936, - "html": "
QuTotal Marking guidance marks
", - "type": "table", - "image_path": "a1e5a19ce69460fba767eb4e7e8335fc1017e4ee0fc136ba27b4e8371855efaa.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 46, - 131, - 558, - 141.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 46, - 141.33333333333334, - 558, - 151.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 46, - 151.66666666666669, - 558, - 162.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 47, - 173, - 558, - 210 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 173, - 558, - 210 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 47, - 173, - 558, - 210 - ], - "spans": [ - { - "bbox": [ - 47, - 173, - 558, - 210 - ], - "score": 0.944, - "html": "
12Applying material from Item H and your knowledge, evaluate sociological explanations of the effects of worklessness on people's lives and life chances.20
", - "type": "table", - "image_path": "84631ed4da7878f7e0faabadcf8321eba03cb390cbd3eb559a26b9bfe5ceb5bd.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 47, - 173, - 558, - 185.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 47, - 185.33333333333334, - 558, - 197.66666666666669 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 47, - 197.66666666666669, - 558, - 210.00000000000003 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 47, - 221, - 554, - 374 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 221, - 554, - 374 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 47, - 221, - 554, - 374 - ], - "spans": [ - { - "bbox": [ - 47, - 221, - 554, - 374 - ], - "score": 0.827, - "html": "
ItemH
aspects of social life and their life chances are diminished. There are others who do not work because
theyhavesufficientwealth. However, some sociologists argue that work is now less important as a source of identity and that
worklessnesshasbecomelesssignificant.
", - "type": "table", - "image_path": "237548171c785a0680e3e5887e5a7982d4f93eaedae1ff94f590d428d68076db.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 47, - 221, - 554, - 272.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 47, - 272.0, - 554, - 323.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 47, - 323.0, - 554, - 374.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "table", - "bbox": [ - 41, - 384, - 553, - 777 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 384, - 553, - 777 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 41, - 384, - 553, - 777 - ], - "spans": [ - { - "bbox": [ - 41, - 384, - 553, - 777 - ], - "score": 0.982, - "html": "
MarksLevel Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on sociological explanations of the significance of worklessness for people's lives and life chances. Sophisticated understanding of the question and of the presentedmaterialwillbeshown. the question. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for example throughthe debatesbetween different explanations of the relationshipbetween worklessness and people's lives and life chances (eg Marxism, postmodernism, feminism).
13-16Analysis will show clear explanation. Appropriate conclusions will be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. maybeinadequatelyfocused.
9-12Some limited explicit evaluation, eg discussion of the significance of worklessness for different life chances and/or some appropriate analysis, eg clear explanations of some of the presented material. Answers in this band will show largely accurate knowledge but limited range and depth, eg broadly accurate, if basic, account of some types of worklessness. Understands some
", - "type": "table", - "image_path": "a3d31fcae2ce545786ff2e74ef0b0ce7a6a37b449d02dfec6ad0f8552d376b64.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 41, - 384, - 553, - 515.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 41, - 515.0, - 553, - 646.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 41, - 646.0, - 553, - 777.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - } - ], - "layout_bboxes": [], - "page_idx": 31, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 48, - 84, - 538, - 118 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 48, - 84, - 538, - 118 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 48, - 84, - 538, - 118 - ], - "spans": [ - { - "bbox": [ - 48, - 84, - 538, - 118 - ], - "score": 0.887, - "html": "
Baumberg, Bell and Gaffney; Blanden and Gibbons; Coates and Silburn; Field; Lewis; Marsland; Murray; Rutter and Madge; Shildrick et al.
", - "type": "table", - "image_path": "e5b3dff80734ecddd947629d5cc23a025f426c7166cd0479ec9745186b298c15.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 48, - 84, - 538, - 95.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 48, - 95.33333333333333, - 538, - 106.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 48, - 106.66666666666666, - 538, - 117.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 46, - 131, - 558, - 162 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 131, - 558, - 162 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 46, - 131, - 558, - 162 - ], - "spans": [ - { - "bbox": [ - 46, - 131, - 558, - 162 - ], - "score": 0.936, - "html": "
QuTotal Marking guidance marks
", - "type": "table", - "image_path": "a1e5a19ce69460fba767eb4e7e8335fc1017e4ee0fc136ba27b4e8371855efaa.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 46, - 131, - 558, - 141.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 46, - 141.33333333333334, - 558, - 151.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 46, - 151.66666666666669, - 558, - 162.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 47, - 173, - 558, - 210 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 173, - 558, - 210 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 47, - 173, - 558, - 210 - ], - "spans": [ - { - "bbox": [ - 47, - 173, - 558, - 210 - ], - "score": 0.944, - "html": "
12Applying material from Item H and your knowledge, evaluate sociological explanations of the effects of worklessness on people's lives and life chances.20
", - "type": "table", - "image_path": "84631ed4da7878f7e0faabadcf8321eba03cb390cbd3eb559a26b9bfe5ceb5bd.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 47, - 173, - 558, - 185.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 47, - 185.33333333333334, - 558, - 197.66666666666669 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 47, - 197.66666666666669, - 558, - 210.00000000000003 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 47, - 221, - 554, - 374 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 221, - 554, - 374 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 47, - 221, - 554, - 374 - ], - "spans": [ - { - "bbox": [ - 47, - 221, - 554, - 374 - ], - "score": 0.827, - "html": "
ItemH
aspects of social life and their life chances are diminished. There are others who do not work because
theyhavesufficientwealth. However, some sociologists argue that work is now less important as a source of identity and that
worklessnesshasbecomelesssignificant.
", - "type": "table", - "image_path": "237548171c785a0680e3e5887e5a7982d4f93eaedae1ff94f590d428d68076db.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 47, - 221, - 554, - 272.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 47, - 272.0, - 554, - 323.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 47, - 323.0, - 554, - 374.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "table", - "bbox": [ - 41, - 384, - 553, - 777 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 384, - 553, - 777 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 41, - 384, - 553, - 777 - ], - "spans": [ - { - "bbox": [ - 41, - 384, - 553, - 777 - ], - "score": 0.982, - "html": "
MarksLevel Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on sociological explanations of the significance of worklessness for people's lives and life chances. Sophisticated understanding of the question and of the presentedmaterialwillbeshown. the question. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for example throughthe debatesbetween different explanations of the relationshipbetween worklessness and people's lives and life chances (eg Marxism, postmodernism, feminism).
13-16Analysis will show clear explanation. Appropriate conclusions will be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. maybeinadequatelyfocused.
9-12Some limited explicit evaluation, eg discussion of the significance of worklessness for different life chances and/or some appropriate analysis, eg clear explanations of some of the presented material. Answers in this band will show largely accurate knowledge but limited range and depth, eg broadly accurate, if basic, account of some types of worklessness. Understands some
", - "type": "table", - "image_path": "a3d31fcae2ce545786ff2e74ef0b0ce7a6a37b449d02dfec6ad0f8552d376b64.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 41, - 384, - 553, - 515.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 41, - 515.0, - 553, - 646.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 41, - 646.0, - 553, - 777.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 41, - 797, - 52, - 806 - ], - "lines": [ - { - "bbox": [ - 40, - 797, - 54, - 807 - ], - "spans": [ - { - "bbox": [ - 40, - 797, - 54, - 807 - ], - "score": 1.0, - "content": "20 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 236, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "spans": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 48, - 84, - 538, - 118 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 48, - 84, - 538, - 118 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 48, - 84, - 538, - 118 - ], - "spans": [ - { - "bbox": [ - 48, - 84, - 538, - 118 - ], - "score": 0.887, - "html": "
Baumberg, Bell and Gaffney; Blanden and Gibbons; Coates and Silburn; Field; Lewis; Marsland; Murray; Rutter and Madge; Shildrick et al.
", - "type": "table", - "image_path": "e5b3dff80734ecddd947629d5cc23a025f426c7166cd0479ec9745186b298c15.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 48, - 84, - 538, - 95.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 48, - 95.33333333333333, - 538, - 106.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 48, - 106.66666666666666, - 538, - 117.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_31", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 46, - 131, - 558, - 162 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 131, - 558, - 162 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 46, - 131, - 558, - 162 - ], - "spans": [ - { - "bbox": [ - 46, - 131, - 558, - 162 - ], - "score": 0.936, - "html": "
QuTotal Marking guidance marks
", - "type": "table", - "image_path": "a1e5a19ce69460fba767eb4e7e8335fc1017e4ee0fc136ba27b4e8371855efaa.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 46, - 131, - 558, - 141.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 46, - 141.33333333333334, - 558, - 151.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 46, - 151.66666666666669, - 558, - 162.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_31", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 47, - 173, - 558, - 210 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 173, - 558, - 210 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 47, - 173, - 558, - 210 - ], - "spans": [ - { - "bbox": [ - 47, - 173, - 558, - 210 - ], - "score": 0.944, - "html": "
12Applying material from Item H and your knowledge, evaluate sociological explanations of the effects of worklessness on people's lives and life chances.20
", - "type": "table", - "image_path": "84631ed4da7878f7e0faabadcf8321eba03cb390cbd3eb559a26b9bfe5ceb5bd.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 47, - 173, - 558, - 185.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 47, - 185.33333333333334, - 558, - 197.66666666666669 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 47, - 197.66666666666669, - 558, - 210.00000000000003 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_31", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 47, - 221, - 554, - 374 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 221, - 554, - 374 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 47, - 221, - 554, - 374 - ], - "spans": [ - { - "bbox": [ - 47, - 221, - 554, - 374 - ], - "score": 0.827, - "html": "
ItemH
aspects of social life and their life chances are diminished. There are others who do not work because
theyhavesufficientwealth. However, some sociologists argue that work is now less important as a source of identity and that
worklessnesshasbecomelesssignificant.
", - "type": "table", - "image_path": "237548171c785a0680e3e5887e5a7982d4f93eaedae1ff94f590d428d68076db.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 47, - 221, - 554, - 272.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 47, - 272.0, - 554, - 323.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 47, - 323.0, - 554, - 374.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10, - "page_num": "page_31", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 41, - 384, - 553, - 777 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 384, - 553, - 777 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 41, - 384, - 553, - 777 - ], - "spans": [ - { - "bbox": [ - 41, - 384, - 553, - 777 - ], - "score": 0.982, - "html": "
MarksLevel Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on sociological explanations of the significance of worklessness for people's lives and life chances. Sophisticated understanding of the question and of the presentedmaterialwillbeshown. the question. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for example throughthe debatesbetween different explanations of the relationshipbetween worklessness and people's lives and life chances (eg Marxism, postmodernism, feminism).
13-16Analysis will show clear explanation. Appropriate conclusions will be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. maybeinadequatelyfocused.
9-12Some limited explicit evaluation, eg discussion of the significance of worklessness for different life chances and/or some appropriate analysis, eg clear explanations of some of the presented material. Answers in this band will show largely accurate knowledge but limited range and depth, eg broadly accurate, if basic, account of some types of worklessness. Understands some
", - "type": "table", - "image_path": "a3d31fcae2ce545786ff2e74ef0b0ce7a6a37b449d02dfec6ad0f8552d376b64.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 41, - 384, - 553, - 515.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 41, - 515.0, - 553, - 646.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 41, - 646.0, - 553, - 777.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13, - "page_num": "page_31", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 42, - 83, - 552, - 436 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 83, - 552, - 436 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 42, - 83, - 552, - 436 - ], - "spans": [ - { - "bbox": [ - 42, - 83, - 552, - 436 - ], - "score": 0.981, - "html": "
material. Applying listed material from the general topic area but with limited regard for its relevance
5-8Answers in this band will show limited undeveloped knowledge, eg two or three insubstantial points about worklessness. Understands only limited aspects of the question; simplistic understandingof thepresentedmaterial. the question.
1-4points about worklessness in general. Very little/no understanding of the question and of the presentedmaterial. Significant errors and/or omissions in application of material.
0Noanalysisorevaluation. No relevant points.
", - "type": "table", - "image_path": "dead323be217495cd3c88eacebe981ff673fe793388876d9e3ca03e9ac36eda0.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 42, - 83, - 552, - 200.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 42, - 200.66666666666669, - 552, - 318.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 42, - 318.33333333333337, - 552, - 436.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "title", - "bbox": [ - 51, - 452, - 147, - 465 - ], - "lines": [ - { - "bbox": [ - 52, - 453, - 147, - 464 - ], - "spans": [ - { - "bbox": [ - 52, - 453, - 147, - 464 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 51, - 478, - 325, - 491 - ], - "lines": [ - { - "bbox": [ - 52, - 478, - 324, - 491 - ], - "spans": [ - { - "bbox": [ - 52, - 478, - 324, - 491 - ], - "score": 1.0, - "content": "Concepts and issues such as the following may appear:", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 51, - 503, - 550, - 542 - ], - "lines": [ - { - "bbox": [ - 50, - 502, - 548, - 518 - ], - "spans": [ - { - "bbox": [ - 50, - 502, - 548, - 518 - ], - "score": 1.0, - "content": "unemployment; underemployment; economically active; claimant count; retirement; disability; poverty; ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 51, - 516, - 528, - 529 - ], - "spans": [ - { - "bbox": [ - 51, - 516, - 528, - 529 - ], - "score": 1.0, - "content": "labour market; NEETs; deindustrialisation; marginalisation; disengagement theory; stigmatisation; ", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 51, - 529, - 551, - 542 - ], - "spans": [ - { - "bbox": [ - 51, - 529, - 551, - 542 - ], - "score": 1.0, - "content": "stereotype; repression; social exclusion; consumer society; reserve army of labour; alienation; anomie.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6 - }, - { - "type": "title", - "bbox": [ - 51, - 562, - 356, - 576 - ], - "lines": [ - { - "bbox": [ - 52, - 564, - 356, - 575 - ], - "spans": [ - { - "bbox": [ - 52, - 564, - 356, - 575 - ], - "score": 1.0, - "content": "Sources may include the following or other relevant ones:", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 51, - 588, - 549, - 626 - ], - "lines": [ - { - "bbox": [ - 52, - 589, - 546, - 602 - ], - "spans": [ - { - "bbox": [ - 52, - 589, - 546, - 602 - ], - "score": 1.0, - "content": "Bauman; Craine; Cumming and Henry; Dahrendorf; Dorling; Durkheim; Fagin and Little; Garrod; Gini;", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 50, - 600, - 525, - 615 - ], - "spans": [ - { - "bbox": [ - 50, - 600, - 525, - 615 - ], - "score": 1.0, - "content": "Gulliford et al; Harper; Hockey and James; MacDonald, Sheldrake and Furlong; Marx; Riach and ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 51, - 613, - 91, - 628 - ], - "spans": [ - { - "bbox": [ - 51, - 613, - 91, - 628 - ], - "score": 1.0, - "content": "Loretto.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10 - } - ], - "layout_bboxes": [], - "page_idx": 32, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 42, - 83, - 552, - 436 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 83, - 552, - 436 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 42, - 83, - 552, - 436 - ], - "spans": [ - { - "bbox": [ - 42, - 83, - 552, - 436 - ], - "score": 0.981, - "html": "
material. Applying listed material from the general topic area but with limited regard for its relevance
5-8Answers in this band will show limited undeveloped knowledge, eg two or three insubstantial points about worklessness. Understands only limited aspects of the question; simplistic understandingof thepresentedmaterial. the question.
1-4points about worklessness in general. Very little/no understanding of the question and of the presentedmaterial. Significant errors and/or omissions in application of material.
0Noanalysisorevaluation. No relevant points.
", - "type": "table", - "image_path": "dead323be217495cd3c88eacebe981ff673fe793388876d9e3ca03e9ac36eda0.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 42, - 83, - 552, - 200.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 42, - 200.66666666666669, - 552, - 318.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 42, - 318.33333333333337, - 552, - 436.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 237, - 35, - 554, - 48 - ], - "lines": [ - { - "bbox": [ - 237, - 35, - 553, - 48 - ], - "spans": [ - { - "bbox": [ - 237, - 35, - 553, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 543, - 797, - 553, - 805 - ], - "lines": [ - { - "bbox": [ - 541, - 796, - 555, - 809 - ], - "spans": [ - { - "bbox": [ - 541, - 796, - 555, - 809 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 13, - "width": 14 - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 42, - 83, - 552, - 436 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 83, - 552, - 436 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 42, - 83, - 552, - 436 - ], - "spans": [ - { - "bbox": [ - 42, - 83, - 552, - 436 - ], - "score": 0.981, - "html": "
material. Applying listed material from the general topic area but with limited regard for its relevance
5-8Answers in this band will show limited undeveloped knowledge, eg two or three insubstantial points about worklessness. Understands only limited aspects of the question; simplistic understandingof thepresentedmaterial. the question.
1-4points about worklessness in general. Very little/no understanding of the question and of the presentedmaterial. Significant errors and/or omissions in application of material.
0Noanalysisorevaluation. No relevant points.
", - "type": "table", - "image_path": "dead323be217495cd3c88eacebe981ff673fe793388876d9e3ca03e9ac36eda0.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 42, - 83, - 552, - 200.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 42, - 200.66666666666669, - 552, - 318.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 42, - 318.33333333333337, - 552, - 436.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_32", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 51, - 452, - 147, - 465 - ], - "lines": [ - { - "bbox": [ - 52, - 453, - 147, - 464 - ], - "spans": [ - { - "bbox": [ - 52, - 453, - 147, - 464 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_32", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 51, - 478, - 325, - 491 - ], - "lines": [ - { - "bbox": [ - 52, - 478, - 324, - 491 - ], - "spans": [ - { - "bbox": [ - 52, - 478, - 324, - 491 - ], - "score": 1.0, - "content": "Concepts and issues such as the following may appear:", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_32", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 52, - 478, - 324, - 491 - ] - }, - { - "type": "list", - "bbox": [ - 51, - 503, - 550, - 542 - ], - "lines": [ - { - "bbox": [ - 50, - 502, - 548, - 518 - ], - "spans": [ - { - "bbox": [ - 50, - 502, - 548, - 518 - ], - "score": 1.0, - "content": "unemployment; underemployment; economically active; claimant count; retirement; disability; poverty; ", - "type": "text" - } - ], - "index": 5, - "is_list_end_line": true - }, - { - "bbox": [ - 51, - 516, - 528, - 529 - ], - "spans": [ - { - "bbox": [ - 51, - 516, - 528, - 529 - ], - "score": 1.0, - "content": "labour market; NEETs; deindustrialisation; marginalisation; disengagement theory; stigmatisation; ", - "type": "text" - } - ], - "index": 6, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 51, - 529, - 551, - 542 - ], - "spans": [ - { - "bbox": [ - 51, - 529, - 551, - 542 - ], - "score": 1.0, - "content": "stereotype; repression; social exclusion; consumer society; reserve army of labour; alienation; anomie.", - "type": "text" - } - ], - "index": 7, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 6, - "page_num": "page_32", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 50, - 502, - 551, - 542 - ] - }, - { - "type": "title", - "bbox": [ - 51, - 562, - 356, - 576 - ], - "lines": [ - { - "bbox": [ - 52, - 564, - 356, - 575 - ], - "spans": [ - { - "bbox": [ - 52, - 564, - 356, - 575 - ], - "score": 1.0, - "content": "Sources may include the following or other relevant ones:", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_32", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 51, - 588, - 549, - 626 - ], - "lines": [ - { - "bbox": [ - 52, - 589, - 546, - 602 - ], - "spans": [ - { - "bbox": [ - 52, - 589, - 546, - 602 - ], - "score": 1.0, - "content": "Bauman; Craine; Cumming and Henry; Dahrendorf; Dorling; Durkheim; Fagin and Little; Garrod; Gini;", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 50, - 600, - 525, - 615 - ], - "spans": [ - { - "bbox": [ - 50, - 600, - 525, - 615 - ], - "score": 1.0, - "content": "Gulliford et al; Harper; Hockey and James; MacDonald, Sheldrake and Furlong; Marx; Riach and ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 51, - 613, - 91, - 628 - ], - "spans": [ - { - "bbox": [ - 51, - 613, - 91, - 628 - ], - "score": 1.0, - "content": "Loretto.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10, - "page_num": "page_32", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 50, - 589, - 546, - 628 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 220, - 86, - 366, - 112 - ], - "lines": [ - { - "bbox": [ - 266, - 86, - 319, - 99 - ], - "spans": [ - { - "bbox": [ - 266, - 86, - 319, - 99 - ], - "score": 1.0, - "content": "Section B", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 219, - 99, - 365, - 112 - ], - "spans": [ - { - "bbox": [ - 219, - 99, - 365, - 112 - ], - "score": 1.0, - "content": "Topic B1 Beliefs in Society", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "table", - "bbox": [ - 40, - 113, - 546, - 143 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 113, - 546, - 143 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 40, - 113, - 546, - 143 - ], - "spans": [ - { - "bbox": [ - 40, - 113, - 546, - 143 - ], - "score": 0.919, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "e99ac2cacbbd4416eccaa25d65fb96aaa1a07f7761dda45e0c834ea5c84a5912.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 40, - 113, - 546, - 123.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 40, - 123.0, - 546, - 133.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 40, - 133.0, - 546, - 143.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3 - }, - { - "type": "table", - "bbox": [ - 39, - 166, - 546, - 202 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 166, - 546, - 202 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 39, - 166, - 546, - 202 - ], - "spans": [ - { - "bbox": [ - 39, - 166, - 546, - 202 - ], - "score": 0.95, - "html": "
13Outline and explain two reasons why women are more likely than men to participate in NewAge movements.10
", - "type": "table", - "image_path": "acf6e0d167cdd52b1c7900d91bac6c371e269fe0d5ee504eda8decb1a62a7052.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 39, - 166, - 546, - 178.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 39, - 178.0, - 546, - 190.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 39, - 190.0, - 546, - 202.0 - ], - "spans": [], - "index": 7 - } - ] - } - ], - "index": 6 - }, - { - "type": "table", - "bbox": [ - 40, - 212, - 546, - 634 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 212, - 546, - 634 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 40, - 212, - 546, - 634 - ], - "spans": [ - { - "bbox": [ - 40, - 212, - 546, - 634 - ], - "score": 0.982, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two reasons There will be two applications of relevant material, eg women are more associated with gender roles encouraged by traditional religion. There will be appropriate analysis, eg the extent to which men may also participate in New Age movements.
4-7 s s movements. There will be one or two applications of relevant material, eg New Age movements appeal to expressive role of women rather than instrumental role of men. There will be some basic analysis.
1-3Answers in this band will show limited knowledge and little or no understanding of the question or the material. sects. Therewill be little or no analysis.
0No relevant points.
", - "type": "table", - "image_path": "b383e158e5e26bf235d1404837b08d98e4f0d2e6799854bd0981cdb049f5a9e2.jpg" - } - ] - } - ], - "index": 9, - "virtual_lines": [ - { - "bbox": [ - 40, - 212, - 546, - 352.66666666666663 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 40, - 352.66666666666663, - 546, - 493.33333333333326 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 40, - 493.33333333333326, - 546, - 633.9999999999999 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 9 - }, - { - "type": "title", - "bbox": [ - 42, - 647, - 138, - 661 - ], - "lines": [ - { - "bbox": [ - 43, - 649, - 138, - 660 - ], - "spans": [ - { - "bbox": [ - 43, - 649, - 138, - 660 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 42, - 673, - 354, - 687 - ], - "lines": [ - { - "bbox": [ - 43, - 675, - 353, - 686 - ], - "spans": [ - { - "bbox": [ - 43, - 675, - 353, - 686 - ], - "score": 1.0, - "content": "Answers may include the following and/or other relevant points:", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 60, - 699, - 487, - 780 - ], - "lines": [ - { - "bbox": [ - 79, - 701, - 289, - 712 - ], - "spans": [ - { - "bbox": [ - 79, - 701, - 289, - 712 - ], - "score": 1.0, - "content": "socialisation of women into expressive role", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 79, - 713, - 485, - 726 - ], - "spans": [ - { - "bbox": [ - 79, - 713, - 485, - 726 - ], - "score": 1.0, - "content": "patriarchal gender roles within traditional religion – loss of faith in traditional religion", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 79, - 728, - 246, - 740 - ], - "spans": [ - { - "bbox": [ - 79, - 728, - 246, - 740 - ], - "score": 1.0, - "content": "emphasis on personal experience ", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 79, - 741, - 274, - 753 - ], - "spans": [ - { - "bbox": [ - 79, - 741, - 274, - 753 - ], - "score": 1.0, - "content": "emphasis on autonomy and authenticity", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 77, - 754, - 396, - 766 - ], - "spans": [ - { - "bbox": [ - 77, - 754, - 396, - 766 - ], - "score": 1.0, - "content": "women more likely to be in part-time employment/full-time carers", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 77, - 768, - 304, - 780 - ], - "spans": [ - { - "bbox": [ - 77, - 768, - 304, - 780 - ], - "score": 1.0, - "content": "women closer to nature and cycle of life/death", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 15.5 - } - ], - "layout_bboxes": [], - "page_idx": 33, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 40, - 113, - 546, - 143 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 113, - 546, - 143 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 40, - 113, - 546, - 143 - ], - "spans": [ - { - "bbox": [ - 40, - 113, - 546, - 143 - ], - "score": 0.919, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "e99ac2cacbbd4416eccaa25d65fb96aaa1a07f7761dda45e0c834ea5c84a5912.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 40, - 113, - 546, - 123.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 40, - 123.0, - 546, - 133.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 40, - 133.0, - 546, - 143.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3 - }, - { - "type": "table", - "bbox": [ - 39, - 166, - 546, - 202 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 166, - 546, - 202 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 39, - 166, - 546, - 202 - ], - "spans": [ - { - "bbox": [ - 39, - 166, - 546, - 202 - ], - "score": 0.95, - "html": "
13Outline and explain two reasons why women are more likely than men to participate in NewAge movements.10
", - "type": "table", - "image_path": "acf6e0d167cdd52b1c7900d91bac6c371e269fe0d5ee504eda8decb1a62a7052.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 39, - 166, - 546, - 178.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 39, - 178.0, - 546, - 190.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 39, - 190.0, - 546, - 202.0 - ], - "spans": [], - "index": 7 - } - ] - } - ], - "index": 6 - }, - { - "type": "table", - "bbox": [ - 40, - 212, - 546, - 634 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 212, - 546, - 634 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 40, - 212, - 546, - 634 - ], - "spans": [ - { - "bbox": [ - 40, - 212, - 546, - 634 - ], - "score": 0.982, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two reasons There will be two applications of relevant material, eg women are more associated with gender roles encouraged by traditional religion. There will be appropriate analysis, eg the extent to which men may also participate in New Age movements.
4-7 s s movements. There will be one or two applications of relevant material, eg New Age movements appeal to expressive role of women rather than instrumental role of men. There will be some basic analysis.
1-3Answers in this band will show limited knowledge and little or no understanding of the question or the material. sects. Therewill be little or no analysis.
0No relevant points.
", - "type": "table", - "image_path": "b383e158e5e26bf235d1404837b08d98e4f0d2e6799854bd0981cdb049f5a9e2.jpg" - } - ] - } - ], - "index": 9, - "virtual_lines": [ - { - "bbox": [ - 40, - 212, - 546, - 352.66666666666663 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 40, - 352.66666666666663, - 546, - 493.33333333333326 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 40, - 493.33333333333326, - 546, - 633.9999999999999 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 9 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 236, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "spans": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 797, - 52, - 805 - ], - "lines": [ - { - "bbox": [ - 40, - 796, - 54, - 808 - ], - "spans": [ - { - "bbox": [ - 40, - 796, - 54, - 808 - ], - "score": 1.0, - "content": "22 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 220, - 86, - 366, - 112 - ], - "lines": [ - { - "bbox": [ - 266, - 86, - 319, - 99 - ], - "spans": [ - { - "bbox": [ - 266, - 86, - 319, - 99 - ], - "score": 1.0, - "content": "Section B", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 219, - 99, - 365, - 112 - ], - "spans": [ - { - "bbox": [ - 219, - 99, - 365, - 112 - ], - "score": 1.0, - "content": "Topic B1 Beliefs in Society", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_33", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 40, - 113, - 546, - 143 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 113, - 546, - 143 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 40, - 113, - 546, - 143 - ], - "spans": [ - { - "bbox": [ - 40, - 113, - 546, - 143 - ], - "score": 0.919, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "e99ac2cacbbd4416eccaa25d65fb96aaa1a07f7761dda45e0c834ea5c84a5912.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 40, - 113, - 546, - 123.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 40, - 123.0, - 546, - 133.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 40, - 133.0, - 546, - 143.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3, - "page_num": "page_33", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 39, - 166, - 546, - 202 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 166, - 546, - 202 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 39, - 166, - 546, - 202 - ], - "spans": [ - { - "bbox": [ - 39, - 166, - 546, - 202 - ], - "score": 0.95, - "html": "
13Outline and explain two reasons why women are more likely than men to participate in NewAge movements.10
", - "type": "table", - "image_path": "acf6e0d167cdd52b1c7900d91bac6c371e269fe0d5ee504eda8decb1a62a7052.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 39, - 166, - 546, - 178.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 39, - 178.0, - 546, - 190.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 39, - 190.0, - 546, - 202.0 - ], - "spans": [], - "index": 7 - } - ] - } - ], - "index": 6, - "page_num": "page_33", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 40, - 212, - 546, - 634 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 212, - 546, - 634 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 40, - 212, - 546, - 634 - ], - "spans": [ - { - "bbox": [ - 40, - 212, - 546, - 634 - ], - "score": 0.982, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two reasons There will be two applications of relevant material, eg women are more associated with gender roles encouraged by traditional religion. There will be appropriate analysis, eg the extent to which men may also participate in New Age movements.
4-7 s s movements. There will be one or two applications of relevant material, eg New Age movements appeal to expressive role of women rather than instrumental role of men. There will be some basic analysis.
1-3Answers in this band will show limited knowledge and little or no understanding of the question or the material. sects. Therewill be little or no analysis.
0No relevant points.
", - "type": "table", - "image_path": "b383e158e5e26bf235d1404837b08d98e4f0d2e6799854bd0981cdb049f5a9e2.jpg" - } - ] - } - ], - "index": 9, - "virtual_lines": [ - { - "bbox": [ - 40, - 212, - 546, - 352.66666666666663 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 40, - 352.66666666666663, - 546, - 493.33333333333326 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 40, - 493.33333333333326, - 546, - 633.9999999999999 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 9, - "page_num": "page_33", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 42, - 647, - 138, - 661 - ], - "lines": [ - { - "bbox": [ - 43, - 649, - 138, - 660 - ], - "spans": [ - { - "bbox": [ - 43, - 649, - 138, - 660 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_33", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 673, - 354, - 687 - ], - "lines": [ - { - "bbox": [ - 43, - 675, - 353, - 686 - ], - "spans": [ - { - "bbox": [ - 43, - 675, - 353, - 686 - ], - "score": 1.0, - "content": "Answers may include the following and/or other relevant points:", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_33", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 43, - 675, - 353, - 686 - ] - }, - { - "type": "list", - "bbox": [ - 60, - 699, - 487, - 780 - ], - "lines": [ - { - "bbox": [ - 79, - 701, - 289, - 712 - ], - "spans": [ - { - "bbox": [ - 79, - 701, - 289, - 712 - ], - "score": 1.0, - "content": "socialisation of women into expressive role", - "type": "text" - } - ], - "index": 13, - "is_list_start_line": true - }, - { - "bbox": [ - 79, - 713, - 485, - 726 - ], - "spans": [ - { - "bbox": [ - 79, - 713, - 485, - 726 - ], - "score": 1.0, - "content": "patriarchal gender roles within traditional religion – loss of faith in traditional religion", - "type": "text" - } - ], - "index": 14, - "is_list_start_line": true - }, - { - "bbox": [ - 79, - 728, - 246, - 740 - ], - "spans": [ - { - "bbox": [ - 79, - 728, - 246, - 740 - ], - "score": 1.0, - "content": "emphasis on personal experience ", - "type": "text" - } - ], - "index": 15, - "is_list_start_line": true - }, - { - "bbox": [ - 79, - 741, - 274, - 753 - ], - "spans": [ - { - "bbox": [ - 79, - 741, - 274, - 753 - ], - "score": 1.0, - "content": "emphasis on autonomy and authenticity", - "type": "text" - } - ], - "index": 16, - "is_list_start_line": true - }, - { - "bbox": [ - 77, - 754, - 396, - 766 - ], - "spans": [ - { - "bbox": [ - 77, - 754, - 396, - 766 - ], - "score": 1.0, - "content": "women more likely to be in part-time employment/full-time carers", - "type": "text" - } - ], - "index": 17, - "is_list_start_line": true - }, - { - "bbox": [ - 77, - 768, - 304, - 780 - ], - "spans": [ - { - "bbox": [ - 77, - 768, - 304, - 780 - ], - "score": 1.0, - "content": "women closer to nature and cycle of life/death", - "type": "text" - } - ], - "index": 18, - "is_list_start_line": true - } - ], - "index": 15.5, - "page_num": "page_33", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 77, - 701, - 485, - 780 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 60, - 89, - 406, - 129 - ], - "lines": [ - { - "bbox": [ - 79, - 91, - 366, - 102 - ], - "spans": [ - { - "bbox": [ - 79, - 91, - 366, - 102 - ], - "score": 1.0, - "content": "emphasis on celebrating nature and healing role of women", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 79, - 105, - 405, - 116 - ], - "spans": [ - { - "bbox": [ - 79, - 105, - 405, - 116 - ], - "score": 1.0, - "content": "higher status of traditional female qualities in New Age movements", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 78, - 118, - 286, - 129 - ], - "spans": [ - { - "bbox": [ - 78, - 118, - 286, - 129 - ], - "score": 1.0, - "content": "individual sphere of New Age movements.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 41, - 173, - 513, - 199 - ], - "lines": [ - { - "bbox": [ - 43, - 174, - 512, - 187 - ], - "spans": [ - { - "bbox": [ - 43, - 174, - 512, - 187 - ], - "score": 1.0, - "content": "Sources may include the following or other relevant ones: Armstrong; Brown; Bruce; Davie; ", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 43, - 187, - 441, - 199 - ], - "spans": [ - { - "bbox": [ - 43, - 187, - 441, - 199 - ], - "score": 1.0, - "content": "Drane; El Saadawi; Greeley; Heelas; Heelas and Woodhead; Miller and Hoffman.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5 - } - ], - "layout_bboxes": [], - "page_idx": 34, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 543, - 797, - 553, - 805 - ], - "lines": [ - { - "bbox": [ - 542, - 797, - 556, - 808 - ], - "spans": [ - { - "bbox": [ - 542, - 797, - 556, - 808 - ], - "score": 1.0, - "content": "23 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 236, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 238, - 36, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 238, - 36, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 60, - 89, - 406, - 129 - ], - "lines": [ - { - "bbox": [ - 79, - 91, - 366, - 102 - ], - "spans": [ - { - "bbox": [ - 79, - 91, - 366, - 102 - ], - "score": 1.0, - "content": "emphasis on celebrating nature and healing role of women", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 79, - 105, - 405, - 116 - ], - "spans": [ - { - "bbox": [ - 79, - 105, - 405, - 116 - ], - "score": 1.0, - "content": "higher status of traditional female qualities in New Age movements", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 78, - 118, - 286, - 129 - ], - "spans": [ - { - "bbox": [ - 78, - 118, - 286, - 129 - ], - "score": 1.0, - "content": "individual sphere of New Age movements.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1, - "page_num": "page_34", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 78, - 91, - 405, - 129 - ] - }, - { - "type": "list", - "bbox": [ - 41, - 173, - 513, - 199 - ], - "lines": [ - { - "bbox": [ - 43, - 174, - 512, - 187 - ], - "spans": [ - { - "bbox": [ - 43, - 174, - 512, - 187 - ], - "score": 1.0, - "content": "Sources may include the following or other relevant ones: Armstrong; Brown; Bruce; Davie; ", - "type": "text" - } - ], - "index": 3, - "is_list_end_line": true - }, - { - "bbox": [ - 43, - 187, - 441, - 199 - ], - "spans": [ - { - "bbox": [ - 43, - 187, - 441, - 199 - ], - "score": 1.0, - "content": "Drane; El Saadawi; Greeley; Heelas; Heelas and Woodhead; Miller and Hoffman.", - "type": "text" - } - ], - "index": 4, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 3.5, - "page_num": "page_34", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 43, - 174, - 512, - 199 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 39, - 84, - 546, - 115 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 84, - 546, - 115 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 39, - 84, - 546, - 115 - ], - "spans": [ - { - "bbox": [ - 39, - 84, - 546, - 115 - ], - "score": 0.966, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "f5f29b2b6999000e28c6a859950601a4f8936875bc09b03a9030230b0cb23ff0.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 39, - 84, - 546, - 94.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 39, - 94.33333333333333, - 546, - 104.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 39, - 104.66666666666666, - 546, - 114.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 39, - 126, - 545, - 175 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 126, - 545, - 175 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 39, - 126, - 545, - 175 - ], - "spans": [ - { - "bbox": [ - 39, - 126, - 545, - 175 - ], - "score": 0.958, - "html": "
14Applying material from Item I, analyse two reasons why the extent of secularisation may have been exaggerated.10
", - "type": "table", - "image_path": "c5bd056081be91f99ed528c82edae9ed45729b22a1fa7111546778ddfd709cd9.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 39, - 126, - 545, - 142.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 39, - 142.33333333333334, - 545, - 158.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 39, - 158.66666666666669, - 545, - 175.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 39, - 186, - 542, - 301 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 186, - 542, - 301 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 39, - 186, - 542, - 301 - ], - "spans": [ - { - "bbox": [ - 39, - 186, - 542, - 301 - ], - "score": 0.366, - "html": "
ItemI
Secularisation theory explains the decline in religious participation across parts of Europe, but it does not explain why religion continues to be popular in other parts of the world. It also fails to recognise
that religion may be changing rather than declining.
The extent of secularisation may have been exaggerated.
", - "type": "table", - "image_path": "e67b063f76718ec38a816a4e7f1b88fd510d1662954a90f7ec5fedb5da383a6b.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 39, - 186, - 542, - 224.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 39, - 224.33333333333334, - 542, - 262.6666666666667 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 39, - 262.6666666666667, - 542, - 301.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 41, - 311, - 546, - 721 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 311, - 546, - 721 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 41, - 311, - 546, - 721 - ], - "spans": [ - { - "bbox": [ - 41, - 311, - 546, - 721 - ], - "score": 0.984, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on There will be two developed applications of material from the item, eg high levels of religion in countries such as the USA linked to supply and demand and the diversity of beliefs and practices that are on offer; apparent decline of traditional religion but change in the way people practice, believing without belonging. There will be appropriate analysis/evaluation of two ways, eg religious diversity not always
4-7leading to higher levels of religion; extent of belief without belonging. Answers in this band will show a basic to reasonable knowledge and understanding of one There will be some successful application of material from the item, eg religious belief now changing to a more spiritual focus.
1-3There will be some analysis/evaluation. Answers in this band will show limited knowledge and understanding of one or two reasons There will be limited application of material from the item. Some material may be at a There will be limited or no analysis/evaluation.
0No relevant points.
", - "type": "table", - "image_path": "a04761a11f424d03f003a88e279fdd440bcb64ac199a55e9e8e3875553b3c080.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 41, - 311, - 546, - 447.66666666666663 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 41, - 447.66666666666663, - 546, - 584.3333333333333 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 41, - 584.3333333333333, - 546, - 720.9999999999999 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "table", - "bbox": [ - 43, - 730, - 544, - 769 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 43, - 730, - 544, - 769 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 43, - 730, - 544, - 769 - ], - "spans": [ - { - "bbox": [ - 43, - 730, - 544, - 769 - ], - "score": 0.323, - "html": "
Sources may include the following or other relevant ones: Berger; Bruce; Davie; Day; Finke; Gill
and Lundegarde; Hadaway; Heelas and Woodhead; Hervieu-Leger; Lyon; Norris and Inglehart; Stark andBainbridge;Vasquez;VoasandCrockett.
", - "type": "table", - "image_path": "b22ed4ad640f5fa17e3c5f7855c639f8973ccc64f17aaa3d49753a9b8a89fccd.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 43, - 730, - 544, - 743.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 43, - 743.0, - 544, - 756.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 43, - 756.0, - 544, - 769.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - } - ], - "layout_bboxes": [], - "page_idx": 35, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 39, - 84, - 546, - 115 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 84, - 546, - 115 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 39, - 84, - 546, - 115 - ], - "spans": [ - { - "bbox": [ - 39, - 84, - 546, - 115 - ], - "score": 0.966, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "f5f29b2b6999000e28c6a859950601a4f8936875bc09b03a9030230b0cb23ff0.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 39, - 84, - 546, - 94.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 39, - 94.33333333333333, - 546, - 104.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 39, - 104.66666666666666, - 546, - 114.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 39, - 126, - 545, - 175 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 126, - 545, - 175 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 39, - 126, - 545, - 175 - ], - "spans": [ - { - "bbox": [ - 39, - 126, - 545, - 175 - ], - "score": 0.958, - "html": "
14Applying material from Item I, analyse two reasons why the extent of secularisation may have been exaggerated.10
", - "type": "table", - "image_path": "c5bd056081be91f99ed528c82edae9ed45729b22a1fa7111546778ddfd709cd9.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 39, - 126, - 545, - 142.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 39, - 142.33333333333334, - 545, - 158.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 39, - 158.66666666666669, - 545, - 175.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 39, - 186, - 542, - 301 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 186, - 542, - 301 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 39, - 186, - 542, - 301 - ], - "spans": [ - { - "bbox": [ - 39, - 186, - 542, - 301 - ], - "score": 0.366, - "html": "
ItemI
Secularisation theory explains the decline in religious participation across parts of Europe, but it does not explain why religion continues to be popular in other parts of the world. It also fails to recognise
that religion may be changing rather than declining.
The extent of secularisation may have been exaggerated.
", - "type": "table", - "image_path": "e67b063f76718ec38a816a4e7f1b88fd510d1662954a90f7ec5fedb5da383a6b.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 39, - 186, - 542, - 224.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 39, - 224.33333333333334, - 542, - 262.6666666666667 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 39, - 262.6666666666667, - 542, - 301.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 41, - 311, - 546, - 721 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 311, - 546, - 721 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 41, - 311, - 546, - 721 - ], - "spans": [ - { - "bbox": [ - 41, - 311, - 546, - 721 - ], - "score": 0.984, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on There will be two developed applications of material from the item, eg high levels of religion in countries such as the USA linked to supply and demand and the diversity of beliefs and practices that are on offer; apparent decline of traditional religion but change in the way people practice, believing without belonging. There will be appropriate analysis/evaluation of two ways, eg religious diversity not always
4-7leading to higher levels of religion; extent of belief without belonging. Answers in this band will show a basic to reasonable knowledge and understanding of one There will be some successful application of material from the item, eg religious belief now changing to a more spiritual focus.
1-3There will be some analysis/evaluation. Answers in this band will show limited knowledge and understanding of one or two reasons There will be limited application of material from the item. Some material may be at a There will be limited or no analysis/evaluation.
0No relevant points.
", - "type": "table", - "image_path": "a04761a11f424d03f003a88e279fdd440bcb64ac199a55e9e8e3875553b3c080.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 41, - 311, - 546, - 447.66666666666663 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 41, - 447.66666666666663, - 546, - 584.3333333333333 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 41, - 584.3333333333333, - 546, - 720.9999999999999 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "table", - "bbox": [ - 43, - 730, - 544, - 769 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 43, - 730, - 544, - 769 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 43, - 730, - 544, - 769 - ], - "spans": [ - { - "bbox": [ - 43, - 730, - 544, - 769 - ], - "score": 0.323, - "html": "
Sources may include the following or other relevant ones: Berger; Bruce; Davie; Day; Finke; Gill
and Lundegarde; Hadaway; Heelas and Woodhead; Hervieu-Leger; Lyon; Norris and Inglehart; Stark andBainbridge;Vasquez;VoasandCrockett.
", - "type": "table", - "image_path": "b22ed4ad640f5fa17e3c5f7855c639f8973ccc64f17aaa3d49753a9b8a89fccd.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 43, - 730, - 544, - 743.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 43, - 743.0, - 544, - 756.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 43, - 756.0, - 544, - 769.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 41, - 797, - 52, - 805 - ], - "lines": [ - { - "bbox": [ - 40, - 797, - 54, - 807 - ], - "spans": [ - { - "bbox": [ - 40, - 797, - 54, - 807 - ], - "score": 1.0, - "content": "24 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 236, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "spans": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 39, - 84, - 546, - 115 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 84, - 546, - 115 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 39, - 84, - 546, - 115 - ], - "spans": [ - { - "bbox": [ - 39, - 84, - 546, - 115 - ], - "score": 0.966, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "f5f29b2b6999000e28c6a859950601a4f8936875bc09b03a9030230b0cb23ff0.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 39, - 84, - 546, - 94.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 39, - 94.33333333333333, - 546, - 104.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 39, - 104.66666666666666, - 546, - 114.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_35", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 39, - 126, - 545, - 175 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 126, - 545, - 175 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 39, - 126, - 545, - 175 - ], - "spans": [ - { - "bbox": [ - 39, - 126, - 545, - 175 - ], - "score": 0.958, - "html": "
14Applying material from Item I, analyse two reasons why the extent of secularisation may have been exaggerated.10
", - "type": "table", - "image_path": "c5bd056081be91f99ed528c82edae9ed45729b22a1fa7111546778ddfd709cd9.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 39, - 126, - 545, - 142.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 39, - 142.33333333333334, - 545, - 158.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 39, - 158.66666666666669, - 545, - 175.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_35", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 39, - 186, - 542, - 301 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 186, - 542, - 301 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 39, - 186, - 542, - 301 - ], - "spans": [ - { - "bbox": [ - 39, - 186, - 542, - 301 - ], - "score": 0.366, - "html": "
ItemI
Secularisation theory explains the decline in religious participation across parts of Europe, but it does not explain why religion continues to be popular in other parts of the world. It also fails to recognise
that religion may be changing rather than declining.
The extent of secularisation may have been exaggerated.
", - "type": "table", - "image_path": "e67b063f76718ec38a816a4e7f1b88fd510d1662954a90f7ec5fedb5da383a6b.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 39, - 186, - 542, - 224.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 39, - 224.33333333333334, - 542, - 262.6666666666667 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 39, - 262.6666666666667, - 542, - 301.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_35", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 41, - 311, - 546, - 721 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 311, - 546, - 721 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 41, - 311, - 546, - 721 - ], - "spans": [ - { - "bbox": [ - 41, - 311, - 546, - 721 - ], - "score": 0.984, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on There will be two developed applications of material from the item, eg high levels of religion in countries such as the USA linked to supply and demand and the diversity of beliefs and practices that are on offer; apparent decline of traditional religion but change in the way people practice, believing without belonging. There will be appropriate analysis/evaluation of two ways, eg religious diversity not always
4-7leading to higher levels of religion; extent of belief without belonging. Answers in this band will show a basic to reasonable knowledge and understanding of one There will be some successful application of material from the item, eg religious belief now changing to a more spiritual focus.
1-3There will be some analysis/evaluation. Answers in this band will show limited knowledge and understanding of one or two reasons There will be limited application of material from the item. Some material may be at a There will be limited or no analysis/evaluation.
0No relevant points.
", - "type": "table", - "image_path": "a04761a11f424d03f003a88e279fdd440bcb64ac199a55e9e8e3875553b3c080.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 41, - 311, - 546, - 447.66666666666663 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 41, - 447.66666666666663, - 546, - 584.3333333333333 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 41, - 584.3333333333333, - 546, - 720.9999999999999 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10, - "page_num": "page_35", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 43, - 730, - 544, - 769 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 43, - 730, - 544, - 769 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 43, - 730, - 544, - 769 - ], - "spans": [ - { - "bbox": [ - 43, - 730, - 544, - 769 - ], - "score": 0.323, - "html": "
Sources may include the following or other relevant ones: Berger; Bruce; Davie; Day; Finke; Gill
and Lundegarde; Hadaway; Heelas and Woodhead; Hervieu-Leger; Lyon; Norris and Inglehart; Stark andBainbridge;Vasquez;VoasandCrockett.
", - "type": "table", - "image_path": "b22ed4ad640f5fa17e3c5f7855c639f8973ccc64f17aaa3d49753a9b8a89fccd.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 43, - 730, - 544, - 743.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 43, - 743.0, - 544, - 756.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 43, - 756.0, - 544, - 769.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13, - "page_num": "page_35", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 40, - 97, - 546, - 127 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 97, - 546, - 127 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 40, - 97, - 546, - 127 - ], - "spans": [ - { - "bbox": [ - 40, - 97, - 546, - 127 - ], - "score": 0.958, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "3a3690542caac254555a042e4374663554ac52ef4ea53bde4c6fa599f1144b40.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 40, - 97, - 546, - 107.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 40, - 107.0, - 546, - 117.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 40, - 117.0, - 546, - 127.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 40, - 138, - 545, - 175 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 138, - 545, - 175 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 40, - 138, - 545, - 175 - ], - "spans": [ - { - "bbox": [ - 40, - 138, - 545, - 175 - ], - "score": 0.961, - "html": "
15Applying material from Item J and your knowledge, evaluate the view that religion acts as a force for social change.20
", - "type": "table", - "image_path": "73fb3c29e7b45cd42cd14f6d86a3d63b94e5dff735042380f80541da50b7bef4.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 40, - 138, - 545, - 150.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 40, - 150.33333333333334, - 545, - 162.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 40, - 162.66666666666669, - 545, - 175.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 39, - 186, - 535, - 286 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 186, - 535, - 286 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 39, - 186, - 535, - 286 - ], - "spans": [ - { - "bbox": [ - 39, - 186, - 535, - 286 - ], - "score": 0.556, - "html": "
ItemJ
Some sociologists argue that religion acts as a force for social change. It can be used to challenge mainstream beliefs and values, and inspire protest against the existing social order.
However, other sociologists suggest that the relationship between religion and social change is not straightforward and that religion can even prevent social change.
", - "type": "table", - "image_path": "f84e42255018e4e1ee58a9483349c4e4fc1741072447f7b535528cbab5130616.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 39, - 186, - 535, - 219.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 39, - 219.33333333333334, - 535, - 252.66666666666669 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 39, - 252.66666666666669, - 535, - 286.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 41, - 295, - 546, - 771 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 295, - 546, - 771 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 41, - 295, - 546, - 771 - ], - "spans": [ - { - "bbox": [ - 41, - 295, - 546, - 771 - ], - "score": 0.982, - "html": "
MarksLevelDescriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of the question. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for
13-16Answers in this band will show largely accurate, broad or deep but incomplete knowledge. presentedmaterial. maybeinadequatelyfocused.
9-12broadly accurate, if basic, account of some aspects of religion acting as a force for social change. Understands some limited but significant aspects of the question; superficial understanding of the presented material. Applying listed material from the general topic area but with limited regard for its relevance Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
", - "type": "table", - "image_path": "5499b5568a18706df7153b5fc42cf17d2b3e05ada08cc16da1dd87d1ff0a924f.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 41, - 295, - 546, - 453.66666666666663 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 41, - 453.66666666666663, - 546, - 612.3333333333333 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 41, - 612.3333333333333, - 546, - 770.9999999999999 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - } - ], - "layout_bboxes": [], - "page_idx": 36, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 40, - 97, - 546, - 127 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 97, - 546, - 127 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 40, - 97, - 546, - 127 - ], - "spans": [ - { - "bbox": [ - 40, - 97, - 546, - 127 - ], - "score": 0.958, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "3a3690542caac254555a042e4374663554ac52ef4ea53bde4c6fa599f1144b40.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 40, - 97, - 546, - 107.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 40, - 107.0, - 546, - 117.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 40, - 117.0, - 546, - 127.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 40, - 138, - 545, - 175 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 138, - 545, - 175 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 40, - 138, - 545, - 175 - ], - "spans": [ - { - "bbox": [ - 40, - 138, - 545, - 175 - ], - "score": 0.961, - "html": "
15Applying material from Item J and your knowledge, evaluate the view that religion acts as a force for social change.20
", - "type": "table", - "image_path": "73fb3c29e7b45cd42cd14f6d86a3d63b94e5dff735042380f80541da50b7bef4.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 40, - 138, - 545, - 150.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 40, - 150.33333333333334, - 545, - 162.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 40, - 162.66666666666669, - 545, - 175.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 39, - 186, - 535, - 286 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 186, - 535, - 286 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 39, - 186, - 535, - 286 - ], - "spans": [ - { - "bbox": [ - 39, - 186, - 535, - 286 - ], - "score": 0.556, - "html": "
ItemJ
Some sociologists argue that religion acts as a force for social change. It can be used to challenge mainstream beliefs and values, and inspire protest against the existing social order.
However, other sociologists suggest that the relationship between religion and social change is not straightforward and that religion can even prevent social change.
", - "type": "table", - "image_path": "f84e42255018e4e1ee58a9483349c4e4fc1741072447f7b535528cbab5130616.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 39, - 186, - 535, - 219.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 39, - 219.33333333333334, - 535, - 252.66666666666669 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 39, - 252.66666666666669, - 535, - 286.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 41, - 295, - 546, - 771 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 295, - 546, - 771 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 41, - 295, - 546, - 771 - ], - "spans": [ - { - "bbox": [ - 41, - 295, - 546, - 771 - ], - "score": 0.982, - "html": "
MarksLevelDescriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of the question. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for
13-16Answers in this band will show largely accurate, broad or deep but incomplete knowledge. presentedmaterial. maybeinadequatelyfocused.
9-12broadly accurate, if basic, account of some aspects of religion acting as a force for social change. Understands some limited but significant aspects of the question; superficial understanding of the presented material. Applying listed material from the general topic area but with limited regard for its relevance Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
", - "type": "table", - "image_path": "5499b5568a18706df7153b5fc42cf17d2b3e05ada08cc16da1dd87d1ff0a924f.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 41, - 295, - 546, - 453.66666666666663 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 41, - 453.66666666666663, - 546, - 612.3333333333333 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 41, - 612.3333333333333, - 546, - 770.9999999999999 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 543, - 797, - 554, - 806 - ], - "lines": [ - { - "bbox": [ - 542, - 796, - 555, - 807 - ], - "spans": [ - { - "bbox": [ - 542, - 796, - 555, - 807 - ], - "score": 1.0, - "content": "25 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 236, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 238, - 36, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 238, - 36, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 40, - 97, - 546, - 127 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 97, - 546, - 127 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 40, - 97, - 546, - 127 - ], - "spans": [ - { - "bbox": [ - 40, - 97, - 546, - 127 - ], - "score": 0.958, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "3a3690542caac254555a042e4374663554ac52ef4ea53bde4c6fa599f1144b40.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 40, - 97, - 546, - 107.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 40, - 107.0, - 546, - 117.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 40, - 117.0, - 546, - 127.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_36", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 40, - 138, - 545, - 175 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 138, - 545, - 175 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 40, - 138, - 545, - 175 - ], - "spans": [ - { - "bbox": [ - 40, - 138, - 545, - 175 - ], - "score": 0.961, - "html": "
15Applying material from Item J and your knowledge, evaluate the view that religion acts as a force for social change.20
", - "type": "table", - "image_path": "73fb3c29e7b45cd42cd14f6d86a3d63b94e5dff735042380f80541da50b7bef4.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 40, - 138, - 545, - 150.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 40, - 150.33333333333334, - 545, - 162.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 40, - 162.66666666666669, - 545, - 175.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_36", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 39, - 186, - 535, - 286 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 186, - 535, - 286 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 39, - 186, - 535, - 286 - ], - "spans": [ - { - "bbox": [ - 39, - 186, - 535, - 286 - ], - "score": 0.556, - "html": "
ItemJ
Some sociologists argue that religion acts as a force for social change. It can be used to challenge mainstream beliefs and values, and inspire protest against the existing social order.
However, other sociologists suggest that the relationship between religion and social change is not straightforward and that religion can even prevent social change.
", - "type": "table", - "image_path": "f84e42255018e4e1ee58a9483349c4e4fc1741072447f7b535528cbab5130616.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 39, - 186, - 535, - 219.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 39, - 219.33333333333334, - 535, - 252.66666666666669 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 39, - 252.66666666666669, - 535, - 286.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_36", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 41, - 295, - 546, - 771 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 295, - 546, - 771 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 41, - 295, - 546, - 771 - ], - "spans": [ - { - "bbox": [ - 41, - 295, - 546, - 771 - ], - "score": 0.982, - "html": "
MarksLevelDescriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of the question. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for
13-16Answers in this band will show largely accurate, broad or deep but incomplete knowledge. presentedmaterial. maybeinadequatelyfocused.
9-12broadly accurate, if basic, account of some aspects of religion acting as a force for social change. Understands some limited but significant aspects of the question; superficial understanding of the presented material. Applying listed material from the general topic area but with limited regard for its relevance Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
", - "type": "table", - "image_path": "5499b5568a18706df7153b5fc42cf17d2b3e05ada08cc16da1dd87d1ff0a924f.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 41, - 295, - 546, - 453.66666666666663 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 41, - 453.66666666666663, - 546, - 612.3333333333333 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 41, - 612.3333333333333, - 546, - 770.9999999999999 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10, - "page_num": "page_36", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 41, - 83, - 544, - 332 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 83, - 544, - 332 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 83, - 544, - 332 - ], - "spans": [ - { - "bbox": [ - 41, - 83, - 544, - 332 - ], - "score": 0.977, - "html": "
5-8the question; simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question.
1-4points about religion in general. Very little/no understanding of the question and of the presentedmaterial. Significant errors and/or omissions in application of material. No analysis or evaluation.
0No relevant points.
", - "type": "table", - "image_path": "da54f83fff84d051ea8e0c164e51ac833ad0c51e7ab752969b1744e1288fb4b0.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 41, - 83, - 544, - 166.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 41, - 166.0, - 544, - 249.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 41, - 249.0, - 544, - 332.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "title", - "bbox": [ - 43, - 348, - 139, - 362 - ], - "lines": [ - { - "bbox": [ - 43, - 350, - 138, - 361 - ], - "spans": [ - { - "bbox": [ - 43, - 350, - 138, - 361 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 42, - 374, - 316, - 387 - ], - "lines": [ - { - "bbox": [ - 43, - 374, - 316, - 388 - ], - "spans": [ - { - "bbox": [ - 43, - 374, - 316, - 388 - ], - "score": 1.0, - "content": "Concepts and issues such as the following may appear:", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 43, - 399, - 531, - 451 - ], - "lines": [ - { - "bbox": [ - 42, - 400, - 529, - 413 - ], - "spans": [ - { - "bbox": [ - 42, - 400, - 529, - 413 - ], - "score": 1.0, - "content": "religion as an ideological resource; hegemony; counter hegemony; organic intellectuals; principle of ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 43, - 413, - 492, - 426 - ], - "spans": [ - { - "bbox": [ - 43, - 413, - 492, - 426 - ], - "score": 1.0, - "content": "hope; millenarian movements; cargo cults; Liberation Theology; religious feminism; religious", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 42, - 426, - 520, - 438 - ], - "spans": [ - { - "bbox": [ - 42, - 426, - 520, - 438 - ], - "score": 1.0, - "content": "fundamentalism; televangelism; the spirit of capitalism; religion as a conservative force; traditional ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 41, - 437, - 530, - 452 - ], - "spans": [ - { - "bbox": [ - 41, - 437, - 530, - 452 - ], - "score": 1.0, - "content": "beliefs and values; stabilising society; conservative beliefs; patriarchal ideology; bourgeois ideology.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 6.5 - }, - { - "type": "text", - "bbox": [ - 42, - 484, - 526, - 511 - ], - "lines": [ - { - "bbox": [ - 43, - 485, - 521, - 498 - ], - "spans": [ - { - "bbox": [ - 43, - 485, - 521, - 498 - ], - "score": 1.0, - "content": "Sources may include the following or other relevant ones: Armstrong; Billings; Bruce; Brusco;", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 43, - 498, - 508, - 511 - ], - "spans": [ - { - "bbox": [ - 43, - 498, - 508, - 511 - ], - "score": 1.0, - "content": "Casanova; Durkheim; El Saadawi; Gramsci; Maduro; Marx; Lowy; Weber; Woodhead; Worsley.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9.5 - } - ], - "layout_bboxes": [], - "page_idx": 37, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 41, - 83, - 544, - 332 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 83, - 544, - 332 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 83, - 544, - 332 - ], - "spans": [ - { - "bbox": [ - 41, - 83, - 544, - 332 - ], - "score": 0.977, - "html": "
5-8the question; simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question.
1-4points about religion in general. Very little/no understanding of the question and of the presentedmaterial. Significant errors and/or omissions in application of material. No analysis or evaluation.
0No relevant points.
", - "type": "table", - "image_path": "da54f83fff84d051ea8e0c164e51ac833ad0c51e7ab752969b1744e1288fb4b0.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 41, - 83, - 544, - 166.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 41, - 166.0, - 544, - 249.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 41, - 249.0, - 544, - 332.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 237, - 35, - 554, - 48 - ], - "lines": [ - { - "bbox": [ - 237, - 35, - 553, - 48 - ], - "spans": [ - { - "bbox": [ - 237, - 35, - 553, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 797, - 52, - 805 - ], - "lines": [ - { - "bbox": [ - 41, - 797, - 53, - 807 - ], - "spans": [ - { - "bbox": [ - 41, - 797, - 53, - 807 - ], - "score": 1.0, - "content": "26 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 41, - 83, - 544, - 332 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 83, - 544, - 332 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 83, - 544, - 332 - ], - "spans": [ - { - "bbox": [ - 41, - 83, - 544, - 332 - ], - "score": 0.977, - "html": "
5-8the question; simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question.
1-4points about religion in general. Very little/no understanding of the question and of the presentedmaterial. Significant errors and/or omissions in application of material. No analysis or evaluation.
0No relevant points.
", - "type": "table", - "image_path": "da54f83fff84d051ea8e0c164e51ac833ad0c51e7ab752969b1744e1288fb4b0.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 41, - 83, - 544, - 166.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 41, - 166.0, - 544, - 249.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 41, - 249.0, - 544, - 332.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_37", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 43, - 348, - 139, - 362 - ], - "lines": [ - { - "bbox": [ - 43, - 350, - 138, - 361 - ], - "spans": [ - { - "bbox": [ - 43, - 350, - 138, - 361 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_37", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 374, - 316, - 387 - ], - "lines": [ - { - "bbox": [ - 43, - 374, - 316, - 388 - ], - "spans": [ - { - "bbox": [ - 43, - 374, - 316, - 388 - ], - "score": 1.0, - "content": "Concepts and issues such as the following may appear:", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_37", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 43, - 374, - 316, - 388 - ] - }, - { - "type": "text", - "bbox": [ - 43, - 399, - 531, - 451 - ], - "lines": [ - { - "bbox": [ - 42, - 400, - 529, - 413 - ], - "spans": [ - { - "bbox": [ - 42, - 400, - 529, - 413 - ], - "score": 1.0, - "content": "religion as an ideological resource; hegemony; counter hegemony; organic intellectuals; principle of ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 43, - 413, - 492, - 426 - ], - "spans": [ - { - "bbox": [ - 43, - 413, - 492, - 426 - ], - "score": 1.0, - "content": "hope; millenarian movements; cargo cults; Liberation Theology; religious feminism; religious", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 42, - 426, - 520, - 438 - ], - "spans": [ - { - "bbox": [ - 42, - 426, - 520, - 438 - ], - "score": 1.0, - "content": "fundamentalism; televangelism; the spirit of capitalism; religion as a conservative force; traditional ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 41, - 437, - 530, - 452 - ], - "spans": [ - { - "bbox": [ - 41, - 437, - 530, - 452 - ], - "score": 1.0, - "content": "beliefs and values; stabilising society; conservative beliefs; patriarchal ideology; bourgeois ideology.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 6.5, - "page_num": "page_37", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 400, - 530, - 452 - ] - }, - { - "type": "list", - "bbox": [ - 42, - 484, - 526, - 511 - ], - "lines": [ - { - "bbox": [ - 43, - 485, - 521, - 498 - ], - "spans": [ - { - "bbox": [ - 43, - 485, - 521, - 498 - ], - "score": 1.0, - "content": "Sources may include the following or other relevant ones: Armstrong; Billings; Bruce; Brusco;", - "type": "text" - } - ], - "index": 9, - "is_list_end_line": true - }, - { - "bbox": [ - 43, - 498, - 508, - 511 - ], - "spans": [ - { - "bbox": [ - 43, - 498, - 508, - 511 - ], - "score": 1.0, - "content": "Casanova; Durkheim; El Saadawi; Gramsci; Maduro; Marx; Lowy; Weber; Woodhead; Worsley.", - "type": "text" - } - ], - "index": 10, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 9.5, - "page_num": "page_37", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 43, - 485, - 521, - 511 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 212, - 92, - 373, - 106 - ], - "lines": [ - { - "bbox": [ - 212, - 93, - 373, - 105 - ], - "spans": [ - { - "bbox": [ - 212, - 93, - 373, - 105 - ], - "score": 1.0, - "content": "Topic B2 Global Development", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table", - "bbox": [ - 40, - 112, - 546, - 143 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 112, - 546, - 143 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 40, - 112, - 546, - 143 - ], - "spans": [ - { - "bbox": [ - 40, - 112, - 546, - 143 - ], - "score": 0.964, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "c2589e5233afc89a68ae3e99361c8bc67b18b4c52959ee3355787fb49f203e54.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 40, - 112, - 546, - 122.33333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 40, - 122.33333333333333, - 546, - 132.66666666666666 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 40, - 132.66666666666666, - 546, - 143.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - }, - { - "type": "table", - "bbox": [ - 39, - 166, - 544, - 205 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 166, - 544, - 205 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 39, - 166, - 544, - 205 - ], - "spans": [ - { - "bbox": [ - 39, - 166, - 544, - 205 - ], - "score": 0.949, - "html": "
16Outline and explain two ways in which development can lead to demographic changes.10
", - "type": "table", - "image_path": "ade7e9731efd8f759ef3d051cc9eaa8c8270cbcb8eaf2086af3e72dbae7b9218.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 39, - 166, - 544, - 179.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 39, - 179.0, - 544, - 192.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 39, - 192.0, - 544, - 205.0 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5 - }, - { - "type": "table", - "bbox": [ - 41, - 215, - 546, - 599 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 215, - 546, - 599 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 41, - 215, - 546, - 599 - ], - "spans": [ - { - "bbox": [ - 41, - 215, - 546, - 599 - ], - "score": 0.981, - "html": "
MarksLevel Descriptors
8-10ways in which development can lead to demographic changes. There will be two applications of relevant material, eg development can lead to the
4-7Answers in this band will show a reasonable to good knowledge and understanding of one There will be one or two applications of relevant material, eg women may have fewer children.
1-3There will be some basic analysis Answers in this band will show limited knowledge and litle or no understanding of the questionor the material. There will be limited focus on the question, eg there may be some drift into discussion of demography in general.
0There will be little or no analysis. No relevant points.
", - "type": "table", - "image_path": "be69e4743723914676bf9c8fb17da3c207677c18d16e2f17f9131327503ac48c.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 41, - 215, - 546, - 343.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 41, - 343.0, - 546, - 471.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 41, - 471.0, - 546, - 599.0 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 8 - }, - { - "type": "title", - "bbox": [ - 44, - 612, - 140, - 625 - ], - "lines": [ - { - "bbox": [ - 45, - 613, - 139, - 624 - ], - "spans": [ - { - "bbox": [ - 45, - 613, - 139, - 624 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 43, - 637, - 354, - 651 - ], - "lines": [ - { - "bbox": [ - 45, - 639, - 353, - 650 - ], - "spans": [ - { - "bbox": [ - 45, - 639, - 353, - 650 - ], - "score": 1.0, - "content": "Answers may include the following and/or other relevant points:", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 44, - 651, - 269, - 758 - ], - "lines": [ - { - "bbox": [ - 47, - 652, - 187, - 664 - ], - "spans": [ - { - "bbox": [ - 47, - 652, - 187, - 664 - ], - "score": 1.0, - "content": "• the demographic transition", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 49, - 666, - 138, - 677 - ], - "spans": [ - { - "bbox": [ - 49, - 666, - 138, - 677 - ], - "score": 1.0, - "content": " falling birth rates", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 54, - 678, - 158, - 691 - ], - "spans": [ - { - "bbox": [ - 54, - 678, - 158, - 691 - ], - "score": 1.0, - "content": "falling mortality rates", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 53, - 691, - 187, - 705 - ], - "spans": [ - { - "bbox": [ - 53, - 691, - 187, - 705 - ], - "score": 1.0, - "content": "increase in life expectancy", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 49, - 705, - 146, - 718 - ], - "spans": [ - { - "bbox": [ - 49, - 705, - 146, - 718 - ], - "score": 1.0, - "content": " lower fertility rates", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 55, - 719, - 152, - 730 - ], - "spans": [ - { - "bbox": [ - 55, - 719, - 152, - 730 - ], - "score": 1.0, - "content": "smaller family sizes", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 55, - 732, - 269, - 745 - ], - "spans": [ - { - "bbox": [ - 55, - 732, - 269, - 745 - ], - "score": 1.0, - "content": "changing age structure – ageing population", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 54, - 746, - 156, - 758 - ], - "spans": [ - { - "bbox": [ - 54, - 746, - 156, - 758 - ], - "score": 1.0, - "content": "increased migration.", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 15.5 - } - ], - "layout_bboxes": [], - "page_idx": 38, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 40, - 112, - 546, - 143 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 112, - 546, - 143 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 40, - 112, - 546, - 143 - ], - "spans": [ - { - "bbox": [ - 40, - 112, - 546, - 143 - ], - "score": 0.964, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "c2589e5233afc89a68ae3e99361c8bc67b18b4c52959ee3355787fb49f203e54.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 40, - 112, - 546, - 122.33333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 40, - 122.33333333333333, - 546, - 132.66666666666666 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 40, - 132.66666666666666, - 546, - 143.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - }, - { - "type": "table", - "bbox": [ - 39, - 166, - 544, - 205 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 166, - 544, - 205 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 39, - 166, - 544, - 205 - ], - "spans": [ - { - "bbox": [ - 39, - 166, - 544, - 205 - ], - "score": 0.949, - "html": "
16Outline and explain two ways in which development can lead to demographic changes.10
", - "type": "table", - "image_path": "ade7e9731efd8f759ef3d051cc9eaa8c8270cbcb8eaf2086af3e72dbae7b9218.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 39, - 166, - 544, - 179.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 39, - 179.0, - 544, - 192.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 39, - 192.0, - 544, - 205.0 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5 - }, - { - "type": "table", - "bbox": [ - 41, - 215, - 546, - 599 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 215, - 546, - 599 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 41, - 215, - 546, - 599 - ], - "spans": [ - { - "bbox": [ - 41, - 215, - 546, - 599 - ], - "score": 0.981, - "html": "
MarksLevel Descriptors
8-10ways in which development can lead to demographic changes. There will be two applications of relevant material, eg development can lead to the
4-7Answers in this band will show a reasonable to good knowledge and understanding of one There will be one or two applications of relevant material, eg women may have fewer children.
1-3There will be some basic analysis Answers in this band will show limited knowledge and litle or no understanding of the questionor the material. There will be limited focus on the question, eg there may be some drift into discussion of demography in general.
0There will be little or no analysis. No relevant points.
", - "type": "table", - "image_path": "be69e4743723914676bf9c8fb17da3c207677c18d16e2f17f9131327503ac48c.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 41, - 215, - 546, - 343.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 41, - 343.0, - 546, - 471.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 41, - 471.0, - 546, - 599.0 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 8 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 236, - 35, - 554, - 48 - ], - "lines": [ - { - "bbox": [ - 238, - 37, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 238, - 37, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 543, - 797, - 553, - 805 - ], - "lines": [ - { - "bbox": [ - 542, - 796, - 555, - 808 - ], - "spans": [ - { - "bbox": [ - 542, - 796, - 555, - 808 - ], - "score": 1.0, - "content": "27 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 212, - 92, - 373, - 106 - ], - "lines": [ - { - "bbox": [ - 212, - 93, - 373, - 105 - ], - "spans": [ - { - "bbox": [ - 212, - 93, - 373, - 105 - ], - "score": 1.0, - "content": "Topic B2 Global Development", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_38", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 40, - 112, - 546, - 143 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 112, - 546, - 143 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 40, - 112, - 546, - 143 - ], - "spans": [ - { - "bbox": [ - 40, - 112, - 546, - 143 - ], - "score": 0.964, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "c2589e5233afc89a68ae3e99361c8bc67b18b4c52959ee3355787fb49f203e54.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 40, - 112, - 546, - 122.33333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 40, - 122.33333333333333, - 546, - 132.66666666666666 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 40, - 132.66666666666666, - 546, - 143.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2, - "page_num": "page_38", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 39, - 166, - 544, - 205 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 166, - 544, - 205 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 39, - 166, - 544, - 205 - ], - "spans": [ - { - "bbox": [ - 39, - 166, - 544, - 205 - ], - "score": 0.949, - "html": "
16Outline and explain two ways in which development can lead to demographic changes.10
", - "type": "table", - "image_path": "ade7e9731efd8f759ef3d051cc9eaa8c8270cbcb8eaf2086af3e72dbae7b9218.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 39, - 166, - 544, - 179.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 39, - 179.0, - 544, - 192.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 39, - 192.0, - 544, - 205.0 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5, - "page_num": "page_38", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 41, - 215, - 546, - 599 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 215, - 546, - 599 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 41, - 215, - 546, - 599 - ], - "spans": [ - { - "bbox": [ - 41, - 215, - 546, - 599 - ], - "score": 0.981, - "html": "
MarksLevel Descriptors
8-10ways in which development can lead to demographic changes. There will be two applications of relevant material, eg development can lead to the
4-7Answers in this band will show a reasonable to good knowledge and understanding of one There will be one or two applications of relevant material, eg women may have fewer children.
1-3There will be some basic analysis Answers in this band will show limited knowledge and litle or no understanding of the questionor the material. There will be limited focus on the question, eg there may be some drift into discussion of demography in general.
0There will be little or no analysis. No relevant points.
", - "type": "table", - "image_path": "be69e4743723914676bf9c8fb17da3c207677c18d16e2f17f9131327503ac48c.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 41, - 215, - 546, - 343.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 41, - 343.0, - 546, - 471.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 41, - 471.0, - 546, - 599.0 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 8, - "page_num": "page_38", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 44, - 612, - 140, - 625 - ], - "lines": [ - { - "bbox": [ - 45, - 613, - 139, - 624 - ], - "spans": [ - { - "bbox": [ - 45, - 613, - 139, - 624 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_38", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 43, - 637, - 354, - 651 - ], - "lines": [ - { - "bbox": [ - 45, - 639, - 353, - 650 - ], - "spans": [ - { - "bbox": [ - 45, - 639, - 353, - 650 - ], - "score": 1.0, - "content": "Answers may include the following and/or other relevant points:", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_38", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 45, - 639, - 353, - 650 - ] - }, - { - "type": "list", - "bbox": [ - 44, - 651, - 269, - 758 - ], - "lines": [ - { - "bbox": [ - 47, - 652, - 187, - 664 - ], - "spans": [ - { - "bbox": [ - 47, - 652, - 187, - 664 - ], - "score": 1.0, - "content": "• the demographic transition", - "type": "text" - } - ], - "index": 12, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 49, - 666, - 138, - 677 - ], - "spans": [ - { - "bbox": [ - 49, - 666, - 138, - 677 - ], - "score": 1.0, - "content": " falling birth rates", - "type": "text" - } - ], - "index": 13, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 54, - 678, - 158, - 691 - ], - "spans": [ - { - "bbox": [ - 54, - 678, - 158, - 691 - ], - "score": 1.0, - "content": "falling mortality rates", - "type": "text" - } - ], - "index": 14, - "is_list_end_line": true - }, - { - "bbox": [ - 53, - 691, - 187, - 705 - ], - "spans": [ - { - "bbox": [ - 53, - 691, - 187, - 705 - ], - "score": 1.0, - "content": "increase in life expectancy", - "type": "text" - } - ], - "index": 15, - "is_list_end_line": true - }, - { - "bbox": [ - 49, - 705, - 146, - 718 - ], - "spans": [ - { - "bbox": [ - 49, - 705, - 146, - 718 - ], - "score": 1.0, - "content": " lower fertility rates", - "type": "text" - } - ], - "index": 16, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 55, - 719, - 152, - 730 - ], - "spans": [ - { - "bbox": [ - 55, - 719, - 152, - 730 - ], - "score": 1.0, - "content": "smaller family sizes", - "type": "text" - } - ], - "index": 17, - "is_list_end_line": true - }, - { - "bbox": [ - 55, - 732, - 269, - 745 - ], - "spans": [ - { - "bbox": [ - 55, - 732, - 269, - 745 - ], - "score": 1.0, - "content": "changing age structure – ageing population", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 54, - 746, - 156, - 758 - ], - "spans": [ - { - "bbox": [ - 54, - 746, - 156, - 758 - ], - "score": 1.0, - "content": "increased migration.", - "type": "text" - } - ], - "index": 19, - "is_list_end_line": true - } - ], - "index": 15.5, - "page_num": "page_38", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 47, - 652, - 269, - 758 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 41, - 86, - 543, - 131 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 86, - 543, - 131 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 86, - 543, - 131 - ], - "spans": [ - { - "bbox": [ - 41, - 86, - 543, - 131 - ], - "score": 0.799, - "html": "
Sources may include the following or other relevant ones:
Adamson; Chrispin and Jegede; Cohen and Kennedy; Eberstadt; Ehrlich; Harrison; Hewitt and Smith;
Kaplan;Malthus;Richards;Robeyetal;Rosling;Webster.
", - "type": "table", - "image_path": "1868b0f7f5adc1b457a29e7424ca0ef12fe0ffdbb4a6094c446d20bf365ee948.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 41, - 86, - 543, - 101.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 41, - 101.0, - 543, - 116.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 41, - 116.0, - 543, - 131.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 42, - 147, - 545, - 179 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 147, - 545, - 179 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 42, - 147, - 545, - 179 - ], - "spans": [ - { - "bbox": [ - 42, - 147, - 545, - 179 - ], - "score": 0.963, - "html": "
QuTotal Marking guidance marks
", - "type": "table", - "image_path": "bf29b48f606c3a93f30f58fef3c38a4a244bf121b8334b1719c700228d59c246.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 42, - 147, - 545, - 157.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 42, - 157.66666666666666, - 545, - 168.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 42, - 168.33333333333331, - 545, - 178.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 39, - 190, - 545, - 227 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 190, - 545, - 227 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 39, - 190, - 545, - 227 - ], - "spans": [ - { - "bbox": [ - 39, - 190, - 545, - 227 - ], - "score": 0.95, - "html": "
17Applying material from Item K, analyse two ways in which development can affect gender inequalities.10
", - "type": "table", - "image_path": "efbeae9d1a149e666a45cf7837d76f113e043d18544c3f31038b42a7bf617b20.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 39, - 190, - 545, - 202.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 39, - 202.33333333333334, - 545, - 214.66666666666669 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 39, - 214.66666666666669, - 545, - 227.00000000000003 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 39, - 239, - 540, - 364 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 239, - 540, - 364 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 39, - 239, - 540, - 364 - ], - "spans": [ - { - "bbox": [ - 39, - 239, - 540, - 364 - ], - "score": 0.717, - "html": "
ItemK
Development can lead to new ways for previously exploited groups to improve their situation. It can also cause powerful groups tofeel threatened by changes and lead them toassert what are seen as traditionalattitudesandpractices.
Developmentcanaffectgenderinequalities
", - "type": "table", - "image_path": "08e3760476341311f2bf4e9d2d5f5592291993d7ebd2ba9a6dd3fe323592d755.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 39, - 239, - 540, - 280.6666666666667 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 39, - 280.6666666666667, - 540, - 322.33333333333337 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 39, - 322.33333333333337, - 540, - 364.00000000000006 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "table", - "bbox": [ - 40, - 373, - 546, - 770 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 373, - 546, - 770 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 40, - 373, - 546, - 770 - ], - "spans": [ - { - "bbox": [ - 40, - 373, - 546, - 770 - ], - "score": 0.983, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on to a backlash reasserting patriarchal values. There will be appropriate analysis/evaluation of two ways eg of the extent to which
4-7Answers in this band will show a basic to reasonable knowledge and understanding of one There will be some successful application of material from the item, eg education for girls has led to greater employment opportunities. Therewill be some analysis/evaluation
1-3Answers in this band will show limited knowledge and understanding of one or two ways in which development can affect gender inequalities. There will be limited application of material from the item. Some material may be at a tangent to the question, eg there may be some drift into accounts of inequalities in general.
0There will be limited or no analysis/evaluation. No relevant points.
", - "type": "table", - "image_path": "732f98332709676d006ed40595b5373c467477a7944247979387028951d6b31a.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 40, - 373, - 546, - 505.33333333333337 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 40, - 505.33333333333337, - 546, - 637.6666666666667 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 40, - 637.6666666666667, - 546, - 770.0000000000001 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - } - ], - "layout_bboxes": [], - "page_idx": 39, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 41, - 86, - 543, - 131 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 86, - 543, - 131 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 86, - 543, - 131 - ], - "spans": [ - { - "bbox": [ - 41, - 86, - 543, - 131 - ], - "score": 0.799, - "html": "
Sources may include the following or other relevant ones:
Adamson; Chrispin and Jegede; Cohen and Kennedy; Eberstadt; Ehrlich; Harrison; Hewitt and Smith;
Kaplan;Malthus;Richards;Robeyetal;Rosling;Webster.
", - "type": "table", - "image_path": "1868b0f7f5adc1b457a29e7424ca0ef12fe0ffdbb4a6094c446d20bf365ee948.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 41, - 86, - 543, - 101.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 41, - 101.0, - 543, - 116.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 41, - 116.0, - 543, - 131.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 42, - 147, - 545, - 179 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 147, - 545, - 179 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 42, - 147, - 545, - 179 - ], - "spans": [ - { - "bbox": [ - 42, - 147, - 545, - 179 - ], - "score": 0.963, - "html": "
QuTotal Marking guidance marks
", - "type": "table", - "image_path": "bf29b48f606c3a93f30f58fef3c38a4a244bf121b8334b1719c700228d59c246.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 42, - 147, - 545, - 157.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 42, - 157.66666666666666, - 545, - 168.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 42, - 168.33333333333331, - 545, - 178.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 39, - 190, - 545, - 227 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 190, - 545, - 227 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 39, - 190, - 545, - 227 - ], - "spans": [ - { - "bbox": [ - 39, - 190, - 545, - 227 - ], - "score": 0.95, - "html": "
17Applying material from Item K, analyse two ways in which development can affect gender inequalities.10
", - "type": "table", - "image_path": "efbeae9d1a149e666a45cf7837d76f113e043d18544c3f31038b42a7bf617b20.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 39, - 190, - 545, - 202.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 39, - 202.33333333333334, - 545, - 214.66666666666669 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 39, - 214.66666666666669, - 545, - 227.00000000000003 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 39, - 239, - 540, - 364 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 239, - 540, - 364 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 39, - 239, - 540, - 364 - ], - "spans": [ - { - "bbox": [ - 39, - 239, - 540, - 364 - ], - "score": 0.717, - "html": "
ItemK
Development can lead to new ways for previously exploited groups to improve their situation. It can also cause powerful groups tofeel threatened by changes and lead them toassert what are seen as traditionalattitudesandpractices.
Developmentcanaffectgenderinequalities
", - "type": "table", - "image_path": "08e3760476341311f2bf4e9d2d5f5592291993d7ebd2ba9a6dd3fe323592d755.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 39, - 239, - 540, - 280.6666666666667 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 39, - 280.6666666666667, - 540, - 322.33333333333337 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 39, - 322.33333333333337, - 540, - 364.00000000000006 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "table", - "bbox": [ - 40, - 373, - 546, - 770 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 373, - 546, - 770 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 40, - 373, - 546, - 770 - ], - "spans": [ - { - "bbox": [ - 40, - 373, - 546, - 770 - ], - "score": 0.983, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on to a backlash reasserting patriarchal values. There will be appropriate analysis/evaluation of two ways eg of the extent to which
4-7Answers in this band will show a basic to reasonable knowledge and understanding of one There will be some successful application of material from the item, eg education for girls has led to greater employment opportunities. Therewill be some analysis/evaluation
1-3Answers in this band will show limited knowledge and understanding of one or two ways in which development can affect gender inequalities. There will be limited application of material from the item. Some material may be at a tangent to the question, eg there may be some drift into accounts of inequalities in general.
0There will be limited or no analysis/evaluation. No relevant points.
", - "type": "table", - "image_path": "732f98332709676d006ed40595b5373c467477a7944247979387028951d6b31a.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 40, - 373, - 546, - 505.33333333333337 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 40, - 505.33333333333337, - 546, - 637.6666666666667 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 40, - 637.6666666666667, - 546, - 770.0000000000001 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 237, - 35, - 554, - 48 - ], - "lines": [ - { - "bbox": [ - 237, - 37, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 237, - 37, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 797, - 52, - 806 - ], - "lines": [ - { - "bbox": [ - 41, - 797, - 53, - 807 - ], - "spans": [ - { - "bbox": [ - 41, - 797, - 53, - 807 - ], - "score": 1.0, - "content": "28 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 41, - 86, - 543, - 131 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 86, - 543, - 131 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 86, - 543, - 131 - ], - "spans": [ - { - "bbox": [ - 41, - 86, - 543, - 131 - ], - "score": 0.799, - "html": "
Sources may include the following or other relevant ones:
Adamson; Chrispin and Jegede; Cohen and Kennedy; Eberstadt; Ehrlich; Harrison; Hewitt and Smith;
Kaplan;Malthus;Richards;Robeyetal;Rosling;Webster.
", - "type": "table", - "image_path": "1868b0f7f5adc1b457a29e7424ca0ef12fe0ffdbb4a6094c446d20bf365ee948.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 41, - 86, - 543, - 101.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 41, - 101.0, - 543, - 116.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 41, - 116.0, - 543, - 131.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_39", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 42, - 147, - 545, - 179 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 147, - 545, - 179 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 42, - 147, - 545, - 179 - ], - "spans": [ - { - "bbox": [ - 42, - 147, - 545, - 179 - ], - "score": 0.963, - "html": "
QuTotal Marking guidance marks
", - "type": "table", - "image_path": "bf29b48f606c3a93f30f58fef3c38a4a244bf121b8334b1719c700228d59c246.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 42, - 147, - 545, - 157.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 42, - 157.66666666666666, - 545, - 168.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 42, - 168.33333333333331, - 545, - 178.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_39", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 39, - 190, - 545, - 227 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 190, - 545, - 227 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 39, - 190, - 545, - 227 - ], - "spans": [ - { - "bbox": [ - 39, - 190, - 545, - 227 - ], - "score": 0.95, - "html": "
17Applying material from Item K, analyse two ways in which development can affect gender inequalities.10
", - "type": "table", - "image_path": "efbeae9d1a149e666a45cf7837d76f113e043d18544c3f31038b42a7bf617b20.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 39, - 190, - 545, - 202.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 39, - 202.33333333333334, - 545, - 214.66666666666669 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 39, - 214.66666666666669, - 545, - 227.00000000000003 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_39", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 39, - 239, - 540, - 364 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 239, - 540, - 364 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 39, - 239, - 540, - 364 - ], - "spans": [ - { - "bbox": [ - 39, - 239, - 540, - 364 - ], - "score": 0.717, - "html": "
ItemK
Development can lead to new ways for previously exploited groups to improve their situation. It can also cause powerful groups tofeel threatened by changes and lead them toassert what are seen as traditionalattitudesandpractices.
Developmentcanaffectgenderinequalities
", - "type": "table", - "image_path": "08e3760476341311f2bf4e9d2d5f5592291993d7ebd2ba9a6dd3fe323592d755.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 39, - 239, - 540, - 280.6666666666667 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 39, - 280.6666666666667, - 540, - 322.33333333333337 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 39, - 322.33333333333337, - 540, - 364.00000000000006 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10, - "page_num": "page_39", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 40, - 373, - 546, - 770 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 373, - 546, - 770 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 40, - 373, - 546, - 770 - ], - "spans": [ - { - "bbox": [ - 40, - 373, - 546, - 770 - ], - "score": 0.983, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on to a backlash reasserting patriarchal values. There will be appropriate analysis/evaluation of two ways eg of the extent to which
4-7Answers in this band will show a basic to reasonable knowledge and understanding of one There will be some successful application of material from the item, eg education for girls has led to greater employment opportunities. Therewill be some analysis/evaluation
1-3Answers in this band will show limited knowledge and understanding of one or two ways in which development can affect gender inequalities. There will be limited application of material from the item. Some material may be at a tangent to the question, eg there may be some drift into accounts of inequalities in general.
0There will be limited or no analysis/evaluation. No relevant points.
", - "type": "table", - "image_path": "732f98332709676d006ed40595b5373c467477a7944247979387028951d6b31a.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 40, - 373, - 546, - 505.33333333333337 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 40, - 505.33333333333337, - 546, - 637.6666666666667 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 40, - 637.6666666666667, - 546, - 770.0000000000001 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13, - "page_num": "page_39", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 44, - 84, - 537, - 137 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 44, - 84, - 537, - 137 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 44, - 84, - 537, - 137 - ], - "spans": [ - { - "bbox": [ - 44, - 84, - 537, - 137 - ], - "score": 0.557, - "html": "
Sources may include the following or other relevant ones:
Boserup; Cohen and Kennedy; Ehrenreich and Hochschild; Foster-Carter; Hunt; Leonard; Mies; Pearson;Seager;Shiva;vanderGaag;VanZeijl.
", - "type": "table", - "image_path": "9d53cc0dddc812921e754b39051fe0f48b21572d7429f81747b8b659a0f6cd38.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 44, - 84, - 537, - 101.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 44, - 101.66666666666667, - 537, - 119.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 44, - 119.33333333333334, - 537, - 137.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 41, - 148, - 544, - 179 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 148, - 544, - 179 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 41, - 148, - 544, - 179 - ], - "spans": [ - { - "bbox": [ - 41, - 148, - 544, - 179 - ], - "score": 0.961, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "eab7360e6f9761b763a2163f487a93b1ab3427620b24a85c049efd4dc81476bf.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 41, - 148, - 544, - 158.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 41, - 158.33333333333334, - 544, - 168.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 41, - 168.66666666666669, - 544, - 179.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 39, - 190, - 544, - 227 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 190, - 544, - 227 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 39, - 190, - 544, - 227 - ], - "spans": [ - { - "bbox": [ - 39, - 190, - 544, - 227 - ], - "score": 0.948, - "html": "
18Applying material from Item L and your knowledge, evaluate the view that aid is essentialfordevelopment.20
", - "type": "table", - "image_path": "765da57723cea137ebd3cdbeca39ceb342fd314d6a6c2b2fd5d8d52d200e1ba7.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 39, - 190, - 544, - 202.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 39, - 202.33333333333334, - 544, - 214.66666666666669 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 39, - 214.66666666666669, - 544, - 227.00000000000003 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "title", - "bbox": [ - 273, - 258, - 307, - 270 - ], - "lines": [ - { - "bbox": [ - 274, - 259, - 308, - 270 - ], - "spans": [ - { - "bbox": [ - 274, - 259, - 308, - 270 - ], - "score": 1.0, - "content": "Item L", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 41, - 283, - 523, - 309 - ], - "lines": [ - { - "bbox": [ - 43, - 285, - 517, - 297 - ], - "spans": [ - { - "bbox": [ - 43, - 285, - 517, - 297 - ], - "score": 1.0, - "content": "According to some sociologists, aid is essential for development because it helps countries reach", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 42, - 296, - 166, - 309 - ], - "spans": [ - { - "bbox": [ - 42, - 296, - 166, - 309 - ], - "score": 1.0, - "content": "take-off and industrialise.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5 - }, - { - "type": "text", - "bbox": [ - 42, - 321, - 536, - 361 - ], - "lines": [ - { - "bbox": [ - 43, - 322, - 520, - 334 - ], - "spans": [ - { - "bbox": [ - 43, - 322, - 520, - 334 - ], - "score": 1.0, - "content": "However, other sociologists are critical of aid and point out that many countries receiving aid have", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 42, - 336, - 534, - 349 - ], - "spans": [ - { - "bbox": [ - 42, - 336, - 534, - 349 - ], - "score": 1.0, - "content": "made little progress. Others argue that the real purpose of aid is to ensure a free market system that ", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 42, - 348, - 178, - 361 - ], - "spans": [ - { - "bbox": [ - 42, - 348, - 178, - 361 - ], - "score": 1.0, - "content": "creates underdevelopment.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 13 - }, - { - "type": "table", - "bbox": [ - 41, - 388, - 547, - 779 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 388, - 547, - 779 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 41, - 388, - 547, - 779 - ], - "spans": [ - { - "bbox": [ - 41, - 388, - 547, - 779 - ], - "score": 0.983, - "html": "
Marks Level Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on the view that aid is essential for development. Sophisticated the question. example through a debatebetween dependency and modernisation or other theories.
13-16Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. Application of material is largely explicitly relevant to the question, though some material maybeinadequatelyfocused.
9-12Answers in this band will show largely accurate knowledge but limited range and depth, eg broadly accurate, if basic, account of some aid projects. Understands some limited but significant aspects of the question; superficial understanding of the presented material.
", - "type": "table", - "image_path": "c7fe2087a442b4a35e64cfbfbdd1a00fdc64bb929eb6206595b048580accbee5.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 41, - 388, - 547, - 518.3333333333334 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 41, - 518.3333333333334, - 547, - 648.6666666666667 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 41, - 648.6666666666667, - 547, - 779.0000000000001 - ], - "spans": [], - "index": 17 - } - ] - } - ], - "index": 16 - } - ], - "layout_bboxes": [], - "page_idx": 40, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 44, - 84, - 537, - 137 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 44, - 84, - 537, - 137 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 44, - 84, - 537, - 137 - ], - "spans": [ - { - "bbox": [ - 44, - 84, - 537, - 137 - ], - "score": 0.557, - "html": "
Sources may include the following or other relevant ones:
Boserup; Cohen and Kennedy; Ehrenreich and Hochschild; Foster-Carter; Hunt; Leonard; Mies; Pearson;Seager;Shiva;vanderGaag;VanZeijl.
", - "type": "table", - "image_path": "9d53cc0dddc812921e754b39051fe0f48b21572d7429f81747b8b659a0f6cd38.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 44, - 84, - 537, - 101.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 44, - 101.66666666666667, - 537, - 119.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 44, - 119.33333333333334, - 537, - 137.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 41, - 148, - 544, - 179 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 148, - 544, - 179 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 41, - 148, - 544, - 179 - ], - "spans": [ - { - "bbox": [ - 41, - 148, - 544, - 179 - ], - "score": 0.961, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "eab7360e6f9761b763a2163f487a93b1ab3427620b24a85c049efd4dc81476bf.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 41, - 148, - 544, - 158.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 41, - 158.33333333333334, - 544, - 168.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 41, - 168.66666666666669, - 544, - 179.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 39, - 190, - 544, - 227 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 190, - 544, - 227 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 39, - 190, - 544, - 227 - ], - "spans": [ - { - "bbox": [ - 39, - 190, - 544, - 227 - ], - "score": 0.948, - "html": "
18Applying material from Item L and your knowledge, evaluate the view that aid is essentialfordevelopment.20
", - "type": "table", - "image_path": "765da57723cea137ebd3cdbeca39ceb342fd314d6a6c2b2fd5d8d52d200e1ba7.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 39, - 190, - 544, - 202.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 39, - 202.33333333333334, - 544, - 214.66666666666669 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 39, - 214.66666666666669, - 544, - 227.00000000000003 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 41, - 388, - 547, - 779 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 388, - 547, - 779 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 41, - 388, - 547, - 779 - ], - "spans": [ - { - "bbox": [ - 41, - 388, - 547, - 779 - ], - "score": 0.983, - "html": "
Marks Level Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on the view that aid is essential for development. Sophisticated the question. example through a debatebetween dependency and modernisation or other theories.
13-16Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. Application of material is largely explicitly relevant to the question, though some material maybeinadequatelyfocused.
9-12Answers in this band will show largely accurate knowledge but limited range and depth, eg broadly accurate, if basic, account of some aid projects. Understands some limited but significant aspects of the question; superficial understanding of the presented material.
", - "type": "table", - "image_path": "c7fe2087a442b4a35e64cfbfbdd1a00fdc64bb929eb6206595b048580accbee5.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 41, - 388, - 547, - 518.3333333333334 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 41, - 518.3333333333334, - 547, - 648.6666666666667 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 41, - 648.6666666666667, - 547, - 779.0000000000001 - ], - "spans": [], - "index": 17 - } - ] - } - ], - "index": 16 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 237, - 35, - 554, - 48 - ], - "lines": [ - { - "bbox": [ - 237, - 37, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 237, - 37, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 543, - 797, - 554, - 805 - ], - "lines": [ - { - "bbox": [ - 543, - 797, - 554, - 807 - ], - "spans": [ - { - "bbox": [ - 543, - 797, - 554, - 807 - ], - "score": 1.0, - "content": "29 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 44, - 84, - 537, - 137 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 44, - 84, - 537, - 137 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 44, - 84, - 537, - 137 - ], - "spans": [ - { - "bbox": [ - 44, - 84, - 537, - 137 - ], - "score": 0.557, - "html": "
Sources may include the following or other relevant ones:
Boserup; Cohen and Kennedy; Ehrenreich and Hochschild; Foster-Carter; Hunt; Leonard; Mies; Pearson;Seager;Shiva;vanderGaag;VanZeijl.
", - "type": "table", - "image_path": "9d53cc0dddc812921e754b39051fe0f48b21572d7429f81747b8b659a0f6cd38.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 44, - 84, - 537, - 101.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 44, - 101.66666666666667, - 537, - 119.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 44, - 119.33333333333334, - 537, - 137.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_40", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 41, - 148, - 544, - 179 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 148, - 544, - 179 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 41, - 148, - 544, - 179 - ], - "spans": [ - { - "bbox": [ - 41, - 148, - 544, - 179 - ], - "score": 0.961, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "eab7360e6f9761b763a2163f487a93b1ab3427620b24a85c049efd4dc81476bf.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 41, - 148, - 544, - 158.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 41, - 158.33333333333334, - 544, - 168.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 41, - 168.66666666666669, - 544, - 179.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_40", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 39, - 190, - 544, - 227 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 190, - 544, - 227 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 39, - 190, - 544, - 227 - ], - "spans": [ - { - "bbox": [ - 39, - 190, - 544, - 227 - ], - "score": 0.948, - "html": "
18Applying material from Item L and your knowledge, evaluate the view that aid is essentialfordevelopment.20
", - "type": "table", - "image_path": "765da57723cea137ebd3cdbeca39ceb342fd314d6a6c2b2fd5d8d52d200e1ba7.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 39, - 190, - 544, - 202.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 39, - 202.33333333333334, - 544, - 214.66666666666669 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 39, - 214.66666666666669, - 544, - 227.00000000000003 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_40", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 273, - 258, - 307, - 270 - ], - "lines": [ - { - "bbox": [ - 274, - 259, - 308, - 270 - ], - "spans": [ - { - "bbox": [ - 274, - 259, - 308, - 270 - ], - "score": 1.0, - "content": "Item L", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_40", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 41, - 283, - 523, - 309 - ], - "lines": [ - { - "bbox": [ - 43, - 285, - 517, - 297 - ], - "spans": [ - { - "bbox": [ - 43, - 285, - 517, - 297 - ], - "score": 1.0, - "content": "According to some sociologists, aid is essential for development because it helps countries reach", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 42, - 296, - 166, - 309 - ], - "spans": [ - { - "bbox": [ - 42, - 296, - 166, - 309 - ], - "score": 1.0, - "content": "take-off and industrialise.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5, - "page_num": "page_40", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 285, - 517, - 309 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 321, - 536, - 361 - ], - "lines": [ - { - "bbox": [ - 43, - 322, - 520, - 334 - ], - "spans": [ - { - "bbox": [ - 43, - 322, - 520, - 334 - ], - "score": 1.0, - "content": "However, other sociologists are critical of aid and point out that many countries receiving aid have", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 42, - 336, - 534, - 349 - ], - "spans": [ - { - "bbox": [ - 42, - 336, - 534, - 349 - ], - "score": 1.0, - "content": "made little progress. Others argue that the real purpose of aid is to ensure a free market system that ", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 42, - 348, - 178, - 361 - ], - "spans": [ - { - "bbox": [ - 42, - 348, - 178, - 361 - ], - "score": 1.0, - "content": "creates underdevelopment.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 13, - "page_num": "page_40", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 322, - 534, - 361 - ] - }, - { - "type": "table", - "bbox": [ - 41, - 388, - 547, - 779 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 388, - 547, - 779 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 41, - 388, - 547, - 779 - ], - "spans": [ - { - "bbox": [ - 41, - 388, - 547, - 779 - ], - "score": 0.983, - "html": "
Marks Level Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on the view that aid is essential for development. Sophisticated the question. example through a debatebetween dependency and modernisation or other theories.
13-16Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. Application of material is largely explicitly relevant to the question, though some material maybeinadequatelyfocused.
9-12Answers in this band will show largely accurate knowledge but limited range and depth, eg broadly accurate, if basic, account of some aid projects. Understands some limited but significant aspects of the question; superficial understanding of the presented material.
", - "type": "table", - "image_path": "c7fe2087a442b4a35e64cfbfbdd1a00fdc64bb929eb6206595b048580accbee5.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 41, - 388, - 547, - 518.3333333333334 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 41, - 518.3333333333334, - 547, - 648.6666666666667 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 41, - 648.6666666666667, - 547, - 779.0000000000001 - ], - "spans": [], - "index": 17 - } - ] - } - ], - "index": 16, - "page_num": "page_40", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 41, - 84, - 545, - 385 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 84, - 545, - 385 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 84, - 545, - 385 - ], - "spans": [ - { - "bbox": [ - 41, - 84, - 545, - 385 - ], - "score": 0.933, - "html": "
Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
5-8Answers in this band will show limited undeveloped knowledge, eg two or three insubstantial points about aid. Understands only limited aspects of the question; simplistic understanding of thepresented material. the question.
1-4Very limited or no evaluation. Attempts at analysis, if any, are thin and disjointed. points about development in general. Very little/no understanding of the question and of the presented material. Significant errors and/or omissions in application of material. No analysis or evaluation.
0No relevant points.
", - "type": "table", - "image_path": "0f222e0c3a3a8e48c0dca02ea1d5bc1f677cba60e48bef756ede443ff7e59712.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 41, - 84, - 545, - 184.33333333333331 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 41, - 184.33333333333331, - 545, - 284.66666666666663 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 41, - 284.66666666666663, - 545, - 384.99999999999994 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "title", - "bbox": [ - 43, - 401, - 139, - 415 - ], - "lines": [ - { - "bbox": [ - 43, - 403, - 138, - 413 - ], - "spans": [ - { - "bbox": [ - 43, - 403, - 138, - 413 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 43, - 426, - 316, - 440 - ], - "lines": [ - { - "bbox": [ - 43, - 427, - 316, - 440 - ], - "spans": [ - { - "bbox": [ - 43, - 427, - 316, - 440 - ], - "score": 1.0, - "content": "Concepts and issues such as the following may appear:", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 43, - 452, - 539, - 503 - ], - "lines": [ - { - "bbox": [ - 42, - 452, - 502, - 466 - ], - "spans": [ - { - "bbox": [ - 42, - 452, - 502, - 466 - ], - "score": 1.0, - "content": "ODA (Official Development Assistance); NGOs; World Bank and International Monetary Fund;", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 42, - 466, - 538, - 478 - ], - "spans": [ - { - "bbox": [ - 42, - 466, - 538, - 478 - ], - "score": 1.0, - "content": "structural adjustment programmes; multilateral and bilateral aid; emergency aid and development aid;", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 41, - 477, - 538, - 492 - ], - "spans": [ - { - "bbox": [ - 41, - 477, - 538, - 492 - ], - "score": 1.0, - "content": "tied aid and conditionality; grass roots development; dependency; modernisation; gender inequalities;", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 41, - 491, - 437, - 503 - ], - "spans": [ - { - "bbox": [ - 41, - 491, - 437, - 503 - ], - "score": 1.0, - "content": "transparency and accountability; aid as imperialism; aid as business; debt; trade.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 6.5 - }, - { - "type": "title", - "bbox": [ - 42, - 524, - 347, - 538 - ], - "lines": [ - { - "bbox": [ - 44, - 526, - 347, - 537 - ], - "spans": [ - { - "bbox": [ - 44, - 526, - 347, - 537 - ], - "score": 1.0, - "content": "Sources may include the following or other relevant ones:", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 40, - 550, - 532, - 575 - ], - "lines": [ - { - "bbox": [ - 44, - 551, - 533, - 563 - ], - "spans": [ - { - "bbox": [ - 44, - 551, - 533, - 563 - ], - "score": 1.0, - "content": "Alibhai-Brown; Bauer; Calderisi; Collier; Easterley; Erixon; Hancock; Hayter; Moyo; Norberg; Riddell;", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 43, - 563, - 122, - 577 - ], - "spans": [ - { - "bbox": [ - 43, - 563, - 122, - 577 - ], - "score": 1.0, - "content": "Sachs; Samura.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5 - } - ], - "layout_bboxes": [], - "page_idx": 41, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 41, - 84, - 545, - 385 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 84, - 545, - 385 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 84, - 545, - 385 - ], - "spans": [ - { - "bbox": [ - 41, - 84, - 545, - 385 - ], - "score": 0.933, - "html": "
Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
5-8Answers in this band will show limited undeveloped knowledge, eg two or three insubstantial points about aid. Understands only limited aspects of the question; simplistic understanding of thepresented material. the question.
1-4Very limited or no evaluation. Attempts at analysis, if any, are thin and disjointed. points about development in general. Very little/no understanding of the question and of the presented material. Significant errors and/or omissions in application of material. No analysis or evaluation.
0No relevant points.
", - "type": "table", - "image_path": "0f222e0c3a3a8e48c0dca02ea1d5bc1f677cba60e48bef756ede443ff7e59712.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 41, - 84, - 545, - 184.33333333333331 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 41, - 184.33333333333331, - 545, - 284.66666666666663 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 41, - 284.66666666666663, - 545, - 384.99999999999994 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 237, - 35, - 554, - 48 - ], - "lines": [ - { - "bbox": [ - 237, - 35, - 553, - 48 - ], - "spans": [ - { - "bbox": [ - 237, - 35, - 553, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 797, - 52, - 805 - ], - "lines": [ - { - "bbox": [ - 39, - 796, - 54, - 808 - ], - "spans": [ - { - "bbox": [ - 39, - 796, - 54, - 808 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 12, - "width": 15 - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 41, - 84, - 545, - 385 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 84, - 545, - 385 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 84, - 545, - 385 - ], - "spans": [ - { - "bbox": [ - 41, - 84, - 545, - 385 - ], - "score": 0.933, - "html": "
Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
5-8Answers in this band will show limited undeveloped knowledge, eg two or three insubstantial points about aid. Understands only limited aspects of the question; simplistic understanding of thepresented material. the question.
1-4Very limited or no evaluation. Attempts at analysis, if any, are thin and disjointed. points about development in general. Very little/no understanding of the question and of the presented material. Significant errors and/or omissions in application of material. No analysis or evaluation.
0No relevant points.
", - "type": "table", - "image_path": "0f222e0c3a3a8e48c0dca02ea1d5bc1f677cba60e48bef756ede443ff7e59712.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 41, - 84, - 545, - 184.33333333333331 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 41, - 184.33333333333331, - 545, - 284.66666666666663 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 41, - 284.66666666666663, - 545, - 384.99999999999994 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_41", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 43, - 401, - 139, - 415 - ], - "lines": [ - { - "bbox": [ - 43, - 403, - 138, - 413 - ], - "spans": [ - { - "bbox": [ - 43, - 403, - 138, - 413 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_41", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 43, - 426, - 316, - 440 - ], - "lines": [ - { - "bbox": [ - 43, - 427, - 316, - 440 - ], - "spans": [ - { - "bbox": [ - 43, - 427, - 316, - 440 - ], - "score": 1.0, - "content": "Concepts and issues such as the following may appear:", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_41", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 43, - 427, - 316, - 440 - ] - }, - { - "type": "list", - "bbox": [ - 43, - 452, - 539, - 503 - ], - "lines": [ - { - "bbox": [ - 42, - 452, - 502, - 466 - ], - "spans": [ - { - "bbox": [ - 42, - 452, - 502, - 466 - ], - "score": 1.0, - "content": "ODA (Official Development Assistance); NGOs; World Bank and International Monetary Fund;", - "type": "text" - } - ], - "index": 5, - "is_list_end_line": true - }, - { - "bbox": [ - 42, - 466, - 538, - 478 - ], - "spans": [ - { - "bbox": [ - 42, - 466, - 538, - 478 - ], - "score": 1.0, - "content": "structural adjustment programmes; multilateral and bilateral aid; emergency aid and development aid;", - "type": "text" - } - ], - "index": 6, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 41, - 477, - 538, - 492 - ], - "spans": [ - { - "bbox": [ - 41, - 477, - 538, - 492 - ], - "score": 1.0, - "content": "tied aid and conditionality; grass roots development; dependency; modernisation; gender inequalities;", - "type": "text" - } - ], - "index": 7, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 41, - 491, - 437, - 503 - ], - "spans": [ - { - "bbox": [ - 41, - 491, - 437, - 503 - ], - "score": 1.0, - "content": "transparency and accountability; aid as imperialism; aid as business; debt; trade.", - "type": "text" - } - ], - "index": 8, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 6.5, - "page_num": "page_41", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 452, - 538, - 503 - ] - }, - { - "type": "title", - "bbox": [ - 42, - 524, - 347, - 538 - ], - "lines": [ - { - "bbox": [ - 44, - 526, - 347, - 537 - ], - "spans": [ - { - "bbox": [ - 44, - 526, - 347, - 537 - ], - "score": 1.0, - "content": "Sources may include the following or other relevant ones:", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_41", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 40, - 550, - 532, - 575 - ], - "lines": [ - { - "bbox": [ - 44, - 551, - 533, - 563 - ], - "spans": [ - { - "bbox": [ - 44, - 551, - 533, - 563 - ], - "score": 1.0, - "content": "Alibhai-Brown; Bauer; Calderisi; Collier; Easterley; Erixon; Hancock; Hayter; Moyo; Norberg; Riddell;", - "type": "text" - } - ], - "index": 10, - "is_list_end_line": true - }, - { - "bbox": [ - 43, - 563, - 122, - 577 - ], - "spans": [ - { - "bbox": [ - 43, - 563, - 122, - 577 - ], - "score": 1.0, - "content": "Sachs; Samura.", - "type": "text" - } - ], - "index": 11, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 10.5, - "page_num": "page_41", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 43, - 551, - 533, - 577 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 240, - 92, - 348, - 106 - ], - "lines": [ - { - "bbox": [ - 240, - 93, - 348, - 105 - ], - "spans": [ - { - "bbox": [ - 240, - 93, - 348, - 105 - ], - "score": 1.0, - "content": "Topic B3 The Media", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table", - "bbox": [ - 42, - 112, - 548, - 143 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 112, - 548, - 143 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 42, - 112, - 548, - 143 - ], - "spans": [ - { - "bbox": [ - 42, - 112, - 548, - 143 - ], - "score": 0.96, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "f27fde3b1b1a7365df785eb3a8eba4e230dc8216442e34e1669711e9f8cc7dc1.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 42, - 112, - 548, - 122.33333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 42, - 122.33333333333333, - 548, - 132.66666666666666 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 42, - 132.66666666666666, - 548, - 143.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - }, - { - "type": "table", - "bbox": [ - 46, - 166, - 555, - 206 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 166, - 555, - 206 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 46, - 166, - 555, - 206 - ], - "spans": [ - { - "bbox": [ - 46, - 166, - 555, - 206 - ], - "score": 0.945, - "html": "
19Outline and explain two ways in which new media may have affected the selection and presentation of news.10
", - "type": "table", - "image_path": "aa86ebbc4351743def5043d7f440789d1b0eea2dbd398a205cb0fe6cb7b1b15e.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 46, - 166, - 555, - 179.33333333333334 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 46, - 179.33333333333334, - 555, - 192.66666666666669 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 46, - 192.66666666666669, - 555, - 206.00000000000003 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5 - }, - { - "type": "table", - "bbox": [ - 41, - 217, - 554, - 585 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 217, - 554, - 585 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 41, - 217, - 554, - 585 - ], - "spans": [ - { - "bbox": [ - 41, - 217, - 554, - 585 - ], - "score": 0.983, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two ways in which There will be two applications of relevant material, eg citizen journalism enables members of the public to report and spread news stories; news media have to provide more immediacy through instantaneous coverage of events.
4-7There will be appropriate analysis, eg of ways new media change news values. Answers in this band will show a reasonable to good knowledge and understanding of one or There will be one or two applications of relevant material, eg traditional news media have become more accountable because of audience responses using new media.
1-3Therewill besomebasic analysis Answers in this band will show limited knowledge and little or no understanding of the question or the material. There will be limited focus on the question, eg a drift into discussions of media in general.
0There will be little or no analysis. No relevant points.
", - "type": "table", - "image_path": "f88716d8f35322e9de9890b68dd4bdf46c84428f14c487a1e433871888c89e12.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 41, - 217, - 554, - 339.6666666666667 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 41, - 339.6666666666667, - 554, - 462.33333333333337 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 41, - 462.33333333333337, - 554, - 585.0 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 8 - }, - { - "type": "title", - "bbox": [ - 45, - 600, - 141, - 612 - ], - "lines": [ - { - "bbox": [ - 46, - 601, - 141, - 612 - ], - "spans": [ - { - "bbox": [ - 46, - 601, - 141, - 612 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 46, - 613, - 356, - 626 - ], - "lines": [ - { - "bbox": [ - 46, - 614, - 355, - 625 - ], - "spans": [ - { - "bbox": [ - 46, - 614, - 355, - 625 - ], - "score": 1.0, - "content": "Answers may include the following and/or other relevant points:", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 45, - 638, - 474, - 747 - ], - "lines": [ - { - "bbox": [ - 45, - 640, - 306, - 652 - ], - "spans": [ - { - "bbox": [ - 45, - 640, - 306, - 652 - ], - "score": 1.0, - "content": "• proliferation of fake news stories, lack of regulation", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 45, - 654, - 313, - 666 - ], - "spans": [ - { - "bbox": [ - 45, - 654, - 313, - 666 - ], - "score": 1.0, - "content": "• new media becoming the news eg a tweet by Trump", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 45, - 667, - 261, - 679 - ], - "spans": [ - { - "bbox": [ - 45, - 667, - 261, - 679 - ], - "score": 1.0, - "content": "• changes in the traditional news flow cycle", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 45, - 680, - 184, - 692 - ], - "spans": [ - { - "bbox": [ - 45, - 680, - 184, - 692 - ], - "score": 1.0, - "content": "• heightened accountability ", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 45, - 694, - 472, - 706 - ], - "spans": [ - { - "bbox": [ - 45, - 694, - 472, - 706 - ], - "score": 1.0, - "content": "• participatory culture – news producers and consumers no longer have separate roles", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 45, - 707, - 443, - 720 - ], - "spans": [ - { - "bbox": [ - 45, - 707, - 443, - 720 - ], - "score": 1.0, - "content": "• citizen journalism – citizens more able to contribute eg uploading video footage", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 46, - 721, - 367, - 732 - ], - "spans": [ - { - "bbox": [ - 46, - 721, - 367, - 732 - ], - "score": 1.0, - "content": "• wider range of sources and of opinion on news, easily available", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 46, - 734, - 400, - 746 - ], - "spans": [ - { - "bbox": [ - 46, - 734, - 400, - 746 - ], - "score": 1.0, - "content": "• changes in news values eg greater emphasis on immediacy, celebrity.", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 15.5 - }, - { - "type": "text", - "bbox": [ - 45, - 754, - 513, - 781 - ], - "lines": [ - { - "bbox": [ - 46, - 754, - 350, - 767 - ], - "spans": [ - { - "bbox": [ - 46, - 754, - 350, - 767 - ], - "score": 1.0, - "content": "Sources may include the following or other relevant ones:", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 46, - 767, - 510, - 780 - ], - "spans": [ - { - "bbox": [ - 46, - 767, - 510, - 780 - ], - "score": 1.0, - "content": "Bivens; Boyle; Curran and Seaton; Dutton and Blank; Itzoe; Jenkins; MacKinnon; McNair; Philo.", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 20.5 - } - ], - "layout_bboxes": [], - "page_idx": 42, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 42, - 112, - 548, - 143 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 112, - 548, - 143 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 42, - 112, - 548, - 143 - ], - "spans": [ - { - "bbox": [ - 42, - 112, - 548, - 143 - ], - "score": 0.96, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "f27fde3b1b1a7365df785eb3a8eba4e230dc8216442e34e1669711e9f8cc7dc1.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 42, - 112, - 548, - 122.33333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 42, - 122.33333333333333, - 548, - 132.66666666666666 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 42, - 132.66666666666666, - 548, - 143.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - }, - { - "type": "table", - "bbox": [ - 46, - 166, - 555, - 206 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 166, - 555, - 206 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 46, - 166, - 555, - 206 - ], - "spans": [ - { - "bbox": [ - 46, - 166, - 555, - 206 - ], - "score": 0.945, - "html": "
19Outline and explain two ways in which new media may have affected the selection and presentation of news.10
", - "type": "table", - "image_path": "aa86ebbc4351743def5043d7f440789d1b0eea2dbd398a205cb0fe6cb7b1b15e.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 46, - 166, - 555, - 179.33333333333334 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 46, - 179.33333333333334, - 555, - 192.66666666666669 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 46, - 192.66666666666669, - 555, - 206.00000000000003 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5 - }, - { - "type": "table", - "bbox": [ - 41, - 217, - 554, - 585 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 217, - 554, - 585 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 41, - 217, - 554, - 585 - ], - "spans": [ - { - "bbox": [ - 41, - 217, - 554, - 585 - ], - "score": 0.983, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two ways in which There will be two applications of relevant material, eg citizen journalism enables members of the public to report and spread news stories; news media have to provide more immediacy through instantaneous coverage of events.
4-7There will be appropriate analysis, eg of ways new media change news values. Answers in this band will show a reasonable to good knowledge and understanding of one or There will be one or two applications of relevant material, eg traditional news media have become more accountable because of audience responses using new media.
1-3Therewill besomebasic analysis Answers in this band will show limited knowledge and little or no understanding of the question or the material. There will be limited focus on the question, eg a drift into discussions of media in general.
0There will be little or no analysis. No relevant points.
", - "type": "table", - "image_path": "f88716d8f35322e9de9890b68dd4bdf46c84428f14c487a1e433871888c89e12.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 41, - 217, - 554, - 339.6666666666667 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 41, - 339.6666666666667, - 554, - 462.33333333333337 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 41, - 462.33333333333337, - 554, - 585.0 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 8 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 236, - 35, - 554, - 48 - ], - "lines": [ - { - "bbox": [ - 237, - 37, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 237, - 37, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 543, - 797, - 553, - 805 - ], - "lines": [ - { - "bbox": [ - 542, - 796, - 555, - 807 - ], - "spans": [ - { - "bbox": [ - 542, - 796, - 555, - 807 - ], - "score": 1.0, - "content": "31 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 240, - 92, - 348, - 106 - ], - "lines": [ - { - "bbox": [ - 240, - 93, - 348, - 105 - ], - "spans": [ - { - "bbox": [ - 240, - 93, - 348, - 105 - ], - "score": 1.0, - "content": "Topic B3 The Media", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_42", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 42, - 112, - 548, - 143 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 112, - 548, - 143 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 42, - 112, - 548, - 143 - ], - "spans": [ - { - "bbox": [ - 42, - 112, - 548, - 143 - ], - "score": 0.96, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "f27fde3b1b1a7365df785eb3a8eba4e230dc8216442e34e1669711e9f8cc7dc1.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 42, - 112, - 548, - 122.33333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 42, - 122.33333333333333, - 548, - 132.66666666666666 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 42, - 132.66666666666666, - 548, - 143.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2, - "page_num": "page_42", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 46, - 166, - 555, - 206 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 166, - 555, - 206 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 46, - 166, - 555, - 206 - ], - "spans": [ - { - "bbox": [ - 46, - 166, - 555, - 206 - ], - "score": 0.945, - "html": "
19Outline and explain two ways in which new media may have affected the selection and presentation of news.10
", - "type": "table", - "image_path": "aa86ebbc4351743def5043d7f440789d1b0eea2dbd398a205cb0fe6cb7b1b15e.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 46, - 166, - 555, - 179.33333333333334 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 46, - 179.33333333333334, - 555, - 192.66666666666669 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 46, - 192.66666666666669, - 555, - 206.00000000000003 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5, - "page_num": "page_42", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 41, - 217, - 554, - 585 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 217, - 554, - 585 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 41, - 217, - 554, - 585 - ], - "spans": [ - { - "bbox": [ - 41, - 217, - 554, - 585 - ], - "score": 0.983, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two ways in which There will be two applications of relevant material, eg citizen journalism enables members of the public to report and spread news stories; news media have to provide more immediacy through instantaneous coverage of events.
4-7There will be appropriate analysis, eg of ways new media change news values. Answers in this band will show a reasonable to good knowledge and understanding of one or There will be one or two applications of relevant material, eg traditional news media have become more accountable because of audience responses using new media.
1-3Therewill besomebasic analysis Answers in this band will show limited knowledge and little or no understanding of the question or the material. There will be limited focus on the question, eg a drift into discussions of media in general.
0There will be little or no analysis. No relevant points.
", - "type": "table", - "image_path": "f88716d8f35322e9de9890b68dd4bdf46c84428f14c487a1e433871888c89e12.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 41, - 217, - 554, - 339.6666666666667 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 41, - 339.6666666666667, - 554, - 462.33333333333337 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 41, - 462.33333333333337, - 554, - 585.0 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 8, - "page_num": "page_42", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 45, - 600, - 141, - 612 - ], - "lines": [ - { - "bbox": [ - 46, - 601, - 141, - 612 - ], - "spans": [ - { - "bbox": [ - 46, - 601, - 141, - 612 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_42", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 46, - 613, - 356, - 626 - ], - "lines": [ - { - "bbox": [ - 46, - 614, - 355, - 625 - ], - "spans": [ - { - "bbox": [ - 46, - 614, - 355, - 625 - ], - "score": 1.0, - "content": "Answers may include the following and/or other relevant points:", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_42", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 46, - 614, - 355, - 625 - ] - }, - { - "type": "list", - "bbox": [ - 45, - 638, - 474, - 747 - ], - "lines": [ - { - "bbox": [ - 45, - 640, - 306, - 652 - ], - "spans": [ - { - "bbox": [ - 45, - 640, - 306, - 652 - ], - "score": 1.0, - "content": "• proliferation of fake news stories, lack of regulation", - "type": "text" - } - ], - "index": 12, - "is_list_end_line": true - }, - { - "bbox": [ - 45, - 654, - 313, - 666 - ], - "spans": [ - { - "bbox": [ - 45, - 654, - 313, - 666 - ], - "score": 1.0, - "content": "• new media becoming the news eg a tweet by Trump", - "type": "text" - } - ], - "index": 13, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 45, - 667, - 261, - 679 - ], - "spans": [ - { - "bbox": [ - 45, - 667, - 261, - 679 - ], - "score": 1.0, - "content": "• changes in the traditional news flow cycle", - "type": "text" - } - ], - "index": 14, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 45, - 680, - 184, - 692 - ], - "spans": [ - { - "bbox": [ - 45, - 680, - 184, - 692 - ], - "score": 1.0, - "content": "• heightened accountability ", - "type": "text" - } - ], - "index": 15, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 45, - 694, - 472, - 706 - ], - "spans": [ - { - "bbox": [ - 45, - 694, - 472, - 706 - ], - "score": 1.0, - "content": "• participatory culture – news producers and consumers no longer have separate roles", - "type": "text" - } - ], - "index": 16, - "is_list_start_line": true - }, - { - "bbox": [ - 45, - 707, - 443, - 720 - ], - "spans": [ - { - "bbox": [ - 45, - 707, - 443, - 720 - ], - "score": 1.0, - "content": "• citizen journalism – citizens more able to contribute eg uploading video footage", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 46, - 721, - 367, - 732 - ], - "spans": [ - { - "bbox": [ - 46, - 721, - 367, - 732 - ], - "score": 1.0, - "content": "• wider range of sources and of opinion on news, easily available", - "type": "text" - } - ], - "index": 18, - "is_list_end_line": true - }, - { - "bbox": [ - 46, - 734, - 400, - 746 - ], - "spans": [ - { - "bbox": [ - 46, - 734, - 400, - 746 - ], - "score": 1.0, - "content": "• changes in news values eg greater emphasis on immediacy, celebrity.", - "type": "text" - } - ], - "index": 19, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 15.5, - "page_num": "page_42", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 45, - 640, - 472, - 746 - ] - }, - { - "type": "text", - "bbox": [ - 45, - 754, - 513, - 781 - ], - "lines": [ - { - "bbox": [ - 46, - 754, - 350, - 767 - ], - "spans": [ - { - "bbox": [ - 46, - 754, - 350, - 767 - ], - "score": 1.0, - "content": "Sources may include the following or other relevant ones:", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 46, - 767, - 510, - 780 - ], - "spans": [ - { - "bbox": [ - 46, - 767, - 510, - 780 - ], - "score": 1.0, - "content": "Bivens; Boyle; Curran and Seaton; Dutton and Blank; Itzoe; Jenkins; MacKinnon; McNair; Philo.", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 20.5, - "page_num": "page_42", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 46, - 754, - 510, - 780 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 46, - 101, - 557, - 133 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 101, - 557, - 133 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 101, - 557, - 133 - ], - "spans": [ - { - "bbox": [ - 46, - 101, - 557, - 133 - ], - "score": 0.851, - "html": "
QuTotal Marking guidance marks
", - "type": "table", - "image_path": "23d13ff65c06e2a162a7023252fe399505ed2a93efc52937a00a66ecfe717345.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 46, - 101, - 557, - 111.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 46, - 111.66666666666667, - 557, - 122.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 46, - 122.33333333333334, - 557, - 133.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 47, - 144, - 558, - 181 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 144, - 558, - 181 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 47, - 144, - 558, - 181 - ], - "spans": [ - { - "bbox": [ - 47, - 144, - 558, - 181 - ], - "score": 0.956, - "html": "
20Applying material from Item M, analyse two ways in which media corporations may contribute to a growth in global culture.10
", - "type": "table", - "image_path": "380c7251f5db1b38b7de13204a2c1ed816785c31ee3dcac64cfc71d00666cd42.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 47, - 144, - 558, - 156.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 47, - 156.33333333333334, - 558, - 168.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 47, - 168.66666666666669, - 558, - 181.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 48, - 194, - 551, - 291 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 48, - 194, - 551, - 291 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 48, - 194, - 551, - 291 - ], - "spans": [ - { - "bbox": [ - 48, - 194, - 551, - 291 - ], - "score": 0.192, - "html": "
ItemM
Media corporations have the power to produce images of lifestyles through which people form their identities. The wide reach of these corporations has led to local cultures becoming less important.
Media corporations may contribute to a growth in global culture.
", - "type": "table", - "image_path": "92dd1ef4bb7819f61c347a60580d2b049b96db363916c9e8f9aa499cd46d363f.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 48, - 194, - 551, - 226.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 48, - 226.33333333333334, - 551, - 258.6666666666667 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 48, - 258.6666666666667, - 551, - 291.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 42, - 301, - 553, - 711 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 301, - 553, - 711 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 42, - 301, - 553, - 711 - ], - "spans": [ - { - "bbox": [ - 42, - 301, - 553, - 711 - ], - "score": 0.981, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on There will be two developed applications of material from the item, eg Western/American media spread an ideology of consumerism so that people around the world aspire to the same ideas, values and products; global brands are promoted and recognised around the world, weakening local cultures. There will be appropriate analysis/evaluation of two ways eg the extent to which local cultures absorb and transform external influences.
4-7Answers in this band will show a basic to reasonable knowledge and understanding of one There will be some successful application of material from the item eg the same media productsareavailablearoundtheworld. There will be some analysis/evaluation.
1-3Answers in this band will show limited knowledge and understanding of one or two ways in There will be limited application of material from the item. Some material may be at a tangent to the question, eg there may be some drift into accounts of media effects. There will be limited or no analysis/evaluation.
0No relevant points.
", - "type": "table", - "image_path": "f27c54012a3e068ddf6dfe5292394c58f2d5f64cb4419d71b23795e6d49a06e6.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 42, - 301, - 553, - 437.66666666666663 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 42, - 437.66666666666663, - 553, - 574.3333333333333 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 42, - 574.3333333333333, - 553, - 710.9999999999999 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "table", - "bbox": [ - 50, - 725, - 548, - 767 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 50, - 725, - 548, - 767 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 50, - 725, - 548, - 767 - ], - "spans": [ - { - "bbox": [ - 50, - 725, - 548, - 767 - ], - "score": 0.117, - "html": "
Sources may include the following or other relevant ones:
Bagdikian; Baudrillard; Compaine; Fenton; Flew; Herman and Chomsky; Kellner; Putnam; Rosenau;
Schiller; Sklair; Strinati; Thompson;Thussu.
", - "type": "table", - "image_path": "91a6157c946f87bd49705928014b650585c8b213caf3bae5a76d6a85e21cc70d.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 50, - 725, - 548, - 739.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 50, - 739.0, - 548, - 753.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 50, - 753.0, - 548, - 767.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - } - ], - "layout_bboxes": [], - "page_idx": 43, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 46, - 101, - 557, - 133 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 101, - 557, - 133 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 101, - 557, - 133 - ], - "spans": [ - { - "bbox": [ - 46, - 101, - 557, - 133 - ], - "score": 0.851, - "html": "
QuTotal Marking guidance marks
", - "type": "table", - "image_path": "23d13ff65c06e2a162a7023252fe399505ed2a93efc52937a00a66ecfe717345.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 46, - 101, - 557, - 111.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 46, - 111.66666666666667, - 557, - 122.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 46, - 122.33333333333334, - 557, - 133.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 47, - 144, - 558, - 181 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 144, - 558, - 181 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 47, - 144, - 558, - 181 - ], - "spans": [ - { - "bbox": [ - 47, - 144, - 558, - 181 - ], - "score": 0.956, - "html": "
20Applying material from Item M, analyse two ways in which media corporations may contribute to a growth in global culture.10
", - "type": "table", - "image_path": "380c7251f5db1b38b7de13204a2c1ed816785c31ee3dcac64cfc71d00666cd42.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 47, - 144, - 558, - 156.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 47, - 156.33333333333334, - 558, - 168.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 47, - 168.66666666666669, - 558, - 181.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 48, - 194, - 551, - 291 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 48, - 194, - 551, - 291 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 48, - 194, - 551, - 291 - ], - "spans": [ - { - "bbox": [ - 48, - 194, - 551, - 291 - ], - "score": 0.192, - "html": "
ItemM
Media corporations have the power to produce images of lifestyles through which people form their identities. The wide reach of these corporations has led to local cultures becoming less important.
Media corporations may contribute to a growth in global culture.
", - "type": "table", - "image_path": "92dd1ef4bb7819f61c347a60580d2b049b96db363916c9e8f9aa499cd46d363f.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 48, - 194, - 551, - 226.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 48, - 226.33333333333334, - 551, - 258.6666666666667 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 48, - 258.6666666666667, - 551, - 291.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 42, - 301, - 553, - 711 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 301, - 553, - 711 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 42, - 301, - 553, - 711 - ], - "spans": [ - { - "bbox": [ - 42, - 301, - 553, - 711 - ], - "score": 0.981, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on There will be two developed applications of material from the item, eg Western/American media spread an ideology of consumerism so that people around the world aspire to the same ideas, values and products; global brands are promoted and recognised around the world, weakening local cultures. There will be appropriate analysis/evaluation of two ways eg the extent to which local cultures absorb and transform external influences.
4-7Answers in this band will show a basic to reasonable knowledge and understanding of one There will be some successful application of material from the item eg the same media productsareavailablearoundtheworld. There will be some analysis/evaluation.
1-3Answers in this band will show limited knowledge and understanding of one or two ways in There will be limited application of material from the item. Some material may be at a tangent to the question, eg there may be some drift into accounts of media effects. There will be limited or no analysis/evaluation.
0No relevant points.
", - "type": "table", - "image_path": "f27c54012a3e068ddf6dfe5292394c58f2d5f64cb4419d71b23795e6d49a06e6.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 42, - 301, - 553, - 437.66666666666663 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 42, - 437.66666666666663, - 553, - 574.3333333333333 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 42, - 574.3333333333333, - 553, - 710.9999999999999 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "table", - "bbox": [ - 50, - 725, - 548, - 767 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 50, - 725, - 548, - 767 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 50, - 725, - 548, - 767 - ], - "spans": [ - { - "bbox": [ - 50, - 725, - 548, - 767 - ], - "score": 0.117, - "html": "
Sources may include the following or other relevant ones:
Bagdikian; Baudrillard; Compaine; Fenton; Flew; Herman and Chomsky; Kellner; Putnam; Rosenau;
Schiller; Sklair; Strinati; Thompson;Thussu.
", - "type": "table", - "image_path": "91a6157c946f87bd49705928014b650585c8b213caf3bae5a76d6a85e21cc70d.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 50, - 725, - 548, - 739.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 50, - 739.0, - 548, - 753.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 50, - 753.0, - 548, - 767.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 41, - 797, - 52, - 805 - ], - "lines": [ - { - "bbox": [ - 40, - 796, - 54, - 807 - ], - "spans": [ - { - "bbox": [ - 40, - 796, - 54, - 807 - ], - "score": 1.0, - "content": "32 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 236, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "spans": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 46, - 101, - 557, - 133 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 101, - 557, - 133 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 101, - 557, - 133 - ], - "spans": [ - { - "bbox": [ - 46, - 101, - 557, - 133 - ], - "score": 0.851, - "html": "
QuTotal Marking guidance marks
", - "type": "table", - "image_path": "23d13ff65c06e2a162a7023252fe399505ed2a93efc52937a00a66ecfe717345.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 46, - 101, - 557, - 111.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 46, - 111.66666666666667, - 557, - 122.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 46, - 122.33333333333334, - 557, - 133.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_43", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 47, - 144, - 558, - 181 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 144, - 558, - 181 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 47, - 144, - 558, - 181 - ], - "spans": [ - { - "bbox": [ - 47, - 144, - 558, - 181 - ], - "score": 0.956, - "html": "
20Applying material from Item M, analyse two ways in which media corporations may contribute to a growth in global culture.10
", - "type": "table", - "image_path": "380c7251f5db1b38b7de13204a2c1ed816785c31ee3dcac64cfc71d00666cd42.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 47, - 144, - 558, - 156.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 47, - 156.33333333333334, - 558, - 168.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 47, - 168.66666666666669, - 558, - 181.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_43", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 48, - 194, - 551, - 291 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 48, - 194, - 551, - 291 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 48, - 194, - 551, - 291 - ], - "spans": [ - { - "bbox": [ - 48, - 194, - 551, - 291 - ], - "score": 0.192, - "html": "
ItemM
Media corporations have the power to produce images of lifestyles through which people form their identities. The wide reach of these corporations has led to local cultures becoming less important.
Media corporations may contribute to a growth in global culture.
", - "type": "table", - "image_path": "92dd1ef4bb7819f61c347a60580d2b049b96db363916c9e8f9aa499cd46d363f.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 48, - 194, - 551, - 226.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 48, - 226.33333333333334, - 551, - 258.6666666666667 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 48, - 258.6666666666667, - 551, - 291.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_43", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 42, - 301, - 553, - 711 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 301, - 553, - 711 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 42, - 301, - 553, - 711 - ], - "spans": [ - { - "bbox": [ - 42, - 301, - 553, - 711 - ], - "score": 0.981, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on There will be two developed applications of material from the item, eg Western/American media spread an ideology of consumerism so that people around the world aspire to the same ideas, values and products; global brands are promoted and recognised around the world, weakening local cultures. There will be appropriate analysis/evaluation of two ways eg the extent to which local cultures absorb and transform external influences.
4-7Answers in this band will show a basic to reasonable knowledge and understanding of one There will be some successful application of material from the item eg the same media productsareavailablearoundtheworld. There will be some analysis/evaluation.
1-3Answers in this band will show limited knowledge and understanding of one or two ways in There will be limited application of material from the item. Some material may be at a tangent to the question, eg there may be some drift into accounts of media effects. There will be limited or no analysis/evaluation.
0No relevant points.
", - "type": "table", - "image_path": "f27c54012a3e068ddf6dfe5292394c58f2d5f64cb4419d71b23795e6d49a06e6.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 42, - 301, - 553, - 437.66666666666663 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 42, - 437.66666666666663, - 553, - 574.3333333333333 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 42, - 574.3333333333333, - 553, - 710.9999999999999 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10, - "page_num": "page_43", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 50, - 725, - 548, - 767 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 50, - 725, - 548, - 767 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 50, - 725, - 548, - 767 - ], - "spans": [ - { - "bbox": [ - 50, - 725, - 548, - 767 - ], - "score": 0.117, - "html": "
Sources may include the following or other relevant ones:
Bagdikian; Baudrillard; Compaine; Fenton; Flew; Herman and Chomsky; Kellner; Putnam; Rosenau;
Schiller; Sklair; Strinati; Thompson;Thussu.
", - "type": "table", - "image_path": "91a6157c946f87bd49705928014b650585c8b213caf3bae5a76d6a85e21cc70d.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 50, - 725, - 548, - 739.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 50, - 739.0, - 548, - 753.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 50, - 753.0, - 548, - 767.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13, - "page_num": "page_43", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 46, - 83, - 557, - 114 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 83, - 557, - 114 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 83, - 557, - 114 - ], - "spans": [ - { - "bbox": [ - 46, - 83, - 557, - 114 - ], - "score": 0.957, - "html": "
QuTotal Marking guidance marks
", - "type": "table", - "image_path": "3c124a8d003a153f50d0748f0ffb9a81cf4de5c038df220259fc18c8c6c30cbb.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 46, - 83, - 557, - 93.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 46, - 93.33333333333333, - 557, - 103.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 46, - 103.66666666666666, - 557, - 113.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 46, - 125, - 559, - 163 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 125, - 559, - 163 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 46, - 125, - 559, - 163 - ], - "spans": [ - { - "bbox": [ - 46, - 125, - 559, - 163 - ], - "score": 0.956, - "html": "
21Applying material from Item N and your knowledge, evaluate the view that the mediareflect theviewsoftheiraudiences.20
", - "type": "table", - "image_path": "a3f8b002bd534f99ca42c3ac374aed780d2fe8febff6faa1411d05f74b759546.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 46, - 125, - 559, - 137.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 46, - 137.66666666666666, - 559, - 150.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 46, - 150.33333333333331, - 559, - 162.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 48, - 174, - 553, - 313 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 48, - 174, - 553, - 313 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 48, - 174, - 553, - 313 - ], - "spans": [ - { - "bbox": [ - 48, - 174, - 553, - 313 - ], - "score": 0.896, - "html": "
ItemN
Some sociologists argue that audiences control media content through their choices as consumers. They claim that competitionbetween media for audiences means that owners and companies have limitedpowerovercontent.
However, other sociologists argue that those who own and work in the media control the content. This means that the content can be biased and reflect dominant ideologies.
", - "type": "table", - "image_path": "71695cba0926fb8e18b5ca83714d8fb518d9341d74927afc183e09bdc4ba6452.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 48, - 174, - 553, - 220.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 48, - 220.33333333333334, - 553, - 266.6666666666667 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 48, - 266.6666666666667, - 553, - 313.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 43, - 320, - 552, - 771 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 43, - 320, - 552, - 771 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 43, - 320, - 552, - 771 - ], - "spans": [ - { - "bbox": [ - 43, - 320, - 552, - 771 - ], - "score": 0.982, - "html": "
MarksLevel Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on the view that the media reflect the views of their audiences. Sophisticated understanding of the question and of the presented material will be shown. Appropriate material will be applied accurately and with sensitivity to the issues raised by the question. Analysisandevaluationwillbeexplicitandrelevant.Evaluationmaybedeveloped,for the media and their audiences (eg Marxism, pluralism, feminisms). Analysis will show clear
13-16explanation. Appropriate conclusions will be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. Application of material is largely explicitly relevant to the question, though some material maybeinadequatelyfocused. Some limited explicit evaluation, eg discussion of audiences for different media and/or some
9-12broadly accurate, if basic, account of some explanations of the relationship between the media and their audiences. Understands some limited but significant aspects of the question; superficial understanding of the presented material. Applying listed material from the general topic area but with limited regard for its relevance to the issues raised by the question, or applying a narrow range of more relevant material.
", - "type": "table", - "image_path": "ab9cec6f4d15ea7105a05678663c06b1b68a42c84abec958edf2c88851862f78.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 43, - 320, - 552, - 470.33333333333337 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 43, - 470.33333333333337, - 552, - 620.6666666666667 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 43, - 620.6666666666667, - 552, - 771.0000000000001 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - } - ], - "layout_bboxes": [], - "page_idx": 44, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 46, - 83, - 557, - 114 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 83, - 557, - 114 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 83, - 557, - 114 - ], - "spans": [ - { - "bbox": [ - 46, - 83, - 557, - 114 - ], - "score": 0.957, - "html": "
QuTotal Marking guidance marks
", - "type": "table", - "image_path": "3c124a8d003a153f50d0748f0ffb9a81cf4de5c038df220259fc18c8c6c30cbb.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 46, - 83, - 557, - 93.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 46, - 93.33333333333333, - 557, - 103.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 46, - 103.66666666666666, - 557, - 113.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 46, - 125, - 559, - 163 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 125, - 559, - 163 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 46, - 125, - 559, - 163 - ], - "spans": [ - { - "bbox": [ - 46, - 125, - 559, - 163 - ], - "score": 0.956, - "html": "
21Applying material from Item N and your knowledge, evaluate the view that the mediareflect theviewsoftheiraudiences.20
", - "type": "table", - "image_path": "a3f8b002bd534f99ca42c3ac374aed780d2fe8febff6faa1411d05f74b759546.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 46, - 125, - 559, - 137.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 46, - 137.66666666666666, - 559, - 150.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 46, - 150.33333333333331, - 559, - 162.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 48, - 174, - 553, - 313 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 48, - 174, - 553, - 313 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 48, - 174, - 553, - 313 - ], - "spans": [ - { - "bbox": [ - 48, - 174, - 553, - 313 - ], - "score": 0.896, - "html": "
ItemN
Some sociologists argue that audiences control media content through their choices as consumers. They claim that competitionbetween media for audiences means that owners and companies have limitedpowerovercontent.
However, other sociologists argue that those who own and work in the media control the content. This means that the content can be biased and reflect dominant ideologies.
", - "type": "table", - "image_path": "71695cba0926fb8e18b5ca83714d8fb518d9341d74927afc183e09bdc4ba6452.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 48, - 174, - 553, - 220.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 48, - 220.33333333333334, - 553, - 266.6666666666667 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 48, - 266.6666666666667, - 553, - 313.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 43, - 320, - 552, - 771 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 43, - 320, - 552, - 771 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 43, - 320, - 552, - 771 - ], - "spans": [ - { - "bbox": [ - 43, - 320, - 552, - 771 - ], - "score": 0.982, - "html": "
MarksLevel Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on the view that the media reflect the views of their audiences. Sophisticated understanding of the question and of the presented material will be shown. Appropriate material will be applied accurately and with sensitivity to the issues raised by the question. Analysisandevaluationwillbeexplicitandrelevant.Evaluationmaybedeveloped,for the media and their audiences (eg Marxism, pluralism, feminisms). Analysis will show clear
13-16explanation. Appropriate conclusions will be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. Application of material is largely explicitly relevant to the question, though some material maybeinadequatelyfocused. Some limited explicit evaluation, eg discussion of audiences for different media and/or some
9-12broadly accurate, if basic, account of some explanations of the relationship between the media and their audiences. Understands some limited but significant aspects of the question; superficial understanding of the presented material. Applying listed material from the general topic area but with limited regard for its relevance to the issues raised by the question, or applying a narrow range of more relevant material.
", - "type": "table", - "image_path": "ab9cec6f4d15ea7105a05678663c06b1b68a42c84abec958edf2c88851862f78.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 43, - 320, - 552, - 470.33333333333337 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 43, - 470.33333333333337, - 552, - 620.6666666666667 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 43, - 620.6666666666667, - 552, - 771.0000000000001 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 543, - 797, - 553, - 805 - ], - "lines": [ - { - "bbox": [ - 542, - 797, - 556, - 807 - ], - "spans": [ - { - "bbox": [ - 542, - 797, - 556, - 807 - ], - "score": 1.0, - "content": "33 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 236, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 237, - 36, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 237, - 36, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 46, - 83, - 557, - 114 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 83, - 557, - 114 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 83, - 557, - 114 - ], - "spans": [ - { - "bbox": [ - 46, - 83, - 557, - 114 - ], - "score": 0.957, - "html": "
QuTotal Marking guidance marks
", - "type": "table", - "image_path": "3c124a8d003a153f50d0748f0ffb9a81cf4de5c038df220259fc18c8c6c30cbb.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 46, - 83, - 557, - 93.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 46, - 93.33333333333333, - 557, - 103.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 46, - 103.66666666666666, - 557, - 113.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_44", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 46, - 125, - 559, - 163 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 125, - 559, - 163 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 46, - 125, - 559, - 163 - ], - "spans": [ - { - "bbox": [ - 46, - 125, - 559, - 163 - ], - "score": 0.956, - "html": "
21Applying material from Item N and your knowledge, evaluate the view that the mediareflect theviewsoftheiraudiences.20
", - "type": "table", - "image_path": "a3f8b002bd534f99ca42c3ac374aed780d2fe8febff6faa1411d05f74b759546.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 46, - 125, - 559, - 137.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 46, - 137.66666666666666, - 559, - 150.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 46, - 150.33333333333331, - 559, - 162.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_44", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 48, - 174, - 553, - 313 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 48, - 174, - 553, - 313 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 48, - 174, - 553, - 313 - ], - "spans": [ - { - "bbox": [ - 48, - 174, - 553, - 313 - ], - "score": 0.896, - "html": "
ItemN
Some sociologists argue that audiences control media content through their choices as consumers. They claim that competitionbetween media for audiences means that owners and companies have limitedpowerovercontent.
However, other sociologists argue that those who own and work in the media control the content. This means that the content can be biased and reflect dominant ideologies.
", - "type": "table", - "image_path": "71695cba0926fb8e18b5ca83714d8fb518d9341d74927afc183e09bdc4ba6452.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 48, - 174, - 553, - 220.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 48, - 220.33333333333334, - 553, - 266.6666666666667 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 48, - 266.6666666666667, - 553, - 313.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_44", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 43, - 320, - 552, - 771 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 43, - 320, - 552, - 771 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 43, - 320, - 552, - 771 - ], - "spans": [ - { - "bbox": [ - 43, - 320, - 552, - 771 - ], - "score": 0.982, - "html": "
MarksLevel Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on the view that the media reflect the views of their audiences. Sophisticated understanding of the question and of the presented material will be shown. Appropriate material will be applied accurately and with sensitivity to the issues raised by the question. Analysisandevaluationwillbeexplicitandrelevant.Evaluationmaybedeveloped,for the media and their audiences (eg Marxism, pluralism, feminisms). Analysis will show clear
13-16explanation. Appropriate conclusions will be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. Application of material is largely explicitly relevant to the question, though some material maybeinadequatelyfocused. Some limited explicit evaluation, eg discussion of audiences for different media and/or some
9-12broadly accurate, if basic, account of some explanations of the relationship between the media and their audiences. Understands some limited but significant aspects of the question; superficial understanding of the presented material. Applying listed material from the general topic area but with limited regard for its relevance to the issues raised by the question, or applying a narrow range of more relevant material.
", - "type": "table", - "image_path": "ab9cec6f4d15ea7105a05678663c06b1b68a42c84abec958edf2c88851862f78.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 43, - 320, - 552, - 470.33333333333337 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 43, - 470.33333333333337, - 552, - 620.6666666666667 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 43, - 620.6666666666667, - 552, - 771.0000000000001 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10, - "page_num": "page_44", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 42, - 84, - 553, - 372 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 84, - 553, - 372 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 42, - 84, - 553, - 372 - ], - "spans": [ - { - "bbox": [ - 42, - 84, - 553, - 372 - ], - "score": 0.981, - "html": "
Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
5-8insubstantial points about media audiences. Understands only limited aspects of the question; simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question. Very limited or no evaluation. Attempts at analysis, if any, are thin and disjointed.
1-4Answers in this band will show very limited knowledge, eg one or two very insubstantial points about the media.Very little/no understanding of the question and of the presented material. Significant errors and/or omissions in application of material.
0No analysisor evaluation. No relevant points.
", - "type": "table", - "image_path": "875bf0fea8370ba6e8fb904abacec294a6529d502d76c9d22d1c5c5f14052100.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 42, - 84, - 553, - 180.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 42, - 180.0, - 553, - 276.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 42, - 276.0, - 553, - 372.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "title", - "bbox": [ - 51, - 389, - 147, - 402 - ], - "lines": [ - { - "bbox": [ - 52, - 390, - 147, - 401 - ], - "spans": [ - { - "bbox": [ - 52, - 390, - 147, - 401 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 51, - 414, - 325, - 428 - ], - "lines": [ - { - "bbox": [ - 51, - 414, - 325, - 429 - ], - "spans": [ - { - "bbox": [ - 51, - 414, - 325, - 429 - ], - "score": 1.0, - "content": "Concepts and issues such as the following may appear:", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 51, - 439, - 541, - 491 - ], - "lines": [ - { - "bbox": [ - 50, - 439, - 499, - 453 - ], - "spans": [ - { - "bbox": [ - 50, - 439, - 499, - 453 - ], - "score": 1.0, - "content": "Pluralism; hegemonic Marxism/neo-Marxism; manipulative/instrumental Marxism; feminism;", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 50, - 452, - 512, - 467 - ], - "spans": [ - { - "bbox": [ - 50, - 452, - 512, - 467 - ], - "score": 1.0, - "content": "competition and choice; ideology; bias; media diversity; media conglomerates; agenda setting;", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 51, - 467, - 539, - 479 - ], - "spans": [ - { - "bbox": [ - 51, - 467, - 539, - 479 - ], - "score": 1.0, - "content": "propaganda model; active and passive audiences; uses and gratifications; cultural effects; reception", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 51, - 478, - 334, - 491 - ], - "spans": [ - { - "bbox": [ - 51, - 478, - 334, - 491 - ], - "score": 1.0, - "content": "analysis; hypodermic syringe model; two-step flow model.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 6.5 - }, - { - "type": "title", - "bbox": [ - 51, - 512, - 356, - 525 - ], - "lines": [ - { - "bbox": [ - 52, - 514, - 356, - 524 - ], - "spans": [ - { - "bbox": [ - 52, - 514, - 356, - 524 - ], - "score": 1.0, - "content": "Sources may include the following or other relevant ones:", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 51, - 537, - 553, - 576 - ], - "lines": [ - { - "bbox": [ - 52, - 539, - 529, - 550 - ], - "spans": [ - { - "bbox": [ - 52, - 539, - 529, - 550 - ], - "score": 1.0, - "content": "Bagdikian; Blumer and McQuail; Chomsky; Couldry et al; Curran; Davies; Edwards and Cromwell;", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 50, - 549, - 552, - 565 - ], - "spans": [ - { - "bbox": [ - 50, - 549, - 552, - 565 - ], - "score": 1.0, - "content": "Fisk; Glasgow University Media Group; Hall; Herman and Chomsky; Katz and Lazarsfeld; McChesney;", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 51, - 564, - 117, - 576 - ], - "spans": [ - { - "bbox": [ - 51, - 564, - 117, - 576 - ], - "score": 1.0, - "content": "Philo; Whale.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11 - } - ], - "layout_bboxes": [], - "page_idx": 45, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 42, - 84, - 553, - 372 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 84, - 553, - 372 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 42, - 84, - 553, - 372 - ], - "spans": [ - { - "bbox": [ - 42, - 84, - 553, - 372 - ], - "score": 0.981, - "html": "
Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
5-8insubstantial points about media audiences. Understands only limited aspects of the question; simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question. Very limited or no evaluation. Attempts at analysis, if any, are thin and disjointed.
1-4Answers in this band will show very limited knowledge, eg one or two very insubstantial points about the media.Very little/no understanding of the question and of the presented material. Significant errors and/or omissions in application of material.
0No analysisor evaluation. No relevant points.
", - "type": "table", - "image_path": "875bf0fea8370ba6e8fb904abacec294a6529d502d76c9d22d1c5c5f14052100.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 42, - 84, - 553, - 180.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 42, - 180.0, - 553, - 276.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 42, - 276.0, - 553, - 372.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 237, - 35, - 554, - 48 - ], - "lines": [ - { - "bbox": [ - 237, - 35, - 553, - 48 - ], - "spans": [ - { - "bbox": [ - 237, - 35, - 553, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 797, - 51, - 805 - ], - "lines": [ - { - "bbox": [ - 40, - 797, - 54, - 807 - ], - "spans": [ - { - "bbox": [ - 40, - 797, - 54, - 807 - ], - "score": 1.0, - "content": "34 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 42, - 84, - 553, - 372 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 84, - 553, - 372 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 42, - 84, - 553, - 372 - ], - "spans": [ - { - "bbox": [ - 42, - 84, - 553, - 372 - ], - "score": 0.981, - "html": "
Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
5-8insubstantial points about media audiences. Understands only limited aspects of the question; simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question. Very limited or no evaluation. Attempts at analysis, if any, are thin and disjointed.
1-4Answers in this band will show very limited knowledge, eg one or two very insubstantial points about the media.Very little/no understanding of the question and of the presented material. Significant errors and/or omissions in application of material.
0No analysisor evaluation. No relevant points.
", - "type": "table", - "image_path": "875bf0fea8370ba6e8fb904abacec294a6529d502d76c9d22d1c5c5f14052100.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 42, - 84, - 553, - 180.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 42, - 180.0, - 553, - 276.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 42, - 276.0, - 553, - 372.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_45", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 51, - 389, - 147, - 402 - ], - "lines": [ - { - "bbox": [ - 52, - 390, - 147, - 401 - ], - "spans": [ - { - "bbox": [ - 52, - 390, - 147, - 401 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_45", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 51, - 414, - 325, - 428 - ], - "lines": [ - { - "bbox": [ - 51, - 414, - 325, - 429 - ], - "spans": [ - { - "bbox": [ - 51, - 414, - 325, - 429 - ], - "score": 1.0, - "content": "Concepts and issues such as the following may appear:", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_45", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 51, - 414, - 325, - 429 - ] - }, - { - "type": "text", - "bbox": [ - 51, - 439, - 541, - 491 - ], - "lines": [ - { - "bbox": [ - 50, - 439, - 499, - 453 - ], - "spans": [ - { - "bbox": [ - 50, - 439, - 499, - 453 - ], - "score": 1.0, - "content": "Pluralism; hegemonic Marxism/neo-Marxism; manipulative/instrumental Marxism; feminism;", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 50, - 452, - 512, - 467 - ], - "spans": [ - { - "bbox": [ - 50, - 452, - 512, - 467 - ], - "score": 1.0, - "content": "competition and choice; ideology; bias; media diversity; media conglomerates; agenda setting;", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 51, - 467, - 539, - 479 - ], - "spans": [ - { - "bbox": [ - 51, - 467, - 539, - 479 - ], - "score": 1.0, - "content": "propaganda model; active and passive audiences; uses and gratifications; cultural effects; reception", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 51, - 478, - 334, - 491 - ], - "spans": [ - { - "bbox": [ - 51, - 478, - 334, - 491 - ], - "score": 1.0, - "content": "analysis; hypodermic syringe model; two-step flow model.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 6.5, - "page_num": "page_45", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 50, - 439, - 539, - 491 - ] - }, - { - "type": "title", - "bbox": [ - 51, - 512, - 356, - 525 - ], - "lines": [ - { - "bbox": [ - 52, - 514, - 356, - 524 - ], - "spans": [ - { - "bbox": [ - 52, - 514, - 356, - 524 - ], - "score": 1.0, - "content": "Sources may include the following or other relevant ones:", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_45", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 51, - 537, - 553, - 576 - ], - "lines": [ - { - "bbox": [ - 52, - 539, - 529, - 550 - ], - "spans": [ - { - "bbox": [ - 52, - 539, - 529, - 550 - ], - "score": 1.0, - "content": "Bagdikian; Blumer and McQuail; Chomsky; Couldry et al; Curran; Davies; Edwards and Cromwell;", - "type": "text" - } - ], - "index": 10, - "is_list_end_line": true - }, - { - "bbox": [ - 50, - 549, - 552, - 565 - ], - "spans": [ - { - "bbox": [ - 50, - 549, - 552, - 565 - ], - "score": 1.0, - "content": "Fisk; Glasgow University Media Group; Hall; Herman and Chomsky; Katz and Lazarsfeld; McChesney;", - "type": "text" - } - ], - "index": 11, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 51, - 564, - 117, - 576 - ], - "spans": [ - { - "bbox": [ - 51, - 564, - 117, - 576 - ], - "score": 1.0, - "content": "Philo; Whale.", - "type": "text" - } - ], - "index": 12, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 11, - "page_num": "page_45", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 50, - 539, - 552, - 576 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 41, - 112, - 546, - 143 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 183, - 92, - 405, - 106 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 184, - 93, - 405, - 105 - ], - "spans": [ - { - "bbox": [ - 184, - 93, - 405, - 105 - ], - "score": 1.0, - "content": "Topic B4 Stratification and Differentiation", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table_body", - "bbox": [ - 41, - 112, - 546, - 143 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 112, - 546, - 143 - ], - "spans": [ - { - "bbox": [ - 41, - 112, - 546, - 143 - ], - "score": 0.961, - "html": "
QuTotal Marking guidance marks
", - "type": "table", - "image_path": "690ef40a1daa0c9bf686a527a40ce50a88774835c1a8fb4e7b21ab21506677f8.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 41, - 112, - 546, - 122.33333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 41, - 122.33333333333333, - 546, - 132.66666666666666 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 41, - 132.66666666666666, - 546, - 143.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 1.0 - }, - { - "type": "table", - "bbox": [ - 39, - 166, - 545, - 205 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 166, - 545, - 205 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 39, - 166, - 545, - 205 - ], - "spans": [ - { - "bbox": [ - 39, - 166, - 545, - 205 - ], - "score": 0.943, - "html": "
22Outline and explain two factors which may lead to some members of the working class achieving upward social mobility.10
", - "type": "table", - "image_path": "e37b744bed7c009f693d603bc381ed255dffd0d144a1cd732b94dfad8c6d6f62.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 39, - 166, - 545, - 179.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 39, - 179.0, - 545, - 192.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 39, - 192.0, - 545, - 205.0 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5 - }, - { - "type": "table", - "bbox": [ - 40, - 215, - 544, - 625 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 215, - 544, - 625 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 40, - 215, - 544, - 625 - ], - "spans": [ - { - "bbox": [ - 40, - 215, - 544, - 625 - ], - "score": 0.981, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two factors There will be two applications of relevant material, eg educational policies enable some occupations and structure may create opportunities for upward social mobility. There will be appropriate analysis, eg the extent to which there has been working class upward mobility.
4-7or two factors which may lead to some members of the working class achieving upward social mobility. being able to buy property. There will be some basic analysis.
1-3Answers in this band will show limited knowledge and little or no understanding of the question or the material. There will be limited focus on the question, eg there may be some drift into descriptions of class. Therewill be little or no analysis.
0No relevant points.
", - "type": "table", - "image_path": "e6f09d0fcb89f90fbfc54d3aedb95565639a271e152d92af5aaf5c3869129345.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 40, - 215, - 544, - 351.66666666666663 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 40, - 351.66666666666663, - 544, - 488.33333333333326 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 40, - 488.33333333333326, - 544, - 624.9999999999999 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 8 - }, - { - "type": "title", - "bbox": [ - 46, - 625, - 142, - 637 - ], - "lines": [ - { - "bbox": [ - 46, - 626, - 141, - 636 - ], - "spans": [ - { - "bbox": [ - 46, - 626, - 141, - 636 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 47, - 637, - 356, - 651 - ], - "lines": [ - { - "bbox": [ - 46, - 638, - 355, - 650 - ], - "spans": [ - { - "bbox": [ - 46, - 638, - 355, - 650 - ], - "score": 1.0, - "content": "Answers may include the following and/or other relevant points:", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 45, - 663, - 380, - 758 - ], - "lines": [ - { - "bbox": [ - 47, - 665, - 379, - 676 - ], - "spans": [ - { - "bbox": [ - 47, - 665, - 379, - 676 - ], - "score": 1.0, - "content": "• meritocratic education –working class pupils can gain qualification", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 56, - 678, - 335, - 690 - ], - "spans": [ - { - "bbox": [ - 56, - 678, - 335, - 690 - ], - "score": 1.0, - "content": "positive discrimination policies e.g. university admissions", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 55, - 692, - 155, - 703 - ], - "spans": [ - { - "bbox": [ - 55, - 692, - 155, - 703 - ], - "score": 1.0, - "content": "parental aspirations", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 46, - 705, - 241, - 716 - ], - "spans": [ - { - "bbox": [ - 46, - 705, - 241, - 716 - ], - "score": 1.0, - "content": "• changes in the occupational structure", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 47, - 718, - 179, - 730 - ], - "spans": [ - { - "bbox": [ - 47, - 718, - 179, - 730 - ], - "score": 1.0, - "content": "• compensatory education", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 48, - 731, - 118, - 744 - ], - "spans": [ - { - "bbox": [ - 48, - 731, - 118, - 744 - ], - "score": 1.0, - "content": "• marrying up", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 48, - 745, - 300, - 757 - ], - "spans": [ - { - "bbox": [ - 48, - 745, - 300, - 757 - ], - "score": 1.0, - "content": "• acquisition of wealth e.g home ownership, shares", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 15 - } - ], - "layout_bboxes": [], - "page_idx": 46, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 41, - 112, - 546, - 143 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 183, - 92, - 405, - 106 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 184, - 93, - 405, - 105 - ], - "spans": [ - { - "bbox": [ - 184, - 93, - 405, - 105 - ], - "score": 1.0, - "content": "Topic B4 Stratification and Differentiation", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table_body", - "bbox": [ - 41, - 112, - 546, - 143 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 112, - 546, - 143 - ], - "spans": [ - { - "bbox": [ - 41, - 112, - 546, - 143 - ], - "score": 0.961, - "html": "
QuTotal Marking guidance marks
", - "type": "table", - "image_path": "690ef40a1daa0c9bf686a527a40ce50a88774835c1a8fb4e7b21ab21506677f8.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 41, - 112, - 546, - 122.33333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 41, - 122.33333333333333, - 546, - 132.66666666666666 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 41, - 132.66666666666666, - 546, - 143.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 1.0 - }, - { - "type": "table", - "bbox": [ - 39, - 166, - 545, - 205 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 166, - 545, - 205 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 39, - 166, - 545, - 205 - ], - "spans": [ - { - "bbox": [ - 39, - 166, - 545, - 205 - ], - "score": 0.943, - "html": "
22Outline and explain two factors which may lead to some members of the working class achieving upward social mobility.10
", - "type": "table", - "image_path": "e37b744bed7c009f693d603bc381ed255dffd0d144a1cd732b94dfad8c6d6f62.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 39, - 166, - 545, - 179.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 39, - 179.0, - 545, - 192.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 39, - 192.0, - 545, - 205.0 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5 - }, - { - "type": "table", - "bbox": [ - 40, - 215, - 544, - 625 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 215, - 544, - 625 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 40, - 215, - 544, - 625 - ], - "spans": [ - { - "bbox": [ - 40, - 215, - 544, - 625 - ], - "score": 0.981, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two factors There will be two applications of relevant material, eg educational policies enable some occupations and structure may create opportunities for upward social mobility. There will be appropriate analysis, eg the extent to which there has been working class upward mobility.
4-7or two factors which may lead to some members of the working class achieving upward social mobility. being able to buy property. There will be some basic analysis.
1-3Answers in this band will show limited knowledge and little or no understanding of the question or the material. There will be limited focus on the question, eg there may be some drift into descriptions of class. Therewill be little or no analysis.
0No relevant points.
", - "type": "table", - "image_path": "e6f09d0fcb89f90fbfc54d3aedb95565639a271e152d92af5aaf5c3869129345.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 40, - 215, - 544, - 351.66666666666663 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 40, - 351.66666666666663, - 544, - 488.33333333333326 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 40, - 488.33333333333326, - 544, - 624.9999999999999 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 8 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 236, - 35, - 554, - 48 - ], - "lines": [ - { - "bbox": [ - 238, - 37, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 238, - 37, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 543, - 797, - 554, - 805 - ], - "lines": [ - { - "bbox": [ - 543, - 797, - 555, - 807 - ], - "spans": [ - { - "bbox": [ - 543, - 797, - 555, - 807 - ], - "score": 1.0, - "content": "35 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 41, - 112, - 546, - 143 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 183, - 92, - 405, - 106 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 184, - 93, - 405, - 105 - ], - "spans": [ - { - "bbox": [ - 184, - 93, - 405, - 105 - ], - "score": 1.0, - "content": "Topic B4 Stratification and Differentiation", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table_body", - "bbox": [ - 41, - 112, - 546, - 143 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 112, - 546, - 143 - ], - "spans": [ - { - "bbox": [ - 41, - 112, - 546, - 143 - ], - "score": 0.961, - "html": "
QuTotal Marking guidance marks
", - "type": "table", - "image_path": "690ef40a1daa0c9bf686a527a40ce50a88774835c1a8fb4e7b21ab21506677f8.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 41, - 112, - 546, - 122.33333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 41, - 122.33333333333333, - 546, - 132.66666666666666 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 41, - 132.66666666666666, - 546, - 143.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 1.0, - "page_num": "page_46", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 39, - 166, - 545, - 205 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 166, - 545, - 205 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 39, - 166, - 545, - 205 - ], - "spans": [ - { - "bbox": [ - 39, - 166, - 545, - 205 - ], - "score": 0.943, - "html": "
22Outline and explain two factors which may lead to some members of the working class achieving upward social mobility.10
", - "type": "table", - "image_path": "e37b744bed7c009f693d603bc381ed255dffd0d144a1cd732b94dfad8c6d6f62.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 39, - 166, - 545, - 179.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 39, - 179.0, - 545, - 192.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 39, - 192.0, - 545, - 205.0 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5, - "page_num": "page_46", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 40, - 215, - 544, - 625 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 215, - 544, - 625 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 40, - 215, - 544, - 625 - ], - "spans": [ - { - "bbox": [ - 40, - 215, - 544, - 625 - ], - "score": 0.981, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two factors There will be two applications of relevant material, eg educational policies enable some occupations and structure may create opportunities for upward social mobility. There will be appropriate analysis, eg the extent to which there has been working class upward mobility.
4-7or two factors which may lead to some members of the working class achieving upward social mobility. being able to buy property. There will be some basic analysis.
1-3Answers in this band will show limited knowledge and little or no understanding of the question or the material. There will be limited focus on the question, eg there may be some drift into descriptions of class. Therewill be little or no analysis.
0No relevant points.
", - "type": "table", - "image_path": "e6f09d0fcb89f90fbfc54d3aedb95565639a271e152d92af5aaf5c3869129345.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 40, - 215, - 544, - 351.66666666666663 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 40, - 351.66666666666663, - 544, - 488.33333333333326 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 40, - 488.33333333333326, - 544, - 624.9999999999999 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 8, - "page_num": "page_46", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 46, - 625, - 142, - 637 - ], - "lines": [ - { - "bbox": [ - 46, - 626, - 141, - 636 - ], - "spans": [ - { - "bbox": [ - 46, - 626, - 141, - 636 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_46", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 47, - 637, - 356, - 651 - ], - "lines": [ - { - "bbox": [ - 46, - 638, - 355, - 650 - ], - "spans": [ - { - "bbox": [ - 46, - 638, - 355, - 650 - ], - "score": 1.0, - "content": "Answers may include the following and/or other relevant points:", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_46", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 46, - 638, - 355, - 650 - ] - }, - { - "type": "list", - "bbox": [ - 45, - 663, - 380, - 758 - ], - "lines": [ - { - "bbox": [ - 47, - 665, - 379, - 676 - ], - "spans": [ - { - "bbox": [ - 47, - 665, - 379, - 676 - ], - "score": 1.0, - "content": "• meritocratic education –working class pupils can gain qualification", - "type": "text" - } - ], - "index": 12, - "is_list_start_line": true - }, - { - "bbox": [ - 56, - 678, - 335, - 690 - ], - "spans": [ - { - "bbox": [ - 56, - 678, - 335, - 690 - ], - "score": 1.0, - "content": "positive discrimination policies e.g. university admissions", - "type": "text" - } - ], - "index": 13, - "is_list_end_line": true - }, - { - "bbox": [ - 55, - 692, - 155, - 703 - ], - "spans": [ - { - "bbox": [ - 55, - 692, - 155, - 703 - ], - "score": 1.0, - "content": "parental aspirations", - "type": "text" - } - ], - "index": 14, - "is_list_end_line": true - }, - { - "bbox": [ - 46, - 705, - 241, - 716 - ], - "spans": [ - { - "bbox": [ - 46, - 705, - 241, - 716 - ], - "score": 1.0, - "content": "• changes in the occupational structure", - "type": "text" - } - ], - "index": 15, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 47, - 718, - 179, - 730 - ], - "spans": [ - { - "bbox": [ - 47, - 718, - 179, - 730 - ], - "score": 1.0, - "content": "• compensatory education", - "type": "text" - } - ], - "index": 16, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 48, - 731, - 118, - 744 - ], - "spans": [ - { - "bbox": [ - 48, - 731, - 118, - 744 - ], - "score": 1.0, - "content": "• marrying up", - "type": "text" - } - ], - "index": 17, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 48, - 745, - 300, - 757 - ], - "spans": [ - { - "bbox": [ - 48, - 745, - 300, - 757 - ], - "score": 1.0, - "content": "• acquisition of wealth e.g home ownership, shares", - "type": "text" - } - ], - "index": 18, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 15, - "page_num": "page_46", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 46, - 665, - 379, - 757 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 40, - 86, - 539, - 130 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 86, - 539, - 130 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 40, - 86, - 539, - 130 - ], - "spans": [ - { - "bbox": [ - 40, - 86, - 539, - 130 - ], - "score": 0.851, - "html": "
Sources may include the following or other relevant ones:
Blanden et al; Davis and Moore; Dorling et al; Glass; Goldthorpe; Heath and Brittan; Marshall et al; McKnight; Payne; Roberts; Saunders; Savage; Sutton Trust.
", - "type": "table", - "image_path": "78ddbaa9ccc998e66ddfd77161b3d6a069381ea35725e09a04d8cd8286f6f64a.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 40, - 86, - 539, - 100.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 40, - 100.66666666666667, - 539, - 115.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 40, - 115.33333333333334, - 539, - 130.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 41, - 143, - 545, - 175 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 143, - 545, - 175 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 41, - 143, - 545, - 175 - ], - "spans": [ - { - "bbox": [ - 41, - 143, - 545, - 175 - ], - "score": 0.947, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "4a1b81fb1a0b021ceffeea8c4878c63811eb563c5050040f4eb3441192a0e90f.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 41, - 143, - 545, - 153.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 41, - 153.66666666666666, - 545, - 164.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 41, - 164.33333333333331, - 545, - 174.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 39, - 186, - 545, - 223 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 186, - 545, - 223 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 39, - 186, - 545, - 223 - ], - "spans": [ - { - "bbox": [ - 39, - 186, - 545, - 223 - ], - "score": 0.968, - "html": "
23Applying material from Item O, analyse two ways in which age may affect an individual'sstatus.10
", - "type": "table", - "image_path": "9636965f5fb4dfb8334931deb98b56a559bab425af1487df11c7950ebc0f6741.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 39, - 186, - 545, - 198.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 39, - 198.33333333333334, - 545, - 210.66666666666669 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 39, - 210.66666666666669, - 545, - 223.00000000000003 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "title", - "bbox": [ - 272, - 253, - 309, - 266 - ], - "lines": [ - { - "bbox": [ - 272, - 254, - 309, - 267 - ], - "spans": [ - { - "bbox": [ - 272, - 254, - 309, - 267 - ], - "score": 1.0, - "content": "Item O", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 41, - 279, - 521, - 318 - ], - "lines": [ - { - "bbox": [ - 42, - 279, - 512, - 295 - ], - "spans": [ - { - "bbox": [ - 42, - 279, - 512, - 295 - ], - "score": 1.0, - "content": "Sociologists have increasingly recognised age as a dimension of inequality. For example, young", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 42, - 293, - 501, - 307 - ], - "spans": [ - { - "bbox": [ - 42, - 293, - 501, - 307 - ], - "score": 1.0, - "content": "people do not have all the same rights that adults do. Many older people are no longer in paid ", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 43, - 306, - 107, - 319 - ], - "spans": [ - { - "bbox": [ - 43, - 306, - 107, - 319 - ], - "score": 1.0, - "content": "employment.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 43, - 330, - 225, - 344 - ], - "lines": [ - { - "bbox": [ - 43, - 331, - 224, - 343 - ], - "spans": [ - { - "bbox": [ - 43, - 331, - 224, - 343 - ], - "score": 1.0, - "content": "Age may affect an individual’s status.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "table", - "bbox": [ - 40, - 369, - 546, - 778 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 369, - 546, - 778 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 40, - 369, - 546, - 778 - ], - "spans": [ - { - "bbox": [ - 40, - 369, - 546, - 778 - ], - "score": 0.984, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on s There will be two developed applications of material from the item, eg for young people, not having the right to work full time reduces income and independence; for older people, There will be appropriate analysis/evaluation of two problems eg of the extent to which age
4-7Answers in this band will show a basic to reasonable knowledge and understanding of one or two ways in which age may affect an individual's status. There will be some successful application of material from the item, eg reduced income in old age.
1-3There will be some analysis/evaluation. Answers in this band will show limited knowledge and understanding of one or two ways in which age may affect an individual's status. There will be limited application of material from the item. Some material may be at a There will be limited or no analysis/evaluation.
0No relevant points.
", - "type": "table", - "image_path": "4fe3f4698edb80d949887e7c2c40d4b4317adf3598f1279b96bc621e7cc26c40.jpg" - } - ] - } - ], - "index": 15, - "virtual_lines": [ - { - "bbox": [ - 40, - 369, - 546, - 505.33333333333337 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 40, - 505.33333333333337, - 546, - 641.6666666666667 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 40, - 641.6666666666667, - 546, - 778.0000000000001 - ], - "spans": [], - "index": 16 - } - ] - } - ], - "index": 15 - } - ], - "layout_bboxes": [], - "page_idx": 47, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 40, - 86, - 539, - 130 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 86, - 539, - 130 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 40, - 86, - 539, - 130 - ], - "spans": [ - { - "bbox": [ - 40, - 86, - 539, - 130 - ], - "score": 0.851, - "html": "
Sources may include the following or other relevant ones:
Blanden et al; Davis and Moore; Dorling et al; Glass; Goldthorpe; Heath and Brittan; Marshall et al; McKnight; Payne; Roberts; Saunders; Savage; Sutton Trust.
", - "type": "table", - "image_path": "78ddbaa9ccc998e66ddfd77161b3d6a069381ea35725e09a04d8cd8286f6f64a.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 40, - 86, - 539, - 100.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 40, - 100.66666666666667, - 539, - 115.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 40, - 115.33333333333334, - 539, - 130.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 41, - 143, - 545, - 175 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 143, - 545, - 175 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 41, - 143, - 545, - 175 - ], - "spans": [ - { - "bbox": [ - 41, - 143, - 545, - 175 - ], - "score": 0.947, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "4a1b81fb1a0b021ceffeea8c4878c63811eb563c5050040f4eb3441192a0e90f.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 41, - 143, - 545, - 153.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 41, - 153.66666666666666, - 545, - 164.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 41, - 164.33333333333331, - 545, - 174.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 39, - 186, - 545, - 223 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 186, - 545, - 223 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 39, - 186, - 545, - 223 - ], - "spans": [ - { - "bbox": [ - 39, - 186, - 545, - 223 - ], - "score": 0.968, - "html": "
23Applying material from Item O, analyse two ways in which age may affect an individual'sstatus.10
", - "type": "table", - "image_path": "9636965f5fb4dfb8334931deb98b56a559bab425af1487df11c7950ebc0f6741.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 39, - 186, - 545, - 198.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 39, - 198.33333333333334, - 545, - 210.66666666666669 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 39, - 210.66666666666669, - 545, - 223.00000000000003 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 40, - 369, - 546, - 778 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 369, - 546, - 778 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 40, - 369, - 546, - 778 - ], - "spans": [ - { - "bbox": [ - 40, - 369, - 546, - 778 - ], - "score": 0.984, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on s There will be two developed applications of material from the item, eg for young people, not having the right to work full time reduces income and independence; for older people, There will be appropriate analysis/evaluation of two problems eg of the extent to which age
4-7Answers in this band will show a basic to reasonable knowledge and understanding of one or two ways in which age may affect an individual's status. There will be some successful application of material from the item, eg reduced income in old age.
1-3There will be some analysis/evaluation. Answers in this band will show limited knowledge and understanding of one or two ways in which age may affect an individual's status. There will be limited application of material from the item. Some material may be at a There will be limited or no analysis/evaluation.
0No relevant points.
", - "type": "table", - "image_path": "4fe3f4698edb80d949887e7c2c40d4b4317adf3598f1279b96bc621e7cc26c40.jpg" - } - ] - } - ], - "index": 15, - "virtual_lines": [ - { - "bbox": [ - 40, - 369, - 546, - 505.33333333333337 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 40, - 505.33333333333337, - 546, - 641.6666666666667 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 40, - 641.6666666666667, - 546, - 778.0000000000001 - ], - "spans": [], - "index": 16 - } - ] - } - ], - "index": 15 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 237, - 35, - 554, - 48 - ], - "lines": [ - { - "bbox": [ - 237, - 37, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 237, - 37, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 797, - 52, - 806 - ], - "lines": [ - { - "bbox": [ - 40, - 797, - 54, - 807 - ], - "spans": [ - { - "bbox": [ - 40, - 797, - 54, - 807 - ], - "score": 1.0, - "content": "36 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 40, - 86, - 539, - 130 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 86, - 539, - 130 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 40, - 86, - 539, - 130 - ], - "spans": [ - { - "bbox": [ - 40, - 86, - 539, - 130 - ], - "score": 0.851, - "html": "
Sources may include the following or other relevant ones:
Blanden et al; Davis and Moore; Dorling et al; Glass; Goldthorpe; Heath and Brittan; Marshall et al; McKnight; Payne; Roberts; Saunders; Savage; Sutton Trust.
", - "type": "table", - "image_path": "78ddbaa9ccc998e66ddfd77161b3d6a069381ea35725e09a04d8cd8286f6f64a.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 40, - 86, - 539, - 100.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 40, - 100.66666666666667, - 539, - 115.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 40, - 115.33333333333334, - 539, - 130.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_47", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 41, - 143, - 545, - 175 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 143, - 545, - 175 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 41, - 143, - 545, - 175 - ], - "spans": [ - { - "bbox": [ - 41, - 143, - 545, - 175 - ], - "score": 0.947, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "4a1b81fb1a0b021ceffeea8c4878c63811eb563c5050040f4eb3441192a0e90f.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 41, - 143, - 545, - 153.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 41, - 153.66666666666666, - 545, - 164.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 41, - 164.33333333333331, - 545, - 174.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_47", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 39, - 186, - 545, - 223 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 186, - 545, - 223 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 39, - 186, - 545, - 223 - ], - "spans": [ - { - "bbox": [ - 39, - 186, - 545, - 223 - ], - "score": 0.968, - "html": "
23Applying material from Item O, analyse two ways in which age may affect an individual'sstatus.10
", - "type": "table", - "image_path": "9636965f5fb4dfb8334931deb98b56a559bab425af1487df11c7950ebc0f6741.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 39, - 186, - 545, - 198.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 39, - 198.33333333333334, - 545, - 210.66666666666669 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 39, - 210.66666666666669, - 545, - 223.00000000000003 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_47", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 272, - 253, - 309, - 266 - ], - "lines": [ - { - "bbox": [ - 272, - 254, - 309, - 267 - ], - "spans": [ - { - "bbox": [ - 272, - 254, - 309, - 267 - ], - "score": 1.0, - "content": "Item O", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_47", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 41, - 279, - 521, - 318 - ], - "lines": [ - { - "bbox": [ - 42, - 279, - 512, - 295 - ], - "spans": [ - { - "bbox": [ - 42, - 279, - 512, - 295 - ], - "score": 1.0, - "content": "Sociologists have increasingly recognised age as a dimension of inequality. For example, young", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 42, - 293, - 501, - 307 - ], - "spans": [ - { - "bbox": [ - 42, - 293, - 501, - 307 - ], - "score": 1.0, - "content": "people do not have all the same rights that adults do. Many older people are no longer in paid ", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 43, - 306, - 107, - 319 - ], - "spans": [ - { - "bbox": [ - 43, - 306, - 107, - 319 - ], - "score": 1.0, - "content": "employment.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11, - "page_num": "page_47", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 279, - 512, - 319 - ] - }, - { - "type": "text", - "bbox": [ - 43, - 330, - 225, - 344 - ], - "lines": [ - { - "bbox": [ - 43, - 331, - 224, - 343 - ], - "spans": [ - { - "bbox": [ - 43, - 331, - 224, - 343 - ], - "score": 1.0, - "content": "Age may affect an individual’s status.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_47", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 43, - 331, - 224, - 343 - ] - }, - { - "type": "table", - "bbox": [ - 40, - 369, - 546, - 778 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 40, - 369, - 546, - 778 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 40, - 369, - 546, - 778 - ], - "spans": [ - { - "bbox": [ - 40, - 369, - 546, - 778 - ], - "score": 0.984, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on s There will be two developed applications of material from the item, eg for young people, not having the right to work full time reduces income and independence; for older people, There will be appropriate analysis/evaluation of two problems eg of the extent to which age
4-7Answers in this band will show a basic to reasonable knowledge and understanding of one or two ways in which age may affect an individual's status. There will be some successful application of material from the item, eg reduced income in old age.
1-3There will be some analysis/evaluation. Answers in this band will show limited knowledge and understanding of one or two ways in which age may affect an individual's status. There will be limited application of material from the item. Some material may be at a There will be limited or no analysis/evaluation.
0No relevant points.
", - "type": "table", - "image_path": "4fe3f4698edb80d949887e7c2c40d4b4317adf3598f1279b96bc621e7cc26c40.jpg" - } - ] - } - ], - "index": 15, - "virtual_lines": [ - { - "bbox": [ - 40, - 369, - 546, - 505.33333333333337 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 40, - 505.33333333333337, - 546, - 641.6666666666667 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 40, - 641.6666666666667, - 546, - 778.0000000000001 - ], - "spans": [], - "index": 16 - } - ] - } - ], - "index": 15, - "page_num": "page_47", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 44, - 97, - 502, - 136 - ], - "lines": [ - { - "bbox": [ - 48, - 99, - 351, - 110 - ], - "spans": [ - { - "bbox": [ - 48, - 99, - 351, - 110 - ], - "score": 1.0, - "content": "Sources may include the following or other relevant ones:", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 47, - 111, - 501, - 124 - ], - "spans": [ - { - "bbox": [ - 47, - 111, - 501, - 124 - ], - "score": 1.0, - "content": "Abercrombie and Warde; Binner et al; Blaikie; Bradley; Bulman; Butler; Campbell; Davidson;", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 48, - 124, - 291, - 136 - ], - "spans": [ - { - "bbox": [ - 48, - 124, - 291, - 136 - ], - "score": 1.0, - "content": "Greengross; Pilcher; Ray et al; Scase and Scales.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 48, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 237, - 35, - 554, - 48 - ], - "lines": [ - { - "bbox": [ - 237, - 37, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 237, - 37, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 543, - 797, - 553, - 805 - ], - "lines": [ - { - "bbox": [ - 542, - 797, - 555, - 807 - ], - "spans": [ - { - "bbox": [ - 542, - 797, - 555, - 807 - ], - "score": 1.0, - "content": "37 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "list", - "bbox": [ - 44, - 97, - 502, - 136 - ], - "lines": [ - { - "bbox": [ - 48, - 99, - 351, - 110 - ], - "spans": [ - { - "bbox": [ - 48, - 99, - 351, - 110 - ], - "score": 1.0, - "content": "Sources may include the following or other relevant ones:", - "type": "text" - } - ], - "index": 0, - "is_list_end_line": true - }, - { - "bbox": [ - 47, - 111, - 501, - 124 - ], - "spans": [ - { - "bbox": [ - 47, - 111, - 501, - 124 - ], - "score": 1.0, - "content": "Abercrombie and Warde; Binner et al; Blaikie; Bradley; Bulman; Butler; Campbell; Davidson;", - "type": "text" - } - ], - "index": 1, - "is_list_start_line": true - }, - { - "bbox": [ - 48, - 124, - 291, - 136 - ], - "spans": [ - { - "bbox": [ - 48, - 124, - 291, - 136 - ], - "score": 1.0, - "content": "Greengross; Pilcher; Ray et al; Scase and Scales.", - "type": "text" - } - ], - "index": 2, - "is_list_end_line": true - } - ], - "index": 1, - "page_num": "page_48", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 47, - 99, - 501, - 136 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 39, - 83, - 546, - 114 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 83, - 546, - 114 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 39, - 83, - 546, - 114 - ], - "spans": [ - { - "bbox": [ - 39, - 83, - 546, - 114 - ], - "score": 0.961, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "49db5b12a9b6ba6e1bbf9a660a9db19aeaddb7bec8b02fbe782cd754558b0282.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 39, - 83, - 546, - 93.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 39, - 93.33333333333333, - 546, - 103.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 39, - 103.66666666666666, - 546, - 113.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 39, - 125, - 546, - 163 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 125, - 546, - 163 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 39, - 125, - 546, - 163 - ], - "spans": [ - { - "bbox": [ - 39, - 125, - 546, - 163 - ], - "score": 0.962, - "html": "
Applying material from Item P and your knowledge, evaluate the view that gender is the most important dimension of inequality today.20
", - "type": "table", - "image_path": "cbc6558806f2536c1e0b9b6bf8fb2604146422ee7624cc80a16cd142a2d2733d.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 39, - 125, - 546, - 137.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 39, - 137.66666666666666, - 546, - 150.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 39, - 150.33333333333331, - 546, - 162.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 39, - 174, - 537, - 300 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 174, - 537, - 300 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 39, - 174, - 537, - 300 - ], - "spans": [ - { - "bbox": [ - 39, - 174, - 537, - 300 - ], - "score": 0.378, - "html": "
ItemP
despite some improvements in the social position of women.
However, other sociologists see gender inequalities as natural and inevitable, or argue that other
dimensionsof inequalityaremoreimportant.
", - "type": "table", - "image_path": "ffd495052bdd695fe3030a6a5961509cd9aa628a64036394dd98a0a414dccc07.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 39, - 174, - 537, - 216.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 39, - 216.0, - 537, - 258.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 39, - 258.0, - 537, - 300.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 41, - 306, - 546, - 781 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 306, - 546, - 781 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 41, - 306, - 546, - 781 - ], - "spans": [ - { - "bbox": [ - 41, - 306, - 546, - 781 - ], - "score": 0.981, - "html": "
MarksLevelDescriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of today. Sophisticated understanding of the question and of the presented material will be shown. Appropriate material will be applied accurately and with sensitivity to the issues raised by thequestion. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for example throughdebates over the relative importance ofgender compared toother dimensions of inequality such as ethnicity and social class. Analysis will show clear
13-16explanation. Appropriate conclusions will be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. maybe inadequatelyfocused.
9-12and/or some appropriate analysis, eg clear explanations of some of the presented material. Answers in this band will show largely accurate knowledge but limited range and depth, eg Applying listed material from the general topic area but with limited regard for its relevance isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
", - "type": "table", - "image_path": "1173723369daf1967a89f48c1c1dfbe87aa7f6648202e2734095eba7c2f64998.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 41, - 306, - 546, - 464.33333333333337 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 41, - 464.33333333333337, - 546, - 622.6666666666667 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 41, - 622.6666666666667, - 546, - 781.0000000000001 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - } - ], - "layout_bboxes": [], - "page_idx": 49, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 39, - 83, - 546, - 114 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 83, - 546, - 114 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 39, - 83, - 546, - 114 - ], - "spans": [ - { - "bbox": [ - 39, - 83, - 546, - 114 - ], - "score": 0.961, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "49db5b12a9b6ba6e1bbf9a660a9db19aeaddb7bec8b02fbe782cd754558b0282.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 39, - 83, - 546, - 93.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 39, - 93.33333333333333, - 546, - 103.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 39, - 103.66666666666666, - 546, - 113.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 39, - 125, - 546, - 163 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 125, - 546, - 163 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 39, - 125, - 546, - 163 - ], - "spans": [ - { - "bbox": [ - 39, - 125, - 546, - 163 - ], - "score": 0.962, - "html": "
Applying material from Item P and your knowledge, evaluate the view that gender is the most important dimension of inequality today.20
", - "type": "table", - "image_path": "cbc6558806f2536c1e0b9b6bf8fb2604146422ee7624cc80a16cd142a2d2733d.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 39, - 125, - 546, - 137.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 39, - 137.66666666666666, - 546, - 150.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 39, - 150.33333333333331, - 546, - 162.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 39, - 174, - 537, - 300 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 174, - 537, - 300 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 39, - 174, - 537, - 300 - ], - "spans": [ - { - "bbox": [ - 39, - 174, - 537, - 300 - ], - "score": 0.378, - "html": "
ItemP
despite some improvements in the social position of women.
However, other sociologists see gender inequalities as natural and inevitable, or argue that other
dimensionsof inequalityaremoreimportant.
", - "type": "table", - "image_path": "ffd495052bdd695fe3030a6a5961509cd9aa628a64036394dd98a0a414dccc07.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 39, - 174, - 537, - 216.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 39, - 216.0, - 537, - 258.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 39, - 258.0, - 537, - 300.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 41, - 306, - 546, - 781 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 306, - 546, - 781 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 41, - 306, - 546, - 781 - ], - "spans": [ - { - "bbox": [ - 41, - 306, - 546, - 781 - ], - "score": 0.981, - "html": "
MarksLevelDescriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of today. Sophisticated understanding of the question and of the presented material will be shown. Appropriate material will be applied accurately and with sensitivity to the issues raised by thequestion. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for example throughdebates over the relative importance ofgender compared toother dimensions of inequality such as ethnicity and social class. Analysis will show clear
13-16explanation. Appropriate conclusions will be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. maybe inadequatelyfocused.
9-12and/or some appropriate analysis, eg clear explanations of some of the presented material. Answers in this band will show largely accurate knowledge but limited range and depth, eg Applying listed material from the general topic area but with limited regard for its relevance isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
", - "type": "table", - "image_path": "1173723369daf1967a89f48c1c1dfbe87aa7f6648202e2734095eba7c2f64998.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 41, - 306, - 546, - 464.33333333333337 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 41, - 464.33333333333337, - 546, - 622.6666666666667 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 41, - 622.6666666666667, - 546, - 781.0000000000001 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 41, - 797, - 52, - 806 - ], - "lines": [ - { - "bbox": [ - 40, - 797, - 54, - 807 - ], - "spans": [ - { - "bbox": [ - 40, - 797, - 54, - 807 - ], - "score": 1.0, - "content": "38 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 236, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 238, - 36, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 238, - 36, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 39, - 83, - 546, - 114 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 83, - 546, - 114 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 39, - 83, - 546, - 114 - ], - "spans": [ - { - "bbox": [ - 39, - 83, - 546, - 114 - ], - "score": 0.961, - "html": "
QuMarking guidanceTotal marks
", - "type": "table", - "image_path": "49db5b12a9b6ba6e1bbf9a660a9db19aeaddb7bec8b02fbe782cd754558b0282.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 39, - 83, - 546, - 93.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 39, - 93.33333333333333, - 546, - 103.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 39, - 103.66666666666666, - 546, - 113.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_49", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 39, - 125, - 546, - 163 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 125, - 546, - 163 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 39, - 125, - 546, - 163 - ], - "spans": [ - { - "bbox": [ - 39, - 125, - 546, - 163 - ], - "score": 0.962, - "html": "
Applying material from Item P and your knowledge, evaluate the view that gender is the most important dimension of inequality today.20
", - "type": "table", - "image_path": "cbc6558806f2536c1e0b9b6bf8fb2604146422ee7624cc80a16cd142a2d2733d.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 39, - 125, - 546, - 137.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 39, - 137.66666666666666, - 546, - 150.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 39, - 150.33333333333331, - 546, - 162.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_49", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 39, - 174, - 537, - 300 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 39, - 174, - 537, - 300 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 39, - 174, - 537, - 300 - ], - "spans": [ - { - "bbox": [ - 39, - 174, - 537, - 300 - ], - "score": 0.378, - "html": "
ItemP
despite some improvements in the social position of women.
However, other sociologists see gender inequalities as natural and inevitable, or argue that other
dimensionsof inequalityaremoreimportant.
", - "type": "table", - "image_path": "ffd495052bdd695fe3030a6a5961509cd9aa628a64036394dd98a0a414dccc07.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 39, - 174, - 537, - 216.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 39, - 216.0, - 537, - 258.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 39, - 258.0, - 537, - 300.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_49", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 41, - 306, - 546, - 781 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 41, - 306, - 546, - 781 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 41, - 306, - 546, - 781 - ], - "spans": [ - { - "bbox": [ - 41, - 306, - 546, - 781 - ], - "score": 0.981, - "html": "
MarksLevelDescriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of today. Sophisticated understanding of the question and of the presented material will be shown. Appropriate material will be applied accurately and with sensitivity to the issues raised by thequestion. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for example throughdebates over the relative importance ofgender compared toother dimensions of inequality such as ethnicity and social class. Analysis will show clear
13-16explanation. Appropriate conclusions will be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. maybe inadequatelyfocused.
9-12and/or some appropriate analysis, eg clear explanations of some of the presented material. Answers in this band will show largely accurate knowledge but limited range and depth, eg Applying listed material from the general topic area but with limited regard for its relevance isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
", - "type": "table", - "image_path": "1173723369daf1967a89f48c1c1dfbe87aa7f6648202e2734095eba7c2f64998.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 41, - 306, - 546, - 464.33333333333337 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 41, - 464.33333333333337, - 546, - 622.6666666666667 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 41, - 622.6666666666667, - 546, - 781.0000000000001 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10, - "page_num": "page_49", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 42, - 83, - 545, - 332 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 83, - 545, - 332 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 42, - 83, - 545, - 332 - ], - "spans": [ - { - "bbox": [ - 42, - 83, - 545, - 332 - ], - "score": 0.978, - "html": "
5-8insubstantial points about gender inequality today. Understands only limited aspects of the question; simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question. Very limited or no evaluation. Attempts at analysis, if any, are thin and disjointed.
1-4points about gender in general. Very little/no understanding of the question and of the presentedmaterial. Significant errors and/or omissions in application of material. No analysis or evaluation.
0No relevant points.
", - "type": "table", - "image_path": "21c9f356353df5f7b79c2bd17506e9fd92099748181068c54b7706a0af544983.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 42, - 83, - 545, - 166.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 42, - 166.0, - 545, - 249.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 42, - 249.0, - 545, - 332.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "title", - "bbox": [ - 43, - 349, - 139, - 362 - ], - "lines": [ - { - "bbox": [ - 43, - 350, - 138, - 361 - ], - "spans": [ - { - "bbox": [ - 43, - 350, - 138, - 361 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 43, - 375, - 316, - 388 - ], - "lines": [ - { - "bbox": [ - 43, - 375, - 316, - 388 - ], - "spans": [ - { - "bbox": [ - 43, - 375, - 316, - 388 - ], - "score": 1.0, - "content": "Concepts and issues such as the following may appear:", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 43, - 400, - 530, - 451 - ], - "lines": [ - { - "bbox": [ - 42, - 401, - 521, - 414 - ], - "spans": [ - { - "bbox": [ - 42, - 401, - 521, - 414 - ], - "score": 1.0, - "content": "Gender; feminisms; postfeminism; patriarchy; gender socialisation; discrimination; feminisation of ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 42, - 413, - 530, - 426 - ], - "spans": [ - { - "bbox": [ - 42, - 413, - 530, - 426 - ], - "score": 1.0, - "content": "poverty; expressive role; instrumental role; dual burden; triple shift; domestic division of labour; dual ", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 42, - 425, - 497, - 440 - ], - "spans": [ - { - "bbox": [ - 42, - 425, - 497, - 440 - ], - "score": 1.0, - "content": "labour market; reserve army of labour; glass ceiling; genderquake; hegemonic femininity and ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 42, - 439, - 342, - 452 - ], - "spans": [ - { - "bbox": [ - 42, - 439, - 342, - 452 - ], - "score": 1.0, - "content": "hegemonic masculinity; crisis of masculinity; gender regimes.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 6.5 - }, - { - "type": "title", - "bbox": [ - 42, - 472, - 347, - 486 - ], - "lines": [ - { - "bbox": [ - 43, - 474, - 348, - 485 - ], - "spans": [ - { - "bbox": [ - 43, - 474, - 348, - 485 - ], - "score": 1.0, - "content": "Sources may include the following or other relevant ones:", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 44, - 497, - 510, - 524 - ], - "lines": [ - { - "bbox": [ - 43, - 498, - 512, - 511 - ], - "spans": [ - { - "bbox": [ - 43, - 498, - 512, - 511 - ], - "score": 1.0, - "content": "Ansley; Benston; Bradley; Bryson; Delamont; Delphy; Firestone; Hakim; Hills et al; Mead; Mirza;", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 42, - 510, - 377, - 524 - ], - "spans": [ - { - "bbox": [ - 42, - 510, - 377, - 524 - ], - "score": 1.0, - "content": "Oakley; Ortner; Pilcher and Whelehan; Platt; Pollert; Sharpe; Walby.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5 - } - ], - "layout_bboxes": [], - "page_idx": 50, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 42, - 83, - 545, - 332 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 83, - 545, - 332 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 42, - 83, - 545, - 332 - ], - "spans": [ - { - "bbox": [ - 42, - 83, - 545, - 332 - ], - "score": 0.978, - "html": "
5-8insubstantial points about gender inequality today. Understands only limited aspects of the question; simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question. Very limited or no evaluation. Attempts at analysis, if any, are thin and disjointed.
1-4points about gender in general. Very little/no understanding of the question and of the presentedmaterial. Significant errors and/or omissions in application of material. No analysis or evaluation.
0No relevant points.
", - "type": "table", - "image_path": "21c9f356353df5f7b79c2bd17506e9fd92099748181068c54b7706a0af544983.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 42, - 83, - 545, - 166.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 42, - 166.0, - 545, - 249.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 42, - 249.0, - 545, - 332.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 237, - 35, - 554, - 48 - ], - "lines": [ - { - "bbox": [ - 237, - 35, - 553, - 48 - ], - "spans": [ - { - "bbox": [ - 237, - 35, - 553, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 543, - 797, - 553, - 805 - ], - "lines": [ - { - "bbox": [ - 543, - 797, - 555, - 807 - ], - "spans": [ - { - "bbox": [ - 543, - 797, - 555, - 807 - ], - "score": 1.0, - "content": "39 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 42, - 83, - 545, - 332 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 42, - 83, - 545, - 332 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 42, - 83, - 545, - 332 - ], - "spans": [ - { - "bbox": [ - 42, - 83, - 545, - 332 - ], - "score": 0.978, - "html": "
5-8insubstantial points about gender inequality today. Understands only limited aspects of the question; simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question. Very limited or no evaluation. Attempts at analysis, if any, are thin and disjointed.
1-4points about gender in general. Very little/no understanding of the question and of the presentedmaterial. Significant errors and/or omissions in application of material. No analysis or evaluation.
0No relevant points.
", - "type": "table", - "image_path": "21c9f356353df5f7b79c2bd17506e9fd92099748181068c54b7706a0af544983.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 42, - 83, - 545, - 166.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 42, - 166.0, - 545, - 249.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 42, - 249.0, - 545, - 332.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_50", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 43, - 349, - 139, - 362 - ], - "lines": [ - { - "bbox": [ - 43, - 350, - 138, - 361 - ], - "spans": [ - { - "bbox": [ - 43, - 350, - 138, - 361 - ], - "score": 1.0, - "content": "Indicative content", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_50", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 43, - 375, - 316, - 388 - ], - "lines": [ - { - "bbox": [ - 43, - 375, - 316, - 388 - ], - "spans": [ - { - "bbox": [ - 43, - 375, - 316, - 388 - ], - "score": 1.0, - "content": "Concepts and issues such as the following may appear:", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_50", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 43, - 375, - 316, - 388 - ] - }, - { - "type": "text", - "bbox": [ - 43, - 400, - 530, - 451 - ], - "lines": [ - { - "bbox": [ - 42, - 401, - 521, - 414 - ], - "spans": [ - { - "bbox": [ - 42, - 401, - 521, - 414 - ], - "score": 1.0, - "content": "Gender; feminisms; postfeminism; patriarchy; gender socialisation; discrimination; feminisation of ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 42, - 413, - 530, - 426 - ], - "spans": [ - { - "bbox": [ - 42, - 413, - 530, - 426 - ], - "score": 1.0, - "content": "poverty; expressive role; instrumental role; dual burden; triple shift; domestic division of labour; dual ", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 42, - 425, - 497, - 440 - ], - "spans": [ - { - "bbox": [ - 42, - 425, - 497, - 440 - ], - "score": 1.0, - "content": "labour market; reserve army of labour; glass ceiling; genderquake; hegemonic femininity and ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 42, - 439, - 342, - 452 - ], - "spans": [ - { - "bbox": [ - 42, - 439, - 342, - 452 - ], - "score": 1.0, - "content": "hegemonic masculinity; crisis of masculinity; gender regimes.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 6.5, - "page_num": "page_50", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 401, - 530, - 452 - ] - }, - { - "type": "title", - "bbox": [ - 42, - 472, - 347, - 486 - ], - "lines": [ - { - "bbox": [ - 43, - 474, - 348, - 485 - ], - "spans": [ - { - "bbox": [ - 43, - 474, - 348, - 485 - ], - "score": 1.0, - "content": "Sources may include the following or other relevant ones:", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_50", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 44, - 497, - 510, - 524 - ], - "lines": [ - { - "bbox": [ - 43, - 498, - 512, - 511 - ], - "spans": [ - { - "bbox": [ - 43, - 498, - 512, - 511 - ], - "score": 1.0, - "content": "Ansley; Benston; Bradley; Bryson; Delamont; Delphy; Firestone; Hakim; Hills et al; Mead; Mirza;", - "type": "text" - } - ], - "index": 10, - "is_list_end_line": true - }, - { - "bbox": [ - 42, - 510, - 377, - 524 - ], - "spans": [ - { - "bbox": [ - 42, - 510, - 377, - 524 - ], - "score": 1.0, - "content": "Oakley; Ortner; Pilcher and Whelehan; Platt; Pollert; Sharpe; Walby.", - "type": "text" - } - ], - "index": 11, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 10.5, - "page_num": "page_50", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 498, - 512, - 524 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 234, - 84, - 376, - 98 - ], - "lines": [ - { - "bbox": [ - 234, - 86, - 375, - 98 - ], - "spans": [ - { - "bbox": [ - 234, - 86, - 375, - 98 - ], - "score": 1.0, - "content": "Assessment objective grid", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table", - "bbox": [ - 62, - 109, - 482, - 363 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 62, - 109, - 482, - 363 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 62, - 109, - 482, - 363 - ], - "spans": [ - { - "bbox": [ - 62, - 109, - 482, - 363 - ], - "score": 0.984, - "html": "
A01A02A03Total
Section A
Q01, Q04, Q07, Q1053210
Q02, Q05, Q08, Q1134310
Q03, Q06, Q09. Q1289920
Section B
Q13, Q16, Q19, Q2253210
Q14, Q17, Q20, Q2334310
Q15, Q18, Q21, Q2489920
Totals32262280
", - "type": "table", - "image_path": "e5537f035fca6930add3816101894a85161b96b31bc87a86e6cabd256a54399a.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 62, - 109, - 482, - 193.66666666666669 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 62, - 193.66666666666669, - 482, - 278.33333333333337 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 62, - 278.33333333333337, - 482, - 363.00000000000006 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - } - ], - "layout_bboxes": [], - "page_idx": 51, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 62, - 109, - 482, - 363 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 62, - 109, - 482, - 363 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 62, - 109, - 482, - 363 - ], - "spans": [ - { - "bbox": [ - 62, - 109, - 482, - 363 - ], - "score": 0.984, - "html": "
A01A02A03Total
Section A
Q01, Q04, Q07, Q1053210
Q02, Q05, Q08, Q1134310
Q03, Q06, Q09. Q1289920
Section B
Q13, Q16, Q19, Q2253210
Q14, Q17, Q20, Q2334310
Q15, Q18, Q21, Q2489920
Totals32262280
", - "type": "table", - "image_path": "e5537f035fca6930add3816101894a85161b96b31bc87a86e6cabd256a54399a.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 62, - 109, - 482, - 193.66666666666669 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 62, - 193.66666666666669, - 482, - 278.33333333333337 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 62, - 278.33333333333337, - 482, - 363.00000000000006 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 236, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "spans": [ - { - "bbox": [ - 237, - 35, - 554, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A LEVEL SOCIOLOGY – 7192/2 – JUNE 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 797, - 52, - 805 - ], - "lines": [ - { - "bbox": [ - 40, - 797, - 54, - 807 - ], - "spans": [ - { - "bbox": [ - 40, - 797, - 54, - 807 - ], - "score": 1.0, - "content": "40 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 234, - 84, - 376, - 98 - ], - "lines": [ - { - "bbox": [ - 234, - 86, - 375, - 98 - ], - "spans": [ - { - "bbox": [ - 234, - 86, - 375, - 98 - ], - "score": 1.0, - "content": "Assessment objective grid", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_51", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 62, - 109, - 482, - 363 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 62, - 109, - 482, - 363 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 62, - 109, - 482, - 363 - ], - "spans": [ - { - "bbox": [ - 62, - 109, - 482, - 363 - ], - "score": 0.984, - "html": "
A01A02A03Total
Section A
Q01, Q04, Q07, Q1053210
Q02, Q05, Q08, Q1134310
Q03, Q06, Q09. Q1289920
Section B
Q13, Q16, Q19, Q2253210
Q14, Q17, Q20, Q2334310
Q15, Q18, Q21, Q2489920
Totals32262280
", - "type": "table", - "image_path": "e5537f035fca6930add3816101894a85161b96b31bc87a86e6cabd256a54399a.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 62, - 109, - 482, - 193.66666666666669 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 62, - 193.66666666666669, - 482, - 278.33333333333337 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 62, - 278.33333333333337, - 482, - 363.00000000000006 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2, - "page_num": "page_51", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - } - ], - "_parse_type": "txt", - "_version_name": "1.1.0", - "lang": "en" -} \ No newline at end of file diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/7192_2_June_2020_1739552314_model.json b/pdf_output/7192_2_June_2020_1739552314/auto/7192_2_June_2020_1739552314_model.json deleted file mode 100644 index e4f6c25b46fcbe70672c55711c2e33a8c7ea166e..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/7192_2_June_2020_1739552314_model.json +++ /dev/null @@ -1,20915 +0,0 @@ -[ - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 123, - 915, - 1479, - 915, - 1479, - 1059, - 123, - 1059 - ], - "score": 0.957 - }, - { - "category_id": 0, - "poly": [ - 124, - 878, - 318, - 878, - 318, - 910, - 124, - 910 - ], - "score": 0.92 - }, - { - "category_id": 0, - "poly": [ - 123, - 1094, - 311, - 1094, - 311, - 1127, - 123, - 1127 - ], - "score": 0.916 - }, - { - "category_id": 0, - "poly": [ - 124, - 732, - 273, - 732, - 273, - 766, - 124, - 766 - ], - "score": 0.912 - }, - { - "category_id": 2, - "poly": [ - 122, - 116, - 494, - 116, - 494, - 255, - 122, - 255 - ], - "score": 0.909 - }, - { - "category_id": 1, - "poly": [ - 124, - 509, - 663, - 509, - 663, - 561, - 124, - 561 - ], - "score": 0.883 - }, - { - "category_id": 2, - "poly": [ - 123, - 2279, - 255, - 2279, - 255, - 2302, - 123, - 2302 - ], - "score": 0.881 - }, - { - "category_id": 1, - "poly": [ - 1132, - 649, - 1529, - 649, - 1529, - 697, - 1132, - 697 - ], - "score": 0.873 - }, - { - "category_id": 1, - "poly": [ - 127, - 808, - 575, - 808, - 575, - 841, - 127, - 841 - ], - "score": 0.831 - }, - { - "category_id": 1, - "poly": [ - 126, - 771, - 531, - 771, - 531, - 805, - 126, - 805 - ], - "score": 0.828 - }, - { - "category_id": 0, - "poly": [ - 122, - 307, - 523, - 307, - 523, - 488, - 122, - 488 - ], - "score": 0.78 - }, - { - "category_id": 1, - "poly": [ - 126, - 646, - 516, - 646, - 516, - 697, - 126, - 697 - ], - "score": 0.748 - }, - { - "category_id": 2, - "poly": [ - 1329, - 2240, - 1507, - 2240, - 1507, - 2299, - 1329, - 2299 - ], - "score": 0.715 - }, - { - "category_id": 1, - "poly": [ - 124, - 1133, - 859, - 1133, - 859, - 1385, - 124, - 1385 - ], - "score": 0.706 - }, - { - "category_id": 0, - "poly": [ - 764, - 649, - 945, - 649, - 945, - 696, - 764, - 696 - ], - "score": 0.696 - }, - { - "category_id": 1, - "poly": [ - 161, - 1278, - 830, - 1278, - 830, - 1383, - 161, - 1383 - ], - "score": 0.237 - }, - { - "category_id": 0, - "poly": [ - 124, - 309, - 361, - 309, - 361, - 381, - 124, - 381 - ], - "score": 0.217 - }, - { - "category_id": 1, - "poly": [ - 764, - 649, - 945, - 649, - 945, - 696, - 764, - 696 - ], - "score": 0.215 - }, - { - "category_id": 0, - "poly": [ - 126, - 646, - 516, - 646, - 516, - 697, - 126, - 697 - ], - "score": 0.187 - }, - { - "category_id": 0, - "poly": [ - 125, - 405, - 520, - 405, - 520, - 486, - 125, - 486 - ], - "score": 0.165 - }, - { - "category_id": 1, - "poly": [ - 124, - 772, - 576, - 772, - 576, - 841, - 124, - 841 - ], - "score": 0.121 - }, - { - "category_id": 1, - "poly": [ - 131, - 1169, - 696, - 1169, - 696, - 1200, - 131, - 1200 - ], - "score": 0.104 - }, - { - "category_id": 15, - "poly": [ - 123.0, - 914.0, - 657.0, - 914.0, - 657.0, - 950.0, - 123.0, - 950.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 125.0, - 952.0, - 1476.0, - 952.0, - 1476.0, - 985.0, - 125.0, - 985.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 125.0, - 989.0, - 1468.0, - 989.0, - 1468.0, - 1022.0, - 125.0, - 1022.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 122.0, - 1021.0, - 1449.0, - 1021.0, - 1449.0, - 1060.0, - 122.0, - 1060.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 124.0, - 878.0, - 318.0, - 878.0, - 318.0, - 910.0, - 124.0, - 910.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 124.0, - 1094.0, - 311.0, - 1094.0, - 311.0, - 1127.0, - 124.0, - 1127.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 125.0, - 733.0, - 272.0, - 733.0, - 272.0, - 767.0, - 125.0, - 767.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 124.0, - 146.0, - 400.0, - 146.0, - 400.0, - 249.0, - 124.0, - 249.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 407.0, - 125.0, - 487.0, - 125.0, - 487.0, - 218.0, - 407.0, - 218.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 124.0, - 512.0, - 659.0, - 512.0, - 659.0, - 562.0, - 124.0, - 562.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 125.0, - 2281.0, - 256.0, - 2281.0, - 256.0, - 2302.0, - 125.0, - 2302.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1133.0, - 652.0, - 1530.0, - 652.0, - 1530.0, - 693.0, - 1133.0, - 693.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 809.0, - 577.0, - 809.0, - 577.0, - 841.0, - 136.0, - 841.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 124.0, - 771.0, - 532.0, - 771.0, - 532.0, - 806.0, - 124.0, - 806.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 124.0, - 312.0, - 361.0, - 312.0, - 361.0, - 378.0, - 124.0, - 378.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 131.0, - 416.0, - 515.0, - 416.0, - 515.0, - 476.0, - 131.0, - 476.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 125.0, - 655.0, - 511.0, - 655.0, - 511.0, - 692.0, - 125.0, - 692.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1327.0, - 2243.0, - 1508.0, - 2243.0, - 1508.0, - 2297.0, - 1327.0, - 2297.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 1132.0, - 800.0, - 1132.0, - 800.0, - 1165.0, - 136.0, - 1165.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 1170.0, - 694.0, - 1170.0, - 694.0, - 1200.0, - 136.0, - 1200.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 1204.0, - 858.0, - 1204.0, - 858.0, - 1238.0, - 139.0, - 1238.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 153.0, - 1240.0, - 659.0, - 1240.0, - 659.0, - 1276.0, - 153.0, - 1276.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 223.0, - 1279.0, - 462.0, - 1279.0, - 462.0, - 1311.0, - 223.0, - 1311.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 224.0, - 1315.0, - 600.0, - 1315.0, - 600.0, - 1346.0, - 224.0, - 1346.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 222.0, - 1350.0, - 824.0, - 1350.0, - 824.0, - 1381.0, - 222.0, - 1381.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 764.0, - 650.0, - 947.0, - 650.0, - 947.0, - 699.0, - 764.0, - 699.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 222.0, - 1278.0, - 461.0, - 1278.0, - 461.0, - 1309.0, - 222.0, - 1309.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 223.0, - 1314.0, - 600.0, - 1314.0, - 600.0, - 1348.0, - 223.0, - 1348.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 222.0, - 1351.0, - 828.0, - 1351.0, - 828.0, - 1384.0, - 222.0, - 1384.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 125.0, - 312.0, - 361.0, - 312.0, - 361.0, - 377.0, - 125.0, - 377.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 764.0, - 650.0, - 947.0, - 650.0, - 947.0, - 699.0, - 764.0, - 699.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 125.0, - 655.0, - 511.0, - 655.0, - 511.0, - 692.0, - 125.0, - 692.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 131.0, - 417.0, - 514.0, - 417.0, - 514.0, - 475.0, - 131.0, - 475.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 123.0, - 769.0, - 533.0, - 769.0, - 533.0, - 809.0, - 123.0, - 809.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 127.0, - 810.0, - 576.0, - 810.0, - 576.0, - 839.0, - 127.0, - 839.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 130.0, - 1167.0, - 698.0, - 1167.0, - 698.0, - 1201.0, - 130.0, - 1201.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 0, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 295, - 813, - 1462, - 813, - 1462, - 921, - 295, - 921 - ], - "score": 0.961 - }, - { - "category_id": 1, - "poly": [ - 296, - 1393, - 1429, - 1393, - 1429, - 1501, - 296, - 1501 - ], - "score": 0.956 - }, - { - "category_id": 1, - "poly": [ - 280, - 1043, - 1439, - 1043, - 1439, - 1117, - 280, - 1117 - ], - "score": 0.933 - }, - { - "category_id": 1, - "poly": [ - 279, - 1659, - 1491, - 1659, - 1491, - 1733, - 279, - 1733 - ], - "score": 0.931 - }, - { - "category_id": 1, - "poly": [ - 276, - 463, - 1465, - 463, - 1465, - 536, - 276, - 536 - ], - "score": 0.929 - }, - { - "category_id": 1, - "poly": [ - 280, - 1229, - 1060, - 1229, - 1060, - 1266, - 280, - 1266 - ], - "score": 0.921 - }, - { - "category_id": 1, - "poly": [ - 279, - 649, - 1060, - 649, - 1060, - 687, - 279, - 687 - ], - "score": 0.916 - }, - { - "category_id": 1, - "poly": [ - 277, - 253, - 1340, - 253, - 1340, - 292, - 277, - 292 - ], - "score": 0.91 - }, - { - "category_id": 1, - "poly": [ - 296, - 955, - 853, - 955, - 853, - 993, - 296, - 993 - ], - "score": 0.91 - }, - { - "category_id": 0, - "poly": [ - 593, - 351, - 1030, - 351, - 1030, - 391, - 593, - 391 - ], - "score": 0.904 - }, - { - "category_id": 0, - "poly": [ - 840, - 742, - 941, - 742, - 941, - 778, - 840, - 778 - ], - "score": 0.902 - }, - { - "category_id": 0, - "poly": [ - 839, - 1321, - 940, - 1321, - 940, - 1358, - 839, - 1358 - ], - "score": 0.901 - }, - { - "category_id": 0, - "poly": [ - 738, - 181, - 886, - 181, - 886, - 218, - 738, - 218 - ], - "score": 0.899 - }, - { - "category_id": 1, - "poly": [ - 1340, - 1116, - 1498, - 1116, - 1498, - 1154, - 1340, - 1154 - ], - "score": 0.889 - }, - { - "category_id": 1, - "poly": [ - 1340, - 536, - 1498, - 536, - 1498, - 574, - 1340, - 574 - ], - "score": 0.883 - }, - { - "category_id": 2, - "poly": [ - 123, - 2279, - 291, - 2279, - 291, - 2302, - 123, - 2302 - ], - "score": 0.862 - }, - { - "category_id": 1, - "poly": [ - 297, - 1534, - 1435, - 1534, - 1435, - 1606, - 297, - 1606 - ], - "score": 0.839 - }, - { - "category_id": 2, - "poly": [ - 123, - 1221, - 242, - 1221, - 242, - 1272, - 123, - 1272 - ], - "score": 0.831 - }, - { - "category_id": 2, - "poly": [ - 123, - 640, - 242, - 640, - 242, - 692, - 123, - 692 - ], - "score": 0.824 - }, - { - "category_id": 2, - "poly": [ - 800, - 82, - 822, - 82, - 822, - 110, - 800, - 110 - ], - "score": 0.79 - }, - { - "category_id": 2, - "poly": [ - 124, - 454, - 242, - 454, - 242, - 506, - 124, - 506 - ], - "score": 0.733 - }, - { - "category_id": 2, - "poly": [ - 1341, - 1732, - 1497, - 1732, - 1497, - 1769, - 1341, - 1769 - ], - "score": 0.647 - }, - { - "category_id": 1, - "poly": [ - 1341, - 1732, - 1497, - 1732, - 1497, - 1769, - 1341, - 1769 - ], - "score": 0.298 - }, - { - "category_id": 15, - "poly": [ - 299.0, - 818.0, - 1459.0, - 818.0, - 1459.0, - 850.0, - 299.0, - 850.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 298.0, - 854.0, - 1455.0, - 854.0, - 1455.0, - 887.0, - 298.0, - 887.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 298.0, - 889.0, - 1169.0, - 889.0, - 1169.0, - 922.0, - 298.0, - 922.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 299.0, - 1398.0, - 1408.0, - 1398.0, - 1408.0, - 1430.0, - 299.0, - 1430.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 297.0, - 1434.0, - 1428.0, - 1434.0, - 1428.0, - 1464.0, - 297.0, - 1464.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 296.0, - 1468.0, - 572.0, - 1468.0, - 572.0, - 1504.0, - 296.0, - 1504.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 285.0, - 1047.0, - 1434.0, - 1047.0, - 1434.0, - 1081.0, - 285.0, - 1081.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 280.0, - 1081.0, - 481.0, - 1081.0, - 481.0, - 1120.0, - 280.0, - 1120.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 282.0, - 1662.0, - 1485.0, - 1662.0, - 1485.0, - 1695.0, - 282.0, - 1695.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 278.0, - 1693.0, - 1033.0, - 1693.0, - 1033.0, - 1735.0, - 278.0, - 1735.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 281.0, - 463.0, - 1463.0, - 463.0, - 1463.0, - 502.0, - 281.0, - 502.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 284.0, - 504.0, - 531.0, - 504.0, - 531.0, - 539.0, - 284.0, - 539.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 283.0, - 1233.0, - 1058.0, - 1233.0, - 1058.0, - 1264.0, - 283.0, - 1264.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 284.0, - 652.0, - 1058.0, - 652.0, - 1058.0, - 684.0, - 284.0, - 684.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 283.0, - 255.0, - 1338.0, - 255.0, - 1338.0, - 290.0, - 283.0, - 290.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 299.0, - 958.0, - 854.0, - 958.0, - 854.0, - 990.0, - 299.0, - 990.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 593.0, - 355.0, - 1030.0, - 355.0, - 1030.0, - 391.0, - 593.0, - 391.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 839.0, - 743.0, - 943.0, - 743.0, - 943.0, - 778.0, - 839.0, - 778.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 840.0, - 1325.0, - 941.0, - 1325.0, - 941.0, - 1357.0, - 840.0, - 1357.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 739.0, - 182.0, - 887.0, - 182.0, - 887.0, - 219.0, - 739.0, - 219.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1341.0, - 1114.0, - 1500.0, - 1114.0, - 1500.0, - 1156.0, - 1341.0, - 1156.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1341.0, - 534.0, - 1500.0, - 534.0, - 1500.0, - 576.0, - 1341.0, - 576.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 124.0, - 2281.0, - 292.0, - 2281.0, - 292.0, - 2302.0, - 124.0, - 2302.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 297.0, - 1535.0, - 1430.0, - 1535.0, - 1430.0, - 1571.0, - 297.0, - 1571.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 297.0, - 1573.0, - 1208.0, - 1573.0, - 1208.0, - 1606.0, - 297.0, - 1606.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 142.0, - 1232.0, - 169.0, - 1232.0, - 169.0, - 1262.0, - 142.0, - 1262.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 1231.0, - 224.0, - 1231.0, - 224.0, - 1263.0, - 197.0, - 1263.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 144.0, - 654.0, - 168.0, - 654.0, - 168.0, - 680.0, - 144.0, - 680.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 651.0, - 224.0, - 651.0, - 224.0, - 682.0, - 196.0, - 682.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 797.0, - 79.0, - 826.0, - 79.0, - 826.0, - 119.0, - 797.0, - 119.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 144.0, - 468.0, - 166.0, - 468.0, - 166.0, - 493.0, - 144.0, - 493.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 467.0, - 221.0, - 467.0, - 221.0, - 494.0, - 199.0, - 494.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1342.0, - 1729.0, - 1499.0, - 1729.0, - 1499.0, - 1771.0, - 1342.0, - 1771.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1342.0, - 1729.0, - 1499.0, - 1729.0, - 1499.0, - 1771.0, - 1342.0, - 1771.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 1, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 296, - 1221, - 1457, - 1221, - 1457, - 1367, - 296, - 1367 - ], - "score": 0.961 - }, - { - "category_id": 1, - "poly": [ - 282, - 871, - 1449, - 871, - 1449, - 944, - 282, - 944 - ], - "score": 0.937 - }, - { - "category_id": 1, - "poly": [ - 296, - 1402, - 1469, - 1402, - 1469, - 1476, - 296, - 1476 - ], - "score": 0.935 - }, - { - "category_id": 1, - "poly": [ - 280, - 286, - 1375, - 286, - 1375, - 360, - 280, - 360 - ], - "score": 0.934 - }, - { - "category_id": 1, - "poly": [ - 280, - 1528, - 1441, - 1528, - 1441, - 1601, - 280, - 1601 - ], - "score": 0.934 - }, - { - "category_id": 1, - "poly": [ - 295, - 636, - 1470, - 636, - 1470, - 746, - 295, - 746 - ], - "score": 0.923 - }, - { - "category_id": 1, - "poly": [ - 280, - 473, - 1060, - 473, - 1060, - 511, - 280, - 511 - ], - "score": 0.916 - }, - { - "category_id": 1, - "poly": [ - 280, - 1057, - 1060, - 1057, - 1060, - 1095, - 280, - 1095 - ], - "score": 0.916 - }, - { - "category_id": 0, - "poly": [ - 554, - 181, - 1070, - 181, - 1070, - 220, - 554, - 220 - ], - "score": 0.915 - }, - { - "category_id": 0, - "poly": [ - 839, - 1149, - 940, - 1149, - 940, - 1185, - 839, - 1185 - ], - "score": 0.902 - }, - { - "category_id": 1, - "poly": [ - 295, - 782, - 1020, - 782, - 1020, - 819, - 295, - 819 - ], - "score": 0.892 - }, - { - "category_id": 1, - "poly": [ - 1340, - 944, - 1498, - 944, - 1498, - 983, - 1340, - 983 - ], - "score": 0.89 - }, - { - "category_id": 0, - "poly": [ - 840, - 564, - 940, - 564, - 940, - 600, - 840, - 600 - ], - "score": 0.889 - }, - { - "category_id": 1, - "poly": [ - 1340, - 361, - 1498, - 361, - 1498, - 398, - 1340, - 398 - ], - "score": 0.876 - }, - { - "category_id": 2, - "poly": [ - 123, - 1048, - 242, - 1048, - 242, - 1099, - 123, - 1099 - ], - "score": 0.851 - }, - { - "category_id": 2, - "poly": [ - 124, - 284, - 242, - 284, - 242, - 335, - 124, - 335 - ], - "score": 0.847 - }, - { - "category_id": 2, - "poly": [ - 123, - 464, - 242, - 464, - 242, - 514, - 123, - 514 - ], - "score": 0.844 - }, - { - "category_id": 2, - "poly": [ - 123, - 2279, - 291, - 2279, - 291, - 2302, - 123, - 2302 - ], - "score": 0.838 - }, - { - "category_id": 1, - "poly": [ - 584, - 1814, - 1041, - 1814, - 1041, - 1850, - 584, - 1850 - ], - "score": 0.822 - }, - { - "category_id": 2, - "poly": [ - 801, - 83, - 822, - 83, - 822, - 110, - 801, - 110 - ], - "score": 0.799 - }, - { - "category_id": 1, - "poly": [ - 1340, - 1602, - 1497, - 1602, - 1497, - 1639, - 1340, - 1639 - ], - "score": 0.625 - }, - { - "category_id": 1, - "poly": [ - 1313, - 2224, - 1490, - 2224, - 1490, - 2257, - 1313, - 2257 - ], - "score": 0.517 - }, - { - "category_id": 2, - "poly": [ - 1313, - 2224, - 1490, - 2224, - 1490, - 2257, - 1313, - 2257 - ], - "score": 0.425 - }, - { - "category_id": 2, - "poly": [ - 1340, - 1602, - 1497, - 1602, - 1497, - 1639, - 1340, - 1639 - ], - "score": 0.321 - }, - { - "category_id": 15, - "poly": [ - 300.0, - 1226.0, - 1424.0, - 1226.0, - 1424.0, - 1258.0, - 300.0, - 1258.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 297.0, - 1261.0, - 1451.0, - 1261.0, - 1451.0, - 1297.0, - 297.0, - 1297.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 296.0, - 1297.0, - 1452.0, - 1297.0, - 1452.0, - 1331.0, - 296.0, - 1331.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 297.0, - 1332.0, - 565.0, - 1332.0, - 565.0, - 1368.0, - 297.0, - 1368.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 285.0, - 875.0, - 1448.0, - 875.0, - 1448.0, - 909.0, - 285.0, - 909.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 283.0, - 912.0, - 619.0, - 912.0, - 619.0, - 941.0, - 283.0, - 941.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 298.0, - 1404.0, - 1462.0, - 1404.0, - 1462.0, - 1440.0, - 298.0, - 1440.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 298.0, - 1442.0, - 1211.0, - 1442.0, - 1211.0, - 1476.0, - 298.0, - 1476.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 282.0, - 288.0, - 1371.0, - 288.0, - 1371.0, - 324.0, - 282.0, - 324.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 282.0, - 324.0, - 1273.0, - 324.0, - 1273.0, - 358.0, - 282.0, - 358.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 285.0, - 1532.0, - 1441.0, - 1532.0, - 1441.0, - 1566.0, - 285.0, - 1566.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 283.0, - 1570.0, - 721.0, - 1570.0, - 721.0, - 1600.0, - 283.0, - 1600.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 297.0, - 637.0, - 1416.0, - 637.0, - 1416.0, - 675.0, - 297.0, - 675.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 297.0, - 677.0, - 1466.0, - 677.0, - 1466.0, - 709.0, - 297.0, - 709.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 298.0, - 715.0, - 663.0, - 715.0, - 663.0, - 747.0, - 298.0, - 747.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 285.0, - 478.0, - 1059.0, - 478.0, - 1059.0, - 508.0, - 285.0, - 508.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 285.0, - 1062.0, - 1057.0, - 1062.0, - 1057.0, - 1092.0, - 285.0, - 1092.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 553.0, - 184.0, - 1069.0, - 184.0, - 1069.0, - 218.0, - 553.0, - 218.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 839.0, - 1151.0, - 940.0, - 1151.0, - 940.0, - 1186.0, - 839.0, - 1186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 300.0, - 784.0, - 1018.0, - 784.0, - 1018.0, - 818.0, - 300.0, - 818.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1341.0, - 943.0, - 1500.0, - 943.0, - 1500.0, - 983.0, - 1341.0, - 983.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 839.0, - 566.0, - 940.0, - 566.0, - 940.0, - 601.0, - 839.0, - 601.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1341.0, - 359.0, - 1500.0, - 359.0, - 1500.0, - 399.0, - 1341.0, - 399.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 144.0, - 1062.0, - 168.0, - 1062.0, - 168.0, - 1088.0, - 144.0, - 1088.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1060.0, - 223.0, - 1060.0, - 223.0, - 1089.0, - 200.0, - 1089.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 144.0, - 297.0, - 166.0, - 297.0, - 166.0, - 323.0, - 144.0, - 323.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 295.0, - 224.0, - 295.0, - 224.0, - 325.0, - 198.0, - 325.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 144.0, - 477.0, - 168.0, - 477.0, - 168.0, - 503.0, - 144.0, - 503.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 476.0, - 223.0, - 476.0, - 223.0, - 504.0, - 199.0, - 504.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 124.0, - 2281.0, - 292.0, - 2281.0, - 292.0, - 2302.0, - 124.0, - 2302.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 583.0, - 1815.0, - 1038.0, - 1815.0, - 1038.0, - 1848.0, - 583.0, - 1848.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 797.0, - 79.0, - 826.0, - 79.0, - 826.0, - 115.0, - 797.0, - 115.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1341.0, - 1599.0, - 1499.0, - 1599.0, - 1499.0, - 1641.0, - 1341.0, - 1641.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1314.0, - 2226.0, - 1468.0, - 2226.0, - 1468.0, - 2256.0, - 1314.0, - 2256.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1314.0, - 2226.0, - 1468.0, - 2226.0, - 1468.0, - 2256.0, - 1314.0, - 2256.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1341.0, - 1599.0, - 1499.0, - 1599.0, - 1499.0, - 1641.0, - 1341.0, - 1641.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 2, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 296, - 1251, - 1464, - 1251, - 1464, - 1360, - 296, - 1360 - ], - "score": 0.96 - }, - { - "category_id": 1, - "poly": [ - 295, - 636, - 1469, - 636, - 1469, - 779, - 295, - 779 - ], - "score": 0.949 - }, - { - "category_id": 1, - "poly": [ - 284, - 901, - 1422, - 901, - 1422, - 974, - 284, - 974 - ], - "score": 0.939 - }, - { - "category_id": 1, - "poly": [ - 280, - 1518, - 1495, - 1518, - 1495, - 1592, - 280, - 1592 - ], - "score": 0.937 - }, - { - "category_id": 1, - "poly": [ - 276, - 286, - 1424, - 286, - 1424, - 357, - 276, - 357 - ], - "score": 0.936 - }, - { - "category_id": 1, - "poly": [ - 295, - 1392, - 1469, - 1392, - 1469, - 1467, - 295, - 1467 - ], - "score": 0.935 - }, - { - "category_id": 1, - "poly": [ - 279, - 1087, - 1056, - 1087, - 1056, - 1125, - 279, - 1125 - ], - "score": 0.919 - }, - { - "category_id": 1, - "poly": [ - 279, - 473, - 1059, - 473, - 1059, - 511, - 279, - 511 - ], - "score": 0.916 - }, - { - "category_id": 0, - "poly": [ - 690, - 181, - 934, - 181, - 934, - 219, - 690, - 219 - ], - "score": 0.912 - }, - { - "category_id": 1, - "poly": [ - 294, - 813, - 1232, - 813, - 1232, - 850, - 294, - 850 - ], - "score": 0.907 - }, - { - "category_id": 1, - "poly": [ - 1339, - 975, - 1498, - 975, - 1498, - 1013, - 1339, - 1013 - ], - "score": 0.9 - }, - { - "category_id": 0, - "poly": [ - 841, - 564, - 940, - 564, - 940, - 600, - 841, - 600 - ], - "score": 0.897 - }, - { - "category_id": 1, - "poly": [ - 1340, - 360, - 1498, - 360, - 1498, - 398, - 1340, - 398 - ], - "score": 0.893 - }, - { - "category_id": 0, - "poly": [ - 841, - 1179, - 936, - 1179, - 936, - 1215, - 841, - 1215 - ], - "score": 0.893 - }, - { - "category_id": 2, - "poly": [ - 123, - 463, - 242, - 463, - 242, - 514, - 123, - 514 - ], - "score": 0.871 - }, - { - "category_id": 2, - "poly": [ - 123, - 2280, - 290, - 2280, - 290, - 2302, - 123, - 2302 - ], - "score": 0.863 - }, - { - "category_id": 2, - "poly": [ - 123, - 1078, - 242, - 1078, - 242, - 1130, - 123, - 1130 - ], - "score": 0.848 - }, - { - "category_id": 2, - "poly": [ - 124, - 283, - 242, - 283, - 242, - 335, - 124, - 335 - ], - "score": 0.832 - }, - { - "category_id": 2, - "poly": [ - 800, - 83, - 821, - 83, - 821, - 109, - 800, - 109 - ], - "score": 0.781 - }, - { - "category_id": 1, - "poly": [ - 1340, - 1592, - 1496, - 1592, - 1496, - 1629, - 1340, - 1629 - ], - "score": 0.495 - }, - { - "category_id": 2, - "poly": [ - 1340, - 1592, - 1496, - 1592, - 1496, - 1629, - 1340, - 1629 - ], - "score": 0.426 - }, - { - "category_id": 15, - "poly": [ - 296.0, - 1252.0, - 1448.0, - 1252.0, - 1448.0, - 1290.0, - 296.0, - 1290.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 298.0, - 1291.0, - 1460.0, - 1291.0, - 1460.0, - 1324.0, - 298.0, - 1324.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 298.0, - 1326.0, - 1389.0, - 1326.0, - 1389.0, - 1359.0, - 298.0, - 1359.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 297.0, - 638.0, - 1431.0, - 638.0, - 1431.0, - 675.0, - 297.0, - 675.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 298.0, - 676.0, - 1466.0, - 676.0, - 1466.0, - 707.0, - 298.0, - 707.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 297.0, - 711.0, - 1395.0, - 711.0, - 1395.0, - 743.0, - 297.0, - 743.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 294.0, - 747.0, - 414.0, - 747.0, - 414.0, - 782.0, - 294.0, - 782.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 282.0, - 904.0, - 1414.0, - 904.0, - 1414.0, - 939.0, - 282.0, - 939.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 282.0, - 942.0, - 702.0, - 942.0, - 702.0, - 974.0, - 282.0, - 974.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 285.0, - 1522.0, - 1486.0, - 1522.0, - 1486.0, - 1556.0, - 285.0, - 1556.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 281.0, - 1555.0, - 1142.0, - 1555.0, - 1142.0, - 1593.0, - 281.0, - 1593.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 284.0, - 288.0, - 1415.0, - 288.0, - 1415.0, - 321.0, - 284.0, - 321.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 280.0, - 323.0, - 446.0, - 323.0, - 446.0, - 360.0, - 280.0, - 360.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 299.0, - 1395.0, - 1466.0, - 1395.0, - 1466.0, - 1430.0, - 299.0, - 1430.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 295.0, - 1431.0, - 1139.0, - 1431.0, - 1139.0, - 1468.0, - 295.0, - 1468.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 283.0, - 1090.0, - 1056.0, - 1090.0, - 1056.0, - 1122.0, - 283.0, - 1122.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 284.0, - 476.0, - 1057.0, - 476.0, - 1057.0, - 508.0, - 284.0, - 508.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 692.0, - 186.0, - 933.0, - 186.0, - 933.0, - 217.0, - 692.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 299.0, - 814.0, - 1233.0, - 814.0, - 1233.0, - 849.0, - 299.0, - 849.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1340.0, - 972.0, - 1500.0, - 972.0, - 1500.0, - 1014.0, - 1340.0, - 1014.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 840.0, - 566.0, - 941.0, - 566.0, - 941.0, - 601.0, - 840.0, - 601.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1340.0, - 358.0, - 1500.0, - 358.0, - 1500.0, - 400.0, - 1340.0, - 400.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 842.0, - 1181.0, - 940.0, - 1181.0, - 940.0, - 1216.0, - 842.0, - 1216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 144.0, - 477.0, - 168.0, - 477.0, - 168.0, - 504.0, - 144.0, - 504.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 474.0, - 224.0, - 474.0, - 224.0, - 505.0, - 197.0, - 505.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 124.0, - 2281.0, - 291.0, - 2281.0, - 291.0, - 2302.0, - 124.0, - 2302.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 144.0, - 1092.0, - 168.0, - 1092.0, - 168.0, - 1118.0, - 144.0, - 1118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1091.0, - 221.0, - 1091.0, - 221.0, - 1118.0, - 199.0, - 1118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 146.0, - 299.0, - 165.0, - 299.0, - 165.0, - 321.0, - 146.0, - 321.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 297.0, - 222.0, - 297.0, - 222.0, - 323.0, - 199.0, - 323.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 799.0, - 81.0, - 825.0, - 81.0, - 825.0, - 114.0, - 799.0, - 114.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1341.0, - 1589.0, - 1499.0, - 1589.0, - 1499.0, - 1631.0, - 1341.0, - 1631.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1341.0, - 1589.0, - 1499.0, - 1589.0, - 1499.0, - 1631.0, - 1341.0, - 1631.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 3, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 296, - 635, - 1411, - 635, - 1411, - 742, - 296, - 742 - ], - "score": 0.943 - }, - { - "category_id": 1, - "poly": [ - 296, - 1216, - 1455, - 1216, - 1455, - 1358, - 296, - 1358 - ], - "score": 0.942 - }, - { - "category_id": 1, - "poly": [ - 280, - 1517, - 1498, - 1517, - 1498, - 1591, - 280, - 1591 - ], - "score": 0.938 - }, - { - "category_id": 1, - "poly": [ - 281, - 865, - 1463, - 865, - 1463, - 939, - 281, - 939 - ], - "score": 0.938 - }, - { - "category_id": 1, - "poly": [ - 294, - 1392, - 1399, - 1392, - 1399, - 1465, - 294, - 1465 - ], - "score": 0.926 - }, - { - "category_id": 1, - "poly": [ - 272, - 286, - 1493, - 286, - 1493, - 359, - 272, - 359 - ], - "score": 0.926 - }, - { - "category_id": 1, - "poly": [ - 280, - 1051, - 1060, - 1051, - 1060, - 1089, - 280, - 1089 - ], - "score": 0.921 - }, - { - "category_id": 1, - "poly": [ - 279, - 473, - 1061, - 473, - 1061, - 511, - 279, - 511 - ], - "score": 0.916 - }, - { - "category_id": 1, - "poly": [ - 295, - 777, - 1245, - 777, - 1245, - 814, - 295, - 814 - ], - "score": 0.897 - }, - { - "category_id": 0, - "poly": [ - 838, - 564, - 941, - 564, - 941, - 601, - 838, - 601 - ], - "score": 0.896 - }, - { - "category_id": 1, - "poly": [ - 1340, - 938, - 1498, - 938, - 1498, - 976, - 1340, - 976 - ], - "score": 0.896 - }, - { - "category_id": 0, - "poly": [ - 543, - 181, - 1080, - 181, - 1080, - 220, - 543, - 220 - ], - "score": 0.872 - }, - { - "category_id": 1, - "poly": [ - 1340, - 360, - 1497, - 360, - 1497, - 398, - 1340, - 398 - ], - "score": 0.871 - }, - { - "category_id": 2, - "poly": [ - 124, - 283, - 242, - 283, - 242, - 336, - 124, - 336 - ], - "score": 0.85 - }, - { - "category_id": 0, - "poly": [ - 839, - 1143, - 940, - 1143, - 940, - 1180, - 839, - 1180 - ], - "score": 0.836 - }, - { - "category_id": 2, - "poly": [ - 123, - 2279, - 291, - 2279, - 291, - 2302, - 123, - 2302 - ], - "score": 0.823 - }, - { - "category_id": 2, - "poly": [ - 123, - 1042, - 242, - 1042, - 242, - 1094, - 123, - 1094 - ], - "score": 0.811 - }, - { - "category_id": 2, - "poly": [ - 800, - 83, - 822, - 83, - 822, - 110, - 800, - 110 - ], - "score": 0.806 - }, - { - "category_id": 1, - "poly": [ - 584, - 1873, - 1040, - 1873, - 1040, - 1908, - 584, - 1908 - ], - "score": 0.776 - }, - { - "category_id": 2, - "poly": [ - 123, - 463, - 242, - 463, - 242, - 515, - 123, - 515 - ], - "score": 0.761 - }, - { - "category_id": 1, - "poly": [ - 1313, - 2224, - 1490, - 2224, - 1490, - 2257, - 1313, - 2257 - ], - "score": 0.569 - }, - { - "category_id": 2, - "poly": [ - 1340, - 1592, - 1497, - 1592, - 1497, - 1627, - 1340, - 1627 - ], - "score": 0.557 - }, - { - "category_id": 1, - "poly": [ - 1340, - 1592, - 1497, - 1592, - 1497, - 1627, - 1340, - 1627 - ], - "score": 0.378 - }, - { - "category_id": 2, - "poly": [ - 1313, - 2224, - 1490, - 2224, - 1490, - 2257, - 1313, - 2257 - ], - "score": 0.363 - }, - { - "category_id": 0, - "poly": [ - 840, - 1143, - 941, - 1143, - 941, - 1180, - 840, - 1180 - ], - "score": 0.148 - }, - { - "category_id": 15, - "poly": [ - 299.0, - 638.0, - 1407.0, - 638.0, - 1407.0, - 672.0, - 299.0, - 672.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 299.0, - 676.0, - 1380.0, - 676.0, - 1380.0, - 708.0, - 299.0, - 708.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 297.0, - 708.0, - 509.0, - 708.0, - 509.0, - 745.0, - 297.0, - 745.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 296.0, - 1216.0, - 1454.0, - 1216.0, - 1454.0, - 1253.0, - 296.0, - 1253.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 298.0, - 1254.0, - 1450.0, - 1254.0, - 1450.0, - 1287.0, - 298.0, - 1287.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 300.0, - 1290.0, - 1338.0, - 1290.0, - 1338.0, - 1321.0, - 300.0, - 1321.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 300.0, - 1325.0, - 1429.0, - 1325.0, - 1429.0, - 1356.0, - 300.0, - 1356.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 285.0, - 1521.0, - 1489.0, - 1521.0, - 1489.0, - 1555.0, - 285.0, - 1555.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 281.0, - 1555.0, - 1124.0, - 1555.0, - 1124.0, - 1591.0, - 281.0, - 1591.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 284.0, - 869.0, - 1461.0, - 869.0, - 1461.0, - 903.0, - 284.0, - 903.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 282.0, - 903.0, - 823.0, - 903.0, - 823.0, - 941.0, - 282.0, - 941.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 298.0, - 1395.0, - 1398.0, - 1395.0, - 1398.0, - 1428.0, - 298.0, - 1428.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 298.0, - 1431.0, - 1100.0, - 1431.0, - 1100.0, - 1465.0, - 298.0, - 1465.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 283.0, - 286.0, - 1488.0, - 286.0, - 1488.0, - 325.0, - 283.0, - 325.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 283.0, - 325.0, - 562.0, - 325.0, - 562.0, - 359.0, - 283.0, - 359.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 285.0, - 1056.0, - 1058.0, - 1056.0, - 1058.0, - 1086.0, - 285.0, - 1086.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 284.0, - 476.0, - 1062.0, - 476.0, - 1062.0, - 508.0, - 284.0, - 508.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 299.0, - 778.0, - 1246.0, - 778.0, - 1246.0, - 815.0, - 299.0, - 815.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 836.0, - 567.0, - 942.0, - 567.0, - 942.0, - 599.0, - 836.0, - 599.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1341.0, - 936.0, - 1500.0, - 936.0, - 1500.0, - 978.0, - 1341.0, - 978.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 545.0, - 185.0, - 1080.0, - 185.0, - 1080.0, - 219.0, - 545.0, - 219.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1340.0, - 358.0, - 1500.0, - 358.0, - 1500.0, - 400.0, - 1340.0, - 400.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 295.0, - 222.0, - 295.0, - 222.0, - 324.0, - 199.0, - 324.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 152.0, - 300.5, - 156.0, - 300.5, - 156.0, - 313.5, - 152.0, - 313.5 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 840.0, - 1147.0, - 942.0, - 1147.0, - 942.0, - 1179.0, - 840.0, - 1179.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 124.0, - 2281.0, - 292.0, - 2281.0, - 292.0, - 2302.0, - 124.0, - 2302.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 143.0, - 1055.0, - 166.0, - 1055.0, - 166.0, - 1082.0, - 143.0, - 1082.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1053.0, - 224.0, - 1053.0, - 224.0, - 1085.0, - 196.0, - 1085.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 798.0, - 79.0, - 826.0, - 79.0, - 826.0, - 116.0, - 798.0, - 116.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 583.0, - 1875.0, - 1038.0, - 1875.0, - 1038.0, - 1906.0, - 583.0, - 1906.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 144.0, - 476.0, - 166.0, - 476.0, - 166.0, - 503.0, - 144.0, - 503.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 476.0, - 221.0, - 476.0, - 221.0, - 503.0, - 198.0, - 503.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1314.0, - 2226.0, - 1468.0, - 2226.0, - 1468.0, - 2256.0, - 1314.0, - 2256.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1341.0, - 1589.0, - 1499.0, - 1589.0, - 1499.0, - 1630.0, - 1341.0, - 1630.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1341.0, - 1589.0, - 1499.0, - 1589.0, - 1499.0, - 1630.0, - 1341.0, - 1630.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1314.0, - 2226.0, - 1468.0, - 2226.0, - 1468.0, - 2256.0, - 1314.0, - 2256.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 840.0, - 1147.0, - 941.0, - 1147.0, - 941.0, - 1179.0, - 840.0, - 1179.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 4, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 295, - 808, - 1471, - 808, - 1471, - 918, - 295, - 918 - ], - "score": 0.959 - }, - { - "category_id": 1, - "poly": [ - 296, - 1392, - 1470, - 1392, - 1470, - 1499, - 296, - 1499 - ], - "score": 0.956 - }, - { - "category_id": 1, - "poly": [ - 281, - 1041, - 1482, - 1041, - 1482, - 1114, - 281, - 1114 - ], - "score": 0.934 - }, - { - "category_id": 1, - "poly": [ - 296, - 1536, - 1450, - 1536, - 1450, - 1610, - 296, - 1610 - ], - "score": 0.929 - }, - { - "category_id": 1, - "poly": [ - 277, - 1661, - 1499, - 1661, - 1499, - 1735, - 277, - 1735 - ], - "score": 0.925 - }, - { - "category_id": 1, - "poly": [ - 296, - 953, - 1078, - 953, - 1078, - 990, - 296, - 990 - ], - "score": 0.923 - }, - { - "category_id": 1, - "poly": [ - 277, - 457, - 1461, - 457, - 1461, - 531, - 277, - 531 - ], - "score": 0.922 - }, - { - "category_id": 1, - "poly": [ - 281, - 1228, - 1055, - 1228, - 1055, - 1265, - 281, - 1265 - ], - "score": 0.922 - }, - { - "category_id": 1, - "poly": [ - 281, - 644, - 1046, - 644, - 1046, - 682, - 281, - 682 - ], - "score": 0.921 - }, - { - "category_id": 1, - "poly": [ - 277, - 253, - 1341, - 253, - 1341, - 292, - 277, - 292 - ], - "score": 0.912 - }, - { - "category_id": 0, - "poly": [ - 610, - 351, - 1014, - 351, - 1014, - 391, - 610, - 391 - ], - "score": 0.909 - }, - { - "category_id": 0, - "poly": [ - 738, - 181, - 886, - 181, - 886, - 219, - 738, - 219 - ], - "score": 0.899 - }, - { - "category_id": 1, - "poly": [ - 1340, - 1114, - 1498, - 1114, - 1498, - 1152, - 1340, - 1152 - ], - "score": 0.895 - }, - { - "category_id": 1, - "poly": [ - 1340, - 531, - 1498, - 531, - 1498, - 570, - 1340, - 570 - ], - "score": 0.886 - }, - { - "category_id": 0, - "poly": [ - 847, - 737, - 934, - 737, - 934, - 772, - 847, - 772 - ], - "score": 0.872 - }, - { - "category_id": 2, - "poly": [ - 123, - 2279, - 291, - 2279, - 291, - 2302, - 123, - 2302 - ], - "score": 0.862 - }, - { - "category_id": 2, - "poly": [ - 124, - 635, - 242, - 635, - 242, - 687, - 124, - 687 - ], - "score": 0.821 - }, - { - "category_id": 2, - "poly": [ - 123, - 1218, - 242, - 1218, - 242, - 1270, - 123, - 1270 - ], - "score": 0.816 - }, - { - "category_id": 2, - "poly": [ - 799, - 82, - 822, - 82, - 822, - 111, - 799, - 111 - ], - "score": 0.801 - }, - { - "category_id": 0, - "poly": [ - 843, - 1319, - 938, - 1319, - 938, - 1355, - 843, - 1355 - ], - "score": 0.768 - }, - { - "category_id": 2, - "poly": [ - 124, - 454, - 242, - 454, - 242, - 506, - 124, - 506 - ], - "score": 0.731 - }, - { - "category_id": 2, - "poly": [ - 1340, - 1736, - 1497, - 1736, - 1497, - 1772, - 1340, - 1772 - ], - "score": 0.524 - }, - { - "category_id": 1, - "poly": [ - 1340, - 1736, - 1497, - 1736, - 1497, - 1772, - 1340, - 1772 - ], - "score": 0.428 - }, - { - "category_id": 1, - "poly": [ - 843, - 1319, - 938, - 1319, - 938, - 1355, - 843, - 1355 - ], - "score": 0.12 - }, - { - "category_id": 15, - "poly": [ - 298.0, - 810.0, - 1405.0, - 810.0, - 1405.0, - 847.0, - 298.0, - 847.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 299.0, - 849.0, - 1435.0, - 849.0, - 1435.0, - 881.0, - 299.0, - 881.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 296.0, - 881.0, - 1472.0, - 881.0, - 1472.0, - 921.0, - 296.0, - 921.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 296.0, - 1392.0, - 1468.0, - 1392.0, - 1468.0, - 1430.0, - 296.0, - 1430.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 295.0, - 1430.0, - 1427.0, - 1430.0, - 1427.0, - 1468.0, - 295.0, - 1468.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 296.0, - 1467.0, - 470.0, - 1467.0, - 470.0, - 1500.0, - 296.0, - 1500.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 283.0, - 1042.0, - 1482.0, - 1042.0, - 1482.0, - 1082.0, - 283.0, - 1082.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 281.0, - 1079.0, - 615.0, - 1079.0, - 615.0, - 1115.0, - 281.0, - 1115.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 297.0, - 1538.0, - 1446.0, - 1538.0, - 1446.0, - 1576.0, - 297.0, - 1576.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 300.0, - 1576.0, - 1365.0, - 1576.0, - 1365.0, - 1610.0, - 300.0, - 1610.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 285.0, - 1665.0, - 1494.0, - 1665.0, - 1494.0, - 1699.0, - 285.0, - 1699.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 281.0, - 1698.0, - 627.0, - 1698.0, - 627.0, - 1738.0, - 281.0, - 1738.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 298.0, - 954.0, - 1078.0, - 954.0, - 1078.0, - 990.0, - 298.0, - 990.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 283.0, - 460.0, - 1455.0, - 460.0, - 1455.0, - 497.0, - 283.0, - 497.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 283.0, - 498.0, - 584.0, - 498.0, - 584.0, - 532.0, - 283.0, - 532.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 285.0, - 1232.0, - 1054.0, - 1232.0, - 1054.0, - 1261.0, - 285.0, - 1261.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 284.0, - 649.0, - 1045.0, - 649.0, - 1045.0, - 679.0, - 284.0, - 679.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 283.0, - 255.0, - 1339.0, - 255.0, - 1339.0, - 290.0, - 283.0, - 290.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 610.0, - 355.0, - 1013.0, - 355.0, - 1013.0, - 391.0, - 610.0, - 391.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 741.0, - 185.0, - 885.0, - 185.0, - 885.0, - 216.0, - 741.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1341.0, - 1112.0, - 1500.0, - 1112.0, - 1500.0, - 1154.0, - 1341.0, - 1154.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1340.0, - 530.0, - 1500.0, - 530.0, - 1500.0, - 570.0, - 1340.0, - 570.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 847.0, - 739.0, - 937.0, - 739.0, - 937.0, - 773.0, - 847.0, - 773.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 124.0, - 2281.0, - 292.0, - 2281.0, - 292.0, - 2302.0, - 124.0, - 2302.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 146.0, - 650.0, - 165.0, - 650.0, - 165.0, - 672.0, - 146.0, - 672.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 647.0, - 224.0, - 647.0, - 224.0, - 676.0, - 198.0, - 676.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 145.0, - 1233.0, - 164.0, - 1233.0, - 164.0, - 1255.0, - 145.0, - 1255.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1230.0, - 223.0, - 1230.0, - 223.0, - 1258.0, - 199.0, - 1258.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 799.0, - 79.0, - 825.0, - 79.0, - 825.0, - 115.0, - 799.0, - 115.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 843.0, - 1320.0, - 939.0, - 1320.0, - 939.0, - 1355.0, - 843.0, - 1355.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 144.0, - 467.0, - 165.0, - 467.0, - 165.0, - 494.0, - 144.0, - 494.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 465.0, - 223.0, - 465.0, - 223.0, - 496.0, - 198.0, - 496.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1341.0, - 1733.0, - 1499.0, - 1733.0, - 1499.0, - 1773.0, - 1341.0, - 1773.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1341.0, - 1733.0, - 1499.0, - 1733.0, - 1499.0, - 1773.0, - 1341.0, - 1773.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 843.0, - 1320.0, - 939.0, - 1320.0, - 939.0, - 1355.0, - 843.0, - 1355.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 5, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 282, - 835, - 1404, - 835, - 1404, - 909, - 282, - 909 - ], - "score": 0.932 - }, - { - "category_id": 1, - "poly": [ - 276, - 1450, - 1499, - 1450, - 1499, - 1524, - 276, - 1524 - ], - "score": 0.932 - }, - { - "category_id": 1, - "poly": [ - 295, - 607, - 1439, - 607, - 1439, - 714, - 295, - 714 - ], - "score": 0.926 - }, - { - "category_id": 1, - "poly": [ - 280, - 1022, - 1056, - 1022, - 1056, - 1060, - 280, - 1060 - ], - "score": 0.919 - }, - { - "category_id": 1, - "poly": [ - 280, - 442, - 1060, - 442, - 1060, - 480, - 280, - 480 - ], - "score": 0.916 - }, - { - "category_id": 0, - "poly": [ - 589, - 181, - 1036, - 181, - 1036, - 220, - 589, - 220 - ], - "score": 0.908 - }, - { - "category_id": 0, - "poly": [ - 839, - 534, - 941, - 534, - 941, - 571, - 839, - 571 - ], - "score": 0.898 - }, - { - "category_id": 1, - "poly": [ - 1339, - 909, - 1497, - 909, - 1497, - 947, - 1339, - 947 - ], - "score": 0.889 - }, - { - "category_id": 0, - "poly": [ - 841, - 1114, - 936, - 1114, - 936, - 1150, - 841, - 1150 - ], - "score": 0.874 - }, - { - "category_id": 1, - "poly": [ - 294, - 1292, - 1476, - 1292, - 1476, - 1399, - 294, - 1399 - ], - "score": 0.864 - }, - { - "category_id": 1, - "poly": [ - 294, - 1186, - 1402, - 1186, - 1402, - 1257, - 294, - 1257 - ], - "score": 0.854 - }, - { - "category_id": 2, - "poly": [ - 124, - 284, - 242, - 284, - 242, - 335, - 124, - 335 - ], - "score": 0.85 - }, - { - "category_id": 2, - "poly": [ - 123, - 433, - 242, - 433, - 242, - 486, - 123, - 486 - ], - "score": 0.838 - }, - { - "category_id": 2, - "poly": [ - 123, - 1013, - 242, - 1013, - 242, - 1065, - 123, - 1065 - ], - "score": 0.832 - }, - { - "category_id": 2, - "poly": [ - 123, - 2279, - 291, - 2279, - 291, - 2302, - 123, - 2302 - ], - "score": 0.822 - }, - { - "category_id": 1, - "poly": [ - 584, - 1807, - 1041, - 1807, - 1041, - 1842, - 584, - 1842 - ], - "score": 0.819 - }, - { - "category_id": 1, - "poly": [ - 295, - 747, - 896, - 747, - 896, - 784, - 295, - 784 - ], - "score": 0.78 - }, - { - "category_id": 2, - "poly": [ - 801, - 82, - 821, - 82, - 821, - 109, - 801, - 109 - ], - "score": 0.771 - }, - { - "category_id": 1, - "poly": [ - 1339, - 331, - 1498, - 331, - 1498, - 367, - 1339, - 367 - ], - "score": 0.715 - }, - { - "category_id": 1, - "poly": [ - 1313, - 2224, - 1490, - 2224, - 1490, - 2257, - 1313, - 2257 - ], - "score": 0.562 - }, - { - "category_id": 2, - "poly": [ - 1340, - 1525, - 1497, - 1525, - 1497, - 1562, - 1340, - 1562 - ], - "score": 0.536 - }, - { - "category_id": 1, - "poly": [ - 276, - 290, - 1474, - 290, - 1474, - 365, - 276, - 365 - ], - "score": 0.443 - }, - { - "category_id": 1, - "poly": [ - 1340, - 1525, - 1497, - 1525, - 1497, - 1562, - 1340, - 1562 - ], - "score": 0.421 - }, - { - "category_id": 1, - "poly": [ - 277, - 290, - 1469, - 290, - 1469, - 331, - 277, - 331 - ], - "score": 0.416 - }, - { - "category_id": 2, - "poly": [ - 1313, - 2224, - 1490, - 2224, - 1490, - 2257, - 1313, - 2257 - ], - "score": 0.365 - }, - { - "category_id": 1, - "poly": [ - 295, - 747, - 895, - 747, - 895, - 784, - 295, - 784 - ], - "score": 0.217 - }, - { - "category_id": 15, - "poly": [ - 284.0, - 839.0, - 1398.0, - 839.0, - 1398.0, - 873.0, - 284.0, - 873.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 281.0, - 878.0, - 550.0, - 878.0, - 550.0, - 909.0, - 281.0, - 909.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 282.0, - 1453.0, - 1494.0, - 1453.0, - 1494.0, - 1487.0, - 282.0, - 1487.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 281.0, - 1490.0, - 514.0, - 1490.0, - 514.0, - 1525.0, - 281.0, - 1525.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 298.0, - 609.0, - 1424.0, - 609.0, - 1424.0, - 644.0, - 298.0, - 644.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 299.0, - 646.0, - 1435.0, - 646.0, - 1435.0, - 679.0, - 299.0, - 679.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 297.0, - 680.0, - 1197.0, - 680.0, - 1197.0, - 714.0, - 297.0, - 714.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 285.0, - 1027.0, - 1056.0, - 1027.0, - 1056.0, - 1057.0, - 285.0, - 1057.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 285.0, - 447.0, - 1058.0, - 447.0, - 1058.0, - 477.0, - 285.0, - 477.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 589.0, - 184.0, - 1036.0, - 184.0, - 1036.0, - 218.0, - 589.0, - 218.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 841.0, - 538.0, - 943.0, - 538.0, - 943.0, - 570.0, - 841.0, - 570.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1340.0, - 910.0, - 1500.0, - 910.0, - 1500.0, - 947.0, - 1340.0, - 947.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 842.0, - 1115.0, - 940.0, - 1115.0, - 940.0, - 1150.0, - 842.0, - 1150.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 297.0, - 1294.0, - 1367.0, - 1294.0, - 1367.0, - 1329.0, - 297.0, - 1329.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 299.0, - 1331.0, - 1463.0, - 1331.0, - 1463.0, - 1364.0, - 299.0, - 1364.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 299.0, - 1366.0, - 1127.0, - 1366.0, - 1127.0, - 1399.0, - 299.0, - 1399.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 299.0, - 1189.0, - 1397.0, - 1189.0, - 1397.0, - 1223.0, - 299.0, - 1223.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 299.0, - 1226.0, - 857.0, - 1226.0, - 857.0, - 1255.0, - 299.0, - 1255.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 295.0, - 223.0, - 295.0, - 223.0, - 324.0, - 200.0, - 324.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 148.0, - 308.0, - 161.0, - 308.0, - 161.0, - 308.5, - 148.0, - 308.5 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 450.0, - 220.0, - 450.0, - 220.0, - 471.0, - 200.0, - 471.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 150.25, - 451.0, - 157.25, - 451.0, - 157.25, - 466.0, - 150.25, - 466.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 143.0, - 1026.0, - 165.0, - 1026.0, - 165.0, - 1052.0, - 143.0, - 1052.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1025.0, - 223.0, - 1025.0, - 223.0, - 1053.0, - 199.0, - 1053.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 124.0, - 2281.0, - 292.0, - 2281.0, - 292.0, - 2302.0, - 124.0, - 2302.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 583.0, - 1809.0, - 1038.0, - 1809.0, - 1038.0, - 1840.0, - 583.0, - 1840.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 300.0, - 751.0, - 893.0, - 751.0, - 893.0, - 784.0, - 300.0, - 784.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 796.0, - 80.0, - 826.0, - 80.0, - 826.0, - 116.0, - 796.0, - 116.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1340.0, - 328.0, - 1500.0, - 328.0, - 1500.0, - 368.0, - 1340.0, - 368.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1314.0, - 2226.0, - 1468.0, - 2226.0, - 1468.0, - 2256.0, - 1314.0, - 2256.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1341.0, - 1522.0, - 1499.0, - 1522.0, - 1499.0, - 1564.0, - 1341.0, - 1564.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 283.0, - 295.0, - 1463.0, - 295.0, - 1463.0, - 332.0, - 283.0, - 332.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1337.0, - 330.0, - 1481.0, - 330.0, - 1481.0, - 370.0, - 1337.0, - 370.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1341.0, - 1522.0, - 1499.0, - 1522.0, - 1499.0, - 1564.0, - 1341.0, - 1564.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 282.0, - 293.0, - 1462.0, - 293.0, - 1462.0, - 333.0, - 282.0, - 333.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1314.0, - 2226.0, - 1468.0, - 2226.0, - 1468.0, - 2256.0, - 1314.0, - 2256.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 300.0, - 751.0, - 892.0, - 751.0, - 892.0, - 784.0, - 300.0, - 784.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 6, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 283, - 866, - 1414, - 866, - 1414, - 940, - 283, - 940 - ], - "score": 0.939 - }, - { - "category_id": 1, - "poly": [ - 281, - 1520, - 1438, - 1520, - 1438, - 1592, - 281, - 1592 - ], - "score": 0.939 - }, - { - "category_id": 1, - "poly": [ - 276, - 286, - 1463, - 286, - 1463, - 358, - 276, - 358 - ], - "score": 0.934 - }, - { - "category_id": 1, - "poly": [ - 280, - 1052, - 1060, - 1052, - 1060, - 1090, - 280, - 1090 - ], - "score": 0.922 - }, - { - "category_id": 1, - "poly": [ - 296, - 636, - 1405, - 636, - 1405, - 744, - 296, - 744 - ], - "score": 0.921 - }, - { - "category_id": 1, - "poly": [ - 279, - 473, - 1063, - 473, - 1063, - 511, - 279, - 511 - ], - "score": 0.915 - }, - { - "category_id": 1, - "poly": [ - 296, - 1217, - 1481, - 1217, - 1481, - 1323, - 296, - 1323 - ], - "score": 0.91 - }, - { - "category_id": 0, - "poly": [ - 663, - 181, - 962, - 181, - 962, - 220, - 663, - 220 - ], - "score": 0.91 - }, - { - "category_id": 0, - "poly": [ - 839, - 1144, - 940, - 1144, - 940, - 1180, - 839, - 1180 - ], - "score": 0.904 - }, - { - "category_id": 0, - "poly": [ - 837, - 564, - 942, - 564, - 942, - 600, - 837, - 600 - ], - "score": 0.901 - }, - { - "category_id": 1, - "poly": [ - 1340, - 361, - 1498, - 361, - 1498, - 398, - 1340, - 398 - ], - "score": 0.886 - }, - { - "category_id": 1, - "poly": [ - 296, - 778, - 1160, - 778, - 1160, - 816, - 296, - 816 - ], - "score": 0.885 - }, - { - "category_id": 1, - "poly": [ - 1340, - 939, - 1498, - 939, - 1498, - 978, - 1340, - 978 - ], - "score": 0.881 - }, - { - "category_id": 2, - "poly": [ - 123, - 2280, - 290, - 2280, - 290, - 2302, - 123, - 2302 - ], - "score": 0.863 - }, - { - "category_id": 1, - "poly": [ - 297, - 1358, - 1450, - 1358, - 1450, - 1467, - 297, - 1467 - ], - "score": 0.862 - }, - { - "category_id": 2, - "poly": [ - 123, - 463, - 242, - 463, - 242, - 514, - 123, - 514 - ], - "score": 0.857 - }, - { - "category_id": 2, - "poly": [ - 124, - 283, - 242, - 283, - 242, - 335, - 124, - 335 - ], - "score": 0.851 - }, - { - "category_id": 2, - "poly": [ - 800, - 83, - 822, - 83, - 822, - 110, - 800, - 110 - ], - "score": 0.806 - }, - { - "category_id": 2, - "poly": [ - 123, - 1044, - 242, - 1044, - 242, - 1095, - 123, - 1095 - ], - "score": 0.786 - }, - { - "category_id": 2, - "poly": [ - 1340, - 1593, - 1497, - 1593, - 1497, - 1629, - 1340, - 1629 - ], - "score": 0.581 - }, - { - "category_id": 1, - "poly": [ - 1340, - 1593, - 1497, - 1593, - 1497, - 1629, - 1340, - 1629 - ], - "score": 0.39 - }, - { - "category_id": 15, - "poly": [ - 282.0, - 868.0, - 1413.0, - 868.0, - 1413.0, - 907.0, - 282.0, - 907.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 283.0, - 906.0, - 811.0, - 906.0, - 811.0, - 940.0, - 283.0, - 940.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 282.0, - 1521.0, - 1430.0, - 1521.0, - 1430.0, - 1556.0, - 282.0, - 1556.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 281.0, - 1557.0, - 763.0, - 1557.0, - 763.0, - 1592.0, - 281.0, - 1592.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 284.0, - 290.0, - 1461.0, - 290.0, - 1461.0, - 323.0, - 284.0, - 323.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 284.0, - 327.0, - 577.0, - 327.0, - 577.0, - 361.0, - 284.0, - 361.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 285.0, - 1057.0, - 1058.0, - 1057.0, - 1058.0, - 1087.0, - 285.0, - 1087.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 299.0, - 641.0, - 1396.0, - 641.0, - 1396.0, - 673.0, - 299.0, - 673.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 298.0, - 674.0, - 1403.0, - 674.0, - 1403.0, - 708.0, - 298.0, - 708.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 298.0, - 710.0, - 757.0, - 710.0, - 757.0, - 746.0, - 298.0, - 746.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 284.0, - 476.0, - 1062.0, - 476.0, - 1062.0, - 508.0, - 284.0, - 508.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 300.0, - 1221.0, - 1476.0, - 1221.0, - 1476.0, - 1253.0, - 300.0, - 1253.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 298.0, - 1256.0, - 1420.0, - 1256.0, - 1420.0, - 1288.0, - 298.0, - 1288.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 298.0, - 1291.0, - 1064.0, - 1291.0, - 1064.0, - 1323.0, - 298.0, - 1323.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 662.0, - 184.0, - 961.0, - 184.0, - 961.0, - 218.0, - 662.0, - 218.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 839.0, - 1146.0, - 941.0, - 1146.0, - 941.0, - 1181.0, - 839.0, - 1181.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 836.0, - 567.0, - 943.0, - 567.0, - 943.0, - 600.0, - 836.0, - 600.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1340.0, - 359.0, - 1500.0, - 359.0, - 1500.0, - 399.0, - 1340.0, - 399.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 298.0, - 780.0, - 1158.0, - 780.0, - 1158.0, - 814.0, - 298.0, - 814.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1341.0, - 938.0, - 1500.0, - 938.0, - 1500.0, - 978.0, - 1341.0, - 978.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 124.0, - 2281.0, - 291.0, - 2281.0, - 291.0, - 2302.0, - 124.0, - 2302.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 298.0, - 1360.0, - 1444.0, - 1360.0, - 1444.0, - 1393.0, - 298.0, - 1393.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 298.0, - 1397.0, - 1343.0, - 1397.0, - 1343.0, - 1429.0, - 298.0, - 1429.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 295.0, - 1429.0, - 448.0, - 1429.0, - 448.0, - 1472.0, - 295.0, - 1472.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 474.0, - 169.0, - 474.0, - 169.0, - 505.0, - 141.0, - 505.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 476.0, - 223.0, - 476.0, - 223.0, - 505.0, - 199.0, - 505.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 147.0, - 299.0, - 161.0, - 299.0, - 161.0, - 319.0, - 147.0, - 319.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 296.0, - 221.0, - 296.0, - 221.0, - 323.0, - 199.0, - 323.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 799.0, - 81.0, - 825.0, - 81.0, - 825.0, - 114.0, - 799.0, - 114.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 1053.0, - 171.0, - 1053.0, - 171.0, - 1086.0, - 140.0, - 1086.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1054.0, - 223.0, - 1054.0, - 223.0, - 1085.0, - 196.0, - 1085.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1341.0, - 1591.0, - 1500.0, - 1591.0, - 1500.0, - 1631.0, - 1341.0, - 1631.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1341.0, - 1591.0, - 1500.0, - 1591.0, - 1500.0, - 1631.0, - 1341.0, - 1631.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 7, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 296, - 636, - 1414, - 636, - 1414, - 743, - 296, - 743 - ], - "score": 0.936 - }, - { - "category_id": 1, - "poly": [ - 276, - 286, - 1464, - 286, - 1464, - 360, - 276, - 360 - ], - "score": 0.936 - }, - { - "category_id": 1, - "poly": [ - 281, - 1445, - 1473, - 1445, - 1473, - 1520, - 281, - 1520 - ], - "score": 0.935 - }, - { - "category_id": 1, - "poly": [ - 280, - 865, - 1491, - 865, - 1491, - 938, - 280, - 938 - ], - "score": 0.93 - }, - { - "category_id": 0, - "poly": [ - 503, - 180, - 1121, - 180, - 1121, - 220, - 503, - 220 - ], - "score": 0.925 - }, - { - "category_id": 1, - "poly": [ - 281, - 1051, - 1059, - 1051, - 1059, - 1089, - 281, - 1089 - ], - "score": 0.918 - }, - { - "category_id": 1, - "poly": [ - 280, - 473, - 1061, - 473, - 1061, - 511, - 280, - 511 - ], - "score": 0.917 - }, - { - "category_id": 1, - "poly": [ - 289, - 1321, - 1473, - 1321, - 1473, - 1394, - 289, - 1394 - ], - "score": 0.913 - }, - { - "category_id": 1, - "poly": [ - 295, - 1215, - 1454, - 1215, - 1454, - 1288, - 295, - 1288 - ], - "score": 0.908 - }, - { - "category_id": 1, - "poly": [ - 1340, - 938, - 1497, - 938, - 1497, - 976, - 1340, - 976 - ], - "score": 0.892 - }, - { - "category_id": 0, - "poly": [ - 838, - 564, - 941, - 564, - 941, - 600, - 838, - 600 - ], - "score": 0.89 - }, - { - "category_id": 1, - "poly": [ - 296, - 778, - 802, - 778, - 802, - 814, - 296, - 814 - ], - "score": 0.889 - }, - { - "category_id": 0, - "poly": [ - 840, - 1143, - 938, - 1143, - 938, - 1179, - 840, - 1179 - ], - "score": 0.884 - }, - { - "category_id": 1, - "poly": [ - 1339, - 361, - 1498, - 361, - 1498, - 398, - 1339, - 398 - ], - "score": 0.883 - }, - { - "category_id": 2, - "poly": [ - 123, - 2279, - 291, - 2279, - 291, - 2302, - 123, - 2302 - ], - "score": 0.837 - }, - { - "category_id": 2, - "poly": [ - 124, - 284, - 242, - 284, - 242, - 335, - 124, - 335 - ], - "score": 0.829 - }, - { - "category_id": 2, - "poly": [ - 123, - 463, - 242, - 463, - 242, - 514, - 123, - 514 - ], - "score": 0.825 - }, - { - "category_id": 2, - "poly": [ - 123, - 1042, - 242, - 1042, - 242, - 1094, - 123, - 1094 - ], - "score": 0.821 - }, - { - "category_id": 2, - "poly": [ - 800, - 83, - 822, - 83, - 822, - 110, - 800, - 110 - ], - "score": 0.814 - }, - { - "category_id": 2, - "poly": [ - 647, - 1697, - 974, - 1697, - 974, - 1734, - 647, - 1734 - ], - "score": 0.635 - }, - { - "category_id": 2, - "poly": [ - 1340, - 1519, - 1497, - 1519, - 1497, - 1556, - 1340, - 1556 - ], - "score": 0.483 - }, - { - "category_id": 1, - "poly": [ - 1340, - 1519, - 1497, - 1519, - 1497, - 1556, - 1340, - 1556 - ], - "score": 0.476 - }, - { - "category_id": 1, - "poly": [ - 647, - 1697, - 974, - 1697, - 974, - 1734, - 647, - 1734 - ], - "score": 0.3 - }, - { - "category_id": 15, - "poly": [ - 301.0, - 640.0, - 1383.0, - 640.0, - 1383.0, - 673.0, - 301.0, - 673.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 299.0, - 675.0, - 1411.0, - 675.0, - 1411.0, - 708.0, - 299.0, - 708.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 299.0, - 711.0, - 863.0, - 711.0, - 863.0, - 744.0, - 299.0, - 744.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 284.0, - 289.0, - 1459.0, - 289.0, - 1459.0, - 323.0, - 284.0, - 323.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 284.0, - 326.0, - 728.0, - 326.0, - 728.0, - 360.0, - 284.0, - 360.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 282.0, - 1447.0, - 1470.0, - 1447.0, - 1470.0, - 1484.0, - 282.0, - 1484.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 282.0, - 1487.0, - 897.0, - 1487.0, - 897.0, - 1521.0, - 282.0, - 1521.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 282.0, - 866.0, - 1485.0, - 866.0, - 1485.0, - 904.0, - 282.0, - 904.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 281.0, - 906.0, - 379.0, - 906.0, - 379.0, - 941.0, - 281.0, - 941.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 505.0, - 185.0, - 1120.0, - 185.0, - 1120.0, - 219.0, - 505.0, - 219.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 283.0, - 1054.0, - 1058.0, - 1054.0, - 1058.0, - 1086.0, - 283.0, - 1086.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 284.0, - 476.0, - 1060.0, - 476.0, - 1060.0, - 508.0, - 284.0, - 508.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 297.0, - 1322.0, - 1470.0, - 1322.0, - 1470.0, - 1358.0, - 297.0, - 1358.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 295.0, - 1357.0, - 1040.0, - 1357.0, - 1040.0, - 1394.0, - 295.0, - 1394.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 299.0, - 1219.0, - 1444.0, - 1219.0, - 1444.0, - 1253.0, - 299.0, - 1253.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 297.0, - 1254.0, - 1314.0, - 1254.0, - 1314.0, - 1288.0, - 297.0, - 1288.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1341.0, - 936.0, - 1500.0, - 936.0, - 1500.0, - 978.0, - 1341.0, - 978.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 838.0, - 566.0, - 941.0, - 566.0, - 941.0, - 601.0, - 838.0, - 601.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 299.0, - 780.0, - 803.0, - 780.0, - 803.0, - 813.0, - 299.0, - 813.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 842.0, - 1145.0, - 940.0, - 1145.0, - 940.0, - 1180.0, - 842.0, - 1180.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1340.0, - 359.0, - 1500.0, - 359.0, - 1500.0, - 399.0, - 1340.0, - 399.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 124.0, - 2281.0, - 292.0, - 2281.0, - 292.0, - 2302.0, - 124.0, - 2302.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 142.0, - 293.0, - 169.0, - 293.0, - 169.0, - 326.0, - 142.0, - 326.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 294.0, - 223.0, - 294.0, - 223.0, - 326.0, - 196.0, - 326.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 474.0, - 169.0, - 474.0, - 169.0, - 505.0, - 141.0, - 505.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 474.0, - 224.0, - 474.0, - 224.0, - 505.0, - 197.0, - 505.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 1052.0, - 171.0, - 1052.0, - 171.0, - 1085.0, - 140.0, - 1085.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 1054.0, - 225.0, - 1054.0, - 225.0, - 1083.0, - 197.0, - 1083.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 799.0, - 81.0, - 824.0, - 81.0, - 824.0, - 114.0, - 799.0, - 114.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 650.0, - 1701.0, - 973.0, - 1701.0, - 973.0, - 1730.0, - 650.0, - 1730.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1341.0, - 1516.0, - 1499.0, - 1516.0, - 1499.0, - 1558.0, - 1341.0, - 1558.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1341.0, - 1516.0, - 1499.0, - 1516.0, - 1499.0, - 1558.0, - 1341.0, - 1558.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 650.0, - 1701.0, - 973.0, - 1701.0, - 973.0, - 1730.0, - 650.0, - 1730.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 8, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 795, - 83, - 829, - 83, - 829, - 110, - 795, - 110 - ], - "score": 0.837 - }, - { - "category_id": 2, - "poly": [ - 124, - 2280, - 290, - 2280, - 290, - 2301, - 124, - 2301 - ], - "score": 0.835 - }, - { - "category_id": 0, - "poly": [ - 490, - 184, - 1134, - 184, - 1134, - 223, - 490, - 223 - ], - "score": 0.762 - }, - { - "category_id": 1, - "poly": [ - 490, - 184, - 1134, - 184, - 1134, - 223, - 490, - 223 - ], - "score": 0.121 - }, - { - "category_id": 15, - "poly": [ - 788.0, - 79.0, - 835.0, - 79.0, - 835.0, - 117.0, - 788.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 125.0, - 2281.0, - 291.0, - 2281.0, - 291.0, - 2302.0, - 125.0, - 2302.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 491.0, - 186.0, - 1131.0, - 186.0, - 1131.0, - 223.0, - 491.0, - 223.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 491.0, - 186.0, - 1131.0, - 186.0, - 1131.0, - 223.0, - 491.0, - 223.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 9, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 124, - 2280, - 290, - 2280, - 290, - 2301, - 124, - 2301 - ], - "score": 0.835 - }, - { - "category_id": 2, - "poly": [ - 795, - 83, - 826, - 83, - 826, - 109, - 795, - 109 - ], - "score": 0.79 - }, - { - "category_id": 0, - "poly": [ - 490, - 184, - 1134, - 184, - 1134, - 223, - 490, - 223 - ], - "score": 0.767 - }, - { - "category_id": 1, - "poly": [ - 490, - 184, - 1134, - 184, - 1134, - 223, - 490, - 223 - ], - "score": 0.117 - }, - { - "category_id": 15, - "poly": [ - 125.0, - 2281.0, - 291.0, - 2281.0, - 291.0, - 2302.0, - 125.0, - 2302.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 789.0, - 79.0, - 834.0, - 79.0, - 834.0, - 118.0, - 789.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 491.0, - 186.0, - 1131.0, - 186.0, - 1131.0, - 223.0, - 491.0, - 223.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 491.0, - 186.0, - 1131.0, - 186.0, - 1131.0, - 223.0, - 491.0, - 223.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 10, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 0, - "poly": [ - 140, - 1904, - 361, - 1904, - 361, - 1931, - 140, - 1931 - ], - "score": 0.907 - }, - { - "category_id": 2, - "poly": [ - 1027, - 2145, - 1487, - 2145, - 1487, - 2250, - 1027, - 2250 - ], - "score": 0.889 - }, - { - "category_id": 1, - "poly": [ - 144, - 2019, - 1424, - 2019, - 1424, - 2068, - 144, - 2068 - ], - "score": 0.888 - }, - { - "category_id": 1, - "poly": [ - 137, - 1953, - 1435, - 1953, - 1435, - 2000, - 137, - 2000 - ], - "score": 0.876 - }, - { - "category_id": 2, - "poly": [ - 124, - 2279, - 290, - 2279, - 290, - 2302, - 124, - 2302 - ], - "score": 0.843 - }, - { - "category_id": 2, - "poly": [ - 795, - 83, - 829, - 83, - 829, - 110, - 795, - 110 - ], - "score": 0.828 - }, - { - "category_id": 0, - "poly": [ - 490, - 184, - 1134, - 184, - 1134, - 223, - 490, - 223 - ], - "score": 0.74 - }, - { - "category_id": 2, - "poly": [ - 141, - 2087, - 654, - 2087, - 654, - 2111, - 141, - 2111 - ], - "score": 0.523 - }, - { - "category_id": 1, - "poly": [ - 141, - 2087, - 654, - 2087, - 654, - 2111, - 141, - 2111 - ], - "score": 0.415 - }, - { - "category_id": 1, - "poly": [ - 490, - 184, - 1134, - 184, - 1134, - 223, - 490, - 223 - ], - "score": 0.155 - }, - { - "category_id": 13, - "poly": [ - 226, - 2088, - 246, - 2088, - 246, - 2108, - 226, - 2108 - ], - "score": 0.62, - "latex": "\\copyright" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 1906.0, - 363.0, - 1906.0, - 363.0, - 1933.0, - 139.0, - 1933.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1070.0, - 2220.0, - 1434.0, - 2220.0, - 1434.0, - 2251.0, - 1070.0, - 2251.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 2022.0, - 1422.0, - 2022.0, - 1422.0, - 2047.0, - 141.0, - 2047.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 2045.0, - 1264.0, - 2045.0, - 1264.0, - 2070.0, - 141.0, - 2070.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 1955.0, - 1433.0, - 1955.0, - 1433.0, - 1980.0, - 139.0, - 1980.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 1976.0, - 875.0, - 1976.0, - 875.0, - 2001.0, - 139.0, - 2001.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 125.0, - 2281.0, - 292.0, - 2281.0, - 292.0, - 2302.0, - 125.0, - 2302.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 788.0, - 79.0, - 836.0, - 79.0, - 836.0, - 118.0, - 788.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 491.0, - 186.0, - 1131.0, - 186.0, - 1131.0, - 223.0, - 491.0, - 223.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 2088.0, - 225.0, - 2088.0, - 225.0, - 2113.0, - 140.0, - 2113.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 247.0, - 2088.0, - 658.0, - 2088.0, - 658.0, - 2113.0, - 247.0, - 2113.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 2088.0, - 225.0, - 2088.0, - 225.0, - 2113.0, - 140.0, - 2113.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 247.0, - 2088.0, - 658.0, - 2088.0, - 658.0, - 2113.0, - 247.0, - 2113.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 491.0, - 186.0, - 1131.0, - 186.0, - 1131.0, - 223.0, - 491.0, - 223.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 11, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 127, - 980, - 569, - 980, - 569, - 1019, - 127, - 1019 - ], - "score": 0.902 - }, - { - "category_id": 1, - "poly": [ - 129, - 907, - 284, - 907, - 284, - 948, - 129, - 948 - ], - "score": 0.838 - }, - { - "category_id": 2, - "poly": [ - 132, - 2118, - 544, - 2118, - 544, - 2161, - 132, - 2161 - ], - "score": 0.494 - }, - { - "category_id": 1, - "poly": [ - 110, - 72, - 481, - 72, - 481, - 210, - 110, - 210 - ], - "score": 0.404 - }, - { - "category_id": 1, - "poly": [ - 128, - 755, - 600, - 755, - 600, - 804, - 128, - 804 - ], - "score": 0.402 - }, - { - "category_id": 1, - "poly": [ - 132, - 2118, - 544, - 2118, - 544, - 2161, - 132, - 2161 - ], - "score": 0.397 - }, - { - "category_id": 1, - "poly": [ - 123, - 443, - 569, - 443, - 569, - 806, - 123, - 806 - ], - "score": 0.391 - }, - { - "category_id": 0, - "poly": [ - 123, - 443, - 569, - 443, - 569, - 806, - 123, - 806 - ], - "score": 0.372 - }, - { - "category_id": 1, - "poly": [ - 128, - 846, - 359, - 846, - 359, - 890, - 128, - 890 - ], - "score": 0.358 - }, - { - "category_id": 0, - "poly": [ - 128, - 846, - 359, - 846, - 359, - 890, - 128, - 890 - ], - "score": 0.277 - }, - { - "category_id": 0, - "poly": [ - 110, - 72, - 481, - 72, - 481, - 210, - 110, - 210 - ], - "score": 0.176 - }, - { - "category_id": 2, - "poly": [ - 110, - 72, - 481, - 72, - 481, - 210, - 110, - 210 - ], - "score": 0.166 - }, - { - "category_id": 1, - "poly": [ - 126, - 845, - 362, - 845, - 362, - 948, - 126, - 948 - ], - "score": 0.16 - }, - { - "category_id": 1, - "poly": [ - 129, - 907, - 284, - 907, - 284, - 948, - 129, - 948 - ], - "score": 0.16 - }, - { - "category_id": 1, - "poly": [ - 127, - 446, - 424, - 446, - 424, - 523, - 127, - 523 - ], - "score": 0.152 - }, - { - "category_id": 15, - "poly": [ - 130.0, - 985.0, - 567.0, - 985.0, - 567.0, - 1016.0, - 130.0, - 1016.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 126.0, - 910.0, - 282.0, - 910.0, - 282.0, - 945.0, - 126.0, - 945.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 2122.0, - 542.0, - 2122.0, - 542.0, - 2157.0, - 133.0, - 2157.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 101.0, - 387.0, - 101.0, - 387.0, - 205.0, - 113.0, - 205.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 384.0, - 84.0, - 481.0, - 84.0, - 481.0, - 170.0, - 384.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 127.0, - 759.0, - 598.0, - 759.0, - 598.0, - 804.0, - 127.0, - 804.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 2122.0, - 542.0, - 2122.0, - 542.0, - 2157.0, - 133.0, - 2157.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 130.0, - 454.0, - 420.0, - 454.0, - 420.0, - 517.0, - 130.0, - 517.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 132.0, - 559.0, - 519.0, - 559.0, - 519.0, - 621.0, - 132.0, - 621.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 129.0, - 658.0, - 377.0, - 658.0, - 377.0, - 735.0, - 129.0, - 735.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 127.0, - 760.0, - 574.0, - 760.0, - 574.0, - 801.0, - 127.0, - 801.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 130.0, - 454.0, - 420.0, - 454.0, - 420.0, - 517.0, - 130.0, - 517.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 132.0, - 559.0, - 519.0, - 559.0, - 519.0, - 621.0, - 132.0, - 621.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 129.0, - 658.0, - 377.0, - 658.0, - 377.0, - 735.0, - 129.0, - 735.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 127.0, - 760.0, - 574.0, - 760.0, - 574.0, - 801.0, - 127.0, - 801.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 128.0, - 848.0, - 357.0, - 848.0, - 357.0, - 890.0, - 128.0, - 890.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 128.0, - 848.0, - 357.0, - 848.0, - 357.0, - 890.0, - 128.0, - 890.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 101.0, - 387.0, - 101.0, - 387.0, - 205.0, - 113.0, - 205.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 384.0, - 84.0, - 481.0, - 84.0, - 481.0, - 170.0, - 384.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 101.0, - 387.0, - 101.0, - 387.0, - 205.0, - 113.0, - 205.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 384.0, - 84.0, - 481.0, - 84.0, - 481.0, - 170.0, - 384.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 129.0, - 848.0, - 356.0, - 848.0, - 356.0, - 888.0, - 129.0, - 888.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 126.0, - 909.0, - 283.0, - 909.0, - 283.0, - 946.0, - 126.0, - 946.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 126.0, - 910.0, - 282.0, - 910.0, - 282.0, - 945.0, - 126.0, - 945.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 131.0, - 456.0, - 420.0, - 456.0, - 420.0, - 516.0, - 131.0, - 516.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 12, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 119, - 597, - 1503, - 597, - 1503, - 778, - 119, - 778 - ], - "score": 0.973 - }, - { - "category_id": 1, - "poly": [ - 119, - 849, - 1002, - 849, - 1002, - 886, - 119, - 886 - ], - "score": 0.906 - }, - { - "category_id": 0, - "poly": [ - 138, - 1961, - 359, - 1961, - 359, - 1988, - 138, - 1988 - ], - "score": 0.904 - }, - { - "category_id": 1, - "poly": [ - 138, - 2009, - 1501, - 2009, - 1501, - 2079, - 138, - 2079 - ], - "score": 0.9 - }, - { - "category_id": 2, - "poly": [ - 659, - 100, - 1537, - 100, - 1537, - 136, - 659, - 136 - ], - "score": 0.878 - }, - { - "category_id": 1, - "poly": [ - 117, - 234, - 1513, - 234, - 1513, - 561, - 117, - 561 - ], - "score": 0.858 - }, - { - "category_id": 2, - "poly": [ - 116, - 2216, - 132, - 2216, - 132, - 2237, - 116, - 2237 - ], - "score": 0.791 - }, - { - "category_id": 1, - "poly": [ - 139, - 2099, - 653, - 2099, - 653, - 2123, - 139, - 2123 - ], - "score": 0.789 - }, - { - "category_id": 1, - "poly": [ - 118, - 235, - 1516, - 235, - 1516, - 560, - 118, - 560 - ], - "score": 0.411 - }, - { - "category_id": 2, - "poly": [ - 139, - 2099, - 653, - 2099, - 653, - 2123, - 139, - 2123 - ], - "score": 0.145 - }, - { - "category_id": 13, - "poly": [ - 225, - 2100, - 244, - 2100, - 244, - 2120, - 225, - 2120 - ], - "score": 0.52, - "latex": "\\circledcirc" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 600.0, - 1485.0, - 600.0, - 1485.0, - 632.0, - 117.0, - 632.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 638.0, - 1456.0, - 638.0, - 1456.0, - 670.0, - 117.0, - 670.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 673.0, - 1428.0, - 673.0, - 1428.0, - 709.0, - 115.0, - 709.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 711.0, - 1502.0, - 711.0, - 1502.0, - 743.0, - 115.0, - 743.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 748.0, - 209.0, - 748.0, - 209.0, - 779.0, - 112.0, - 779.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 851.0, - 1003.0, - 851.0, - 1003.0, - 887.0, - 116.0, - 887.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 137.0, - 1963.0, - 363.0, - 1963.0, - 363.0, - 1990.0, - 137.0, - 1990.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 137.0, - 2010.0, - 1481.0, - 2010.0, - 1481.0, - 2039.0, - 137.0, - 2039.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 2032.0, - 1501.0, - 2032.0, - 1501.0, - 2058.0, - 134.0, - 2058.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 137.0, - 2058.0, - 518.0, - 2058.0, - 518.0, - 2081.0, - 137.0, - 2081.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 659.0, - 100.0, - 1537.0, - 100.0, - 1537.0, - 134.0, - 659.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 237.0, - 1518.0, - 237.0, - 1518.0, - 274.0, - 114.0, - 274.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 276.0, - 1485.0, - 276.0, - 1485.0, - 309.0, - 117.0, - 309.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 312.0, - 1519.0, - 312.0, - 1519.0, - 344.0, - 117.0, - 344.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 349.0, - 1452.0, - 349.0, - 1452.0, - 381.0, - 115.0, - 381.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 384.0, - 1477.0, - 384.0, - 1477.0, - 417.0, - 115.0, - 417.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 420.0, - 1488.0, - 420.0, - 1488.0, - 452.0, - 115.0, - 452.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 455.0, - 1410.0, - 455.0, - 1410.0, - 491.0, - 112.0, - 491.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 491.0, - 1488.0, - 491.0, - 1488.0, - 528.0, - 114.0, - 528.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 529.0, - 857.0, - 529.0, - 857.0, - 562.0, - 115.0, - 562.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 2213.0, - 138.0, - 2213.0, - 138.0, - 2244.0, - 113.0, - 2244.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 2100.0, - 224.0, - 2100.0, - 224.0, - 2125.0, - 138.0, - 2125.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 245.0, - 2100.0, - 656.0, - 2100.0, - 656.0, - 2125.0, - 245.0, - 2125.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 235.0, - 1518.0, - 235.0, - 1518.0, - 273.0, - 113.0, - 273.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 275.0, - 1485.0, - 275.0, - 1485.0, - 311.0, - 116.0, - 311.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 313.0, - 1518.0, - 313.0, - 1518.0, - 344.0, - 118.0, - 344.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 349.0, - 1449.0, - 349.0, - 1449.0, - 381.0, - 116.0, - 381.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 383.0, - 1480.0, - 383.0, - 1480.0, - 421.0, - 113.0, - 421.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 419.0, - 1491.0, - 419.0, - 1491.0, - 454.0, - 115.0, - 454.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 456.0, - 1408.0, - 456.0, - 1408.0, - 492.0, - 115.0, - 492.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 492.0, - 1483.0, - 492.0, - 1483.0, - 524.0, - 116.0, - 524.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 527.0, - 859.0, - 527.0, - 859.0, - 564.0, - 115.0, - 564.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 2100.0, - 224.0, - 2100.0, - 224.0, - 2125.0, - 138.0, - 2125.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 245.0, - 2100.0, - 656.0, - 2100.0, - 656.0, - 2125.0, - 245.0, - 2125.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 13, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 117, - 903, - 1531, - 903, - 1531, - 1116, - 117, - 1116 - ], - "score": 0.979 - }, - { - "category_id": 1, - "poly": [ - 118, - 1231, - 1527, - 1231, - 1527, - 1443, - 118, - 1443 - ], - "score": 0.978 - }, - { - "category_id": 1, - "poly": [ - 117, - 657, - 1525, - 657, - 1525, - 869, - 117, - 869 - ], - "score": 0.977 - }, - { - "category_id": 1, - "poly": [ - 118, - 1583, - 1458, - 1583, - 1458, - 1689, - 118, - 1689 - ], - "score": 0.968 - }, - { - "category_id": 1, - "poly": [ - 114, - 360, - 1459, - 360, - 1459, - 433, - 114, - 433 - ], - "score": 0.946 - }, - { - "category_id": 1, - "poly": [ - 112, - 1478, - 1524, - 1478, - 1524, - 1549, - 112, - 1549 - ], - "score": 0.944 - }, - { - "category_id": 0, - "poly": [ - 117, - 273, - 902, - 273, - 902, - 325, - 117, - 325 - ], - "score": 0.941 - }, - { - "category_id": 1, - "poly": [ - 111, - 469, - 1496, - 469, - 1496, - 542, - 111, - 542 - ], - "score": 0.94 - }, - { - "category_id": 1, - "poly": [ - 113, - 1723, - 1349, - 1723, - 1349, - 1761, - 113, - 1761 - ], - "score": 0.914 - }, - { - "category_id": 0, - "poly": [ - 120, - 1151, - 543, - 1151, - 543, - 1195, - 120, - 1195 - ], - "score": 0.9 - }, - { - "category_id": 2, - "poly": [ - 658, - 100, - 1538, - 100, - 1538, - 136, - 658, - 136 - ], - "score": 0.88 - }, - { - "category_id": 0, - "poly": [ - 118, - 578, - 533, - 578, - 533, - 622, - 118, - 622 - ], - "score": 0.815 - }, - { - "category_id": 2, - "poly": [ - 1520, - 2215, - 1538, - 2215, - 1538, - 2238, - 1520, - 2238 - ], - "score": 0.634 - }, - { - "category_id": 2, - "poly": [ - 1520, - 2215, - 1538, - 2215, - 1538, - 2238, - 1520, - 2238 - ], - "score": 0.508 - }, - { - "category_id": 1, - "poly": [ - 118, - 578, - 533, - 578, - 533, - 622, - 118, - 622 - ], - "score": 0.107 - }, - { - "category_id": 15, - "poly": [ - 116.0, - 905.0, - 1515.0, - 905.0, - 1515.0, - 941.0, - 116.0, - 941.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 941.0, - 1505.0, - 941.0, - 1505.0, - 977.0, - 116.0, - 977.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 979.0, - 1460.0, - 979.0, - 1460.0, - 1009.0, - 117.0, - 1009.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 1011.0, - 1534.0, - 1011.0, - 1534.0, - 1047.0, - 116.0, - 1047.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 1047.0, - 1496.0, - 1047.0, - 1496.0, - 1081.0, - 114.0, - 1081.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 1083.0, - 1412.0, - 1083.0, - 1412.0, - 1117.0, - 114.0, - 1117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 1233.0, - 1473.0, - 1233.0, - 1473.0, - 1267.0, - 115.0, - 1267.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 1269.0, - 1519.0, - 1269.0, - 1519.0, - 1305.0, - 115.0, - 1305.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 1305.0, - 1486.0, - 1305.0, - 1486.0, - 1340.0, - 115.0, - 1340.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1342.0, - 1502.0, - 1342.0, - 1502.0, - 1373.0, - 117.0, - 1373.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 1374.0, - 1531.0, - 1374.0, - 1531.0, - 1410.0, - 115.0, - 1410.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1412.0, - 1399.0, - 1412.0, - 1399.0, - 1443.0, - 117.0, - 1443.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 659.0, - 1523.0, - 659.0, - 1523.0, - 693.0, - 117.0, - 693.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 695.0, - 1522.0, - 695.0, - 1522.0, - 731.0, - 116.0, - 731.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 731.0, - 1474.0, - 731.0, - 1474.0, - 766.0, - 116.0, - 766.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 768.0, - 1489.0, - 768.0, - 1489.0, - 799.0, - 117.0, - 799.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 802.0, - 1484.0, - 802.0, - 1484.0, - 838.0, - 116.0, - 838.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 839.0, - 563.0, - 839.0, - 563.0, - 870.0, - 116.0, - 870.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 1585.0, - 1451.0, - 1585.0, - 1451.0, - 1620.0, - 118.0, - 1620.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 1620.0, - 1420.0, - 1620.0, - 1420.0, - 1655.0, - 116.0, - 1655.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 1659.0, - 1226.0, - 1659.0, - 1226.0, - 1689.0, - 116.0, - 1689.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 365.0, - 1447.0, - 365.0, - 1447.0, - 395.0, - 118.0, - 395.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 401.0, - 1459.0, - 401.0, - 1459.0, - 434.0, - 117.0, - 434.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 1481.0, - 1520.0, - 1481.0, - 1520.0, - 1515.0, - 119.0, - 1515.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1517.0, - 920.0, - 1517.0, - 920.0, - 1551.0, - 117.0, - 1551.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 276.0, - 900.0, - 276.0, - 900.0, - 326.0, - 116.0, - 326.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 473.0, - 1490.0, - 473.0, - 1490.0, - 507.0, - 118.0, - 507.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 509.0, - 1415.0, - 509.0, - 1415.0, - 543.0, - 117.0, - 543.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 1728.0, - 1349.0, - 1728.0, - 1349.0, - 1759.0, - 119.0, - 1759.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 1156.0, - 541.0, - 1156.0, - 541.0, - 1192.0, - 119.0, - 1192.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 659.0, - 100.0, - 1537.0, - 100.0, - 1537.0, - 134.0, - 659.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 583.0, - 533.0, - 583.0, - 533.0, - 619.0, - 119.0, - 619.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1519.0, - 2215.0, - 1541.0, - 2215.0, - 1541.0, - 2242.0, - 1519.0, - 2242.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1519.0, - 2215.0, - 1541.0, - 2215.0, - 1541.0, - 2242.0, - 1519.0, - 2242.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 583.0, - 533.0, - 583.0, - 533.0, - 619.0, - 119.0, - 619.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 14, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 123, - 336, - 1524, - 336, - 1524, - 2060, - 123, - 2060 - ], - "score": 0.9, - "html": "
eMarker-2 symbolUse of symbol
ANAnalysis (all questions)
APP]Application (for use of the item in 10 mark Analyse question answers)
AAO1 - knowledge and understanding e.g. sociological concepts, theories, names of sociologists
A02AO2 - application
A03AO3- analysisandevaluation
Correct/good point
EVALEvaluation
EGExample
creditUnderlining tool- use this or AO1 for concepts etc or for any point deserving
Incorrect
KUKnowledge and understanding
Unclear
Missing
NAQNot answering question
NRNo response (use e.g. if candidate has put question number in margin but
xampleTexinot written anything) Text box. Please include a brief text box comment for each question, and
other text boxes as appropriate. Red rectangle. Can be used for highlighting.
appropriate.
W1Way 1. Use in 10 mark analyse question answers for the first way (or factor, reason etc)identified
W2Way 2. Use in 10 mark analyse question answers for the second way (or factor, reason etc) identified
" - }, - { - "category_id": 2, - "poly": [ - 657, - 99, - 1539, - 99, - 1539, - 136, - 657, - 136 - ], - "score": 0.883 - }, - { - "category_id": 0, - "poly": [ - 117, - 236, - 394, - 236, - 394, - 274, - 117, - 274 - ], - "score": 0.881 - }, - { - "category_id": 1, - "poly": [ - 116, - 306, - 667, - 306, - 667, - 344, - 116, - 344 - ], - "score": 0.852 - }, - { - "category_id": 2, - "poly": [ - 115, - 2215, - 133, - 2215, - 133, - 2238, - 115, - 2238 - ], - "score": 0.796 - }, - { - "category_id": 15, - "poly": [ - 661.0, - 103.0, - 1537.0, - 103.0, - 1537.0, - 132.0, - 661.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 238.0, - 393.0, - 238.0, - 393.0, - 274.0, - 117.0, - 274.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 309.0, - 666.0, - 309.0, - 666.0, - 340.0, - 117.0, - 340.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 2219.0, - 132.0, - 2219.0, - 132.0, - 2237.0, - 117.0, - 2237.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 15, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 114, - 599, - 1516, - 599, - 1516, - 1663, - 114, - 1663 - ], - "score": 0.981, - "html": "
MarksLevel Descriptors
8-10There will be two applications of relevant material, eg socialisation into class-based subcultures influencing values; middle class concepts of taste providing a sense of difference and superiority. There will be appropriate analysis, eg of the extent to which social class is important in
4-7shaping identities. Answers in this band will show a reasonable to good knowledge and understanding of one s s g s There will be one or two applications of relevant material, eg ways in which income and wealth enable or limit choices about lifestyle and consumption. There will be some basic analysis.
1-3question or the material. There will be limited focus on the question, eg a drift into discussion of identities in general.
0There will be little or no analysis. No relevant points.
" - }, - { - "category_id": 1, - "poly": [ - 119, - 1845, - 1386, - 1845, - 1386, - 2107, - 119, - 2107 - ], - "score": 0.963 - }, - { - "category_id": 1, - "poly": [ - 121, - 1773, - 980, - 1773, - 980, - 1812, - 121, - 1812 - ], - "score": 0.927 - }, - { - "category_id": 0, - "poly": [ - 119, - 1703, - 386, - 1703, - 386, - 1740, - 119, - 1740 - ], - "score": 0.913 - }, - { - "category_id": 5, - "poly": [ - 115, - 315, - 1519, - 315, - 1519, - 400, - 115, - 400 - ], - "score": 0.877, - "html": "
QuMarking guidanceTotal marks
" - }, - { - "category_id": 2, - "poly": [ - 658, - 99, - 1539, - 99, - 1539, - 137, - 658, - 137 - ], - "score": 0.874 - }, - { - "category_id": 5, - "poly": [ - 112, - 315, - 1517, - 315, - 1517, - 400, - 112, - 400 - ], - "score": 0.84, - "html": "
QuMarking guidanceTotal marks
" - }, - { - "category_id": 2, - "poly": [ - 1519, - 2214, - 1539, - 2214, - 1539, - 2238, - 1519, - 2238 - ], - "score": 0.765 - }, - { - "category_id": 0, - "poly": [ - 594, - 240, - 1034, - 240, - 1034, - 312, - 594, - 312 - ], - "score": 0.75 - }, - { - "category_id": 5, - "poly": [ - 110, - 462, - 1518, - 462, - 1518, - 573, - 110, - 573 - ], - "score": 0.676, - "html": "
01Outline and explain two ways in which social class may have become less important in shaping identities.10
" - }, - { - "category_id": 5, - "poly": [ - 109, - 462, - 1515, - 462, - 1515, - 573, - 109, - 573 - ], - "score": 0.614, - "html": "
01Outline and explain two ways in which social class may have become less important in shaping identities.10
" - }, - { - "category_id": 2, - "poly": [ - 1519, - 2214, - 1538, - 2214, - 1538, - 2238, - 1519, - 2238 - ], - "score": 0.385 - }, - { - "category_id": 15, - "poly": [ - 123.0, - 1849.0, - 977.0, - 1849.0, - 977.0, - 1881.0, - 123.0, - 1881.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 1885.0, - 1184.0, - 1885.0, - 1184.0, - 1917.0, - 119.0, - 1917.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 1925.0, - 687.0, - 1925.0, - 687.0, - 1956.0, - 119.0, - 1956.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 1963.0, - 1382.0, - 1963.0, - 1382.0, - 1994.0, - 119.0, - 1994.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 1997.0, - 926.0, - 1997.0, - 926.0, - 2033.0, - 119.0, - 2033.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 2034.0, - 751.0, - 2034.0, - 751.0, - 2068.0, - 119.0, - 2068.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 2074.0, - 399.0, - 2074.0, - 399.0, - 2105.0, - 119.0, - 2105.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 121.0, - 1778.0, - 978.0, - 1778.0, - 978.0, - 1809.0, - 121.0, - 1809.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 121.0, - 1707.0, - 385.0, - 1707.0, - 385.0, - 1736.0, - 121.0, - 1736.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 658.0, - 100.0, - 1538.0, - 100.0, - 1538.0, - 134.0, - 658.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 2214.0, - 1541.0, - 2214.0, - 1541.0, - 2242.0, - 1520.0, - 2242.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 741.0, - 243.0, - 886.0, - 243.0, - 886.0, - 274.0, - 741.0, - 274.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 595.0, - 277.0, - 1030.0, - 277.0, - 1030.0, - 313.0, - 595.0, - 313.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1518.0, - 2212.0, - 1542.0, - 2212.0, - 1542.0, - 2244.0, - 1518.0, - 2244.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 16, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 114, - 1073, - 1518, - 1073, - 1518, - 2133, - 114, - 2133 - ], - "score": 0.983, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on businesses persuading people that want and need trivial products; mass culture promotes There will be appropriate analysis/evaluation of two ways eg the extent to which mass
4-7culture can educate and inform about important social issues. Answers in this band will show a basic to reasonable knowledge and understanding of one or two ways in which mass culture prevents social change. people less likely to challenge those in power.
1-3There will be some analysis/evaluation. Answers in this band will show limited knowledge and understanding of one or two ways in which mass culture prevents social change. There will be limited application of material from the item. Some material may be at a tangent to the question, eg there may be some drift into descriptive accounts of mass culture. There will be limited or no analysis/evaluation.
" - }, - { - "category_id": 5, - "poly": [ - 113, - 446, - 1517, - 446, - 1517, - 531, - 113, - 531 - ], - "score": 0.965, - "html": "
QuMarking guidanceTotal marks
" - }, - { - "category_id": 5, - "poly": [ - 112, - 562, - 1516, - 562, - 1516, - 665, - 112, - 665 - ], - "score": 0.965, - "html": "
02Applying material from Item A, analyse two ways in which mass culture may prevent social change.10
" - }, - { - "category_id": 5, - "poly": [ - 119, - 235, - 1510, - 235, - 1510, - 382, - 119, - 382 - ], - "score": 0.958, - "html": "
Sources may include the following or other relevant ones:
Bourdieu; Bradley; Carter and Coleman; Giddens and Diamond; Goldthorpe; Lash and Urry;
Mackintosh and Mooney; Marx; McKenzie et al; Murray; Palkulski and Waters; Roberts; Saunders;
Savage;Scott;Skeggs.
" - }, - { - "category_id": 2, - "poly": [ - 658, - 99, - 1539, - 99, - 1539, - 136, - 658, - 136 - ], - "score": 0.885 - }, - { - "category_id": 0, - "poly": [ - 759, - 750, - 860, - 750, - 860, - 785, - 759, - 785 - ], - "score": 0.814 - }, - { - "category_id": 2, - "poly": [ - 114, - 2215, - 134, - 2215, - 134, - 2239, - 114, - 2239 - ], - "score": 0.803 - }, - { - "category_id": 1, - "poly": [ - 120, - 962, - 677, - 962, - 677, - 1000, - 120, - 1000 - ], - "score": 0.781 - }, - { - "category_id": 1, - "poly": [ - 115, - 821, - 1452, - 821, - 1452, - 929, - 115, - 929 - ], - "score": 0.66 - }, - { - "category_id": 15, - "poly": [ - 660.0, - 103.0, - 1536.0, - 103.0, - 1536.0, - 132.0, - 660.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 759.0, - 753.0, - 862.0, - 753.0, - 862.0, - 784.0, - 759.0, - 784.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 2214.0, - 136.0, - 2214.0, - 136.0, - 2242.0, - 115.0, - 2242.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 122.0, - 965.0, - 675.0, - 965.0, - 675.0, - 997.0, - 122.0, - 997.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 821.0, - 1432.0, - 821.0, - 1432.0, - 860.0, - 119.0, - 860.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 860.0, - 1300.0, - 860.0, - 1300.0, - 896.0, - 119.0, - 896.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 898.0, - 810.0, - 898.0, - 810.0, - 929.0, - 120.0, - 929.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 17, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 114, - 1060, - 1517, - 1060, - 1517, - 2150, - 114, - 2150 - ], - "score": 0.983, - "html": "
MarksLevel Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on feminist views on how the socialisation process reinforces patriarchy. Sophisticated understanding of the question and of the presented material will be shown. Appropriate material will be applied accurately and with sensitivity to the issues raised by the question. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for example through comparing different theoretical perspectives on socialisation.Analysis wil
13-16show clear explanation. Appropriate conclusions will be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. Application of material is largely explicitly relevant to the question, though some material maybeinadequatelyfocused. Some limited explicit evaluation, eg discussion of different definitions of types of feminist
9-12presentedmaterial. Answers in this band will show largely accurate knowledge but limited range and depth, eg broadly accurate, if basic, account of some feminist views onhowthe socialisationprocess reinforces patriarchy. Understands some limited but significant aspects of the question; superficial understanding of the presented material.
" - }, - { - "category_id": 5, - "poly": [ - 112, - 551, - 1510, - 551, - 1510, - 654, - 112, - 654 - ], - "score": 0.954, - "html": "
03Applying material from Item B and your knowledge, evaluate feminist views of 20 the extent to which the socialisation process reinforces patriarchy.
" - }, - { - "category_id": 5, - "poly": [ - 115, - 428, - 1512, - 428, - 1512, - 519, - 115, - 519 - ], - "score": 0.937, - "html": "
QuMarking guidanceTotal marks
" - }, - { - "category_id": 5, - "poly": [ - 118, - 231, - 1519, - 231, - 1519, - 315, - 118, - 315 - ], - "score": 0.918, - "html": "
0No relevant points.
" - }, - { - "category_id": 2, - "poly": [ - 657, - 99, - 1539, - 99, - 1539, - 137, - 657, - 137 - ], - "score": 0.845 - }, - { - "category_id": 2, - "poly": [ - 1520, - 2214, - 1538, - 2214, - 1538, - 2237, - 1520, - 2237 - ], - "score": 0.721 - }, - { - "category_id": 5, - "poly": [ - 118, - 350, - 1514, - 350, - 1514, - 423, - 118, - 423 - ], - "score": 0.663, - "html": "
Sources may include the following or other relevant ones:
Adorno; Bourdieu; Giddens; Gramsci; Leavis; Livingstone; MacDonald; Marcuse; Strinati.
" - }, - { - "category_id": 0, - "poly": [ - 758, - 736, - 858, - 736, - 858, - 772, - 758, - 772 - ], - "score": 0.646 - }, - { - "category_id": 1, - "poly": [ - 116, - 807, - 1408, - 807, - 1408, - 882, - 116, - 882 - ], - "score": 0.6 - }, - { - "category_id": 1, - "poly": [ - 121, - 914, - 1448, - 914, - 1448, - 988, - 121, - 988 - ], - "score": 0.449 - }, - { - "category_id": 2, - "poly": [ - 1520, - 2214, - 1538, - 2214, - 1538, - 2237, - 1520, - 2237 - ], - "score": 0.351 - }, - { - "category_id": 6, - "poly": [ - 758, - 736, - 858, - 736, - 858, - 772, - 758, - 772 - ], - "score": 0.276 - }, - { - "category_id": 5, - "poly": [ - 113, - 430, - 1488, - 430, - 1488, - 519, - 113, - 519 - ], - "score": 0.146, - "html": "
QuMarking guidanceTotal marks
" - }, - { - "category_id": 15, - "poly": [ - 659.0, - 100.0, - 1538.0, - 100.0, - 1538.0, - 134.0, - 659.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 2213.0, - 1542.0, - 2213.0, - 1542.0, - 2244.0, - 1517.0, - 2244.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 757.0, - 738.0, - 860.0, - 738.0, - 860.0, - 773.0, - 757.0, - 773.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 810.0, - 1399.0, - 810.0, - 1399.0, - 847.0, - 120.0, - 847.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 846.0, - 1358.0, - 846.0, - 1358.0, - 886.0, - 118.0, - 886.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 914.0, - 1450.0, - 914.0, - 1450.0, - 954.0, - 119.0, - 954.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 954.0, - 835.0, - 954.0, - 835.0, - 988.0, - 120.0, - 988.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 2213.0, - 1542.0, - 2213.0, - 1542.0, - 2244.0, - 1517.0, - 2244.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 757.0, - 738.0, - 860.0, - 738.0, - 860.0, - 773.0, - 757.0, - 773.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 18, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 114, - 237, - 1517, - 237, - 1517, - 1141, - 114, - 1141 - ], - "score": 0.981, - "html": "
Applying listed material from the general topic area but with limited regard for its relevance to the issues raised by the question, or applying a narrow range of more relevant material. Evaluation will take the form of juxtaposition of competing positions or to one or two isolated
5-8simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question. Very limited or no evaluation. Attempts at analysis, if any, are thin and disjointed.
1-4Answers in this band will show very limited knowledge, eg one or two very insubstantial points about socialisation in general. Very little/no understanding of the question and of the presentedmaterial.
0No analysis or evaluation. No relevant points.
" - }, - { - "category_id": 1, - "poly": [ - 120, - 1326, - 1467, - 1326, - 1467, - 1469, - 120, - 1469 - ], - "score": 0.974 - }, - { - "category_id": 1, - "poly": [ - 120, - 1257, - 878, - 1257, - 878, - 1294, - 120, - 1294 - ], - "score": 0.932 - }, - { - "category_id": 1, - "poly": [ - 119, - 1599, - 1457, - 1599, - 1457, - 1672, - 119, - 1672 - ], - "score": 0.921 - }, - { - "category_id": 0, - "poly": [ - 119, - 1186, - 386, - 1186, - 386, - 1223, - 119, - 1223 - ], - "score": 0.914 - }, - { - "category_id": 0, - "poly": [ - 119, - 1528, - 964, - 1528, - 964, - 1567, - 119, - 1567 - ], - "score": 0.894 - }, - { - "category_id": 2, - "poly": [ - 658, - 100, - 1538, - 100, - 1538, - 136, - 658, - 136 - ], - "score": 0.883 - }, - { - "category_id": 2, - "poly": [ - 115, - 2215, - 133, - 2215, - 133, - 2238, - 115, - 2238 - ], - "score": 0.803 - }, - { - "category_id": 15, - "poly": [ - 121.0, - 1331.0, - 1399.0, - 1331.0, - 1399.0, - 1364.0, - 121.0, - 1364.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 1364.0, - 1428.0, - 1364.0, - 1428.0, - 1398.0, - 120.0, - 1398.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1399.0, - 1466.0, - 1399.0, - 1466.0, - 1434.0, - 117.0, - 1434.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 1435.0, - 566.0, - 1435.0, - 566.0, - 1469.0, - 120.0, - 1469.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 121.0, - 1258.0, - 878.0, - 1258.0, - 878.0, - 1295.0, - 121.0, - 1295.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 121.0, - 1602.0, - 1450.0, - 1602.0, - 1450.0, - 1635.0, - 121.0, - 1635.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 1635.0, - 1371.0, - 1635.0, - 1371.0, - 1672.0, - 118.0, - 1672.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 121.0, - 1190.0, - 385.0, - 1190.0, - 385.0, - 1219.0, - 121.0, - 1219.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 123.0, - 1533.0, - 965.0, - 1533.0, - 965.0, - 1564.0, - 123.0, - 1564.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 659.0, - 100.0, - 1537.0, - 100.0, - 1537.0, - 134.0, - 659.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 2215.0, - 136.0, - 2215.0, - 136.0, - 2243.0, - 114.0, - 2243.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 19, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 114, - 585, - 1517, - 585, - 1517, - 1769, - 114, - 1769 - ], - "score": 0.981, - "html": "
MarksLevel Descriptors
8-10withinfamiliesandhouseholds. There will be two applications of relevant material, eg the increase in women remaining childfree influencing women's involvement in the labour market; how smaller families may
4-7Answers in this band will show a reasonable to good knowledge and understanding of one and relationshipswithinfamilies andhouseholds. There will be one or two applications of relevant material, eg changes in division of domestic labour. There will be some basic analysis.
1-3question or the material. There will be limited focus on the question, eg a drift into discussion of reasons for changing childbearing patterns. There will be little or no analysis.
0No relevant points.
" - }, - { - "category_id": 5, - "poly": [ - 113, - 312, - 1517, - 312, - 1517, - 400, - 113, - 400 - ], - "score": 0.96, - "html": "
QuMarking guidanceTotal marks
" - }, - { - "category_id": 1, - "poly": [ - 172, - 1877, - 960, - 1877, - 960, - 2136, - 172, - 2136 - ], - "score": 0.957 - }, - { - "category_id": 5, - "poly": [ - 111, - 462, - 1514, - 462, - 1514, - 564, - 111, - 564 - ], - "score": 0.947, - "html": "
0410 influenced gender roles and relationships within families and households.
" - }, - { - "category_id": 0, - "poly": [ - 123, - 1803, - 390, - 1803, - 390, - 1835, - 123, - 1835 - ], - "score": 0.909 - }, - { - "category_id": 1, - "poly": [ - 125, - 1838, - 984, - 1838, - 984, - 1874, - 125, - 1874 - ], - "score": 0.908 - }, - { - "category_id": 2, - "poly": [ - 657, - 99, - 1540, - 99, - 1540, - 137, - 657, - 137 - ], - "score": 0.882 - }, - { - "category_id": 6, - "poly": [ - 554, - 258, - 1074, - 258, - 1074, - 296, - 554, - 296 - ], - "score": 0.824 - }, - { - "category_id": 2, - "poly": [ - 1519, - 2215, - 1539, - 2215, - 1539, - 2238, - 1519, - 2238 - ], - "score": 0.762 - }, - { - "category_id": 2, - "poly": [ - 1519, - 2215, - 1539, - 2215, - 1539, - 2238, - 1519, - 2238 - ], - "score": 0.322 - }, - { - "category_id": 0, - "poly": [ - 554, - 258, - 1074, - 258, - 1074, - 296, - 554, - 296 - ], - "score": 0.126 - }, - { - "category_id": 15, - "poly": [ - 223.0, - 1873.0, - 448.0, - 1873.0, - 448.0, - 1913.0, - 223.0, - 1913.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 225.0, - 1918.0, - 490.0, - 1918.0, - 490.0, - 1947.0, - 225.0, - 1947.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 224.0, - 1953.0, - 955.0, - 1953.0, - 955.0, - 1982.0, - 224.0, - 1982.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 223.0, - 1990.0, - 637.0, - 1990.0, - 637.0, - 2023.0, - 223.0, - 2023.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 223.0, - 2027.0, - 635.0, - 2027.0, - 635.0, - 2058.0, - 223.0, - 2058.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 224.0, - 2065.0, - 442.0, - 2065.0, - 442.0, - 2094.0, - 224.0, - 2094.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 225.0, - 2102.0, - 495.0, - 2102.0, - 495.0, - 2132.0, - 225.0, - 2132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 125.0, - 1806.0, - 389.0, - 1806.0, - 389.0, - 1834.0, - 125.0, - 1834.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 124.0, - 1839.0, - 983.0, - 1839.0, - 983.0, - 1873.0, - 124.0, - 1873.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 659.0, - 100.0, - 1538.0, - 100.0, - 1538.0, - 134.0, - 659.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 553.0, - 261.0, - 1072.0, - 261.0, - 1072.0, - 294.0, - 553.0, - 294.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1519.0, - 2215.0, - 1540.0, - 2215.0, - 1540.0, - 2243.0, - 1519.0, - 2243.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1519.0, - 2215.0, - 1540.0, - 2215.0, - 1540.0, - 2243.0, - 1519.0, - 2243.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 553.0, - 261.0, - 1072.0, - 261.0, - 1072.0, - 294.0, - 553.0, - 294.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 20, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 113, - 1038, - 1517, - 1038, - 1517, - 2173, - 113, - 2173 - ], - "score": 0.983, - "html": "
MarksLevelDescriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on There will be two developed applications of material from the item, eg increase in migration may mean families live in different parts of the world; freedom of choice creating more complex family and household structures, such as divorce extended families, negotiated families.
4-7and choice over lifestyles/personal relationships in postmodern society. Answers in this band will show a basic to reasonable knowledge and understanding of one partners. Therewill besome analysis/evaluation.
1-3Answers in this band will show limited knowledge and understanding of one or two ways in which globalisation may influence families and households. There will be limited application of material from the item. Some material may be at a There will be limited or no analysis/evaluation.
0No relevant points.
" - }, - { - "category_id": 5, - "poly": [ - 119, - 444, - 1515, - 444, - 1515, - 532, - 119, - 532 - ], - "score": 0.966, - "html": "
QuTotal Marking guidance marks
" - }, - { - "category_id": 5, - "poly": [ - 112, - 597, - 1515, - 597, - 1515, - 698, - 112, - 698 - ], - "score": 0.964, - "html": "
05Applying material from Item C, analyse two ways in which globalisation may influencefamiliesandhouseholds.10
" - }, - { - "category_id": 5, - "poly": [ - 115, - 270, - 1508, - 270, - 1508, - 383, - 115, - 383 - ], - "score": 0.943, - "html": "
Sources may include the following or other relevant ones: Boulton; Braun, Vincent and Ball; Dex
and Warde; Duncome and Marsden; Ganley and Schechter; Gershuny; Laurie and Gershuny;
McRobbie; Pahl; Wardeand Hetherington.
" - }, - { - "category_id": 2, - "poly": [ - 657, - 99, - 1539, - 99, - 1539, - 137, - 657, - 137 - ], - "score": 0.878 - }, - { - "category_id": 2, - "poly": [ - 117, - 2214, - 146, - 2214, - 146, - 2239, - 117, - 2239 - ], - "score": 0.852 - }, - { - "category_id": 5, - "poly": [ - 112, - 728, - 1503, - 728, - 1503, - 1011, - 112, - 1011 - ], - "score": 0.729, - "html": "
ItemC
Globalisation involves the growing inter-connectedness between countries through increased travel opportunities. It enables more freedom of choice in terms of lifestyles and personal relationships.
Globalisation may influence families and households.
" - }, - { - "category_id": 6, - "poly": [ - 758, - 745, - 858, - 745, - 858, - 782, - 758, - 782 - ], - "score": 0.397 - }, - { - "category_id": 0, - "poly": [ - 758, - 745, - 858, - 745, - 858, - 782, - 758, - 782 - ], - "score": 0.117 - }, - { - "category_id": 15, - "poly": [ - 659.0, - 100.0, - 1538.0, - 100.0, - 1538.0, - 134.0, - 659.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 2213.0, - 150.0, - 2213.0, - 150.0, - 2245.0, - 112.0, - 2245.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 757.0, - 746.0, - 858.0, - 746.0, - 858.0, - 782.0, - 757.0, - 782.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 757.0, - 746.0, - 858.0, - 746.0, - 858.0, - 782.0, - 757.0, - 782.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 21, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 114, - 1057, - 1519, - 1057, - 1519, - 2186, - 114, - 2186 - ], - "score": 0.983, - "html": "
MarksLevel Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of of the question and of the presented material will be shown. Appropriate material will be applied accurately and with sensitivity to the issues raised by the question. Analysisandevaluationwillbeexplicitandrelevant.Evaluationmaybedeveloped,for example through a discussion of the extent to which society hasbecome more child conclusions will be drawn.
13-16Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. Application of material is largely explicitly relevant to the question, though some material may be inadequately focused. Some limited explicit evaluation, eg discussion of inequalities between children based on
9-12some of the presented material. Answers in this band will show largely accurate knowledge but limited range and depth, eg more child-centred. Understands some limited but significant aspects of the question; superficial understanding of the presented material.
" - }, - { - "category_id": 5, - "poly": [ - 110, - 544, - 1513, - 544, - 1513, - 643, - 110, - 643 - ], - "score": 0.958, - "html": "
06Applying material from Item D and your knowledge, evaluate the view that UK society has become more child-centred.20
" - }, - { - "category_id": 5, - "poly": [ - 118, - 426, - 1502, - 426, - 1502, - 513, - 118, - 513 - ], - "score": 0.949, - "html": "
QuMarking guidanceTotal marks
" - }, - { - "category_id": 2, - "poly": [ - 658, - 99, - 1539, - 99, - 1539, - 136, - 658, - 136 - ], - "score": 0.877 - }, - { - "category_id": 5, - "poly": [ - 113, - 675, - 1499, - 675, - 1499, - 1029, - 113, - 1029 - ], - "score": 0.872, - "html": "
ItemD
Some sociologists argue that UK society has become more child-centred. Children today are more privileged than they have ever been. There are a large range of laws and policies in place to protect them and there is an increasing emphasis now placed on children's rights.
However, other sociologists argue that the extent of child-centredness is exaggerated, and that
childhood canbe a negative experience for some children.
" - }, - { - "category_id": 5, - "poly": [ - 120, - 270, - 1492, - 270, - 1492, - 380, - 120, - 380 - ], - "score": 0.85, - "html": "
Sources may include the following or other relevant ones: Beck; Chambers; Cheal; Ehrenreich
and Hochschild; Einasdottir; Eriksen; Giddens; Morgan; Shutes; Smart; Stacey; Vertovec; Weeks; Weston.
" - }, - { - "category_id": 2, - "poly": [ - 1510, - 2215, - 1536, - 2215, - 1536, - 2239, - 1510, - 2239 - ], - "score": 0.843 - }, - { - "category_id": 6, - "poly": [ - 758, - 691, - 858, - 691, - 858, - 728, - 758, - 728 - ], - "score": 0.259 - }, - { - "category_id": 0, - "poly": [ - 758, - 691, - 858, - 691, - 858, - 728, - 758, - 728 - ], - "score": 0.133 - }, - { - "category_id": 15, - "poly": [ - 660.0, - 103.0, - 1536.0, - 103.0, - 1536.0, - 132.0, - 660.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1506.0, - 2213.0, - 1542.0, - 2213.0, - 1542.0, - 2243.0, - 1506.0, - 2243.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 758.0, - 695.0, - 858.0, - 695.0, - 858.0, - 727.0, - 758.0, - 727.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 758.0, - 695.0, - 858.0, - 695.0, - 858.0, - 727.0, - 758.0, - 727.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 22, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 114, - 232, - 1516, - 232, - 1516, - 1180, - 114, - 1180 - ], - "score": 0.981, - "html": "
Applying listed material from the general topic area but with limited regard for its relevance a o u e e o s a ssi Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
5-8Answers in this band will show limited undeveloped knowledge, eg two or three insubstantial points about childhood in general. Understands only limited aspects of the question; simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question.
1-4points about childhood in general. Very little/no understanding of the question and of the presented material. Significant errors and/or omissions in application of material.
0No analysis or evaluation. No relevant points.
" - }, - { - "category_id": 1, - "poly": [ - 121, - 1293, - 1484, - 1293, - 1484, - 1512, - 121, - 1512 - ], - "score": 0.964 - }, - { - "category_id": 0, - "poly": [ - 120, - 1222, - 385, - 1222, - 385, - 1259, - 120, - 1259 - ], - "score": 0.914 - }, - { - "category_id": 2, - "poly": [ - 658, - 100, - 1539, - 100, - 1539, - 136, - 658, - 136 - ], - "score": 0.881 - }, - { - "category_id": 1, - "poly": [ - 125, - 1594, - 1476, - 1594, - 1476, - 1702, - 125, - 1702 - ], - "score": 0.878 - }, - { - "category_id": 2, - "poly": [ - 118, - 2215, - 145, - 2215, - 145, - 2238, - 118, - 2238 - ], - "score": 0.853 - }, - { - "category_id": 15, - "poly": [ - 120.0, - 1297.0, - 1478.0, - 1297.0, - 1478.0, - 1333.0, - 120.0, - 1333.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 1334.0, - 1415.0, - 1334.0, - 1415.0, - 1370.0, - 120.0, - 1370.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 1370.0, - 1467.0, - 1370.0, - 1467.0, - 1405.0, - 118.0, - 1405.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 1407.0, - 1482.0, - 1407.0, - 1482.0, - 1442.0, - 118.0, - 1442.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 1442.0, - 1479.0, - 1442.0, - 1479.0, - 1478.0, - 120.0, - 1478.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1476.0, - 470.0, - 1476.0, - 470.0, - 1515.0, - 117.0, - 1515.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 121.0, - 1227.0, - 385.0, - 1227.0, - 385.0, - 1257.0, - 121.0, - 1257.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 658.0, - 100.0, - 1537.0, - 100.0, - 1537.0, - 134.0, - 658.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 1599.0, - 1396.0, - 1599.0, - 1396.0, - 1630.0, - 134.0, - 1630.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 132.0, - 1632.0, - 1466.0, - 1632.0, - 1466.0, - 1668.0, - 132.0, - 1668.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 131.0, - 1668.0, - 447.0, - 1668.0, - 447.0, - 1703.0, - 131.0, - 1703.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 2213.0, - 149.0, - 2213.0, - 149.0, - 2245.0, - 113.0, - 2245.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 23, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 114, - 599, - 1518, - 599, - 1518, - 1693, - 114, - 1693 - ], - "score": 0.981, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two reasons for differences between social classes in taking advantage of consumer choice in health care. There will be two applications of relevant material, eg social classes have different levels of access to the information needed to make informed choices; working class may place greater trust in the advice of professionals and not seek alternative views. There will be appropriate analysis, eg of different choices available within health care.
4-7Answers in this band will show a reasonable to good knowledge and understanding of one or two reasons for differences between social classes in taking advantage of consumer choice in health care. There will be one or two applications of relevant material, eg higher classes are able to afford private health care.
1-3There will be some basic analysis. question or the material. differencesinhealthcarechoices.
0There will be little or no analysis No relevant points.
" - }, - { - "category_id": 5, - "poly": [ - 113, - 312, - 1515, - 312, - 1515, - 400, - 113, - 400 - ], - "score": 0.963, - "html": "
QuMarking guidanceTotal marks
" - }, - { - "category_id": 5, - "poly": [ - 111, - 462, - 1513, - 462, - 1513, - 573, - 111, - 573 - ], - "score": 0.948, - "html": "
07Outline and explain two reasons for social class differences in consumer choices ofhealthcare.10
" - }, - { - "category_id": 1, - "poly": [ - 123, - 1807, - 984, - 1807, - 984, - 1846, - 123, - 1846 - ], - "score": 0.926 - }, - { - "category_id": 0, - "poly": [ - 122, - 1736, - 390, - 1736, - 390, - 1774, - 122, - 1774 - ], - "score": 0.911 - }, - { - "category_id": 1, - "poly": [ - 122, - 1879, - 1485, - 1879, - 1485, - 2141, - 122, - 2141 - ], - "score": 0.903 - }, - { - "category_id": 2, - "poly": [ - 656, - 99, - 1539, - 99, - 1539, - 137, - 656, - 137 - ], - "score": 0.884 - }, - { - "category_id": 2, - "poly": [ - 1510, - 2215, - 1538, - 2215, - 1538, - 2238, - 1510, - 2238 - ], - "score": 0.859 - }, - { - "category_id": 0, - "poly": [ - 690, - 258, - 935, - 258, - 935, - 295, - 690, - 295 - ], - "score": 0.744 - }, - { - "category_id": 6, - "poly": [ - 690, - 258, - 935, - 258, - 935, - 295, - 690, - 295 - ], - "score": 0.195 - }, - { - "category_id": 15, - "poly": [ - 126.0, - 1812.0, - 982.0, - 1812.0, - 982.0, - 1843.0, - 126.0, - 1843.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 125.0, - 1741.0, - 387.0, - 1741.0, - 387.0, - 1771.0, - 125.0, - 1771.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 127.0, - 1884.0, - 1017.0, - 1884.0, - 1017.0, - 1915.0, - 127.0, - 1915.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 127.0, - 1923.0, - 1108.0, - 1923.0, - 1108.0, - 1953.0, - 127.0, - 1953.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 125.0, - 1958.0, - 1076.0, - 1958.0, - 1076.0, - 1994.0, - 125.0, - 1994.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 122.0, - 1992.0, - 744.0, - 1992.0, - 744.0, - 2029.0, - 122.0, - 2029.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 125.0, - 2034.0, - 694.0, - 2034.0, - 694.0, - 2065.0, - 125.0, - 2065.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 2068.0, - 1477.0, - 2068.0, - 1477.0, - 2104.0, - 134.0, - 2104.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 153.0, - 2102.0, - 262.0, - 2102.0, - 262.0, - 2139.0, - 153.0, - 2139.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 658.0, - 100.0, - 1538.0, - 100.0, - 1538.0, - 134.0, - 658.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1506.0, - 2213.0, - 1542.0, - 2213.0, - 1542.0, - 2244.0, - 1506.0, - 2244.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 693.0, - 262.0, - 934.0, - 262.0, - 934.0, - 293.0, - 693.0, - 293.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 693.0, - 262.0, - 934.0, - 262.0, - 934.0, - 293.0, - 693.0, - 293.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 24, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 113, - 1239, - 1516, - 1239, - 1516, - 2181, - 113, - 2181 - ], - "score": 0.982, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on accessible healthcare services in deprived areas; some groups may think they should not seek healthcare until their condition is serious. There will be appropriate analysis/evaluation of two ways eg differences between minority ethnic groups.
4-7or two reasons for inequalities between ethnic groups in their health chances. There will be some successful application of material from the item, eg low income associatedwithpoordiet and unhealthylifestyle. There will be some analysis/evaluation.
1-3Answers in this band will show limited knowledge and understanding of one or two reasons for inequalities between ethnic groups in their health chances. There will be limited application of material from the item. Some material may be at a
" - }, - { - "category_id": 5, - "poly": [ - 112, - 718, - 1512, - 718, - 1512, - 822, - 112, - 822 - ], - "score": 0.966, - "html": "
08Applying material from Item E, analyse two reasons for inequalities between ethnic groups in their health chances.10
" - }, - { - "category_id": 5, - "poly": [ - 108, - 568, - 1512, - 568, - 1512, - 655, - 108, - 655 - ], - "score": 0.959, - "html": "
QuTotal Marking guidance marks
" - }, - { - "category_id": 1, - "poly": [ - 122, - 251, - 1141, - 251, - 1141, - 324, - 122, - 324 - ], - "score": 0.936 - }, - { - "category_id": 1, - "poly": [ - 118, - 977, - 1492, - 977, - 1492, - 1087, - 118, - 1087 - ], - "score": 0.927 - }, - { - "category_id": 1, - "poly": [ - 122, - 1118, - 1082, - 1118, - 1082, - 1157, - 122, - 1157 - ], - "score": 0.882 - }, - { - "category_id": 2, - "poly": [ - 657, - 99, - 1539, - 99, - 1539, - 137, - 657, - 137 - ], - "score": 0.878 - }, - { - "category_id": 2, - "poly": [ - 117, - 2214, - 145, - 2214, - 145, - 2238, - 117, - 2238 - ], - "score": 0.852 - }, - { - "category_id": 0, - "poly": [ - 121, - 346, - 968, - 346, - 968, - 385, - 121, - 385 - ], - "score": 0.813 - }, - { - "category_id": 1, - "poly": [ - 120, - 416, - 1451, - 416, - 1451, - 492, - 120, - 492 - ], - "score": 0.808 - }, - { - "category_id": 0, - "poly": [ - 759, - 907, - 857, - 907, - 857, - 942, - 759, - 942 - ], - "score": 0.774 - }, - { - "category_id": 6, - "poly": [ - 759, - 907, - 857, - 907, - 857, - 942, - 759, - 942 - ], - "score": 0.133 - }, - { - "category_id": 15, - "poly": [ - 131.0, - 254.0, - 771.0, - 254.0, - 771.0, - 284.0, - 131.0, - 284.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 290.0, - 1141.0, - 290.0, - 1141.0, - 322.0, - 140.0, - 322.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 122.0, - 981.0, - 1468.0, - 981.0, - 1468.0, - 1017.0, - 122.0, - 1017.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 1017.0, - 1484.0, - 1017.0, - 1484.0, - 1053.0, - 119.0, - 1053.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1050.0, - 923.0, - 1050.0, - 923.0, - 1088.0, - 117.0, - 1088.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 121.0, - 1120.0, - 1083.0, - 1120.0, - 1083.0, - 1155.0, - 121.0, - 1155.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 659.0, - 100.0, - 1538.0, - 100.0, - 1538.0, - 134.0, - 659.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 2213.0, - 150.0, - 2213.0, - 150.0, - 2242.0, - 113.0, - 2242.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 126.0, - 351.0, - 968.0, - 351.0, - 968.0, - 382.0, - 126.0, - 382.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 124.0, - 417.0, - 1450.0, - 417.0, - 1450.0, - 453.0, - 124.0, - 453.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 122.0, - 454.0, - 963.0, - 454.0, - 963.0, - 490.0, - 122.0, - 490.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 760.0, - 910.0, - 859.0, - 910.0, - 859.0, - 941.0, - 760.0, - 941.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 760.0, - 910.0, - 859.0, - 910.0, - 859.0, - 941.0, - 760.0, - 941.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 25, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 117, - 235, - 1517, - 235, - 1517, - 427, - 117, - 427 - ], - "score": 0.932, - "html": "
There will be limited or no analysis/evaluation.
ONo relevantpoints.
" - }, - { - "category_id": 2, - "poly": [ - 657, - 98, - 1540, - 98, - 1540, - 137, - 657, - 137 - ], - "score": 0.869 - }, - { - "category_id": 2, - "poly": [ - 1511, - 2215, - 1538, - 2215, - 1538, - 2238, - 1511, - 2238 - ], - "score": 0.845 - }, - { - "category_id": 0, - "poly": [ - 127, - 460, - 977, - 460, - 977, - 499, - 127, - 499 - ], - "score": 0.388 - }, - { - "category_id": 5, - "poly": [ - 123, - 460, - 1474, - 460, - 1474, - 604, - 123, - 604 - ], - "score": 0.351, - "html": "
Sources may include the following or other relevant ones:
Balarajan; Davey Smith et al; Moriarty; Nazroo; Nettleton; Parry et al; Sproston and Mindell; Wilkinson.
" - }, - { - "category_id": 1, - "poly": [ - 127, - 529, - 1377, - 529, - 1377, - 602, - 127, - 602 - ], - "score": 0.304 - }, - { - "category_id": 5, - "poly": [ - 118, - 235, - 1519, - 235, - 1519, - 428, - 118, - 428 - ], - "score": 0.167, - "html": "
There will be limited or no analysis/evaluation.
ONorelevantpoints.
" - }, - { - "category_id": 15, - "poly": [ - 661.0, - 102.0, - 1537.0, - 102.0, - 1537.0, - 133.0, - 661.0, - 133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1506.0, - 2213.0, - 1542.0, - 2213.0, - 1542.0, - 2244.0, - 1506.0, - 2244.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 465.0, - 977.0, - 465.0, - 977.0, - 496.0, - 133.0, - 496.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 534.0, - 1372.0, - 534.0, - 1372.0, - 568.0, - 135.0, - 568.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 130.0, - 565.0, - 277.0, - 565.0, - 277.0, - 605.0, - 130.0, - 605.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 26, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 113, - 886, - 1516, - 886, - 1516, - 2171, - 113, - 2171 - ], - "score": 0.982, - "html": "
MarksLevelDescriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on sociological explanations of the differences in rates of mental illness between social groups. Sophisticated understanding of the question and of the presented materialwillbeshown. Appropriate material will be applied accurately and with sensitivity to the issues raised by the question. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for example through a debate between social realist and social constructionist models of
13-16Appropriate conclusionswill be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presented material. maybe inadequatelyfocused. presented material.
9-12Answers in this band will show largely accurate knowledge but limited range and depth, eg broadly accurate, if basic, account of labelling approaches to mental illness applied to different social groups. Understands some limited but significant aspects of the question; superficial understanding of the presented material. Applying listed material from the general topic area but with limited regard for its relevance o u e 'ob p ss
" - }, - { - "category_id": 5, - "poly": [ - 109, - 349, - 1515, - 349, - 1515, - 454, - 109, - 454 - ], - "score": 0.964, - "html": "
09Applying material from Item F and your knowledge, evaluate sociological20
" - }, - { - "category_id": 5, - "poly": [ - 110, - 232, - 1517, - 232, - 1517, - 319, - 110, - 319 - ], - "score": 0.961, - "html": "
QuMarking guidanceTotal marks
" - }, - { - "category_id": 2, - "poly": [ - 117, - 2214, - 146, - 2214, - 146, - 2239, - 117, - 2239 - ], - "score": 0.85 - }, - { - "category_id": 2, - "poly": [ - 657, - 99, - 1539, - 99, - 1539, - 137, - 657, - 137 - ], - "score": 0.833 - }, - { - "category_id": 1, - "poly": [ - 117, - 750, - 1423, - 750, - 1423, - 825, - 117, - 825 - ], - "score": 0.682 - }, - { - "category_id": 0, - "poly": [ - 759, - 537, - 855, - 537, - 855, - 573, - 759, - 573 - ], - "score": 0.475 - }, - { - "category_id": 6, - "poly": [ - 759, - 537, - 855, - 537, - 855, - 573, - 759, - 573 - ], - "score": 0.424 - }, - { - "category_id": 1, - "poly": [ - 113, - 609, - 1462, - 609, - 1462, - 716, - 113, - 716 - ], - "score": 0.385 - }, - { - "category_id": 15, - "poly": [ - 112.0, - 2213.0, - 150.0, - 2213.0, - 150.0, - 2245.0, - 112.0, - 2245.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 659.0, - 100.0, - 1538.0, - 100.0, - 1538.0, - 134.0, - 659.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 751.0, - 1417.0, - 751.0, - 1417.0, - 790.0, - 120.0, - 790.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 121.0, - 790.0, - 821.0, - 790.0, - 821.0, - 824.0, - 121.0, - 824.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 759.0, - 539.0, - 858.0, - 539.0, - 858.0, - 574.0, - 759.0, - 574.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 759.0, - 539.0, - 858.0, - 539.0, - 858.0, - 574.0, - 759.0, - 574.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 611.0, - 1440.0, - 611.0, - 1440.0, - 646.0, - 120.0, - 646.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 646.0, - 1418.0, - 646.0, - 1418.0, - 685.0, - 117.0, - 685.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 684.0, - 896.0, - 684.0, - 896.0, - 719.0, - 119.0, - 719.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 27, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 114, - 235, - 1519, - 235, - 1519, - 1073, - 114, - 1073 - ], - "score": 0.981, - "html": "
Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
5-8Answers in this band will show limited undeveloped knowledge, eg two or three insubstantial points about mental illness and different social groups. Understands only n o s s of the question.
1-4Answers in this band will show very limited knowledge, eg one or two very insubstantial points about mental illness in general. Very little/no understanding of the question and of the presented material. Significant errors and/or omissions in application of material. No analysis or evaluation.
0No relevant points.
" - }, - { - "category_id": 1, - "poly": [ - 120, - 1257, - 1464, - 1257, - 1464, - 1364, - 120, - 1364 - ], - "score": 0.971 - }, - { - "category_id": 1, - "poly": [ - 119, - 1492, - 1489, - 1492, - 1489, - 1600, - 119, - 1600 - ], - "score": 0.954 - }, - { - "category_id": 1, - "poly": [ - 120, - 1186, - 878, - 1186, - 878, - 1223, - 120, - 1223 - ], - "score": 0.931 - }, - { - "category_id": 0, - "poly": [ - 120, - 1115, - 386, - 1115, - 386, - 1153, - 120, - 1153 - ], - "score": 0.916 - }, - { - "category_id": 0, - "poly": [ - 119, - 1422, - 964, - 1422, - 964, - 1461, - 119, - 1461 - ], - "score": 0.896 - }, - { - "category_id": 2, - "poly": [ - 658, - 100, - 1539, - 100, - 1539, - 136, - 658, - 136 - ], - "score": 0.878 - }, - { - "category_id": 2, - "poly": [ - 1511, - 2215, - 1537, - 2215, - 1537, - 2237, - 1511, - 2237 - ], - "score": 0.847 - }, - { - "category_id": 15, - "poly": [ - 121.0, - 1257.0, - 1458.0, - 1257.0, - 1458.0, - 1293.0, - 121.0, - 1293.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 1294.0, - 1347.0, - 1294.0, - 1347.0, - 1330.0, - 120.0, - 1330.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 1323.0, - 1018.0, - 1323.0, - 1018.0, - 1370.0, - 115.0, - 1370.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 1496.0, - 1484.0, - 1496.0, - 1484.0, - 1530.0, - 120.0, - 1530.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 123.0, - 1533.0, - 1432.0, - 1533.0, - 1432.0, - 1564.0, - 123.0, - 1564.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 123.0, - 1569.0, - 449.0, - 1569.0, - 449.0, - 1600.0, - 123.0, - 1600.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 121.0, - 1187.0, - 878.0, - 1187.0, - 878.0, - 1224.0, - 121.0, - 1224.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 121.0, - 1120.0, - 385.0, - 1120.0, - 385.0, - 1150.0, - 121.0, - 1150.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 123.0, - 1427.0, - 965.0, - 1427.0, - 965.0, - 1458.0, - 123.0, - 1458.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 658.0, - 100.0, - 1537.0, - 100.0, - 1537.0, - 134.0, - 658.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1504.0, - 2212.0, - 1543.0, - 2212.0, - 1543.0, - 2246.0, - 1504.0, - 2246.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 28, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 119, - 605, - 1531, - 605, - 1531, - 1669, - 119, - 1669 - ], - "score": 0.962, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two ways in which government policies have affected the distribution of income in the UK. There will be two applications of relevant material, eg stopping/reducing benefits has led to more poverty; taxation policies have reduced income of some groups more than others.
4-7distribution of income in theUK. Answers in this band will show a reasonable to good knowledge and understanding of one or two ways in which government policies have affected the distribution of income in the UK. There will be one or two applications of relevant material, eg welfare state policies have not led to redistribution of income.
1-3There will be some basic analysis. question or the material. There will be limited focus on the question, eg a drift into discussion of poverty in general.
0There will be little or no analysis. No relevant points.
" - }, - { - "category_id": 5, - "poly": [ - 116, - 312, - 1520, - 312, - 1520, - 400, - 116, - 400 - ], - "score": 0.961, - "html": "
QuTotal Marking guidance marks
" - }, - { - "category_id": 5, - "poly": [ - 118, - 462, - 1517, - 462, - 1517, - 573, - 118, - 573 - ], - "score": 0.938, - "html": "
10Outline and explain two ways in which government policies have affected the distributionof income intheUK.10
" - }, - { - "category_id": 0, - "poly": [ - 141, - 1701, - 409, - 1701, - 409, - 1738, - 141, - 1738 - ], - "score": 0.905 - }, - { - "category_id": 2, - "poly": [ - 657, - 99, - 1539, - 99, - 1539, - 137, - 657, - 137 - ], - "score": 0.882 - }, - { - "category_id": 1, - "poly": [ - 145, - 1772, - 1002, - 1772, - 1002, - 1809, - 145, - 1809 - ], - "score": 0.879 - }, - { - "category_id": 1, - "poly": [ - 141, - 1811, - 1424, - 1811, - 1424, - 2034, - 141, - 2034 - ], - "score": 0.86 - }, - { - "category_id": 2, - "poly": [ - 118, - 2215, - 145, - 2215, - 145, - 2238, - 118, - 2238 - ], - "score": 0.853 - }, - { - "category_id": 6, - "poly": [ - 550, - 258, - 1087, - 258, - 1087, - 296, - 550, - 296 - ], - "score": 0.48 - }, - { - "category_id": 0, - "poly": [ - 550, - 258, - 1087, - 258, - 1087, - 296, - 550, - 296 - ], - "score": 0.363 - }, - { - "category_id": 5, - "poly": [ - 118, - 599, - 1531, - 599, - 1531, - 1663, - 118, - 1663 - ], - "score": 0.335, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two ways in which government policies have affected the distribution of income in the UK. There will be two applications of relevant material, eg stopping/reducing benefits has led to more poverty; taxation policies have reduced income of some groups more than others. There will be appropriate analysis, eg of the extent to which policies have affected the distribution of income in theUK.
4-7or two ways in which government policies have affected the distribution of income in the UK. There will be one or two applications of relevant material, eg welfare state policies have not led to redistribution of income. There will be some basic analysis.
1-3Answers in this band will show limited knowledge and little or no understanding of the question or the material. There will be limited focus on the question, eg a drift into discussion of poverty in general.
0There will be little or no analysis. No relevant points.
" - }, - { - "category_id": 5, - "poly": [ - 133, - 2045, - 1530, - 2045, - 1530, - 2117, - 133, - 2117 - ], - "score": 0.15, - "html": "
Sources may include the following or other relevant ones:
" - }, - { - "category_id": 1, - "poly": [ - 137, - 2044, - 992, - 2044, - 992, - 2115, - 137, - 2115 - ], - "score": 0.134 - }, - { - "category_id": 1, - "poly": [ - 550, - 258, - 1087, - 258, - 1087, - 296, - 550, - 296 - ], - "score": 0.13 - }, - { - "category_id": 5, - "poly": [ - 137, - 2044, - 992, - 2044, - 992, - 2115, - 137, - 2115 - ], - "score": 0.101, - "html": "
Sourcesmay include the following gorotherrelevantones:
" - }, - { - "category_id": 15, - "poly": [ - 144.0, - 1706.0, - 408.0, - 1706.0, - 408.0, - 1736.0, - 144.0, - 1736.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 659.0, - 100.0, - 1538.0, - 100.0, - 1538.0, - 134.0, - 659.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 145.0, - 1777.0, - 1000.0, - 1777.0, - 1000.0, - 1807.0, - 145.0, - 1807.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 1811.0, - 1091.0, - 1811.0, - 1091.0, - 1846.0, - 140.0, - 1846.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 143.0, - 1852.0, - 1140.0, - 1852.0, - 1140.0, - 1884.0, - 143.0, - 1884.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 1886.0, - 901.0, - 1886.0, - 901.0, - 1921.0, - 140.0, - 1921.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 1922.0, - 653.0, - 1922.0, - 653.0, - 1962.0, - 139.0, - 1962.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 1961.0, - 1416.0, - 1961.0, - 1416.0, - 1995.0, - 140.0, - 1995.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 1997.0, - 1195.0, - 1997.0, - 1195.0, - 2038.0, - 139.0, - 2038.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 2213.0, - 150.0, - 2213.0, - 150.0, - 2245.0, - 114.0, - 2245.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 548.0, - 261.0, - 1085.0, - 261.0, - 1085.0, - 294.0, - 548.0, - 294.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 548.0, - 261.0, - 1085.0, - 261.0, - 1085.0, - 294.0, - 548.0, - 294.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 149.0, - 2049.0, - 991.0, - 2049.0, - 991.0, - 2078.0, - 149.0, - 2078.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 548.0, - 261.0, - 1085.0, - 261.0, - 1085.0, - 294.0, - 548.0, - 294.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 29, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 132, - 478, - 1551, - 478, - 1551, - 581, - 132, - 581 - ], - "score": 0.945, - "html": "
11Applying g material from Item G, analyse two reasons why some social groups aremore likely than others to experiencepoverty.10
" - }, - { - "category_id": 5, - "poly": [ - 128, - 361, - 1543, - 361, - 1543, - 449, - 128, - 449 - ], - "score": 0.929, - "html": "
QuMarking guidanceTotal
marks
" - }, - { - "category_id": 5, - "poly": [ - 117, - 947, - 1534, - 947, - 1534, - 2055, - 117, - 2055 - ], - "score": 0.912, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on two reasons why some social groups are more likely than others to experience poverty. There will be two developed applications of material from the item, eg that fatalistic attitudes poverty; that patriarchal values lead to social arrangements such as the unequal distribution of caring roles, contributing to the feminisation of poverty. There will be appropriate analysis/evaluation of two ways eg the extent to which the
4-7Answers in this band will show a basic to reasonable knowledge and understanding of one There will be some successful application of material from the item,eg that economic circumstances explain poverty better than attitudes. There will be some analysis/evaluation.
1-3Answers in this band will show limited knowledge and understanding of one or two criticisms of cultural explanations of poverty. There will be limited application of material from the item. Some material may be at a tangent to the question, eg definitions of poverty.
0There will be limited or no analysis/evaluation No relevant points.
" - }, - { - "category_id": 2, - "poly": [ - 657, - 99, - 1539, - 99, - 1539, - 137, - 657, - 137 - ], - "score": 0.861 - }, - { - "category_id": 2, - "poly": [ - 1510, - 2214, - 1539, - 2214, - 1539, - 2239, - 1510, - 2239 - ], - "score": 0.86 - }, - { - "category_id": 5, - "poly": [ - 138, - 233, - 1416, - 233, - 1416, - 312, - 138, - 312 - ], - "score": 0.86, - "html": "
Abel-Smith and Townsend; Blackman; Craine; Davis and Moore; Foucault; Gans; Lister et al;
" - }, - { - "category_id": 5, - "poly": [ - 118, - 955, - 1535, - 955, - 1535, - 2058, - 118, - 2058 - ], - "score": 0.766, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on There will be two developed applications of material from the item, eg that fatalistic attitudes may lead working class people to accept their social position so that some experience poverty; that patriarchal values lead to social arrangements such as the unequal distribution of caring roles, contributing to the feminisation of poverty. There will be appropriate analysis/evaluation of two ways eg the extent to which the
4-7experience of poverty may differbetweensocialgroups. Answers in this band will show a basic to reasonable knowledge and understanding of one or two reasons why some social groups are more likely than others to experience poverty There will be some successful application of material from the item, eg that economic circumstances explain poverty better than attitudes. There will be some analysis/evaluation.
1-3Answers in this band will show limited knowledge and understanding of one or two criticisms of cultural explanations of poverty. There will be limited application of material from the item. Some material may be at a tangent to the question, eg definitions of poverty.
0There will be limited or no analysis/evaluation No relevant points.
" - }, - { - "category_id": 5, - "poly": [ - 136, - 2082, - 1547, - 2082, - 1547, - 2182, - 136, - 2182 - ], - "score": 0.516, - "html": "
Sources may include the following or other relevant ones:
" - }, - { - "category_id": 1, - "poly": [ - 138, - 2087, - 989, - 2087, - 989, - 2180, - 138, - 2180 - ], - "score": 0.512 - }, - { - "category_id": 0, - "poly": [ - 790, - 665, - 892, - 665, - 892, - 701, - 790, - 701 - ], - "score": 0.503 - }, - { - "category_id": 1, - "poly": [ - 146, - 735, - 1470, - 735, - 1470, - 809, - 146, - 809 - ], - "score": 0.365 - }, - { - "category_id": 6, - "poly": [ - 790, - 665, - 892, - 665, - 892, - 701, - 790, - 701 - ], - "score": 0.357 - }, - { - "category_id": 5, - "poly": [ - 134, - 610, - 1540, - 610, - 1540, - 926, - 134, - 926 - ], - "score": 0.356, - "html": "
ItemG
The values and attitudes of some members of the working class may lead to them accepting their position in society. Patriarchal values mean that females can be disadvantaged.
" - }, - { - "category_id": 15, - "poly": [ - 659.0, - 100.0, - 1538.0, - 100.0, - 1538.0, - 134.0, - 659.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1505.0, - 2213.0, - 1542.0, - 2213.0, - 1542.0, - 2245.0, - 1505.0, - 2245.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 146.0, - 2101.0, - 988.0, - 2101.0, - 988.0, - 2132.0, - 146.0, - 2132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 789.0, - 666.0, - 893.0, - 666.0, - 893.0, - 701.0, - 789.0, - 701.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 143.0, - 737.0, - 1462.0, - 737.0, - 1462.0, - 773.0, - 143.0, - 773.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 145.0, - 775.0, - 1225.0, - 775.0, - 1225.0, - 809.0, - 145.0, - 809.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 789.0, - 666.0, - 893.0, - 666.0, - 893.0, - 701.0, - 789.0, - 701.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 30, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 116, - 1069, - 1536, - 1069, - 1536, - 2159, - 116, - 2159 - ], - "score": 0.982, - "html": "
MarksLevel Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on sociological explanations of the significance of worklessness for people's lives and life chances. Sophisticated understanding of the question and of the presentedmaterialwillbeshown. the question. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for example throughthe debatesbetween different explanations of the relationshipbetween worklessness and people's lives and life chances (eg Marxism, postmodernism, feminism).
13-16Analysis will show clear explanation. Appropriate conclusions will be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. maybeinadequatelyfocused.
9-12Some limited explicit evaluation, eg discussion of the significance of worklessness for different life chances and/or some appropriate analysis, eg clear explanations of some of the presented material. Answers in this band will show largely accurate knowledge but limited range and depth, eg broadly accurate, if basic, account of some types of worklessness. Understands some
" - }, - { - "category_id": 5, - "poly": [ - 132, - 483, - 1549, - 483, - 1549, - 584, - 132, - 584 - ], - "score": 0.944, - "html": "
12Applying material from Item H and your knowledge, evaluate sociological explanations of the effects of worklessness on people's lives and life chances.20
" - }, - { - "category_id": 5, - "poly": [ - 128, - 365, - 1549, - 365, - 1549, - 452, - 128, - 452 - ], - "score": 0.936, - "html": "
QuTotal Marking guidance marks
" - }, - { - "category_id": 5, - "poly": [ - 134, - 234, - 1495, - 234, - 1495, - 329, - 134, - 329 - ], - "score": 0.887, - "html": "
Baumberg, Bell and Gaffney; Blanden and Gibbons; Coates and Silburn; Field; Lewis; Marsland; Murray; Rutter and Madge; Shildrick et al.
" - }, - { - "category_id": 2, - "poly": [ - 115, - 2214, - 146, - 2214, - 146, - 2239, - 115, - 2239 - ], - "score": 0.867 - }, - { - "category_id": 2, - "poly": [ - 657, - 99, - 1540, - 99, - 1540, - 137, - 657, - 137 - ], - "score": 0.867 - }, - { - "category_id": 5, - "poly": [ - 133, - 615, - 1538, - 615, - 1538, - 1039, - 133, - 1039 - ], - "score": 0.827, - "html": "
ItemH
aspects of social life and their life chances are diminished. There are others who do not work because
theyhavesufficientwealth. However, some sociologists argue that work is now less important as a source of identity and that
worklessnesshasbecomelesssignificant.
" - }, - { - "category_id": 6, - "poly": [ - 791, - 669, - 892, - 669, - 892, - 705, - 791, - 705 - ], - "score": 0.339 - }, - { - "category_id": 0, - "poly": [ - 791, - 669, - 892, - 669, - 892, - 705, - 791, - 705 - ], - "score": 0.102 - }, - { - "category_id": 15, - "poly": [ - 113.0, - 2214.0, - 150.0, - 2214.0, - 150.0, - 2244.0, - 113.0, - 2244.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 659.0, - 100.0, - 1538.0, - 100.0, - 1538.0, - 134.0, - 659.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 790.0, - 671.0, - 893.0, - 671.0, - 893.0, - 706.0, - 790.0, - 706.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 790.0, - 671.0, - 893.0, - 671.0, - 893.0, - 706.0, - 790.0, - 706.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 31, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 117, - 231, - 1532, - 231, - 1532, - 1212, - 117, - 1212 - ], - "score": 0.981, - "html": "
material. Applying listed material from the general topic area but with limited regard for its relevance
5-8Answers in this band will show limited undeveloped knowledge, eg two or three insubstantial points about worklessness. Understands only limited aspects of the question; simplistic understandingof thepresentedmaterial. the question.
1-4points about worklessness in general. Very little/no understanding of the question and of the presentedmaterial. Significant errors and/or omissions in application of material.
0Noanalysisorevaluation. No relevant points.
" - }, - { - "category_id": 1, - "poly": [ - 142, - 1398, - 1529, - 1398, - 1529, - 1506, - 142, - 1506 - ], - "score": 0.97 - }, - { - "category_id": 1, - "poly": [ - 142, - 1634, - 1525, - 1634, - 1525, - 1741, - 142, - 1741 - ], - "score": 0.929 - }, - { - "category_id": 1, - "poly": [ - 143, - 1328, - 903, - 1328, - 903, - 1365, - 143, - 1365 - ], - "score": 0.924 - }, - { - "category_id": 0, - "poly": [ - 142, - 1257, - 410, - 1257, - 410, - 1294, - 142, - 1294 - ], - "score": 0.915 - }, - { - "category_id": 0, - "poly": [ - 144, - 1563, - 989, - 1563, - 989, - 1602, - 144, - 1602 - ], - "score": 0.897 - }, - { - "category_id": 2, - "poly": [ - 658, - 100, - 1539, - 100, - 1539, - 136, - 658, - 136 - ], - "score": 0.878 - }, - { - "category_id": 2, - "poly": [ - 1508, - 2215, - 1535, - 2215, - 1535, - 2238, - 1508, - 2238 - ], - "score": 0.854 - }, - { - "category_id": 15, - "poly": [ - 140.0, - 1397.0, - 1522.0, - 1397.0, - 1522.0, - 1439.0, - 140.0, - 1439.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 142.0, - 1436.0, - 1466.0, - 1436.0, - 1466.0, - 1472.0, - 142.0, - 1472.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 142.0, - 1472.0, - 1531.0, - 1472.0, - 1531.0, - 1507.0, - 142.0, - 1507.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 146.0, - 1637.0, - 1516.0, - 1637.0, - 1516.0, - 1673.0, - 146.0, - 1673.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 1668.0, - 1458.0, - 1668.0, - 1458.0, - 1710.0, - 141.0, - 1710.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 142.0, - 1705.0, - 255.0, - 1705.0, - 255.0, - 1745.0, - 142.0, - 1745.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 145.0, - 1329.0, - 901.0, - 1329.0, - 901.0, - 1366.0, - 145.0, - 1366.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 145.0, - 1261.0, - 409.0, - 1261.0, - 409.0, - 1290.0, - 145.0, - 1290.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 147.0, - 1568.0, - 989.0, - 1568.0, - 989.0, - 1599.0, - 147.0, - 1599.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 658.0, - 100.0, - 1537.0, - 100.0, - 1537.0, - 134.0, - 658.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1504.0, - 2212.0, - 1542.0, - 2212.0, - 1542.0, - 2248.0, - 1504.0, - 2248.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 32, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 113, - 590, - 1517, - 590, - 1517, - 1763, - 113, - 1763 - ], - "score": 0.982, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two reasons There will be two applications of relevant material, eg women are more associated with gender roles encouraged by traditional religion. There will be appropriate analysis, eg the extent to which men may also participate in New Age movements.
4-7 s s movements. There will be one or two applications of relevant material, eg New Age movements appeal to expressive role of women rather than instrumental role of men. There will be some basic analysis.
1-3Answers in this band will show limited knowledge and little or no understanding of the question or the material. sects. Therewill be little or no analysis.
0No relevant points.
" - }, - { - "category_id": 5, - "poly": [ - 110, - 463, - 1517, - 463, - 1517, - 563, - 110, - 563 - ], - "score": 0.95, - "html": "
13Outline and explain two reasons why women are more likely than men to participate in NewAge movements.10
" - }, - { - "category_id": 1, - "poly": [ - 167, - 1943, - 1354, - 1943, - 1354, - 2169, - 167, - 2169 - ], - "score": 0.941 - }, - { - "category_id": 1, - "poly": [ - 119, - 1871, - 983, - 1871, - 983, - 1910, - 119, - 1910 - ], - "score": 0.932 - }, - { - "category_id": 5, - "poly": [ - 112, - 315, - 1517, - 315, - 1517, - 400, - 112, - 400 - ], - "score": 0.919, - "html": "
QuMarking guidanceTotal marks
" - }, - { - "category_id": 0, - "poly": [ - 119, - 1800, - 385, - 1800, - 385, - 1838, - 119, - 1838 - ], - "score": 0.906 - }, - { - "category_id": 2, - "poly": [ - 657, - 99, - 1539, - 99, - 1539, - 137, - 657, - 137 - ], - "score": 0.875 - }, - { - "category_id": 2, - "poly": [ - 116, - 2215, - 145, - 2215, - 145, - 2238, - 116, - 2238 - ], - "score": 0.865 - }, - { - "category_id": 0, - "poly": [ - 611, - 239, - 1016, - 239, - 1016, - 312, - 611, - 312 - ], - "score": 0.778 - }, - { - "category_id": 6, - "poly": [ - 611, - 239, - 1016, - 239, - 1016, - 312, - 611, - 312 - ], - "score": 0.104 - }, - { - "category_id": 15, - "poly": [ - 220.0, - 1948.0, - 803.0, - 1948.0, - 803.0, - 1980.0, - 220.0, - 1980.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 220.0, - 1983.0, - 1348.0, - 1983.0, - 1348.0, - 2018.0, - 220.0, - 2018.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 222.0, - 2024.0, - 683.0, - 2024.0, - 683.0, - 2056.0, - 222.0, - 2056.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 220.0, - 2061.0, - 763.0, - 2061.0, - 763.0, - 2093.0, - 220.0, - 2093.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 215.0, - 2097.0, - 1101.0, - 2097.0, - 1101.0, - 2130.0, - 215.0, - 2130.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 216.0, - 2135.0, - 846.0, - 2135.0, - 846.0, - 2167.0, - 216.0, - 2167.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 122.0, - 1876.0, - 980.0, - 1876.0, - 980.0, - 1907.0, - 122.0, - 1907.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 121.0, - 1805.0, - 385.0, - 1805.0, - 385.0, - 1835.0, - 121.0, - 1835.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 659.0, - 100.0, - 1538.0, - 100.0, - 1538.0, - 134.0, - 659.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 2213.0, - 150.0, - 2213.0, - 150.0, - 2245.0, - 112.0, - 2245.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 740.0, - 240.0, - 887.0, - 240.0, - 887.0, - 277.0, - 740.0, - 277.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 610.0, - 277.0, - 1014.0, - 277.0, - 1014.0, - 312.0, - 610.0, - 312.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 740.0, - 240.0, - 887.0, - 240.0, - 887.0, - 277.0, - 740.0, - 277.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 610.0, - 277.0, - 1014.0, - 277.0, - 1014.0, - 312.0, - 610.0, - 312.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 33, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 169, - 250, - 1129, - 250, - 1129, - 361, - 169, - 361 - ], - "score": 0.962 - }, - { - "category_id": 2, - "poly": [ - 1508, - 2215, - 1537, - 2215, - 1537, - 2237, - 1508, - 2237 - ], - "score": 0.85 - }, - { - "category_id": 2, - "poly": [ - 657, - 98, - 1539, - 98, - 1539, - 137, - 657, - 137 - ], - "score": 0.809 - }, - { - "category_id": 1, - "poly": [ - 116, - 482, - 1425, - 482, - 1425, - 555, - 116, - 555 - ], - "score": 0.712 - }, - { - "category_id": 2, - "poly": [ - 116, - 482, - 1425, - 482, - 1425, - 555, - 116, - 555 - ], - "score": 0.147 - }, - { - "category_id": 15, - "poly": [ - 222.0, - 255.0, - 1017.0, - 255.0, - 1017.0, - 286.0, - 222.0, - 286.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 221.0, - 292.0, - 1125.0, - 292.0, - 1125.0, - 323.0, - 221.0, - 323.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 218.0, - 329.0, - 794.0, - 329.0, - 794.0, - 359.0, - 218.0, - 359.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1505.0, - 2214.0, - 1543.0, - 2214.0, - 1543.0, - 2245.0, - 1505.0, - 2245.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 661.0, - 102.0, - 1537.0, - 102.0, - 1537.0, - 133.0, - 661.0, - 133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 122.0, - 486.0, - 1421.0, - 486.0, - 1421.0, - 520.0, - 122.0, - 520.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 521.0, - 1224.0, - 521.0, - 1224.0, - 555.0, - 120.0, - 555.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 122.0, - 486.0, - 1421.0, - 486.0, - 1421.0, - 520.0, - 122.0, - 520.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 521.0, - 1224.0, - 521.0, - 1224.0, - 555.0, - 120.0, - 555.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 34, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 114, - 865, - 1517, - 865, - 1517, - 2003, - 114, - 2003 - ], - "score": 0.984, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on There will be two developed applications of material from the item, eg high levels of religion in countries such as the USA linked to supply and demand and the diversity of beliefs and practices that are on offer; apparent decline of traditional religion but change in the way people practice, believing without belonging. There will be appropriate analysis/evaluation of two ways, eg religious diversity not always
4-7leading to higher levels of religion; extent of belief without belonging. Answers in this band will show a basic to reasonable knowledge and understanding of one There will be some successful application of material from the item, eg religious belief now changing to a more spiritual focus.
1-3There will be some analysis/evaluation. Answers in this band will show limited knowledge and understanding of one or two reasons There will be limited application of material from the item. Some material may be at a There will be limited or no analysis/evaluation.
0No relevant points.
" - }, - { - "category_id": 5, - "poly": [ - 111, - 234, - 1517, - 234, - 1517, - 320, - 111, - 320 - ], - "score": 0.966, - "html": "
QuMarking guidanceTotal marks
" - }, - { - "category_id": 5, - "poly": [ - 111, - 352, - 1513, - 352, - 1513, - 488, - 111, - 488 - ], - "score": 0.958, - "html": "
14Applying material from Item I, analyse two reasons why the extent of secularisation may have been exaggerated.10
" - }, - { - "category_id": 2, - "poly": [ - 115, - 2215, - 145, - 2215, - 145, - 2238, - 115, - 2238 - ], - "score": 0.862 - }, - { - "category_id": 2, - "poly": [ - 657, - 99, - 1539, - 99, - 1539, - 137, - 657, - 137 - ], - "score": 0.831 - }, - { - "category_id": 6, - "poly": [ - 765, - 537, - 852, - 537, - 852, - 572, - 765, - 572 - ], - "score": 0.745 - }, - { - "category_id": 5, - "poly": [ - 111, - 517, - 1505, - 517, - 1505, - 837, - 111, - 837 - ], - "score": 0.366, - "html": "
ItemI
Secularisation theory explains the decline in religious participation across parts of Europe, but it does not explain why religion continues to be popular in other parts of the world. It also fails to recognise
that religion may be changing rather than declining.
The extent of secularisation may have been exaggerated.
" - }, - { - "category_id": 5, - "poly": [ - 122, - 2028, - 1511, - 2028, - 1511, - 2137, - 122, - 2137 - ], - "score": 0.323, - "html": "
Sources may include the following or other relevant ones: Berger; Bruce; Davie; Day; Finke; Gill
and Lundegarde; Hadaway; Heelas and Woodhead; Hervieu-Leger; Lyon; Norris and Inglehart; Stark andBainbridge;Vasquez;VoasandCrockett.
" - }, - { - "category_id": 1, - "poly": [ - 122, - 2028, - 1511, - 2028, - 1511, - 2137, - 122, - 2137 - ], - "score": 0.268 - }, - { - "category_id": 1, - "poly": [ - 120, - 753, - 895, - 753, - 895, - 791, - 120, - 791 - ], - "score": 0.243 - }, - { - "category_id": 1, - "poly": [ - 112, - 607, - 1505, - 607, - 1505, - 719, - 112, - 719 - ], - "score": 0.197 - }, - { - "category_id": 15, - "poly": [ - 113.0, - 2214.0, - 150.0, - 2214.0, - 150.0, - 2243.0, - 113.0, - 2243.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 659.0, - 100.0, - 1538.0, - 100.0, - 1538.0, - 134.0, - 659.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 765.0, - 539.0, - 855.0, - 539.0, - 855.0, - 573.0, - 765.0, - 573.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 132.0, - 2034.0, - 1494.0, - 2034.0, - 1494.0, - 2065.0, - 132.0, - 2065.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 131.0, - 2066.0, - 1499.0, - 2066.0, - 1499.0, - 2102.0, - 131.0, - 2102.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 128.0, - 2100.0, - 753.0, - 2100.0, - 753.0, - 2135.0, - 128.0, - 2135.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 121.0, - 755.0, - 895.0, - 755.0, - 895.0, - 790.0, - 121.0, - 790.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 608.0, - 1491.0, - 608.0, - 1491.0, - 646.0, - 120.0, - 646.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 648.0, - 1460.0, - 648.0, - 1460.0, - 685.0, - 118.0, - 685.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 679.0, - 818.0, - 679.0, - 818.0, - 724.0, - 115.0, - 724.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 35, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 114, - 821, - 1517, - 821, - 1517, - 2144, - 114, - 2144 - ], - "score": 0.982, - "html": "
MarksLevelDescriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of the question. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for
13-16Answers in this band will show largely accurate, broad or deep but incomplete knowledge. presentedmaterial. maybeinadequatelyfocused.
9-12broadly accurate, if basic, account of some aspects of religion acting as a force for social change. Understands some limited but significant aspects of the question; superficial understanding of the presented material. Applying listed material from the general topic area but with limited regard for its relevance Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
" - }, - { - "category_id": 5, - "poly": [ - 112, - 386, - 1514, - 386, - 1514, - 487, - 112, - 487 - ], - "score": 0.961, - "html": "
15Applying material from Item J and your knowledge, evaluate the view that religion acts as a force for social change.20
" - }, - { - "category_id": 5, - "poly": [ - 112, - 270, - 1516, - 270, - 1516, - 355, - 112, - 355 - ], - "score": 0.958, - "html": "
QuMarking guidanceTotal marks
" - }, - { - "category_id": 2, - "poly": [ - 1508, - 2214, - 1538, - 2214, - 1538, - 2239, - 1508, - 2239 - ], - "score": 0.87 - }, - { - "category_id": 2, - "poly": [ - 657, - 98, - 1540, - 98, - 1540, - 137, - 657, - 137 - ], - "score": 0.858 - }, - { - "category_id": 5, - "poly": [ - 111, - 518, - 1486, - 518, - 1486, - 797, - 111, - 797 - ], - "score": 0.556, - "html": "
ItemJ
Some sociologists argue that religion acts as a force for social change. It can be used to challenge mainstream beliefs and values, and inspire protest against the existing social order.
However, other sociologists suggest that the relationship between religion and social change is not straightforward and that religion can even prevent social change.
" - }, - { - "category_id": 6, - "poly": [ - 760, - 535, - 856, - 535, - 856, - 571, - 760, - 571 - ], - "score": 0.49 - }, - { - "category_id": 1, - "poly": [ - 117, - 606, - 1465, - 606, - 1465, - 682, - 117, - 682 - ], - "score": 0.126 - }, - { - "category_id": 0, - "poly": [ - 760, - 535, - 856, - 535, - 856, - 571, - 760, - 571 - ], - "score": 0.11 - }, - { - "category_id": 15, - "poly": [ - 1506.0, - 2213.0, - 1542.0, - 2213.0, - 1542.0, - 2243.0, - 1506.0, - 2243.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 661.0, - 102.0, - 1537.0, - 102.0, - 1537.0, - 133.0, - 661.0, - 133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 760.0, - 537.0, - 858.0, - 537.0, - 858.0, - 572.0, - 760.0, - 572.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 123.0, - 611.0, - 1453.0, - 611.0, - 1453.0, - 645.0, - 123.0, - 645.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 645.0, - 1253.0, - 645.0, - 1253.0, - 681.0, - 118.0, - 681.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 760.0, - 537.0, - 858.0, - 537.0, - 858.0, - 572.0, - 760.0, - 572.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 36, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 116, - 233, - 1512, - 233, - 1512, - 925, - 116, - 925 - ], - "score": 0.977, - "html": "
5-8the question; simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question.
1-4points about religion in general. Very little/no understanding of the question and of the presentedmaterial. Significant errors and/or omissions in application of material. No analysis or evaluation.
0No relevant points.
" - }, - { - "category_id": 1, - "poly": [ - 120, - 1110, - 1474, - 1110, - 1474, - 1254, - 120, - 1254 - ], - "score": 0.975 - }, - { - "category_id": 1, - "poly": [ - 119, - 1040, - 879, - 1040, - 879, - 1077, - 119, - 1077 - ], - "score": 0.932 - }, - { - "category_id": 0, - "poly": [ - 120, - 969, - 386, - 969, - 386, - 1007, - 120, - 1007 - ], - "score": 0.915 - }, - { - "category_id": 2, - "poly": [ - 659, - 100, - 1538, - 100, - 1538, - 136, - 659, - 136 - ], - "score": 0.881 - }, - { - "category_id": 2, - "poly": [ - 116, - 2215, - 145, - 2215, - 145, - 2238, - 116, - 2238 - ], - "score": 0.861 - }, - { - "category_id": 1, - "poly": [ - 119, - 1346, - 1462, - 1346, - 1462, - 1420, - 119, - 1420 - ], - "score": 0.841 - }, - { - "category_id": 15, - "poly": [ - 118.0, - 1112.0, - 1469.0, - 1112.0, - 1469.0, - 1150.0, - 118.0, - 1150.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 1150.0, - 1368.0, - 1150.0, - 1368.0, - 1184.0, - 120.0, - 1184.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 1184.0, - 1444.0, - 1184.0, - 1444.0, - 1217.0, - 118.0, - 1217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 1216.0, - 1473.0, - 1216.0, - 1473.0, - 1257.0, - 115.0, - 1257.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 121.0, - 1041.0, - 879.0, - 1041.0, - 879.0, - 1078.0, - 121.0, - 1078.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 121.0, - 974.0, - 385.0, - 974.0, - 385.0, - 1004.0, - 121.0, - 1004.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 658.0, - 100.0, - 1537.0, - 100.0, - 1537.0, - 134.0, - 658.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 2215.0, - 149.0, - 2215.0, - 149.0, - 2242.0, - 114.0, - 2242.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 1348.0, - 1446.0, - 1348.0, - 1446.0, - 1384.0, - 120.0, - 1384.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 1384.0, - 1411.0, - 1384.0, - 1411.0, - 1420.0, - 120.0, - 1420.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 37, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 114, - 600, - 1518, - 600, - 1518, - 1664, - 114, - 1664 - ], - "score": 0.981, - "html": "
MarksLevel Descriptors
8-10ways in which development can lead to demographic changes. There will be two applications of relevant material, eg development can lead to the
4-7Answers in this band will show a reasonable to good knowledge and understanding of one There will be one or two applications of relevant material, eg women may have fewer children.
1-3There will be some basic analysis Answers in this band will show limited knowledge and litle or no understanding of the questionor the material. There will be limited focus on the question, eg there may be some drift into discussion of demography in general.
0There will be little or no analysis. No relevant points.
" - }, - { - "category_id": 5, - "poly": [ - 113, - 312, - 1516, - 312, - 1516, - 400, - 113, - 400 - ], - "score": 0.964, - "html": "
QuMarking guidanceTotal marks
" - }, - { - "category_id": 1, - "poly": [ - 123, - 1811, - 748, - 1811, - 748, - 2107, - 123, - 2107 - ], - "score": 0.958 - }, - { - "category_id": 5, - "poly": [ - 111, - 462, - 1512, - 462, - 1512, - 572, - 111, - 572 - ], - "score": 0.949, - "html": "
16Outline and explain two ways in which development can lead to demographic changes.10
" - }, - { - "category_id": 0, - "poly": [ - 123, - 1701, - 390, - 1701, - 390, - 1737, - 123, - 1737 - ], - "score": 0.904 - }, - { - "category_id": 1, - "poly": [ - 122, - 1771, - 984, - 1771, - 984, - 1809, - 122, - 1809 - ], - "score": 0.904 - }, - { - "category_id": 2, - "poly": [ - 657, - 99, - 1539, - 99, - 1539, - 136, - 657, - 136 - ], - "score": 0.881 - }, - { - "category_id": 2, - "poly": [ - 1508, - 2215, - 1537, - 2215, - 1537, - 2238, - 1508, - 2238 - ], - "score": 0.858 - }, - { - "category_id": 0, - "poly": [ - 589, - 258, - 1037, - 258, - 1037, - 296, - 589, - 296 - ], - "score": 0.527 - }, - { - "category_id": 6, - "poly": [ - 589, - 258, - 1037, - 258, - 1037, - 296, - 589, - 296 - ], - "score": 0.485 - }, - { - "category_id": 15, - "poly": [ - 133.0, - 1813.0, - 519.0, - 1813.0, - 519.0, - 1845.0, - 133.0, - 1845.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 1851.0, - 383.0, - 1851.0, - 383.0, - 1881.0, - 136.0, - 1881.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 150.0, - 1886.0, - 440.0, - 1886.0, - 440.0, - 1921.0, - 150.0, - 1921.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 149.0, - 1920.0, - 519.0, - 1920.0, - 519.0, - 1960.0, - 149.0, - 1960.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 1960.0, - 407.0, - 1960.0, - 407.0, - 1995.0, - 138.0, - 1995.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 153.0, - 2000.0, - 423.0, - 2000.0, - 423.0, - 2030.0, - 153.0, - 2030.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 153.0, - 2035.0, - 747.0, - 2035.0, - 747.0, - 2071.0, - 153.0, - 2071.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 150.0, - 2073.0, - 434.0, - 2073.0, - 434.0, - 2106.0, - 150.0, - 2106.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 125.0, - 1705.0, - 388.0, - 1705.0, - 388.0, - 1735.0, - 125.0, - 1735.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 126.0, - 1776.0, - 982.0, - 1776.0, - 982.0, - 1806.0, - 126.0, - 1806.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 661.0, - 103.0, - 1537.0, - 103.0, - 1537.0, - 132.0, - 661.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1505.0, - 2213.0, - 1542.0, - 2213.0, - 1542.0, - 2245.0, - 1505.0, - 2245.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 590.0, - 261.0, - 1037.0, - 261.0, - 1037.0, - 294.0, - 590.0, - 294.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 590.0, - 261.0, - 1037.0, - 261.0, - 1037.0, - 294.0, - 590.0, - 294.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 38, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 113, - 1038, - 1516, - 1038, - 1516, - 2139, - 113, - 2139 - ], - "score": 0.983, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on to a backlash reasserting patriarchal values. There will be appropriate analysis/evaluation of two ways eg of the extent to which
4-7Answers in this band will show a basic to reasonable knowledge and understanding of one There will be some successful application of material from the item, eg education for girls has led to greater employment opportunities. Therewill be some analysis/evaluation
1-3Answers in this band will show limited knowledge and understanding of one or two ways in which development can affect gender inequalities. There will be limited application of material from the item. Some material may be at a tangent to the question, eg there may be some drift into accounts of inequalities in general.
0There will be limited or no analysis/evaluation. No relevant points.
" - }, - { - "category_id": 5, - "poly": [ - 117, - 411, - 1514, - 411, - 1514, - 498, - 117, - 498 - ], - "score": 0.963, - "html": "
QuTotal Marking guidance marks
" - }, - { - "category_id": 5, - "poly": [ - 110, - 528, - 1513, - 528, - 1513, - 632, - 110, - 632 - ], - "score": 0.95, - "html": "
17Applying material from Item K, analyse two ways in which development can affect gender inequalities.10
" - }, - { - "category_id": 2, - "poly": [ - 658, - 99, - 1539, - 99, - 1539, - 136, - 658, - 136 - ], - "score": 0.883 - }, - { - "category_id": 2, - "poly": [ - 115, - 2214, - 146, - 2214, - 146, - 2239, - 115, - 2239 - ], - "score": 0.864 - }, - { - "category_id": 5, - "poly": [ - 114, - 239, - 1509, - 239, - 1509, - 364, - 114, - 364 - ], - "score": 0.799, - "html": "
Sources may include the following or other relevant ones:
Adamson; Chrispin and Jegede; Cohen and Kennedy; Eberstadt; Ehrlich; Harrison; Hewitt and Smith;
Kaplan;Malthus;Richards;Robeyetal;Rosling;Webster.
" - }, - { - "category_id": 5, - "poly": [ - 111, - 664, - 1500, - 664, - 1500, - 1012, - 111, - 1012 - ], - "score": 0.717, - "html": "
ItemK
Development can lead to new ways for previously exploited groups to improve their situation. It can also cause powerful groups tofeel threatened by changes and lead them toassert what are seen as traditionalattitudesandpractices.
Developmentcanaffectgenderinequalities
" - }, - { - "category_id": 0, - "poly": [ - 757, - 716, - 858, - 716, - 858, - 752, - 757, - 752 - ], - "score": 0.527 - }, - { - "category_id": 6, - "poly": [ - 757, - 716, - 858, - 716, - 858, - 752, - 757, - 752 - ], - "score": 0.256 - }, - { - "category_id": 0, - "poly": [ - 117, - 249, - 949, - 249, - 949, - 285, - 117, - 285 - ], - "score": 0.13 - }, - { - "category_id": 1, - "poly": [ - 116, - 786, - 1494, - 786, - 1494, - 895, - 116, - 895 - ], - "score": 0.107 - }, - { - "category_id": 15, - "poly": [ - 660.0, - 103.0, - 1536.0, - 103.0, - 1536.0, - 132.0, - 660.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 2215.0, - 149.0, - 2215.0, - 149.0, - 2242.0, - 114.0, - 2242.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 757.0, - 717.0, - 861.0, - 717.0, - 861.0, - 752.0, - 757.0, - 752.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 757.0, - 717.0, - 861.0, - 717.0, - 861.0, - 752.0, - 757.0, - 752.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 123.0, - 253.0, - 952.0, - 253.0, - 952.0, - 283.0, - 123.0, - 283.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 788.0, - 1464.0, - 788.0, - 1464.0, - 826.0, - 120.0, - 826.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 826.0, - 1479.0, - 826.0, - 1479.0, - 862.0, - 120.0, - 862.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 863.0, - 577.0, - 863.0, - 577.0, - 894.0, - 120.0, - 894.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 39, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 114, - 1078, - 1519, - 1078, - 1519, - 2166, - 114, - 2166 - ], - "score": 0.983, - "html": "
Marks Level Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on the view that aid is essential for development. Sophisticated the question. example through a debatebetween dependency and modernisation or other theories.
13-16Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. Application of material is largely explicitly relevant to the question, though some material maybeinadequatelyfocused.
9-12Answers in this band will show largely accurate knowledge but limited range and depth, eg broadly accurate, if basic, account of some aid projects. Understands some limited but significant aspects of the question; superficial understanding of the presented material.
" - }, - { - "category_id": 5, - "poly": [ - 115, - 412, - 1511, - 412, - 1511, - 499, - 115, - 499 - ], - "score": 0.961, - "html": "
QuMarking guidanceTotal marks
" - }, - { - "category_id": 5, - "poly": [ - 110, - 530, - 1510, - 530, - 1510, - 633, - 110, - 633 - ], - "score": 0.948, - "html": "
18Applying material from Item L and your knowledge, evaluate the view that aid is essentialfordevelopment.20
" - }, - { - "category_id": 2, - "poly": [ - 658, - 99, - 1540, - 99, - 1540, - 136, - 658, - 136 - ], - "score": 0.881 - }, - { - "category_id": 2, - "poly": [ - 1508, - 2215, - 1538, - 2215, - 1538, - 2238, - 1508, - 2238 - ], - "score": 0.868 - }, - { - "category_id": 1, - "poly": [ - 115, - 787, - 1452, - 787, - 1452, - 860, - 115, - 860 - ], - "score": 0.828 - }, - { - "category_id": 0, - "poly": [ - 759, - 717, - 854, - 717, - 854, - 752, - 759, - 752 - ], - "score": 0.63 - }, - { - "category_id": 1, - "poly": [ - 117, - 893, - 1488, - 893, - 1488, - 1004, - 117, - 1004 - ], - "score": 0.606 - }, - { - "category_id": 5, - "poly": [ - 123, - 235, - 1491, - 235, - 1491, - 382, - 123, - 382 - ], - "score": 0.557, - "html": "
Sources may include the following or other relevant ones:
Boserup; Cohen and Kennedy; Ehrenreich and Hochschild; Foster-Carter; Hunt; Leonard; Mies; Pearson;Seager;Shiva;vanderGaag;VanZeijl.
" - }, - { - "category_id": 6, - "poly": [ - 759, - 717, - 854, - 717, - 854, - 752, - 759, - 752 - ], - "score": 0.295 - }, - { - "category_id": 1, - "poly": [ - 132, - 306, - 1439, - 306, - 1439, - 381, - 132, - 381 - ], - "score": 0.192 - }, - { - "category_id": 0, - "poly": [ - 126, - 237, - 976, - 237, - 976, - 276, - 126, - 276 - ], - "score": 0.145 - }, - { - "category_id": 15, - "poly": [ - 660.0, - 103.0, - 1537.0, - 103.0, - 1537.0, - 132.0, - 660.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1507.0, - 2215.0, - 1540.0, - 2215.0, - 1540.0, - 2242.0, - 1507.0, - 2242.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 122.0, - 792.0, - 1436.0, - 792.0, - 1436.0, - 826.0, - 122.0, - 826.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 825.0, - 463.0, - 825.0, - 463.0, - 860.0, - 119.0, - 860.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 761.0, - 720.0, - 857.0, - 720.0, - 857.0, - 751.0, - 761.0, - 751.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 122.0, - 897.0, - 1445.0, - 897.0, - 1445.0, - 929.0, - 122.0, - 929.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 934.0, - 1483.0, - 934.0, - 1483.0, - 970.0, - 119.0, - 970.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 968.0, - 496.0, - 968.0, - 496.0, - 1005.0, - 119.0, - 1005.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 761.0, - 720.0, - 857.0, - 720.0, - 857.0, - 751.0, - 761.0, - 751.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 132.0, - 308.0, - 1427.0, - 308.0, - 1427.0, - 345.0, - 132.0, - 345.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 346.0, - 799.0, - 346.0, - 799.0, - 376.0, - 133.0, - 376.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 241.0, - 976.0, - 241.0, - 976.0, - 272.0, - 133.0, - 272.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 40, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 120, - 1256, - 1496, - 1256, - 1496, - 1399, - 120, - 1399 - ], - "score": 0.972 - }, - { - "category_id": 5, - "poly": [ - 115, - 236, - 1515, - 236, - 1515, - 1072, - 115, - 1072 - ], - "score": 0.933, - "html": "
Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
5-8Answers in this band will show limited undeveloped knowledge, eg two or three insubstantial points about aid. Understands only limited aspects of the question; simplistic understanding of thepresented material. the question.
1-4Very limited or no evaluation. Attempts at analysis, if any, are thin and disjointed. points about development in general. Very little/no understanding of the question and of the presented material. Significant errors and/or omissions in application of material. No analysis or evaluation.
0No relevant points.
" - }, - { - "category_id": 1, - "poly": [ - 120, - 1186, - 878, - 1186, - 878, - 1223, - 120, - 1223 - ], - "score": 0.932 - }, - { - "category_id": 0, - "poly": [ - 120, - 1115, - 386, - 1115, - 386, - 1153, - 120, - 1153 - ], - "score": 0.914 - }, - { - "category_id": 1, - "poly": [ - 113, - 1528, - 1479, - 1528, - 1479, - 1600, - 113, - 1600 - ], - "score": 0.895 - }, - { - "category_id": 0, - "poly": [ - 119, - 1457, - 965, - 1457, - 965, - 1496, - 119, - 1496 - ], - "score": 0.884 - }, - { - "category_id": 2, - "poly": [ - 658, - 100, - 1538, - 100, - 1538, - 136, - 658, - 136 - ], - "score": 0.881 - }, - { - "category_id": 2, - "poly": [ - 116, - 2215, - 145, - 2215, - 145, - 2238, - 116, - 2238 - ], - "score": 0.866 - }, - { - "category_id": 5, - "poly": [ - 114, - 235, - 1518, - 235, - 1518, - 1073, - 114, - 1073 - ], - "score": 0.113, - "html": "
Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
5-8Answers in this band will show limited undeveloped knowledge, eg two or three insubstantial of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question.
1-4presented material. Significant errors and/or omissions in application of material.
0No analysis or evaluation. No relevant points.
" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 1258.0, - 1394.0, - 1258.0, - 1394.0, - 1296.0, - 119.0, - 1296.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 1296.0, - 1495.0, - 1296.0, - 1495.0, - 1329.0, - 119.0, - 1329.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 1327.0, - 1495.0, - 1327.0, - 1495.0, - 1367.0, - 115.0, - 1367.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 1365.0, - 1215.0, - 1365.0, - 1215.0, - 1399.0, - 116.0, - 1399.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 121.0, - 1187.0, - 878.0, - 1187.0, - 878.0, - 1224.0, - 121.0, - 1224.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 121.0, - 1120.0, - 385.0, - 1120.0, - 385.0, - 1150.0, - 121.0, - 1150.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 123.0, - 1532.0, - 1480.0, - 1532.0, - 1480.0, - 1565.0, - 123.0, - 1565.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 1564.0, - 341.0, - 1564.0, - 341.0, - 1603.0, - 120.0, - 1603.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 123.0, - 1462.0, - 965.0, - 1462.0, - 965.0, - 1493.0, - 123.0, - 1493.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 659.0, - 100.0, - 1537.0, - 100.0, - 1537.0, - 134.0, - 659.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 111.0, - 2212.0, - 152.0, - 2212.0, - 152.0, - 2246.0, - 111.0, - 2246.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 41, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 114, - 605, - 1539, - 605, - 1539, - 1626, - 114, - 1626 - ], - "score": 0.983, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two ways in which There will be two applications of relevant material, eg citizen journalism enables members of the public to report and spread news stories; news media have to provide more immediacy through instantaneous coverage of events.
4-7There will be appropriate analysis, eg of ways new media change news values. Answers in this band will show a reasonable to good knowledge and understanding of one or There will be one or two applications of relevant material, eg traditional news media have become more accountable because of audience responses using new media.
1-3Therewill besomebasic analysis Answers in this band will show limited knowledge and little or no understanding of the question or the material. There will be limited focus on the question, eg a drift into discussions of media in general.
0There will be little or no analysis. No relevant points.
" - }, - { - "category_id": 5, - "poly": [ - 118, - 312, - 1522, - 312, - 1522, - 400, - 118, - 400 - ], - "score": 0.96, - "html": "
QuMarking guidanceTotal marks
" - }, - { - "category_id": 1, - "poly": [ - 126, - 1775, - 1316, - 1775, - 1316, - 2076, - 126, - 2076 - ], - "score": 0.953 - }, - { - "category_id": 5, - "poly": [ - 128, - 462, - 1542, - 462, - 1542, - 573, - 128, - 573 - ], - "score": 0.945, - "html": "
19Outline and explain two ways in which new media may have affected the selection and presentation of news.10
" - }, - { - "category_id": 1, - "poly": [ - 128, - 1705, - 989, - 1705, - 989, - 1741, - 128, - 1741 - ], - "score": 0.914 - }, - { - "category_id": 0, - "poly": [ - 126, - 1669, - 394, - 1669, - 394, - 1702, - 126, - 1702 - ], - "score": 0.909 - }, - { - "category_id": 2, - "poly": [ - 656, - 99, - 1539, - 99, - 1539, - 136, - 656, - 136 - ], - "score": 0.883 - }, - { - "category_id": 2, - "poly": [ - 1508, - 2215, - 1536, - 2215, - 1536, - 2238, - 1508, - 2238 - ], - "score": 0.859 - }, - { - "category_id": 0, - "poly": [ - 668, - 258, - 968, - 258, - 968, - 295, - 668, - 295 - ], - "score": 0.661 - }, - { - "category_id": 1, - "poly": [ - 131, - 2134, - 1417, - 2134, - 1417, - 2168, - 131, - 2168 - ], - "score": 0.304 - }, - { - "category_id": 1, - "poly": [ - 126, - 2097, - 1424, - 2097, - 1424, - 2170, - 126, - 2170 - ], - "score": 0.302 - }, - { - "category_id": 6, - "poly": [ - 668, - 258, - 968, - 258, - 968, - 295, - 668, - 295 - ], - "score": 0.291 - }, - { - "category_id": 15, - "poly": [ - 127.0, - 1779.0, - 850.0, - 1779.0, - 850.0, - 1813.0, - 127.0, - 1813.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 127.0, - 1817.0, - 869.0, - 1817.0, - 869.0, - 1852.0, - 127.0, - 1852.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 127.0, - 1853.0, - 725.0, - 1853.0, - 725.0, - 1888.0, - 127.0, - 1888.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 127.0, - 1891.0, - 511.0, - 1891.0, - 511.0, - 1925.0, - 127.0, - 1925.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 127.0, - 1928.0, - 1312.0, - 1928.0, - 1312.0, - 1963.0, - 127.0, - 1963.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 127.0, - 1966.0, - 1232.0, - 1966.0, - 1232.0, - 2001.0, - 127.0, - 2001.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 130.0, - 2005.0, - 1019.0, - 2005.0, - 1019.0, - 2035.0, - 130.0, - 2035.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 128.0, - 2040.0, - 1111.0, - 2040.0, - 1111.0, - 2074.0, - 128.0, - 2074.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 130.0, - 1708.0, - 986.0, - 1708.0, - 986.0, - 1738.0, - 130.0, - 1738.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 130.0, - 1672.0, - 392.0, - 1672.0, - 392.0, - 1701.0, - 130.0, - 1701.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 660.0, - 103.0, - 1537.0, - 103.0, - 1537.0, - 132.0, - 660.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1505.0, - 2213.0, - 1542.0, - 2213.0, - 1542.0, - 2243.0, - 1505.0, - 2243.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 667.0, - 260.0, - 967.0, - 260.0, - 967.0, - 294.0, - 667.0, - 294.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 129.0, - 2133.0, - 1418.0, - 2133.0, - 1418.0, - 2168.0, - 129.0, - 2168.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 128.0, - 2097.0, - 973.0, - 2097.0, - 973.0, - 2132.0, - 128.0, - 2132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 128.0, - 2134.0, - 1422.0, - 2134.0, - 1422.0, - 2166.0, - 128.0, - 2166.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 667.0, - 260.0, - 967.0, - 260.0, - 967.0, - 294.0, - 667.0, - 294.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 42, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 119, - 838, - 1535, - 838, - 1535, - 1977, - 119, - 1977 - ], - "score": 0.981, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on There will be two developed applications of material from the item, eg Western/American media spread an ideology of consumerism so that people around the world aspire to the same ideas, values and products; global brands are promoted and recognised around the world, weakening local cultures. There will be appropriate analysis/evaluation of two ways eg the extent to which local cultures absorb and transform external influences.
4-7Answers in this band will show a basic to reasonable knowledge and understanding of one There will be some successful application of material from the item eg the same media productsareavailablearoundtheworld. There will be some analysis/evaluation.
1-3Answers in this band will show limited knowledge and understanding of one or two ways in There will be limited application of material from the item. Some material may be at a tangent to the question, eg there may be some drift into accounts of media effects. There will be limited or no analysis/evaluation.
0No relevant points.
" - }, - { - "category_id": 5, - "poly": [ - 132, - 402, - 1550, - 402, - 1550, - 504, - 132, - 504 - ], - "score": 0.956, - "html": "
20Applying material from Item M, analyse two ways in which media corporations may contribute to a growth in global culture.10
" - }, - { - "category_id": 2, - "poly": [ - 116, - 2215, - 145, - 2215, - 145, - 2238, - 116, - 2238 - ], - "score": 0.862 - }, - { - "category_id": 5, - "poly": [ - 130, - 283, - 1546, - 283, - 1546, - 371, - 130, - 371 - ], - "score": 0.851, - "html": "
QuTotal Marking guidance marks
" - }, - { - "category_id": 2, - "poly": [ - 656, - 99, - 1539, - 99, - 1539, - 137, - 656, - 137 - ], - "score": 0.851 - }, - { - "category_id": 0, - "poly": [ - 789, - 588, - 893, - 588, - 893, - 624, - 789, - 624 - ], - "score": 0.675 - }, - { - "category_id": 1, - "poly": [ - 145, - 2057, - 1507, - 2057, - 1507, - 2130, - 145, - 2130 - ], - "score": 0.511 - }, - { - "category_id": 0, - "poly": [ - 144, - 2019, - 988, - 2019, - 988, - 2056, - 144, - 2056 - ], - "score": 0.343 - }, - { - "category_id": 5, - "poly": [ - 134, - 539, - 1530, - 539, - 1530, - 811, - 134, - 811 - ], - "score": 0.192, - "html": "
ItemM
Media corporations have the power to produce images of lifestyles through which people form their identities. The wide reach of these corporations has led to local cultures becoming less important.
Media corporations may contribute to a growth in global culture.
" - }, - { - "category_id": 6, - "poly": [ - 789, - 588, - 893, - 588, - 893, - 624, - 789, - 624 - ], - "score": 0.176 - }, - { - "category_id": 6, - "poly": [ - 144, - 2019, - 988, - 2019, - 988, - 2056, - 144, - 2056 - ], - "score": 0.168 - }, - { - "category_id": 5, - "poly": [ - 139, - 2016, - 1523, - 2016, - 1523, - 2131, - 139, - 2131 - ], - "score": 0.117, - "html": "
Sources may include the following or other relevant ones:
Bagdikian; Baudrillard; Compaine; Fenton; Flew; Herman and Chomsky; Kellner; Putnam; Rosenau;
Schiller; Sklair; Strinati; Thompson;Thussu.
" - }, - { - "category_id": 5, - "poly": [ - 131, - 283, - 1544, - 283, - 1544, - 371, - 131, - 371 - ], - "score": 0.105, - "html": "
QuTotal Marking guidance marks
" - }, - { - "category_id": 1, - "poly": [ - 142, - 660, - 1496, - 660, - 1496, - 734, - 142, - 734 - ], - "score": 0.102 - }, - { - "category_id": 15, - "poly": [ - 112.0, - 2213.0, - 150.0, - 2213.0, - 150.0, - 2244.0, - 112.0, - 2244.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 658.0, - 100.0, - 1538.0, - 100.0, - 1538.0, - 134.0, - 658.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 788.0, - 591.0, - 895.0, - 591.0, - 895.0, - 624.0, - 788.0, - 624.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 148.0, - 2057.0, - 1504.0, - 2057.0, - 1504.0, - 2092.0, - 148.0, - 2092.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 148.0, - 2092.0, - 736.0, - 2092.0, - 736.0, - 2129.0, - 148.0, - 2129.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 147.0, - 2025.0, - 988.0, - 2025.0, - 988.0, - 2055.0, - 147.0, - 2055.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 788.0, - 591.0, - 895.0, - 591.0, - 895.0, - 624.0, - 788.0, - 624.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 147.0, - 2025.0, - 988.0, - 2025.0, - 988.0, - 2055.0, - 147.0, - 2055.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 144.0, - 662.0, - 1482.0, - 662.0, - 1482.0, - 697.0, - 144.0, - 697.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 142.0, - 697.0, - 1464.0, - 697.0, - 1464.0, - 734.0, - 142.0, - 734.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 43, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 120, - 890, - 1534, - 890, - 1534, - 2144, - 120, - 2144 - ], - "score": 0.982, - "html": "
MarksLevel Descriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of relevant material on the view that the media reflect the views of their audiences. Sophisticated understanding of the question and of the presented material will be shown. Appropriate material will be applied accurately and with sensitivity to the issues raised by the question. Analysisandevaluationwillbeexplicitandrelevant.Evaluationmaybedeveloped,for the media and their audiences (eg Marxism, pluralism, feminisms). Analysis will show clear
13-16explanation. Appropriate conclusions will be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. Application of material is largely explicitly relevant to the question, though some material maybeinadequatelyfocused. Some limited explicit evaluation, eg discussion of audiences for different media and/or some
9-12broadly accurate, if basic, account of some explanations of the relationship between the media and their audiences. Understands some limited but significant aspects of the question; superficial understanding of the presented material. Applying listed material from the general topic area but with limited regard for its relevance to the issues raised by the question, or applying a narrow range of more relevant material.
" - }, - { - "category_id": 5, - "poly": [ - 130, - 232, - 1548, - 232, - 1548, - 319, - 130, - 319 - ], - "score": 0.957, - "html": "
QuTotal Marking guidance marks
" - }, - { - "category_id": 5, - "poly": [ - 130, - 349, - 1552, - 349, - 1552, - 453, - 130, - 453 - ], - "score": 0.956, - "html": "
21Applying material from Item N and your knowledge, evaluate the view that the mediareflect theviewsoftheiraudiences.20
" - }, - { - "category_id": 5, - "poly": [ - 135, - 484, - 1537, - 484, - 1537, - 872, - 135, - 872 - ], - "score": 0.896, - "html": "
ItemN
Some sociologists argue that audiences control media content through their choices as consumers. They claim that competitionbetween media for audiences means that owners and companies have limitedpowerovercontent.
However, other sociologists argue that those who own and work in the media control the content. This means that the content can be biased and reflect dominant ideologies.
" - }, - { - "category_id": 2, - "poly": [ - 1508, - 2215, - 1537, - 2215, - 1537, - 2238, - 1508, - 2238 - ], - "score": 0.866 - }, - { - "category_id": 2, - "poly": [ - 656, - 98, - 1540, - 98, - 1540, - 137, - 656, - 137 - ], - "score": 0.751 - }, - { - "category_id": 6, - "poly": [ - 790, - 537, - 891, - 537, - 891, - 573, - 790, - 573 - ], - "score": 0.193 - }, - { - "category_id": 0, - "poly": [ - 790, - 537, - 891, - 537, - 891, - 573, - 790, - 573 - ], - "score": 0.158 - }, - { - "category_id": 15, - "poly": [ - 1505.0, - 2214.0, - 1543.0, - 2214.0, - 1543.0, - 2243.0, - 1505.0, - 2243.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 660.0, - 102.0, - 1537.0, - 102.0, - 1537.0, - 133.0, - 660.0, - 133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 790.0, - 538.0, - 894.0, - 538.0, - 894.0, - 573.0, - 790.0, - 573.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 790.0, - 538.0, - 894.0, - 538.0, - 894.0, - 573.0, - 790.0, - 573.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 44, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 119, - 235, - 1535, - 235, - 1535, - 1035, - 119, - 1035 - ], - "score": 0.981, - "html": "
Evaluation will take the form of juxtaposition of competing positions or to one or two isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
5-8insubstantial points about media audiences. Understands only limited aspects of the question; simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question. Very limited or no evaluation. Attempts at analysis, if any, are thin and disjointed.
1-4Answers in this band will show very limited knowledge, eg one or two very insubstantial points about the media.Very little/no understanding of the question and of the presented material. Significant errors and/or omissions in application of material.
0No analysisor evaluation. No relevant points.
" - }, - { - "category_id": 1, - "poly": [ - 143, - 1221, - 1503, - 1221, - 1503, - 1365, - 143, - 1365 - ], - "score": 0.975 - }, - { - "category_id": 1, - "poly": [ - 144, - 1493, - 1537, - 1493, - 1537, - 1601, - 144, - 1601 - ], - "score": 0.935 - }, - { - "category_id": 1, - "poly": [ - 144, - 1151, - 902, - 1151, - 902, - 1189, - 144, - 1189 - ], - "score": 0.926 - }, - { - "category_id": 0, - "poly": [ - 142, - 1081, - 410, - 1081, - 410, - 1119, - 142, - 1119 - ], - "score": 0.915 - }, - { - "category_id": 0, - "poly": [ - 143, - 1423, - 988, - 1423, - 988, - 1461, - 143, - 1461 - ], - "score": 0.884 - }, - { - "category_id": 2, - "poly": [ - 658, - 100, - 1538, - 100, - 1538, - 136, - 658, - 136 - ], - "score": 0.878 - }, - { - "category_id": 2, - "poly": [ - 116, - 2215, - 144, - 2215, - 144, - 2238, - 116, - 2238 - ], - "score": 0.862 - }, - { - "category_id": 15, - "poly": [ - 140.0, - 1221.0, - 1386.0, - 1221.0, - 1386.0, - 1261.0, - 140.0, - 1261.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 1256.0, - 1422.0, - 1256.0, - 1422.0, - 1298.0, - 140.0, - 1298.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 143.0, - 1298.0, - 1498.0, - 1298.0, - 1498.0, - 1331.0, - 143.0, - 1331.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 142.0, - 1330.0, - 928.0, - 1330.0, - 928.0, - 1366.0, - 142.0, - 1366.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 147.0, - 1498.0, - 1469.0, - 1498.0, - 1469.0, - 1529.0, - 147.0, - 1529.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 1527.0, - 1534.0, - 1527.0, - 1534.0, - 1570.0, - 141.0, - 1570.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 144.0, - 1567.0, - 327.0, - 1567.0, - 327.0, - 1602.0, - 144.0, - 1602.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 144.0, - 1152.0, - 903.0, - 1152.0, - 903.0, - 1192.0, - 144.0, - 1192.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 145.0, - 1086.0, - 408.0, - 1086.0, - 408.0, - 1116.0, - 145.0, - 1116.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 147.0, - 1428.0, - 988.0, - 1428.0, - 988.0, - 1458.0, - 147.0, - 1458.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 659.0, - 100.0, - 1537.0, - 100.0, - 1537.0, - 134.0, - 659.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 2214.0, - 150.0, - 2214.0, - 150.0, - 2243.0, - 113.0, - 2243.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 45, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 113, - 598, - 1510, - 598, - 1510, - 1737, - 113, - 1737 - ], - "score": 0.981, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show very good knowledge and understanding of two factors There will be two applications of relevant material, eg educational policies enable some occupations and structure may create opportunities for upward social mobility. There will be appropriate analysis, eg the extent to which there has been working class upward mobility.
4-7or two factors which may lead to some members of the working class achieving upward social mobility. being able to buy property. There will be some basic analysis.
1-3Answers in this band will show limited knowledge and little or no understanding of the question or the material. There will be limited focus on the question, eg there may be some drift into descriptions of class. Therewill be little or no analysis.
0No relevant points.
" - }, - { - "category_id": 5, - "poly": [ - 116, - 312, - 1518, - 312, - 1518, - 400, - 116, - 400 - ], - "score": 0.961, - "html": "
QuTotal Marking guidance marks
" - }, - { - "category_id": 5, - "poly": [ - 111, - 462, - 1513, - 462, - 1513, - 572, - 111, - 572 - ], - "score": 0.943, - "html": "
22Outline and explain two factors which may lead to some members of the working class achieving upward social mobility.10
" - }, - { - "category_id": 1, - "poly": [ - 132, - 1772, - 990, - 1772, - 990, - 1809, - 132, - 1809 - ], - "score": 0.907 - }, - { - "category_id": 0, - "poly": [ - 128, - 1738, - 395, - 1738, - 395, - 1770, - 128, - 1770 - ], - "score": 0.895 - }, - { - "category_id": 2, - "poly": [ - 657, - 99, - 1539, - 99, - 1539, - 136, - 657, - 136 - ], - "score": 0.881 - }, - { - "category_id": 1, - "poly": [ - 127, - 1842, - 1056, - 1842, - 1056, - 2107, - 127, - 2107 - ], - "score": 0.876 - }, - { - "category_id": 2, - "poly": [ - 1508, - 2214, - 1538, - 2214, - 1538, - 2238, - 1508, - 2238 - ], - "score": 0.868 - }, - { - "category_id": 6, - "poly": [ - 509, - 257, - 1126, - 257, - 1126, - 296, - 509, - 296 - ], - "score": 0.53 - }, - { - "category_id": 0, - "poly": [ - 509, - 257, - 1126, - 257, - 1126, - 296, - 509, - 296 - ], - "score": 0.523 - }, - { - "category_id": 15, - "poly": [ - 130.0, - 1774.0, - 986.0, - 1774.0, - 986.0, - 1807.0, - 130.0, - 1807.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 129.0, - 1741.0, - 394.0, - 1741.0, - 394.0, - 1769.0, - 129.0, - 1769.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 661.0, - 103.0, - 1537.0, - 103.0, - 1537.0, - 132.0, - 661.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 132.0, - 1848.0, - 1053.0, - 1848.0, - 1053.0, - 1880.0, - 132.0, - 1880.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 158.0, - 1885.0, - 932.0, - 1885.0, - 932.0, - 1917.0, - 158.0, - 1917.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 154.0, - 1923.0, - 432.0, - 1923.0, - 432.0, - 1953.0, - 154.0, - 1953.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 128.0, - 1960.0, - 670.0, - 1960.0, - 670.0, - 1989.0, - 128.0, - 1989.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 131.0, - 1997.0, - 498.0, - 1997.0, - 498.0, - 2029.0, - 131.0, - 2029.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 2033.0, - 328.0, - 2033.0, - 328.0, - 2069.0, - 134.0, - 2069.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 2071.0, - 833.0, - 2071.0, - 833.0, - 2103.0, - 135.0, - 2103.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1507.0, - 2214.0, - 1541.0, - 2214.0, - 1541.0, - 2242.0, - 1507.0, - 2242.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 511.0, - 260.0, - 1125.0, - 260.0, - 1125.0, - 294.0, - 511.0, - 294.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 511.0, - 260.0, - 1125.0, - 260.0, - 1125.0, - 294.0, - 511.0, - 294.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 46, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 113, - 1027, - 1518, - 1027, - 1518, - 2163, - 113, - 2163 - ], - "score": 0.984, - "html": "
MarksLevel Descriptors
8-10Answers in this band will show good knowledge and understanding of relevant material on s There will be two developed applications of material from the item, eg for young people, not having the right to work full time reduces income and independence; for older people, There will be appropriate analysis/evaluation of two problems eg of the extent to which age
4-7Answers in this band will show a basic to reasonable knowledge and understanding of one or two ways in which age may affect an individual's status. There will be some successful application of material from the item, eg reduced income in old age.
1-3There will be some analysis/evaluation. Answers in this band will show limited knowledge and understanding of one or two ways in which age may affect an individual's status. There will be limited application of material from the item. Some material may be at a There will be limited or no analysis/evaluation.
0No relevant points.
" - }, - { - "category_id": 5, - "poly": [ - 111, - 519, - 1515, - 519, - 1515, - 620, - 111, - 620 - ], - "score": 0.968, - "html": "
23Applying material from Item O, analyse two ways in which age may affect an individual'sstatus.10
" - }, - { - "category_id": 5, - "poly": [ - 115, - 400, - 1513, - 400, - 1513, - 488, - 115, - 488 - ], - "score": 0.947, - "html": "
QuMarking guidanceTotal marks
" - }, - { - "category_id": 2, - "poly": [ - 659, - 99, - 1539, - 99, - 1539, - 136, - 659, - 136 - ], - "score": 0.883 - }, - { - "category_id": 2, - "poly": [ - 115, - 2214, - 146, - 2214, - 146, - 2239, - 115, - 2239 - ], - "score": 0.861 - }, - { - "category_id": 5, - "poly": [ - 113, - 241, - 1496, - 241, - 1496, - 363, - 113, - 363 - ], - "score": 0.851, - "html": "
Sources may include the following or other relevant ones:
Blanden et al; Davis and Moore; Dorling et al; Glass; Goldthorpe; Heath and Brittan; Marshall et al; McKnight; Payne; Roberts; Saunders; Savage; Sutton Trust.
" - }, - { - "category_id": 0, - "poly": [ - 757, - 705, - 859, - 705, - 859, - 741, - 757, - 741 - ], - "score": 0.805 - }, - { - "category_id": 1, - "poly": [ - 115, - 776, - 1448, - 776, - 1448, - 886, - 115, - 886 - ], - "score": 0.699 - }, - { - "category_id": 1, - "poly": [ - 120, - 919, - 627, - 919, - 627, - 957, - 120, - 957 - ], - "score": 0.589 - }, - { - "category_id": 15, - "poly": [ - 660.0, - 103.0, - 1537.0, - 103.0, - 1537.0, - 132.0, - 660.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 2214.0, - 150.0, - 2214.0, - 150.0, - 2244.0, - 112.0, - 2244.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 756.0, - 707.0, - 860.0, - 707.0, - 860.0, - 742.0, - 756.0, - 742.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 777.0, - 1423.0, - 777.0, - 1423.0, - 820.0, - 117.0, - 820.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 815.0, - 1393.0, - 815.0, - 1393.0, - 854.0, - 117.0, - 854.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 852.0, - 299.0, - 852.0, - 299.0, - 888.0, - 120.0, - 888.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 122.0, - 922.0, - 624.0, - 922.0, - 624.0, - 955.0, - 122.0, - 955.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 47, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 658, - 99, - 1539, - 99, - 1539, - 136, - 658, - 136 - ], - "score": 0.864 - }, - { - "category_id": 2, - "poly": [ - 1509, - 2215, - 1536, - 2215, - 1536, - 2237, - 1509, - 2237 - ], - "score": 0.846 - }, - { - "category_id": 1, - "poly": [ - 133, - 310, - 1388, - 310, - 1388, - 379, - 133, - 379 - ], - "score": 0.458 - }, - { - "category_id": 0, - "poly": [ - 124, - 273, - 981, - 273, - 981, - 308, - 124, - 308 - ], - "score": 0.442 - }, - { - "category_id": 1, - "poly": [ - 126, - 272, - 1395, - 272, - 1395, - 380, - 126, - 380 - ], - "score": 0.165 - }, - { - "category_id": 15, - "poly": [ - 660.0, - 103.0, - 1536.0, - 103.0, - 1536.0, - 132.0, - 660.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1506.0, - 2214.0, - 1542.0, - 2214.0, - 1542.0, - 2243.0, - 1506.0, - 2243.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 132.0, - 309.0, - 1391.0, - 309.0, - 1391.0, - 345.0, - 132.0, - 345.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 346.0, - 810.0, - 346.0, - 810.0, - 379.0, - 134.0, - 379.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 277.0, - 976.0, - 277.0, - 976.0, - 306.0, - 135.0, - 306.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 275.0, - 977.0, - 275.0, - 977.0, - 308.0, - 133.0, - 308.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 132.0, - 309.0, - 1392.0, - 309.0, - 1392.0, - 344.0, - 132.0, - 344.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 130.0, - 346.0, - 810.0, - 346.0, - 810.0, - 378.0, - 130.0, - 378.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 48, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 114, - 852, - 1516, - 852, - 1516, - 2171, - 114, - 2171 - ], - "score": 0.981, - "html": "
MarksLevelDescriptors
17-20Answers in this band will show sound, conceptually detailed knowledge of a range of today. Sophisticated understanding of the question and of the presented material will be shown. Appropriate material will be applied accurately and with sensitivity to the issues raised by thequestion. Analysis and evaluation will be explicit and relevant. Evaluation may be developed, for example throughdebates over the relative importance ofgender compared toother dimensions of inequality such as ethnicity and social class. Analysis will show clear
13-16explanation. Appropriate conclusions will be drawn. Answers in this band will show largely accurate, broad or deep but incomplete knowledge. Understands a number of significant aspects of the question; good understanding of the presentedmaterial. maybe inadequatelyfocused.
9-12and/or some appropriate analysis, eg clear explanations of some of the presented material. Answers in this band will show largely accurate knowledge but limited range and depth, eg Applying listed material from the general topic area but with limited regard for its relevance isolated stated points. Analysis will be limited, with answers tending towards the descriptive.
" - }, - { - "category_id": 5, - "poly": [ - 109, - 350, - 1516, - 350, - 1516, - 453, - 109, - 453 - ], - "score": 0.962, - "html": "
Applying material from Item P and your knowledge, evaluate the view that gender is the most important dimension of inequality today.20
" - }, - { - "category_id": 5, - "poly": [ - 110, - 232, - 1517, - 232, - 1517, - 319, - 110, - 319 - ], - "score": 0.961, - "html": "
QuMarking guidanceTotal marks
" - }, - { - "category_id": 2, - "poly": [ - 115, - 2214, - 145, - 2214, - 145, - 2239, - 115, - 2239 - ], - "score": 0.863 - }, - { - "category_id": 2, - "poly": [ - 657, - 98, - 1539, - 98, - 1539, - 137, - 657, - 137 - ], - "score": 0.813 - }, - { - "category_id": 0, - "poly": [ - 759, - 537, - 857, - 537, - 857, - 573, - 759, - 573 - ], - "score": 0.476 - }, - { - "category_id": 5, - "poly": [ - 111, - 484, - 1493, - 484, - 1493, - 836, - 111, - 836 - ], - "score": 0.378, - "html": "
ItemP
despite some improvements in the social position of women.
However, other sociologists see gender inequalities as natural and inevitable, or argue that other
dimensionsof inequalityaremoreimportant.
" - }, - { - "category_id": 6, - "poly": [ - 759, - 537, - 857, - 537, - 857, - 573, - 759, - 573 - ], - "score": 0.367 - }, - { - "category_id": 1, - "poly": [ - 116, - 608, - 1463, - 608, - 1463, - 682, - 116, - 682 - ], - "score": 0.148 - }, - { - "category_id": 15, - "poly": [ - 113.0, - 2214.0, - 150.0, - 2214.0, - 150.0, - 2243.0, - 113.0, - 2243.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 661.0, - 102.0, - 1537.0, - 102.0, - 1537.0, - 133.0, - 661.0, - 133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 759.0, - 539.0, - 859.0, - 539.0, - 859.0, - 574.0, - 759.0, - 574.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 759.0, - 539.0, - 859.0, - 539.0, - 859.0, - 574.0, - 759.0, - 574.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 614.0, - 1457.0, - 614.0, - 1457.0, - 648.0, - 120.0, - 648.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 123.0, - 650.0, - 940.0, - 650.0, - 940.0, - 680.0, - 123.0, - 680.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 49, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 117, - 233, - 1513, - 233, - 1513, - 925, - 117, - 925 - ], - "score": 0.978, - "html": "
5-8insubstantial points about gender inequality today. Understands only limited aspects of the question; simplistic understanding of the presented material. Limited application of suitable material, and/or material often at a tangent to the demands of the question. Very limited or no evaluation. Attempts at analysis, if any, are thin and disjointed.
1-4points about gender in general. Very little/no understanding of the question and of the presentedmaterial. Significant errors and/or omissions in application of material. No analysis or evaluation.
0No relevant points.
" - }, - { - "category_id": 1, - "poly": [ - 121, - 1112, - 1472, - 1112, - 1472, - 1255, - 121, - 1255 - ], - "score": 0.976 - }, - { - "category_id": 1, - "poly": [ - 120, - 1042, - 877, - 1042, - 877, - 1079, - 120, - 1079 - ], - "score": 0.934 - }, - { - "category_id": 0, - "poly": [ - 120, - 970, - 386, - 970, - 386, - 1008, - 120, - 1008 - ], - "score": 0.915 - }, - { - "category_id": 1, - "poly": [ - 123, - 1383, - 1416, - 1383, - 1416, - 1457, - 123, - 1457 - ], - "score": 0.914 - }, - { - "category_id": 0, - "poly": [ - 119, - 1313, - 964, - 1313, - 964, - 1351, - 119, - 1351 - ], - "score": 0.896 - }, - { - "category_id": 2, - "poly": [ - 659, - 100, - 1539, - 100, - 1539, - 136, - 659, - 136 - ], - "score": 0.878 - }, - { - "category_id": 2, - "poly": [ - 1509, - 2215, - 1537, - 2215, - 1537, - 2238, - 1509, - 2238 - ], - "score": 0.858 - }, - { - "category_id": 15, - "poly": [ - 119.0, - 1114.0, - 1446.0, - 1114.0, - 1446.0, - 1152.0, - 119.0, - 1152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 1150.0, - 1471.0, - 1150.0, - 1471.0, - 1185.0, - 118.0, - 1185.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 1183.0, - 1380.0, - 1183.0, - 1380.0, - 1223.0, - 118.0, - 1223.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 1220.0, - 951.0, - 1220.0, - 951.0, - 1256.0, - 118.0, - 1256.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 121.0, - 1043.0, - 878.0, - 1043.0, - 878.0, - 1080.0, - 121.0, - 1080.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 121.0, - 975.0, - 385.0, - 975.0, - 385.0, - 1005.0, - 121.0, - 1005.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 121.0, - 1386.0, - 1421.0, - 1386.0, - 1421.0, - 1421.0, - 121.0, - 1421.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 1419.0, - 1047.0, - 1419.0, - 1047.0, - 1458.0, - 118.0, - 1458.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 122.0, - 1317.0, - 966.0, - 1317.0, - 966.0, - 1350.0, - 122.0, - 1350.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 658.0, - 100.0, - 1537.0, - 100.0, - 1537.0, - 134.0, - 658.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1507.0, - 2215.0, - 1541.0, - 2215.0, - 1541.0, - 2242.0, - 1507.0, - 2242.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 50, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 174, - 303, - 1339, - 303, - 1339, - 1010, - 174, - 1010 - ], - "score": 0.984, - "html": "
A01A02A03Total
Section A
Q01, Q04, Q07, Q1053210
Q02, Q05, Q08, Q1134310
Q03, Q06, Q09. Q1289920
Section B
Q13, Q16, Q19, Q2253210
Q14, Q17, Q20, Q2334310
Q15, Q18, Q21, Q2489920
Totals32262280
" - }, - { - "category_id": 2, - "poly": [ - 657, - 99, - 1539, - 99, - 1539, - 137, - 657, - 137 - ], - "score": 0.875 - }, - { - "category_id": 2, - "poly": [ - 116, - 2215, - 145, - 2215, - 145, - 2237, - 116, - 2237 - ], - "score": 0.861 - }, - { - "category_id": 0, - "poly": [ - 650, - 235, - 1045, - 235, - 1045, - 274, - 650, - 274 - ], - "score": 0.677 - }, - { - "category_id": 6, - "poly": [ - 650, - 235, - 1045, - 235, - 1045, - 274, - 650, - 274 - ], - "score": 0.299 - }, - { - "category_id": 15, - "poly": [ - 659.0, - 100.0, - 1538.0, - 100.0, - 1538.0, - 134.0, - 659.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 2214.0, - 150.0, - 2214.0, - 150.0, - 2243.0, - 112.0, - 2243.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 652.0, - 239.0, - 1041.0, - 239.0, - 1041.0, - 273.0, - 652.0, - 273.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 652.0, - 239.0, - 1041.0, - 239.0, - 1041.0, - 273.0, - 652.0, - 273.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 51, - "height": 2339, - "width": 1654 - } - } -] \ No newline at end of file diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/7192_2_June_2020_1739552314_spans.pdf b/pdf_output/7192_2_June_2020_1739552314/auto/7192_2_June_2020_1739552314_spans.pdf deleted file mode 100644 index f4f26b7ff0fe6c49d53effb95364918dbb30baa3..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/7192_2_June_2020_1739552314_spans.pdf +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1dee4a27b9926a0dd189d146398805ae30f608c862861aa185fde6cb293bb523 -size 758407 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/0640ca6ee30004a984dc8edf51689178bf011d2190068448ae0c92e7dfbc44f5.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/0640ca6ee30004a984dc8edf51689178bf011d2190068448ae0c92e7dfbc44f5.jpg deleted file mode 100644 index af35e250d9d2f0faa7d9abab74813888b0357795..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/0640ca6ee30004a984dc8edf51689178bf011d2190068448ae0c92e7dfbc44f5.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:64529c0efd3e0e785e1d6cc340e8fe2bc1e4a22f4f11304d99b5efa944fc5bcf -size 16655 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/0643d79c650b6be514095bdcff9b69bd3114a7b93b35a0a84b0ab42637e0e882.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/0643d79c650b6be514095bdcff9b69bd3114a7b93b35a0a84b0ab42637e0e882.jpg deleted file mode 100644 index b5617c89817d2058ebdeea13bd83cde63a5a2704..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/0643d79c650b6be514095bdcff9b69bd3114a7b93b35a0a84b0ab42637e0e882.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:19eed2da54aac8efb8f0ea625c6491effa4be4ec08806c4889a59c094ff017af -size 34621 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/08e3760476341311f2bf4e9d2d5f5592291993d7ebd2ba9a6dd3fe323592d755.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/08e3760476341311f2bf4e9d2d5f5592291993d7ebd2ba9a6dd3fe323592d755.jpg deleted file mode 100644 index 7317aed5029fe4d6dc7a67cdd85d24c2186dcff3..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/08e3760476341311f2bf4e9d2d5f5592291993d7ebd2ba9a6dd3fe323592d755.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:848d34df74d03bcb0d77a4bff5e366f38be63c4e91312e9e9367e45ba1ad02e1 -size 85260 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/0a6f6b341d2ae5bc80f6082c543864de68520ccd901d835f1030f7b619f5a155.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/0a6f6b341d2ae5bc80f6082c543864de68520ccd901d835f1030f7b619f5a155.jpg deleted file mode 100644 index 34f85aaf9e7e263d565d05d8d7ba6211a1fcb5b6..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/0a6f6b341d2ae5bc80f6082c543864de68520ccd901d835f1030f7b619f5a155.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3e4bd1f7aaf95eace712103c56349630560a94b43d01f0b2549ea27eb252eff1 -size 38768 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/0f222e0c3a3a8e48c0dca02ea1d5bc1f677cba60e48bef756ede443ff7e59712.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/0f222e0c3a3a8e48c0dca02ea1d5bc1f677cba60e48bef756ede443ff7e59712.jpg deleted file mode 100644 index d6e5a7b31fd80941c34b6498747b5a86b38b618d..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/0f222e0c3a3a8e48c0dca02ea1d5bc1f677cba60e48bef756ede443ff7e59712.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c8718903d474a7b8240d3cdc35e29515ebc17b9176d8611aeabec7342593523c -size 257383 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/10097d3a35c1e9450d485ec86ce76be6559f86550a4657148b85a554144660be.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/10097d3a35c1e9450d485ec86ce76be6559f86550a4657148b85a554144660be.jpg deleted file mode 100644 index 66f3fcb09679fdfdba34784bf912965e2885c086..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/10097d3a35c1e9450d485ec86ce76be6559f86550a4657148b85a554144660be.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4a5a51c79ff9bc16a08834acfb8e1438c9b1163861ba2df61b79e4ea20da2d1c -size 48538 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/1173723369daf1967a89f48c1c1dfbe87aa7f6648202e2734095eba7c2f64998.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/1173723369daf1967a89f48c1c1dfbe87aa7f6648202e2734095eba7c2f64998.jpg deleted file mode 100644 index 3cd59300df1f3d3148c69be61178ba5eadd51ebf..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/1173723369daf1967a89f48c1c1dfbe87aa7f6648202e2734095eba7c2f64998.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e44b9743982e71ff8d9792e7e2bab95b9af2b713b7e22f129eca78ac005a7c24 -size 523584 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/1868b0f7f5adc1b457a29e7424ca0ef12fe0ffdbb4a6094c446d20bf365ee948.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/1868b0f7f5adc1b457a29e7424ca0ef12fe0ffdbb4a6094c446d20bf365ee948.jpg deleted file mode 100644 index 56f229fa86ff7a8c157859a107100515c1e6ca2a..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/1868b0f7f5adc1b457a29e7424ca0ef12fe0ffdbb4a6094c446d20bf365ee948.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2f3b1a45b5c8091db292a5551629242a98fbf20a554a29762c950cf95ec224e3 -size 59053 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/1d2b392d2453ec1f021d0c331e6f7b561009b48e7e69cf669b3dd7f258607782.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/1d2b392d2453ec1f021d0c331e6f7b561009b48e7e69cf669b3dd7f258607782.jpg deleted file mode 100644 index 016d5c00e6e7d354ec51ff4f44768453504a94e6..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/1d2b392d2453ec1f021d0c331e6f7b561009b48e7e69cf669b3dd7f258607782.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d1af46cfbe76b1ed83fa1aa1efac0f591fa168ccd1a2acb06771af6ea31c0cc0 -size 20452 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/21c9f356353df5f7b79c2bd17506e9fd92099748181068c54b7706a0af544983.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/21c9f356353df5f7b79c2bd17506e9fd92099748181068c54b7706a0af544983.jpg deleted file mode 100644 index 3cf2e913221e0944807e2a578aee44bee3a85cbc..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/21c9f356353df5f7b79c2bd17506e9fd92099748181068c54b7706a0af544983.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bc53e18e108d1ed4be026bba297bc39e833b333bdb000e15a7a29a1968520265 -size 210761 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/237548171c785a0680e3e5887e5a7982d4f93eaedae1ff94f590d428d68076db.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/237548171c785a0680e3e5887e5a7982d4f93eaedae1ff94f590d428d68076db.jpg deleted file mode 100644 index 41b8fe905eb938f4ac371933fd337b2d8cbec97c..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/237548171c785a0680e3e5887e5a7982d4f93eaedae1ff94f590d428d68076db.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:078ae5efa1b10b65eea10ff1e463de859c5a52ec437d58b7daac8f11f0310087 -size 138478 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/23d13ff65c06e2a162a7023252fe399505ed2a93efc52937a00a66ecfe717345.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/23d13ff65c06e2a162a7023252fe399505ed2a93efc52937a00a66ecfe717345.jpg deleted file mode 100644 index d1ad7d9f80f4b80f3a02df15b0f704d83599cec5..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/23d13ff65c06e2a162a7023252fe399505ed2a93efc52937a00a66ecfe717345.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bb9227977ef1375716064f40a0c6aba5ab80dd37dda99b5972581e2c44a833b1 -size 18894 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/277ead22442bea9b765ea51d9a2a31033db318a6e8b3fa36dc64e9d4443a3204.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/277ead22442bea9b765ea51d9a2a31033db318a6e8b3fa36dc64e9d4443a3204.jpg deleted file mode 100644 index bf5c25f20c3affa14b32cc39577e54b51f1f5f7b..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/277ead22442bea9b765ea51d9a2a31033db318a6e8b3fa36dc64e9d4443a3204.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dc1bce4aca61ac00e173212b9ad04f70b33420b810d3b086f3443d37388c5d0e -size 37210 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/2e66035d10a99fd1d2fac79e0aa4744b58f04828efd52968c8dafac786a81469.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/2e66035d10a99fd1d2fac79e0aa4744b58f04828efd52968c8dafac786a81469.jpg deleted file mode 100644 index b4458499e8900e3d0c32429455f8fb932e71ac2d..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/2e66035d10a99fd1d2fac79e0aa4744b58f04828efd52968c8dafac786a81469.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a003fe27effb931f3cf37824ae8b106bb8747872cea244d7adc1832d88971fdd -size 492506 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/2e82dbb47c38ca77bd98d49a93e5dc5037af7b31b7e84c7ca877fe5730d28c0c.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/2e82dbb47c38ca77bd98d49a93e5dc5037af7b31b7e84c7ca877fe5730d28c0c.jpg deleted file mode 100644 index b10654a76ee317bd3043472ac60f97573057905a..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/2e82dbb47c38ca77bd98d49a93e5dc5037af7b31b7e84c7ca877fe5730d28c0c.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4382a7611e9c27c533eea783fe76e731ef606e2f6260650ce21641656c0cc129 -size 29342 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/32f824e8904610bde1b87344b84d4ee94e46f79358786f8d3482c92f2d87f242.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/32f824e8904610bde1b87344b84d4ee94e46f79358786f8d3482c92f2d87f242.jpg deleted file mode 100644 index 6c6156d12e83097e4663fadf635ed99c34a9978f..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/32f824e8904610bde1b87344b84d4ee94e46f79358786f8d3482c92f2d87f242.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e4e90bf0049c51ee9477602a3e61b0609b816d197bcfb0a1d4bdd031680aa38d -size 389275 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/380c7251f5db1b38b7de13204a2c1ed816785c31ee3dcac64cfc71d00666cd42.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/380c7251f5db1b38b7de13204a2c1ed816785c31ee3dcac64cfc71d00666cd42.jpg deleted file mode 100644 index 2caf25ce4d69394af78ecb020a80cf06035cee0b..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/380c7251f5db1b38b7de13204a2c1ed816785c31ee3dcac64cfc71d00666cd42.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7758897b9e5fbbe1b16269b58f06b140e232a735dc055ab47f6006a193f5feb1 -size 40287 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/3a3690542caac254555a042e4374663554ac52ef4ea53bde4c6fa599f1144b40.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/3a3690542caac254555a042e4374663554ac52ef4ea53bde4c6fa599f1144b40.jpg deleted file mode 100644 index c8475b1efeb89ca546b2a9c68738fa90f27f535e..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/3a3690542caac254555a042e4374663554ac52ef4ea53bde4c6fa599f1144b40.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:54c264a53821fb9ee3dbc62704c38687e3f52142ed04e43bbdfe6fac4727a909 -size 16919 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/3c124a8d003a153f50d0748f0ffb9a81cf4de5c038df220259fc18c8c6c30cbb.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/3c124a8d003a153f50d0748f0ffb9a81cf4de5c038df220259fc18c8c6c30cbb.jpg deleted file mode 100644 index 85638e23b8926782bed824324159bf33d4fc4cc4..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/3c124a8d003a153f50d0748f0ffb9a81cf4de5c038df220259fc18c8c6c30cbb.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b292d4369e26736bb512922da3bbc6ff3b480338a80bf8adc7bbc36d4442e614 -size 16237 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/4455381b2fbf75083032c447f74e00eb614d001c5844da9c1eba65d5895f4942.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/4455381b2fbf75083032c447f74e00eb614d001c5844da9c1eba65d5895f4942.jpg deleted file mode 100644 index 22bb77d6fc0f8752278a259e88b4a467189bbe08..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/4455381b2fbf75083032c447f74e00eb614d001c5844da9c1eba65d5895f4942.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7f1d418cd73b214e69a9ec8d1b892f8074ad27dcec8e888f7923f79f1f90af81 -size 19116 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/49db5b12a9b6ba6e1bbf9a660a9db19aeaddb7bec8b02fbe782cd754558b0282.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/49db5b12a9b6ba6e1bbf9a660a9db19aeaddb7bec8b02fbe782cd754558b0282.jpg deleted file mode 100644 index af35e250d9d2f0faa7d9abab74813888b0357795..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/49db5b12a9b6ba6e1bbf9a660a9db19aeaddb7bec8b02fbe782cd754558b0282.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:64529c0efd3e0e785e1d6cc340e8fe2bc1e4a22f4f11304d99b5efa944fc5bcf -size 16655 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/4a1b81fb1a0b021ceffeea8c4878c63811eb563c5050040f4eb3441192a0e90f.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/4a1b81fb1a0b021ceffeea8c4878c63811eb563c5050040f4eb3441192a0e90f.jpg deleted file mode 100644 index 981671a782e3fb7b1e6dea695876e3b8f39aa9aa..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/4a1b81fb1a0b021ceffeea8c4878c63811eb563c5050040f4eb3441192a0e90f.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d5730f7e2c5443b77a020a25e006064dcca0eac3e7871f081a21c564905bf06e -size 16280 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/4fe3f4698edb80d949887e7c2c40d4b4317adf3598f1279b96bc621e7cc26c40.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/4fe3f4698edb80d949887e7c2c40d4b4317adf3598f1279b96bc621e7cc26c40.jpg deleted file mode 100644 index 6ef9cf4d0367e4f00be84207db8f0b0dcee046c9..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/4fe3f4698edb80d949887e7c2c40d4b4317adf3598f1279b96bc621e7cc26c40.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ff8b228de5479e73055d2363b9bb9ff07ade19619c64ca9e031a5655bf33dbfe -size 360658 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/5499b5568a18706df7153b5fc42cf17d2b3e05ada08cc16da1dd87d1ff0a924f.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/5499b5568a18706df7153b5fc42cf17d2b3e05ada08cc16da1dd87d1ff0a924f.jpg deleted file mode 100644 index 9fc05adea20526a1db50a2f9d38dd065db55fc4f..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/5499b5568a18706df7153b5fc42cf17d2b3e05ada08cc16da1dd87d1ff0a924f.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4f4321784135d87385473ac65fe1e9a4d3af2b30550a85fb19ac884d7dc9e6bf -size 534212 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/55b2059b7deeec43050a662090670651b1fe752598b674f262c244259e81b57a.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/55b2059b7deeec43050a662090670651b1fe752598b674f262c244259e81b57a.jpg deleted file mode 100644 index c05fdf60de77225d5902e6f7e30e5eee158509e9..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/55b2059b7deeec43050a662090670651b1fe752598b674f262c244259e81b57a.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:025b5774e66852f6aa54644bd22eadb9ded314d99f833c1e7f9d552c58a02a1c -size 34417 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/568457a68a056a9defebfd89d2f9491880c154d462507d20239664bba77fbb05.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/568457a68a056a9defebfd89d2f9491880c154d462507d20239664bba77fbb05.jpg deleted file mode 100644 index f772a1cc9c8aa908d63738486629767c1cd68bea..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/568457a68a056a9defebfd89d2f9491880c154d462507d20239664bba77fbb05.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:062273ea2cfdeb2f8f9f5e2c49753428c04c9af6519c5a751f84a80df10c8e14 -size 36236 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/5a7a1c94ffa043eda2001b6172190504b8a24d78d7e700acc8146d3f6eded6fe.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/5a7a1c94ffa043eda2001b6172190504b8a24d78d7e700acc8146d3f6eded6fe.jpg deleted file mode 100644 index ef4c3a0a311187c32971ef62f076868090bba1f2..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/5a7a1c94ffa043eda2001b6172190504b8a24d78d7e700acc8146d3f6eded6fe.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a494252722a7f021901fe2a1f127cfd86c2fb1aab16d0ec737036e73edc4902d -size 42348 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/5dc3eec24506bf1c6fecfaa0569749b49212f2f4cf00cc58dd69530a3391ff93.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/5dc3eec24506bf1c6fecfaa0569749b49212f2f4cf00cc58dd69530a3391ff93.jpg deleted file mode 100644 index 69664dbaebc41cc85e35aa7b334cef7fa571d04a..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/5dc3eec24506bf1c6fecfaa0569749b49212f2f4cf00cc58dd69530a3391ff93.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:052f61648785acc100bc7431542b4726c21a65d1aad2aabc5c7188d65b6114ef -size 336685 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/62000c1dfbeabea65ca53073497a7deda7a6941867b5a9518139e82f1705dd28.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/62000c1dfbeabea65ca53073497a7deda7a6941867b5a9518139e82f1705dd28.jpg deleted file mode 100644 index 368027482a4ca060d85fb4d60b71ff19ac60f29e..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/62000c1dfbeabea65ca53073497a7deda7a6941867b5a9518139e82f1705dd28.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f654d891a551d3ca1ec9983a21c703e15d1f2ec4afd04dd8bd441f7c26446e1b -size 16830 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/690ef40a1daa0c9bf686a527a40ce50a88774835c1a8fb4e7b21ab21506677f8.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/690ef40a1daa0c9bf686a527a40ce50a88774835c1a8fb4e7b21ab21506677f8.jpg deleted file mode 100644 index 17422a0e8a7535f7e972bd5c0dba6bfc1b0d48ac..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/690ef40a1daa0c9bf686a527a40ce50a88774835c1a8fb4e7b21ab21506677f8.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0fb383b788b5594cd99fd77120ca048b7fc7fae47f6dbc0325eca1bb92b9b0ba -size 17037 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/6dd52e17b88cc87ea79444a0ee7486412d44441b8edbc9ba6b626c453c94f1fa.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/6dd52e17b88cc87ea79444a0ee7486412d44441b8edbc9ba6b626c453c94f1fa.jpg deleted file mode 100644 index e1e0d65e0c683ec2b2f08aadd78633218bc0f3f1..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/6dd52e17b88cc87ea79444a0ee7486412d44441b8edbc9ba6b626c453c94f1fa.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0b7fa997a5706c25fa14d90ada80333866787602918a337f57de13de5ce1a6a3 -size 12073 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/71695cba0926fb8e18b5ca83714d8fb518d9341d74927afc183e09bdc4ba6452.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/71695cba0926fb8e18b5ca83714d8fb518d9341d74927afc183e09bdc4ba6452.jpg deleted file mode 100644 index 3bd38fccfe965e4297751e17196efbe78268681f..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/71695cba0926fb8e18b5ca83714d8fb518d9341d74927afc183e09bdc4ba6452.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9b1262161a80aeeca556c643493816474ad160fa77f21dfac1b219697868bdf5 -size 112657 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/732f98332709676d006ed40595b5373c467477a7944247979387028951d6b31a.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/732f98332709676d006ed40595b5373c467477a7944247979387028951d6b31a.jpg deleted file mode 100644 index 1a384ac020ff6fc601cb3941037e0a4e94561134..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/732f98332709676d006ed40595b5373c467477a7944247979387028951d6b31a.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1f6dcfb9fbbd1be0c8d56be31691404ed6c184bcb5d967591616f851e1773084 -size 363200 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/73fb3c29e7b45cd42cd14f6d86a3d63b94e5dff735042380f80541da50b7bef4.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/73fb3c29e7b45cd42cd14f6d86a3d63b94e5dff735042380f80541da50b7bef4.jpg deleted file mode 100644 index 74260ce19dc823a5631487c17fe7b7add14e7f52..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/73fb3c29e7b45cd42cd14f6d86a3d63b94e5dff735042380f80541da50b7bef4.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:25506ea448e67e24cdf39c540b2d738f180c688c29f016965dcf1c8e40d29e21 -size 40873 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/765da57723cea137ebd3cdbeca39ceb342fd314d6a6c2b2fd5d8d52d200e1ba7.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/765da57723cea137ebd3cdbeca39ceb342fd314d6a6c2b2fd5d8d52d200e1ba7.jpg deleted file mode 100644 index 3d3732f5bbbfaace115332a015e1ab2b3b98695c..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/765da57723cea137ebd3cdbeca39ceb342fd314d6a6c2b2fd5d8d52d200e1ba7.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c70f17b9de01a86bc59c292a8f11692e2f63b39872cb03afc28e3969716e9cb8 -size 34360 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/7773cd316df8c388693a4839c3fa40e4186cd508eb265785006d5221c71bd2b4.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/7773cd316df8c388693a4839c3fa40e4186cd508eb265785006d5221c71bd2b4.jpg deleted file mode 100644 index 3516b455a0c9298cb2e19baaec81e0d3a4e0467c..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/7773cd316df8c388693a4839c3fa40e4186cd508eb265785006d5221c71bd2b4.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:755a7724e708cf03e1d6e8093e4ef345beb6ca6df690ce98c02a4f7c8bbfec06 -size 17425 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/784e14e2998ac2e087f691227efff240611b22f68b324ee3b62c296f269cf58a.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/784e14e2998ac2e087f691227efff240611b22f68b324ee3b62c296f269cf58a.jpg deleted file mode 100644 index e986c74367bf7acb6b978cb89a2d168c0a13a64c..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/784e14e2998ac2e087f691227efff240611b22f68b324ee3b62c296f269cf58a.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7971f4b3aaa7e148e184560aa13f04ccf7255c834dba91a0045bbbf166eabfec -size 317534 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/78ddbaa9ccc998e66ddfd77161b3d6a069381ea35725e09a04d8cd8286f6f64a.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/78ddbaa9ccc998e66ddfd77161b3d6a069381ea35725e09a04d8cd8286f6f64a.jpg deleted file mode 100644 index f430083e5c6ab92c16a09c0f3eda6a57f2df3882..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/78ddbaa9ccc998e66ddfd77161b3d6a069381ea35725e09a04d8cd8286f6f64a.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3f4968da2d1a0c374d7c84488d70da4925eb0230a9411b1c83a64bf86b436353 -size 58897 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/83b8dbf1607651dae37e10a17a8e66fa8b19c4679aebe230bb52a86e9d322350.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/83b8dbf1607651dae37e10a17a8e66fa8b19c4679aebe230bb52a86e9d322350.jpg deleted file mode 100644 index e8c85798ee4bd8c62c73f0193f362fe99f396267..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/83b8dbf1607651dae37e10a17a8e66fa8b19c4679aebe230bb52a86e9d322350.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ed578cb7311bb9cde51a2972a848b156b44ec40ba2269e39651131d8daa658cc -size 312234 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/84631ed4da7878f7e0faabadcf8321eba03cb390cbd3eb559a26b9bfe5ceb5bd.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/84631ed4da7878f7e0faabadcf8321eba03cb390cbd3eb559a26b9bfe5ceb5bd.jpg deleted file mode 100644 index e8d889c66a6d195752d073c6e51fd73f4813aa02..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/84631ed4da7878f7e0faabadcf8321eba03cb390cbd3eb559a26b9bfe5ceb5bd.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d7b0f0dab8cbba66ea45d7ad37e7f41a4bd98aca8004c7efc344255b3be1d467 -size 47937 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/875bf0fea8370ba6e8fb904abacec294a6529d502d76c9d22d1c5c5f14052100.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/875bf0fea8370ba6e8fb904abacec294a6529d502d76c9d22d1c5c5f14052100.jpg deleted file mode 100644 index 69b50b6f85de4d9905b2580b93fbc5a71a2686d4..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/875bf0fea8370ba6e8fb904abacec294a6529d502d76c9d22d1c5c5f14052100.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3c8e9fd8aeade81357c78548d055cbc536899a7ad8d3168ea1f6f3c48145cb6d -size 258446 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/89ee6b9d25a96fadf3f601b3466d4565225b57d264bad8880eb1fb28580ee6b3.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/89ee6b9d25a96fadf3f601b3466d4565225b57d264bad8880eb1fb28580ee6b3.jpg deleted file mode 100644 index b5d596cd1f30433bc9ef5a05f415912edb2032f8..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/89ee6b9d25a96fadf3f601b3466d4565225b57d264bad8880eb1fb28580ee6b3.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:67d6f85a0056afd470454f0a7f95bb8226addbe84bff9482ec15560ac5fc9f7b -size 50168 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/8d0792d880249e96327ddab71c0eee7b6f2d2017578b6670ed7d0db6efa1712f.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/8d0792d880249e96327ddab71c0eee7b6f2d2017578b6670ed7d0db6efa1712f.jpg deleted file mode 100644 index fc4b4e26b0f9764549148479574e8c5fd293c353..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/8d0792d880249e96327ddab71c0eee7b6f2d2017578b6670ed7d0db6efa1712f.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:60d89f3d246291548c0d801199cadb2ecf6aa6f154eb75e3fd0856a8e011f824 -size 23366 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/8dfdd5bfc137aea68414207e84707b3ab3c957e2c5b597a7661e6fd6e1d4c734.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/8dfdd5bfc137aea68414207e84707b3ab3c957e2c5b597a7661e6fd6e1d4c734.jpg deleted file mode 100644 index 54ddbf511b9144608ed6cd9380d32a7c4201a2d4..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/8dfdd5bfc137aea68414207e84707b3ab3c957e2c5b597a7661e6fd6e1d4c734.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d675371b04589257f2c2c9195990c362df4c8c3fe788443a2a3da54c5c44509e -size 18603 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/91a6157c946f87bd49705928014b650585c8b213caf3bae5a76d6a85e21cc70d.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/91a6157c946f87bd49705928014b650585c8b213caf3bae5a76d6a85e21cc70d.jpg deleted file mode 100644 index 0df5210fdc22e6467daabec97c068841ff06021b..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/91a6157c946f87bd49705928014b650585c8b213caf3bae5a76d6a85e21cc70d.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:93403648bd1bad33deebd5edd5f5b89f299961c72c8ff429eb9c3c0bae45dd79 -size 54637 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/91dc57b985fc2c9bb6f747dc12bfb87b92a1c522be4c6833eb287bc9893cd2e7.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/91dc57b985fc2c9bb6f747dc12bfb87b92a1c522be4c6833eb287bc9893cd2e7.jpg deleted file mode 100644 index 496f035037a77c103a64134df71d70aec5c30d0e..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/91dc57b985fc2c9bb6f747dc12bfb87b92a1c522be4c6833eb287bc9893cd2e7.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aefa49e02518cc6d87f2fbb51e14d08f621caec27c6bf2895f375b1609c1182d -size 75256 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/92dd1ef4bb7819f61c347a60580d2b049b96db363916c9e8f9aa499cd46d363f.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/92dd1ef4bb7819f61c347a60580d2b049b96db363916c9e8f9aa499cd46d363f.jpg deleted file mode 100644 index a7f75bea03615807e0aad04b168f37ac14eebb6c..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/92dd1ef4bb7819f61c347a60580d2b049b96db363916c9e8f9aa499cd46d363f.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:79a97ed71c8bca18d916b62abff19dcfe65a1d1cfeb547a3e040a854d087aa5a -size 78150 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/938b2e0363f93dde35d066a9dc0ec10bd50c5d8583b5a23fe87190507de4f09e.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/938b2e0363f93dde35d066a9dc0ec10bd50c5d8583b5a23fe87190507de4f09e.jpg deleted file mode 100644 index 36d8f27b1676595ca98c29a545e6079ea601ab92..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/938b2e0363f93dde35d066a9dc0ec10bd50c5d8583b5a23fe87190507de4f09e.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2e25777264b396c56af59fa5ec33b708fae0526cbb06e2f757b8f6cc734af6bb -size 37240 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/9636965f5fb4dfb8334931deb98b56a559bab425af1487df11c7950ebc0f6741.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/9636965f5fb4dfb8334931deb98b56a559bab425af1487df11c7950ebc0f6741.jpg deleted file mode 100644 index 138d5cb58f7015214f5c1f2d817ac320b0287379..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/9636965f5fb4dfb8334931deb98b56a559bab425af1487df11c7950ebc0f6741.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1421b96552c0f12771493cb5356b81a61b5040d2956675afcda1f6a112af4b4e -size 32141 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/9bccc9fd40ef0e8422ec325366ca0d934f388522c1577413b69f02edbd3248b8.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/9bccc9fd40ef0e8422ec325366ca0d934f388522c1577413b69f02edbd3248b8.jpg deleted file mode 100644 index 0bcaa37faa8de20a141641d602fd0bf353fbf013..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/9bccc9fd40ef0e8422ec325366ca0d934f388522c1577413b69f02edbd3248b8.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c588f4200a85bc73c112886cf515723b0cb1a3f60f6fb4425f5028bc3b05ae1f -size 418348 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/9d53cc0dddc812921e754b39051fe0f48b21572d7429f81747b8b659a0f6cd38.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/9d53cc0dddc812921e754b39051fe0f48b21572d7429f81747b8b659a0f6cd38.jpg deleted file mode 100644 index a2c6c46338b33ac6ab18030d7a1b744e48bf2a73..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/9d53cc0dddc812921e754b39051fe0f48b21572d7429f81747b8b659a0f6cd38.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fcb6f8b2cfe6618f4c6e049100928d14aa6dbf27dc1268189c437d6bd1f137e5 -size 59504 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/a04761a11f424d03f003a88e279fdd440bcb64ac199a55e9e8e3875553b3c080.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/a04761a11f424d03f003a88e279fdd440bcb64ac199a55e9e8e3875553b3c080.jpg deleted file mode 100644 index 6e9e6b6362ee8a1be190b74b13f76a42814b7da5..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/a04761a11f424d03f003a88e279fdd440bcb64ac199a55e9e8e3875553b3c080.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c5bdd3b5a028cbca3b8188527f24287142b9e71802bdcd56ed6bc0f85004c455 -size 398773 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/a1e5a19ce69460fba767eb4e7e8335fc1017e4ee0fc136ba27b4e8371855efaa.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/a1e5a19ce69460fba767eb4e7e8335fc1017e4ee0fc136ba27b4e8371855efaa.jpg deleted file mode 100644 index ffbcc2d9588472ce95d182419ce721eea6fa647c..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/a1e5a19ce69460fba767eb4e7e8335fc1017e4ee0fc136ba27b4e8371855efaa.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5912c52ded50f707adc66e4152cd970af6491cdb47556f1ea8bfe859ac66e4b8 -size 16892 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/a27af9702f9dd940ca91b9d3240a911584acb47478398449145f729339b5fb2c.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/a27af9702f9dd940ca91b9d3240a911584acb47478398449145f729339b5fb2c.jpg deleted file mode 100644 index 88b313f9596f48561c6c9792919b5085fcf130b4..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/a27af9702f9dd940ca91b9d3240a911584acb47478398449145f729339b5fb2c.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5f02e3c387c4b6967dbf440ce3cfa4f92cff5574c163c15af2c643787ff6c57d -size 17625 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/a3d31fcae2ce545786ff2e74ef0b0ce7a6a37b449d02dfec6ad0f8552d376b64.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/a3d31fcae2ce545786ff2e74ef0b0ce7a6a37b449d02dfec6ad0f8552d376b64.jpg deleted file mode 100644 index 773503745d3875fd662bc970c786604b05b0474a..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/a3d31fcae2ce545786ff2e74ef0b0ce7a6a37b449d02dfec6ad0f8552d376b64.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:abd0cac0d1410fb0262ebd12f8f46bbac8a1e6d37f0ac9276e60f1fc33243a81 -size 440374 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/a3f8b002bd534f99ca42c3ac374aed780d2fe8febff6faa1411d05f74b759546.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/a3f8b002bd534f99ca42c3ac374aed780d2fe8febff6faa1411d05f74b759546.jpg deleted file mode 100644 index 7e45db3af6e0afae2194cf9dc23e9f5a03d0a39a..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/a3f8b002bd534f99ca42c3ac374aed780d2fe8febff6faa1411d05f74b759546.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5b22c9f26612b0e85c0fb6bd05c268fbb081a8322e230bec680a79cac9ace476 -size 43008 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/aa86ebbc4351743def5043d7f440789d1b0eea2dbd398a205cb0fe6cb7b1b15e.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/aa86ebbc4351743def5043d7f440789d1b0eea2dbd398a205cb0fe6cb7b1b15e.jpg deleted file mode 100644 index a079ce0a2928d1257671ff54d08d2873acffea45..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/aa86ebbc4351743def5043d7f440789d1b0eea2dbd398a205cb0fe6cb7b1b15e.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:24514caa01ea2c9b0a831e6ea2cc5e1e88f09b6f48623bba9f3ff3058ff4c412 -size 37832 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/ab9cec6f4d15ea7105a05678663c06b1b68a42c84abec958edf2c88851862f78.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/ab9cec6f4d15ea7105a05678663c06b1b68a42c84abec958edf2c88851862f78.jpg deleted file mode 100644 index 4faebec324aedba89f57420b32fde55f2ad350b9..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/ab9cec6f4d15ea7105a05678663c06b1b68a42c84abec958edf2c88851862f78.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:270952f1d37310d2a26c75971f9b2af78fffa038c67f7af9fc3264f093e9c970 -size 483410 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/abf905d9b1317f351cdb0743110606cff08a58b645d183eefecdce64052c3012.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/abf905d9b1317f351cdb0743110606cff08a58b645d183eefecdce64052c3012.jpg deleted file mode 100644 index c2e64446b6120da5ee8fe54cbda46b93dc8e32bc..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/abf905d9b1317f351cdb0743110606cff08a58b645d183eefecdce64052c3012.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2b5fd291a4e6d80e2a38ff1cee879b1a8e3e54f2350b2cb148746a807c358c35 -size 59281 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/acf6e0d167cdd52b1c7900d91bac6c371e269fe0d5ee504eda8decb1a62a7052.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/acf6e0d167cdd52b1c7900d91bac6c371e269fe0d5ee504eda8decb1a62a7052.jpg deleted file mode 100644 index 4bc0976df261ce6c88c6907aaab7d60597356c0f..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/acf6e0d167cdd52b1c7900d91bac6c371e269fe0d5ee504eda8decb1a62a7052.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d15ff2d3dc6c231c10e2127b0b5ff4abf57b101c4602466c54c8c704c75f560b -size 35126 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/ade7e9731efd8f759ef3d051cc9eaa8c8270cbcb8eaf2086af3e72dbae7b9218.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/ade7e9731efd8f759ef3d051cc9eaa8c8270cbcb8eaf2086af3e72dbae7b9218.jpg deleted file mode 100644 index d116867ace92ec9052a5f31d870e02adc9dca7a7..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/ade7e9731efd8f759ef3d051cc9eaa8c8270cbcb8eaf2086af3e72dbae7b9218.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4528c8118328ffad328a58bbaed6be3dc8ce9ead6cf20653c5ff5e809dd9264b -size 30184 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/b22ed4ad640f5fa17e3c5f7855c639f8973ccc64f17aaa3d49753a9b8a89fccd.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/b22ed4ad640f5fa17e3c5f7855c639f8973ccc64f17aaa3d49753a9b8a89fccd.jpg deleted file mode 100644 index 2df8ff76ac3b35a6c190bee3d3c8c93c0b87d9a2..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/b22ed4ad640f5fa17e3c5f7855c639f8973ccc64f17aaa3d49753a9b8a89fccd.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2e17f4e7835b181091deef8a76f43cd565b9c3e701157e4f099886e5b17cd042 -size 71293 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/b383e158e5e26bf235d1404837b08d98e4f0d2e6799854bd0981cdb049f5a9e2.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/b383e158e5e26bf235d1404837b08d98e4f0d2e6799854bd0981cdb049f5a9e2.jpg deleted file mode 100644 index 89f0532eafee9a34a9f06aae72eb54c31a61a5f0..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/b383e158e5e26bf235d1404837b08d98e4f0d2e6799854bd0981cdb049f5a9e2.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ab25039cf00c17760290dca9acf904daf992aa9e0fd031e613595456979f3c55 -size 364198 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/b71836e7bc9041948ceef002b9828bd7a85ceed98304c0dcfcd9e0a9c851fab5.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/b71836e7bc9041948ceef002b9828bd7a85ceed98304c0dcfcd9e0a9c851fab5.jpg deleted file mode 100644 index f6901f1d0e4d980364723525526b0ce31bca1f10..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/b71836e7bc9041948ceef002b9828bd7a85ceed98304c0dcfcd9e0a9c851fab5.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dd25c5ee74458f7c86c8d0bf6a137fad48af9b24f53d2a67b1bcf2103f13113e -size 50403 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/b9e00c253c4ddaaca4b11084d041c85e04ad1d96d4ea24950cd25a43d7ec48fb.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/b9e00c253c4ddaaca4b11084d041c85e04ad1d96d4ea24950cd25a43d7ec48fb.jpg deleted file mode 100644 index d6f3eaf9d5d6cd255a6a9c6c4efe8dc6684c8ec6..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/b9e00c253c4ddaaca4b11084d041c85e04ad1d96d4ea24950cd25a43d7ec48fb.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:48e1a4cbdf26d14ebedbbf61a5f81ef1ecc213747c48521727de9a758266f975 -size 399241 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/bb6a8201793f6aa86dd507270d42ab4bae8716e04fc2e0cd728475481547ee64.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/bb6a8201793f6aa86dd507270d42ab4bae8716e04fc2e0cd728475481547ee64.jpg deleted file mode 100644 index 6615de0a791ef98a7c7e12306e6d24415b2e19e8..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/bb6a8201793f6aa86dd507270d42ab4bae8716e04fc2e0cd728475481547ee64.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5eab3276a81a7bc3195f662cd59c06b5a332ac7c90ee9212103f292f2ea4e73e -size 51146 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/be5e5dff3f06f738e732265ac4473d86db464c31888348b76ebad735f2c00869.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/be5e5dff3f06f738e732265ac4473d86db464c31888348b76ebad735f2c00869.jpg deleted file mode 100644 index 79ba9644deed303c1e6191e04c7871199621a5df..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/be5e5dff3f06f738e732265ac4473d86db464c31888348b76ebad735f2c00869.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6d780ff37ca5599d80164789603425cd10d24fbdbf1398f099b25f434de11f32 -size 44005 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/be69e4743723914676bf9c8fb17da3c207677c18d16e2f17f9131327503ac48c.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/be69e4743723914676bf9c8fb17da3c207677c18d16e2f17f9131327503ac48c.jpg deleted file mode 100644 index d9d4b92c10f410b939296071a28f88606f962b65..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/be69e4743723914676bf9c8fb17da3c207677c18d16e2f17f9131327503ac48c.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:73c38dad66178e0254cd69ef123d7818222f68c26dbb2e77bd51b0e602c0697d -size 306923 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/bf29b48f606c3a93f30f58fef3c38a4a244bf121b8334b1719c700228d59c246.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/bf29b48f606c3a93f30f58fef3c38a4a244bf121b8334b1719c700228d59c246.jpg deleted file mode 100644 index e63d16b5fb9d8b5cf62f89852ce6987170cd8400..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/bf29b48f606c3a93f30f58fef3c38a4a244bf121b8334b1719c700228d59c246.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7e571007532e15a268eac84aad71f18b9620413803a1737d619dc7fb65c358df -size 18862 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/c2589e5233afc89a68ae3e99361c8bc67b18b4c52959ee3355787fb49f203e54.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/c2589e5233afc89a68ae3e99361c8bc67b18b4c52959ee3355787fb49f203e54.jpg deleted file mode 100644 index 88b313f9596f48561c6c9792919b5085fcf130b4..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/c2589e5233afc89a68ae3e99361c8bc67b18b4c52959ee3355787fb49f203e54.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5f02e3c387c4b6967dbf440ce3cfa4f92cff5574c163c15af2c643787ff6c57d -size 17625 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/c5bd056081be91f99ed528c82edae9ed45729b22a1fa7111546778ddfd709cd9.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/c5bd056081be91f99ed528c82edae9ed45729b22a1fa7111546778ddfd709cd9.jpg deleted file mode 100644 index 420e2db20d25c3e546acb848967a9e828c4fa789..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/c5bd056081be91f99ed528c82edae9ed45729b22a1fa7111546778ddfd709cd9.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ae45d7ae97e84be85ba2e2b12bc0d6e96394740f488b6225a24487da7b022ec4 -size 40153 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/c6008c0830addba15b90d5ebb19caa5d061db86ed7c2f82cf9f7bd67f17a7c52.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/c6008c0830addba15b90d5ebb19caa5d061db86ed7c2f82cf9f7bd67f17a7c52.jpg deleted file mode 100644 index 66114054522da19037fe88b3a07b0c74de8d2062..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/c6008c0830addba15b90d5ebb19caa5d061db86ed7c2f82cf9f7bd67f17a7c52.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d39bf93d74ac89ee0ca655a2a1e84e74e058d077665377d3ce77bf844214e3df -size 47751 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/c7e37ba514605cb00b38b7e391f3fe3007b1486c270aaf6747c6051e406850da.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/c7e37ba514605cb00b38b7e391f3fe3007b1486c270aaf6747c6051e406850da.jpg deleted file mode 100644 index ffa7461b664c03a3662d2247ee4418712b3f3771..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/c7e37ba514605cb00b38b7e391f3fe3007b1486c270aaf6747c6051e406850da.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9527c4506a2934b40572705c8a949f0f90dfdb649431c67635836d12447fa995 -size 123440 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/c7fe2087a442b4a35e64cfbfbdd1a00fdc64bb929eb6206595b048580accbee5.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/c7fe2087a442b4a35e64cfbfbdd1a00fdc64bb929eb6206595b048580accbee5.jpg deleted file mode 100644 index bf793c38f39be407b1a96142cf741679d65c3046..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/c7fe2087a442b4a35e64cfbfbdd1a00fdc64bb929eb6206595b048580accbee5.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e4b57f6f8658729d23ab06de9b207042f474bf328bf16d3e9ebe00934b1fc6b0 -size 440168 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/cbc6558806f2536c1e0b9b6bf8fb2604146422ee7624cc80a16cd142a2d2733d.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/cbc6558806f2536c1e0b9b6bf8fb2604146422ee7624cc80a16cd142a2d2733d.jpg deleted file mode 100644 index a63b1dceef374da1191476dbfd75a85a41be486a..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/cbc6558806f2536c1e0b9b6bf8fb2604146422ee7624cc80a16cd142a2d2733d.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4de00a20fb614655bb62cfc34f818f2fc0ab944a5f09ae8a408438f8b8cd440b -size 46320 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/cc9068eace815b08119d28c25aa5af6eb96d17097887d58957661683a7c04614.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/cc9068eace815b08119d28c25aa5af6eb96d17097887d58957661683a7c04614.jpg deleted file mode 100644 index c59ceb78c6ea221b590874ba0661ea36d69a4014..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/cc9068eace815b08119d28c25aa5af6eb96d17097887d58957661683a7c04614.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c5c5361a6da1c94bd874016419a1e88ec9da93667133dad1b1e722e8151eac9e -size 348773 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/ce792d0223b0a85857e57a466d8f57b4e961cb61a9864402e807a476cc5b85a9.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/ce792d0223b0a85857e57a466d8f57b4e961cb61a9864402e807a476cc5b85a9.jpg deleted file mode 100644 index 6682c6e3d9ada16ff84741c059e7e40b37a998d2..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/ce792d0223b0a85857e57a466d8f57b4e961cb61a9864402e807a476cc5b85a9.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5d51c682c2a00e3378a00a5aadcf89ec01f6c740d59cca6e093e2a86b52d3197 -size 75535 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/d07b729627f9132d6a8aca2a6896cdd7f323cf76fc3b64351775a43c8bb2ca1d.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/d07b729627f9132d6a8aca2a6896cdd7f323cf76fc3b64351775a43c8bb2ca1d.jpg deleted file mode 100644 index 1f59e545012882c323da222d259d92a2fa57eb0f..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/d07b729627f9132d6a8aca2a6896cdd7f323cf76fc3b64351775a43c8bb2ca1d.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:576835fc6961d5fdecd18c30103fe90ce1776e78b2ccc7f3f7083572426fea83 -size 386872 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/d0b802581f1ef9baf9cc3c1f8f8898ad54ce3e95817b6886893772db1ad35fec.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/d0b802581f1ef9baf9cc3c1f8f8898ad54ce3e95817b6886893772db1ad35fec.jpg deleted file mode 100644 index 2b928b05fc0d19accb20a9b34cb5fdf9f22cb741..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/d0b802581f1ef9baf9cc3c1f8f8898ad54ce3e95817b6886893772db1ad35fec.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5a20c70b2b7c9cf33e5bc723e436e2649fba4e1ec4c97f32067da56a091ab99e -size 17574 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/d0c0d8bd2fd5668ac8e8da354bdc6e99d259db489817d9d0a8c8220e36f53293.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/d0c0d8bd2fd5668ac8e8da354bdc6e99d259db489817d9d0a8c8220e36f53293.jpg deleted file mode 100644 index 38dd0df8fedb615421c7ed16d2bfb1864142963b..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/d0c0d8bd2fd5668ac8e8da354bdc6e99d259db489817d9d0a8c8220e36f53293.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bb23f6c15325315b5b472be16fdf7cf42b870745f29724dd6af8ac95bf8afee1 -size 79550 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/d2762c94913958a44ae06c29d1366317a096cd889c73569ef7fee40716e8d5f2.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/d2762c94913958a44ae06c29d1366317a096cd889c73569ef7fee40716e8d5f2.jpg deleted file mode 100644 index 4f046d90363837d3f2aea9894d39b79f4e3a169c..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/d2762c94913958a44ae06c29d1366317a096cd889c73569ef7fee40716e8d5f2.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:29a1d443a916f164456e9c44278d687be17b43933aae1dee54c6efc5caf375bf -size 16560 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/d3e7dffcc166a530bf5479296ce53041818ec89ad6111fcce5a4237a644b610f.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/d3e7dffcc166a530bf5479296ce53041818ec89ad6111fcce5a4237a644b610f.jpg deleted file mode 100644 index 59203e9bc4be47097c5f82bac4e04104b56fdc45..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/d3e7dffcc166a530bf5479296ce53041818ec89ad6111fcce5a4237a644b610f.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:489179bdc7cdaadaa3ad394fc07d61f5b3b68a1bc91b4ae0aad726040c99dd7a -size 312030 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/d99dbc2af444c4de4c9d2c497665d440579faa2e5c3193721574b27a6b81c509.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/d99dbc2af444c4de4c9d2c497665d440579faa2e5c3193721574b27a6b81c509.jpg deleted file mode 100644 index decb90c8c1d99245a80f9d17fb111e9a4bc67390..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/d99dbc2af444c4de4c9d2c497665d440579faa2e5c3193721574b27a6b81c509.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7d19b7ecdd4feffa6f18d9bf71f6c09e835b9a10d0cb6209ccb3d0f870dc0419 -size 67194 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/da54f83fff84d051ea8e0c164e51ac833ad0c51e7ab752969b1744e1288fb4b0.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/da54f83fff84d051ea8e0c164e51ac833ad0c51e7ab752969b1744e1288fb4b0.jpg deleted file mode 100644 index 2abe8fc068916cc0e2e94da2ad79f3947db738b2..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/da54f83fff84d051ea8e0c164e51ac833ad0c51e7ab752969b1744e1288fb4b0.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:50b6593f1247ed53d020cef2cc79446f179f119f0501c6729d75234483c51e63 -size 210421 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/dead323be217495cd3c88eacebe981ff673fe793388876d9e3ca03e9ac36eda0.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/dead323be217495cd3c88eacebe981ff673fe793388876d9e3ca03e9ac36eda0.jpg deleted file mode 100644 index 8a406ed7791084acb8f5473b37f09fa96acb34c2..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/dead323be217495cd3c88eacebe981ff673fe793388876d9e3ca03e9ac36eda0.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:de01a9323af906deaa815981e4f7a509bdcc320cc9aa3daf2c01ac23e073db73 -size 322144 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/df9178c9b950b35ad7c696a21060b227d6ced16dbc1514e8afff415c98af2778.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/df9178c9b950b35ad7c696a21060b227d6ced16dbc1514e8afff415c98af2778.jpg deleted file mode 100644 index 95bc46c9c8d62f44f0a4149168782a5380e39672..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/df9178c9b950b35ad7c696a21060b227d6ced16dbc1514e8afff415c98af2778.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:79aec456bd51b0f9f797f5afb638b26321817c4b4bace0edc5050046392556d6 -size 16887 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/e160c87d27d6eb1f2d34d2d1e8ad581832bf6170fa34e859696d47282c18f459.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/e160c87d27d6eb1f2d34d2d1e8ad581832bf6170fa34e859696d47282c18f459.jpg deleted file mode 100644 index b80f9ed900b5cf745beadee6b0a58e0f1d68d651..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/e160c87d27d6eb1f2d34d2d1e8ad581832bf6170fa34e859696d47282c18f459.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cb58398c97e14a23dbb5e00de37a032cebef48becfe104bf6ff0105a61e7f1b0 -size 38234 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/e37b744bed7c009f693d603bc381ed255dffd0d144a1cd732b94dfad8c6d6f62.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/e37b744bed7c009f693d603bc381ed255dffd0d144a1cd732b94dfad8c6d6f62.jpg deleted file mode 100644 index 6363945ac3012029a5687a1ab3180dbc10abcaee..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/e37b744bed7c009f693d603bc381ed255dffd0d144a1cd732b94dfad8c6d6f62.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1b39861a0fcafb7a7209ee80a30606a9c70475b7b216e313d7d81993df5413d9 -size 38865 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/e5537f035fca6930add3816101894a85161b96b31bc87a86e6cabd256a54399a.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/e5537f035fca6930add3816101894a85161b96b31bc87a86e6cabd256a54399a.jpg deleted file mode 100644 index 9811470f1f222c6d53cb953fcb92073c5f9ba31b..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/e5537f035fca6930add3816101894a85161b96b31bc87a86e6cabd256a54399a.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b8fbaf86475c91a1a6a40e94bb8ca209a6e303ae435cede8414badf40f335a96 -size 113486 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/e5b3dff80734ecddd947629d5cc23a025f426c7166cd0479ec9745186b298c15.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/e5b3dff80734ecddd947629d5cc23a025f426c7166cd0479ec9745186b298c15.jpg deleted file mode 100644 index 03575fc19ea7e8dbbdf8e4059e9ddc7c85f1ce58..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/e5b3dff80734ecddd947629d5cc23a025f426c7166cd0479ec9745186b298c15.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f5aefd22df8fae86a49866a8c48fe592084da50b822c1e35b5e2b3d654f5b77 -size 38946 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/e67b063f76718ec38a816a4e7f1b88fd510d1662954a90f7ec5fedb5da383a6b.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/e67b063f76718ec38a816a4e7f1b88fd510d1662954a90f7ec5fedb5da383a6b.jpg deleted file mode 100644 index 186e532445a53af57a8e53b84567270a94f12fdf..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/e67b063f76718ec38a816a4e7f1b88fd510d1662954a90f7ec5fedb5da383a6b.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ddd119bcb20a1a097d4628b460ef3a775a0f71f923a7160cfd3dbef1c5786e79 -size 92664 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/e6f09d0fcb89f90fbfc54d3aedb95565639a271e152d92af5aaf5c3869129345.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/e6f09d0fcb89f90fbfc54d3aedb95565639a271e152d92af5aaf5c3869129345.jpg deleted file mode 100644 index 34696b931daf30287182c16d9194477971f94b20..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/e6f09d0fcb89f90fbfc54d3aedb95565639a271e152d92af5aaf5c3869129345.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:da980595430d5290fc0c4575f3d5886c64c70ac4b6fd0431abcfdb119f7f425e -size 340626 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/e79b8fc5f77d8cd4ccf50e24d10dcb974832140d60897580e90f2c6de30f8b40.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/e79b8fc5f77d8cd4ccf50e24d10dcb974832140d60897580e90f2c6de30f8b40.jpg deleted file mode 100644 index 520b4be8365d913fdaaa0b486e05b30baea930a4..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/e79b8fc5f77d8cd4ccf50e24d10dcb974832140d60897580e90f2c6de30f8b40.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:77559c59ddea98e7a50c65051316c691f45d7e8b8b05a0404e8627a5818403bc -size 356671 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/e99ac2cacbbd4416eccaa25d65fb96aaa1a07f7761dda45e0c834ea5c84a5912.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/e99ac2cacbbd4416eccaa25d65fb96aaa1a07f7761dda45e0c834ea5c84a5912.jpg deleted file mode 100644 index 1257c6c047382751941c6cabf0e6504a25ad9185..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/e99ac2cacbbd4416eccaa25d65fb96aaa1a07f7761dda45e0c834ea5c84a5912.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a9f4f892de3304b59e3bb4b9c26c63393f0ab182a274e56d2a3b255eacacdc14 -size 19249 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/eab7360e6f9761b763a2163f487a93b1ab3427620b24a85c049efd4dc81476bf.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/eab7360e6f9761b763a2163f487a93b1ab3427620b24a85c049efd4dc81476bf.jpg deleted file mode 100644 index b942e706387fee5f9d4cd7dd8366f7a02c3c7b4a..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/eab7360e6f9761b763a2163f487a93b1ab3427620b24a85c049efd4dc81476bf.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:13f1aa96a735587a51b4a615e0fdcbedb98309652a18b52cab03dc67636fe571 -size 16838 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/ec53347474ad26e4c9b1688547f29a30d1dbf7c6c6929b0ce83f06b39c06833b.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/ec53347474ad26e4c9b1688547f29a30d1dbf7c6c6929b0ce83f06b39c06833b.jpg deleted file mode 100644 index 231048cb3c446edb64d4c0f7e03095d55c3a4b45..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/ec53347474ad26e4c9b1688547f29a30d1dbf7c6c6929b0ce83f06b39c06833b.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ed6c62659b348815bacd47132898274baee2a0fa57e6fbbc3455fc4da66d6948 -size 355497 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/efbeae9d1a149e666a45cf7837d76f113e043d18544c3f31038b42a7bf617b20.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/efbeae9d1a149e666a45cf7837d76f113e043d18544c3f31038b42a7bf617b20.jpg deleted file mode 100644 index 705a85893a059ab2f3ddcf204f7e99ffffe7b2c0..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/efbeae9d1a149e666a45cf7837d76f113e043d18544c3f31038b42a7bf617b20.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4f136cae71cbffcd330e2c23169887245f35a15b0baf6679ded446706e8df490 -size 35724 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/f27c54012a3e068ddf6dfe5292394c58f2d5f64cb4419d71b23795e6d49a06e6.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/f27c54012a3e068ddf6dfe5292394c58f2d5f64cb4419d71b23795e6d49a06e6.jpg deleted file mode 100644 index c0337cf90393b3bce22d81a5f1e46ec11c55b21c..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/f27c54012a3e068ddf6dfe5292394c58f2d5f64cb4419d71b23795e6d49a06e6.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0955db5eeb52d7c45b50cee465919eeedd50271de54d887c6a09382514ea6af8 -size 400543 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/f27fde3b1b1a7365df785eb3a8eba4e230dc8216442e34e1669711e9f8cc7dc1.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/f27fde3b1b1a7365df785eb3a8eba4e230dc8216442e34e1669711e9f8cc7dc1.jpg deleted file mode 100644 index 3f25da45c23d419500179902eda4f2dec8ea7d3c..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/f27fde3b1b1a7365df785eb3a8eba4e230dc8216442e34e1669711e9f8cc7dc1.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:80472497b2c87823439dac9b80b4bc77ab53ad0e753f7598c3cded93f568768f -size 17474 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/f3cb51af128e815cc3163f69e47d9927926d8d203beea95cbcb56feb92642c15.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/f3cb51af128e815cc3163f69e47d9927926d8d203beea95cbcb56feb92642c15.jpg deleted file mode 100644 index d41338cea7807bfbd0348ebd663c4891bec205e2..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/f3cb51af128e815cc3163f69e47d9927926d8d203beea95cbcb56feb92642c15.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d8e9bdeb73af0799f6788480349777431844a9524d55c6b08cf2e7eae8ba3b18 -size 319338 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/f5f29b2b6999000e28c6a859950601a4f8936875bc09b03a9030230b0cb23ff0.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/f5f29b2b6999000e28c6a859950601a4f8936875bc09b03a9030230b0cb23ff0.jpg deleted file mode 100644 index cf3237c29f80df19186ea1d4627dca12ac7e7426..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/f5f29b2b6999000e28c6a859950601a4f8936875bc09b03a9030230b0cb23ff0.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bd9cdf65e695f5333b047771afe2dc019a8cd331aedac2ef6fedc2e29d3aff90 -size 16929 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/f81cc2e13aa1bc06c03f5b336c31c0612d9b47e60be19357a86e1ae286868e4e.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/f81cc2e13aa1bc06c03f5b336c31c0612d9b47e60be19357a86e1ae286868e4e.jpg deleted file mode 100644 index 80fc8240a703644c4f3c49766dcb500fae807250..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/f81cc2e13aa1bc06c03f5b336c31c0612d9b47e60be19357a86e1ae286868e4e.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bd37294cd992bf49516d6650a8e025460e38a5adf62dc49fe718721026340d12 -size 446369 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/f84e42255018e4e1ee58a9483349c4e4fc1741072447f7b535528cbab5130616.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/f84e42255018e4e1ee58a9483349c4e4fc1741072447f7b535528cbab5130616.jpg deleted file mode 100644 index 0f5cb5490b70f7d333dd05a8a49f1a3e500ac10e..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/f84e42255018e4e1ee58a9483349c4e4fc1741072447f7b535528cbab5130616.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0d8777483a4bb05d9c91c8eed41be41e311b8de296aa8f576d2739f8ebe9dcab -size 100057 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/f88716d8f35322e9de9890b68dd4bdf46c84428f14c487a1e433871888c89e12.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/f88716d8f35322e9de9890b68dd4bdf46c84428f14c487a1e433871888c89e12.jpg deleted file mode 100644 index a2b65ded33fe1223bb54c76fc4c9843c2f13c892..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/f88716d8f35322e9de9890b68dd4bdf46c84428f14c487a1e433871888c89e12.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ab0c2b3c630c2c5b2dca15f80d739fbb046d48461c114b07c577a5fd611b6935 -size 332541 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/f8938390bbee3adeed66cd5794cd8eb3c805c68d5e9c1ae4db9740d535249774.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/f8938390bbee3adeed66cd5794cd8eb3c805c68d5e9c1ae4db9740d535249774.jpg deleted file mode 100644 index 140e20968045ef311d4d00d63eceab156f057d54..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/f8938390bbee3adeed66cd5794cd8eb3c805c68d5e9c1ae4db9740d535249774.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b962012da63a72169f20cf766ea7a53d84ac975b0bb6bd911f50de4d230cf3e0 -size 269006 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/f934bb20cd81148ae4457f83c87d51a0717e7d77c8f7142257247a72e8441ac2.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/f934bb20cd81148ae4457f83c87d51a0717e7d77c8f7142257247a72e8441ac2.jpg deleted file mode 100644 index fda65597b157710d9a32e548a8d7d4e4650789c9..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/f934bb20cd81148ae4457f83c87d51a0717e7d77c8f7142257247a72e8441ac2.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:761a484083d58375ed415025b16a06dc212eee1b4e28447ac91147d22bec9a1b -size 17031 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/fb927d397b66297da309fdbaec19007c9b66fdb77855ed873bdda88c7d179ac3.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/fb927d397b66297da309fdbaec19007c9b66fdb77855ed873bdda88c7d179ac3.jpg deleted file mode 100644 index 87de7d5ba155e17f4990285d6cb9492581ba0483..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/fb927d397b66297da309fdbaec19007c9b66fdb77855ed873bdda88c7d179ac3.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:268c384907f8c81ab12952cabe24756eab0a5b152000567b1c72837b4dfed8a4 -size 17638 diff --git a/pdf_output/7192_2_June_2020_1739552314/auto/images/ffd495052bdd695fe3030a6a5961509cd9aa628a64036394dd98a0a414dccc07.jpg b/pdf_output/7192_2_June_2020_1739552314/auto/images/ffd495052bdd695fe3030a6a5961509cd9aa628a64036394dd98a0a414dccc07.jpg deleted file mode 100644 index 04164342b65d5ae5e02bbd10e03fab2f5e598cb6..0000000000000000000000000000000000000000 --- a/pdf_output/7192_2_June_2020_1739552314/auto/images/ffd495052bdd695fe3030a6a5961509cd9aa628a64036394dd98a0a414dccc07.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:14422c222cc1ba3354c87eaca840274ec4c40f3f28b7383fdf17ec1a5e665a8f -size 89154 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/7408_1_June_2019_1739552566.md b/pdf_output/7408_1_June_2019_1739552566/auto/7408_1_June_2019_1739552566.md deleted file mode 100644 index 4679de69a53d3ab7a18fc177460428388e607bf0..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/7408_1_June_2019_1739552566.md +++ /dev/null @@ -1,1526 +0,0 @@ -Please write clearly in block capitals. - -Centre number - -Candidate number - -![images/46e70cec9112412d6ad0f31ff2a5c52902cb416b0945f7320186304d360fe9fc.jpg]() - -Surname Forename(s) Candidate signature - -# A-level PHYSICS - -Paper 1 - -# Monday 20 May 2019 - -# Afternoon - -# Materials - -For this paper you must have: - -• a pencil and a ruler • a scientific calculator a Data and Formulae Booklet. - -# Instructions - -Time allowed: 2 hours - - -
For Examiner's Use
QuestionMark
1
2
3
4
5
6
7
8-32
TOTAL
- -• Use black ink or black ball-point pen. -• Fill in the boxes at the top of this page. -• Answer all questions. -You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages. If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s). -• Do all rough work in this book. Cross through any work you do not want to be marked. -• Show all your working. - -# Information - -• The marks for questions are shown in brackets. -• The maximum mark for this paper is 85. -• You are expected to use a scientific calculator where appropriate. -• A Data and Formulae Booklet is provided as a loose insert. - -# Section A - -Answer all questions in this section. - -Two isotopes of iodine are $_{53}^{125}{\mathrm{Iand}}_{53}^{131}{\mathrm{I}}.$ - -Determine, for these two isotopes, the difference between the constituents of the nuclei. - -A 131 I nuclide undergoes beta (β–) decay to form a xenon nuclide. -State the nucleon number of the xenon nuclide. - -[1 mark] - -$\mathsf{A}_{53}^{125}\mathrm{~I~}$ nuclide decays by electron capture to form a tellurium nuclide. - -State two differences between the constituents of the iodine nucleus and the tellurium nucleus it decays into. - -[2 marks] - -Internal conversion is a process in which a nucleus in an excited state can release its excess energy. In internal conversion all of the excess energy is transferred from the nucleus to an orbital electron through the electromagnetic force. This orbital electron is ejected from the atom. - -The tellurium nucleus formed in question 01.3 is in an excited state and can undergo internal conversion. - -Discuss three differences between internal conversion and beta $(\upbeta^{-})$ decay. - -[3 marks] - -1 -2 -3 - -Turn over for the next question - -Some cars are fitted with a water sensor designed to switch on windscreen wipers automatically when it rains. Figure 1 shows a simplified diagram of the sensor. - -![images/a9c8e4c76cb475e96d7dab0fa62ee0c3a5e4754f10db5b0b00edc1fbb50acce8.jpg]() -Figure 1 - -A light ray travels from the light-emitting diode (LED) through the first prism and into the windscreen. The ray reflects off the surfaces of the windscreen at A, B and C and then passes through the second prism into the detector. - -Suggest how the design ensures that there is no deviation of the ray as it enters the first prism. - -[1 mark] - -Suggest two features of the design that ensure that there is no deviation of the ray as it leaves the first prism and enters the windscreen glass. - -[2 marks] - -1 -2 - -The refractive index of the windscreen glass is 1.52 - -Explain why the ray follows the path shown inside the windscreen glass in Figure 1. -Support your answer with a suitable calculation. - -[2 marks] - -Question 2 continues on the next page - -When it starts to rain, water droplets form on the outside of the windscreen as shown in Figure 2. - -![images/d16b66292d34ae7fb47e44e2b0285b155962b9eb55095d147e64c7fe41ed69c5.jpg]() -Figure 2 -The refractive index of water is 1.33 - -Explain why the presence of water at A causes the intensity of the light at the detector to decrease. - -Support your answer with a suitable calculation. - -[2 marks] - -The refractive index of the windscreen glass can vary by a few per cent across the thickness of the glass. - -Discuss how this variation may affect the path of the ray through the windscreen glass. - -[2 marks] - -A different design has the LED and the detector further apart. The ray undergoes more reflections inside the windscreen glass before reaching the detector. - -Discuss two ways in which this different design affects the sensitivity of the sensor to the presence of water droplets. - -[2 marks] - -1 -2 - -Figure 3 shows an arrangement to investigate diffraction. White light is incident on a single slit. After leaving the slit, the diffracted light passes through a green filter to reach the screen. - -![images/de9a802d6cbcd57baf944cc3bc60d657cc47877d862f8e9d3fb0aa6fc5dbda6c.jpg]() -Figure 3 - -Describe the pattern produced on the screen. - -[2 marks] - -The green filter is replaced with a red filter. -Describe the change in the pattern produced on the screen. - -[2 marks] - -A diffraction grating is placed between the red filter and the screen. The diffraction grating has 500 lines per millimetre. Light is incident normally on the grating. Figure 4 shows the arrangement. - -![images/fabc3263cd3a872616fd323d3dd9d35c53da4d2ddf638358e589f2a33caae3f1.jpg]() -Figure 4 - -The wavelength of the red light is $650\mathrm{nm}$ . - -Calculate the angle $\theta$ between a first-order maximum and the central maximum. - -[2 marks] - -Question 3 continues on the next page - -In practice, the filter transmits red light with wavelengths in the range $600\mathrm{nm}$ to $700\mathrm{nm}$ . - -Suggest how this affects the appearance of the maxima. - -[2 marks] - -![images/7c8e14945066cf5ed3344a4be90b3d82174e88eb545cda6532b593a851a68805.jpg]() - -Figure 5 shows a simplified catapult used to hurl projectiles a long way. - -![images/0341f0a8113368ec4c4311167f1a870b8054149af1695356487fb464c85e784b.jpg]() -Figure 5 - -The counterweight is a wooden box full of stones attached to one end of the beam. The projectile, usually a large rock, is in a sling hanging vertically from the other end of the beam. The weight of the sling is negligible. -The beam is held horizontal by a rope attached to the frame. - -The catapult is designed so that the weight of the beam and the weight of the empty wooden box have no effect on the tension in the rope. - -Suggest how the pivot position achieves this. - -[2 marks] - -Question 4 continues on the next page - -The stones in the counterweight have a total mass of $610\mathrm{kg}$ and the projectile weighs 250 N. - -Calculate the tension in the rope. - -[5 marks] - -When the rope is cut, the counterweight rotates clockwise. When the beam is vertical it is prevented from rotating further. The projectile is then released horizontally with a velocity of $18\mathrm{m~s}^{-1}$ , as shown in Figure 6. - -The projectile is released at a height of $7.5\mathrm{m}$ above ground level. - -![images/429377680bf1eab098132953c8f6c07f75ca6a4f58f5e3903adccea5950f41ec.jpg]() -Figure 6 - -The range of the catapult is the horizontal distance between the point where the projectile is released to the point where it lands. - -Calculate the range. -Ignore air resistance. - -In another release, the sling is adjusted so that a projectile of the same mass is released just before the wooden beam is vertical. The projectile is not released horizontally. - -Discuss the effect this change has on the range of the catapult. - -[3 marks] - -Safety barriers are used on UK motorways to prevent vehicles crossing from one carriageway to the other carriageway. The barriers also absorb some of the kinetic energy of a vehicle and deflect vehicles along the barrier. - -The standard test of a safety barrier uses a vehicle that contains dummies. The total mass of the vehicle and its contents is $1.5\times10^{3}\mathrm{kg}$ and its initial speed is $110\mathrm{kmh^{-1}}$ . - -Show that the initial kinetic energy of the test vehicle is $700\mathrm{kJ}$ . - -The test vehicle hits a steel safety barrier at an angle of $20^{\circ}$ , as shown in Figure 7. - -![images/afdb467c0e3976a0fbc7ca8e251a51ca8b5a95f7c60b84c7d9604ba3bf20fb0b.jpg]() -Figure 7 - -Calculate the component of the momentum of the test vehicle in a direction along the line of the safety barrier. -Give an appropriate unit for your answer. - -momentum $=$ unit - -Immediately after the collision, the test vehicle moves along the safety barrier with no change in its momentum in this direction. - -Show that the kinetic energy lost in the collision is about $80\mathrm{kJ}$ . - -The steel safety barrier deforms during the collision. For the barrier to pass the test, the test vehicle should not move more than $1.5\mathrm{m}$ towards the other carriageway. - -The barrier can apply an average force of $60\mathrm{kN}$ at right angles to the carriageway. - -Deduce whether the safety barrier will pass the test. - -A different safety barrier uses a solid concrete wall which does not deform. -The same standard test is carried out on a concrete wall. - -Discuss which type of barrier would cause less damage to the dummies in the test. - -[2 marks] - -A loudspeaker cone is driven by a signal generator (oscillator). -Figure 8 shows the variation of displacement with time $t$ for a point $\mathsf{P}$ at the centre of the cone. P is oscillating with simple harmonic motion. - -![images/1b51321d182d4468f445d86a2bf2cf5aef4b47cbc27ffdf69d55b1c089987f7a.jpg]() -Figure 8 - -State the time, in milliseconds, when P is moving at its maximum positive velocity. - -[1 mark] - -time = ms - -Calculate the maximum acceleration of P. - -[3 marks] - -acceleration $=$ m s–2 - -Question 6 continues on the next page - -The loudspeaker creates variations in pressure and produces a sound wave in the air around it. - -State the type of wave produced and describe the motion of the particles in this type of wave. - -[1 mark] - -Figure 9 shows a practical circuit in which a variable resistor is used to control the brightness of a lamp. The voltmeter reading is monitored as the variable resistor is adjusted to make the lamp brighter. - -![images/5acbfddb641053eb041bc9f7e66ff93d5feb92e11e3cca9d194eb37c8dff9a90.jpg]() -Figure 9 - -Explain why the reading on the voltmeter decreases as the brightness of the lamp increases. - -[2 marks] - -The variable resistor is adjusted so that the lamp is at its brightest. The reading $V_{1}$ on the voltmeter is noted. A second identical cell is then connected in parallel with the cell in Figure 9. The new reading $V_{2}$ on the voltmeter is noted. - -Explain why $V_{2}$ is greater than $V_{1}$ . - -[2 marks] - -# Section B - -Each of Questions 8 to 32 is followed by four responses, A, B, C and D. - -For each question select the best response. - -![images/046272758a9f601e216ac9000a79e56ff1f0c83747fb4a54e9b882acb08608d1.jpg]() - -Only one answer per question is allowed. -For each question completely fill in the circle alongside the appropriate answer. - -CORRECT METHOD - -WRONG METHODS - -
- -If you want to change your answer you must cross out your original answer as shown. If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown. - -You may do your working in the blank space around each question but this will not be marked. -Do not use additional sheets for this working. - -The process of beta plus $(\beta^{+})$ decay can be represented by - -![images/b4292b9ab6a0d61bebc36ea25d1e7aa52c17e4ff642dc2b318d623add9cc4dfd.jpg]() - -Which row identifies particles X and Y? - -[1 mark] - -![images/f4152bf7f36be4eb4b5a5dbc1b2bc68a717e3aadd707d4770c6aef92ffe42808.jpg]() - -
XY
AW+Ve
BW+Ve
CW-Ve
DW-Ve
- -An electron collides with an isolated atom and raises an orbiting electron to a higher energy level. - -Which statement is correct? - -[1 mark] - -A The colliding electron is captured by the nucleus of the atom. -B A photon is emitted when the electron rises to the higher energy level. -C An electron is emitted when the excited electron returns to the ground state. -D Energy is transferred from the colliding electron to the orbiting electron. - -Light of frequency $2.0\times10^{15}\mathrm{Hz}$ is incident on a metal surface. The work function of the metal is $4.6\times10^{-19}\mathrm{~J}$ . - -Which statement is correct? - -[1 mark] - -![images/4b43b951db653f5a43ed85934e9802c981d24681065c8f4da844a2610378feaa.jpg]() - -A photon of ultraviolet radiation has a frequency of $1.5\times10^{15}\mathrm{Hz}$ . What is the momentum of the photon? - -[1 mark] - -A $3.3\times10^{-41}\mathrm{kgms^{-1}}$ B 1.3 × 10–40 kg m s–1 C 3.3 × 10–27 kg m s–1 D 1.3 × 10–26 kg m s–1 - -![images/681578c65b0e5e04aa6b7755ce583140fdbd0996ce8f2c2b0ab50ea717a3c845.jpg]() - -Which statement about a couple is not true? - -A It must consist of coplanar forces. -B It can produce rotational motion. -C It can produce translational motion. -D It has a moment with units $\mathrm{N}\mathrm{m}$ . Two cars P and Q leave from the same point and travel in the same direction. -$\pmb{\Omega}$ leaves at time $t=0$ and $\mathsf{\textbf{P}}$ leaves one second later. -The figure shows the velocity–time graph for P and Q. - -![images/1406274efcc816dedfc4944b865335093faa06ac99f49182b9bbf91f467a4223.jpg]() - -![images/ed0e1d08ba703ff647c64b472741f8c9da88f767c5352d59e15a35a581f0f473.jpg]() - -What is the distance between Q and $\mathsf{\textbf{P}}$ when $t=8$ s? - -[1 mark] - -![images/353c155147e5e92821617ea22c8ece0fe19d27a67b9b7f4293b1edf57a664ac9.jpg]() - -A 40 m B 80 m C 160 m D 180 m - -$\mathbb{A}0.20\mathrm{kg}$ mass is suspended from a spring. A $0.10\mathrm{kg}$ mass is suspended from the $0.20\mathrm{kg}$ mass using a thread of negligible mass. -The system is in equilibrium and the thread is then cut. - -![images/7ac40b1fcd1ddcf16449f2caf39baea59c8d308085d8edbf5214743500ec21eb.jpg]() - -What is the upward acceleration of the $0.20\mathrm{kg}$ mass at the instant that the thread is cut? [1 mark] - -A $3.3\mathrm{m~s}^{-2}$ B 4.9 m s–2 C 6.5 m s–2 D 9.8 m s–2 - -![images/1d589cccb55276ec12548654ba735da0c12ed7d491898b6ac22c6f92b6359180.jpg]() - -A lift of mass $M$ is suspended from a cable. The lift descends with a downward acceleration, $a$ . A frictional force $F$ acts on the lift. - -What is the tension $T$ in the cable? - -[1 mark] - -![images/9c756f7308b5ce6c68f8ea520a992f52919cf84bc4e9246ba2d147dba4db4a8b.jpg]() - -A $T=M a+F$ B $T=M a-F$ C ${\cal T}={\cal M}\left(g+a\right)-{\cal F}$ D $T=M\left(g-a\right)-F$ - -A body of constant mass falls freely due to gravity. The rate of change of momentum of the body is equal to its - -[1 mark] - -A kinetic energy. -B mass. -C gravitational potential energy. -D weight. An electric vehicle is driven by a motor which produces a constant driving force. -The vehicle travels from rest along a straight horizontal road. -Friction and air resistance are negligible. - -![images/8da7ff924c1989577c679b9a6c0d45be475bb3fa3c2017ffa7186a3efb0d0c94.jpg]() - -Which statement describes the variation with time of the power developed by the motor? - -[1 mark] - -![images/b26ce9f6714b3da27ff71e8ebb73ec9e95252a2e7209c9633a1c15c39b1c05b1.jpg]() - -Which is a correct statement about mechanical power? - -[1 mark] - -A It is a vector quantity. -B It is measured in J. -C In fundamental units, its unit is $\mathrm{kg}\mathrm{m}^{2}\mathrm{s}^{-3}$ -D It can be calculated from force $\times$ distance moved. - -![images/d4b9ea543fa7fecbd310e55676ac451822c1761ce42383ab75893e6bf2abe5da.jpg]() - -A load of $50\mathrm{N}$ is suspended from a wire that has an area of cross-section of $1\mathrm{mm}^{2}$ . - -The stress in the wire, in Pa, is between - -[1 mark] - -A $10^{0}$ and $10^{3}$ B ${10}^{3}$ and ${10}^{6}$ C $10^{6}$ and ${10}^{9}$ D $10^{9}$ and $10^{12}$ - -![images/e358e7f4aa36894fd37ef2f8ed5eaae0486a936cceaf4da51821e4590eed089c.jpg]() - -Which combination of properties would produce the smallest extension of a wire when the same tensile force is applied to the wire? - -[1 mark] - -
Cross-sectional areaLengthYoung modulus of material
AX3LE
B2X7E
CX3L4E
D2X74E
- -![images/5400a1bc747a225e13f223a7294e1e88168637c81beb088a13a4bab7776de572.jpg]() - -Turn over for the next question - -A rubber belt in an electrostatic machine has a width of $0.1\textrm{m}$ and moves with speed $0.4\mathrm{m~s}^{-1}$ . -Each square metre of the belt carries a charge $Q$ coulomb. The charge is removed and transferred to a metal sphere. - -![images/9c68d31c621d2ab4783e16299f2168c3d9b65c7668044d30d3455aa4e98d8043.jpg]() - -What is the charge collected by the sphere each second? - -[1 mark] - -A 0.016Q B 0.04Q C 0.25Q D 4Q - -![images/a4d70f89757c75f39d00c133a4b5d7878e86ac591d26af27642c3048e8d93446.jpg]() - -2 2 Charged plates X and Y have a potential difference 1.5 V between them. - -![images/68652cb80907f916334c1c88a8b63137ea940564c05ca05dda97a3644e29ea0f.jpg]() - -Which particle gains $3.0\mathrm{eV}$ of kinetic energy when moving from Y to X? - -[1 mark] - -A proton B positron C electron D alpha particle - -![images/01c45e6ab071d4b21b95d3898710c437392fcecdc2a1e316a57eb913d0040b0f.jpg]() - -Turn over for the next question - -The diagram shows part of a circuit and the currents in the circuit. - -![images/3f576db96ea0abf9c1b89284326055f51e6339a887c12f6aa02cb0302ab2deba.jpg]() - -What is the potential difference between point P and earth? - -[1 mark] - -A 60 V B 100 V C 120 V D 140 V - -![images/fdb096c8aaf4f45c67f73ec1592b5496c5dffb1dfd4c3c3b27f71beab04b2f99.jpg]() - -A voltmeter has a resistance of $4.0\mathrm{k}\Omega$ and reads $1.0\:\mathrm{V}$ for every scale division on the meter. - -A power supply of emf $20\mathrm{~V~}$ and negligible internal resistance is connected across this voltmeter and a resistor in series. The voltmeter reads two divisions. - -What is the value of the resistor? - -[1 mark] - -![images/f196269a0925414c8b0dafa701109262a2054259282780d5e061a25a3267fbb2.jpg]() - -A 44 kΩ B 36 kΩ C 4.4 kΩ D 3.6 kΩ - -Two cylindrical wires P and $\pmb{\Omega}$ are of equal length and made of the same material. -The diameter of $\mathsf{P}$ is greater than that of Q. - -P and $\pmb{\Omega}$ are connected in series and the ends of this arrangement are connected to a power supply. - -![images/a917e8581e8ead4fed205c229ae8504393b6bf37cbabef89a852da1bd27e24dd.jpg]() - -Which two quantities are the same for P and Q? - -[1 mark] - -![images/9224e2ca294c6476680c41903d9f1a8f76b6f25447a8767ca2e779fdc7395170.jpg]() - -Turn over for the next question - -In the circuit below, the initial voltmeter reading is zero. - -![images/15b9c6a01998d98ccddc3091fe62ae55ec2299ffd56e834d44279c258845d2be.jpg]() - -The temperature of the negative temperature coefficient thermistor T is then increased. Which change to the circuit could restore the voltmeter reading to zero? - -[1 mark] - -A Decreasing the resistance of R. -B Increasing the resistance of R. -C Decreasing the resistance of P. -D Increasing the resistance of Q. - -![images/0f9535557d9dc0b2323ec38d0fb1dbf2960e2d69d4755cfca5ece9492f52a822.jpg]() - -An electric motor lifts a load of weight W through a vertical height $h$ in time $t$ . The potential difference across the motor is $V$ and the current through it is $I.$ - -What is the efficiency of the motor? - -[1 mark] - -$$ -\begin{array}{r l}&{\textsf{A}\frac{W h t}{V I}}\ &{}\ &{\textsf{B}\frac{V I}{W h t}}\ &{\textsf{C}\frac{W h}{V I t}}\ &{}\ &{\textsf{D}\frac{V I t}{W h}}\end{array} -$$ - -![images/1efd430ca87371be6652ac0ca207b44b81b2fceb6a978214b56340b28e216d51.jpg]() - -An object of mass m moves in a circle of radius $r$ . It completes $n$ revolutions every second. What is the kinetic energy of the object? - -[1 mark] - -2 2 mn r -A 8π2 -B $\frac{m n^{2}r^{2}}{4\pi^{2}}$ -C 2mπ2n2r2 -D 4mπ2n2r2 - -![images/3869272d01fa7d807b87241f0a196d688b1f30669d80572c17ada0bcff2f223e.jpg]() - -Turn over for the next question - -The graph shows the variation of displacement $d$ with time $t$ for a particle moving with simple harmonic motion of period $T.$ . - -![images/a6110daf80338d3809ad4e230772f9952bda886d4d4d562a668e977a4264e527.jpg]() - -Which graph shows the variation of kinetic energy $E_{\mathrm{k}}$ of the particle with time? - -[1 mark] - -![images/987a29e481fb9fd331b10c8e28fd602d6ec79bff053c07b0a0aa34056366cf6c.jpg]() - -A $\Longleftrightarrow$ B $\Longleftrightarrow$ C $\Longleftrightarrow$ D $\subset$ - -Two pendulums A and B oscillate with simple harmonic motion. -The time period of A is 2.00 s and the time period of B is $1.98\mathrm{s}$ . - -A and B are released in phase. - -What is the number of oscillations of A before A and B are next in phase? - -[1 mark] - -A 49 -B 50 -C 99 -D 100 - -![images/b2edc2a2a00f86f4bd4d91426ee61a95d5babe2e34416d17a60a156b3d6ed111.jpg]() - -The frequency of oscillation of a vertical spring is $f$ when the mass hanging from the spring is m. - -What is the relationship between $f$ and m? - -[1 mark] - -1 -A f ∝ m 2 -B $f\propto m^{-2}$ $\smile$ 1 -C f ∝ m2 $\smile$ -D $f\propto m^{2}$ $\Longleftrightarrow$ - -Turn over for the next question - -A metal panel is driven to vibrate at different frequencies. The amplitude $a$ of the vibration is measured at each frequency. The graph shows the variation of amplitude with driven frequency. - -![images/201f1959d2f8348670644b70641547d3247582cc72191f18d312acedc401a130.jpg]() - -The damping of the metal panel is increased without changing the mass of the panel. - -Which graph on the opposite page shows the variation of $a$ with frequency with increased damping? - -![images/a6170c918ad88811d00ba23894b2ca436ccb90514531f171d45402df961e14f3.jpg]() - -A -B $\Longleftrightarrow$ C $\Longleftrightarrow$ D - -![images/5cd0702bdc366f5fc7c168eba29229f73b51ca7707aa7f1acb56491fc04ba792.jpg]() - -
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
- -
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
- -
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
- -
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
Copyrightinformation
For confidentiality purposes, acknowledgements of third-party copyright material are published in a separate booklet rather than including them onthe examinationpaperorsupport materials.Thisbooklet is published after eachexamination series and is availableforfreedownloadfromwww.aqa.org.ukaftertheliveexaminationseries. Permission to reproduce all copyright material hasbeen applied for. In some cases,efforts to contact copyright-holders may have
- -Please write clearly in block capitals. - -![images/2dc6eb1feb9b638e506f876ed84f3e449e02d28e394081421b10c96570567031.jpg]() - -Surname -Forename(s) -Candidate signature I declare this is my own work. - -# A-level PHYSICS - -Paper 1 - -# Wednesday 24 May 2023 - -# Afternoon - -# Time allowed: 2 hours - -# Materials - -For this paper you must have: - -• a pencil and a ruler a scientific calculator a Data and Formulae Booklet a protractor. - -# Instructions - -
For Examiner's Use
QuestionMark
1
2
3
4
5
9
7-31
TOTAL
- -• Use black ink or black ball-point pen. -• Fill in the boxes at the top of this page. -• Answer all questions. -• You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages. If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s). -• Do all rough work in this book. Cross through any work you do not want to be marked. -• Show all your working. - -# Information - -The marks for questions are shown in brackets. -• The maximum mark for this paper is 85. -• You are expected to use a scientific calculator where appropriate. -• A Data and Formulae Booklet is provided as a loose insert. - -# Section A - -Answer all questions in this section. - -The neutral lambda particle $\Lambda^{0}$ is a baryon with a strangeness of $^{-1}$ One possible decay for a ${\Lambda}^{0}$ is - -$$ -\Lambda^{0}\to\pi^{0}+{\mathfrak n} -$$ - -Deduce the quark structure of a $\Lambda^{0}$ . - -[1 mark] - -State and explain which interaction is involved in this decay. [2 marks] - -An antiparticle of the neutral lambda particle decays into a neutral pion and particle X. -Identify X. - -[1 mark] - -The rest energy of a $\Lambda^{0}$ is equal to the energy of a photon with a frequency of $2.69\times10^{23}\mathrm{Hz}$ . - -Determine, in $\mathrm{_{MeV}}$ , the rest energy of a ${\Lambda}^{0}$ . - -[1 mark] - -rest energy $=$ MeV - -The discovery of particles such as the ${\Lambda}^{0}$ is made by large international research teams. - -Suggest one reason for this. - -Turn over for the next question - -![images/2aeffab49a778cb119c80f10ec0ff8dbc52fe852dfbab42b4a39df0a24da26b4.jpg]() - -In 2021 the world land speed record was $1230\mathrm{kmh^{-1}}$ . -This was the average speed achieved by a jet-powered car in two runs. Each run was measured over a distance of $1.61~\mathrm{km}$ . - -The average speed for one of these runs was $343\mathrm{m~s}^{-1}$ . - -Calculate, in s, the time taken for the car to complete the other run. - -[2 marks] - -time = s - -Question 2 continues on the next page - -Engineers are designing a new jet-powered car to break this record. - -Figure 1 shows the variation of speed with distance for the car, as predicted by the engineers. - -![images/525c53aa6dfc03507ebfd7e0b0233f6b52d6485465e88c7bbdb3f3288423d9a1.jpg]() -Figure 1 - -The car reaches its maximum acceleration when it is $5600\mathrm{m}$ from the start. -At this point the mass of the car is $6.50\times10^{3}\mathrm{kg}$ . - -Determine the kinetic energy of the car at its maximum acceleration. - -[2 marks] - -kinetic energy $=$ J - -At any point on the graph in Figure 1, the acceleration is given by: - -acceleration $=$ speed $\times$ gradient of line - -When the car is at its maximum acceleration, the power input to the jet engines is 640 MW. - -Calculate the percentage of the input power used to accelerate the car at its maximum acceleration. - -Scientists recommend that the average deceleration of the driver of the car should be less than $3g$ . - -Deduce whether the average deceleration is less than $3g$ . - -![images/ff7ac384adbdd82b394556f406fa6e2759de5cd4ae0aaef93676518d53fa2706.jpg]() - -In Figure 2 the cell has emf $\varepsilon$ and internal resistance $r$ . - -![images/5abbdd19ad01175edda239875d47c069530f6522e97aa81b4fb9d816008d7da5.jpg]() -Figure 2 - -The current in the circuit is $I$ . - -The potential difference (pd) across ${\mathrm{R}}_{1}$ is $V_{1}$ and the pd across ${\bf R}_{2}$ is $V_{2}$ . - -Explain how the law of conservation of energy applies in this circuit. -You should consider the movement of one coulomb of charge around the circuit. - -[2 marks] - -Question 3 continues on the next page - -Figure 3 shows a variable resistor made with a thin conducting layer on an insulating base. - -![images/469a3e10e6dff61f6ab5b50b4a42aab0a12fdcb118ae677a19f1d4b60c17aaa3.jpg]() -Figure 3 - -The conducting layer has constant width and thickness and has connections at the ends A and B. -C is a sliding contact that can move along the surface of the conducting layer between A and B. - -Figure 4 shows a circuit that uses the variable resistor as a potential divider. - -![images/dd645ace588ac4d57fbdb977f36a28fafb86bd2b891c142ab43107962ff781b4.jpg]() -Figure 4 - -The variable resistor is connected to a battery of emf $3.00\mathrm{V}$ and internal resistance $r$ . -The resistance of the conducting layer between A and B is $125\Omega$ . The sliding contact C is moved to end B of the variable resistor. The switch is closed. -The digital voltmeter reads $2.89\mathrm{V}$ . - -Show that $r$ is approximately $4.8\Omega$ . - -[3 marks] - -C is set at $\frac{1}{5}$ of the distance between A and B. The thickness of the conducting layer is uniform so the resistance between A and C is $25.0\Omega$ . -Determine the voltmeter reading at this setting. - -[2 marks] - -voltmeter reading $=$ V - -Question 3 continues on the next page - -Figure 5 shows a variable resistor similar to the one shown in Figure 3 but with the following three manufacturing faults: - -• at P the conducting layer changes in thickness so that AP is thinner than PB $\bullet$ at Q there is a scratch into the surface of the conducting layer and across its full width • from R to B the conducting connector is laid over the conducting layer. - -The width of the conducting layer is constant. - -A pd of $3.0\mathrm{V}$ is applied across A and B. -C is moved from A to B. - -![images/b093eec94cb17567e3ee76cdd17f1d084a3cb4d3c516419fa17327fb25936124.jpg]() -Figure 5 - -Sketch, on the axes in Figure 6, a graph to show how the pd between A and C varies as C is moved from A to B. - -[4 marks] - -![images/e15b5c0a90d2d0538a480bbb998b1e999c5ce87cecdf0a09c885a9045a934b40.jpg]() -Figure 6 - -Porro prisms are used in binoculars to reverse the path of the light. The prism is in the shape of a right-angled isosceles triangle. - -Figure 7 shows a ray of light, at normal incidence on the longest side, passing through a glass Porro prism. - -![images/a1fe560a1181e67cc06b8a8eb79894f34669d2031b50659cdd72fd7d90dd00a2.jpg]() -Figure 7 - -The critical angle for light in the prism is $41.5^{\circ}$ . - -Show that the glass used to make the prism has a refractive index of about 1.5 [1 mark] - -Explain why the ray emerges parallel to the incident ray. - -[2 marks] - -# - -Question 4 continues on the next page - -Figure 8 shows a ray of light entering the prism at an angle of incidence $\theta$ and reflecting off one of the shorter sides. - -![images/b59926f9d24baebce0e545ebefa26e68114d5a6877489ee9acadf8b24ce7341e.jpg]() -Figure 8 - -$\theta$ is the largest angle of incidence for which all of the light leaves through the longest side. - -Draw on Figure 8 the path of the ray of light as it continues inside the prism and emerges from the longest side. - -When the angle of incidence is greater than $\theta$ , some of the light escapes the prism through one of the shorter sides. Assume that the refractive index is 1.5 and the critical angle is $41.5^{\circ}$ . - -Show that $\theta$ is about $5^{\circ}$ . -You can use Figure 8 in your answer. - -A manufacturer wants to make a prism with a larger value of $\theta$ . - -Two alternative changes to the original design of the prism are suggested: - -1. use a prism of the original glass in the shape of an equilateral triangle, as shown in Figure 9 -2. use a prism of the original shape made from glass with a smaller refractive index, as shown in Figure 10. - -![images/d5311b2001e7c70634cbbc6703a6866357ab24d260dc32abf9eb5df4c04a1ff8.jpg]() -Figure 9 - -![images/8abee1e6ec31997b2ac7625b6d5bf329ec4b092da8a4308cdd8918686801058a.jpg]() -Figure 10 - -Discuss whether either of the two suggestions would work. - -[4 marks] - -1 -2 - -Figure 11 shows the stress–strain graph for a metal in tension up to the point at which it fractures. - -![images/8497e6cd14aa20c9ca5e9f454cbcb887974bec9216b18142a7bb60ebec73ec54.jpg]() -Figure 11 -Determine, using Figure 11, the Young modulus of the metal. - -[1 mark] - -Young modulus $=$ Pa - -Explain how the graph shows that this metal is brittle. - -[1 mark] - -Question 5 continues on the next page - -Figure 12 shows a uniform rigid lighting beam AB suspended from a fixed horizontal support by two identical vertical steel wires. A lamp is attached to the midpoint of AB. - -![images/93ff3930946f9d84389c70d9a39970d476a23f32097eef05828f2edf98c516be.jpg]() -Figure 12 - -The unloaded length of each steel wire was $1.20\:\mathrm{m}$ before it was attached to AB. -AB is horizontal. -mass of $\mathsf{A B}=4.4\mathrm{kg}$ -mass of lam $)=16.0\mathrm{kg}$ -distance between wires $;=2.00\mathrm{m}$ -diameter of each wire $=0.800\mathrm{mm}$ -Young modulus of steel $=2.10\times10^{11}\mathrm{P}\mathrm{:}$ a - -Calculate the extension of each wire. - -The right-hand steel wire is removed and replaced with an aluminium wire of diameter $1.60\mathrm{mm}$ . The unloaded length of the aluminium wire is the same as that of the original steel wire. - -When the lamp is at the midpoint of AB, one of the wires extends more than the other so that AB is not horizontal. To make AB horizontal the lamp has to be moved to a distance $x$ from A. Figure 13 shows the new arrangement. - -![images/59794ad74e3c90f35560f033094612b7bd0d38e73b7a1e043fec98d9de64372a.jpg]() -Figure 13 - -The Young modulus of aluminium is $7.00\times10^{10}\mathrm{Pa}$ . -Deduce distance $x$ . A pencil is weighted with a thin coil of wire. The volume of the wire is negligible. -Figure 14 shows the pencil and wire floating in equilibrium in water. - -![images/4b9a8fc761c493dcf513cfe98d12648514d62b9dcd5f1e9573834c61e2ced345.jpg]() -Figure 14 -Figure 15 -In Figure 14 the combined weight of the pencil and wire is equal to an upwards force called the buoyancy force. The length of the pencil that is submerged is l. A student pushes the pencil down through a displacement y as shown in Figure 15. The buoyancy force is now greater than the weight. There is a resultant upward force $F$ acting on the pencil when the student releases it. The magnitude of $F$ for any value of $y$ is given by - -$$ -F=A\rho g y -$$ - -where $A$ is the cross-sectional area of the pencil $\rho$ is the density of water $g$ is the acceleration due to gravity. - -The pencil is pushed down and released. The pencil then oscillates vertically about the equilibrium position. - -Show that the pencil moves with simple harmonic motion. - -[2 marks] - -The time period $T$ of the vertical oscillations is given by - -$$ -T=2\pi\sqrt{\frac{l}{g}} -$$ - -The measured value of $l$ in Figure 15 is $85\mathrm{mm}$ . -The pencil is pushed down $5.0\mathrm{mm}$ and released. - -Calculate the maximum acceleration of the pencil. - -[2 marks] - -maximum acceleration $=$ m s−2 - -Question 6 continues on the next page - -A ship floating in the sea can be modelled by the pencil floating in water. The ship can oscillate vertically. These oscillations are called heave oscillatio - -Wave motion causes forced oscillations of the ship. Under certain conditions, heave resonance may then occur. - -Explain what is meant by resonance. - -[2 marks] - -The ship is moving steadily at $8.0\mathrm{m~s}^{-1}$ relative to the seabed in the same direction as the waves. - -![images/094b4450e7343638a1ec955e5f1af99ac05903bd9003eb54d02ef61f4d31b4ab.jpg]() -Figure 16 shows a ship moving through continuous waves of wavelength $118\mathrm{m}$ and velocity $14.2\mathrm{m~s}^{-1}$ . -Figure 16 - -The natural frequency of heave oscillations of the ship is $0.13\:\mathrm{Hz}$ . - -A crew member needs an emergency operation. The ship’s doctor is confident that she can do the operation if the ship remains fairly steady. - -There are two options: - -• stop the ship’s motors and loosely anchor the ship to the seabed • continue to sail the ship at $8.0\mathrm{m~s}^{-1}$ in the same direction. - -Deduce which is the better option. -Support your answer with a calculation. - -[3 marks] - -END OF SECTION A - -# Section B - -Each of Questions 07 to 31 is followed by four responses, A, B, C and D. - -For each question select the best response. - -Only one answer per question is allowed. -For each question, completely fill in the circle alongside the appropriate answer. - -CORRECT METHOD - -![images/fc90fe09eb45c0e24e0102ba561fcf3790dfbd2bc6039fb07037f0b360e27e1b.jpg]() - -If you want to change your answer you must cross out your original answer as shown. - -![images/d5adcc1c8d2076adfaa968721816e1ece8cce5bb575f889b544f54dacf508b3d.jpg]() - -If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown. - -You may do your working in the blank space around each question but this will not be marked. -Do not use additional sheets for this working. - -Which combination of an object’s speed and journey time gives a distance travelled of $1\mathrm{mm}?$ - -[1 mark] - -
SpeedJourney time
A10 μm s-1100 s
B10 km s-10.01 μs
C1 nm s-11 Gs
D0.1 Mm s-1100 ns
- -A person jumps as high as she can from a standing position. What is a reasonable estimate of her speed just after she leaves the ground? - -[1 mark] - -A 2 m s−1 -B 4 m s−1 -C 8 m s−1 $\subset$ -D 10 m s−1 $\Longleftrightarrow$ - -A nucleus contains $N$ neutrons and $Z$ protons. Which combination of $N$ and $Z$ gives a nucleus with the greatest specific charge? [1 mark] - -![images/f06bc7de8b270c4f2c3be9d0ce85ede5e7cfa45dd91ea708cbd1931e5d8331cf.jpg]() - -Which statement about muons is correct? - -[1 mark] - -A They consist of a quark and an antiquark. -B They include pions and kaons. -C They are subject to the strong interaction. $\Longleftrightarrow$ -D They decay into electrons. - -The diagram represents a quark change in which an electron antineutrino is produced. - -![images/552ea65dfae798a061f6d16b93136390e65d935169ecff89841ed7ecc8cb18e2.jpg]() - -What are E, F and G? - -[1 mark] - -
EFG
Aup quarkdown quarkβ
Bdown quarkup quarkβ
Cup quarkdown quarkβ+
Ddown quarkup quark+8
- -Photoelectrons are released when monochromatic light with a photon energy of $4.2\times10^{-19}$ J is incident on a metal surface. -The work function of the surface is $2.4\mathrm{eV}$ . - -What is the maximum speed of the photoelectrons as they leave the surface? - -[1 mark] - -A $1.3\times10^{6}\mathrm{m}\mathrm{s}^{-1}$ B $6.3\times10^{5}\mathrm{~m~s~}^{-1}$ $\Longleftrightarrow$ C $2.8\times10^{5}\mathrm{ms^{-1}}$ $\subset$ D $2.0\times10^{5}\mathrm{ms^{-1}}$ $\subset$ - -Electrons with a certain kinetic energy pass through a powdered crystalline sample and are incident on a fluorescent screen. The diagram shows a sketch of the diffraction pattern produced. - -![images/d0bcade1d6eecd11c7b01a830874a85e0bdc19ea90eb2b78af4ae3d59d3ae4f8.jpg]() - -A change is made and this second pattern is produced. - -![images/cd4ce3af50f954eb058f6cc8093cb9da40b553f64860b24e882b21a6c3fc8950.jpg]() - -Which change could produce the second pattern? - -[1 mark] - -A decreasing the kinetic energy of the electrons B replacing the electrons with protons with the same kinetic energy C using a crystalline sample with a wider spacing between its atoms D moving the screen closer to the crystalline sample - -A string with a length of $1.2\textrm{m}$ vibrates at its second harmonic. -The diagram shows the displacement–time graph for a point on the string. - -![images/3e901f3fea35b80edd32390c7e3c2a7b11e5e18779065ebbf16c8fed8caa2a5b.jpg]() - -What are the wavelength and frequency of the wave on the string? - -[1 mark] - -![images/44b1d4cf7a79b186f6049d6ec7f972462a57f574c3cb41e18b1a810022551015.jpg]() - -A standing wave is created on a string. Which statement about the two waves that create the standing wave is not correct? [1 mark] - -A They have the same frequency. -B They have a constant phase relationship. -C They travel in opposite directions. $\Longleftrightarrow$ -D They have the same speed. $\Longleftrightarrow$ - -A double slit with a separation $s$ is illuminated by light of wavelength $\uplambda$ . Fringes with spacing $w$ are produced on a screen placed a distance $D$ from the slits. The distance from the slits to the screen is changed to $\frac{D}{2}$ - -Which combination of slit separation and wavelength produces a fringe spacing of $1.5w$ on the screen? - -[1 mark] - -![images/4cc79f3b36b865d03cd79b60f417c2cc67740b3fa5c2224c535b4ef3c77ce1ac.jpg]() - -Turn over for the next question - -A single narrow slit is illuminated with monochromatic light and a diffraction pattern is produced. - -The slit width is increased. - -What happens to the width and brightness of the central maximum of the diffraction pattern? - -[1 mark] - -
WidthofcentralmaximumBrightness of central maximum
Aincreasesincreases
Bincreasesdecreases
Cdecreasesincreases
Ddecreasesdecreases
- -A ball is kicked from point P on level ground. The ball initially travels at $45^{\circ}$ to the horizontal. -The ball reaches its maximum height after a time of $2.0\mathrm{~s~}$ . -Air resistance can be ignored. - -![images/0b5f6d4f2e6fc2a8232dfa1d2565264abb0403a362dd2751b0b9bd00bc0b508d.jpg]() - -What is the displacement of the ball from P when at its maximum height? - -[1 mark] - -A 20 m B 40 m C 45 m D 60 m $\smile$ $\smile$ - -An object is moving in a straight line. A graph is plotted to show the variation of the momentum of the object with time. - -Which quantities can be calculated from the gradient of the graph and the area under the graph? - -[1 mark] - -
Gradient of graphArea under graph
Apowermass x displacement
Bforceworkdonex time
Cpowerworkdone×time
Dforcemassxdisplacement
- -Which is a pair of vectors? - -[1 mark] - -A weight and work -B force and energy -C displacement and momentum -D acceleration and power - -Which statement about a superconducting metal is correct? - -[1 mark] - -A Its resistivity is small but not zero. -B A current in it causes no heating effect. -C Its critical temperature is independent of the metal it is made from. $\Longleftrightarrow$ -D Keeping it cold makes it too expensive to use. - -2 2 A heavy uniform trapdoor is hinged to the floor. It is held open by a rope as shown. - -![images/10fe5965c77c0bb40c20f2cd2f8b631e93193e67d44e858a850d7e1f2451532f.jpg]() - -Which arrow shows the direction of the reaction force of the hinge on the trapdoor? [1 mark] - -A B C D - -A sphere of mass m falls with speed $\nu$ . -The resistive force on the sphere is $k\nu$ , where $k$ is a constant. - -What is the terminal speed of the sphere? - -[1 mark] - -![images/ce27ad9bc78f9bc1162d578b67e29e78a971663103a5283f2c87a0d03181ff33.jpg]() - -A trolley moves down a slope with constant acceleration. -The mass of the trolley is doubled and the trolley moves down the same slope again. -Air resistance and friction are negligible. - -Which is correct? - -A The accelerating force is unchanged. -B The accelerating force is halved. $\subset$ -C The acceleration is unchanged. $\Longleftrightarrow$ -D The acceleration is halved. $\Longleftrightarrow$ - -A variable force $F$ acts on an object of mass $2.0\mathrm{kg}$ . The object is at rest at time $t=0$ The graph shows the variation of $F$ with $t$ . - -![images/040afa95244ad6af8e31e279611140b49dcc0790869ebbca95353736ef6ccd6b.jpg]() - -What is the speed of the object when $t=1.0\mathrm{s}?$ - -[1 mark] - -A $3.75\mathrm{m~s}^{-1}$ -B 5.00 m s−1 -C 7.50 m s−1 $\subset$ D 15.0 m s−1 $\subset$ - -A heavy cable is attached to a fixed support and carries a load at its lower end. - -![images/e366da6f2631cbd47c9a3f6ea6a2b0f5532229422527e30c29f0d43e3e42de0f.jpg]() - -The weight of the cable is not negligible. -The cable has constant cross-sectional area and density. - -Which graph shows the variation of tensile stress $\sigma$ in the cable with distance $d$ from $\mathbf{J}$ to K? - -[1 mark] - -![images/729c39e8c747e3dd41e75544994ef349cf590f24847c0667699f7ccb2b495e34.jpg]() - -A $\Longleftrightarrow$ B $\Longleftrightarrow$ C -D - -A box with four terminals is connected to a cell and two ammeters. The top left terminal is X. - -![images/7de2e3cf5be681ce1c6209fa2ac0dab26d2b5540940b08364ba4b046637b71e0.jpg]() - -Each of the boxes A to D is connected into the circuit in turn. All the resistors have equal resistance. - -Which box gives the same reading on both ammeters? - -[1 mark] - -![images/77bb2d37d708972bbc45658589f16c12cbd14ec8a061d940c224506ec4964f00.jpg]() - -A B C D - -Two circular discs made of card rotate at constant speed on a common axle. - -![images/bc8d0e365da0d6b89e9a913a27af5bc0fb2ac2f61fe1b32890bf32c33e2c6ed3.jpg]() - -The discs are $2.00\mathrm{m}$ apart. - -An air-gun pellet is fired parallel to the axle. The pellet makes holes in the discs. -The holes are separated by an angle of $45^{\circ}$ . -The speed of the pellet between the discs is $300\mathrm{m~s}^{-1}$ . - -How many revolutions does each disc complete in one second? - -![images/d655065f0021e9cd6476e5101e273f7dc2194a85535176d4136ea238995f0165.jpg]() - -A resistor dissipates 100 W when connected across a $25\mathrm{~V~}$ supply with negligible internal resistance. -The supply output is reduced to $20\mathrm{V}$ and the resistor is replaced so that the power dissipated is still $100\mathrm{~W~}$ . - -What is the percentage decrease in resistance? - -A 20 -B 36 -C 64 -D 80 - -When an aircraft turns in a horizontal circular path, it banks at an angle $\theta$ . - -![images/bbccf30d69340d2d9dbdd455609e40c4ecd1620e7955b5bac7dd60fc68f59cc6.jpg]() - -The aircraft has mass m and travels at constant speed $\nu$ in a horizontal circular path of radius $r$ . The lift force acts at the angle $\theta$ . - -What is tan $\theta?$ - -[1 mark] - -![images/25be9a776968767016ad4f01c16137f63cdcf38d4ecae80ac5eb845529219d00.jpg]() - -A mass, attached to two springs, oscillates horizontally between P and Q. The motion of the system is simple harmonic. - -![images/fe11f5d4d779ab6f8e11b6b0be250f73f795ee54148741172a3b19c5d2078ee4.jpg]() - -Which quantity has its magnitude at a minimum value when the mass is at Q? - -[1 mark] - -A the acceleration of the mass -B the kinetic energy of the mass -C the potential energy of the mass–spring system $\Longleftrightarrow$ -D the resultant force of the springs on the mass - -![images/a6c32bff5558f984a0bc4cf5af43bafcb87dc23974036a0fcd9f1d3a87e17b17.jpg]() - -
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
- -
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
Copyrightinformation
For confidentiality purposes, allacknowledgements of third-party copyright material are published in a separate booklet.This booklet is published aftereach live examinationseries and is availableforfree download fromwww.aqa.org.uk.
Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the
- -AQA - -A-LEVEL PHYSICS 7408/1 Paper 1 - -# Mark scheme - -June 2019 - -Version: 1.0 Final \*jun1974081/MS\* - -Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students’ responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students’ scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer. - -It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark schemes on the basis of one year’s document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper. - -Further copies of this mark scheme are available from aqa.org.uk - -# Copyright information - -For confidentiality purposes acknowledgements of third-party material are published in a separate booklet which is available for free download from www.aqa.org.uk after the live examination series. - -Copyright $\circledcirc$ 2019 AQA and its licensors. All rights reserved. - -# Level of response marking instructions - -Level of response mark schemes are broken down into levels, each of which has a descriptor. The descriptor for the level shows the average performance for the level. There are marks in each level. - -Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as instructed) to show the qualities that are being looked for. You can then apply the mark scheme. - -# Step 1 Determine a level - -Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer. With practice and familiarity you will find that for better answers you will be able to quickly skip through the lower levels of the mark scheme. - -When assigning a level you should look at the overall quality of the answer and not look to pick holes in small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level and then use the variability of the response to help decide the mark within the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be placed in level 3 but be awarded a mark near the top of the level because of the level 4 content. - -# Step 2 Determine a mark - -Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate marks can help with this. The exemplar materials used during standardisation will help. There will be an answer in the standardising materials which will correspond with each level of the mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer with the example to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner’s mark on the example. - -You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate. - -Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be exhaustive and you must credit other valid points. Students do not have to cover all of the points mentioned in the Indicative content to reach the highest level of the mark scheme. - -An answer which contains nothing of relevance to the question must be awarded no marks. - -
QuestionAnswersAdditional Comments/GuidelinesMark
- -
01.1lodine-131 has 6 more neutrons (than iodine-125) Condone iodine-131 has 78 neutrons and iodine-125 has 72 neutrons. Condone “6 fewer/less neutrons than iodine-131" Do not credit nucleons. Suggestion of difference in number of protons loses the mark.
01.2131 (nucleons) If more than one number is given, the nucleon number must be explicit. Accept reverse arguments.1
01.3The tellurium has 1 more neutron (than iodine-125) v The tellurium has 1 fewer proton (than iodine-125) Accept telluriumhas73neutrons Accepttelluriumhas52protons Condone “"proton number". Condone "number of neutrons/protons have increased/decreasedbyone" Treat any nuclear reactions as neutral. Discussion of electrons in nucleus scores max 1. Accept answer in terms of quarks (one more down and one fewer up). Ignore references to nucleons/mass number.2
- -
AAny 3.
beta-decay: (electron and) anti-neutrino released; (internal conversion: only electron released);Treat each difference, as delimited by the answer book, as a single independent mark.
CB (both statements required for mark) internalconversion:allelectronsreleasedwillhavesimilar/discrete energies/momenta beta-decay: electrons will have a range of energies/momenta vContradictionwithin a difference cancels the mark for that difference (on list basis). For a contradiction between separate differences treat the incorrect differenceasneutral.
01.4(internal conversion: no change in constituents of nucleus/element does not change)Allow: F (both statements required for mark)
beta-decay: neutron converted to proton(allow in terms of quarks)/element changes (to one with (one) more p, different Z, different proton number/different atomic number)) Internal conversion: may be accompanied by X-ray photon Beta-decay: may be accompanied by gamma photonv3
D (internal conversion: orbital electron lost)Allow“shells"for“orbitals".
beta-decay: electron comes from nucleus / no change in orbital electrons v
Do not award separate marks for force and
E (both statements required for mark) internal conversion: mediated by electromagnetic force / virtualexchangeparticle Condone "W boson" or "W particle" but not W+ and
photons
W
beta-decay: mediated by weak interaction / W √
Total
7
- -# MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2019 - -
QuestionAnswersAdditional Comments/GuidelinesMark
- -
Ray enters (prism) along normal v 02.1Allow normal explained eg at right angles to surface Accept “angle of incidence is O".
- -
Treat each point independently. Prism material/it has/they have same refractive index / optical density as windscreen vCondone'it has'or‘they have'or just'same’
Allow"no change of speed between prism and windscreen" Allow "made from same material"
02.2 Prism fitted to windscreen without gaps vDo not allow“same refractive index between them" Treat“monochromatic"asneutral Allow"contact between prism and windscreen is clean" etc. Allow "touching the windscreen"2
Condone suggestion that any bonding material has same refractive index (as prism and windscreen). Do not accept 'no boundary'
(1) = (990) =() = 02.3 each boundary) The first mark is for the calculation. The second is for the discussion but is contingent on obtaining a value for C.2
- -
Accept clear reference to angle at point A in place
of45°statement. Do not allow “angle of incidence> critical angle" on
- -
Do not allow “angle of incidence> critical angle" on its own.
02.4Calculation of critical angle at glass-water boundary (61.0°) OR Calculation of possible n from glass to water (0.707) or absolute n for glass (1.88) OR Calculation of angle of refraction in water (53.9°) 2
So total internal reflection no longer takes place OR some light escapes/refracts (into water) / less light reflects v (Less light stays within windscreen so less light detected at sensor)Do not allow suggestion that TiR occurs at critical angle/when angle of incidence=critical angle. Do not allow "ray/all the light escapes/refracts" or "no light reflects" or "less TiR". Do not condone “total internal refraction/diffraction'
02.5Statement of effect of change in n on the path direction v (Sensible reference to the variation of a few per cent) leads to the idea that change is unlikely to be significant vEg for MP1 Light may change direction inside windscreen Light may change direction at a windscreen boundary Eg for MP2 Variation too small to deviate significantly withinwindscreen-internaleffect VariationtoosmalltoaffecttiratAwithoutMax 2
- -
droplet-boundaryeffect Variationtoosmalltosignificantlyaffect transmissionatAwithdroplet-boundary effect Allow discussions that may cause a difference, eg
thereisasummativeeffectfrommultiplereflections etc
- -
More sensitive because... more likely to encounter/detectwater dropORwill encountermore water drops bigger decrease in light intensity, so more sensitive to rain v 02.6Allow any 2 comments taken from list . Theremust beasense of whether the comment relatestoanimprovementordecreasein sensitivity.Max 2
Treat as list; mark 1 and 2 independently. Allowideaoflargerarea
Do not allow a response that discusses travel time of ray.
Total11
- -
QuestionAnswersAdditional Comments/GuidelinesMark
- -
03.1Central maximum with lower intensity maxima (either side) Central maximum is twice as wide/wider than other maxima vMP1 is for comparison of intensity. Condone references to brightness/dimness. MP2 is for comparison of width Award credit for a drawn answer eg on Fig 3. Suggestion that pattern due towhite light = max 1 Reference to Young's slit or equation = max 1 If only a single maximum is referred to MP2=0 but2
03.2MP1 can score for description of intensity variation. Wider (central) maxima (maximum) 'The pattern is wider/more spread out' gets 1 mark if no other marks given. Not "larger pattern". Condone "larger" distances between maxima. (Subsequent) maxima further apart v Condone 'maxima more spaced out' Reference to Young's slit or equation = max 1
03.3d= 1 × 10-3/500(= 2 × 10-6) (sin θ= n2/d = 6.5 × 10-7 /2 × 10-6 = 0.33)lgnorecommentsrelated tochange inwavelength AllowPOT error for d for MP1 May be seen in diffraction grating equation.2
- -
0=19%√Allow max 1 for use of grating constant rather than
dto give 7.45 x 10-11 o if no other credit available.
- -
Any two from: V vGivecreditforanswershownindiagram
03.4(Range of wavelengths results in):Evidenceforthesemarksmaybeseenin calculations
Central maximumunchanged inwidthTreatintensityvariationasneutral.Max2
Broader maxima/range of angles for each maximum/order Gradually getting broader/more spread out for greater order maxima
(.06
- -
8
- -
Question AnswersAdditionalComments/GuidelinesMark
- -
04.1The centre of mass of the beam and box is at the pivot v Idea that moments balance / sum of the moments is zero at this position v OR The anticlockwise moment (of weight of the beam) = clockwise moment (of weight of the box) Links pivot position to a consideration of moments v max 1Accept one route or the other, do not accept points from both. Allow max 1 for "the pivot is to the right of the centre (of mass) of the beam" pivot' on its own does not get the first mark 2 Award 2 for 1.25 x weight of beam = 1.5 x weight of empty box Confusion of moments with eg work done/forces =
04.2Clockwise moment = 610 x 9.81 × 1.5 (= 8976 N m) Anticlockwise moment = 250 × 4 + T sin 50 × 4.0 (N m)v Use of clockwise = anticlockwisev Use of T sin 50° seen / relates vertical component to tensionv T(= 1994/sin 50° )= 2600 (N)vCredit any evidence towork out a moment with one mark Condone cos 50 in MP2. Allow ecf for clockwise moment 5 Allow ecf for anticlockwise moment Use of g = 10 N kg-1 gives 2990 N Omission of 4.0 m (g = 9.8) gives 10410 N. Use of c0s 50 (g = 9.8) gives 3100 N
- -
Allow max 4 for use of g = 10 N kg-1.
- -
04.37.5 = 12 g t (t = 1.2 s)
2
(calculatedistance)AllowecffromincorrecttforMP2
s (= ut = 18 × 1.2) = 22 (m)v
- -
04.4(Range will be greater:) component of velocity upwards v rock will spend longer in the air v greater tv therefore_the range is greater v OR (Range will be smaller) Counterweight will fall less far before projectile released v Less energy transferred to rock v Initial speed of rock less/horizontal velocity reduced v therefore_the range is smaller OR (balanced arguments)Candidates can argue from both lists to reach a balanced view suggesting that there is no change. Full credit can be obtained from 2 deductions from one list V√+ consistent conclusionv 1 deduction from each list √√+ consistent conclusion v Do not allow an unsupported conclusion. Max3 Conclusion must be consistent with correct statements. Treat incorrect statements as neutral. Do not reward arguments based on a longer time of flight.
Totaltherefore the range is unchanged / answer is indeterminatev12
- -
Question AnswersAdditional Comments/GuidelinesMark
- -
05.1Conversion of 110 km h-1 to 31 m sAllowecfforincorrectorfailure tocarryoutspeed 2
= 1 x 1.5 × 103 x their conversion2 with a consistent answerv (= 7(.2) × 105)conversion Expectanswer tobecalculatedcorrectlyandto2+ sf.
- -
05.2Component of velocity = 31 × cos (20) ORAllowecfforspeedfrom05.1
evidence of using momentum = mass x velocity (eg 1.5 x 10? x a velocity) vAccept 4.65 x 104 kg m s-1 for max 2 3
= 4.4 × 104 √ For unit only accept kg m s-1 OR NsvUse of 30.6 m s-1 gives 43 kN s
- -
05.3(KE before collision = 700 kJ)Allow ecf for speed from 05.13
Speed (parallel to barrier) after (= 31 × cos 20) = 28.7 m sUse of KE = p²/2m can gain full credit. Allowecfformomentumin05.2
KE after( = %2 × 1.5 × 103 × 28.72 ) = 618 kJ v Change = 700 - 618 (= 82 kJ)Final answer depends on extent towhich candidate hasrounded in earlierparts.Allow correctly
- -
Speed (perpendicular to barrier) after = 31 × sin 20 (= 10.5 m s Loss of KE (= %2 × 1.5 × 103 × 10.52 ) = 82 kJ Justification that total KE = KE due to speed parallel to barrier + KE due tospeedperpendicular tobarrier√Inthisquestion, do not insist on final answer to 2+ Sf.
- -
05.4Evidence of work done = force × distance Eg Force = 82 000 / 1.5 0R their value for 05.3÷1.5v Allow 80 kJ for energy = 5.5 × 104 Nv This is less than braking force - so yes. v OR energy approach 90 kJ v
work done by barrier = 60 kN x 1.5 mv
which is > Ek of vehicle, so yes v OR impulse argument
evaluate time taken to stop, 0.26 s v3 Generalschemeforalternativesandreverse arguments is:
impulse value leading to distance or forcev ·conclusion consistent with correct method of calculation vfirst step calculation subsequent calculation(s) leading to
comparativevalue.Allow ecf for error in first step.
conclusion consistent with correct method of calculation
OR use of F=ma and suvat : F= ma leading to a = (-)40 m s-2√
suvat leads to 1.37 mvAlternative suvat method:
uses suvat to get a = 36.5 m s-2
which is <1.5 m, s0 yes vuses F=ma
which is <60 kN, s0 yes
- -
(Steel barrier is better because)
05.5Increasetimeofcontactasmaterialdeforms Reference to impulse (= change in momentum = Ft) implies smaller force (on dummy) OR Increasing stopping distance as material deforms v Reference to work done (= Fs) implies smaller force (on dummy) vAllow correct discussionleading to concretebarrier is worse. Alternativesecondmarkforeither alternativecan beawardedforcorrectreferencetoF=ma2
Total13
- -
QuestionAnswersAdditional Comments/GuidelinesMark
- -
1.5 (ms) 06.11
- -
06.2A = 4.2 (mm) read from graph T = 2.0 (ms) read from graph Condone power of ten error in A and/or T but not in final answer. Evidence for T might be seen in equation, as 5003
(f). (amax = 4.2 × 10-3 × (2 × π /(2 × 10-3)2
4.1(5) × 104 (m s-²) (Do not allow 4.2)Only allowed ecf for max 2 is use of 4.1 mm for A, giving 4.0 x 104 (m s-2)
- -
06.3longitudinal (they) oscillate along direction of energy transferBoth required for 1 mark Condone“vibrate”for oscillate. Condone‘travel'fortransfer
Total5
- -
QuestionAnswersAdditionalComments/GuidelinesMark
07.1Mention of increase in lost volts/ pd across internal resistance (in cell)v (because) current has increased OR internal resistance is a larger proportion of total resistance OR ratio of internal: external resistance is larger vAccept reverse arguments Do not accept terminal pd has decreased Treat comments about resistance of lamp as neutral2
07.2Lost volts reduced (current remains the same, V2 > V1) OR Effective internal resistance is a smaller proportion of total resistance / ratio of internal: external resistance is smaller v (because) two cells in parallel behave as a single cell (with the same emf) but with half the internal resistance / reduced internal resistancev Alternative: Current through each cell is less than cell on its own v Decreased current through cell decreases lost volts / pd dropped across internal resistance v2
- -
Total4
- -
Keys to Objective Test Questions (each correct answer is worth 1 mark)
8 9 10 11 12 13 14 15 16 17 18 19
- -
ADCCCABDDBCC
20212223242526272829303132
DBDDBBACCDCAD
- -# AQA - -A-level PHYSICS 7408/1 Paper 1 - -# Mark scheme - -June 2023 - -Version: 1.0 Final - -Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students’ responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students’ scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner. - -It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark schemes on the basis of one year’s document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper. - -Further copies of this mark scheme are available from aqa.org.uk - -# Copyright information - -AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre. - -Copyright $\circledcirc$ 2023 AQA and its licensors. All rights reserved. - -# Physics - Mark scheme instructions to examiners - -# 1. General - -The mark scheme for each question shows: - -• the marks available for each part of the question -• the total marks available for the question -• the typical answer or answers which are expected extra information to help the Examiner make his or her judgement and help to delineate what is acceptable or not worthy of credit or, in discursive answers, to give an overview of the area in which a mark or marks may be awarded. - -The extra information is aligned to the appropriate answer in the left-hand part of the mark scheme and should only be applied to that item in the mark scheme. - -At the beginning of a part of a question a reminder may be given, for example: where consequential marking needs to be considered in a calculation; or the answer may be on the diagram or at a different place on the script. - -In general the right-hand side of the mark scheme is there to provide those extra details which confuse the main part of the mark scheme yet may be helpful in ensuring that marking is straightforward and consistent. - -# 2. Emboldening - -2.1 In a list of acceptable answers where more than one mark is available ‘any two from’ is used, with the number of marks emboldened. Each of the following bullet points is a potential mark. -2.2 A bold and is used to indicate that both parts of the answer are required to award the mark. -2.3 Alternative answers acceptable for a mark are indicated by the use of or. Different terms in the mark scheme are shown by a / ; eg allow smooth / free movement. - -# 3. Marking points - -# 3.1 Marking of lists - -This applies to questions requiring a set number of responses, but for which candidates have provided extra responses. The general principle to be followed in such a situation is that ‘right $+$ wrong $=$ wrong’. - -Each error / contradiction negates each correct response. So, if the number of errors / contradictions equals or exceeds the number of marks available for the question, no marks can be awarded. - -However, responses considered to be neutral (often prefaced by ‘Ignore’ in the mark scheme) are not penalised. - -# 3.2 Marking procedure for calculations - -Full marks can usually be given for a correct numerical answer without working shown unless the question states ‘Show your working’. However, if a correct numerical answer can be evaluated from incorrect physics then working will be required. The mark scheme will indicate both this and the credit (if any) that can be allowed for the incorrect approach. - -However, if the answer is incorrect, mark(s) can usually be gained by correct substitution / working and this is shown in the ‘extra information’ column or by each stage of a longer calculation. - -A calculation must be followed through to answer in decimal form. An answer in surd form is never acceptable for the final (evaluation) mark in a calculation and will therefore generally be denied one mark. - -# 3.3 Interpretation of ‘it’ - -Answers using the word ‘it’ should be given credit only if it is clear that the ‘it’ refers to the correct subject. - -3.4 Errors carried forward, consequential marking and arithmetic errors - -Allowances for errors carried forward are likely to be restricted to calculation questions and should be shown by the abbreviation ECF or conseq in the marking scheme. - -An arithmetic error should be penalised for one mark only unless otherwise amplified in the marking scheme. Arithmetic errors may arise from a slip in a calculation or from an incorrect transfer of a numerical value from data given in a question. - -# 3.5 Phonetic spelling - -The phonetic spelling of correct scientific terminology should be credited (eg fizix) unless there is a possible confusion (eg defraction/refraction) with another technical term. - -# 3.6 Brackets - -(…..) are used to indicate information which is not essential for the mark to be awarded but is included to help the examiner identify the sense of the answer required. - -# 3.7 Ignore / Insufficient / Do not allow - -‘Ignore’ or ‘insufficient’ is used when the information given is irrelevant to the question or not enough to gain the marking point. Any further correct amplification could gain the marking point. - -‘Do not allow’ means that this is a wrong answer which, even if the correct answer is given, will still mean that the mark is not awarded. - -# 3.8 Significant figure penalties - -Answers to questions in the practical sections (7407/2 – Section A and 7408/3A) should display an appropriate number of significant figures. For non-practical sections, an A-level paper may contain up to 2 marks (1 mark for AS) that are contingent on the candidate quoting the final answer in a calculation to a specified number of significant figures (sf). This will generally be assessed to be the number of sf of the datum with the least number of sf from which the answer is determined. The mark scheme will give the range of sf that are acceptable but this will normally be the sf of the datum (or this sf -1). - -An answer in surd form cannot gain the sf mark. An incorrect calculation following some working can gain the sf mark. For a question beginning with the command word ‘Show that…’, the answer should be quoted to one more sf than the sf quoted in the question eg ‘Show that X is equal to about 2.1 cm’ – - -answer should be quoted to 3 sf. An answer to 1 sf will not normally be acceptable, unless the answer is an integer eg a number of objects. In non-practical sections, the need for a consideration will be indicated in the question by the use of ‘Give your answer to an appropriate number of significant figures’. - -# 3.9 Unit penalties - -An A-level paper may contain up to 2 marks (1 mark for AS) that are contingent on the candidate quoting the correct unit for the answer to a calculation. The need for a unit to be quoted will be indicated in the question by the use of ‘State an appropriate SI unit for your answer’. Unit answers will be expected to appear in the most commonly agreed form for the calculation concerned; strings of fundamental (base) units would not. For example, 1 tesla and 1 Wb $\mathsf{m}^{-2}$ would both be acceptable units for magnetic flux density but $1~\mathsf{k g}~\mathsf{m}^{2}\mathsf{s}^{-2}\mathsf{A}^{-1}$ would not. - -# 3.10 Level of response marking instructions - -Level of response mark schemes are broken down into three levels, each of which has a descriptor. The descriptor for the level shows the average performance for the level. There are two marks in each level. - -Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as instructed) to show the qualities that are being looked for. You can then apply the mark scheme. - -# Determining a level - -Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer. With practice and familiarity you will find that for better answers you will be able to quickly skip through the lower levels of the mark scheme. - -When assigning a level you should look at the overall quality of the answer and not look to pick holes in small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level and then use the variability of the response to help decide the mark within the level. ie if the response is predominantly level 2 with a small amount of level 3 material it would be placed in level 2. - -The exemplar materials used during standardisation will help you to determine the appropriate level. There will be an answer in the standardising materials which will correspond with each level of the mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer with the example to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner’s mark on the example. - -You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate. - -Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be exhaustive and you must credit other valid points. Students do not have to cover all of the points mentioned in the indicative content to reach the highest level of the mark scheme. - -An answer which contains nothing of relevance to the question must be awarded no marks. - -
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.1uds vDo not accept D for d. Penalise extra particles1AO3
- -
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.2weak(interaction / force)v strangeness changes (in this decay) (from -1 to 0 and strangeness can only change in a weak interaction)MP2:2AO1
Reject negative arguments (eg 'strangeness is conserved in a strong interaction')
Reject the idea that strangeness always changes in a weak interaction. General statement ofstrangeness
conservationintheweakinteractiononits own is insufficient.
Accept “strangeness is not conserved (in this
decay)".
Condone “strangeness is lost".
- -
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.3anti-neutronvAcceptn1AO1
Reject ambiguous answers unless supported byotherevidence.
Do not accept answer solely in terms of quarks
- -
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.41.1(1) × 103 (MeV) Rejectincorrectlyroundedanswers. Accept: 1100 MeV (2sf) / 1110 MeV (3sf) / 1115MeV (4sf)etc Calculatorvalue:1114.66875MeV1AO1
- -
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.5Any one from v (teams must be large and international) because: research is expensive / requires funding from many countries both scientists and engineers are required (because the machines used for research are complex/large pieces of civil engineering) research is multi-faceted / multi-disciplinary (becauseTreat idea of peer review as neutral (this argues for independent teams). Do not accept idea that it 'avoids bias' or 'reproducibility'.1AO1
- -
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
02.1Conversion of 1230 km h-1 to m s-1 ORExpect to see 342 m s-1 (341.7)2AO1
Calculates time for 343 m s-1 run ORExpect to see 4.69 sAO2
Calculates total time (using total distance, 3.22 km, and speed record)Expect to see 9.42 s
OR Calculates unknown speed vExpect to see 340.3 m s-1
Answer that rounds to 4.73 (s) Do not accept 2sf for final answer.
- -
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
02.2speed from graph: 450 m s Use of their speed and KE equation to give consistentAccept 445 - 455 m s-12AO3 AO2
- -
QuestionAnswersAdditional comments/GuidelinesMarkAO
02.3MAX three from: VvvExpect to see 450 m s-1 for their speed4 AO1 AO22× A03
Evidence for gradient may be on figure
AllowECFfrom02.2
Use of graph to determine gradient 450 5600
= 0.080(4)
Uses (their) speed and (their) gradient to give accelerationExpect to see 450 x 0.08
Use of F = m × (their a) to give resultant force Use of P = (their F)x (their speed)= 36(.2) m s-2
Expect to see 2.35 x 105 N
Final answer between 16% and 17%vExpect to see 450 x 2.35 x 105 = 106 MWReject power that is calculated assuming a
- -
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
02.4Identifies distance decelerating ANDallow 7000 m to 7600 m2AO3
max velocity = (470 ±5) m s-1 Uses suvat equation(s)allow answer consistent with their distance that rounds to 15 or 16
to get a = (-) 15 m s-2 which is less than 3g (so yes). vgive full credit to calculations that show that an acceleration of 3g would stop the car in a (much) shorter distance, with a statement that
this means that the actual acceleration must be (much) less than 3g. For MP2 allow calculation of gradientx average speed to give
Totalα = (-) 15 m s-2 which is less than 3g (so yes)10
- -
QuestionAnswersAdditional comments/GuidelinesMarkAO
03.1(1 C of) the charge gains ε J on passing through cellIf no other mark awarded, allow one mark for definition of emf in terms of energy transfer.2AO1
OR energy transferred (by 1 C) in R1 is V1 (J)accept: 'dissipated'
OR energy transferred (by 1 C) in R2 is V2 (J)accept “lost volts' for Ir but reject 'voltage across r
ORaccept 'work done' for 'energy transferred'
energy transferred (by 1 C) in r is Ir (J)
(for conservation of energy)Alternative for MP2 = V1 + V2 + Ir
ε = IR1 + IR2 + Ir vprovided that MP1 is awarded.
- -
QuestionAnswersAdditional comments/GuidelinesMarkAO
03.2Equates emf to Ir + 2.89 in some formv 1If no other mark awarded, award one mark for use of emf value in MP2. Allow in MP1 (their current/A) x125Q for 2.89 V3AO2 × 3
Calculates I from 2.89÷125 (=0.02312 A) 2Allow alternative routes for V1 and 2. E.g. "Lost volts'= 0.11 V √ 1 Applies potential-divider equation e.g. 0.11÷2.89 = r÷125 √2 OR 3÷(125 + r) = 2.89÷125√ 1V 2
- -
QuestionAnswersAdditional comments/GuidelinesMarkAO
03.3(Resistance splits 25 Q and 104.8 Q) Applies potential divider formula eg V 25 3.00 129.8 V = 0.58 (V) ~ If no other mark awarded, allow one mark forAccept other routes for MP1 e.g. using V = IR, with 25 Ω and their current, for example from I = 0.023 A (from Q03.2) emf 3 total resistance 125+r I =terminal pd 125 OR using V = 3 2.89 with an identification of 2.89 V 5 as the terminal pd.2AO2x 2
- -
QuestionAnswersAdditional comments/GuidelinesMarkAO
03.4Any four from: Straight line O V A to P 1v Less steep non-zero gradient from P to Q 2V Short steep increase at Q 3V Q to R about same non-zero gradient as P to Q 4v Horizontal line from R to B at 3.0 V 5v3.0 V pd/ V 0 A P Q RB position of C For 3V allow range no greater than width of "Q" label on horizontal axis. If graph sketched from 3 V (at A) to 0V (at B) award max 2 (based on 2Y and 4~). If a single diagonal straight line from O V (at A) to B, award iV only. If a single diagonal straight line from O V (at A) to R and then horizontal to B, award only 1V and 5v if scored (ie max 2).Max 4AO3 × 4
- -
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
04.1Uses 1 sinc= m to get 1.51 vMustseerelevantworktoawardthemark. Minimum3sfmustbeseen1AO1
- -
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
04.2(Each) angle of incidence is 45° (at 2nd and 3rd surfaces) AND2AO1 AO2
total internalreflectionoccurs/whichisgreater thanthe critical angle. v
Angle of incidence as ray leaves block is 0°
OR The ray leaves along the normal (and so the ray emerges
parallel to the incident ray). v
- -
QuestionAnswersAdditional comments/GuidelinesMarkAO
04.3Only (totally internally) reflected ray seen at 2nd reflecting boundary Reflected ray parallel to first refracted ray (by eye)vFor MP2:3AO2
acceptablerange forray
isthelargestangleof incidence forwntcn allof thelightleavesthroughthe
- -
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
04.4Angle of incidence at 2nd reflecting boundary = 41.5° √MP1 is an identification of angle at 2nd reflecting boundary4AO1
Angle of reflection at 1st reflecting boundary = 48.5° MP2 is (90°- their angle at 2nd reflecting boundary)
Angle of refraction at entry = (90° - 45° - 41.5°) = 3.5° MP3 is (45° - their angle at 2nd reflecting boundary)
Use of n = 1.5 and Snell's law to give 5.3° to at least 2 sf vAccept answer that rounds to 5.30
The identification of their angles can be inferred from their working or diagram. Simply writing 90° - 41.5° = 48.5° does not get a mark on its own.
- -
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
04.5Using 60° prism (Fig 9) does not work because: light would not leave the prism at the original angle v · idea that light will escape from second reflection v A smaller n (Fig 10) does not work because: ·larger critical angle v which would reduce the value of θ√Suggestion that the design would work limits the mark to Max 1 for that design.4AO3
AlternativeforMP2
Light would no longer be totally internally reflected at second reflection OR
angle of incidence at second reflection is now less than the critical angle
14
- -
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
05.1Evidence of appropriate use of Figure 11 e.g. 105 × 106 ÷7.5 × 10-4Some evidence that Figure 11 is used: calculationbased on a point on linebetween1AO1
75 MPa and 125 MPa OR calculation from point on straight line
extended
OR Use of triangle from more than half of the
linear section.
leading to an answer in the range 1.38 to 1.42 x 10l1 Pa
Allow 2 sf answer 1.4 x 10ll (Pa).
- -
QuestionAnswersAdditional comments/GuidelinesMarkAO
05.2Idea that wire undergoes only (very) small (increase in) strain beyond the linear section before fracture vReject idea that there is no increase in strain. Condone 'extension' or '(plastic) deformation' for 'strain'. Condone 'shortly after' for “beyond”1AO1 x 1
- -
QuestionAnswersAdditional comments/GuidelinesMarkAO
05.3Evidence of determination of total load or load on one wireTotal load = (4.4 + 16.0) × 9.8(1) = 200(.1) N Allow 'g' for 9.8(1)3AO1x1 AO2x 2
(halves load) Use of E =(their F)x L A×△LExpect to see F =100 N and A = 5.03 x 10-7 m2. Condone use of d in calculation of cross-sectional area A in MP2. Or separate calculations using o = F÷A, E = o÷strain, strain = △L÷L CondonePOT error in MP2.
- -
QuestionAnswersAdditional comments/GuidelinesMarkAO
05.4Evidence of extension/strain in each wire is the same 1v Substitutes data leading to Fa = 1.33 Fs 2V Calculates Fs or Fa 3v Evidence of an attempt at a moment equation 4vL ={FL÷AE} steel ={FL÷AE} aluminium {F÷d²E} steel ={F÷d²E} aluminium 1v F F 0.8² × 210 1.62 × 70 Fa = 1.33 Fs OR Fs = 0.752 Fa 2v 1.33 Fs + Fs = 200 N Fs = 86 N, Fa = 114 N 3v Attempt to takemoments about A or B or other suitable point, expect to see 16.0gx = 228 - 4.4g ~4 Note that an answer of 1.14 m comes from not taking into account the weight of the5AO3x 5
TotalDistance = 1.18 m V5beam Award max 4 for this approach. ECF forMP2 andMP3inMP410
- -
QuestionAnswersAdditional comments/GuidelinesMarkAO
06.1Equates resultant force to ma and shows a proportional to y, as Apmg are all constantvIn MP1: Condone upthrust/buoyancy force for2AO1x 1 AO2x 1
resultant force
F = ma = -Apyg
Apyg =D
m Condone missing minus signs in MP1.
oscillation v(hence SHM)In MP2:
Minus sign included and explained: (restoring) force/acceleration directed to centre of
Minus because force/acceleration is in
opposite direction to y OWTTE
- -
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
06.2g (T=2π/∞)S0∞= (= 10.74 rad s-1AlternativeforMP1: calculates time (0.58(5) s) AND then uses ① from this time2AO1 x 1 AO2×1
(amax = - c²ymax 1
0.58 (m s-2) from some correct workingMP2forcorrectcalculationofacceleration.
- -
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
06.3Idea that (at resonance) frequency of forced vibrations equals natural/resonant frequency 1vAcceptfullylabelledgraphofamplitudevs driving frequency with resonance frequency clearly labelled1V and an amplitude peak. 2v2AO1×2
Idea that amplitude (of vibrations/oscillations) is at a maximum2vCondone 'wave frequency' for 'driving frequency' Ignorereferencesto phase
- -
QuestionAnswersAdditional comments/GuidelinesMarkAO
06.4stopped: wave frequency (= )= 0.12 Hz 1v1Vis for calculation of (driving) frequency when stopped. Condone reference to "frequency of waves'.3AO3x 3
moving: when ship continues at 8 m s-1, forcing frequency will be further from resonant frequency 2vevidence can come from the substitution. Reject simple “0.12 (Hz)" 2V is for a relevant comment about the moving situation OR calculation of forcing frequency with the ship moving (giving 0.05 Hz) For 2V accept incorrect calculation from adding speeds provided comment that this frequency is further from resonant frequency. 3V is for statement of why moving is the
eg for stopped option wave/forcing frequency very close to natural frequency, (so amplitude of oscillations will be high)Allow answer for 3v that mentions that damping will be highly likely, so amplitudes may not reach high enough values to prevent
OR for moving option resonance does not occur 3voperation
- -
QuestionKeyAnswer
07A10 μm s-1 100 s
08B4 m s-1
09B8 7
10DThey decay into electrons.
11Bdown quark up quark β
12C2.8 × 10 m s-1
13Adecreasing the kinetic energy of the electrons
14C1.2 0.17
15BThey have a constant phase relationship.
16A0.22s 0.662
17Cdecreases increases
18C45 m
19Dforce mass x displacement
20Cdisplacement and momentum
21BA current in it causes no heating effect.
22BB
- -
23Amg k
24CThe acceleration is unchanged.
25C7.50 m s-1
26D0 p 一 K
27DX
28A19
- -
29B36
30D2y— rg
31Bthe kinetic energy of the mass
\ No newline at end of file diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/7408_1_June_2019_1739552566_content_list.json b/pdf_output/7408_1_June_2019_1739552566/auto/7408_1_June_2019_1739552566_content_list.json deleted file mode 100644 index 9d6365095ae2eeba22f5eb7cdb8aedd170b77ff9..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/7408_1_June_2019_1739552566_content_list.json +++ /dev/null @@ -1,3992 +0,0 @@ -[ - { - "type": "text", - "text": "Please write clearly in block capitals. ", - "page_idx": 0 - }, - { - "type": "text", - "text": "Centre number ", - "page_idx": 0 - }, - { - "type": "text", - "text": "Candidate number ", - "page_idx": 0 - }, - { - "type": "table", - "img_path": "images/46e70cec9112412d6ad0f31ff2a5c52902cb416b0945f7320186304d360fe9fc.jpg", - "table_caption": [], - "table_footnote": [], - "page_idx": 0 - }, - { - "type": "text", - "text": "Surname Forename(s) Candidate signature ", - "page_idx": 0 - }, - { - "type": "text", - "text": "A-level PHYSICS ", - "text_level": 1, - "page_idx": 0 - }, - { - "type": "text", - "text": "Paper 1 ", - "page_idx": 0 - }, - { - "type": "text", - "text": "Monday 20 May 2019 ", - "text_level": 1, - "page_idx": 0 - }, - { - "type": "text", - "text": "Afternoon ", - "text_level": 1, - "page_idx": 0 - }, - { - "type": "text", - "text": "Materials ", - "text_level": 1, - "page_idx": 0 - }, - { - "type": "text", - "text": "For this paper you must have: ", - "page_idx": 0 - }, - { - "type": "text", - "text": "• a pencil and a ruler • a scientific calculator a Data and Formulae Booklet. ", - "page_idx": 0 - }, - { - "type": "text", - "text": "Instructions ", - "text_level": 1, - "page_idx": 0 - }, - { - "type": "table", - "img_path": "images/f003ab9632052c94fd7041d219b360221ca0a674f6cb630ad5371c5e4e663900.jpg", - "table_caption": [ - "Time allowed: 2 hours " - ], - "table_footnote": [], - "table_body": "\n\n
For Examiner's Use
QuestionMark
1
2
3
4
5
6
7
8-32
TOTAL
\n\n", - "page_idx": 0 - }, - { - "type": "text", - "text": "• Use black ink or black ball-point pen. \n• Fill in the boxes at the top of this page. \n• Answer all questions. \nYou must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages. If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s). \n• Do all rough work in this book. Cross through any work you do not want to be marked. \n• Show all your working. ", - "page_idx": 0 - }, - { - "type": "text", - "text": "Information ", - "text_level": 1, - "page_idx": 0 - }, - { - "type": "text", - "text": "• The marks for questions are shown in brackets. \n• The maximum mark for this paper is 85. \n• You are expected to use a scientific calculator where appropriate. \n• A Data and Formulae Booklet is provided as a loose insert. ", - "page_idx": 0 - }, - { - "type": "text", - "text": "Section A ", - "text_level": 1, - "page_idx": 1 - }, - { - "type": "text", - "text": "Answer all questions in this section. ", - "page_idx": 1 - }, - { - "type": "text", - "text": "Two isotopes of iodine are $_{53}^{125}{\\mathrm{Iand}}_{53}^{131}{\\mathrm{I}}.$ ", - "page_idx": 1 - }, - { - "type": "text", - "text": "Determine, for these two isotopes, the difference between the constituents of the nuclei. ", - "page_idx": 1 - }, - { - "type": "text", - "text": "", - "page_idx": 1 - }, - { - "type": "text", - "text": "A 131 I nuclide undergoes beta (β–) decay to form a xenon nuclide. \nState the nucleon number of the xenon nuclide. ", - "page_idx": 1 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 1 - }, - { - "type": "text", - "text": "$\\mathsf{A}_{53}^{125}\\mathrm{~I~}$ nuclide decays by electron capture to form a tellurium nuclide. ", - "page_idx": 1 - }, - { - "type": "text", - "text": "State two differences between the constituents of the iodine nucleus and the tellurium nucleus it decays into. ", - "page_idx": 1 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 1 - }, - { - "type": "text", - "text": "", - "page_idx": 1 - }, - { - "type": "text", - "text": "Internal conversion is a process in which a nucleus in an excited state can release its excess energy. In internal conversion all of the excess energy is transferred from the nucleus to an orbital electron through the electromagnetic force. This orbital electron is ejected from the atom. ", - "page_idx": 2 - }, - { - "type": "text", - "text": "The tellurium nucleus formed in question 01.3 is in an excited state and can undergo internal conversion. ", - "page_idx": 2 - }, - { - "type": "text", - "text": "Discuss three differences between internal conversion and beta $(\\upbeta^{-})$ decay. ", - "page_idx": 2 - }, - { - "type": "text", - "text": "[3 marks] ", - "page_idx": 2 - }, - { - "type": "text", - "text": "1 \n2 \n3 ", - "page_idx": 2 - }, - { - "type": "text", - "text": "Turn over for the next question ", - "page_idx": 2 - }, - { - "type": "text", - "text": "Some cars are fitted with a water sensor designed to switch on windscreen wipers automatically when it rains. Figure 1 shows a simplified diagram of the sensor. ", - "page_idx": 3 - }, - { - "type": "image", - "img_path": "images/a9c8e4c76cb475e96d7dab0fa62ee0c3a5e4754f10db5b0b00edc1fbb50acce8.jpg", - "img_caption": [ - "Figure 1 " - ], - "img_footnote": [], - "page_idx": 3 - }, - { - "type": "text", - "text": "A light ray travels from the light-emitting diode (LED) through the first prism and into the windscreen. The ray reflects off the surfaces of the windscreen at A, B and C and then passes through the second prism into the detector. ", - "page_idx": 3 - }, - { - "type": "text", - "text": "Suggest how the design ensures that there is no deviation of the ray as it enters the first prism. ", - "page_idx": 3 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 3 - }, - { - "type": "text", - "text": "Suggest two features of the design that ensure that there is no deviation of the ray as it leaves the first prism and enters the windscreen glass. ", - "page_idx": 3 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 3 - }, - { - "type": "text", - "text": "1 \n2 ", - "page_idx": 3 - }, - { - "type": "text", - "text": "The refractive index of the windscreen glass is 1.52 ", - "page_idx": 4 - }, - { - "type": "text", - "text": "Explain why the ray follows the path shown inside the windscreen glass in Figure 1. \nSupport your answer with a suitable calculation. ", - "page_idx": 4 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 4 - }, - { - "type": "text", - "text": "Question 2 continues on the next page ", - "page_idx": 4 - }, - { - "type": "text", - "text": "When it starts to rain, water droplets form on the outside of the windscreen as shown in Figure 2. ", - "page_idx": 5 - }, - { - "type": "image", - "img_path": "images/d16b66292d34ae7fb47e44e2b0285b155962b9eb55095d147e64c7fe41ed69c5.jpg", - "img_caption": [ - "Figure 2 ", - "The refractive index of water is 1.33 " - ], - "img_footnote": [], - "page_idx": 5 - }, - { - "type": "text", - "text": "Explain why the presence of water at A causes the intensity of the light at the detector to decrease. ", - "page_idx": 5 - }, - { - "type": "text", - "text": "Support your answer with a suitable calculation. ", - "page_idx": 5 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 5 - }, - { - "type": "text", - "text": "The refractive index of the windscreen glass can vary by a few per cent across the thickness of the glass. ", - "page_idx": 6 - }, - { - "type": "text", - "text": "Discuss how this variation may affect the path of the ray through the windscreen glass. ", - "page_idx": 6 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 6 - }, - { - "type": "text", - "text": "A different design has the LED and the detector further apart. The ray undergoes more reflections inside the windscreen glass before reaching the detector. ", - "page_idx": 6 - }, - { - "type": "text", - "text": "Discuss two ways in which this different design affects the sensitivity of the sensor to the presence of water droplets. ", - "page_idx": 6 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 6 - }, - { - "type": "text", - "text": "1 \n2 ", - "page_idx": 6 - }, - { - "type": "text", - "text": "Figure 3 shows an arrangement to investigate diffraction. White light is incident on a single slit. After leaving the slit, the diffracted light passes through a green filter to reach the screen. ", - "page_idx": 7 - }, - { - "type": "image", - "img_path": "images/de9a802d6cbcd57baf944cc3bc60d657cc47877d862f8e9d3fb0aa6fc5dbda6c.jpg", - "img_caption": [ - "Figure 3 " - ], - "img_footnote": [], - "page_idx": 7 - }, - { - "type": "text", - "text": "Describe the pattern produced on the screen. ", - "page_idx": 7 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 7 - }, - { - "type": "text", - "text": "The green filter is replaced with a red filter. \nDescribe the change in the pattern produced on the screen. ", - "page_idx": 7 - }, - { - "type": "text", - "text": "", - "page_idx": 7 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 7 - }, - { - "type": "text", - "text": "A diffraction grating is placed between the red filter and the screen. The diffraction grating has 500 lines per millimetre. Light is incident normally on the grating. Figure 4 shows the arrangement. ", - "page_idx": 8 - }, - { - "type": "image", - "img_path": "images/fabc3263cd3a872616fd323d3dd9d35c53da4d2ddf638358e589f2a33caae3f1.jpg", - "img_caption": [ - "Figure 4 " - ], - "img_footnote": [], - "page_idx": 8 - }, - { - "type": "text", - "text": "The wavelength of the red light is $650\\mathrm{nm}$ . ", - "page_idx": 8 - }, - { - "type": "text", - "text": "Calculate the angle $\\theta$ between a first-order maximum and the central maximum. ", - "page_idx": 8 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 8 - }, - { - "type": "text", - "text": "Question 3 continues on the next page ", - "page_idx": 8 - }, - { - "type": "text", - "text": "In practice, the filter transmits red light with wavelengths in the range $600\\mathrm{nm}$ to $700\\mathrm{nm}$ . ", - "page_idx": 9 - }, - { - "type": "text", - "text": "Suggest how this affects the appearance of the maxima. ", - "page_idx": 9 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 9 - }, - { - "type": "table", - "img_path": "images/7c8e14945066cf5ed3344a4be90b3d82174e88eb545cda6532b593a851a68805.jpg", - "table_caption": [], - "table_footnote": [], - "page_idx": 9 - }, - { - "type": "text", - "text": "Figure 5 shows a simplified catapult used to hurl projectiles a long way. ", - "page_idx": 10 - }, - { - "type": "image", - "img_path": "images/0341f0a8113368ec4c4311167f1a870b8054149af1695356487fb464c85e784b.jpg", - "img_caption": [ - "Figure 5 " - ], - "img_footnote": [], - "page_idx": 10 - }, - { - "type": "text", - "text": "The counterweight is a wooden box full of stones attached to one end of the beam. The projectile, usually a large rock, is in a sling hanging vertically from the other end of the beam. The weight of the sling is negligible. \nThe beam is held horizontal by a rope attached to the frame. ", - "page_idx": 10 - }, - { - "type": "text", - "text": "The catapult is designed so that the weight of the beam and the weight of the empty wooden box have no effect on the tension in the rope. ", - "page_idx": 10 - }, - { - "type": "text", - "text": "Suggest how the pivot position achieves this. ", - "page_idx": 10 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 10 - }, - { - "type": "text", - "text": "", - "page_idx": 10 - }, - { - "type": "text", - "text": "Question 4 continues on the next page ", - "page_idx": 10 - }, - { - "type": "text", - "text": "The stones in the counterweight have a total mass of $610\\mathrm{kg}$ and the projectile weighs 250 N. ", - "page_idx": 11 - }, - { - "type": "text", - "text": "Calculate the tension in the rope. ", - "page_idx": 11 - }, - { - "type": "text", - "text": "[5 marks] ", - "page_idx": 11 - }, - { - "type": "text", - "text": "When the rope is cut, the counterweight rotates clockwise. When the beam is vertical it is prevented from rotating further. The projectile is then released horizontally with a velocity of $18\\mathrm{m~s}^{-1}$ , as shown in Figure 6. ", - "page_idx": 11 - }, - { - "type": "text", - "text": "The projectile is released at a height of $7.5\\mathrm{m}$ above ground level. ", - "page_idx": 11 - }, - { - "type": "image", - "img_path": "images/429377680bf1eab098132953c8f6c07f75ca6a4f58f5e3903adccea5950f41ec.jpg", - "img_caption": [ - "Figure 6 " - ], - "img_footnote": [], - "page_idx": 11 - }, - { - "type": "text", - "text": "The range of the catapult is the horizontal distance between the point where the projectile is released to the point where it lands. ", - "page_idx": 12 - }, - { - "type": "text", - "text": "Calculate the range. \nIgnore air resistance. ", - "page_idx": 12 - }, - { - "type": "text", - "text": "In another release, the sling is adjusted so that a projectile of the same mass is released just before the wooden beam is vertical. The projectile is not released horizontally. ", - "page_idx": 12 - }, - { - "type": "text", - "text": "Discuss the effect this change has on the range of the catapult. ", - "page_idx": 12 - }, - { - "type": "text", - "text": "[3 marks] ", - "page_idx": 12 - }, - { - "type": "text", - "text": "Safety barriers are used on UK motorways to prevent vehicles crossing from one carriageway to the other carriageway. The barriers also absorb some of the kinetic energy of a vehicle and deflect vehicles along the barrier. ", - "page_idx": 13 - }, - { - "type": "text", - "text": "The standard test of a safety barrier uses a vehicle that contains dummies. The total mass of the vehicle and its contents is $1.5\\times10^{3}\\mathrm{kg}$ and its initial speed is $110\\mathrm{kmh^{-1}}$ . ", - "page_idx": 13 - }, - { - "type": "text", - "text": "Show that the initial kinetic energy of the test vehicle is $700\\mathrm{kJ}$ . ", - "page_idx": 13 - }, - { - "type": "text", - "text": "The test vehicle hits a steel safety barrier at an angle of $20^{\\circ}$ , as shown in Figure 7. ", - "page_idx": 13 - }, - { - "type": "image", - "img_path": "images/afdb467c0e3976a0fbc7ca8e251a51ca8b5a95f7c60b84c7d9604ba3bf20fb0b.jpg", - "img_caption": [ - "Figure 7 " - ], - "img_footnote": [], - "page_idx": 13 - }, - { - "type": "text", - "text": "Calculate the component of the momentum of the test vehicle in a direction along the line of the safety barrier. \nGive an appropriate unit for your answer. ", - "page_idx": 13 - }, - { - "type": "text", - "text": "momentum $=$ unit ", - "page_idx": 13 - }, - { - "type": "text", - "text": "Immediately after the collision, the test vehicle moves along the safety barrier with no change in its momentum in this direction. ", - "page_idx": 14 - }, - { - "type": "text", - "text": "Show that the kinetic energy lost in the collision is about $80\\mathrm{kJ}$ . ", - "page_idx": 14 - }, - { - "type": "text", - "text": "The steel safety barrier deforms during the collision. For the barrier to pass the test, the test vehicle should not move more than $1.5\\mathrm{m}$ towards the other carriageway. ", - "page_idx": 14 - }, - { - "type": "text", - "text": "The barrier can apply an average force of $60\\mathrm{kN}$ at right angles to the carriageway. ", - "page_idx": 14 - }, - { - "type": "text", - "text": "Deduce whether the safety barrier will pass the test. ", - "page_idx": 14 - }, - { - "type": "text", - "text": "A different safety barrier uses a solid concrete wall which does not deform. \nThe same standard test is carried out on a concrete wall. ", - "page_idx": 15 - }, - { - "type": "text", - "text": "Discuss which type of barrier would cause less damage to the dummies in the test. ", - "page_idx": 15 - }, - { - "type": "text", - "text": "", - "page_idx": 15 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 15 - }, - { - "type": "text", - "text": "A loudspeaker cone is driven by a signal generator (oscillator). \nFigure 8 shows the variation of displacement with time $t$ for a point $\\mathsf{P}$ at the centre of the cone. P is oscillating with simple harmonic motion. ", - "page_idx": 16 - }, - { - "type": "image", - "img_path": "images/1b51321d182d4468f445d86a2bf2cf5aef4b47cbc27ffdf69d55b1c089987f7a.jpg", - "img_caption": [ - "Figure 8 " - ], - "img_footnote": [], - "page_idx": 16 - }, - { - "type": "text", - "text": "State the time, in milliseconds, when P is moving at its maximum positive velocity. ", - "page_idx": 16 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 16 - }, - { - "type": "text", - "text": "time = ms ", - "page_idx": 16 - }, - { - "type": "text", - "text": "Calculate the maximum acceleration of P. ", - "page_idx": 16 - }, - { - "type": "text", - "text": "[3 marks] ", - "page_idx": 16 - }, - { - "type": "text", - "text": "acceleration $=$ m s–2 ", - "page_idx": 16 - }, - { - "type": "text", - "text": "Question 6 continues on the next page ", - "page_idx": 16 - }, - { - "type": "text", - "text": "The loudspeaker creates variations in pressure and produces a sound wave in the air around it. ", - "page_idx": 17 - }, - { - "type": "text", - "text": "State the type of wave produced and describe the motion of the particles in this type of wave. ", - "page_idx": 17 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 17 - }, - { - "type": "text", - "text": "Figure 9 shows a practical circuit in which a variable resistor is used to control the brightness of a lamp. The voltmeter reading is monitored as the variable resistor is adjusted to make the lamp brighter. ", - "page_idx": 18 - }, - { - "type": "image", - "img_path": "images/5acbfddb641053eb041bc9f7e66ff93d5feb92e11e3cca9d194eb37c8dff9a90.jpg", - "img_caption": [ - "Figure 9 " - ], - "img_footnote": [], - "page_idx": 18 - }, - { - "type": "text", - "text": "Explain why the reading on the voltmeter decreases as the brightness of the lamp increases. ", - "page_idx": 18 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 18 - }, - { - "type": "text", - "text": "", - "page_idx": 18 - }, - { - "type": "text", - "text": "The variable resistor is adjusted so that the lamp is at its brightest. The reading $V_{1}$ on the voltmeter is noted. A second identical cell is then connected in parallel with the cell in Figure 9. The new reading $V_{2}$ on the voltmeter is noted. ", - "page_idx": 18 - }, - { - "type": "text", - "text": "Explain why $V_{2}$ is greater than $V_{1}$ . ", - "page_idx": 18 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 18 - }, - { - "type": "text", - "text": "Section B ", - "text_level": 1, - "page_idx": 19 - }, - { - "type": "text", - "text": "Each of Questions 8 to 32 is followed by four responses, A, B, C and D. ", - "page_idx": 19 - }, - { - "type": "text", - "text": "For each question select the best response. ", - "page_idx": 19 - }, - { - "type": "image", - "img_path": "images/046272758a9f601e216ac9000a79e56ff1f0c83747fb4a54e9b882acb08608d1.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 19 - }, - { - "type": "text", - "text": "Only one answer per question is allowed. \nFor each question completely fill in the circle alongside the appropriate answer. ", - "page_idx": 19 - }, - { - "type": "text", - "text": "CORRECT METHOD ", - "page_idx": 19 - }, - { - "type": "text", - "text": "WRONG METHODS", - "page_idx": 19 - }, - { - "type": "table", - "img_path": "images/9cec0251051fbb3775d6dbf9e72581e9f9580e9cf4622b4f8ff16008805b8209.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
\n\n", - "page_idx": 19 - }, - { - "type": "image", - "img_path": "", - "img_caption": [], - "img_footnote": [], - "page_idx": 19 - }, - { - "type": "text", - "text": "If you want to change your answer you must cross out your original answer as shown. If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown. ", - "page_idx": 19 - }, - { - "type": "text", - "text": "You may do your working in the blank space around each question but this will not be marked. \nDo not use additional sheets for this working. ", - "page_idx": 19 - }, - { - "type": "text", - "text": "The process of beta plus $(\\beta^{+})$ decay can be represented by ", - "page_idx": 19 - }, - { - "type": "image", - "img_path": "images/b4292b9ab6a0d61bebc36ea25d1e7aa52c17e4ff642dc2b318d623add9cc4dfd.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 19 - }, - { - "type": "text", - "text": "Which row identifies particles X and Y? ", - "page_idx": 19 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 19 - }, - { - "type": "image", - "img_path": "images/f4152bf7f36be4eb4b5a5dbc1b2bc68a717e3aadd707d4770c6aef92ffe42808.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 19 - }, - { - "type": "table", - "img_path": "images/4b012981154c1ce8d7ce1795ac00b0545a4e6d4a1e9f31cf806b90196cd35403.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
XY
AW+Ve
BW+Ve
CW-Ve
DW-Ve
\n\n", - "page_idx": 19 - }, - { - "type": "text", - "text": "An electron collides with an isolated atom and raises an orbiting electron to a higher energy level. ", - "page_idx": 20 - }, - { - "type": "text", - "text": "Which statement is correct? ", - "page_idx": 20 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 20 - }, - { - "type": "text", - "text": "A The colliding electron is captured by the nucleus of the atom. \nB A photon is emitted when the electron rises to the higher energy level. \nC An electron is emitted when the excited electron returns to the ground state. \nD Energy is transferred from the colliding electron to the orbiting electron. ", - "page_idx": 20 - }, - { - "type": "text", - "text": "Light of frequency $2.0\\times10^{15}\\mathrm{Hz}$ is incident on a metal surface. The work function of the metal is $4.6\\times10^{-19}\\mathrm{~J}$ . ", - "page_idx": 20 - }, - { - "type": "text", - "text": "Which statement is correct? ", - "page_idx": 20 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 20 - }, - { - "type": "image", - "img_path": "images/4b43b951db653f5a43ed85934e9802c981d24681065c8f4da844a2610378feaa.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 20 - }, - { - "type": "text", - "text": "A photon of ultraviolet radiation has a frequency of $1.5\\times10^{15}\\mathrm{Hz}$ . What is the momentum of the photon? ", - "page_idx": 20 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 20 - }, - { - "type": "text", - "text": "A $3.3\\times10^{-41}\\mathrm{kgms^{-1}}$ B 1.3 × 10–40 kg m s–1 C 3.3 × 10–27 kg m s–1 D 1.3 × 10–26 kg m s–1 ", - "page_idx": 20 - }, - { - "type": "image", - "img_path": "images/681578c65b0e5e04aa6b7755ce583140fdbd0996ce8f2c2b0ab50ea717a3c845.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 20 - }, - { - "type": "text", - "text": "Which statement about a couple is not true? ", - "page_idx": 21 - }, - { - "type": "text", - "text": "A It must consist of coplanar forces. \nB It can produce rotational motion. \nC It can produce translational motion. \nD It has a moment with units $\\mathrm{N}\\mathrm{m}$ . Two cars P and Q leave from the same point and travel in the same direction. \n$\\pmb{\\Omega}$ leaves at time $t=0$ and $\\mathsf{\\textbf{P}}$ leaves one second later. \nThe figure shows the velocity–time graph for P and Q. ", - "page_idx": 21 - }, - { - "type": "image", - "img_path": "images/1406274efcc816dedfc4944b865335093faa06ac99f49182b9bbf91f467a4223.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 21 - }, - { - "type": "text", - "text": "", - "page_idx": 21 - }, - { - "type": "image", - "img_path": "images/ed0e1d08ba703ff647c64b472741f8c9da88f767c5352d59e15a35a581f0f473.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 21 - }, - { - "type": "text", - "text": "What is the distance between Q and $\\mathsf{\\textbf{P}}$ when $t=8$ s? ", - "page_idx": 21 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 21 - }, - { - "type": "image", - "img_path": "images/353c155147e5e92821617ea22c8ece0fe19d27a67b9b7f4293b1edf57a664ac9.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 21 - }, - { - "type": "text", - "text": "A 40 m B 80 m C 160 m D 180 m ", - "page_idx": 21 - }, - { - "type": "text", - "text": "$\\mathbb{A}0.20\\mathrm{kg}$ mass is suspended from a spring. A $0.10\\mathrm{kg}$ mass is suspended from the $0.20\\mathrm{kg}$ mass using a thread of negligible mass. \nThe system is in equilibrium and the thread is then cut. ", - "page_idx": 22 - }, - { - "type": "image", - "img_path": "images/7ac40b1fcd1ddcf16449f2caf39baea59c8d308085d8edbf5214743500ec21eb.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 22 - }, - { - "type": "text", - "text": "What is the upward acceleration of the $0.20\\mathrm{kg}$ mass at the instant that the thread is cut? [1 mark] ", - "page_idx": 22 - }, - { - "type": "text", - "text": "A $3.3\\mathrm{m~s}^{-2}$ B 4.9 m s–2 C 6.5 m s–2 D 9.8 m s–2 ", - "page_idx": 22 - }, - { - "type": "image", - "img_path": "images/1d589cccb55276ec12548654ba735da0c12ed7d491898b6ac22c6f92b6359180.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 22 - }, - { - "type": "text", - "text": "A lift of mass $M$ is suspended from a cable. The lift descends with a downward acceleration, $a$ . A frictional force $F$ acts on the lift. ", - "page_idx": 22 - }, - { - "type": "text", - "text": "What is the tension $T$ in the cable? ", - "page_idx": 22 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 22 - }, - { - "type": "image", - "img_path": "images/9c756f7308b5ce6c68f8ea520a992f52919cf84bc4e9246ba2d147dba4db4a8b.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 22 - }, - { - "type": "text", - "text": "A $T=M a+F$ B $T=M a-F$ C ${\\cal T}={\\cal M}\\left(g+a\\right)-{\\cal F}$ D $T=M\\left(g-a\\right)-F$ ", - "page_idx": 22 - }, - { - "type": "text", - "text": "A body of constant mass falls freely due to gravity. The rate of change of momentum of the body is equal to its ", - "page_idx": 23 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 23 - }, - { - "type": "text", - "text": "A kinetic energy. \nB mass. \nC gravitational potential energy. \nD weight. An electric vehicle is driven by a motor which produces a constant driving force. \nThe vehicle travels from rest along a straight horizontal road. \nFriction and air resistance are negligible. ", - "page_idx": 23 - }, - { - "type": "image", - "img_path": "images/8da7ff924c1989577c679b9a6c0d45be475bb3fa3c2017ffa7186a3efb0d0c94.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 23 - }, - { - "type": "text", - "text": "", - "page_idx": 23 - }, - { - "type": "text", - "text": "Which statement describes the variation with time of the power developed by the motor? ", - "page_idx": 23 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 23 - }, - { - "type": "image", - "img_path": "images/b26ce9f6714b3da27ff71e8ebb73ec9e95252a2e7209c9633a1c15c39b1c05b1.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 23 - }, - { - "type": "text", - "text": "Which is a correct statement about mechanical power? ", - "page_idx": 23 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 23 - }, - { - "type": "text", - "text": "A It is a vector quantity. \nB It is measured in J. \nC In fundamental units, its unit is $\\mathrm{kg}\\mathrm{m}^{2}\\mathrm{s}^{-3}$ \nD It can be calculated from force $\\times$ distance moved. ", - "page_idx": 23 - }, - { - "type": "image", - "img_path": "images/d4b9ea543fa7fecbd310e55676ac451822c1761ce42383ab75893e6bf2abe5da.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 23 - }, - { - "type": "text", - "text": "A load of $50\\mathrm{N}$ is suspended from a wire that has an area of cross-section of $1\\mathrm{mm}^{2}$ . ", - "page_idx": 24 - }, - { - "type": "text", - "text": "The stress in the wire, in Pa, is between ", - "page_idx": 24 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 24 - }, - { - "type": "text", - "text": "A $10^{0}$ and $10^{3}$ B ${10}^{3}$ and ${10}^{6}$ C $10^{6}$ and ${10}^{9}$ D $10^{9}$ and $10^{12}$ ", - "page_idx": 24 - }, - { - "type": "image", - "img_path": "images/e358e7f4aa36894fd37ef2f8ed5eaae0486a936cceaf4da51821e4590eed089c.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 24 - }, - { - "type": "text", - "text": "Which combination of properties would produce the smallest extension of a wire when the same tensile force is applied to the wire? ", - "page_idx": 24 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 24 - }, - { - "type": "table", - "img_path": "images/d0f8df12e078fe5004d479e019cc81f8f9d3d0c2f07cfd8fcb2f3723c6b2edf3.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Cross-sectional areaLengthYoung modulus of material
AX3LE
B2X7E
CX3L4E
D2X74E
\n\n", - "page_idx": 24 - }, - { - "type": "image", - "img_path": "images/5400a1bc747a225e13f223a7294e1e88168637c81beb088a13a4bab7776de572.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 24 - }, - { - "type": "text", - "text": "Turn over for the next question ", - "page_idx": 24 - }, - { - "type": "text", - "text": "A rubber belt in an electrostatic machine has a width of $0.1\\textrm{m}$ and moves with speed $0.4\\mathrm{m~s}^{-1}$ . \nEach square metre of the belt carries a charge $Q$ coulomb. The charge is removed and transferred to a metal sphere. ", - "page_idx": 25 - }, - { - "type": "image", - "img_path": "images/9c68d31c621d2ab4783e16299f2168c3d9b65c7668044d30d3455aa4e98d8043.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 25 - }, - { - "type": "text", - "text": "What is the charge collected by the sphere each second? ", - "page_idx": 25 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 25 - }, - { - "type": "text", - "text": "A 0.016Q B 0.04Q C 0.25Q D 4Q ", - "page_idx": 25 - }, - { - "type": "image", - "img_path": "images/a4d70f89757c75f39d00c133a4b5d7878e86ac591d26af27642c3048e8d93446.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 25 - }, - { - "type": "text", - "text": "2 2 Charged plates X and Y have a potential difference 1.5 V between them. ", - "page_idx": 26 - }, - { - "type": "image", - "img_path": "images/68652cb80907f916334c1c88a8b63137ea940564c05ca05dda97a3644e29ea0f.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 26 - }, - { - "type": "text", - "text": "Which particle gains $3.0\\mathrm{eV}$ of kinetic energy when moving from Y to X? ", - "page_idx": 26 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 26 - }, - { - "type": "text", - "text": "A proton B positron C electron D alpha particle ", - "page_idx": 26 - }, - { - "type": "image", - "img_path": "images/01c45e6ab071d4b21b95d3898710c437392fcecdc2a1e316a57eb913d0040b0f.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 26 - }, - { - "type": "text", - "text": "Turn over for the next question ", - "page_idx": 26 - }, - { - "type": "text", - "text": "The diagram shows part of a circuit and the currents in the circuit. ", - "page_idx": 27 - }, - { - "type": "image", - "img_path": "images/3f576db96ea0abf9c1b89284326055f51e6339a887c12f6aa02cb0302ab2deba.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 27 - }, - { - "type": "text", - "text": "What is the potential difference between point P and earth? ", - "page_idx": 27 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 27 - }, - { - "type": "text", - "text": "A 60 V B 100 V C 120 V D 140 V ", - "page_idx": 27 - }, - { - "type": "image", - "img_path": "images/fdb096c8aaf4f45c67f73ec1592b5496c5dffb1dfd4c3c3b27f71beab04b2f99.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 27 - }, - { - "type": "text", - "text": "A voltmeter has a resistance of $4.0\\mathrm{k}\\Omega$ and reads $1.0\\:\\mathrm{V}$ for every scale division on the meter. ", - "page_idx": 27 - }, - { - "type": "text", - "text": "A power supply of emf $20\\mathrm{~V~}$ and negligible internal resistance is connected across this voltmeter and a resistor in series. The voltmeter reads two divisions. ", - "page_idx": 27 - }, - { - "type": "text", - "text": "What is the value of the resistor? ", - "page_idx": 27 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 27 - }, - { - "type": "image", - "img_path": "images/f196269a0925414c8b0dafa701109262a2054259282780d5e061a25a3267fbb2.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 27 - }, - { - "type": "text", - "text": "A 44 kΩ B 36 kΩ C 4.4 kΩ D 3.6 kΩ ", - "page_idx": 27 - }, - { - "type": "text", - "text": "Two cylindrical wires P and $\\pmb{\\Omega}$ are of equal length and made of the same material. \nThe diameter of $\\mathsf{P}$ is greater than that of Q. ", - "page_idx": 28 - }, - { - "type": "text", - "text": "P and $\\pmb{\\Omega}$ are connected in series and the ends of this arrangement are connected to a power supply. ", - "page_idx": 28 - }, - { - "type": "image", - "img_path": "images/a917e8581e8ead4fed205c229ae8504393b6bf37cbabef89a852da1bd27e24dd.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 28 - }, - { - "type": "text", - "text": "Which two quantities are the same for P and Q? ", - "page_idx": 28 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 28 - }, - { - "type": "image", - "img_path": "images/9224e2ca294c6476680c41903d9f1a8f76b6f25447a8767ca2e779fdc7395170.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 28 - }, - { - "type": "text", - "text": "Turn over for the next question ", - "page_idx": 28 - }, - { - "type": "text", - "text": "In the circuit below, the initial voltmeter reading is zero. ", - "page_idx": 29 - }, - { - "type": "image", - "img_path": "images/15b9c6a01998d98ccddc3091fe62ae55ec2299ffd56e834d44279c258845d2be.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 29 - }, - { - "type": "text", - "text": "The temperature of the negative temperature coefficient thermistor T is then increased. Which change to the circuit could restore the voltmeter reading to zero? ", - "page_idx": 29 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 29 - }, - { - "type": "text", - "text": "A Decreasing the resistance of R. \nB Increasing the resistance of R. \nC Decreasing the resistance of P. \nD Increasing the resistance of Q. ", - "page_idx": 29 - }, - { - "type": "image", - "img_path": "images/0f9535557d9dc0b2323ec38d0fb1dbf2960e2d69d4755cfca5ece9492f52a822.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 29 - }, - { - "type": "text", - "text": "An electric motor lifts a load of weight W through a vertical height $h$ in time $t$ . The potential difference across the motor is $V$ and the current through it is $I.$ ", - "page_idx": 29 - }, - { - "type": "text", - "text": "What is the efficiency of the motor? ", - "page_idx": 29 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 29 - }, - { - "type": "equation", - "text": "$$\n\\begin{array}{r l}&{\\textsf{A}\\frac{W h t}{V I}}\\ &{}\\ &{\\textsf{B}\\frac{V I}{W h t}}\\ &{\\textsf{C}\\frac{W h}{V I t}}\\ &{}\\ &{\\textsf{D}\\frac{V I t}{W h}}\\end{array}\n$$", - "text_format": "latex", - "page_idx": 29 - }, - { - "type": "image", - "img_path": "images/1efd430ca87371be6652ac0ca207b44b81b2fceb6a978214b56340b28e216d51.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 29 - }, - { - "type": "text", - "text": "An object of mass m moves in a circle of radius $r$ . It completes $n$ revolutions every second. What is the kinetic energy of the object? ", - "page_idx": 30 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 30 - }, - { - "type": "text", - "text": "2 2 mn r \nA 8π2 \nB $\\frac{m n^{2}r^{2}}{4\\pi^{2}}$ \nC 2mπ2n2r2 \nD 4mπ2n2r2 ", - "page_idx": 30 - }, - { - "type": "image", - "img_path": "images/3869272d01fa7d807b87241f0a196d688b1f30669d80572c17ada0bcff2f223e.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 30 - }, - { - "type": "text", - "text": "Turn over for the next question ", - "page_idx": 30 - }, - { - "type": "text", - "text": "The graph shows the variation of displacement $d$ with time $t$ for a particle moving with simple harmonic motion of period $T.$ . ", - "page_idx": 31 - }, - { - "type": "image", - "img_path": "images/a6110daf80338d3809ad4e230772f9952bda886d4d4d562a668e977a4264e527.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 31 - }, - { - "type": "text", - "text": "Which graph shows the variation of kinetic energy $E_{\\mathrm{k}}$ of the particle with time? ", - "page_idx": 31 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 31 - }, - { - "type": "image", - "img_path": "images/987a29e481fb9fd331b10c8e28fd602d6ec79bff053c07b0a0aa34056366cf6c.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 31 - }, - { - "type": "text", - "text": "A $\\Longleftrightarrow$ B $\\Longleftrightarrow$ C $\\Longleftrightarrow$ D $\\subset$ ", - "page_idx": 31 - }, - { - "type": "text", - "text": "Two pendulums A and B oscillate with simple harmonic motion. \nThe time period of A is 2.00 s and the time period of B is $1.98\\mathrm{s}$ . ", - "page_idx": 32 - }, - { - "type": "text", - "text": "A and B are released in phase. ", - "page_idx": 32 - }, - { - "type": "text", - "text": "What is the number of oscillations of A before A and B are next in phase? ", - "page_idx": 32 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 32 - }, - { - "type": "text", - "text": "A 49 \nB 50 \nC 99 \nD 100 ", - "page_idx": 32 - }, - { - "type": "image", - "img_path": "images/b2edc2a2a00f86f4bd4d91426ee61a95d5babe2e34416d17a60a156b3d6ed111.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 32 - }, - { - "type": "text", - "text": "The frequency of oscillation of a vertical spring is $f$ when the mass hanging from the spring is m. ", - "page_idx": 32 - }, - { - "type": "text", - "text": "What is the relationship between $f$ and m? ", - "page_idx": 32 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 32 - }, - { - "type": "text", - "text": "1 \nA f ∝ m 2 \nB $f\\propto m^{-2}$ $\\smile$ 1 \nC f ∝ m2 $\\smile$ \nD $f\\propto m^{2}$ $\\Longleftrightarrow$ ", - "page_idx": 32 - }, - { - "type": "text", - "text": "Turn over for the next question ", - "page_idx": 32 - }, - { - "type": "text", - "text": "A metal panel is driven to vibrate at different frequencies. The amplitude $a$ of the vibration is measured at each frequency. The graph shows the variation of amplitude with driven frequency. ", - "page_idx": 33 - }, - { - "type": "image", - "img_path": "images/201f1959d2f8348670644b70641547d3247582cc72191f18d312acedc401a130.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 33 - }, - { - "type": "text", - "text": "The damping of the metal panel is increased without changing the mass of the panel. ", - "page_idx": 33 - }, - { - "type": "text", - "text": "Which graph on the opposite page shows the variation of $a$ with frequency with increased damping? ", - "page_idx": 33 - }, - { - "type": "image", - "img_path": "images/a6170c918ad88811d00ba23894b2ca436ccb90514531f171d45402df961e14f3.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 34 - }, - { - "type": "text", - "text": "A \nB $\\Longleftrightarrow$ C $\\Longleftrightarrow$ D ", - "page_idx": 34 - }, - { - "type": "image", - "img_path": "images/5cd0702bdc366f5fc7c168eba29229f73b51ca7707aa7f1acb56491fc04ba792.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 35 - }, - { - "type": "table", - "img_path": "images/db22b44bd39f12e148b3f3fb24796dac867d480b6e05301c5b425486067b70a0.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
\n\n", - "page_idx": 36 - }, - { - "type": "table", - "img_path": "images/6ab34b205e9aaaee2efc6b2e1859b1d6c8ab157414588aec02126af39a42b95c.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
\n\n", - "page_idx": 37 - }, - { - "type": "table", - "img_path": "images/cec4d7067800f674ca4048c0facede294d80c82a33a27099484a5b3517504db7.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
\n\n", - "page_idx": 38 - }, - { - "type": "table", - "img_path": "images/84f7a6f3a80b387a1519775205d7a921757193312816f74cad954e6efbb3232b.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
Copyrightinformation
For confidentiality purposes, acknowledgements of third-party copyright material are published in a separate booklet rather than including them onthe examinationpaperorsupport materials.Thisbooklet is published after eachexamination series and is availableforfreedownloadfromwww.aqa.org.ukaftertheliveexaminationseries. Permission to reproduce all copyright material hasbeen applied for. In some cases,efforts to contact copyright-holders may have
\n\n", - "page_idx": 39 - }, - { - "type": "text", - "text": "Please write clearly in block capitals. ", - "page_idx": 40 - }, - { - "type": "image", - "img_path": "images/2dc6eb1feb9b638e506f876ed84f3e449e02d28e394081421b10c96570567031.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 40 - }, - { - "type": "text", - "text": "Surname \nForename(s) \nCandidate signature I declare this is my own work. ", - "page_idx": 40 - }, - { - "type": "text", - "text": "A-level PHYSICS ", - "text_level": 1, - "page_idx": 40 - }, - { - "type": "text", - "text": "Paper 1 ", - "page_idx": 40 - }, - { - "type": "text", - "text": "Wednesday 24 May 2023 ", - "text_level": 1, - "page_idx": 40 - }, - { - "type": "text", - "text": "Afternoon ", - "text_level": 1, - "page_idx": 40 - }, - { - "type": "text", - "text": "Time allowed: 2 hours ", - "text_level": 1, - "page_idx": 40 - }, - { - "type": "text", - "text": "Materials ", - "text_level": 1, - "page_idx": 40 - }, - { - "type": "text", - "text": "For this paper you must have: ", - "page_idx": 40 - }, - { - "type": "text", - "text": "• a pencil and a ruler a scientific calculator a Data and Formulae Booklet a protractor. ", - "page_idx": 40 - }, - { - "type": "text", - "text": "Instructions ", - "text_level": 1, - "page_idx": 40 - }, - { - "type": "table", - "img_path": "images/6d4b17f3897c2425b971603390f7397c8b021dbce7cc1b53711c7a4ab466afde.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
For Examiner's Use
QuestionMark
1
2
3
4
5
9
7-31
TOTAL
\n\n", - "page_idx": 40 - }, - { - "type": "text", - "text": "• Use black ink or black ball-point pen. \n• Fill in the boxes at the top of this page. \n• Answer all questions. \n• You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages. If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s). \n• Do all rough work in this book. Cross through any work you do not want to be marked. \n• Show all your working. ", - "page_idx": 40 - }, - { - "type": "text", - "text": "Information ", - "text_level": 1, - "page_idx": 40 - }, - { - "type": "text", - "text": "The marks for questions are shown in brackets. \n• The maximum mark for this paper is 85. \n• You are expected to use a scientific calculator where appropriate. \n• A Data and Formulae Booklet is provided as a loose insert. ", - "page_idx": 40 - }, - { - "type": "text", - "text": "Section A ", - "text_level": 1, - "page_idx": 41 - }, - { - "type": "text", - "text": "Answer all questions in this section. ", - "page_idx": 41 - }, - { - "type": "text", - "text": "The neutral lambda particle $\\Lambda^{0}$ is a baryon with a strangeness of $^{-1}$ One possible decay for a ${\\Lambda}^{0}$ is ", - "page_idx": 41 - }, - { - "type": "equation", - "text": "$$\n\\Lambda^{0}\\to\\pi^{0}+{\\mathfrak n}\n$$", - "text_format": "latex", - "page_idx": 41 - }, - { - "type": "text", - "text": "Deduce the quark structure of a $\\Lambda^{0}$ . ", - "page_idx": 41 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 41 - }, - { - "type": "text", - "text": "State and explain which interaction is involved in this decay. [2 marks] ", - "page_idx": 41 - }, - { - "type": "text", - "text": "An antiparticle of the neutral lambda particle decays into a neutral pion and particle X. \nIdentify X. ", - "page_idx": 41 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 41 - }, - { - "type": "text", - "text": "The rest energy of a $\\Lambda^{0}$ is equal to the energy of a photon with a frequency of $2.69\\times10^{23}\\mathrm{Hz}$ . ", - "page_idx": 42 - }, - { - "type": "text", - "text": "Determine, in $\\mathrm{_{MeV}}$ , the rest energy of a ${\\Lambda}^{0}$ . ", - "page_idx": 42 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 42 - }, - { - "type": "text", - "text": "rest energy $=$ MeV ", - "page_idx": 42 - }, - { - "type": "text", - "text": "The discovery of particles such as the ${\\Lambda}^{0}$ is made by large international research teams. ", - "page_idx": 42 - }, - { - "type": "text", - "text": "Suggest one reason for this. ", - "page_idx": 42 - }, - { - "type": "text", - "text": "", - "page_idx": 42 - }, - { - "type": "text", - "text": "Turn over for the next question ", - "page_idx": 42 - }, - { - "type": "image", - "img_path": "images/2aeffab49a778cb119c80f10ec0ff8dbc52fe852dfbab42b4a39df0a24da26b4.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 43 - }, - { - "type": "text", - "text": "In 2021 the world land speed record was $1230\\mathrm{kmh^{-1}}$ . \nThis was the average speed achieved by a jet-powered car in two runs. Each run was measured over a distance of $1.61~\\mathrm{km}$ . ", - "page_idx": 44 - }, - { - "type": "text", - "text": "The average speed for one of these runs was $343\\mathrm{m~s}^{-1}$ . ", - "page_idx": 44 - }, - { - "type": "text", - "text": "Calculate, in s, the time taken for the car to complete the other run. ", - "page_idx": 44 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 44 - }, - { - "type": "text", - "text": "time = s ", - "page_idx": 44 - }, - { - "type": "text", - "text": "Question 2 continues on the next page ", - "page_idx": 44 - }, - { - "type": "text", - "text": "Engineers are designing a new jet-powered car to break this record. ", - "page_idx": 45 - }, - { - "type": "text", - "text": "Figure 1 shows the variation of speed with distance for the car, as predicted by the engineers. ", - "page_idx": 45 - }, - { - "type": "image", - "img_path": "images/525c53aa6dfc03507ebfd7e0b0233f6b52d6485465e88c7bbdb3f3288423d9a1.jpg", - "img_caption": [ - "Figure 1 " - ], - "img_footnote": [], - "page_idx": 45 - }, - { - "type": "text", - "text": "The car reaches its maximum acceleration when it is $5600\\mathrm{m}$ from the start. \nAt this point the mass of the car is $6.50\\times10^{3}\\mathrm{kg}$ . ", - "page_idx": 45 - }, - { - "type": "text", - "text": "Determine the kinetic energy of the car at its maximum acceleration. ", - "page_idx": 45 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 45 - }, - { - "type": "text", - "text": "kinetic energy $=$ J ", - "page_idx": 45 - }, - { - "type": "text", - "text": "At any point on the graph in Figure 1, the acceleration is given by: ", - "page_idx": 46 - }, - { - "type": "text", - "text": "acceleration $=$ speed $\\times$ gradient of line ", - "page_idx": 46 - }, - { - "type": "text", - "text": "When the car is at its maximum acceleration, the power input to the jet engines is 640 MW. ", - "page_idx": 46 - }, - { - "type": "text", - "text": "Calculate the percentage of the input power used to accelerate the car at its maximum acceleration. ", - "page_idx": 46 - }, - { - "type": "text", - "text": "Scientists recommend that the average deceleration of the driver of the car should be less than $3g$ . ", - "page_idx": 46 - }, - { - "type": "text", - "text": "Deduce whether the average deceleration is less than $3g$ . ", - "page_idx": 46 - }, - { - "type": "image", - "img_path": "images/ff7ac384adbdd82b394556f406fa6e2759de5cd4ae0aaef93676518d53fa2706.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 47 - }, - { - "type": "text", - "text": "In Figure 2 the cell has emf $\\varepsilon$ and internal resistance $r$ . ", - "page_idx": 48 - }, - { - "type": "image", - "img_path": "images/5abbdd19ad01175edda239875d47c069530f6522e97aa81b4fb9d816008d7da5.jpg", - "img_caption": [ - "Figure 2 " - ], - "img_footnote": [], - "page_idx": 48 - }, - { - "type": "text", - "text": "The current in the circuit is $I$ . ", - "page_idx": 48 - }, - { - "type": "text", - "text": "The potential difference (pd) across ${\\mathrm{R}}_{1}$ is $V_{1}$ and the pd across ${\\bf R}_{2}$ is $V_{2}$ . ", - "page_idx": 48 - }, - { - "type": "text", - "text": "Explain how the law of conservation of energy applies in this circuit. \nYou should consider the movement of one coulomb of charge around the circuit. ", - "page_idx": 48 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 48 - }, - { - "type": "text", - "text": "", - "page_idx": 48 - }, - { - "type": "text", - "text": "Question 3 continues on the next page ", - "page_idx": 48 - }, - { - "type": "text", - "text": "Figure 3 shows a variable resistor made with a thin conducting layer on an insulating base. ", - "page_idx": 49 - }, - { - "type": "image", - "img_path": "images/469a3e10e6dff61f6ab5b50b4a42aab0a12fdcb118ae677a19f1d4b60c17aaa3.jpg", - "img_caption": [ - "Figure 3 " - ], - "img_footnote": [], - "page_idx": 49 - }, - { - "type": "text", - "text": "The conducting layer has constant width and thickness and has connections at the ends A and B. \nC is a sliding contact that can move along the surface of the conducting layer between A and B. ", - "page_idx": 49 - }, - { - "type": "text", - "text": "Figure 4 shows a circuit that uses the variable resistor as a potential divider. ", - "page_idx": 49 - }, - { - "type": "image", - "img_path": "images/dd645ace588ac4d57fbdb977f36a28fafb86bd2b891c142ab43107962ff781b4.jpg", - "img_caption": [ - "Figure 4 " - ], - "img_footnote": [], - "page_idx": 49 - }, - { - "type": "text", - "text": "The variable resistor is connected to a battery of emf $3.00\\mathrm{V}$ and internal resistance $r$ . \nThe resistance of the conducting layer between A and B is $125\\Omega$ . The sliding contact C is moved to end B of the variable resistor. The switch is closed. \nThe digital voltmeter reads $2.89\\mathrm{V}$ . ", - "page_idx": 49 - }, - { - "type": "text", - "text": "", - "page_idx": 50 - }, - { - "type": "text", - "text": "Show that $r$ is approximately $4.8\\Omega$ . ", - "page_idx": 50 - }, - { - "type": "text", - "text": "[3 marks] ", - "page_idx": 50 - }, - { - "type": "text", - "text": "C is set at $\\frac{1}{5}$ of the distance between A and B. The thickness of the conducting layer is uniform so the resistance between A and C is $25.0\\Omega$ . \nDetermine the voltmeter reading at this setting. ", - "page_idx": 50 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 50 - }, - { - "type": "text", - "text": "voltmeter reading $=$ V ", - "page_idx": 50 - }, - { - "type": "text", - "text": "Question 3 continues on the next page ", - "page_idx": 50 - }, - { - "type": "text", - "text": "Figure 5 shows a variable resistor similar to the one shown in Figure 3 but with the following three manufacturing faults: ", - "page_idx": 51 - }, - { - "type": "text", - "text": "• at P the conducting layer changes in thickness so that AP is thinner than PB $\\bullet$ at Q there is a scratch into the surface of the conducting layer and across its full width • from R to B the conducting connector is laid over the conducting layer. ", - "page_idx": 51 - }, - { - "type": "text", - "text": "The width of the conducting layer is constant. ", - "page_idx": 51 - }, - { - "type": "text", - "text": "A pd of $3.0\\mathrm{V}$ is applied across A and B. \nC is moved from A to B. ", - "page_idx": 51 - }, - { - "type": "image", - "img_path": "images/b093eec94cb17567e3ee76cdd17f1d084a3cb4d3c516419fa17327fb25936124.jpg", - "img_caption": [ - "Figure 5 " - ], - "img_footnote": [], - "page_idx": 51 - }, - { - "type": "text", - "text": "Sketch, on the axes in Figure 6, a graph to show how the pd between A and C varies as C is moved from A to B. ", - "page_idx": 51 - }, - { - "type": "text", - "text": "[4 marks] ", - "page_idx": 51 - }, - { - "type": "image", - "img_path": "images/e15b5c0a90d2d0538a480bbb998b1e999c5ce87cecdf0a09c885a9045a934b40.jpg", - "img_caption": [ - "Figure 6 " - ], - "img_footnote": [], - "page_idx": 51 - }, - { - "type": "text", - "text": "Porro prisms are used in binoculars to reverse the path of the light. The prism is in the shape of a right-angled isosceles triangle. ", - "page_idx": 52 - }, - { - "type": "text", - "text": "Figure 7 shows a ray of light, at normal incidence on the longest side, passing through a glass Porro prism. ", - "page_idx": 52 - }, - { - "type": "image", - "img_path": "images/a1fe560a1181e67cc06b8a8eb79894f34669d2031b50659cdd72fd7d90dd00a2.jpg", - "img_caption": [ - "Figure 7 " - ], - "img_footnote": [], - "page_idx": 52 - }, - { - "type": "text", - "text": "The critical angle for light in the prism is $41.5^{\\circ}$ . ", - "page_idx": 52 - }, - { - "type": "text", - "text": "Show that the glass used to make the prism has a refractive index of about 1.5 [1 mark] ", - "page_idx": 52 - }, - { - "type": "text", - "text": "Explain why the ray emerges parallel to the incident ray. ", - "page_idx": 52 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 52 - }, - { - "type": "text", - "text": "", - "text_level": 1, - "page_idx": 52 - }, - { - "type": "text", - "text": "Question 4 continues on the next page ", - "page_idx": 52 - }, - { - "type": "text", - "text": "Figure 8 shows a ray of light entering the prism at an angle of incidence $\\theta$ and reflecting off one of the shorter sides. ", - "page_idx": 53 - }, - { - "type": "image", - "img_path": "images/b59926f9d24baebce0e545ebefa26e68114d5a6877489ee9acadf8b24ce7341e.jpg", - "img_caption": [ - "Figure 8 " - ], - "img_footnote": [], - "page_idx": 53 - }, - { - "type": "text", - "text": "$\\theta$ is the largest angle of incidence for which all of the light leaves through the longest side. ", - "page_idx": 53 - }, - { - "type": "text", - "text": "Draw on Figure 8 the path of the ray of light as it continues inside the prism and emerges from the longest side. ", - "page_idx": 53 - }, - { - "type": "text", - "text": "When the angle of incidence is greater than $\\theta$ , some of the light escapes the prism through one of the shorter sides. Assume that the refractive index is 1.5 and the critical angle is $41.5^{\\circ}$ . ", - "page_idx": 54 - }, - { - "type": "text", - "text": "Show that $\\theta$ is about $5^{\\circ}$ . \nYou can use Figure 8 in your answer. ", - "page_idx": 54 - }, - { - "type": "text", - "text": "A manufacturer wants to make a prism with a larger value of $\\theta$ . ", - "page_idx": 55 - }, - { - "type": "text", - "text": "Two alternative changes to the original design of the prism are suggested: ", - "page_idx": 55 - }, - { - "type": "text", - "text": "1. use a prism of the original glass in the shape of an equilateral triangle, as shown in Figure 9 \n2. use a prism of the original shape made from glass with a smaller refractive index, as shown in Figure 10. ", - "page_idx": 55 - }, - { - "type": "image", - "img_path": "images/d5311b2001e7c70634cbbc6703a6866357ab24d260dc32abf9eb5df4c04a1ff8.jpg", - "img_caption": [ - "Figure 9 " - ], - "img_footnote": [], - "page_idx": 55 - }, - { - "type": "image", - "img_path": "images/8abee1e6ec31997b2ac7625b6d5bf329ec4b092da8a4308cdd8918686801058a.jpg", - "img_caption": [ - "Figure 10 " - ], - "img_footnote": [], - "page_idx": 55 - }, - { - "type": "text", - "text": "Discuss whether either of the two suggestions would work. ", - "page_idx": 55 - }, - { - "type": "text", - "text": "[4 marks] ", - "page_idx": 55 - }, - { - "type": "text", - "text": "1 \n2 ", - "page_idx": 55 - }, - { - "type": "text", - "text": "Figure 11 shows the stress–strain graph for a metal in tension up to the point at which it fractures. ", - "page_idx": 56 - }, - { - "type": "image", - "img_path": "images/8497e6cd14aa20c9ca5e9f454cbcb887974bec9216b18142a7bb60ebec73ec54.jpg", - "img_caption": [ - "Figure 11 ", - "Determine, using Figure 11, the Young modulus of the metal. " - ], - "img_footnote": [], - "page_idx": 56 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 56 - }, - { - "type": "text", - "text": "Young modulus $=$ Pa ", - "page_idx": 56 - }, - { - "type": "text", - "text": "Explain how the graph shows that this metal is brittle. ", - "page_idx": 56 - }, - { - "type": "text", - "text": "", - "page_idx": 56 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 56 - }, - { - "type": "text", - "text": "Question 5 continues on the next page ", - "page_idx": 56 - }, - { - "type": "text", - "text": "Figure 12 shows a uniform rigid lighting beam AB suspended from a fixed horizontal support by two identical vertical steel wires. A lamp is attached to the midpoint of AB. ", - "page_idx": 57 - }, - { - "type": "image", - "img_path": "images/93ff3930946f9d84389c70d9a39970d476a23f32097eef05828f2edf98c516be.jpg", - "img_caption": [ - "Figure 12 " - ], - "img_footnote": [], - "page_idx": 57 - }, - { - "type": "text", - "text": "The unloaded length of each steel wire was $1.20\\:\\mathrm{m}$ before it was attached to AB. \nAB is horizontal. \nmass of $\\mathsf{A B}=4.4\\mathrm{kg}$ \nmass of lam $)=16.0\\mathrm{kg}$ \ndistance between wires $;=2.00\\mathrm{m}$ \ndiameter of each wire $=0.800\\mathrm{mm}$ \nYoung modulus of steel $=2.10\\times10^{11}\\mathrm{P}\\mathrm{:}$ a ", - "page_idx": 57 - }, - { - "type": "text", - "text": "", - "page_idx": 57 - }, - { - "type": "text", - "text": "Calculate the extension of each wire. ", - "page_idx": 57 - }, - { - "type": "text", - "text": "The right-hand steel wire is removed and replaced with an aluminium wire of diameter $1.60\\mathrm{mm}$ . The unloaded length of the aluminium wire is the same as that of the original steel wire. ", - "page_idx": 58 - }, - { - "type": "text", - "text": "When the lamp is at the midpoint of AB, one of the wires extends more than the other so that AB is not horizontal. To make AB horizontal the lamp has to be moved to a distance $x$ from A. Figure 13 shows the new arrangement. ", - "page_idx": 58 - }, - { - "type": "image", - "img_path": "images/59794ad74e3c90f35560f033094612b7bd0d38e73b7a1e043fec98d9de64372a.jpg", - "img_caption": [ - "Figure 13 " - ], - "img_footnote": [], - "page_idx": 58 - }, - { - "type": "text", - "text": "The Young modulus of aluminium is $7.00\\times10^{10}\\mathrm{Pa}$ . \nDeduce distance $x$ . A pencil is weighted with a thin coil of wire. The volume of the wire is negligible. \nFigure 14 shows the pencil and wire floating in equilibrium in water. ", - "page_idx": 58 - }, - { - "type": "text", - "text": "", - "page_idx": 59 - }, - { - "type": "image", - "img_path": "images/4b9a8fc761c493dcf513cfe98d12648514d62b9dcd5f1e9573834c61e2ced345.jpg", - "img_caption": [ - "Figure 14 ", - "Figure 15 ", - "In Figure 14 the combined weight of the pencil and wire is equal to an upwards force called the buoyancy force. The length of the pencil that is submerged is l. A student pushes the pencil down through a displacement y as shown in Figure 15. The buoyancy force is now greater than the weight. There is a resultant upward force $F$ acting on the pencil when the student releases it. The magnitude of $F$ for any value of $y$ is given by " - ], - "img_footnote": [], - "page_idx": 59 - }, - { - "type": "equation", - "text": "$$\nF=A\\rho g y\n$$", - "text_format": "latex", - "page_idx": 59 - }, - { - "type": "text", - "text": "where $A$ is the cross-sectional area of the pencil $\\rho$ is the density of water $g$ is the acceleration due to gravity. ", - "page_idx": 59 - }, - { - "type": "text", - "text": "The pencil is pushed down and released. The pencil then oscillates vertically about the equilibrium position. ", - "page_idx": 59 - }, - { - "type": "text", - "text": "Show that the pencil moves with simple harmonic motion. ", - "page_idx": 60 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 60 - }, - { - "type": "text", - "text": "The time period $T$ of the vertical oscillations is given by ", - "page_idx": 60 - }, - { - "type": "equation", - "text": "$$\nT=2\\pi\\sqrt{\\frac{l}{g}}\n$$", - "text_format": "latex", - "page_idx": 60 - }, - { - "type": "text", - "text": "The measured value of $l$ in Figure 15 is $85\\mathrm{mm}$ . \nThe pencil is pushed down $5.0\\mathrm{mm}$ and released. ", - "page_idx": 60 - }, - { - "type": "text", - "text": "Calculate the maximum acceleration of the pencil. ", - "page_idx": 60 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 60 - }, - { - "type": "text", - "text": "maximum acceleration $=$ m s−2 ", - "page_idx": 60 - }, - { - "type": "text", - "text": "Question 6 continues on the next page ", - "page_idx": 60 - }, - { - "type": "text", - "text": "A ship floating in the sea can be modelled by the pencil floating in water. The ship can oscillate vertically. These oscillations are called heave oscillatio ", - "page_idx": 61 - }, - { - "type": "text", - "text": "Wave motion causes forced oscillations of the ship. Under certain conditions, heave resonance may then occur. ", - "page_idx": 61 - }, - { - "type": "text", - "text": "Explain what is meant by resonance. ", - "page_idx": 61 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 61 - }, - { - "type": "text", - "text": "The ship is moving steadily at $8.0\\mathrm{m~s}^{-1}$ relative to the seabed in the same direction as the waves. ", - "page_idx": 61 - }, - { - "type": "image", - "img_path": "images/094b4450e7343638a1ec955e5f1af99ac05903bd9003eb54d02ef61f4d31b4ab.jpg", - "img_caption": [ - "Figure 16 shows a ship moving through continuous waves of wavelength $118\\mathrm{m}$ and velocity $14.2\\mathrm{m~s}^{-1}$ . ", - "Figure 16 " - ], - "img_footnote": [], - "page_idx": 61 - }, - { - "type": "text", - "text": "The natural frequency of heave oscillations of the ship is $0.13\\:\\mathrm{Hz}$ . ", - "page_idx": 62 - }, - { - "type": "text", - "text": "A crew member needs an emergency operation. The ship’s doctor is confident that she can do the operation if the ship remains fairly steady. ", - "page_idx": 62 - }, - { - "type": "text", - "text": "There are two options: ", - "page_idx": 62 - }, - { - "type": "text", - "text": "• stop the ship’s motors and loosely anchor the ship to the seabed • continue to sail the ship at $8.0\\mathrm{m~s}^{-1}$ in the same direction. ", - "page_idx": 62 - }, - { - "type": "text", - "text": "Deduce which is the better option. \nSupport your answer with a calculation. ", - "page_idx": 62 - }, - { - "type": "text", - "text": "[3 marks] ", - "page_idx": 62 - }, - { - "type": "text", - "text": "END OF SECTION A ", - "page_idx": 62 - }, - { - "type": "text", - "text": "Section B ", - "text_level": 1, - "page_idx": 63 - }, - { - "type": "text", - "text": "Each of Questions 07 to 31 is followed by four responses, A, B, C and D. ", - "page_idx": 63 - }, - { - "type": "text", - "text": "For each question select the best response. ", - "page_idx": 63 - }, - { - "type": "text", - "text": "Only one answer per question is allowed. \nFor each question, completely fill in the circle alongside the appropriate answer. ", - "page_idx": 63 - }, - { - "type": "text", - "text": "CORRECT METHOD ", - "page_idx": 63 - }, - { - "type": "image", - "img_path": "images/fc90fe09eb45c0e24e0102ba561fcf3790dfbd2bc6039fb07037f0b360e27e1b.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 63 - }, - { - "type": "text", - "text": "If you want to change your answer you must cross out your original answer as shown. ", - "page_idx": 63 - }, - { - "type": "image", - "img_path": "images/d5adcc1c8d2076adfaa968721816e1ece8cce5bb575f889b544f54dacf508b3d.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 63 - }, - { - "type": "text", - "text": "If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown. ", - "page_idx": 63 - }, - { - "type": "text", - "text": "You may do your working in the blank space around each question but this will not be marked. \nDo not use additional sheets for this working. ", - "page_idx": 63 - }, - { - "type": "text", - "text": "Which combination of an object’s speed and journey time gives a distance travelled of $1\\mathrm{mm}?$ ", - "page_idx": 63 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 63 - }, - { - "type": "table", - "img_path": "images/29bd375d1bfae31c93b54ba0523be6ec40a9e5cda5128c1800b2b32214a29cdb.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
SpeedJourney time
A10 μm s-1100 s
B10 km s-10.01 μs
C1 nm s-11 Gs
D0.1 Mm s-1100 ns
\n\n", - "page_idx": 63 - }, - { - "type": "text", - "text": "A person jumps as high as she can from a standing position. What is a reasonable estimate of her speed just after she leaves the ground? ", - "page_idx": 64 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 64 - }, - { - "type": "text", - "text": "A 2 m s−1 \nB 4 m s−1 \nC 8 m s−1 $\\subset$ \nD 10 m s−1 $\\Longleftrightarrow$ ", - "page_idx": 64 - }, - { - "type": "text", - "text": "A nucleus contains $N$ neutrons and $Z$ protons. Which combination of $N$ and $Z$ gives a nucleus with the greatest specific charge? [1 mark] ", - "page_idx": 64 - }, - { - "type": "image", - "img_path": "images/f06bc7de8b270c4f2c3be9d0ce85ede5e7cfa45dd91ea708cbd1931e5d8331cf.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 64 - }, - { - "type": "text", - "text": "Which statement about muons is correct? ", - "page_idx": 64 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 64 - }, - { - "type": "text", - "text": "A They consist of a quark and an antiquark. \nB They include pions and kaons. \nC They are subject to the strong interaction. $\\Longleftrightarrow$ \nD They decay into electrons. ", - "page_idx": 64 - }, - { - "type": "text", - "text": "The diagram represents a quark change in which an electron antineutrino is produced. ", - "page_idx": 65 - }, - { - "type": "image", - "img_path": "images/552ea65dfae798a061f6d16b93136390e65d935169ecff89841ed7ecc8cb18e2.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 65 - }, - { - "type": "text", - "text": "What are E, F and G? ", - "page_idx": 65 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 65 - }, - { - "type": "table", - "img_path": "images/ca7d0aa420f562544b429b85300501c17ca7881f4eb566a71e117f42b87f590c.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
EFG
Aup quarkdown quarkβ
Bdown quarkup quarkβ
Cup quarkdown quarkβ+
Ddown quarkup quark+8
\n\n", - "page_idx": 65 - }, - { - "type": "text", - "text": "Photoelectrons are released when monochromatic light with a photon energy of $4.2\\times10^{-19}$ J is incident on a metal surface. \nThe work function of the surface is $2.4\\mathrm{eV}$ . ", - "page_idx": 65 - }, - { - "type": "text", - "text": "What is the maximum speed of the photoelectrons as they leave the surface? ", - "page_idx": 65 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 65 - }, - { - "type": "text", - "text": "A $1.3\\times10^{6}\\mathrm{m}\\mathrm{s}^{-1}$ B $6.3\\times10^{5}\\mathrm{~m~s~}^{-1}$ $\\Longleftrightarrow$ C $2.8\\times10^{5}\\mathrm{ms^{-1}}$ $\\subset$ D $2.0\\times10^{5}\\mathrm{ms^{-1}}$ $\\subset$ ", - "page_idx": 65 - }, - { - "type": "text", - "text": "Electrons with a certain kinetic energy pass through a powdered crystalline sample and are incident on a fluorescent screen. The diagram shows a sketch of the diffraction pattern produced. ", - "page_idx": 66 - }, - { - "type": "image", - "img_path": "images/d0bcade1d6eecd11c7b01a830874a85e0bdc19ea90eb2b78af4ae3d59d3ae4f8.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 66 - }, - { - "type": "text", - "text": "A change is made and this second pattern is produced. ", - "page_idx": 66 - }, - { - "type": "image", - "img_path": "images/cd4ce3af50f954eb058f6cc8093cb9da40b553f64860b24e882b21a6c3fc8950.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 66 - }, - { - "type": "text", - "text": "Which change could produce the second pattern? ", - "page_idx": 66 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 66 - }, - { - "type": "text", - "text": "A decreasing the kinetic energy of the electrons B replacing the electrons with protons with the same kinetic energy C using a crystalline sample with a wider spacing between its atoms D moving the screen closer to the crystalline sample ", - "page_idx": 66 - }, - { - "type": "text", - "text": "A string with a length of $1.2\\textrm{m}$ vibrates at its second harmonic. \nThe diagram shows the displacement–time graph for a point on the string. ", - "page_idx": 67 - }, - { - "type": "image", - "img_path": "images/3e901f3fea35b80edd32390c7e3c2a7b11e5e18779065ebbf16c8fed8caa2a5b.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 67 - }, - { - "type": "text", - "text": "What are the wavelength and frequency of the wave on the string? ", - "page_idx": 67 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 67 - }, - { - "type": "image", - "img_path": "images/44b1d4cf7a79b186f6049d6ec7f972462a57f574c3cb41e18b1a810022551015.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 67 - }, - { - "type": "text", - "text": "A standing wave is created on a string. Which statement about the two waves that create the standing wave is not correct? [1 mark] ", - "page_idx": 68 - }, - { - "type": "text", - "text": "A They have the same frequency. \nB They have a constant phase relationship. \nC They travel in opposite directions. $\\Longleftrightarrow$ \nD They have the same speed. $\\Longleftrightarrow$ ", - "page_idx": 68 - }, - { - "type": "text", - "text": "A double slit with a separation $s$ is illuminated by light of wavelength $\\uplambda$ . Fringes with spacing $w$ are produced on a screen placed a distance $D$ from the slits. The distance from the slits to the screen is changed to $\\frac{D}{2}$ ", - "page_idx": 68 - }, - { - "type": "text", - "text": "Which combination of slit separation and wavelength produces a fringe spacing of $1.5w$ on the screen? ", - "page_idx": 68 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 68 - }, - { - "type": "image", - "img_path": "images/4cc79f3b36b865d03cd79b60f417c2cc67740b3fa5c2224c535b4ef3c77ce1ac.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 68 - }, - { - "type": "text", - "text": "Turn over for the next question ", - "page_idx": 68 - }, - { - "type": "text", - "text": "A single narrow slit is illuminated with monochromatic light and a diffraction pattern is produced. ", - "page_idx": 69 - }, - { - "type": "text", - "text": "The slit width is increased. ", - "page_idx": 69 - }, - { - "type": "text", - "text": "What happens to the width and brightness of the central maximum of the diffraction pattern? ", - "page_idx": 69 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 69 - }, - { - "type": "table", - "img_path": "images/bc0d117ccd2413548ce8a0b16acf1fac1dd445e2518b732875699fa7385cd5ef.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
WidthofcentralmaximumBrightness of central maximum
Aincreasesincreases
Bincreasesdecreases
Cdecreasesincreases
Ddecreasesdecreases
\n\n", - "page_idx": 69 - }, - { - "type": "text", - "text": "A ball is kicked from point P on level ground. The ball initially travels at $45^{\\circ}$ to the horizontal. \nThe ball reaches its maximum height after a time of $2.0\\mathrm{~s~}$ . \nAir resistance can be ignored. ", - "page_idx": 69 - }, - { - "type": "image", - "img_path": "images/0b5f6d4f2e6fc2a8232dfa1d2565264abb0403a362dd2751b0b9bd00bc0b508d.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 69 - }, - { - "type": "text", - "text": "What is the displacement of the ball from P when at its maximum height? ", - "page_idx": 69 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 69 - }, - { - "type": "text", - "text": "A 20 m B 40 m C 45 m D 60 m $\\smile$ $\\smile$ ", - "page_idx": 69 - }, - { - "type": "text", - "text": "", - "page_idx": 69 - }, - { - "type": "text", - "text": "An object is moving in a straight line. A graph is plotted to show the variation of the momentum of the object with time. ", - "page_idx": 70 - }, - { - "type": "text", - "text": "Which quantities can be calculated from the gradient of the graph and the area under the graph? ", - "page_idx": 70 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 70 - }, - { - "type": "table", - "img_path": "images/0801163dd5d73fa65ba88e570473f58c1a58298d0e4b992a1ec0cef9b6929853.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Gradient of graphArea under graph
Apowermass x displacement
Bforceworkdonex time
Cpowerworkdone×time
Dforcemassxdisplacement
\n\n", - "page_idx": 70 - }, - { - "type": "text", - "text": "Which is a pair of vectors? ", - "page_idx": 70 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 70 - }, - { - "type": "text", - "text": "A weight and work \nB force and energy \nC displacement and momentum \nD acceleration and power ", - "page_idx": 70 - }, - { - "type": "text", - "text": "Which statement about a superconducting metal is correct? ", - "page_idx": 70 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 70 - }, - { - "type": "text", - "text": "A Its resistivity is small but not zero. \nB A current in it causes no heating effect. \nC Its critical temperature is independent of the metal it is made from. $\\Longleftrightarrow$ \nD Keeping it cold makes it too expensive to use. ", - "page_idx": 70 - }, - { - "type": "text", - "text": "2 2 A heavy uniform trapdoor is hinged to the floor. It is held open by a rope as shown. ", - "page_idx": 71 - }, - { - "type": "image", - "img_path": "images/10fe5965c77c0bb40c20f2cd2f8b631e93193e67d44e858a850d7e1f2451532f.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 71 - }, - { - "type": "text", - "text": "Which arrow shows the direction of the reaction force of the hinge on the trapdoor? [1 mark] ", - "page_idx": 71 - }, - { - "type": "text", - "text": "A B C D ", - "page_idx": 71 - }, - { - "type": "text", - "text": "A sphere of mass m falls with speed $\\nu$ . \nThe resistive force on the sphere is $k\\nu$ , where $k$ is a constant. ", - "page_idx": 71 - }, - { - "type": "text", - "text": "What is the terminal speed of the sphere? ", - "page_idx": 71 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 71 - }, - { - "type": "image", - "img_path": "images/ce27ad9bc78f9bc1162d578b67e29e78a971663103a5283f2c87a0d03181ff33.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 71 - }, - { - "type": "text", - "text": "A trolley moves down a slope with constant acceleration. \nThe mass of the trolley is doubled and the trolley moves down the same slope again. \nAir resistance and friction are negligible. ", - "page_idx": 72 - }, - { - "type": "text", - "text": "Which is correct? ", - "page_idx": 72 - }, - { - "type": "text", - "text": "A The accelerating force is unchanged. \nB The accelerating force is halved. $\\subset$ \nC The acceleration is unchanged. $\\Longleftrightarrow$ \nD The acceleration is halved. $\\Longleftrightarrow$ ", - "page_idx": 72 - }, - { - "type": "text", - "text": "A variable force $F$ acts on an object of mass $2.0\\mathrm{kg}$ . The object is at rest at time $t=0$ The graph shows the variation of $F$ with $t$ . ", - "page_idx": 72 - }, - { - "type": "image", - "img_path": "images/040afa95244ad6af8e31e279611140b49dcc0790869ebbca95353736ef6ccd6b.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 72 - }, - { - "type": "text", - "text": "What is the speed of the object when $t=1.0\\mathrm{s}?$ ", - "page_idx": 72 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 72 - }, - { - "type": "text", - "text": "A $3.75\\mathrm{m~s}^{-1}$ \nB 5.00 m s−1 \nC 7.50 m s−1 $\\subset$ D 15.0 m s−1 $\\subset$ ", - "page_idx": 72 - }, - { - "type": "text", - "text": "A heavy cable is attached to a fixed support and carries a load at its lower end. ", - "page_idx": 73 - }, - { - "type": "image", - "img_path": "images/e366da6f2631cbd47c9a3f6ea6a2b0f5532229422527e30c29f0d43e3e42de0f.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 73 - }, - { - "type": "text", - "text": "The weight of the cable is not negligible. \nThe cable has constant cross-sectional area and density. ", - "page_idx": 73 - }, - { - "type": "text", - "text": "Which graph shows the variation of tensile stress $\\sigma$ in the cable with distance $d$ from $\\mathbf{J}$ to K? ", - "page_idx": 73 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 73 - }, - { - "type": "image", - "img_path": "images/729c39e8c747e3dd41e75544994ef349cf590f24847c0667699f7ccb2b495e34.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 73 - }, - { - "type": "text", - "text": "A $\\Longleftrightarrow$ B $\\Longleftrightarrow$ C \nD ", - "page_idx": 73 - }, - { - "type": "text", - "text": "A box with four terminals is connected to a cell and two ammeters. The top left terminal is X. ", - "page_idx": 74 - }, - { - "type": "image", - "img_path": "images/7de2e3cf5be681ce1c6209fa2ac0dab26d2b5540940b08364ba4b046637b71e0.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 74 - }, - { - "type": "text", - "text": "Each of the boxes A to D is connected into the circuit in turn. All the resistors have equal resistance. ", - "page_idx": 74 - }, - { - "type": "text", - "text": "Which box gives the same reading on both ammeters? ", - "page_idx": 74 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 74 - }, - { - "type": "image", - "img_path": "images/77bb2d37d708972bbc45658589f16c12cbd14ec8a061d940c224506ec4964f00.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 74 - }, - { - "type": "text", - "text": "A B C D ", - "page_idx": 74 - }, - { - "type": "text", - "text": "Two circular discs made of card rotate at constant speed on a common axle. ", - "page_idx": 75 - }, - { - "type": "image", - "img_path": "images/bc8d0e365da0d6b89e9a913a27af5bc0fb2ac2f61fe1b32890bf32c33e2c6ed3.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 75 - }, - { - "type": "text", - "text": "The discs are $2.00\\mathrm{m}$ apart. ", - "page_idx": 75 - }, - { - "type": "text", - "text": "An air-gun pellet is fired parallel to the axle. The pellet makes holes in the discs. \nThe holes are separated by an angle of $45^{\\circ}$ . \nThe speed of the pellet between the discs is $300\\mathrm{m~s}^{-1}$ . ", - "page_idx": 75 - }, - { - "type": "text", - "text": "How many revolutions does each disc complete in one second? ", - "page_idx": 75 - }, - { - "type": "image", - "img_path": "images/d655065f0021e9cd6476e5101e273f7dc2194a85535176d4136ea238995f0165.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 75 - }, - { - "type": "text", - "text": "A resistor dissipates 100 W when connected across a $25\\mathrm{~V~}$ supply with negligible internal resistance. \nThe supply output is reduced to $20\\mathrm{V}$ and the resistor is replaced so that the power dissipated is still $100\\mathrm{~W~}$ . ", - "page_idx": 75 - }, - { - "type": "text", - "text": "What is the percentage decrease in resistance? ", - "page_idx": 75 - }, - { - "type": "text", - "text": "A 20 \nB 36 \nC 64 \nD 80 ", - "page_idx": 75 - }, - { - "type": "text", - "text": "When an aircraft turns in a horizontal circular path, it banks at an angle $\\theta$ . ", - "page_idx": 76 - }, - { - "type": "image", - "img_path": "images/bbccf30d69340d2d9dbdd455609e40c4ecd1620e7955b5bac7dd60fc68f59cc6.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 76 - }, - { - "type": "text", - "text": "The aircraft has mass m and travels at constant speed $\\nu$ in a horizontal circular path of radius $r$ . The lift force acts at the angle $\\theta$ . ", - "page_idx": 76 - }, - { - "type": "text", - "text": "What is tan $\\theta?$ ", - "page_idx": 76 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 76 - }, - { - "type": "image", - "img_path": "images/25be9a776968767016ad4f01c16137f63cdcf38d4ecae80ac5eb845529219d00.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 76 - }, - { - "type": "text", - "text": "A mass, attached to two springs, oscillates horizontally between P and Q. The motion of the system is simple harmonic. ", - "page_idx": 76 - }, - { - "type": "image", - "img_path": "images/fe11f5d4d779ab6f8e11b6b0be250f73f795ee54148741172a3b19c5d2078ee4.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 76 - }, - { - "type": "text", - "text": "Which quantity has its magnitude at a minimum value when the mass is at Q? ", - "page_idx": 76 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 76 - }, - { - "type": "text", - "text": "A the acceleration of the mass \nB the kinetic energy of the mass \nC the potential energy of the mass–spring system $\\Longleftrightarrow$ \nD the resultant force of the springs on the mass ", - "page_idx": 76 - }, - { - "type": "image", - "img_path": "images/a6c32bff5558f984a0bc4cf5af43bafcb87dc23974036a0fcd9f1d3a87e17b17.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 77 - }, - { - "type": "table", - "img_path": "images/35277b008e97a716f70e45aa32c220c4fc4a7e18a874470641ae3d94bc27e26e.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
\n\n", - "page_idx": 78 - }, - { - "type": "table", - "img_path": "images/9a755c2b6a0b1e7642ed5ca1052bde3de04138f8a4b4425cfd20f765a966efa0.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
Copyrightinformation
For confidentiality purposes, allacknowledgements of third-party copyright material are published in a separate booklet.This booklet is published aftereach live examinationseries and is availableforfree download fromwww.aqa.org.uk.
Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the
\n\n", - "page_idx": 79 - }, - { - "type": "text", - "text": "AQA", - "page_idx": 80 - }, - { - "type": "text", - "text": "A-LEVEL PHYSICS 7408/1 Paper 1 ", - "page_idx": 80 - }, - { - "type": "text", - "text": "Mark scheme ", - "text_level": 1, - "page_idx": 80 - }, - { - "type": "text", - "text": "June 2019 ", - "page_idx": 80 - }, - { - "type": "text", - "text": "Version: 1.0 Final \\*jun1974081/MS\\* ", - "page_idx": 80 - }, - { - "type": "text", - "text": "", - "page_idx": 80 - }, - { - "type": "text", - "text": "Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students’ responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students’ scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer. ", - "page_idx": 81 - }, - { - "type": "text", - "text": "It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark schemes on the basis of one year’s document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper. ", - "page_idx": 81 - }, - { - "type": "text", - "text": "Further copies of this mark scheme are available from aqa.org.uk ", - "page_idx": 81 - }, - { - "type": "text", - "text": "Copyright information ", - "text_level": 1, - "page_idx": 81 - }, - { - "type": "text", - "text": "For confidentiality purposes acknowledgements of third-party material are published in a separate booklet which is available for free download from www.aqa.org.uk after the live examination series. ", - "page_idx": 81 - }, - { - "type": "text", - "text": "Copyright $\\circledcirc$ 2019 AQA and its licensors. All rights reserved. ", - "page_idx": 81 - }, - { - "type": "text", - "text": "Level of response marking instructions ", - "text_level": 1, - "page_idx": 82 - }, - { - "type": "text", - "text": "Level of response mark schemes are broken down into levels, each of which has a descriptor. The descriptor for the level shows the average performance for the level. There are marks in each level. ", - "page_idx": 82 - }, - { - "type": "text", - "text": "Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as instructed) to show the qualities that are being looked for. You can then apply the mark scheme. ", - "page_idx": 82 - }, - { - "type": "text", - "text": "Step 1 Determine a level ", - "text_level": 1, - "page_idx": 82 - }, - { - "type": "text", - "text": "Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer. With practice and familiarity you will find that for better answers you will be able to quickly skip through the lower levels of the mark scheme. ", - "page_idx": 82 - }, - { - "type": "text", - "text": "When assigning a level you should look at the overall quality of the answer and not look to pick holes in small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level and then use the variability of the response to help decide the mark within the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be placed in level 3 but be awarded a mark near the top of the level because of the level 4 content. ", - "page_idx": 82 - }, - { - "type": "text", - "text": "Step 2 Determine a mark ", - "text_level": 1, - "page_idx": 82 - }, - { - "type": "text", - "text": "Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate marks can help with this. The exemplar materials used during standardisation will help. There will be an answer in the standardising materials which will correspond with each level of the mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer with the example to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner’s mark on the example. ", - "page_idx": 82 - }, - { - "type": "text", - "text": "You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate. ", - "page_idx": 82 - }, - { - "type": "text", - "text": "Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be exhaustive and you must credit other valid points. Students do not have to cover all of the points mentioned in the Indicative content to reach the highest level of the mark scheme. ", - "page_idx": 82 - }, - { - "type": "text", - "text": "An answer which contains nothing of relevance to the question must be awarded no marks. ", - "page_idx": 82 - }, - { - "type": "table", - "img_path": "images/1a76007d35ceadc62f9b5fe7d5c550771686055401a31605aee3a7c86d75fb79.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditional Comments/GuidelinesMark
\n\n", - "page_idx": 83 - }, - { - "type": "table", - "img_path": "images/03974bf815a435dc925ed8df555fa4a19a0fd550eb08f60e67699123bbe56446.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
01.1lodine-131 has 6 more neutrons (than iodine-125) Condone iodine-131 has 78 neutrons and iodine-125 has 72 neutrons. Condone “6 fewer/less neutrons than iodine-131\" Do not credit nucleons. Suggestion of difference in number of protons loses the mark.
01.2131 (nucleons) If more than one number is given, the nucleon number must be explicit. Accept reverse arguments.1
01.3The tellurium has 1 more neutron (than iodine-125) v The tellurium has 1 fewer proton (than iodine-125) Accept telluriumhas73neutrons Accepttelluriumhas52protons Condone “\"proton number\". Condone \"number of neutrons/protons have increased/decreasedbyone\" Treat any nuclear reactions as neutral. Discussion of electrons in nucleus scores max 1. Accept answer in terms of quarks (one more down and one fewer up). Ignore references to nucleons/mass number.2
\n\n", - "page_idx": 83 - }, - { - "type": "table", - "img_path": "images/285ea99a385fc0fdb208790189bcc391d914a2c51484de6c2a72e2de4d7d8bbe.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
AAny 3.
beta-decay: (electron and) anti-neutrino released; (internal conversion: only electron released);Treat each difference, as delimited by the answer book, as a single independent mark.
CB (both statements required for mark) internalconversion:allelectronsreleasedwillhavesimilar/discrete energies/momenta beta-decay: electrons will have a range of energies/momenta vContradictionwithin a difference cancels the mark for that difference (on list basis). For a contradiction between separate differences treat the incorrect differenceasneutral.
01.4(internal conversion: no change in constituents of nucleus/element does not change)Allow: F (both statements required for mark)
beta-decay: neutron converted to proton(allow in terms of quarks)/element changes (to one with (one) more p, different Z, different proton number/different atomic number)) Internal conversion: may be accompanied by X-ray photon Beta-decay: may be accompanied by gamma photonv3
D (internal conversion: orbital electron lost)Allow“shells\"for“orbitals\".
beta-decay: electron comes from nucleus / no change in orbital electrons v
Do not award separate marks for force and
E (both statements required for mark) internal conversion: mediated by electromagnetic force / virtualexchangeparticle Condone \"W boson\" or \"W particle\" but not W+ and
photons
W
beta-decay: mediated by weak interaction / W √
Total
7
\n\n", - "page_idx": 84 - }, - { - "type": "text", - "text": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2019 ", - "text_level": 1, - "page_idx": 85 - }, - { - "type": "table", - "img_path": "images/bb4a44ec32468bf6bfe2956723b1c201975431db8ecb7e124e72245c08efbeee.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditional Comments/GuidelinesMark
\n\n", - "page_idx": 85 - }, - { - "type": "table", - "img_path": "images/076d48c6524c4b495f3149e65690a763cbe5364506f36211399320ce211394bd.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Ray enters (prism) along normal v 02.1Allow normal explained eg at right angles to surface Accept “angle of incidence is O\".
\n\n", - "page_idx": 85 - }, - { - "type": "table", - "img_path": "images/f62ef80ef0cd64aeb2c80e953290f8f0223d598402ff9a63a319b98d167c0ced.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Treat each point independently. Prism material/it has/they have same refractive index / optical density as windscreen vCondone'it has'or‘they have'or just'same’
Allow\"no change of speed between prism and windscreen\" Allow \"made from same material\"
02.2 Prism fitted to windscreen without gaps vDo not allow“same refractive index between them\" Treat“monochromatic\"asneutral Allow\"contact between prism and windscreen is clean\" etc. Allow \"touching the windscreen\"2
Condone suggestion that any bonding material has same refractive index (as prism and windscreen). Do not accept 'no boundary'
(1) = (990) =() = 02.3 each boundary) The first mark is for the calculation. The second is for the discussion but is contingent on obtaining a value for C.2
\n\n", - "page_idx": 85 - }, - { - "type": "table", - "img_path": "images/9fae45d647e784e5001583976e9fe0553222143bf458f5f259334254b8796545.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Accept clear reference to angle at point A in place
of45°statement. Do not allow “angle of incidence> critical angle\" on
\n\n", - "page_idx": 86 - }, - { - "type": "table", - "img_path": "images/64f8cb3315bededcdf8a0b3e86b02009d1573729329341fe0c5934a972f723da.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Do not allow “angle of incidence> critical angle\" on its own.
02.4Calculation of critical angle at glass-water boundary (61.0°) OR Calculation of possible n from glass to water (0.707) or absolute n for glass (1.88) OR Calculation of angle of refraction in water (53.9°) 2
So total internal reflection no longer takes place OR some light escapes/refracts (into water) / less light reflects v (Less light stays within windscreen so less light detected at sensor)Do not allow suggestion that TiR occurs at critical angle/when angle of incidence=critical angle. Do not allow \"ray/all the light escapes/refracts\" or \"no light reflects\" or \"less TiR\". Do not condone “total internal refraction/diffraction'
02.5Statement of effect of change in n on the path direction v (Sensible reference to the variation of a few per cent) leads to the idea that change is unlikely to be significant vEg for MP1 Light may change direction inside windscreen Light may change direction at a windscreen boundary Eg for MP2 Variation too small to deviate significantly withinwindscreen-internaleffect VariationtoosmalltoaffecttiratAwithoutMax 2
\n\n", - "page_idx": 86 - }, - { - "type": "table", - "img_path": "images/1c853eb0f948c092c1f236c3d258df7ac9348343756865072b9c7bb4a46acd19.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
droplet-boundaryeffect Variationtoosmalltosignificantlyaffect transmissionatAwithdroplet-boundary effect Allow discussions that may cause a difference, eg
thereisasummativeeffectfrommultiplereflections etc
\n\n", - "page_idx": 87 - }, - { - "type": "table", - "img_path": "images/e86a5d0d48a73c866a4f8ff407cd0a4b8b736f5809168e8da027b7be585f8f3d.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
More sensitive because... more likely to encounter/detectwater dropORwill encountermore water drops bigger decrease in light intensity, so more sensitive to rain v 02.6Allow any 2 comments taken from list . Theremust beasense of whether the comment relatestoanimprovementordecreasein sensitivity.Max 2
Treat as list; mark 1 and 2 independently. Allowideaoflargerarea
Do not allow a response that discusses travel time of ray.
Total11
\n\n", - "page_idx": 88 - }, - { - "type": "table", - "img_path": "images/8ab2a3e935386e6d30aea0945cf82f23be9ef81d7cba4a42b60f3aac1508e0c6.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditional Comments/GuidelinesMark
\n\n", - "page_idx": 89 - }, - { - "type": "table", - "img_path": "images/57010858c5feefedbe145aac2f533cc8def1151b67ca5408bff90ff2905cd741.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
03.1Central maximum with lower intensity maxima (either side) Central maximum is twice as wide/wider than other maxima vMP1 is for comparison of intensity. Condone references to brightness/dimness. MP2 is for comparison of width Award credit for a drawn answer eg on Fig 3. Suggestion that pattern due towhite light = max 1 Reference to Young's slit or equation = max 1 If only a single maximum is referred to MP2=0 but2
03.2MP1 can score for description of intensity variation. Wider (central) maxima (maximum) 'The pattern is wider/more spread out' gets 1 mark if no other marks given. Not \"larger pattern\". Condone \"larger\" distances between maxima. (Subsequent) maxima further apart v Condone 'maxima more spaced out' Reference to Young's slit or equation = max 1
03.3d= 1 × 10-3/500(= 2 × 10-6) (sin θ= n2/d = 6.5 × 10-7 /2 × 10-6 = 0.33)lgnorecommentsrelated tochange inwavelength AllowPOT error for d for MP1 May be seen in diffraction grating equation.2
\n\n", - "page_idx": 89 - }, - { - "type": "table", - "img_path": "images/72554c83e4bb64df58485ca58b591daaf060f41a66b505242bff8fca4409e020.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
0=19%√Allow max 1 for use of grating constant rather than
dto give 7.45 x 10-11 o if no other credit available.
\n\n", - "page_idx": 90 - }, - { - "type": "table", - "img_path": "images/7932cffa7a49f04e2988d89d80a3d2fc280d5463d09c6a1e7ec17ebe339da8ce.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Any two from: V vGivecreditforanswershownindiagram
03.4(Range of wavelengths results in):Evidenceforthesemarksmaybeseenin calculations
Central maximumunchanged inwidthTreatintensityvariationasneutral.Max2
Broader maxima/range of angles for each maximum/order Gradually getting broader/more spread out for greater order maxima
(.06
\n\n", - "page_idx": 90 - }, - { - "type": "table", - "img_path": "images/44027576eae4f37b85f7768971a883dfef91070832f41d721ccd24adf861379f.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
8
\n\n", - "page_idx": 90 - }, - { - "type": "table", - "img_path": "images/f42e2684308c219d576a6bc28bb221f6c0287f99639e84d19e7aced8afcc6395.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Question AnswersAdditionalComments/GuidelinesMark
\n\n", - "page_idx": 91 - }, - { - "type": "table", - "img_path": "images/4957170dd7d8e85d9d623469a895fe7f7038724ff9703ced08b3e24a1d0ea693.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
04.1The centre of mass of the beam and box is at the pivot v Idea that moments balance / sum of the moments is zero at this position v OR The anticlockwise moment (of weight of the beam) = clockwise moment (of weight of the box) Links pivot position to a consideration of moments v max 1Accept one route or the other, do not accept points from both. Allow max 1 for \"the pivot is to the right of the centre (of mass) of the beam\" pivot' on its own does not get the first mark 2 Award 2 for 1.25 x weight of beam = 1.5 x weight of empty box Confusion of moments with eg work done/forces =
04.2Clockwise moment = 610 x 9.81 × 1.5 (= 8976 N m) Anticlockwise moment = 250 × 4 + T sin 50 × 4.0 (N m)v Use of clockwise = anticlockwisev Use of T sin 50° seen / relates vertical component to tensionv T(= 1994/sin 50° )= 2600 (N)vCredit any evidence towork out a moment with one mark Condone cos 50 in MP2. Allow ecf for clockwise moment 5 Allow ecf for anticlockwise moment Use of g = 10 N kg-1 gives 2990 N Omission of 4.0 m (g = 9.8) gives 10410 N. Use of c0s 50 (g = 9.8) gives 3100 N
\n\n", - "page_idx": 91 - }, - { - "type": "table", - "img_path": "images/7e571968d5b47a250b9205ed1e293ffcdf63568799f1e21ca2f27009eb14d5ca.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Allow max 4 for use of g = 10 N kg-1.
\n\n", - "page_idx": 92 - }, - { - "type": "table", - "img_path": "images/6a4b9d47500081c17a5f4aa349c166cf8b97c29d1a922c4d9312674bafe79cd2.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
04.37.5 = 12 g t (t = 1.2 s)
2
(calculatedistance)AllowecffromincorrecttforMP2
s (= ut = 18 × 1.2) = 22 (m)v
\n\n", - "page_idx": 93 - }, - { - "type": "table", - "img_path": "images/c14d497240075e93ac06a29be98fc0899a5792c064a9ea58e94028ce7dc66ae9.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
04.4(Range will be greater:) component of velocity upwards v rock will spend longer in the air v greater tv therefore_the range is greater v OR (Range will be smaller) Counterweight will fall less far before projectile released v Less energy transferred to rock v Initial speed of rock less/horizontal velocity reduced v therefore_the range is smaller OR (balanced arguments)Candidates can argue from both lists to reach a balanced view suggesting that there is no change. Full credit can be obtained from 2 deductions from one list V√+ consistent conclusionv 1 deduction from each list √√+ consistent conclusion v Do not allow an unsupported conclusion. Max3 Conclusion must be consistent with correct statements. Treat incorrect statements as neutral. Do not reward arguments based on a longer time of flight.
Totaltherefore the range is unchanged / answer is indeterminatev12
\n\n", - "page_idx": 94 - }, - { - "type": "table", - "img_path": "images/9f5c4788d9d209a71fa73ef44d11f46fd04d5d18ecc842776eff007f3d872474.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Question AnswersAdditional Comments/GuidelinesMark
\n\n", - "page_idx": 95 - }, - { - "type": "table", - "img_path": "images/4889a3dab6a2f6e10f0d871914de4a8d036b9518f24a1cb18c2c25781f154f8a.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
05.1Conversion of 110 km h-1 to 31 m sAllowecfforincorrectorfailure tocarryoutspeed 2
= 1 x 1.5 × 103 x their conversion2 with a consistent answerv (= 7(.2) × 105)conversion Expectanswer tobecalculatedcorrectlyandto2+ sf.
\n\n", - "page_idx": 95 - }, - { - "type": "table", - "img_path": "images/2a13e7b1db89920fcedabd407eedd68924eb6bb7204104d9e92acceffbe5516b.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
05.2Component of velocity = 31 × cos (20) ORAllowecfforspeedfrom05.1
evidence of using momentum = mass x velocity (eg 1.5 x 10? x a velocity) vAccept 4.65 x 104 kg m s-1 for max 2 3
= 4.4 × 104 √ For unit only accept kg m s-1 OR NsvUse of 30.6 m s-1 gives 43 kN s
\n\n", - "page_idx": 95 - }, - { - "type": "table", - "img_path": "images/cfceffade000f19fcb620af61b574c898b3cdff3bc4a7879171c91093d4f11ac.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
05.3(KE before collision = 700 kJ)Allow ecf for speed from 05.13
Speed (parallel to barrier) after (= 31 × cos 20) = 28.7 m sUse of KE = p²/2m can gain full credit. Allowecfformomentumin05.2
KE after( = %2 × 1.5 × 103 × 28.72 ) = 618 kJ v Change = 700 - 618 (= 82 kJ)Final answer depends on extent towhich candidate hasrounded in earlierparts.Allow correctly
\n\n", - "page_idx": 95 - }, - { - "type": "table", - "img_path": "images/57809694c69edfb88b0dc622314d3e346a19c9f3ffe5e6691bfc64acc61f4abc.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Speed (perpendicular to barrier) after = 31 × sin 20 (= 10.5 m s Loss of KE (= %2 × 1.5 × 103 × 10.52 ) = 82 kJ Justification that total KE = KE due to speed parallel to barrier + KE due tospeedperpendicular tobarrier√Inthisquestion, do not insist on final answer to 2+ Sf.
\n\n", - "page_idx": 96 - }, - { - "type": "table", - "img_path": "images/256852c584e2056c2eff91c7a65dffe0078628b99e159e8a9ec5882ff139d37d.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
05.4Evidence of work done = force × distance Eg Force = 82 000 / 1.5 0R their value for 05.3÷1.5v Allow 80 kJ for energy = 5.5 × 104 Nv This is less than braking force - so yes. v OR energy approach 90 kJ v
work done by barrier = 60 kN x 1.5 mv
which is > Ek of vehicle, so yes v OR impulse argument
evaluate time taken to stop, 0.26 s v3 Generalschemeforalternativesandreverse arguments is:
impulse value leading to distance or forcev ·conclusion consistent with correct method of calculation vfirst step calculation subsequent calculation(s) leading to
comparativevalue.Allow ecf for error in first step.
conclusion consistent with correct method of calculation
OR use of F=ma and suvat : F= ma leading to a = (-)40 m s-2√
suvat leads to 1.37 mvAlternative suvat method:
uses suvat to get a = 36.5 m s-2
which is <1.5 m, s0 yes vuses F=ma
which is <60 kN, s0 yes
\n\n", - "page_idx": 97 - }, - { - "type": "table", - "img_path": "images/f365891b67658e2e41a1822c3521de6a60fa56e3a543a8c2e131533cc9ea09ab.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
(Steel barrier is better because)
05.5Increasetimeofcontactasmaterialdeforms Reference to impulse (= change in momentum = Ft) implies smaller force (on dummy) OR Increasing stopping distance as material deforms v Reference to work done (= Fs) implies smaller force (on dummy) vAllow correct discussionleading to concretebarrier is worse. Alternativesecondmarkforeither alternativecan beawardedforcorrectreferencetoF=ma2
Total13
\n\n", - "page_idx": 98 - }, - { - "type": "table", - "img_path": "images/7e78c7f03121ab049b0dd847d1cb6d246afedbb8c6293263922bd41925b0c72a.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditional Comments/GuidelinesMark
\n\n", - "page_idx": 99 - }, - { - "type": "table", - "img_path": "images/b318a9043f925407ef9112a29e0c326eee0fa519213dc3d7fd78bac2f6da184f.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
1.5 (ms) 06.11
\n\n", - "page_idx": 99 - }, - { - "type": "table", - "img_path": "images/c7488800dca40982482ca4de387b97282e026520496a19c2a27cbe6047f8048b.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
06.2A = 4.2 (mm) read from graph T = 2.0 (ms) read from graph Condone power of ten error in A and/or T but not in final answer. Evidence for T might be seen in equation, as 5003
(f). (amax = 4.2 × 10-3 × (2 × π /(2 × 10-3)2
4.1(5) × 104 (m s-²) (Do not allow 4.2)Only allowed ecf for max 2 is use of 4.1 mm for A, giving 4.0 x 104 (m s-2)
\n\n", - "page_idx": 99 - }, - { - "type": "table", - "img_path": "images/03cc19547f04886912985e4757085cd1f2a26a7501426da9fe03276a3675f826.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
06.3longitudinal (they) oscillate along direction of energy transferBoth required for 1 mark Condone“vibrate”for oscillate. Condone‘travel'fortransfer
Total5
\n\n", - "page_idx": 99 - }, - { - "type": "table", - "img_path": "", - "table_caption": [], - "table_footnote": [], - "page_idx": 100 - }, - { - "type": "table", - "img_path": "images/79cfcf82952ab2f62289c52dd4b0980c5108e8ae16540dd6543c3b8e64d73cec.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditionalComments/GuidelinesMark
07.1Mention of increase in lost volts/ pd across internal resistance (in cell)v (because) current has increased OR internal resistance is a larger proportion of total resistance OR ratio of internal: external resistance is larger vAccept reverse arguments Do not accept terminal pd has decreased Treat comments about resistance of lamp as neutral2
07.2Lost volts reduced (current remains the same, V2 > V1) OR Effective internal resistance is a smaller proportion of total resistance / ratio of internal: external resistance is smaller v (because) two cells in parallel behave as a single cell (with the same emf) but with half the internal resistance / reduced internal resistancev Alternative: Current through each cell is less than cell on its own v Decreased current through cell decreases lost volts / pd dropped across internal resistance v2
\n\n", - "page_idx": 100 - }, - { - "type": "table", - "img_path": "images/1feed3eaa59b84f4643a2da1f5f31e2ccf8380b85d6071c56858bd008a51732c.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Total4
\n\n", - "page_idx": 101 - }, - { - "type": "table", - "img_path": "images/bc512113d46ff76cc39ec209875d6b17ae02a05dd71e713b096295ae7e731951.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Keys to Objective Test Questions (each correct answer is worth 1 mark)
8 9 10 11 12 13 14 15 16 17 18 19
\n\n", - "page_idx": 101 - }, - { - "type": "table", - "img_path": "images/f50cbe3f2421601529a6bba898b42799a4b1bfec30161fc5a381cd8098f81689.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
ADCCCABDDBCC
20212223242526272829303132
DBDDBBACCDCAD
\n\n", - "page_idx": 102 - }, - { - "type": "text", - "text": "AQA ", - "text_level": 1, - "page_idx": 103 - }, - { - "type": "text", - "text": "A-level PHYSICS 7408/1 Paper 1 ", - "page_idx": 103 - }, - { - "type": "text", - "text": "Mark scheme ", - "text_level": 1, - "page_idx": 103 - }, - { - "type": "text", - "text": "June 2023 ", - "page_idx": 103 - }, - { - "type": "text", - "text": "Version: 1.0 Final ", - "page_idx": 103 - }, - { - "type": "text", - "text": "Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students’ responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students’ scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner. ", - "page_idx": 104 - }, - { - "type": "text", - "text": "It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark schemes on the basis of one year’s document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper. ", - "page_idx": 104 - }, - { - "type": "text", - "text": "Further copies of this mark scheme are available from aqa.org.uk ", - "page_idx": 104 - }, - { - "type": "text", - "text": "Copyright information ", - "text_level": 1, - "page_idx": 104 - }, - { - "type": "text", - "text": "AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre. ", - "page_idx": 104 - }, - { - "type": "text", - "text": "Copyright $\\circledcirc$ 2023 AQA and its licensors. All rights reserved. ", - "page_idx": 104 - }, - { - "type": "text", - "text": "Physics - Mark scheme instructions to examiners ", - "text_level": 1, - "page_idx": 105 - }, - { - "type": "text", - "text": "1. General ", - "text_level": 1, - "page_idx": 105 - }, - { - "type": "text", - "text": "The mark scheme for each question shows: ", - "page_idx": 105 - }, - { - "type": "text", - "text": "• the marks available for each part of the question \n• the total marks available for the question \n• the typical answer or answers which are expected extra information to help the Examiner make his or her judgement and help to delineate what is acceptable or not worthy of credit or, in discursive answers, to give an overview of the area in which a mark or marks may be awarded. ", - "page_idx": 105 - }, - { - "type": "text", - "text": "The extra information is aligned to the appropriate answer in the left-hand part of the mark scheme and should only be applied to that item in the mark scheme. ", - "page_idx": 105 - }, - { - "type": "text", - "text": "At the beginning of a part of a question a reminder may be given, for example: where consequential marking needs to be considered in a calculation; or the answer may be on the diagram or at a different place on the script. ", - "page_idx": 105 - }, - { - "type": "text", - "text": "In general the right-hand side of the mark scheme is there to provide those extra details which confuse the main part of the mark scheme yet may be helpful in ensuring that marking is straightforward and consistent. ", - "page_idx": 105 - }, - { - "type": "text", - "text": "2. Emboldening ", - "text_level": 1, - "page_idx": 105 - }, - { - "type": "text", - "text": "2.1 In a list of acceptable answers where more than one mark is available ‘any two from’ is used, with the number of marks emboldened. Each of the following bullet points is a potential mark. \n2.2 A bold and is used to indicate that both parts of the answer are required to award the mark. \n2.3 Alternative answers acceptable for a mark are indicated by the use of or. Different terms in the mark scheme are shown by a / ; eg allow smooth / free movement. ", - "page_idx": 105 - }, - { - "type": "text", - "text": "3. Marking points ", - "text_level": 1, - "page_idx": 105 - }, - { - "type": "text", - "text": "3.1 Marking of lists ", - "text_level": 1, - "page_idx": 105 - }, - { - "type": "text", - "text": "This applies to questions requiring a set number of responses, but for which candidates have provided extra responses. The general principle to be followed in such a situation is that ‘right $+$ wrong $=$ wrong’. ", - "page_idx": 105 - }, - { - "type": "text", - "text": "Each error / contradiction negates each correct response. So, if the number of errors / contradictions equals or exceeds the number of marks available for the question, no marks can be awarded. ", - "page_idx": 105 - }, - { - "type": "text", - "text": "However, responses considered to be neutral (often prefaced by ‘Ignore’ in the mark scheme) are not penalised. ", - "page_idx": 105 - }, - { - "type": "text", - "text": "3.2 Marking procedure for calculations ", - "text_level": 1, - "page_idx": 105 - }, - { - "type": "text", - "text": "Full marks can usually be given for a correct numerical answer without working shown unless the question states ‘Show your working’. However, if a correct numerical answer can be evaluated from incorrect physics then working will be required. The mark scheme will indicate both this and the credit (if any) that can be allowed for the incorrect approach. ", - "page_idx": 105 - }, - { - "type": "text", - "text": "However, if the answer is incorrect, mark(s) can usually be gained by correct substitution / working and this is shown in the ‘extra information’ column or by each stage of a longer calculation. ", - "page_idx": 106 - }, - { - "type": "text", - "text": "A calculation must be followed through to answer in decimal form. An answer in surd form is never acceptable for the final (evaluation) mark in a calculation and will therefore generally be denied one mark. ", - "page_idx": 106 - }, - { - "type": "text", - "text": "3.3 Interpretation of ‘it’ ", - "text_level": 1, - "page_idx": 106 - }, - { - "type": "text", - "text": "Answers using the word ‘it’ should be given credit only if it is clear that the ‘it’ refers to the correct subject. ", - "page_idx": 106 - }, - { - "type": "text", - "text": "3.4 Errors carried forward, consequential marking and arithmetic errors ", - "page_idx": 106 - }, - { - "type": "text", - "text": "Allowances for errors carried forward are likely to be restricted to calculation questions and should be shown by the abbreviation ECF or conseq in the marking scheme. ", - "page_idx": 106 - }, - { - "type": "text", - "text": "An arithmetic error should be penalised for one mark only unless otherwise amplified in the marking scheme. Arithmetic errors may arise from a slip in a calculation or from an incorrect transfer of a numerical value from data given in a question. ", - "page_idx": 106 - }, - { - "type": "text", - "text": "3.5 Phonetic spelling ", - "text_level": 1, - "page_idx": 106 - }, - { - "type": "text", - "text": "The phonetic spelling of correct scientific terminology should be credited (eg fizix) unless there is a possible confusion (eg defraction/refraction) with another technical term. ", - "page_idx": 106 - }, - { - "type": "text", - "text": "3.6 Brackets ", - "text_level": 1, - "page_idx": 106 - }, - { - "type": "text", - "text": "(…..) are used to indicate information which is not essential for the mark to be awarded but is included to help the examiner identify the sense of the answer required. ", - "page_idx": 106 - }, - { - "type": "text", - "text": "3.7 Ignore / Insufficient / Do not allow ", - "text_level": 1, - "page_idx": 106 - }, - { - "type": "text", - "text": "‘Ignore’ or ‘insufficient’ is used when the information given is irrelevant to the question or not enough to gain the marking point. Any further correct amplification could gain the marking point. ", - "page_idx": 106 - }, - { - "type": "text", - "text": "‘Do not allow’ means that this is a wrong answer which, even if the correct answer is given, will still mean that the mark is not awarded. ", - "page_idx": 106 - }, - { - "type": "text", - "text": "3.8 Significant figure penalties ", - "text_level": 1, - "page_idx": 106 - }, - { - "type": "text", - "text": "Answers to questions in the practical sections (7407/2 – Section A and 7408/3A) should display an appropriate number of significant figures. For non-practical sections, an A-level paper may contain up to 2 marks (1 mark for AS) that are contingent on the candidate quoting the final answer in a calculation to a specified number of significant figures (sf). This will generally be assessed to be the number of sf of the datum with the least number of sf from which the answer is determined. The mark scheme will give the range of sf that are acceptable but this will normally be the sf of the datum (or this sf -1). ", - "page_idx": 106 - }, - { - "type": "text", - "text": "An answer in surd form cannot gain the sf mark. An incorrect calculation following some working can gain the sf mark. For a question beginning with the command word ‘Show that…’, the answer should be quoted to one more sf than the sf quoted in the question eg ‘Show that X is equal to about 2.1 cm’ – ", - "page_idx": 106 - }, - { - "type": "text", - "text": "answer should be quoted to 3 sf. An answer to 1 sf will not normally be acceptable, unless the answer is an integer eg a number of objects. In non-practical sections, the need for a consideration will be indicated in the question by the use of ‘Give your answer to an appropriate number of significant figures’. ", - "page_idx": 107 - }, - { - "type": "text", - "text": "3.9 Unit penalties ", - "text_level": 1, - "page_idx": 107 - }, - { - "type": "text", - "text": "An A-level paper may contain up to 2 marks (1 mark for AS) that are contingent on the candidate quoting the correct unit for the answer to a calculation. The need for a unit to be quoted will be indicated in the question by the use of ‘State an appropriate SI unit for your answer’. Unit answers will be expected to appear in the most commonly agreed form for the calculation concerned; strings of fundamental (base) units would not. For example, 1 tesla and 1 Wb $\\mathsf{m}^{-2}$ would both be acceptable units for magnetic flux density but $1~\\mathsf{k g}~\\mathsf{m}^{2}\\mathsf{s}^{-2}\\mathsf{A}^{-1}$ would not. ", - "page_idx": 107 - }, - { - "type": "text", - "text": "3.10 Level of response marking instructions ", - "text_level": 1, - "page_idx": 107 - }, - { - "type": "text", - "text": "Level of response mark schemes are broken down into three levels, each of which has a descriptor. The descriptor for the level shows the average performance for the level. There are two marks in each level. ", - "page_idx": 107 - }, - { - "type": "text", - "text": "Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as instructed) to show the qualities that are being looked for. You can then apply the mark scheme. ", - "page_idx": 107 - }, - { - "type": "text", - "text": "Determining a level ", - "text_level": 1, - "page_idx": 107 - }, - { - "type": "text", - "text": "Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer. With practice and familiarity you will find that for better answers you will be able to quickly skip through the lower levels of the mark scheme. ", - "page_idx": 107 - }, - { - "type": "text", - "text": "When assigning a level you should look at the overall quality of the answer and not look to pick holes in small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level and then use the variability of the response to help decide the mark within the level. ie if the response is predominantly level 2 with a small amount of level 3 material it would be placed in level 2. ", - "page_idx": 107 - }, - { - "type": "text", - "text": "The exemplar materials used during standardisation will help you to determine the appropriate level. There will be an answer in the standardising materials which will correspond with each level of the mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer with the example to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner’s mark on the example. ", - "page_idx": 107 - }, - { - "type": "text", - "text": "You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate. ", - "page_idx": 107 - }, - { - "type": "text", - "text": "Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be exhaustive and you must credit other valid points. Students do not have to cover all of the points mentioned in the indicative content to reach the highest level of the mark scheme. ", - "page_idx": 107 - }, - { - "type": "text", - "text": "An answer which contains nothing of relevance to the question must be awarded no marks. ", - "page_idx": 107 - }, - { - "type": "table", - "img_path": "images/ea941352209dfc8fb34f02adb6174c4e07d425b1dc854f780547d7568ea9ed10.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.1uds vDo not accept D for d. Penalise extra particles1AO3
\n\n", - "page_idx": 108 - }, - { - "type": "table", - "img_path": "images/7796a57ddb358aad82fc155ec2252104c0937ec33523372402bb3fc77bdb843e.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.2weak(interaction / force)v strangeness changes (in this decay) (from -1 to 0 and strangeness can only change in a weak interaction)MP2:2AO1
Reject negative arguments (eg 'strangeness is conserved in a strong interaction')
Reject the idea that strangeness always changes in a weak interaction. General statement ofstrangeness
conservationintheweakinteractiononits own is insufficient.
Accept “strangeness is not conserved (in this
decay)\".
Condone “strangeness is lost\".
\n\n", - "page_idx": 108 - }, - { - "type": "table", - "img_path": "images/2e7aed1ffeda4c5270c22bf7b6fae3ba913ddbc0567d4f722649ba2b97e8e912.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.3anti-neutronvAcceptn1AO1
Reject ambiguous answers unless supported byotherevidence.
Do not accept answer solely in terms of quarks
\n\n", - "page_idx": 109 - }, - { - "type": "table", - "img_path": "images/d2bdea75a6aea5e3a5ea6c8f7827484366b6aebdea44d4e22117dd2e745b46fd.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.41.1(1) × 103 (MeV) Rejectincorrectlyroundedanswers. Accept: 1100 MeV (2sf) / 1110 MeV (3sf) / 1115MeV (4sf)etc Calculatorvalue:1114.66875MeV1AO1
\n\n", - "page_idx": 109 - }, - { - "type": "table", - "img_path": "images/8d378e83d46f3bdcc0e5022b4183358f9a5b9ff9f6064fedbc07fddf9b26881d.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.5Any one from v (teams must be large and international) because: research is expensive / requires funding from many countries both scientists and engineers are required (because the machines used for research are complex/large pieces of civil engineering) research is multi-faceted / multi-disciplinary (becauseTreat idea of peer review as neutral (this argues for independent teams). Do not accept idea that it 'avoids bias' or 'reproducibility'.1AO1
\n\n", - "page_idx": 110 - }, - { - "type": "table", - "img_path": "images/66fb7eb20250427d055fa86658fa9f9db690d252c872b7cd5474b92db6f81f30.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
02.1Conversion of 1230 km h-1 to m s-1 ORExpect to see 342 m s-1 (341.7)2AO1
Calculates time for 343 m s-1 run ORExpect to see 4.69 sAO2
Calculates total time (using total distance, 3.22 km, and speed record)Expect to see 9.42 s
OR Calculates unknown speed vExpect to see 340.3 m s-1
Answer that rounds to 4.73 (s) Do not accept 2sf for final answer.
\n\n", - "page_idx": 111 - }, - { - "type": "table", - "img_path": "images/1a198c59f492e483e31727e683f4cf85d19ea817ff7c03f86f7f10676481dd1d.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
02.2speed from graph: 450 m s Use of their speed and KE equation to give consistentAccept 445 - 455 m s-12AO3 AO2
\n\n", - "page_idx": 111 - }, - { - "type": "table", - "img_path": "images/f119cd93d6a348c643cac5ab18443d68d27d6b1caba0bd2121adc5fe84c76623.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditional comments/GuidelinesMarkAO
02.3MAX three from: VvvExpect to see 450 m s-1 for their speed4 AO1 AO22× A03
Evidence for gradient may be on figure
AllowECFfrom02.2
Use of graph to determine gradient 450 5600
= 0.080(4)
Uses (their) speed and (their) gradient to give accelerationExpect to see 450 x 0.08
Use of F = m × (their a) to give resultant force Use of P = (their F)x (their speed)= 36(.2) m s-2
Expect to see 2.35 x 105 N
Final answer between 16% and 17%vExpect to see 450 x 2.35 x 105 = 106 MWReject power that is calculated assuming a
\n\n", - "page_idx": 112 - }, - { - "type": "table", - "img_path": "images/94790d517992ad0e0c91e57138375104209a4bec48ce7c00b1ff28cb9b42f523.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
02.4Identifies distance decelerating ANDallow 7000 m to 7600 m2AO3
max velocity = (470 ±5) m s-1 Uses suvat equation(s)allow answer consistent with their distance that rounds to 15 or 16
to get a = (-) 15 m s-2 which is less than 3g (so yes). vgive full credit to calculations that show that an acceleration of 3g would stop the car in a (much) shorter distance, with a statement that
this means that the actual acceleration must be (much) less than 3g. For MP2 allow calculation of gradientx average speed to give
Totalα = (-) 15 m s-2 which is less than 3g (so yes)10
\n\n", - "page_idx": 113 - }, - { - "type": "table", - "img_path": "images/1e3f511c7a7f5581cb9d4f48dc5dafb24055de4d8b52de72437ebaecebdcec19.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditional comments/GuidelinesMarkAO
03.1(1 C of) the charge gains ε J on passing through cellIf no other mark awarded, allow one mark for definition of emf in terms of energy transfer.2AO1
OR energy transferred (by 1 C) in R1 is V1 (J)accept: 'dissipated'
OR energy transferred (by 1 C) in R2 is V2 (J)accept “lost volts' for Ir but reject 'voltage across r
ORaccept 'work done' for 'energy transferred'
energy transferred (by 1 C) in r is Ir (J)
(for conservation of energy)Alternative for MP2 = V1 + V2 + Ir
ε = IR1 + IR2 + Ir vprovided that MP1 is awarded.
\n\n", - "page_idx": 114 - }, - { - "type": "table", - "img_path": "images/881777c94b13121046e04e5c5e6770844f443df2efd1d9c914317729b0656a8a.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditional comments/GuidelinesMarkAO
03.2Equates emf to Ir + 2.89 in some formv 1If no other mark awarded, award one mark for use of emf value in MP2. Allow in MP1 (their current/A) x125Q for 2.89 V3AO2 × 3
Calculates I from 2.89÷125 (=0.02312 A) 2Allow alternative routes for V1 and 2. E.g. \"Lost volts'= 0.11 V √ 1 Applies potential-divider equation e.g. 0.11÷2.89 = r÷125 √2 OR 3÷(125 + r) = 2.89÷125√ 1V 2
\n\n", - "page_idx": 115 - }, - { - "type": "table", - "img_path": "images/93d00ab9d656d2ceeb8bd8778e8b2dec96657bb77c36069aa296048f386ceae9.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditional comments/GuidelinesMarkAO
03.3(Resistance splits 25 Q and 104.8 Q) Applies potential divider formula eg V 25 3.00 129.8 V = 0.58 (V) ~ If no other mark awarded, allow one mark forAccept other routes for MP1 e.g. using V = IR, with 25 Ω and their current, for example from I = 0.023 A (from Q03.2) emf 3 total resistance 125+r I =terminal pd 125 OR using V = 3 2.89 with an identification of 2.89 V 5 as the terminal pd.2AO2x 2
\n\n", - "page_idx": 116 - }, - { - "type": "table", - "img_path": "images/2396ac8c3de9241742820b5d3fc3cbe857f3787866ed51b69bf1581d59a196ab.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditional comments/GuidelinesMarkAO
03.4Any four from: Straight line O V A to P 1v Less steep non-zero gradient from P to Q 2V Short steep increase at Q 3V Q to R about same non-zero gradient as P to Q 4v Horizontal line from R to B at 3.0 V 5v3.0 V pd/ V 0 A P Q RB position of C For 3V allow range no greater than width of \"Q\" label on horizontal axis. If graph sketched from 3 V (at A) to 0V (at B) award max 2 (based on 2Y and 4~). If a single diagonal straight line from O V (at A) to B, award iV only. If a single diagonal straight line from O V (at A) to R and then horizontal to B, award only 1V and 5v if scored (ie max 2).Max 4AO3 × 4
\n\n", - "page_idx": 117 - }, - { - "type": "table", - "img_path": "images/b71095a5eb9eb4adb51c5bc4ebb0466e117291f9ec36320882640bdf5569b838.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
04.1Uses 1 sinc= m to get 1.51 vMustseerelevantworktoawardthemark. Minimum3sfmustbeseen1AO1
\n\n", - "page_idx": 118 - }, - { - "type": "table", - "img_path": "images/ef2f92872bc37f4bb50504962ce3c88d856e222176a0a41be7b7f5002afa0af0.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
04.2(Each) angle of incidence is 45° (at 2nd and 3rd surfaces) AND2AO1 AO2
total internalreflectionoccurs/whichisgreater thanthe critical angle. v
Angle of incidence as ray leaves block is 0°
OR The ray leaves along the normal (and so the ray emerges
parallel to the incident ray). v
\n\n", - "page_idx": 118 - }, - { - "type": "table", - "img_path": "images/cb088436b75cb40297766854775680e265adb0b45826096d02941a1fc6bd325a.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditional comments/GuidelinesMarkAO
04.3Only (totally internally) reflected ray seen at 2nd reflecting boundary Reflected ray parallel to first refracted ray (by eye)vFor MP2:3AO2
acceptablerange forray
isthelargestangleof incidence forwntcn allof thelightleavesthroughthe
\n\n", - "page_idx": 119 - }, - { - "type": "table", - "img_path": "images/eb1c0c6439c29b068b6eaabbd9df21f4eb3b2b3a7c9883f2bb8bdf78fecd191c.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
04.4Angle of incidence at 2nd reflecting boundary = 41.5° √MP1 is an identification of angle at 2nd reflecting boundary4AO1
Angle of reflection at 1st reflecting boundary = 48.5° MP2 is (90°- their angle at 2nd reflecting boundary)
Angle of refraction at entry = (90° - 45° - 41.5°) = 3.5° MP3 is (45° - their angle at 2nd reflecting boundary)
Use of n = 1.5 and Snell's law to give 5.3° to at least 2 sf vAccept answer that rounds to 5.30
The identification of their angles can be inferred from their working or diagram. Simply writing 90° - 41.5° = 48.5° does not get a mark on its own.
\n\n", - "page_idx": 120 - }, - { - "type": "table", - "img_path": "images/0fc5d650d9231f8340c2cc739a4ff09f17e43942249c59faa5925bec273f3514.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
04.5Using 60° prism (Fig 9) does not work because: light would not leave the prism at the original angle v · idea that light will escape from second reflection v A smaller n (Fig 10) does not work because: ·larger critical angle v which would reduce the value of θ√Suggestion that the design would work limits the mark to Max 1 for that design.4AO3
AlternativeforMP2
Light would no longer be totally internally reflected at second reflection OR
angle of incidence at second reflection is now less than the critical angle
14
\n\n", - "page_idx": 121 - }, - { - "type": "table", - "img_path": "images/d1edca35517d08df20cb2242d138d7406e55681993e8dcbdbd673c28869f7b91.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
05.1Evidence of appropriate use of Figure 11 e.g. 105 × 106 ÷7.5 × 10-4Some evidence that Figure 11 is used: calculationbased on a point on linebetween1AO1
75 MPa and 125 MPa OR calculation from point on straight line
extended
OR Use of triangle from more than half of the
linear section.
leading to an answer in the range 1.38 to 1.42 x 10l1 Pa
Allow 2 sf answer 1.4 x 10ll (Pa).
\n\n", - "page_idx": 122 - }, - { - "type": "table", - "img_path": "images/94f41ab6880e4ec606cdb00f81ad78569db03647b17fe0fb419eb733862ed667.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditional comments/GuidelinesMarkAO
05.2Idea that wire undergoes only (very) small (increase in) strain beyond the linear section before fracture vReject idea that there is no increase in strain. Condone 'extension' or '(plastic) deformation' for 'strain'. Condone 'shortly after' for “beyond”1AO1 x 1
\n\n", - "page_idx": 122 - }, - { - "type": "table", - "img_path": "images/5291319c9aa668f9d5157b04ff252b73daaa5a76817cde7d58fa120db83b9a35.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditional comments/GuidelinesMarkAO
05.3Evidence of determination of total load or load on one wireTotal load = (4.4 + 16.0) × 9.8(1) = 200(.1) N Allow 'g' for 9.8(1)3AO1x1 AO2x 2
(halves load) Use of E =(their F)x L A×△LExpect to see F =100 N and A = 5.03 x 10-7 m2. Condone use of d in calculation of cross-sectional area A in MP2. Or separate calculations using o = F÷A, E = o÷strain, strain = △L÷L CondonePOT error in MP2.
\n\n", - "page_idx": 123 - }, - { - "type": "table", - "img_path": "images/10b783dde63ecc34a873d5c620e5c98444adb0bcbdb086a96bfa6e611dff2a7a.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditional comments/GuidelinesMarkAO
05.4Evidence of extension/strain in each wire is the same 1v Substitutes data leading to Fa = 1.33 Fs 2V Calculates Fs or Fa 3v Evidence of an attempt at a moment equation 4vL ={FL÷AE} steel ={FL÷AE} aluminium {F÷d²E} steel ={F÷d²E} aluminium 1v F F 0.8² × 210 1.62 × 70 Fa = 1.33 Fs OR Fs = 0.752 Fa 2v 1.33 Fs + Fs = 200 N Fs = 86 N, Fa = 114 N 3v Attempt to takemoments about A or B or other suitable point, expect to see 16.0gx = 228 - 4.4g ~4 Note that an answer of 1.14 m comes from not taking into account the weight of the5AO3x 5
TotalDistance = 1.18 m V5beam Award max 4 for this approach. ECF forMP2 andMP3inMP410
\n\n", - "page_idx": 124 - }, - { - "type": "table", - "img_path": "images/70afa8dbed080b21609b2c4745737ac382034279ea95a75b1b272d809f7ae91c.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditional comments/GuidelinesMarkAO
06.1Equates resultant force to ma and shows a proportional to y, as Apmg are all constantvIn MP1: Condone upthrust/buoyancy force for2AO1x 1 AO2x 1
resultant force
F = ma = -Apyg
Apyg =D
m Condone missing minus signs in MP1.
oscillation v(hence SHM)In MP2:
Minus sign included and explained: (restoring) force/acceleration directed to centre of
Minus because force/acceleration is in
opposite direction to y OWTTE
\n\n", - "page_idx": 125 - }, - { - "type": "table", - "img_path": "images/5c6187fefe7e4eebe84b832c33069bd27cdac86291768f32c85d4d31ffb6630a.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
06.2g (T=2π/∞)S0∞= (= 10.74 rad s-1AlternativeforMP1: calculates time (0.58(5) s) AND then uses ① from this time2AO1 x 1 AO2×1
(amax = - c²ymax 1
0.58 (m s-2) from some correct workingMP2forcorrectcalculationofacceleration.
\n\n", - "page_idx": 125 - }, - { - "type": "table", - "img_path": "images/ac7b554d8ed73367994abb552352a73d0017c5b3f34a69133c24f3fe96130e0c.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
06.3Idea that (at resonance) frequency of forced vibrations equals natural/resonant frequency 1vAcceptfullylabelledgraphofamplitudevs driving frequency with resonance frequency clearly labelled1V and an amplitude peak. 2v2AO1×2
Idea that amplitude (of vibrations/oscillations) is at a maximum2vCondone 'wave frequency' for 'driving frequency' Ignorereferencesto phase
\n\n", - "page_idx": 126 - }, - { - "type": "table", - "img_path": "images/f79e89205bf4b010f43ecee9d8710a2fb5472a81aa95475b8bc8d5c72132746f.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswersAdditional comments/GuidelinesMarkAO
06.4stopped: wave frequency (= )= 0.12 Hz 1v1Vis for calculation of (driving) frequency when stopped. Condone reference to \"frequency of waves'.3AO3x 3
moving: when ship continues at 8 m s-1, forcing frequency will be further from resonant frequency 2vevidence can come from the substitution. Reject simple “0.12 (Hz)\" 2V is for a relevant comment about the moving situation OR calculation of forcing frequency with the ship moving (giving 0.05 Hz) For 2V accept incorrect calculation from adding speeds provided comment that this frequency is further from resonant frequency. 3V is for statement of why moving is the
eg for stopped option wave/forcing frequency very close to natural frequency, (so amplitude of oscillations will be high)Allow answer for 3v that mentions that damping will be highly likely, so amplitudes may not reach high enough values to prevent
OR for moving option resonance does not occur 3voperation
\n\n", - "page_idx": 127 - }, - { - "type": "table", - "img_path": "images/7d292096dc2b9770c5ab39a7ea14716702ba3560a704e80245a258c41c252850.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionKeyAnswer
07A10 μm s-1 100 s
08B4 m s-1
09B8 7
10DThey decay into electrons.
11Bdown quark up quark β
12C2.8 × 10 m s-1
13Adecreasing the kinetic energy of the electrons
14C1.2 0.17
15BThey have a constant phase relationship.
16A0.22s 0.662
17Cdecreases increases
18C45 m
19Dforce mass x displacement
20Cdisplacement and momentum
21BA current in it causes no heating effect.
22BB
\n\n", - "page_idx": 128 - }, - { - "type": "table", - "img_path": "images/cf5467f872c2bddddacfcd544a1f0381470d9024b7ca5d9c34baa062b2f25012.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
23Amg k
24CThe acceleration is unchanged.
25C7.50 m s-1
26D0 p 一 K
27DX
28A19
\n\n", - "page_idx": 129 - }, - { - "type": "table", - "img_path": "images/3bbf541743e7972a6731ac1d17bba4846c037a92f254a4fa4a876f9420ce1769.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
29B36
30D2y— rg
31Bthe kinetic energy of the mass
\n\n", - "page_idx": 130 - } -] \ No newline at end of file diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/7408_1_June_2019_1739552566_layout.pdf b/pdf_output/7408_1_June_2019_1739552566/auto/7408_1_June_2019_1739552566_layout.pdf deleted file mode 100644 index 8331602e6ba7aeee2e5e32e7be068677441c7f89..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/7408_1_June_2019_1739552566_layout.pdf +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2cade3e3dc87e96424bfd1ef569734a6e5f2370e0eac207011da3b98f8d4263d -size 2361569 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/7408_1_June_2019_1739552566_middle.json b/pdf_output/7408_1_June_2019_1739552566/auto/7408_1_June_2019_1739552566_middle.json deleted file mode 100644 index 3940ddaab561c94a66dd18d69e0c6e3728c95c7d..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/7408_1_June_2019_1739552566_middle.json +++ /dev/null @@ -1,149174 +0,0 @@ -{ - "pdf_info": [ - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 56, - 115, - 235, - 129 - ], - "lines": [ - { - "bbox": [ - 56, - 115, - 234, - 128 - ], - "spans": [ - { - "bbox": [ - 56, - 115, - 234, - 128 - ], - "score": 1.0, - "content": "Please write clearly in block capitals.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 55, - 139, - 282, - 171 - ], - "lines": [ - { - "bbox": [ - 56, - 153, - 131, - 164 - ], - "spans": [ - { - "bbox": [ - 56, - 153, - 131, - 164 - ], - "score": 1.0, - "content": "Centre number", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 310, - 152, - 404, - 165 - ], - "lines": [ - { - "bbox": [ - 312, - 154, - 403, - 164 - ], - "spans": [ - { - "bbox": [ - 312, - 154, - 403, - 164 - ], - "score": 1.0, - "content": "Candidate number", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "table", - "bbox": [ - 414, - 140, - 528, - 170 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 414, - 140, - 528, - 170 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 414, - 140, - 528, - 170 - ], - "spans": [ - { - "bbox": [ - 414, - 140, - 528, - 170 - ], - "score": 0.176, - "type": "table", - "image_path": "46e70cec9112412d6ad0f31ff2a5c52902cb416b0945f7320186304d360fe9fc.jpg" - } - ] - } - ], - "index": 3.5, - "virtual_lines": [ - { - "bbox": [ - 414, - 140, - 528, - 155.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 414, - 155.0, - 528, - 170.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3.5 - }, - { - "type": "text", - "bbox": [ - 49, - 190, - 530, - 270 - ], - "lines": [ - { - "bbox": [ - 54, - 191, - 103, - 206 - ], - "spans": [ - { - "bbox": [ - 54, - 191, - 103, - 206 - ], - "score": 1.0, - "content": "Surname ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 55, - 218, - 120, - 231 - ], - "spans": [ - { - "bbox": [ - 55, - 218, - 120, - 231 - ], - "score": 1.0, - "content": "Forename(s)", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 55, - 243, - 157, - 258 - ], - "spans": [ - { - "bbox": [ - 55, - 243, - 157, - 258 - ], - "score": 1.0, - "content": "Candidate signature ", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6 - }, - { - "type": "title", - "bbox": [ - 39, - 286, - 148, - 348 - ], - "lines": [ - { - "bbox": [ - 40, - 287, - 126, - 311 - ], - "spans": [ - { - "bbox": [ - 40, - 287, - 126, - 311 - ], - "score": 1.0, - "content": "A-level", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 42, - 323, - 145, - 345 - ], - "spans": [ - { - "bbox": [ - 42, - 323, - 145, - 345 - ], - "score": 1.0, - "content": "PHYSICS", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8.5 - }, - { - "type": "text", - "bbox": [ - 40, - 358, - 95, - 376 - ], - "lines": [ - { - "bbox": [ - 39, - 358, - 96, - 376 - ], - "spans": [ - { - "bbox": [ - 39, - 358, - 96, - 376 - ], - "score": 1.0, - "content": "Paper 1", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "title", - "bbox": [ - 39, - 412, - 180, - 430 - ], - "lines": [ - { - "bbox": [ - 38, - 414, - 179, - 428 - ], - "spans": [ - { - "bbox": [ - 38, - 414, - 179, - 428 - ], - "score": 1.0, - "content": "Monday 20 May 2019", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "title", - "bbox": [ - 253, - 413, - 319, - 429 - ], - "lines": [ - { - "bbox": [ - 254, - 413, - 319, - 430 - ], - "spans": [ - { - "bbox": [ - 254, - 413, - 319, - 430 - ], - "score": 1.0, - "content": "Afternoon", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "title", - "bbox": [ - 39, - 443, - 92, - 456 - ], - "lines": [ - { - "bbox": [ - 39, - 443, - 92, - 456 - ], - "spans": [ - { - "bbox": [ - 39, - 443, - 92, - 456 - ], - "score": 1.0, - "content": "Materials", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 38, - 457, - 185, - 470 - ], - "lines": [ - { - "bbox": [ - 39, - 457, - 186, - 470 - ], - "spans": [ - { - "bbox": [ - 39, - 457, - 186, - 470 - ], - "score": 1.0, - "content": "For this paper you must have:", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "text", - "bbox": [ - 38, - 471, - 198, - 510 - ], - "lines": [ - { - "bbox": [ - 39, - 471, - 145, - 482 - ], - "spans": [ - { - "bbox": [ - 39, - 471, - 145, - 482 - ], - "score": 1.0, - "content": "• a pencil and a ruler", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 39, - 485, - 153, - 496 - ], - "spans": [ - { - "bbox": [ - 39, - 485, - 153, - 496 - ], - "score": 1.0, - "content": "• a scientific calculator", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 43, - 498, - 197, - 509 - ], - "spans": [ - { - "bbox": [ - 43, - 498, - 197, - 509 - ], - "score": 1.0, - "content": " a Data and Formulae Booklet.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 17 - }, - { - "type": "title", - "bbox": [ - 38, - 524, - 108, - 536 - ], - "lines": [ - { - "bbox": [ - 38, - 524, - 108, - 536 - ], - "spans": [ - { - "bbox": [ - 38, - 524, - 108, - 536 - ], - "score": 1.0, - "content": "Instructions", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 19 - }, - { - "type": "table", - "bbox": [ - 443, - 446, - 545, - 647 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 392, - 412, - 536, - 429 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 393, - 414, - 535, - 428 - ], - "spans": [ - { - "bbox": [ - 393, - 414, - 535, - 428 - ], - "score": 1.0, - "content": "Time allowed: 2 hours", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "table_body", - "bbox": [ - 443, - 446, - 545, - 647 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 443, - 446, - 545, - 647 - ], - "spans": [ - { - "bbox": [ - 443, - 446, - 545, - 647 - ], - "score": 0.968, - "html": "
For Examiner's Use
QuestionMark
1
2
3
4
5
6
7
8-32
TOTAL
", - "type": "table", - "image_path": "f003ab9632052c94fd7041d219b360221ca0a674f6cb630ad5371c5e4e663900.jpg" - } - ] - } - ], - "index": 33, - "virtual_lines": [ - { - "bbox": [ - 443, - 446, - 545, - 647 - ], - "spans": [], - "index": 33 - } - ] - } - ], - "index": 23.0 - }, - { - "type": "text", - "bbox": [ - 38, - 538, - 425, - 670 - ], - "lines": [ - { - "bbox": [ - 39, - 537, - 230, - 551 - ], - "spans": [ - { - "bbox": [ - 39, - 537, - 230, - 551 - ], - "score": 1.0, - "content": "• Use black ink or black ball-point pen.", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 40, - 551, - 239, - 564 - ], - "spans": [ - { - "bbox": [ - 40, - 551, - 239, - 564 - ], - "score": 1.0, - "content": "• Fill in the boxes at the top of this page.", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 41, - 564, - 157, - 578 - ], - "spans": [ - { - "bbox": [ - 41, - 564, - 157, - 578 - ], - "score": 1.0, - "content": "• Answer all questions.", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 43, - 578, - 386, - 591 - ], - "spans": [ - { - "bbox": [ - 43, - 578, - 386, - 591 - ], - "score": 1.0, - "content": " You must answer the questions in the spaces provided. Do not write", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 49, - 591, - 310, - 604 - ], - "spans": [ - { - "bbox": [ - 49, - 591, - 310, - 604 - ], - "score": 1.0, - "content": "outside the box around each page or on blank pages.", - "type": "text" - } - ], - "index": 24 - }, - { - "bbox": [ - 48, - 605, - 424, - 617 - ], - "spans": [ - { - "bbox": [ - 48, - 605, - 424, - 617 - ], - "score": 1.0, - "content": "If you need extra space for your answer(s), use the lined pages at the end of", - "type": "text" - } - ], - "index": 25 - }, - { - "bbox": [ - 49, - 617, - 350, - 631 - ], - "spans": [ - { - "bbox": [ - 49, - 617, - 350, - 631 - ], - "score": 1.0, - "content": "this book. Write the question number against your answer(s).", - "type": "text" - } - ], - "index": 26 - }, - { - "bbox": [ - 42, - 630, - 403, - 644 - ], - "spans": [ - { - "bbox": [ - 42, - 630, - 403, - 644 - ], - "score": 1.0, - "content": "• Do all rough work in this book. Cross through any work you do not want", - "type": "text" - } - ], - "index": 27 - }, - { - "bbox": [ - 50, - 644, - 119, - 656 - ], - "spans": [ - { - "bbox": [ - 50, - 644, - 119, - 656 - ], - "score": 1.0, - "content": "to be marked.", - "type": "text" - } - ], - "index": 28 - }, - { - "bbox": [ - 40, - 656, - 161, - 670 - ], - "spans": [ - { - "bbox": [ - 40, - 656, - 161, - 670 - ], - "score": 1.0, - "content": "• Show all your working.", - "type": "text" - } - ], - "index": 29 - } - ], - "index": 24.5 - }, - { - "type": "title", - "bbox": [ - 38, - 683, - 106, - 696 - ], - "lines": [ - { - "bbox": [ - 39, - 683, - 106, - 695 - ], - "spans": [ - { - "bbox": [ - 39, - 683, - 106, - 695 - ], - "score": 1.0, - "content": "Information", - "type": "text" - } - ], - "index": 30 - } - ], - "index": 30 - }, - { - "type": "text", - "bbox": [ - 38, - 697, - 370, - 751 - ], - "lines": [ - { - "bbox": [ - 41, - 697, - 282, - 710 - ], - "spans": [ - { - "bbox": [ - 41, - 697, - 282, - 710 - ], - "score": 1.0, - "content": "• The marks for questions are shown in brackets.", - "type": "text" - } - ], - "index": 31 - }, - { - "bbox": [ - 42, - 710, - 246, - 725 - ], - "spans": [ - { - "bbox": [ - 42, - 710, - 246, - 725 - ], - "score": 1.0, - "content": "• The maximum mark for this paper is 85.", - "type": "text" - } - ], - "index": 32 - }, - { - "bbox": [ - 41, - 724, - 369, - 737 - ], - "spans": [ - { - "bbox": [ - 41, - 724, - 369, - 737 - ], - "score": 1.0, - "content": "• You are expected to use a scientific calculator where appropriate.", - "type": "text" - } - ], - "index": 34 - }, - { - "bbox": [ - 40, - 739, - 338, - 750 - ], - "spans": [ - { - "bbox": [ - 40, - 739, - 338, - 750 - ], - "score": 1.0, - "content": "• A Data and Formulae Booklet is provided as a loose insert.", - "type": "text" - } - ], - "index": 35 - } - ], - "index": 33.0 - } - ], - "layout_bboxes": [], - "page_idx": 0, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 414, - 140, - 528, - 170 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 414, - 140, - 528, - 170 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 414, - 140, - 528, - 170 - ], - "spans": [ - { - "bbox": [ - 414, - 140, - 528, - 170 - ], - "score": 0.176, - "type": "table", - "image_path": "46e70cec9112412d6ad0f31ff2a5c52902cb416b0945f7320186304d360fe9fc.jpg" - } - ] - } - ], - "index": 3.5, - "virtual_lines": [ - { - "bbox": [ - 414, - 140, - 528, - 155.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 414, - 155.0, - 528, - 170.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3.5 - }, - { - "type": "table", - "bbox": [ - 443, - 446, - 545, - 647 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 392, - 412, - 536, - 429 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 393, - 414, - 535, - 428 - ], - "spans": [ - { - "bbox": [ - 393, - 414, - 535, - 428 - ], - "score": 1.0, - "content": "Time allowed: 2 hours", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "table_body", - "bbox": [ - 443, - 446, - 545, - 647 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 443, - 446, - 545, - 647 - ], - "spans": [ - { - "bbox": [ - 443, - 446, - 545, - 647 - ], - "score": 0.968, - "html": "
For Examiner's Use
QuestionMark
1
2
3
4
5
6
7
8-32
TOTAL
", - "type": "table", - "image_path": "f003ab9632052c94fd7041d219b360221ca0a674f6cb630ad5371c5e4e663900.jpg" - } - ] - } - ], - "index": 33, - "virtual_lines": [ - { - "bbox": [ - 443, - 446, - 545, - 647 - ], - "spans": [], - "index": 33 - } - ] - } - ], - "index": 23.0 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 316, - 818, - 363, - 827 - ], - "lines": [ - { - "bbox": [ - 316, - 819, - 363, - 826 - ], - "spans": [ - { - "bbox": [ - 316, - 819, - 363, - 826 - ], - "score": 1.0, - "content": "IB/M/Jun19/E7", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 40, - 787, - 234, - 825 - ], - "lines": [ - { - "bbox": [ - 57, - 814, - 213, - 825 - ], - "spans": [ - { - "bbox": [ - 57, - 814, - 213, - 825 - ], - "score": 0.9191980957984924, - "content": "j0N197408101", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 482, - 806, - 545, - 827 - ], - "lines": [ - { - "bbox": [ - 481, - 807, - 545, - 826 - ], - "spans": [ - { - "bbox": [ - 481, - 807, - 545, - 826 - ], - "score": 1.0, - "content": "7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 38, - 43, - 170, - 92 - ], - "lines": [ - { - "bbox": [ - 38, - 46, - 167, - 90 - ], - "spans": [ - { - "bbox": [ - 38, - 53, - 136, - 90 - ], - "score": 0.974522054195404, - "content": "AQA", - "type": "text" - }, - { - "bbox": [ - 140, - 46, - 167, - 78 - ], - "score": 0.5622730851173401, - "content": "-", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 56, - 115, - 235, - 129 - ], - "lines": [ - { - "bbox": [ - 56, - 115, - 234, - 128 - ], - "spans": [ - { - "bbox": [ - 56, - 115, - 234, - 128 - ], - "score": 1.0, - "content": "Please write clearly in block capitals.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 56, - 115, - 234, - 128 - ] - }, - { - "type": "text", - "bbox": [ - 55, - 139, - 282, - 171 - ], - "lines": [ - { - "bbox": [ - 56, - 153, - 131, - 164 - ], - "spans": [ - { - "bbox": [ - 56, - 153, - 131, - 164 - ], - "score": 1.0, - "content": "Centre number", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 56, - 153, - 131, - 164 - ] - }, - { - "type": "text", - "bbox": [ - 310, - 152, - 404, - 165 - ], - "lines": [ - { - "bbox": [ - 312, - 154, - 403, - 164 - ], - "spans": [ - { - "bbox": [ - 312, - 154, - 403, - 164 - ], - "score": 1.0, - "content": "Candidate number", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 312, - 154, - 403, - 164 - ] - }, - { - "type": "table", - "bbox": [ - 414, - 140, - 528, - 170 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 414, - 140, - 528, - 170 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 414, - 140, - 528, - 170 - ], - "spans": [ - { - "bbox": [ - 414, - 140, - 528, - 170 - ], - "score": 0.176, - "type": "table", - "image_path": "46e70cec9112412d6ad0f31ff2a5c52902cb416b0945f7320186304d360fe9fc.jpg" - } - ] - } - ], - "index": 3.5, - "virtual_lines": [ - { - "bbox": [ - 414, - 140, - 528, - 155.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 414, - 155.0, - 528, - 170.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3.5, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 49, - 190, - 530, - 270 - ], - "lines": [ - { - "bbox": [ - 54, - 191, - 103, - 206 - ], - "spans": [ - { - "bbox": [ - 54, - 191, - 103, - 206 - ], - "score": 1.0, - "content": "Surname ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 55, - 218, - 120, - 231 - ], - "spans": [ - { - "bbox": [ - 55, - 218, - 120, - 231 - ], - "score": 1.0, - "content": "Forename(s)", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 55, - 243, - 157, - 258 - ], - "spans": [ - { - "bbox": [ - 55, - 243, - 157, - 258 - ], - "score": 1.0, - "content": "Candidate signature ", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 54, - 191, - 157, - 258 - ] - }, - { - "type": "title", - "bbox": [ - 39, - 286, - 148, - 348 - ], - "lines": [ - { - "bbox": [ - 40, - 287, - 126, - 311 - ], - "spans": [ - { - "bbox": [ - 40, - 287, - 126, - 311 - ], - "score": 1.0, - "content": "A-level", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 42, - 323, - 145, - 345 - ], - "spans": [ - { - "bbox": [ - 42, - 323, - 145, - 345 - ], - "score": 1.0, - "content": "PHYSICS", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8.5, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 40, - 358, - 95, - 376 - ], - "lines": [ - { - "bbox": [ - 39, - 358, - 96, - 376 - ], - "spans": [ - { - "bbox": [ - 39, - 358, - 96, - 376 - ], - "score": 1.0, - "content": "Paper 1", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 39, - 358, - 96, - 376 - ] - }, - { - "type": "title", - "bbox": [ - 39, - 412, - 180, - 430 - ], - "lines": [ - { - "bbox": [ - 38, - 414, - 179, - 428 - ], - "spans": [ - { - "bbox": [ - 38, - 414, - 179, - 428 - ], - "score": 1.0, - "content": "Monday 20 May 2019", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 253, - 413, - 319, - 429 - ], - "lines": [ - { - "bbox": [ - 254, - 413, - 319, - 430 - ], - "spans": [ - { - "bbox": [ - 254, - 413, - 319, - 430 - ], - "score": 1.0, - "content": "Afternoon", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 39, - 443, - 92, - 456 - ], - "lines": [ - { - "bbox": [ - 39, - 443, - 92, - 456 - ], - "spans": [ - { - "bbox": [ - 39, - 443, - 92, - 456 - ], - "score": 1.0, - "content": "Materials", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 38, - 457, - 185, - 470 - ], - "lines": [ - { - "bbox": [ - 39, - 457, - 186, - 470 - ], - "spans": [ - { - "bbox": [ - 39, - 457, - 186, - 470 - ], - "score": 1.0, - "content": "For this paper you must have:", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 39, - 457, - 186, - 470 - ] - }, - { - "type": "text", - "bbox": [ - 38, - 471, - 198, - 510 - ], - "lines": [ - { - "bbox": [ - 39, - 471, - 145, - 482 - ], - "spans": [ - { - "bbox": [ - 39, - 471, - 145, - 482 - ], - "score": 1.0, - "content": "• a pencil and a ruler", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 39, - 485, - 153, - 496 - ], - "spans": [ - { - "bbox": [ - 39, - 485, - 153, - 496 - ], - "score": 1.0, - "content": "• a scientific calculator", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 43, - 498, - 197, - 509 - ], - "spans": [ - { - "bbox": [ - 43, - 498, - 197, - 509 - ], - "score": 1.0, - "content": " a Data and Formulae Booklet.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 17, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 39, - 471, - 197, - 509 - ] - }, - { - "type": "title", - "bbox": [ - 38, - 524, - 108, - 536 - ], - "lines": [ - { - "bbox": [ - 38, - 524, - 108, - 536 - ], - "spans": [ - { - "bbox": [ - 38, - 524, - 108, - 536 - ], - "score": 1.0, - "content": "Instructions", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 19, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 443, - 446, - 545, - 647 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 392, - 412, - 536, - 429 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 393, - 414, - 535, - 428 - ], - "spans": [ - { - "bbox": [ - 393, - 414, - 535, - 428 - ], - "score": 1.0, - "content": "Time allowed: 2 hours", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "table_body", - "bbox": [ - 443, - 446, - 545, - 647 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 443, - 446, - 545, - 647 - ], - "spans": [ - { - "bbox": [ - 443, - 446, - 545, - 647 - ], - "score": 0.968, - "html": "
For Examiner's Use
QuestionMark
1
2
3
4
5
6
7
8-32
TOTAL
", - "type": "table", - "image_path": "f003ab9632052c94fd7041d219b360221ca0a674f6cb630ad5371c5e4e663900.jpg" - } - ] - } - ], - "index": 33, - "virtual_lines": [ - { - "bbox": [ - 443, - 446, - 545, - 647 - ], - "spans": [], - "index": 33 - } - ] - } - ], - "index": 23.0, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 38, - 538, - 425, - 670 - ], - "lines": [ - { - "bbox": [ - 39, - 537, - 230, - 551 - ], - "spans": [ - { - "bbox": [ - 39, - 537, - 230, - 551 - ], - "score": 1.0, - "content": "• Use black ink or black ball-point pen.", - "type": "text" - } - ], - "index": 20, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 40, - 551, - 239, - 564 - ], - "spans": [ - { - "bbox": [ - 40, - 551, - 239, - 564 - ], - "score": 1.0, - "content": "• Fill in the boxes at the top of this page.", - "type": "text" - } - ], - "index": 21, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 41, - 564, - 157, - 578 - ], - "spans": [ - { - "bbox": [ - 41, - 564, - 157, - 578 - ], - "score": 1.0, - "content": "• Answer all questions.", - "type": "text" - } - ], - "index": 22, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 43, - 578, - 386, - 591 - ], - "spans": [ - { - "bbox": [ - 43, - 578, - 386, - 591 - ], - "score": 1.0, - "content": " You must answer the questions in the spaces provided. Do not write", - "type": "text" - } - ], - "index": 23, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 49, - 591, - 310, - 604 - ], - "spans": [ - { - "bbox": [ - 49, - 591, - 310, - 604 - ], - "score": 1.0, - "content": "outside the box around each page or on blank pages.", - "type": "text" - } - ], - "index": 24, - "is_list_end_line": true - }, - { - "bbox": [ - 48, - 605, - 424, - 617 - ], - "spans": [ - { - "bbox": [ - 48, - 605, - 424, - 617 - ], - "score": 1.0, - "content": "If you need extra space for your answer(s), use the lined pages at the end of", - "type": "text" - } - ], - "index": 25 - }, - { - "bbox": [ - 49, - 617, - 350, - 631 - ], - "spans": [ - { - "bbox": [ - 49, - 617, - 350, - 631 - ], - "score": 1.0, - "content": "this book. Write the question number against your answer(s).", - "type": "text" - } - ], - "index": 26, - "is_list_end_line": true - }, - { - "bbox": [ - 42, - 630, - 403, - 644 - ], - "spans": [ - { - "bbox": [ - 42, - 630, - 403, - 644 - ], - "score": 1.0, - "content": "• Do all rough work in this book. Cross through any work you do not want", - "type": "text" - } - ], - "index": 27, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 50, - 644, - 119, - 656 - ], - "spans": [ - { - "bbox": [ - 50, - 644, - 119, - 656 - ], - "score": 1.0, - "content": "to be marked.", - "type": "text" - } - ], - "index": 28, - "is_list_end_line": true - }, - { - "bbox": [ - 40, - 656, - 161, - 670 - ], - "spans": [ - { - "bbox": [ - 40, - 656, - 161, - 670 - ], - "score": 1.0, - "content": "• Show all your working.", - "type": "text" - } - ], - "index": 29, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 24.5, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 39, - 537, - 424, - 670 - ] - }, - { - "type": "title", - "bbox": [ - 38, - 683, - 106, - 696 - ], - "lines": [ - { - "bbox": [ - 39, - 683, - 106, - 695 - ], - "spans": [ - { - "bbox": [ - 39, - 683, - 106, - 695 - ], - "score": 1.0, - "content": "Information", - "type": "text" - } - ], - "index": 30 - } - ], - "index": 30, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 38, - 697, - 370, - 751 - ], - "lines": [ - { - "bbox": [ - 41, - 697, - 282, - 710 - ], - "spans": [ - { - "bbox": [ - 41, - 697, - 282, - 710 - ], - "score": 1.0, - "content": "• The marks for questions are shown in brackets.", - "type": "text" - } - ], - "index": 31, - "is_list_end_line": true - }, - { - "bbox": [ - 42, - 710, - 246, - 725 - ], - "spans": [ - { - "bbox": [ - 42, - 710, - 246, - 725 - ], - "score": 1.0, - "content": "• The maximum mark for this paper is 85.", - "type": "text" - } - ], - "index": 32, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 41, - 724, - 369, - 737 - ], - "spans": [ - { - "bbox": [ - 41, - 724, - 369, - 737 - ], - "score": 1.0, - "content": "• You are expected to use a scientific calculator where appropriate.", - "type": "text" - } - ], - "index": 34, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 40, - 739, - 338, - 750 - ], - "spans": [ - { - "bbox": [ - 40, - 739, - 338, - 750 - ], - "score": 1.0, - "content": "• A Data and Formulae Booklet is provided as a loose insert.", - "type": "text" - } - ], - "index": 35, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 33.0, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 697, - 369, - 750 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 262, - 64, - 316, - 78 - ], - "lines": [ - { - "bbox": [ - 263, - 65, - 316, - 78 - ], - "spans": [ - { - "bbox": [ - 263, - 65, - 316, - 78 - ], - "score": 1.0, - "content": "Section A", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 200, - 90, - 377, - 105 - ], - "lines": [ - { - "bbox": [ - 201, - 91, - 377, - 104 - ], - "spans": [ - { - "bbox": [ - 201, - 91, - 377, - 104 - ], - "score": 1.0, - "content": "Answer all questions in this section.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 113, - 127, - 319, - 151 - ], - "lines": [ - { - "bbox": [ - 114, - 127, - 319, - 152 - ], - "spans": [ - { - "bbox": [ - 114, - 133, - 245, - 145 - ], - "score": 1.0, - "content": "Two isotopes of iodine are", - "type": "text" - }, - { - "bbox": [ - 246, - 127, - 319, - 152 - ], - "score": 0.5, - "content": "_{53}^{125}{\\mathrm{Iand}}_{53}^{131}{\\mathrm{I}}.", - "type": "inline_equation", - "height": 25, - "width": 73 - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 112, - 161, - 509, - 187 - ], - "lines": [ - { - "bbox": [ - 115, - 163, - 508, - 175 - ], - "spans": [ - { - "bbox": [ - 115, - 163, - 508, - 175 - ], - "score": 1.0, - "content": "Determine, for these two isotopes, the difference between the constituents of the", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 113, - 175, - 148, - 188 - ], - "spans": [ - { - "bbox": [ - 113, - 175, - 148, - 188 - ], - "score": 1.0, - "content": "nuclei.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5 - }, - { - "type": "text", - "bbox": [ - 112, - 189, - 537, - 254 - ], - "lines": [ - { - "bbox": [ - 112, - 189, - 537, - 210.66666666666666 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 112, - 210.66666666666666, - 537, - 232.33333333333331 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 112, - 232.33333333333331, - 537, - 253.99999999999997 - ], - "spans": [], - "index": 7 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 112, - 276, - 439, - 327 - ], - "lines": [ - { - "bbox": [ - 110, - 276, - 441, - 300 - ], - "spans": [ - { - "bbox": [ - 110, - 276, - 441, - 300 - ], - "score": 1.0, - "content": "A 131 I nuclide undergoes beta (β–) decay to form a xenon nuclide. ", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 115, - 313, - 345, - 324 - ], - "spans": [ - { - "bbox": [ - 115, - 313, - 345, - 324 - ], - "score": 1.0, - "content": "State the nucleon number of the xenon nuclide.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8.5 - }, - { - "type": "text", - "bbox": [ - 490, - 325, - 535, - 339 - ], - "lines": [ - { - "bbox": [ - 490, - 323, - 536, - 340 - ], - "spans": [ - { - "bbox": [ - 490, - 323, - 536, - 340 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 113, - 389, - 454, - 413 - ], - "lines": [ - { - "bbox": [ - 112, - 388, - 452, - 414 - ], - "spans": [ - { - "bbox": [ - 112, - 388, - 146, - 414 - ], - "score": 0.55, - "content": "\\mathsf{A}_{53}^{125}\\mathrm{~I~}", - "type": "inline_equation", - "height": 26, - "width": 34 - }, - { - "bbox": [ - 147, - 391, - 452, - 409 - ], - "score": 1.0, - "content": " nuclide decays by electron capture to form a tellurium nuclide.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 111, - 423, - 535, - 450 - ], - "lines": [ - { - "bbox": [ - 115, - 425, - 534, - 436 - ], - "spans": [ - { - "bbox": [ - 115, - 425, - 534, - 436 - ], - "score": 1.0, - "content": "State two differences between the constituents of the iodine nucleus and the tellurium", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 114, - 438, - 223, - 450 - ], - "spans": [ - { - "bbox": [ - 114, - 438, - 223, - 450 - ], - "score": 1.0, - "content": "nucleus it decays into.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 12.5 - }, - { - "type": "text", - "bbox": [ - 112, - 452, - 536, - 568 - ], - "lines": [ - { - "bbox": [ - 484, - 448, - 536, - 464 - ], - "spans": [ - { - "bbox": [ - 484, - 448, - 536, - 464 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 484, - 449, - 535, - 463 - ], - "lines": [ - { - "bbox": [ - 484, - 449, - 535, - 463 - ], - "spans": [], - "index": 15 - } - ], - "index": 15 - } - ], - "layout_bboxes": [], - "page_idx": 1, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 544, - 52, - 583, - 76 - ], - "lines": [ - { - "bbox": [ - 545, - 52, - 583, - 61 - ], - "spans": [ - { - "bbox": [ - 545, - 52, - 583, - 61 - ], - "score": 1.0, - "content": "Do not write", - "type": "text" - } - ] - }, - { - "bbox": [ - 546, - 61, - 583, - 69 - ], - "spans": [ - { - "bbox": [ - 546, - 61, - 583, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 556, - 68, - 572, - 77 - ], - "spans": [ - { - "bbox": [ - 556, - 68, - 572, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 277, - 105, - 295 - ], - "lines": [ - { - "bbox": [ - 48, - 278, - 103, - 294 - ], - "spans": [ - { - "bbox": [ - 48, - 278, - 103, - 294 - ], - "score": 1.0, - "content": "0 1 . 2 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 59, - 816, - 80, - 825 - ], - "spans": [ - { - "bbox": [ - 59, - 816, - 80, - 825 - ], - "score": 0.9803237915039062, - "content": "0 2", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 388, - 105, - 407 - ], - "lines": [ - { - "bbox": [ - 48, - 390, - 102, - 405 - ], - "spans": [ - { - "bbox": [ - 48, - 390, - 102, - 405 - ], - "score": 1.0, - "content": "0 1 . 3 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 126, - 105, - 145 - ], - "lines": [ - { - "bbox": [ - 49, - 128, - 102, - 143 - ], - "spans": [ - { - "bbox": [ - 49, - 128, - 102, - 143 - ], - "score": 1.0, - "content": "0 1 . 1 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 569, - 0, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 284, - 28, - 293, - 39 - ], - "lines": [ - { - "bbox": [ - 283, - 27, - 294, - 42 - ], - "spans": [ - { - "bbox": [ - 283, - 27, - 294, - 42 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 490, - 187, - 535, - 201 - ], - "lines": [ - { - "bbox": [ - 490, - 186, - 536, - 202 - ], - "spans": [ - { - "bbox": [ - 490, - 186, - 536, - 202 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 262, - 64, - 316, - 78 - ], - "lines": [ - { - "bbox": [ - 263, - 65, - 316, - 78 - ], - "spans": [ - { - "bbox": [ - 263, - 65, - 316, - 78 - ], - "score": 1.0, - "content": "Section A", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 200, - 90, - 377, - 105 - ], - "lines": [ - { - "bbox": [ - 201, - 91, - 377, - 104 - ], - "spans": [ - { - "bbox": [ - 201, - 91, - 377, - 104 - ], - "score": 1.0, - "content": "Answer all questions in this section.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 201, - 91, - 377, - 104 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 127, - 319, - 151 - ], - "lines": [ - { - "bbox": [ - 114, - 127, - 319, - 152 - ], - "spans": [ - { - "bbox": [ - 114, - 133, - 245, - 145 - ], - "score": 1.0, - "content": "Two isotopes of iodine are", - "type": "text" - }, - { - "bbox": [ - 246, - 127, - 319, - 152 - ], - "score": 0.5, - "content": "_{53}^{125}{\\mathrm{Iand}}_{53}^{131}{\\mathrm{I}}.", - "type": "inline_equation", - "height": 25, - "width": 73 - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 127, - 319, - 152 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 161, - 509, - 187 - ], - "lines": [ - { - "bbox": [ - 115, - 163, - 508, - 175 - ], - "spans": [ - { - "bbox": [ - 115, - 163, - 508, - 175 - ], - "score": 1.0, - "content": "Determine, for these two isotopes, the difference between the constituents of the", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 113, - 175, - 148, - 188 - ], - "spans": [ - { - "bbox": [ - 113, - 175, - 148, - 188 - ], - "score": 1.0, - "content": "nuclei.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 163, - 508, - 188 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 189, - 537, - 254 - ], - "lines": [ - { - "bbox": [ - 112, - 189, - 537, - 210.66666666666666 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 112, - 210.66666666666666, - 537, - 232.33333333333331 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 112, - 232.33333333333331, - 537, - 253.99999999999997 - ], - "spans": [], - "index": 7 - } - ], - "index": 6, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 112, - 189, - 537, - 253.99999999999997 - ] - }, - { - "type": "list", - "bbox": [ - 112, - 276, - 439, - 327 - ], - "lines": [ - { - "bbox": [ - 110, - 276, - 441, - 300 - ], - "spans": [ - { - "bbox": [ - 110, - 276, - 441, - 300 - ], - "score": 1.0, - "content": "A 131 I nuclide undergoes beta (β–) decay to form a xenon nuclide. ", - "type": "text" - } - ], - "index": 8, - "is_list_end_line": true - }, - { - "bbox": [ - 115, - 313, - 345, - 324 - ], - "spans": [ - { - "bbox": [ - 115, - 313, - 345, - 324 - ], - "score": 1.0, - "content": "State the nucleon number of the xenon nuclide.", - "type": "text" - } - ], - "index": 9, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 8.5, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 110, - 276, - 441, - 324 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 325, - 535, - 339 - ], - "lines": [ - { - "bbox": [ - 490, - 323, - 536, - 340 - ], - "spans": [ - { - "bbox": [ - 490, - 323, - 536, - 340 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 490, - 323, - 536, - 340 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 389, - 454, - 413 - ], - "lines": [ - { - "bbox": [ - 112, - 388, - 452, - 414 - ], - "spans": [ - { - "bbox": [ - 112, - 388, - 146, - 414 - ], - "score": 0.55, - "content": "\\mathsf{A}_{53}^{125}\\mathrm{~I~}", - "type": "inline_equation", - "height": 26, - "width": 34 - }, - { - "bbox": [ - 147, - 391, - 452, - 409 - ], - "score": 1.0, - "content": " nuclide decays by electron capture to form a tellurium nuclide.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 112, - 388, - 452, - 414 - ] - }, - { - "type": "text", - "bbox": [ - 111, - 423, - 535, - 450 - ], - "lines": [ - { - "bbox": [ - 115, - 425, - 534, - 436 - ], - "spans": [ - { - "bbox": [ - 115, - 425, - 534, - 436 - ], - "score": 1.0, - "content": "State two differences between the constituents of the iodine nucleus and the tellurium", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 114, - 438, - 223, - 450 - ], - "spans": [ - { - "bbox": [ - 114, - 438, - 223, - 450 - ], - "score": 1.0, - "content": "nucleus it decays into.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 12.5, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 425, - 534, - 450 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 452, - 536, - 568 - ], - "lines": [ - { - "bbox": [ - 484, - 448, - 536, - 464 - ], - "spans": [ - { - "bbox": [ - 484, - 448, - 536, - 464 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 484, - 448, - 536, - 464 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 449, - 535, - 463 - ], - "lines": [ - { - "bbox": [ - 484, - 449, - 535, - 463 - ], - "spans": [], - "index": 15 - } - ], - "index": 15, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 484, - 449, - 535, - 463 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 68, - 530, - 119 - ], - "lines": [ - { - "bbox": [ - 115, - 69, - 530, - 81 - ], - "spans": [ - { - "bbox": [ - 115, - 69, - 530, - 81 - ], - "score": 1.0, - "content": "Internal conversion is a process in which a nucleus in an excited state can release its", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 82, - 530, - 93 - ], - "spans": [ - { - "bbox": [ - 113, - 82, - 530, - 93 - ], - "score": 1.0, - "content": "excess energy. In internal conversion all of the excess energy is transferred from the", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 114, - 95, - 530, - 106 - ], - "spans": [ - { - "bbox": [ - 114, - 95, - 530, - 106 - ], - "score": 1.0, - "content": "nucleus to an orbital electron through the electromagnetic force. This orbital electron ", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 114, - 108, - 236, - 119 - ], - "spans": [ - { - "bbox": [ - 114, - 108, - 236, - 119 - ], - "score": 1.0, - "content": "is ejected from the atom.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 1.5 - }, - { - "type": "text", - "bbox": [ - 113, - 131, - 528, - 157 - ], - "lines": [ - { - "bbox": [ - 114, - 131, - 526, - 145 - ], - "spans": [ - { - "bbox": [ - 114, - 131, - 526, - 145 - ], - "score": 1.0, - "content": "The tellurium nucleus formed in question 01.3 is in an excited state and can undergo", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 113, - 145, - 211, - 157 - ], - "spans": [ - { - "bbox": [ - 113, - 145, - 211, - 157 - ], - "score": 1.0, - "content": "internal conversion.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5 - }, - { - "type": "text", - "bbox": [ - 112, - 169, - 484, - 197 - ], - "lines": [ - { - "bbox": [ - 114, - 170, - 482, - 184 - ], - "spans": [ - { - "bbox": [ - 114, - 170, - 428, - 184 - ], - "score": 1.0, - "content": "Discuss three differences between internal conversion and beta ", - "type": "text" - }, - { - "bbox": [ - 429, - 170, - 447, - 184 - ], - "score": 0.81, - "content": "(\\upbeta^{-})", - "type": "inline_equation", - "height": 14, - "width": 18 - }, - { - "bbox": [ - 448, - 170, - 482, - 184 - ], - "score": 1.0, - "content": " decay.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 484, - 184, - 535, - 197 - ], - "lines": [ - { - "bbox": [ - 485, - 183, - 536, - 197 - ], - "spans": [ - { - "bbox": [ - 485, - 183, - 536, - 197 - ], - "score": 1.0, - "content": "[3 marks] ", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 105, - 206, - 536, - 430 - ], - "lines": [ - { - "bbox": [ - 110, - 210, - 117, - 220 - ], - "spans": [ - { - "bbox": [ - 110, - 210, - 117, - 220 - ], - "score": 1.0, - "content": "1", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 109, - 286, - 119, - 299 - ], - "spans": [ - { - "bbox": [ - 109, - 286, - 119, - 299 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 108, - 362, - 119, - 377 - ], - "spans": [ - { - "bbox": [ - 108, - 362, - 119, - 377 - ], - "score": 1.0, - "content": "3 ", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 206, - 478, - 371, - 492 - ], - "lines": [ - { - "bbox": [ - 207, - 479, - 371, - 491 - ], - "spans": [ - { - "bbox": [ - 207, - 479, - 371, - 491 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - } - ], - "layout_bboxes": [], - "page_idx": 2, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 573, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 573, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 543, - 386, - 577, - 428 - ], - "lines": [ - { - "bbox": [ - 557, - 413, - 563, - 420 - ], - "spans": [ - { - "bbox": [ - 557, - 413, - 563, - 420 - ], - "score": 1.0, - "content": "7", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 58, - 814, - 81, - 826 - ], - "spans": [ - { - "bbox": [ - 58, - 814, - 81, - 826 - ], - "score": 0.8634780049324036, - "content": "0 3", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 105, - 83 - ], - "lines": [ - { - "bbox": [ - 50, - 68, - 100, - 80 - ], - "spans": [ - { - "bbox": [ - 50, - 68, - 88, - 80 - ], - "score": 1.0, - "content": "0 1 . ", - "type": "text" - }, - { - "bbox": [ - 89, - 69, - 100, - 79 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 783 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 540, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 540, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 0, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 285, - 29, - 292, - 39 - ], - "lines": [ - { - "bbox": [ - 284, - 28, - 294, - 41 - ], - "spans": [ - { - "bbox": [ - 284, - 28, - 294, - 41 - ], - "score": 1.0, - "content": "3 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 68, - 530, - 119 - ], - "lines": [ - { - "bbox": [ - 115, - 69, - 530, - 81 - ], - "spans": [ - { - "bbox": [ - 115, - 69, - 530, - 81 - ], - "score": 1.0, - "content": "Internal conversion is a process in which a nucleus in an excited state can release its", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 82, - 530, - 93 - ], - "spans": [ - { - "bbox": [ - 113, - 82, - 530, - 93 - ], - "score": 1.0, - "content": "excess energy. In internal conversion all of the excess energy is transferred from the", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 114, - 95, - 530, - 106 - ], - "spans": [ - { - "bbox": [ - 114, - 95, - 530, - 106 - ], - "score": 1.0, - "content": "nucleus to an orbital electron through the electromagnetic force. This orbital electron ", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 114, - 108, - 236, - 119 - ], - "spans": [ - { - "bbox": [ - 114, - 108, - 236, - 119 - ], - "score": 1.0, - "content": "is ejected from the atom.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 1.5, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 69, - 530, - 119 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 131, - 528, - 157 - ], - "lines": [ - { - "bbox": [ - 114, - 131, - 526, - 145 - ], - "spans": [ - { - "bbox": [ - 114, - 131, - 526, - 145 - ], - "score": 1.0, - "content": "The tellurium nucleus formed in question 01.3 is in an excited state and can undergo", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 113, - 145, - 211, - 157 - ], - "spans": [ - { - "bbox": [ - 113, - 145, - 211, - 157 - ], - "score": 1.0, - "content": "internal conversion.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 131, - 526, - 157 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 169, - 484, - 197 - ], - "lines": [ - { - "bbox": [ - 114, - 170, - 482, - 184 - ], - "spans": [ - { - "bbox": [ - 114, - 170, - 428, - 184 - ], - "score": 1.0, - "content": "Discuss three differences between internal conversion and beta ", - "type": "text" - }, - { - "bbox": [ - 429, - 170, - 447, - 184 - ], - "score": 0.81, - "content": "(\\upbeta^{-})", - "type": "inline_equation", - "height": 14, - "width": 18 - }, - { - "bbox": [ - 448, - 170, - 482, - 184 - ], - "score": 1.0, - "content": " decay.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 170, - 482, - 184 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 184, - 535, - 197 - ], - "lines": [ - { - "bbox": [ - 485, - 183, - 536, - 197 - ], - "spans": [ - { - "bbox": [ - 485, - 183, - 536, - 197 - ], - "score": 1.0, - "content": "[3 marks] ", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 485, - 183, - 536, - 197 - ] - }, - { - "type": "index", - "bbox": [ - 105, - 206, - 536, - 430 - ], - "lines": [ - { - "bbox": [ - 110, - 210, - 117, - 220 - ], - "spans": [ - { - "bbox": [ - 110, - 210, - 117, - 220 - ], - "score": 1.0, - "content": "1", - "type": "text" - } - ], - "index": 8, - "is_list_start_line": true - }, - { - "bbox": [ - 109, - 286, - 119, - 299 - ], - "spans": [ - { - "bbox": [ - 109, - 286, - 119, - 299 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - } - ], - "index": 9, - "is_list_start_line": true - }, - { - "bbox": [ - 108, - 362, - 119, - 377 - ], - "spans": [ - { - "bbox": [ - 108, - 362, - 119, - 377 - ], - "score": 1.0, - "content": "3 ", - "type": "text" - } - ], - "index": 10, - "is_list_start_line": true - } - ], - "index": 9, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 108, - 210, - 119, - 377 - ] - }, - { - "type": "text", - "bbox": [ - 206, - 478, - 371, - 492 - ], - "lines": [ - { - "bbox": [ - 207, - 479, - 371, - 491 - ], - "spans": [ - { - "bbox": [ - 207, - 479, - 371, - 491 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 207, - 479, - 371, - 491 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 68, - 514, - 95 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 514, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 514, - 82 - ], - "score": 1.0, - "content": "Some cars are fitted with a water sensor designed to switch on windscreen wipers", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 82, - 502, - 95 - ], - "spans": [ - { - "bbox": [ - 114, - 82, - 502, - 95 - ], - "score": 1.0, - "content": "automatically when it rains. Figure 1 shows a simplified diagram of the sensor.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "image", - "bbox": [ - 99, - 138, - 483, - 299 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 267, - 111, - 312, - 125 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 112, - 313, - 125 - ], - "spans": [ - { - "bbox": [ - 268, - 112, - 313, - 125 - ], - "score": 1.0, - "content": "Figure 1", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "image_body", - "bbox": [ - 99, - 138, - 483, - 299 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 99, - 138, - 483, - 299 - ], - "spans": [ - { - "bbox": [ - 99, - 138, - 483, - 299 - ], - "score": 0.968, - "type": "image", - "image_path": "a9c8e4c76cb475e96d7dab0fa62ee0c3a5e4754f10db5b0b00edc1fbb50acce8.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 99, - 138, - 483, - 191.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 99, - 191.66666666666666, - 483, - 245.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 99, - 245.33333333333331, - 483, - 299.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 3.0 - }, - { - "type": "text", - "bbox": [ - 113, - 322, - 534, - 362 - ], - "lines": [ - { - "bbox": [ - 115, - 324, - 522, - 336 - ], - "spans": [ - { - "bbox": [ - 115, - 324, - 522, - 336 - ], - "score": 1.0, - "content": "A light ray travels from the light-emitting diode (LED) through the first prism and into", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 114, - 337, - 534, - 349 - ], - "spans": [ - { - "bbox": [ - 114, - 337, - 534, - 349 - ], - "score": 1.0, - "content": "the windscreen. The ray reflects off the surfaces of the windscreen at A, B and C and", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 114, - 350, - 387, - 362 - ], - "spans": [ - { - "bbox": [ - 114, - 350, - 387, - 362 - ], - "score": 1.0, - "content": "then passes through the second prism into the detector.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 112, - 389, - 524, - 415 - ], - "lines": [ - { - "bbox": [ - 114, - 390, - 522, - 402 - ], - "spans": [ - { - "bbox": [ - 114, - 390, - 522, - 402 - ], - "score": 1.0, - "content": "Suggest how the design ensures that there is no deviation of the ray as it enters the", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 113, - 403, - 166, - 416 - ], - "spans": [ - { - "bbox": [ - 113, - 403, - 166, - 416 - ], - "score": 1.0, - "content": "first prism.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9.5 - }, - { - "type": "text", - "bbox": [ - 112, - 416, - 535, - 482 - ], - "lines": [ - { - "bbox": [ - 490, - 414, - 536, - 430 - ], - "spans": [ - { - "bbox": [ - 490, - 414, - 536, - 430 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 111, - 507, - 531, - 534 - ], - "lines": [ - { - "bbox": [ - 114, - 509, - 531, - 521 - ], - "spans": [ - { - "bbox": [ - 114, - 509, - 531, - 521 - ], - "score": 1.0, - "content": "Suggest two features of the design that ensure that there is no deviation of the ray as", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 112, - 521, - 387, - 534 - ], - "spans": [ - { - "bbox": [ - 112, - 521, - 387, - 534 - ], - "score": 1.0, - "content": "it leaves the first prism and enters the windscreen glass.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 12.5 - }, - { - "type": "text", - "bbox": [ - 484, - 534, - 535, - 547 - ], - "lines": [ - { - "bbox": [ - 485, - 534, - 536, - 548 - ], - "spans": [ - { - "bbox": [ - 485, - 534, - 536, - 548 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 106, - 558, - 536, - 651 - ], - "lines": [ - { - "bbox": [ - 114, - 560, - 123, - 572 - ], - "spans": [ - { - "bbox": [ - 114, - 560, - 123, - 572 - ], - "score": 1.0, - "content": "1 ", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 113, - 610, - 124, - 626 - ], - "spans": [ - { - "bbox": [ - 113, - 610, - 124, - 626 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 15.5 - } - ], - "layout_bboxes": [], - "page_idx": 3, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 99, - 138, - 483, - 299 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 267, - 111, - 312, - 125 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 112, - 313, - 125 - ], - "spans": [ - { - "bbox": [ - 268, - 112, - 313, - 125 - ], - "score": 1.0, - "content": "Figure 1", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "image_body", - "bbox": [ - 99, - 138, - 483, - 299 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 99, - 138, - 483, - 299 - ], - "spans": [ - { - "bbox": [ - 99, - 138, - 483, - 299 - ], - "score": 0.968, - "type": "image", - "image_path": "a9c8e4c76cb475e96d7dab0fa62ee0c3a5e4754f10db5b0b00edc1fbb50acce8.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 99, - 138, - 483, - 191.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 99, - 191.66666666666666, - 483, - 245.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 99, - 245.33333333333331, - 483, - 299.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 3.0 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 60 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 60 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 60, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 60, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 67, - 574, - 78 - ], - "spans": [ - { - "bbox": [ - 558, - 67, - 574, - 78 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 385, - 105, - 404 - ], - "lines": [ - { - "bbox": [ - 48, - 387, - 102, - 403 - ], - "spans": [ - { - "bbox": [ - 48, - 387, - 102, - 403 - ], - "score": 1.0, - "content": "0 2 . 1 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 824 - ], - "lines": [ - { - "bbox": [ - 58, - 815, - 80, - 825 - ], - "spans": [ - { - "bbox": [ - 58, - 815, - 80, - 825 - ], - "score": 0.8758541941642761, - "content": "0 4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 82, - 83 - ], - "lines": [ - { - "bbox": [ - 50, - 68, - 77, - 80 - ], - "spans": [ - { - "bbox": [ - 50, - 68, - 64, - 80 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 65, - 68, - 77, - 80 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 505, - 105, - 523 - ], - "lines": [ - { - "bbox": [ - 48, - 506, - 103, - 522 - ], - "spans": [ - { - "bbox": [ - 48, - 506, - 103, - 522 - ], - "score": 1.0, - "content": "0 2 . 2 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 479, - 815, - 540, - 825 - ], - "spans": [ - { - "bbox": [ - 479, - 815, - 540, - 825 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 0, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 285, - 29, - 292, - 39 - ], - "lines": [ - { - "bbox": [ - 285, - 29, - 294, - 41 - ], - "spans": [ - { - "bbox": [ - 285, - 29, - 294, - 41 - ], - "score": 1.0, - "content": "4 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 68, - 514, - 95 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 514, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 514, - 82 - ], - "score": 1.0, - "content": "Some cars are fitted with a water sensor designed to switch on windscreen wipers", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 82, - 502, - 95 - ], - "spans": [ - { - "bbox": [ - 114, - 82, - 502, - 95 - ], - "score": 1.0, - "content": "automatically when it rains. Figure 1 shows a simplified diagram of the sensor.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 69, - 514, - 95 - ] - }, - { - "type": "image", - "bbox": [ - 99, - 138, - 483, - 299 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 267, - 111, - 312, - 125 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 112, - 313, - 125 - ], - "spans": [ - { - "bbox": [ - 268, - 112, - 313, - 125 - ], - "score": 1.0, - "content": "Figure 1", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "image_body", - "bbox": [ - 99, - 138, - 483, - 299 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 99, - 138, - 483, - 299 - ], - "spans": [ - { - "bbox": [ - 99, - 138, - 483, - 299 - ], - "score": 0.968, - "type": "image", - "image_path": "a9c8e4c76cb475e96d7dab0fa62ee0c3a5e4754f10db5b0b00edc1fbb50acce8.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 99, - 138, - 483, - 191.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 99, - 191.66666666666666, - 483, - 245.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 99, - 245.33333333333331, - 483, - 299.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 3.0, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 322, - 534, - 362 - ], - "lines": [ - { - "bbox": [ - 115, - 324, - 522, - 336 - ], - "spans": [ - { - "bbox": [ - 115, - 324, - 522, - 336 - ], - "score": 1.0, - "content": "A light ray travels from the light-emitting diode (LED) through the first prism and into", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 114, - 337, - 534, - 349 - ], - "spans": [ - { - "bbox": [ - 114, - 337, - 534, - 349 - ], - "score": 1.0, - "content": "the windscreen. The ray reflects off the surfaces of the windscreen at A, B and C and", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 114, - 350, - 387, - 362 - ], - "spans": [ - { - "bbox": [ - 114, - 350, - 387, - 362 - ], - "score": 1.0, - "content": "then passes through the second prism into the detector.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 324, - 534, - 362 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 389, - 524, - 415 - ], - "lines": [ - { - "bbox": [ - 114, - 390, - 522, - 402 - ], - "spans": [ - { - "bbox": [ - 114, - 390, - 522, - 402 - ], - "score": 1.0, - "content": "Suggest how the design ensures that there is no deviation of the ray as it enters the", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 113, - 403, - 166, - 416 - ], - "spans": [ - { - "bbox": [ - 113, - 403, - 166, - 416 - ], - "score": 1.0, - "content": "first prism.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9.5, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 390, - 522, - 416 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 416, - 535, - 482 - ], - "lines": [ - { - "bbox": [ - 490, - 414, - 536, - 430 - ], - "spans": [ - { - "bbox": [ - 490, - 414, - 536, - 430 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 490, - 414, - 536, - 430 - ] - }, - { - "type": "text", - "bbox": [ - 111, - 507, - 531, - 534 - ], - "lines": [ - { - "bbox": [ - 114, - 509, - 531, - 521 - ], - "spans": [ - { - "bbox": [ - 114, - 509, - 531, - 521 - ], - "score": 1.0, - "content": "Suggest two features of the design that ensure that there is no deviation of the ray as", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 112, - 521, - 387, - 534 - ], - "spans": [ - { - "bbox": [ - 112, - 521, - 387, - 534 - ], - "score": 1.0, - "content": "it leaves the first prism and enters the windscreen glass.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 12.5, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 112, - 509, - 531, - 534 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 534, - 535, - 547 - ], - "lines": [ - { - "bbox": [ - 485, - 534, - 536, - 548 - ], - "spans": [ - { - "bbox": [ - 485, - 534, - 536, - 548 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 485, - 534, - 536, - 548 - ] - }, - { - "type": "index", - "bbox": [ - 106, - 558, - 536, - 651 - ], - "lines": [ - { - "bbox": [ - 114, - 560, - 123, - 572 - ], - "spans": [ - { - "bbox": [ - 114, - 560, - 123, - 572 - ], - "score": 1.0, - "content": "1 ", - "type": "text" - } - ], - "index": 15, - "is_list_start_line": true - }, - { - "bbox": [ - 113, - 610, - 124, - 626 - ], - "spans": [ - { - "bbox": [ - 113, - 610, - 124, - 626 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - } - ], - "index": 16, - "is_list_start_line": true - } - ], - "index": 15.5, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 560, - 124, - 626 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 114, - 68, - 367, - 82 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 365, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 365, - 82 - ], - "score": 1.0, - "content": "The refractive index of the windscreen glass is 1.52", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 113, - 93, - 524, - 120 - ], - "lines": [ - { - "bbox": [ - 115, - 95, - 523, - 107 - ], - "spans": [ - { - "bbox": [ - 115, - 95, - 523, - 107 - ], - "score": 1.0, - "content": "Explain why the ray follows the path shown inside the windscreen glass in Figure 1.", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 114, - 107, - 348, - 122 - ], - "spans": [ - { - "bbox": [ - 114, - 107, - 348, - 122 - ], - "score": 1.0, - "content": "Support your answer with a suitable calculation.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5 - }, - { - "type": "text", - "bbox": [ - 484, - 120, - 535, - 133 - ], - "lines": [ - { - "bbox": [ - 484, - 119, - 536, - 134 - ], - "spans": [ - { - "bbox": [ - 484, - 119, - 536, - 134 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 187, - 408, - 392, - 422 - ], - "lines": [ - { - "bbox": [ - 187, - 408, - 391, - 422 - ], - "spans": [ - { - "bbox": [ - 187, - 408, - 391, - 422 - ], - "score": 1.0, - "content": "Question 2 continues on the next page", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - } - ], - "layout_bboxes": [], - "page_idx": 4, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 584, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 584, - 61 - ], - "score": 1.0, - "content": "Do not write", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 573, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 573, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 59, - 815, - 81, - 825 - ], - "spans": [ - { - "bbox": [ - 59, - 815, - 81, - 825 - ], - "score": 0.9600183963775635, - "content": "0 5", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 783 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 540, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 540, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 105, - 83 - ], - "lines": [ - { - "bbox": [ - 48, - 67, - 102, - 81 - ], - "spans": [ - { - "bbox": [ - 48, - 67, - 102, - 81 - ], - "score": 1.0, - "content": "0 2 . 3 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 0, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 285, - 29, - 293, - 39 - ], - "lines": [ - { - "bbox": [ - 284, - 28, - 294, - 42 - ], - "spans": [ - { - "bbox": [ - 284, - 28, - 294, - 42 - ], - "score": 1.0, - "content": "5 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 114, - 68, - 367, - 82 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 365, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 365, - 82 - ], - "score": 1.0, - "content": "The refractive index of the windscreen glass is 1.52", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_4", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 69, - 365, - 82 - ] - }, - { - "type": "list", - "bbox": [ - 113, - 93, - 524, - 120 - ], - "lines": [ - { - "bbox": [ - 115, - 95, - 523, - 107 - ], - "spans": [ - { - "bbox": [ - 115, - 95, - 523, - 107 - ], - "score": 1.0, - "content": "Explain why the ray follows the path shown inside the windscreen glass in Figure 1.", - "type": "text" - } - ], - "index": 1, - "is_list_end_line": true - }, - { - "bbox": [ - 114, - 107, - 348, - 122 - ], - "spans": [ - { - "bbox": [ - 114, - 107, - 348, - 122 - ], - "score": 1.0, - "content": "Support your answer with a suitable calculation.", - "type": "text" - } - ], - "index": 2, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 1.5, - "page_num": "page_4", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 95, - 523, - 122 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 120, - 535, - 133 - ], - "lines": [ - { - "bbox": [ - 484, - 119, - 536, - 134 - ], - "spans": [ - { - "bbox": [ - 484, - 119, - 536, - 134 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_4", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 484, - 119, - 536, - 134 - ] - }, - { - "type": "text", - "bbox": [ - 187, - 408, - 392, - 422 - ], - "lines": [ - { - "bbox": [ - 187, - 408, - 391, - 422 - ], - "spans": [ - { - "bbox": [ - 187, - 408, - 391, - 422 - ], - "score": 1.0, - "content": "Question 2 continues on the next page", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_4", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 187, - 408, - 391, - 422 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 110, - 68, - 527, - 94 - ], - "lines": [ - { - "bbox": [ - 114, - 68, - 529, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 68, - 529, - 82 - ], - "score": 1.0, - "content": "When it starts to rain, water droplets form on the outside of the windscreen as shown ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 80, - 173, - 96 - ], - "spans": [ - { - "bbox": [ - 113, - 80, - 173, - 96 - ], - "score": 1.0, - "content": "in Figure 2.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "image", - "bbox": [ - 101, - 122, - 481, - 286 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 268, - 96, - 313, - 110 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 96, - 314, - 111 - ], - "spans": [ - { - "bbox": [ - 268, - 96, - 314, - 111 - ], - "score": 1.0, - "content": "Figure 2 ", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "image_body", - "bbox": [ - 101, - 122, - 481, - 286 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 101, - 122, - 481, - 286 - ], - "spans": [ - { - "bbox": [ - 101, - 122, - 481, - 286 - ], - "score": 0.964, - "type": "image", - "image_path": "d16b66292d34ae7fb47e44e2b0285b155962b9eb55095d147e64c7fe41ed69c5.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 101, - 122, - 481, - 176.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 101, - 176.66666666666666, - 481, - 231.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 101, - 231.33333333333331, - 481, - 286.0 - ], - "spans": [], - "index": 5 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 114, - 298, - 290, - 312 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 114, - 300, - 288, - 311 - ], - "spans": [ - { - "bbox": [ - 114, - 300, - 288, - 311 - ], - "score": 1.0, - "content": "The refractive index of water is 1.33", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 113, - 324, - 533, - 350 - ], - "lines": [ - { - "bbox": [ - 114, - 325, - 534, - 339 - ], - "spans": [ - { - "bbox": [ - 114, - 325, - 534, - 339 - ], - "score": 1.0, - "content": "Explain why the presence of water at A causes the intensity of the light at the detector", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 113, - 338, - 176, - 350 - ], - "spans": [ - { - "bbox": [ - 113, - 338, - 176, - 350 - ], - "score": 1.0, - "content": "to decrease.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7.5 - }, - { - "type": "text", - "bbox": [ - 113, - 363, - 348, - 377 - ], - "lines": [ - { - "bbox": [ - 114, - 364, - 347, - 376 - ], - "spans": [ - { - "bbox": [ - 114, - 364, - 347, - 376 - ], - "score": 1.0, - "content": "Support your answer with a suitable calculation.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 484, - 375, - 535, - 389 - ], - "lines": [ - { - "bbox": [ - 485, - 375, - 535, - 389 - ], - "spans": [ - { - "bbox": [ - 485, - 375, - 535, - 389 - ], - "score": 1.0, - "content": "[2 marks]", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - } - ], - "layout_bboxes": [], - "page_idx": 5, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 101, - 122, - 481, - 286 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 268, - 96, - 313, - 110 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 96, - 314, - 111 - ], - "spans": [ - { - "bbox": [ - 268, - 96, - 314, - 111 - ], - "score": 1.0, - "content": "Figure 2 ", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "image_body", - "bbox": [ - 101, - 122, - 481, - 286 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 101, - 122, - 481, - 286 - ], - "spans": [ - { - "bbox": [ - 101, - 122, - 481, - 286 - ], - "score": 0.964, - "type": "image", - "image_path": "d16b66292d34ae7fb47e44e2b0285b155962b9eb55095d147e64c7fe41ed69c5.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 101, - 122, - 481, - 176.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 101, - 176.66666666666666, - 481, - 231.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 101, - 231.33333333333331, - 481, - 286.0 - ], - "spans": [], - "index": 5 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 114, - 298, - 290, - 312 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 114, - 300, - 288, - 311 - ], - "spans": [ - { - "bbox": [ - 114, - 300, - 288, - 311 - ], - "score": 1.0, - "content": "The refractive index of water is 1.33", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - } - ], - "index": 4 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 59, - 815, - 81, - 825 - ], - "spans": [ - { - "bbox": [ - 59, - 815, - 81, - 825 - ], - "score": 0.9342678189277649, - "content": "0 6", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 105, - 83 - ], - "lines": [ - { - "bbox": [ - 48, - 67, - 102, - 81 - ], - "spans": [ - { - "bbox": [ - 48, - 67, - 102, - 81 - ], - "score": 1.0, - "content": "0 2 . 4 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 479, - 815, - 540, - 825 - ], - "spans": [ - { - "bbox": [ - 479, - 815, - 540, - 825 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 285, - 29, - 292, - 39 - ], - "lines": [ - { - "bbox": [ - 285, - 28, - 294, - 41 - ], - "spans": [ - { - "bbox": [ - 285, - 28, - 294, - 41 - ], - "score": 1.0, - "content": "6 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 110, - 68, - 527, - 94 - ], - "lines": [ - { - "bbox": [ - 114, - 68, - 529, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 68, - 529, - 82 - ], - "score": 1.0, - "content": "When it starts to rain, water droplets form on the outside of the windscreen as shown ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 80, - 173, - 96 - ], - "spans": [ - { - "bbox": [ - 113, - 80, - 173, - 96 - ], - "score": 1.0, - "content": "in Figure 2.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_5", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 68, - 529, - 96 - ] - }, - { - "type": "image", - "bbox": [ - 101, - 122, - 481, - 286 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 268, - 96, - 313, - 110 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 96, - 314, - 111 - ], - "spans": [ - { - "bbox": [ - 268, - 96, - 314, - 111 - ], - "score": 1.0, - "content": "Figure 2 ", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "image_body", - "bbox": [ - 101, - 122, - 481, - 286 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 101, - 122, - 481, - 286 - ], - "spans": [ - { - "bbox": [ - 101, - 122, - 481, - 286 - ], - "score": 0.964, - "type": "image", - "image_path": "d16b66292d34ae7fb47e44e2b0285b155962b9eb55095d147e64c7fe41ed69c5.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 101, - 122, - 481, - 176.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 101, - 176.66666666666666, - 481, - 231.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 101, - 231.33333333333331, - 481, - 286.0 - ], - "spans": [], - "index": 5 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 114, - 298, - 290, - 312 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 114, - 300, - 288, - 311 - ], - "spans": [ - { - "bbox": [ - 114, - 300, - 288, - 311 - ], - "score": 1.0, - "content": "The refractive index of water is 1.33", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - } - ], - "index": 4, - "page_num": "page_5", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 324, - 533, - 350 - ], - "lines": [ - { - "bbox": [ - 114, - 325, - 534, - 339 - ], - "spans": [ - { - "bbox": [ - 114, - 325, - 534, - 339 - ], - "score": 1.0, - "content": "Explain why the presence of water at A causes the intensity of the light at the detector", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 113, - 338, - 176, - 350 - ], - "spans": [ - { - "bbox": [ - 113, - 338, - 176, - 350 - ], - "score": 1.0, - "content": "to decrease.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7.5, - "page_num": "page_5", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 325, - 534, - 350 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 363, - 348, - 377 - ], - "lines": [ - { - "bbox": [ - 114, - 364, - 347, - 376 - ], - "spans": [ - { - "bbox": [ - 114, - 364, - 347, - 376 - ], - "score": 1.0, - "content": "Support your answer with a suitable calculation.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_5", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 364, - 347, - 376 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 375, - 535, - 389 - ], - "lines": [ - { - "bbox": [ - 485, - 375, - 535, - 389 - ], - "spans": [ - { - "bbox": [ - 485, - 375, - 535, - 389 - ], - "score": 1.0, - "content": "[2 marks]", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_5", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 485, - 375, - 535, - 389 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 68, - 518, - 95 - ], - "lines": [ - { - "bbox": [ - 114, - 68, - 516, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 68, - 516, - 82 - ], - "score": 1.0, - "content": "The refractive index of the windscreen glass can vary by a few per cent across the", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 82, - 223, - 96 - ], - "spans": [ - { - "bbox": [ - 114, - 82, - 223, - 96 - ], - "score": 1.0, - "content": "thickness of the glass.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 113, - 106, - 507, - 133 - ], - "lines": [ - { - "bbox": [ - 114, - 107, - 506, - 120 - ], - "spans": [ - { - "bbox": [ - 114, - 107, - 506, - 120 - ], - "score": 1.0, - "content": "Discuss how this variation may affect the path of the ray through the windscreen", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 112, - 119, - 145, - 133 - ], - "spans": [ - { - "bbox": [ - 112, - 119, - 145, - 133 - ], - "score": 1.0, - "content": "glass.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5 - }, - { - "type": "text", - "bbox": [ - 112, - 133, - 536, - 354 - ], - "lines": [ - { - "bbox": [ - 484, - 132, - 537, - 147 - ], - "spans": [ - { - "bbox": [ - 484, - 132, - 537, - 147 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 114, - 379, - 516, - 407 - ], - "lines": [ - { - "bbox": [ - 113, - 380, - 512, - 394 - ], - "spans": [ - { - "bbox": [ - 113, - 380, - 512, - 394 - ], - "score": 1.0, - "content": "A different design has the LED and the detector further apart. The ray undergoes", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 114, - 395, - 474, - 406 - ], - "spans": [ - { - "bbox": [ - 114, - 395, - 474, - 406 - ], - "score": 1.0, - "content": "more reflections inside the windscreen glass before reaching the detector.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5.5 - }, - { - "type": "text", - "bbox": [ - 113, - 417, - 530, - 445 - ], - "lines": [ - { - "bbox": [ - 113, - 418, - 529, - 433 - ], - "spans": [ - { - "bbox": [ - 113, - 418, - 529, - 433 - ], - "score": 1.0, - "content": "Discuss two ways in which this different design affects the sensitivity of the sensor to", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 113, - 432, - 265, - 444 - ], - "spans": [ - { - "bbox": [ - 113, - 432, - 265, - 444 - ], - "score": 1.0, - "content": "the presence of water droplets.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7.5 - }, - { - "type": "text", - "bbox": [ - 484, - 444, - 535, - 457 - ], - "lines": [ - { - "bbox": [ - 485, - 444, - 536, - 458 - ], - "spans": [ - { - "bbox": [ - 485, - 444, - 536, - 458 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 110, - 468, - 537, - 666 - ], - "lines": [ - { - "bbox": [ - 114, - 470, - 123, - 482 - ], - "spans": [ - { - "bbox": [ - 114, - 470, - 123, - 482 - ], - "score": 1.0, - "content": "1 ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 114, - 573, - 123, - 584 - ], - "spans": [ - { - "bbox": [ - 114, - 573, - 123, - 584 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5 - } - ], - "layout_bboxes": [], - "page_idx": 6, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 376, - 105, - 394 - ], - "lines": [ - { - "bbox": [ - 49, - 379, - 99, - 393 - ], - "spans": [ - { - "bbox": [ - 49, - 379, - 81, - 393 - ], - "score": 1.0, - "content": "0 2 ", - "type": "text" - }, - { - "bbox": [ - 91, - 381, - 99, - 390 - ], - "score": 1.0, - "content": "6", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 543, - 625, - 576, - 667 - ], - "lines": [ - { - "bbox": [ - 552, - 649, - 567, - 660 - ], - "spans": [ - { - "bbox": [ - 552, - 649, - 567, - 660 - ], - "score": 1.0, - "content": "11", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 105, - 83 - ], - "lines": [ - { - "bbox": [ - 50, - 67, - 100, - 81 - ], - "spans": [ - { - "bbox": [ - 50, - 67, - 100, - 81 - ], - "score": 1.0, - "content": "0 2 . 5", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 783 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 540, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 540, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 824 - ], - "lines": [ - { - "bbox": [ - 60, - 816, - 78, - 824 - ], - "spans": [ - { - "bbox": [ - 60, - 816, - 68, - 824 - ], - "score": 0.9954872727394104, - "content": "0", - "type": "text" - }, - { - "bbox": [ - 71, - 817, - 78, - 823 - ], - "score": 0.9969727993011475, - "content": "7", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 569, - 0, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 285, - 29, - 292, - 39 - ], - "lines": [ - { - "bbox": [ - 283, - 28, - 295, - 41 - ], - "spans": [ - { - "bbox": [ - 283, - 28, - 295, - 41 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 13, - "width": 12 - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 68, - 518, - 95 - ], - "lines": [ - { - "bbox": [ - 114, - 68, - 516, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 68, - 516, - 82 - ], - "score": 1.0, - "content": "The refractive index of the windscreen glass can vary by a few per cent across the", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 82, - 223, - 96 - ], - "spans": [ - { - "bbox": [ - 114, - 82, - 223, - 96 - ], - "score": 1.0, - "content": "thickness of the glass.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 68, - 516, - 96 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 106, - 507, - 133 - ], - "lines": [ - { - "bbox": [ - 114, - 107, - 506, - 120 - ], - "spans": [ - { - "bbox": [ - 114, - 107, - 506, - 120 - ], - "score": 1.0, - "content": "Discuss how this variation may affect the path of the ray through the windscreen", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 112, - 119, - 145, - 133 - ], - "spans": [ - { - "bbox": [ - 112, - 119, - 145, - 133 - ], - "score": 1.0, - "content": "glass.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 112, - 107, - 506, - 133 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 133, - 536, - 354 - ], - "lines": [ - { - "bbox": [ - 484, - 132, - 537, - 147 - ], - "spans": [ - { - "bbox": [ - 484, - 132, - 537, - 147 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 484, - 132, - 537, - 147 - ] - }, - { - "type": "text", - "bbox": [ - 114, - 379, - 516, - 407 - ], - "lines": [ - { - "bbox": [ - 113, - 380, - 512, - 394 - ], - "spans": [ - { - "bbox": [ - 113, - 380, - 512, - 394 - ], - "score": 1.0, - "content": "A different design has the LED and the detector further apart. The ray undergoes", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 114, - 395, - 474, - 406 - ], - "spans": [ - { - "bbox": [ - 114, - 395, - 474, - 406 - ], - "score": 1.0, - "content": "more reflections inside the windscreen glass before reaching the detector.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5.5, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 380, - 512, - 406 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 417, - 530, - 445 - ], - "lines": [ - { - "bbox": [ - 113, - 418, - 529, - 433 - ], - "spans": [ - { - "bbox": [ - 113, - 418, - 529, - 433 - ], - "score": 1.0, - "content": "Discuss two ways in which this different design affects the sensitivity of the sensor to", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 113, - 432, - 265, - 444 - ], - "spans": [ - { - "bbox": [ - 113, - 432, - 265, - 444 - ], - "score": 1.0, - "content": "the presence of water droplets.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7.5, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 418, - 529, - 444 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 444, - 535, - 457 - ], - "lines": [ - { - "bbox": [ - 485, - 444, - 536, - 458 - ], - "spans": [ - { - "bbox": [ - 485, - 444, - 536, - 458 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 485, - 444, - 536, - 458 - ] - }, - { - "type": "index", - "bbox": [ - 110, - 468, - 537, - 666 - ], - "lines": [ - { - "bbox": [ - 114, - 470, - 123, - 482 - ], - "spans": [ - { - "bbox": [ - 114, - 470, - 123, - 482 - ], - "score": 1.0, - "content": "1 ", - "type": "text" - } - ], - "index": 10, - "is_list_start_line": true - }, - { - "bbox": [ - 114, - 573, - 123, - 584 - ], - "spans": [ - { - "bbox": [ - 114, - 573, - 123, - 584 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - } - ], - "index": 11, - "is_list_start_line": true - } - ], - "index": 10.5, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 470, - 123, - 584 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 68, - 530, - 107 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 530, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 530, - 82 - ], - "score": 1.0, - "content": "Figure 3 shows an arrangement to investigate diffraction. White light is incident on a ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 83, - 513, - 95 - ], - "spans": [ - { - "bbox": [ - 114, - 83, - 513, - 95 - ], - "score": 1.0, - "content": "single slit. After leaving the slit, the diffracted light passes through a green filter to", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 113, - 94, - 201, - 107 - ], - "spans": [ - { - "bbox": [ - 113, - 94, - 201, - 107 - ], - "score": 1.0, - "content": "reach the screen.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1 - }, - { - "type": "image", - "bbox": [ - 110, - 151, - 473, - 322 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 267, - 124, - 313, - 138 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 125, - 313, - 138 - ], - "spans": [ - { - "bbox": [ - 268, - 125, - 313, - 138 - ], - "score": 1.0, - "content": "Figure 3", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "image_body", - "bbox": [ - 110, - 151, - 473, - 322 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 110, - 151, - 473, - 322 - ], - "spans": [ - { - "bbox": [ - 110, - 151, - 473, - 322 - ], - "score": 0.831, - "type": "image", - "image_path": "de9a802d6cbcd57baf944cc3bc60d657cc47877d862f8e9d3fb0aa6fc5dbda6c.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 110, - 151, - 473, - 208.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 110, - 208.0, - 473, - 265.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 110, - 265.0, - 473, - 322.0 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 4.0 - }, - { - "type": "text", - "bbox": [ - 113, - 347, - 337, - 362 - ], - "lines": [ - { - "bbox": [ - 114, - 348, - 336, - 361 - ], - "spans": [ - { - "bbox": [ - 114, - 348, - 336, - 361 - ], - "score": 1.0, - "content": "Describe the pattern produced on the screen.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 112, - 361, - 537, - 530 - ], - "lines": [ - { - "bbox": [ - 484, - 361, - 536, - 375 - ], - "spans": [ - { - "bbox": [ - 484, - 361, - 536, - 375 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 53, - 553, - 408, - 596 - ], - "lines": [ - { - "bbox": [ - 109, - 555, - 323, - 569 - ], - "spans": [ - { - "bbox": [ - 109, - 555, - 323, - 569 - ], - "score": 1.0, - "content": "The green filter is replaced with a red filter.", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 114, - 582, - 406, - 595 - ], - "spans": [ - { - "bbox": [ - 114, - 582, - 406, - 595 - ], - "score": 1.0, - "content": "Describe the change in the pattern produced on the screen.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9.5 - }, - { - "type": "text", - "bbox": [ - 484, - 595, - 535, - 608 - ], - "lines": [ - { - "bbox": [ - 484, - 595, - 535, - 608 - ], - "spans": [], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 102, - 598, - 537, - 765 - ], - "lines": [ - { - "bbox": [ - 485, - 594, - 536, - 609 - ], - "spans": [ - { - "bbox": [ - 485, - 594, - 536, - 609 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - } - ], - "layout_bboxes": [], - "page_idx": 7, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 110, - 151, - 473, - 322 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 267, - 124, - 313, - 138 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 125, - 313, - 138 - ], - "spans": [ - { - "bbox": [ - 268, - 125, - 313, - 138 - ], - "score": 1.0, - "content": "Figure 3", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "image_body", - "bbox": [ - 110, - 151, - 473, - 322 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 110, - 151, - 473, - 322 - ], - "spans": [ - { - "bbox": [ - 110, - 151, - 473, - 322 - ], - "score": 0.831, - "type": "image", - "image_path": "de9a802d6cbcd57baf944cc3bc60d657cc47877d862f8e9d3fb0aa6fc5dbda6c.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 110, - 151, - 473, - 208.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 110, - 208.0, - 473, - 265.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 110, - 265.0, - 473, - 322.0 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 4.0 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 344, - 105, - 362 - ], - "lines": [ - { - "bbox": [ - 48, - 346, - 101, - 360 - ], - "spans": [ - { - "bbox": [ - 48, - 346, - 101, - 360 - ], - "score": 1.0, - "content": "0 3 . 1 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 786, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 58, - 814, - 81, - 826 - ], - "spans": [ - { - "bbox": [ - 58, - 814, - 81, - 826 - ], - "score": 0.9792321920394897, - "content": "08", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 82, - 82 - ], - "lines": [ - { - "bbox": [ - 49, - 67, - 77, - 80 - ], - "spans": [ - { - "bbox": [ - 49, - 67, - 77, - 80 - ], - "score": 1.0, - "content": "0 3", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 552, - 105, - 570 - ], - "lines": [ - { - "bbox": [ - 50, - 554, - 102, - 569 - ], - "spans": [ - { - "bbox": [ - 50, - 554, - 102, - 569 - ], - "score": 1.0, - "content": "0 3 . 2 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 569, - 0, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 285, - 29, - 293, - 39 - ], - "lines": [ - { - "bbox": [ - 284, - 29, - 294, - 41 - ], - "spans": [ - { - "bbox": [ - 284, - 29, - 294, - 41 - ], - "score": 1.0, - "content": "8 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 68, - 530, - 107 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 530, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 530, - 82 - ], - "score": 1.0, - "content": "Figure 3 shows an arrangement to investigate diffraction. White light is incident on a ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 83, - 513, - 95 - ], - "spans": [ - { - "bbox": [ - 114, - 83, - 513, - 95 - ], - "score": 1.0, - "content": "single slit. After leaving the slit, the diffracted light passes through a green filter to", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 113, - 94, - 201, - 107 - ], - "spans": [ - { - "bbox": [ - 113, - 94, - 201, - 107 - ], - "score": 1.0, - "content": "reach the screen.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1, - "page_num": "page_7", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 69, - 530, - 107 - ] - }, - { - "type": "image", - "bbox": [ - 110, - 151, - 473, - 322 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 267, - 124, - 313, - 138 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 125, - 313, - 138 - ], - "spans": [ - { - "bbox": [ - 268, - 125, - 313, - 138 - ], - "score": 1.0, - "content": "Figure 3", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "image_body", - "bbox": [ - 110, - 151, - 473, - 322 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 110, - 151, - 473, - 322 - ], - "spans": [ - { - "bbox": [ - 110, - 151, - 473, - 322 - ], - "score": 0.831, - "type": "image", - "image_path": "de9a802d6cbcd57baf944cc3bc60d657cc47877d862f8e9d3fb0aa6fc5dbda6c.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 110, - 151, - 473, - 208.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 110, - 208.0, - 473, - 265.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 110, - 265.0, - 473, - 322.0 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 4.0, - "page_num": "page_7", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 347, - 337, - 362 - ], - "lines": [ - { - "bbox": [ - 114, - 348, - 336, - 361 - ], - "spans": [ - { - "bbox": [ - 114, - 348, - 336, - 361 - ], - "score": 1.0, - "content": "Describe the pattern produced on the screen.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_7", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 348, - 336, - 361 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 361, - 537, - 530 - ], - "lines": [ - { - "bbox": [ - 484, - 361, - 536, - 375 - ], - "spans": [ - { - "bbox": [ - 484, - 361, - 536, - 375 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_7", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 484, - 361, - 536, - 375 - ] - }, - { - "type": "list", - "bbox": [ - 53, - 553, - 408, - 596 - ], - "lines": [ - { - "bbox": [ - 109, - 555, - 323, - 569 - ], - "spans": [ - { - "bbox": [ - 109, - 555, - 323, - 569 - ], - "score": 1.0, - "content": "The green filter is replaced with a red filter.", - "type": "text" - } - ], - "index": 9, - "is_list_end_line": true - }, - { - "bbox": [ - 114, - 582, - 406, - 595 - ], - "spans": [ - { - "bbox": [ - 114, - 582, - 406, - 595 - ], - "score": 1.0, - "content": "Describe the change in the pattern produced on the screen.", - "type": "text" - } - ], - "index": 10, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 9.5, - "page_num": "page_7", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 109, - 555, - 406, - 595 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 595, - 535, - 608 - ], - "lines": [ - { - "bbox": [ - 484, - 595, - 535, - 608 - ], - "spans": [], - "index": 11 - } - ], - "index": 11, - "page_num": "page_7", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 484, - 595, - 535, - 608 - ] - }, - { - "type": "text", - "bbox": [ - 102, - 598, - 537, - 765 - ], - "lines": [ - { - "bbox": [ - 485, - 594, - 536, - 609 - ], - "spans": [ - { - "bbox": [ - 485, - 594, - 536, - 609 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_7", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 485, - 594, - 536, - 609 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 67, - 519, - 108 - ], - "lines": [ - { - "bbox": [ - 114, - 68, - 518, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 68, - 518, - 82 - ], - "score": 1.0, - "content": "A diffraction grating is placed between the red filter and the screen. The diffraction", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 82, - 488, - 96 - ], - "spans": [ - { - "bbox": [ - 114, - 82, - 488, - 96 - ], - "score": 1.0, - "content": "grating has 500 lines per millimetre. Light is incident normally on the grating.", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 115, - 96, - 279, - 107 - ], - "spans": [ - { - "bbox": [ - 115, - 96, - 279, - 107 - ], - "score": 1.0, - "content": "Figure 4 shows the arrangement.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1 - }, - { - "type": "image", - "bbox": [ - 109, - 137, - 443, - 350 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 253, - 121, - 299, - 135 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 254, - 122, - 299, - 135 - ], - "spans": [ - { - "bbox": [ - 254, - 122, - 299, - 135 - ], - "score": 1.0, - "content": "Figure 4", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "image_body", - "bbox": [ - 109, - 137, - 443, - 350 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 109, - 137, - 443, - 350 - ], - "spans": [ - { - "bbox": [ - 109, - 137, - 443, - 350 - ], - "score": 0.944, - "type": "image", - "image_path": "fabc3263cd3a872616fd323d3dd9d35c53da4d2ddf638358e589f2a33caae3f1.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 109, - 137, - 443, - 208.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 109, - 208.0, - 443, - 279.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 109, - 279.0, - 443, - 350.0 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 4.0 - }, - { - "type": "text", - "bbox": [ - 115, - 377, - 319, - 390 - ], - "lines": [ - { - "bbox": [ - 114, - 377, - 319, - 390 - ], - "spans": [ - { - "bbox": [ - 114, - 377, - 278, - 390 - ], - "score": 1.0, - "content": "The wavelength of the red light is", - "type": "text" - }, - { - "bbox": [ - 278, - 377, - 316, - 390 - ], - "score": 0.55, - "content": "650\\mathrm{nm}", - "type": "inline_equation", - "height": 13, - "width": 38 - }, - { - "bbox": [ - 317, - 377, - 319, - 390 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 114, - 404, - 505, - 419 - ], - "lines": [ - { - "bbox": [ - 113, - 405, - 504, - 418 - ], - "spans": [ - { - "bbox": [ - 113, - 405, - 211, - 418 - ], - "score": 1.0, - "content": "Calculate the angle ", - "type": "text" - }, - { - "bbox": [ - 211, - 406, - 220, - 417 - ], - "score": 0.71, - "content": "\\theta", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 221, - 405, - 504, - 418 - ], - "score": 1.0, - "content": "between a first-order maximum and the central maximum.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 484, - 418, - 535, - 431 - ], - "lines": [ - { - "bbox": [ - 485, - 417, - 536, - 431 - ], - "spans": [ - { - "bbox": [ - 485, - 417, - 536, - 431 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 187, - 698, - 392, - 712 - ], - "lines": [ - { - "bbox": [ - 187, - 698, - 391, - 712 - ], - "spans": [ - { - "bbox": [ - 187, - 698, - 391, - 712 - ], - "score": 1.0, - "content": "Question 3 continues on the next page", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - } - ], - "layout_bboxes": [], - "page_idx": 8, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 109, - 137, - 443, - 350 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 253, - 121, - 299, - 135 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 254, - 122, - 299, - 135 - ], - "spans": [ - { - "bbox": [ - 254, - 122, - 299, - 135 - ], - "score": 1.0, - "content": "Figure 4", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "image_body", - "bbox": [ - 109, - 137, - 443, - 350 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 109, - 137, - 443, - 350 - ], - "spans": [ - { - "bbox": [ - 109, - 137, - 443, - 350 - ], - "score": 0.944, - "type": "image", - "image_path": "fabc3263cd3a872616fd323d3dd9d35c53da4d2ddf638358e589f2a33caae3f1.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 109, - 137, - 443, - 208.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 109, - 208.0, - 443, - 279.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 109, - 279.0, - 443, - 350.0 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 4.0 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 64, - 105, - 83 - ], - "lines": [ - { - "bbox": [ - 48, - 66, - 102, - 81 - ], - "spans": [ - { - "bbox": [ - 48, - 66, - 102, - 81 - ], - "score": 1.0, - "content": "0 3 . 3 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 824 - ], - "lines": [ - { - "bbox": [ - 59, - 815, - 81, - 825 - ], - "spans": [ - { - "bbox": [ - 59, - 815, - 81, - 825 - ], - "score": 0.9593108296394348, - "content": "0 9", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 540, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 540, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 784 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 0, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 285, - 29, - 292, - 39 - ], - "lines": [ - { - "bbox": [ - 285, - 29, - 294, - 41 - ], - "spans": [ - { - "bbox": [ - 285, - 29, - 294, - 41 - ], - "score": 1.0, - "content": "9 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 314, - 646, - 528, - 662 - ], - "lines": [ - { - "bbox": [ - 316, - 645, - 528, - 659 - ], - "spans": [ - { - "bbox": [ - 316, - 645, - 334, - 658 - ], - "score": 1.0, - "content": " = ", - "type": "text" - }, - { - "bbox": [ - 486, - 646, - 528, - 659 - ], - "score": 1.0, - "content": "degrees", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 67, - 519, - 108 - ], - "lines": [ - { - "bbox": [ - 114, - 68, - 518, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 68, - 518, - 82 - ], - "score": 1.0, - "content": "A diffraction grating is placed between the red filter and the screen. The diffraction", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 82, - 488, - 96 - ], - "spans": [ - { - "bbox": [ - 114, - 82, - 488, - 96 - ], - "score": 1.0, - "content": "grating has 500 lines per millimetre. Light is incident normally on the grating.", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 115, - 96, - 279, - 107 - ], - "spans": [ - { - "bbox": [ - 115, - 96, - 279, - 107 - ], - "score": 1.0, - "content": "Figure 4 shows the arrangement.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 68, - 518, - 107 - ] - }, - { - "type": "image", - "bbox": [ - 109, - 137, - 443, - 350 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 253, - 121, - 299, - 135 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 254, - 122, - 299, - 135 - ], - "spans": [ - { - "bbox": [ - 254, - 122, - 299, - 135 - ], - "score": 1.0, - "content": "Figure 4", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "image_body", - "bbox": [ - 109, - 137, - 443, - 350 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 109, - 137, - 443, - 350 - ], - "spans": [ - { - "bbox": [ - 109, - 137, - 443, - 350 - ], - "score": 0.944, - "type": "image", - "image_path": "fabc3263cd3a872616fd323d3dd9d35c53da4d2ddf638358e589f2a33caae3f1.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 109, - 137, - 443, - 208.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 109, - 208.0, - 443, - 279.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 109, - 279.0, - 443, - 350.0 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 4.0, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 115, - 377, - 319, - 390 - ], - "lines": [ - { - "bbox": [ - 114, - 377, - 319, - 390 - ], - "spans": [ - { - "bbox": [ - 114, - 377, - 278, - 390 - ], - "score": 1.0, - "content": "The wavelength of the red light is", - "type": "text" - }, - { - "bbox": [ - 278, - 377, - 316, - 390 - ], - "score": 0.55, - "content": "650\\mathrm{nm}", - "type": "inline_equation", - "height": 13, - "width": 38 - }, - { - "bbox": [ - 317, - 377, - 319, - 390 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 377, - 319, - 390 - ] - }, - { - "type": "text", - "bbox": [ - 114, - 404, - 505, - 419 - ], - "lines": [ - { - "bbox": [ - 113, - 405, - 504, - 418 - ], - "spans": [ - { - "bbox": [ - 113, - 405, - 211, - 418 - ], - "score": 1.0, - "content": "Calculate the angle ", - "type": "text" - }, - { - "bbox": [ - 211, - 406, - 220, - 417 - ], - "score": 0.71, - "content": "\\theta", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 221, - 405, - 504, - 418 - ], - "score": 1.0, - "content": "between a first-order maximum and the central maximum.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 405, - 504, - 418 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 418, - 535, - 431 - ], - "lines": [ - { - "bbox": [ - 485, - 417, - 536, - 431 - ], - "spans": [ - { - "bbox": [ - 485, - 417, - 536, - 431 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 485, - 417, - 536, - 431 - ] - }, - { - "type": "text", - "bbox": [ - 187, - 698, - 392, - 712 - ], - "lines": [ - { - "bbox": [ - 187, - 698, - 391, - 712 - ], - "spans": [ - { - "bbox": [ - 187, - 698, - 391, - 712 - ], - "score": 1.0, - "content": "Question 3 continues on the next page", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 187, - 698, - 391, - 712 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 68, - 503, - 95 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 501, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 70, - 450, - 82 - ], - "score": 1.0, - "content": "In practice, the filter transmits red light with wavelengths in the range", - "type": "text" - }, - { - "bbox": [ - 451, - 69, - 489, - 82 - ], - "score": 0.46, - "content": "600\\mathrm{nm}", - "type": "inline_equation", - "height": 13, - "width": 38 - }, - { - "bbox": [ - 490, - 70, - 501, - 82 - ], - "score": 1.0, - "content": "to", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 81, - 156, - 96 - ], - "spans": [ - { - "bbox": [ - 113, - 82, - 152, - 95 - ], - "score": 0.26, - "content": "700\\mathrm{nm}", - "type": "inline_equation", - "height": 13, - "width": 39 - }, - { - "bbox": [ - 152, - 81, - 156, - 96 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 113, - 107, - 390, - 122 - ], - "lines": [ - { - "bbox": [ - 114, - 109, - 390, - 121 - ], - "spans": [ - { - "bbox": [ - 114, - 109, - 390, - 121 - ], - "score": 1.0, - "content": "Suggest how this affects the appearance of the maxima.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 484, - 120, - 535, - 134 - ], - "lines": [ - { - "bbox": [ - 485, - 121, - 535, - 134 - ], - "spans": [ - { - "bbox": [ - 485, - 121, - 535, - 134 - ], - "score": 1.0, - "content": "[2 marks]", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "table", - "bbox": [ - 110, - 139, - 536, - 505 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 110, - 139, - 536, - 505 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 110, - 139, - 536, - 505 - ], - "spans": [ - { - "bbox": [ - 110, - 139, - 536, - 505 - ], - "score": 0.137, - "type": "table", - "image_path": "7c8e14945066cf5ed3344a4be90b3d82174e88eb545cda6532b593a851a68805.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 110, - 139, - 536, - 261.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 110, - 261.0, - 536, - 383.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 110, - 383.0, - 536, - 505.0 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5 - } - ], - "layout_bboxes": [], - "page_idx": 9, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 110, - 139, - 536, - 505 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 110, - 139, - 536, - 505 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 110, - 139, - 536, - 505 - ], - "spans": [ - { - "bbox": [ - 110, - 139, - 536, - 505 - ], - "score": 0.137, - "type": "table", - "image_path": "7c8e14945066cf5ed3344a4be90b3d82174e88eb545cda6532b593a851a68805.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 110, - 139, - 536, - 261.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 110, - 261.0, - 536, - 383.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 110, - 383.0, - 536, - 505.0 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 544, - 464, - 577, - 506 - ], - "lines": [ - { - "bbox": [ - 557, - 489, - 564, - 497 - ], - "spans": [ - { - "bbox": [ - 557, - 489, - 564, - 497 - ], - "score": 1.0, - "content": "8", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 64, - 105, - 83 - ], - "lines": [ - { - "bbox": [ - 49, - 68, - 100, - 79 - ], - "spans": [ - { - "bbox": [ - 49, - 68, - 88, - 79 - ], - "score": 1.0, - "content": "0 3 . ", - "type": "text" - }, - { - "bbox": [ - 89, - 69, - 100, - 79 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 824 - ], - "lines": [ - { - "bbox": [ - 61, - 816, - 80, - 825 - ], - "spans": [ - { - "bbox": [ - 61, - 817, - 65, - 823 - ], - "score": 0.9902700185775757, - "content": "1", - "type": "text" - }, - { - "bbox": [ - 69, - 816, - 80, - 825 - ], - "score": 0.9854851365089417, - "content": "0", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "10 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 569, - 0, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 68, - 503, - 95 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 501, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 70, - 450, - 82 - ], - "score": 1.0, - "content": "In practice, the filter transmits red light with wavelengths in the range", - "type": "text" - }, - { - "bbox": [ - 451, - 69, - 489, - 82 - ], - "score": 0.46, - "content": "600\\mathrm{nm}", - "type": "inline_equation", - "height": 13, - "width": 38 - }, - { - "bbox": [ - 490, - 70, - 501, - 82 - ], - "score": 1.0, - "content": "to", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 81, - 156, - 96 - ], - "spans": [ - { - "bbox": [ - 113, - 82, - 152, - 95 - ], - "score": 0.26, - "content": "700\\mathrm{nm}", - "type": "inline_equation", - "height": 13, - "width": 39 - }, - { - "bbox": [ - 152, - 81, - 156, - 96 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_9", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 69, - 501, - 96 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 107, - 390, - 122 - ], - "lines": [ - { - "bbox": [ - 114, - 109, - 390, - 121 - ], - "spans": [ - { - "bbox": [ - 114, - 109, - 390, - 121 - ], - "score": 1.0, - "content": "Suggest how this affects the appearance of the maxima.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_9", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 109, - 390, - 121 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 120, - 535, - 134 - ], - "lines": [ - { - "bbox": [ - 485, - 121, - 535, - 134 - ], - "spans": [ - { - "bbox": [ - 485, - 121, - 535, - 134 - ], - "score": 1.0, - "content": "[2 marks]", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_9", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 485, - 121, - 535, - 134 - ] - }, - { - "type": "table", - "bbox": [ - 110, - 139, - 536, - 505 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 110, - 139, - 536, - 505 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 110, - 139, - 536, - 505 - ], - "spans": [ - { - "bbox": [ - 110, - 139, - 536, - 505 - ], - "score": 0.137, - "type": "table", - "image_path": "7c8e14945066cf5ed3344a4be90b3d82174e88eb545cda6532b593a851a68805.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 110, - 139, - 536, - 261.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 110, - 261.0, - 536, - 383.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 110, - 383.0, - 536, - 505.0 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5, - "page_num": "page_9", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 111, - 68, - 464, - 82 - ], - "lines": [ - { - "bbox": [ - 113, - 69, - 463, - 82 - ], - "spans": [ - { - "bbox": [ - 113, - 69, - 463, - 82 - ], - "score": 1.0, - "content": "Figure 5 shows a simplified catapult used to hurl projectiles a long way.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "image", - "bbox": [ - 100, - 126, - 474, - 289 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 267, - 98, - 313, - 112 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 99, - 313, - 112 - ], - "spans": [ - { - "bbox": [ - 268, - 99, - 313, - 112 - ], - "score": 1.0, - "content": "Figure 5", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "image_body", - "bbox": [ - 100, - 126, - 474, - 289 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 100, - 126, - 474, - 289 - ], - "spans": [ - { - "bbox": [ - 100, - 126, - 474, - 289 - ], - "score": 0.965, - "type": "image", - "image_path": "0341f0a8113368ec4c4311167f1a870b8054149af1695356487fb464c85e784b.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 100, - 126, - 474, - 180.33333333333334 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 100, - 180.33333333333334, - 474, - 234.66666666666669 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 100, - 234.66666666666669, - 474, - 289.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 2.0 - }, - { - "type": "text", - "bbox": [ - 113, - 317, - 526, - 369 - ], - "lines": [ - { - "bbox": [ - 114, - 318, - 518, - 331 - ], - "spans": [ - { - "bbox": [ - 114, - 318, - 518, - 331 - ], - "score": 1.0, - "content": "The counterweight is a wooden box full of stones attached to one end of the beam.", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 113, - 331, - 525, - 344 - ], - "spans": [ - { - "bbox": [ - 113, - 331, - 525, - 344 - ], - "score": 1.0, - "content": "The projectile, usually a large rock, is in a sling hanging vertically from the other end ", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 113, - 343, - 356, - 357 - ], - "spans": [ - { - "bbox": [ - 113, - 343, - 356, - 357 - ], - "score": 1.0, - "content": "of the beam. The weight of the sling is negligible.", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 113, - 356, - 409, - 369 - ], - "spans": [ - { - "bbox": [ - 113, - 356, - 409, - 369 - ], - "score": 1.0, - "content": "The beam is held horizontal by a rope attached to the frame.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 6.5 - }, - { - "type": "text", - "bbox": [ - 113, - 395, - 526, - 422 - ], - "lines": [ - { - "bbox": [ - 113, - 395, - 526, - 410 - ], - "spans": [ - { - "bbox": [ - 113, - 395, - 526, - 410 - ], - "score": 1.0, - "content": "The catapult is designed so that the weight of the beam and the weight of the empty", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 113, - 409, - 376, - 422 - ], - "spans": [ - { - "bbox": [ - 113, - 409, - 376, - 422 - ], - "score": 1.0, - "content": "wooden box have no effect on the tension in the rope.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9.5 - }, - { - "type": "text", - "bbox": [ - 113, - 435, - 335, - 449 - ], - "lines": [ - { - "bbox": [ - 114, - 436, - 334, - 449 - ], - "spans": [ - { - "bbox": [ - 114, - 436, - 334, - 449 - ], - "score": 1.0, - "content": "Suggest how the pivot position achieves this.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 484, - 448, - 535, - 461 - ], - "lines": [ - { - "bbox": [ - 485, - 447, - 536, - 462 - ], - "spans": [ - { - "bbox": [ - 485, - 447, - 536, - 462 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 112, - 461, - 536, - 695 - ], - "lines": [ - { - "bbox": [ - 112, - 461, - 536, - 539.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 112, - 539.0, - 536, - 617.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 112, - 617.0, - 536, - 695.0 - ], - "spans": [], - "index": 15 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 187, - 731, - 391, - 744 - ], - "lines": [ - { - "bbox": [ - 187, - 731, - 391, - 744 - ], - "spans": [ - { - "bbox": [ - 187, - 731, - 391, - 744 - ], - "score": 1.0, - "content": "Question 4 continues on the next page", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16 - } - ], - "layout_bboxes": [], - "page_idx": 10, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 100, - 126, - 474, - 289 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 267, - 98, - 313, - 112 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 99, - 313, - 112 - ], - "spans": [ - { - "bbox": [ - 268, - 99, - 313, - 112 - ], - "score": 1.0, - "content": "Figure 5", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "image_body", - "bbox": [ - 100, - 126, - 474, - 289 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 100, - 126, - 474, - 289 - ], - "spans": [ - { - "bbox": [ - 100, - 126, - 474, - 289 - ], - "score": 0.965, - "type": "image", - "image_path": "0341f0a8113368ec4c4311167f1a870b8054149af1695356487fb464c85e784b.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 100, - 126, - 474, - 180.33333333333334 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 100, - 180.33333333333334, - 474, - 234.66666666666669 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 100, - 234.66666666666669, - 474, - 289.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 2.0 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 392, - 105, - 410 - ], - "lines": [ - { - "bbox": [ - 50, - 395, - 100, - 407 - ], - "spans": [ - { - "bbox": [ - 50, - 395, - 63, - 407 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 67, - 395, - 100, - 407 - ], - "score": 1.0, - "content": "4 . 1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 82, - 82 - ], - "lines": [ - { - "bbox": [ - 51, - 68, - 77, - 79 - ], - "spans": [ - { - "bbox": [ - 51, - 68, - 64, - 79 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 65, - 69, - 77, - 79 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 824 - ], - "lines": [ - { - "bbox": [ - 61, - 816, - 79, - 824 - ], - "spans": [ - { - "bbox": [ - 61, - 818, - 64, - 822 - ], - "score": 0.8628842830657959, - "content": "1", - "type": "text" - }, - { - "bbox": [ - 70, - 816, - 79, - 824 - ], - "score": 0.9990310668945312, - "content": "1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 783 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 479, - 815, - 540, - 824 - ], - "spans": [ - { - "bbox": [ - 479, - 815, - 540, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 294, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 297, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 297, - 42 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 14, - "width": 16 - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 111, - 68, - 464, - 82 - ], - "lines": [ - { - "bbox": [ - 113, - 69, - 463, - 82 - ], - "spans": [ - { - "bbox": [ - 113, - 69, - 463, - 82 - ], - "score": 1.0, - "content": "Figure 5 shows a simplified catapult used to hurl projectiles a long way.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_10", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 69, - 463, - 82 - ] - }, - { - "type": "image", - "bbox": [ - 100, - 126, - 474, - 289 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 267, - 98, - 313, - 112 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 99, - 313, - 112 - ], - "spans": [ - { - "bbox": [ - 268, - 99, - 313, - 112 - ], - "score": 1.0, - "content": "Figure 5", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "image_body", - "bbox": [ - 100, - 126, - 474, - 289 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 100, - 126, - 474, - 289 - ], - "spans": [ - { - "bbox": [ - 100, - 126, - 474, - 289 - ], - "score": 0.965, - "type": "image", - "image_path": "0341f0a8113368ec4c4311167f1a870b8054149af1695356487fb464c85e784b.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 100, - 126, - 474, - 180.33333333333334 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 100, - 180.33333333333334, - 474, - 234.66666666666669 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 100, - 234.66666666666669, - 474, - 289.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 2.0, - "page_num": "page_10", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 113, - 317, - 526, - 369 - ], - "lines": [ - { - "bbox": [ - 114, - 318, - 518, - 331 - ], - "spans": [ - { - "bbox": [ - 114, - 318, - 518, - 331 - ], - "score": 1.0, - "content": "The counterweight is a wooden box full of stones attached to one end of the beam.", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 113, - 331, - 525, - 344 - ], - "spans": [ - { - "bbox": [ - 113, - 331, - 525, - 344 - ], - "score": 1.0, - "content": "The projectile, usually a large rock, is in a sling hanging vertically from the other end ", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 113, - 343, - 356, - 357 - ], - "spans": [ - { - "bbox": [ - 113, - 343, - 356, - 357 - ], - "score": 1.0, - "content": "of the beam. The weight of the sling is negligible.", - "type": "text" - } - ], - "index": 7, - "is_list_end_line": true - }, - { - "bbox": [ - 113, - 356, - 409, - 369 - ], - "spans": [ - { - "bbox": [ - 113, - 356, - 409, - 369 - ], - "score": 1.0, - "content": "The beam is held horizontal by a rope attached to the frame.", - "type": "text" - } - ], - "index": 8, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 6.5, - "page_num": "page_10", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 318, - 525, - 369 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 395, - 526, - 422 - ], - "lines": [ - { - "bbox": [ - 113, - 395, - 526, - 410 - ], - "spans": [ - { - "bbox": [ - 113, - 395, - 526, - 410 - ], - "score": 1.0, - "content": "The catapult is designed so that the weight of the beam and the weight of the empty", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 113, - 409, - 376, - 422 - ], - "spans": [ - { - "bbox": [ - 113, - 409, - 376, - 422 - ], - "score": 1.0, - "content": "wooden box have no effect on the tension in the rope.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9.5, - "page_num": "page_10", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 395, - 526, - 422 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 435, - 335, - 449 - ], - "lines": [ - { - "bbox": [ - 114, - 436, - 334, - 449 - ], - "spans": [ - { - "bbox": [ - 114, - 436, - 334, - 449 - ], - "score": 1.0, - "content": "Suggest how the pivot position achieves this.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_10", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 436, - 334, - 449 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 448, - 535, - 461 - ], - "lines": [ - { - "bbox": [ - 485, - 447, - 536, - 462 - ], - "spans": [ - { - "bbox": [ - 485, - 447, - 536, - 462 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_10", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 485, - 447, - 536, - 462 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 461, - 536, - 695 - ], - "lines": [ - { - "bbox": [ - 112, - 461, - 536, - 539.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 112, - 539.0, - 536, - 617.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 112, - 617.0, - 536, - 695.0 - ], - "spans": [], - "index": 15 - } - ], - "index": 14, - "page_num": "page_10", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 112, - 461, - 536, - 695.0 - ] - }, - { - "type": "text", - "bbox": [ - 187, - 731, - 391, - 744 - ], - "lines": [ - { - "bbox": [ - 187, - 731, - 391, - 744 - ], - "spans": [ - { - "bbox": [ - 187, - 731, - 391, - 744 - ], - "score": 1.0, - "content": "Question 4 continues on the next page", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16, - "page_num": "page_10", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 187, - 731, - 391, - 744 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 68, - 531, - 95 - ], - "lines": [ - { - "bbox": [ - 113, - 69, - 532, - 83 - ], - "spans": [ - { - "bbox": [ - 113, - 69, - 374, - 82 - ], - "score": 1.0, - "content": "The stones in the counterweight have a total mass of ", - "type": "text" - }, - { - "bbox": [ - 374, - 69, - 409, - 83 - ], - "score": 0.82, - "content": "610\\mathrm{kg}", - "type": "inline_equation", - "height": 14, - "width": 35 - }, - { - "bbox": [ - 410, - 69, - 532, - 82 - ], - "score": 1.0, - "content": "and the projectile weighs", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 82, - 149, - 96 - ], - "spans": [ - { - "bbox": [ - 113, - 82, - 149, - 96 - ], - "score": 1.0, - "content": "250 N.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 114, - 109, - 276, - 122 - ], - "lines": [ - { - "bbox": [ - 114, - 110, - 275, - 122 - ], - "spans": [ - { - "bbox": [ - 114, - 110, - 275, - 122 - ], - "score": 1.0, - "content": "Calculate the tension in the rope.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 484, - 122, - 535, - 136 - ], - "lines": [ - { - "bbox": [ - 484, - 121, - 536, - 136 - ], - "spans": [ - { - "bbox": [ - 484, - 121, - 536, - 136 - ], - "score": 1.0, - "content": "[5 marks] ", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 113, - 447, - 532, - 488 - ], - "lines": [ - { - "bbox": [ - 113, - 448, - 532, - 462 - ], - "spans": [ - { - "bbox": [ - 113, - 448, - 532, - 462 - ], - "score": 1.0, - "content": "When the rope is cut, the counterweight rotates clockwise. When the beam is vertical", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 114, - 462, - 530, - 474 - ], - "spans": [ - { - "bbox": [ - 114, - 462, - 530, - 474 - ], - "score": 1.0, - "content": "it is prevented from rotating further. The projectile is then released horizontally with a", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 113, - 473, - 320, - 488 - ], - "spans": [ - { - "bbox": [ - 113, - 474, - 166, - 488 - ], - "score": 1.0, - "content": "velocity of ", - "type": "text" - }, - { - "bbox": [ - 166, - 473, - 207, - 486 - ], - "score": 0.89, - "content": "18\\mathrm{m~s}^{-1}", - "type": "inline_equation", - "height": 13, - "width": 41 - }, - { - "bbox": [ - 207, - 474, - 320, - 488 - ], - "score": 1.0, - "content": ", as shown in Figure 6.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 114, - 500, - 434, - 514 - ], - "lines": [ - { - "bbox": [ - 113, - 501, - 433, - 514 - ], - "spans": [ - { - "bbox": [ - 113, - 501, - 305, - 514 - ], - "score": 1.0, - "content": "The projectile is released at a height of", - "type": "text" - }, - { - "bbox": [ - 305, - 501, - 335, - 513 - ], - "score": 0.57, - "content": "7.5\\mathrm{m}", - "type": "inline_equation", - "height": 12, - "width": 30 - }, - { - "bbox": [ - 336, - 501, - 433, - 514 - ], - "score": 1.0, - "content": "above ground level.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "image", - "bbox": [ - 115, - 560, - 465, - 754 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 267, - 531, - 313, - 545 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 532, - 313, - 545 - ], - "spans": [ - { - "bbox": [ - 268, - 532, - 313, - 545 - ], - "score": 1.0, - "content": "Figure 6", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "image_body", - "bbox": [ - 115, - 560, - 465, - 754 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 115, - 560, - 465, - 754 - ], - "spans": [ - { - "bbox": [ - 115, - 560, - 465, - 754 - ], - "score": 0.969, - "type": "image", - "image_path": "429377680bf1eab098132953c8f6c07f75ca6a4f58f5e3903adccea5950f41ec.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 115, - 560, - 465, - 624.6666666666666 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 115, - 624.6666666666666, - 465, - 689.3333333333333 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 115, - 689.3333333333333, - 465, - 753.9999999999999 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 9.0 - } - ], - "layout_bboxes": [], - "page_idx": 11, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 115, - 560, - 465, - 754 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 267, - 531, - 313, - 545 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 532, - 313, - 545 - ], - "spans": [ - { - "bbox": [ - 268, - 532, - 313, - 545 - ], - "score": 1.0, - "content": "Figure 6", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "image_body", - "bbox": [ - 115, - 560, - 465, - 754 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 115, - 560, - 465, - 754 - ], - "spans": [ - { - "bbox": [ - 115, - 560, - 465, - 754 - ], - "score": 0.969, - "type": "image", - "image_path": "429377680bf1eab098132953c8f6c07f75ca6a4f58f5e3903adccea5950f41ec.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 115, - 560, - 465, - 624.6666666666666 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 115, - 624.6666666666666, - 465, - 689.3333333333333 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 115, - 689.3333333333333, - 465, - 753.9999999999999 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 9.0 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 444, - 105, - 462 - ], - "lines": [ - { - "bbox": [ - 50, - 447, - 100, - 459 - ], - "spans": [ - { - "bbox": [ - 50, - 447, - 65, - 459 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 65, - 447, - 100, - 459 - ], - "score": 1.0, - "content": "4 . 3", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 479, - 815, - 540, - 825 - ], - "spans": [ - { - "bbox": [ - 479, - 815, - 540, - 825 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 64, - 105, - 83 - ], - "lines": [ - { - "bbox": [ - 50, - 68, - 100, - 79 - ], - "spans": [ - { - "bbox": [ - 50, - 68, - 63, - 79 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 68, - 68, - 79, - 79 - ], - "score": 1.0, - "content": "4 ", - "type": "text" - }, - { - "bbox": [ - 89, - 68, - 100, - 79 - ], - "score": 1.0, - "content": "2", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "12 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 60, - 815, - 80, - 825 - ], - "spans": [ - { - "bbox": [ - 60, - 817, - 67, - 824 - ], - "score": 0.9996863603591919, - "content": "1", - "type": "text" - }, - { - "bbox": [ - 67, - 815, - 80, - 825 - ], - "score": 0.7593994736671448, - "content": " 2", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 0, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 0.9991323947906494, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 313, - 407, - 527, - 421 - ], - "lines": [ - { - "bbox": [ - 314, - 407, - 528, - 420 - ], - "spans": [ - { - "bbox": [ - 314, - 407, - 352, - 420 - ], - "score": 1.0, - "content": "tension", - "type": "text" - }, - { - "bbox": [ - 352, - 410, - 362, - 419 - ], - "score": 0.58, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 10 - }, - { - "bbox": [ - 514, - 407, - 528, - 420 - ], - "score": 1.0, - "content": "N ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 68, - 531, - 95 - ], - "lines": [ - { - "bbox": [ - 113, - 69, - 532, - 83 - ], - "spans": [ - { - "bbox": [ - 113, - 69, - 374, - 82 - ], - "score": 1.0, - "content": "The stones in the counterweight have a total mass of ", - "type": "text" - }, - { - "bbox": [ - 374, - 69, - 409, - 83 - ], - "score": 0.82, - "content": "610\\mathrm{kg}", - "type": "inline_equation", - "height": 14, - "width": 35 - }, - { - "bbox": [ - 410, - 69, - 532, - 82 - ], - "score": 1.0, - "content": "and the projectile weighs", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 82, - 149, - 96 - ], - "spans": [ - { - "bbox": [ - 113, - 82, - 149, - 96 - ], - "score": 1.0, - "content": "250 N.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_11", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 69, - 532, - 96 - ] - }, - { - "type": "text", - "bbox": [ - 114, - 109, - 276, - 122 - ], - "lines": [ - { - "bbox": [ - 114, - 110, - 275, - 122 - ], - "spans": [ - { - "bbox": [ - 114, - 110, - 275, - 122 - ], - "score": 1.0, - "content": "Calculate the tension in the rope.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_11", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 110, - 275, - 122 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 122, - 535, - 136 - ], - "lines": [ - { - "bbox": [ - 484, - 121, - 536, - 136 - ], - "spans": [ - { - "bbox": [ - 484, - 121, - 536, - 136 - ], - "score": 1.0, - "content": "[5 marks] ", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_11", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 484, - 121, - 536, - 136 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 447, - 532, - 488 - ], - "lines": [ - { - "bbox": [ - 113, - 448, - 532, - 462 - ], - "spans": [ - { - "bbox": [ - 113, - 448, - 532, - 462 - ], - "score": 1.0, - "content": "When the rope is cut, the counterweight rotates clockwise. When the beam is vertical", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 114, - 462, - 530, - 474 - ], - "spans": [ - { - "bbox": [ - 114, - 462, - 530, - 474 - ], - "score": 1.0, - "content": "it is prevented from rotating further. The projectile is then released horizontally with a", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 113, - 473, - 320, - 488 - ], - "spans": [ - { - "bbox": [ - 113, - 474, - 166, - 488 - ], - "score": 1.0, - "content": "velocity of ", - "type": "text" - }, - { - "bbox": [ - 166, - 473, - 207, - 486 - ], - "score": 0.89, - "content": "18\\mathrm{m~s}^{-1}", - "type": "inline_equation", - "height": 13, - "width": 41 - }, - { - "bbox": [ - 207, - 474, - 320, - 488 - ], - "score": 1.0, - "content": ", as shown in Figure 6.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5, - "page_num": "page_11", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 448, - 532, - 488 - ] - }, - { - "type": "text", - "bbox": [ - 114, - 500, - 434, - 514 - ], - "lines": [ - { - "bbox": [ - 113, - 501, - 433, - 514 - ], - "spans": [ - { - "bbox": [ - 113, - 501, - 305, - 514 - ], - "score": 1.0, - "content": "The projectile is released at a height of", - "type": "text" - }, - { - "bbox": [ - 305, - 501, - 335, - 513 - ], - "score": 0.57, - "content": "7.5\\mathrm{m}", - "type": "inline_equation", - "height": 12, - "width": 30 - }, - { - "bbox": [ - 336, - 501, - 433, - 514 - ], - "score": 1.0, - "content": "above ground level.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_11", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 501, - 433, - 514 - ] - }, - { - "type": "image", - "bbox": [ - 115, - 560, - 465, - 754 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 267, - 531, - 313, - 545 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 532, - 313, - 545 - ], - "spans": [ - { - "bbox": [ - 268, - 532, - 313, - 545 - ], - "score": 1.0, - "content": "Figure 6", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "image_body", - "bbox": [ - 115, - 560, - 465, - 754 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 115, - 560, - 465, - 754 - ], - "spans": [ - { - "bbox": [ - 115, - 560, - 465, - 754 - ], - "score": 0.969, - "type": "image", - "image_path": "429377680bf1eab098132953c8f6c07f75ca6a4f58f5e3903adccea5950f41ec.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 115, - 560, - 465, - 624.6666666666666 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 115, - 624.6666666666666, - 465, - 689.3333333333333 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 115, - 689.3333333333333, - 465, - 753.9999999999999 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 9.0, - "page_num": "page_11", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 65, - 505, - 92 - ], - "lines": [ - { - "bbox": [ - 115, - 67, - 503, - 79 - ], - "spans": [ - { - "bbox": [ - 115, - 67, - 503, - 79 - ], - "score": 1.0, - "content": "The range of the catapult is the horizontal distance between the point where the", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 79, - 347, - 92 - ], - "spans": [ - { - "bbox": [ - 113, - 79, - 347, - 92 - ], - "score": 1.0, - "content": "projectile is released to the point where it lands.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 113, - 104, - 218, - 130 - ], - "lines": [ - { - "bbox": [ - 114, - 104, - 214, - 118 - ], - "spans": [ - { - "bbox": [ - 114, - 104, - 214, - 118 - ], - "score": 1.0, - "content": "Calculate the range.", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 114, - 118, - 218, - 130 - ], - "spans": [ - { - "bbox": [ - 114, - 118, - 218, - 130 - ], - "score": 1.0, - "content": "Ignore air resistance.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5 - }, - { - "type": "text", - "bbox": [ - 113, - 376, - 503, - 416 - ], - "lines": [ - { - "bbox": [ - 114, - 378, - 500, - 390 - ], - "spans": [ - { - "bbox": [ - 114, - 378, - 500, - 390 - ], - "score": 1.0, - "content": "In another release, the sling is adjusted so that a projectile of the same mass is", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 114, - 392, - 502, - 403 - ], - "spans": [ - { - "bbox": [ - 114, - 392, - 502, - 403 - ], - "score": 1.0, - "content": "released just before the wooden beam is vertical. The projectile is not released", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 113, - 403, - 174, - 417 - ], - "spans": [ - { - "bbox": [ - 113, - 403, - 174, - 417 - ], - "score": 1.0, - "content": "horizontally.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 115, - 428, - 423, - 442 - ], - "lines": [ - { - "bbox": [ - 114, - 429, - 421, - 442 - ], - "spans": [ - { - "bbox": [ - 114, - 429, - 421, - 442 - ], - "score": 1.0, - "content": "Discuss the effect this change has on the range of the catapult.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 112, - 442, - 536, - 662 - ], - "lines": [ - { - "bbox": [ - 484, - 441, - 537, - 456 - ], - "spans": [ - { - "bbox": [ - 484, - 441, - 537, - 456 - ], - "score": 1.0, - "content": "[3 marks] ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - } - ], - "layout_bboxes": [], - "page_idx": 12, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 544, - 621, - 576, - 663 - ], - "lines": [ - { - "bbox": [ - 552, - 645, - 568, - 656 - ], - "spans": [ - { - "bbox": [ - 552, - 645, - 568, - 656 - ], - "score": 1.0, - "content": "12 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 373, - 105, - 391 - ], - "lines": [ - { - "bbox": [ - 51, - 377, - 99, - 388 - ], - "spans": [ - { - "bbox": [ - 51, - 377, - 62, - 388 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 68, - 378, - 78, - 387 - ], - "score": 1.0, - "content": "4 ", - "type": "text" - }, - { - "bbox": [ - 90, - 378, - 99, - 387 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 783 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 540, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 540, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 824 - ], - "lines": [ - { - "bbox": [ - 60, - 816, - 80, - 824 - ], - "spans": [ - { - "bbox": [ - 60, - 817, - 65, - 823 - ], - "score": 0.9973475933074951, - "content": "1", - "type": "text" - }, - { - "bbox": [ - 70, - 816, - 80, - 824 - ], - "score": 0.9999197721481323, - "content": "3", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "13 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 0, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 484, - 129, - 535, - 143 - ], - "lines": [ - { - "bbox": [ - 485, - 129, - 536, - 143 - ], - "spans": [ - { - "bbox": [ - 485, - 129, - 536, - 143 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 321, - 336, - 527, - 350 - ], - "lines": [ - { - "bbox": [ - 322, - 336, - 528, - 349 - ], - "spans": [ - { - "bbox": [ - 322, - 336, - 352, - 349 - ], - "score": 1.0, - "content": "range", - "type": "text" - }, - { - "bbox": [ - 352, - 338, - 362, - 347 - ], - "score": 0.37, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 10 - }, - { - "bbox": [ - 514, - 337, - 528, - 348 - ], - "score": 1.0, - "content": "m ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 65, - 505, - 92 - ], - "lines": [ - { - "bbox": [ - 115, - 67, - 503, - 79 - ], - "spans": [ - { - "bbox": [ - 115, - 67, - 503, - 79 - ], - "score": 1.0, - "content": "The range of the catapult is the horizontal distance between the point where the", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 79, - 347, - 92 - ], - "spans": [ - { - "bbox": [ - 113, - 79, - 347, - 92 - ], - "score": 1.0, - "content": "projectile is released to the point where it lands.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_12", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 67, - 503, - 92 - ] - }, - { - "type": "list", - "bbox": [ - 113, - 104, - 218, - 130 - ], - "lines": [ - { - "bbox": [ - 114, - 104, - 214, - 118 - ], - "spans": [ - { - "bbox": [ - 114, - 104, - 214, - 118 - ], - "score": 1.0, - "content": "Calculate the range.", - "type": "text" - } - ], - "index": 2, - "is_list_end_line": true - }, - { - "bbox": [ - 114, - 118, - 218, - 130 - ], - "spans": [ - { - "bbox": [ - 114, - 118, - 218, - 130 - ], - "score": 1.0, - "content": "Ignore air resistance.", - "type": "text" - } - ], - "index": 3, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 2.5, - "page_num": "page_12", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 104, - 218, - 130 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 376, - 503, - 416 - ], - "lines": [ - { - "bbox": [ - 114, - 378, - 500, - 390 - ], - "spans": [ - { - "bbox": [ - 114, - 378, - 500, - 390 - ], - "score": 1.0, - "content": "In another release, the sling is adjusted so that a projectile of the same mass is", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 114, - 392, - 502, - 403 - ], - "spans": [ - { - "bbox": [ - 114, - 392, - 502, - 403 - ], - "score": 1.0, - "content": "released just before the wooden beam is vertical. The projectile is not released", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 113, - 403, - 174, - 417 - ], - "spans": [ - { - "bbox": [ - 113, - 403, - 174, - 417 - ], - "score": 1.0, - "content": "horizontally.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5, - "page_num": "page_12", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 378, - 502, - 417 - ] - }, - { - "type": "text", - "bbox": [ - 115, - 428, - 423, - 442 - ], - "lines": [ - { - "bbox": [ - 114, - 429, - 421, - 442 - ], - "spans": [ - { - "bbox": [ - 114, - 429, - 421, - 442 - ], - "score": 1.0, - "content": "Discuss the effect this change has on the range of the catapult.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_12", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 429, - 421, - 442 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 442, - 536, - 662 - ], - "lines": [ - { - "bbox": [ - 484, - 441, - 537, - 456 - ], - "spans": [ - { - "bbox": [ - 484, - 441, - 537, - 456 - ], - "score": 1.0, - "content": "[3 marks] ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_12", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 484, - 441, - 537, - 456 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 68, - 521, - 107 - ], - "lines": [ - { - "bbox": [ - 114, - 68, - 508, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 68, - 508, - 82 - ], - "score": 1.0, - "content": "Safety barriers are used on UK motorways to prevent vehicles crossing from one", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 83, - 519, - 93 - ], - "spans": [ - { - "bbox": [ - 114, - 83, - 519, - 93 - ], - "score": 1.0, - "content": "carriageway to the other carriageway. The barriers also absorb some of the kinetic", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 114, - 96, - 394, - 107 - ], - "spans": [ - { - "bbox": [ - 114, - 96, - 394, - 107 - ], - "score": 1.0, - "content": "energy of a vehicle and deflect vehicles along the barrier.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 113, - 120, - 530, - 147 - ], - "lines": [ - { - "bbox": [ - 114, - 121, - 528, - 133 - ], - "spans": [ - { - "bbox": [ - 114, - 121, - 528, - 133 - ], - "score": 1.0, - "content": "The standard test of a safety barrier uses a vehicle that contains dummies. The total", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 112, - 132, - 529, - 147 - ], - "spans": [ - { - "bbox": [ - 112, - 133, - 302, - 147 - ], - "score": 1.0, - "content": "mass of the vehicle and its contents is ", - "type": "text" - }, - { - "bbox": [ - 303, - 132, - 362, - 147 - ], - "score": 0.92, - "content": "1.5\\times10^{3}\\mathrm{kg}", - "type": "inline_equation", - "height": 15, - "width": 59 - }, - { - "bbox": [ - 363, - 133, - 471, - 147 - ], - "score": 1.0, - "content": " and its initial speed is ", - "type": "text" - }, - { - "bbox": [ - 472, - 132, - 526, - 146 - ], - "score": 0.88, - "content": "110\\mathrm{kmh^{-1}}", - "type": "inline_equation", - "height": 14, - "width": 54 - }, - { - "bbox": [ - 526, - 133, - 529, - 147 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5 - }, - { - "type": "text", - "bbox": [ - 114, - 161, - 419, - 176 - ], - "lines": [ - { - "bbox": [ - 114, - 162, - 419, - 175 - ], - "spans": [ - { - "bbox": [ - 114, - 163, - 382, - 175 - ], - "score": 1.0, - "content": "Show that the initial kinetic energy of the test vehicle is", - "type": "text" - }, - { - "bbox": [ - 383, - 162, - 416, - 175 - ], - "score": 0.8, - "content": "700\\mathrm{kJ}", - "type": "inline_equation", - "height": 13, - "width": 33 - }, - { - "bbox": [ - 416, - 163, - 419, - 175 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 93, - 346, - 519, - 361 - ], - "lines": [ - { - "bbox": [ - 109, - 346, - 518, - 362 - ], - "spans": [ - { - "bbox": [ - 109, - 346, - 386, - 362 - ], - "score": 1.0, - "content": "The test vehicle hits a steel safety barrier at an angle of", - "type": "text" - }, - { - "bbox": [ - 387, - 348, - 405, - 359 - ], - "score": 0.86, - "content": "20^{\\circ}", - "type": "inline_equation", - "height": 11, - "width": 18 - }, - { - "bbox": [ - 405, - 346, - 518, - 362 - ], - "score": 1.0, - "content": ", as shown in Figure 7.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "image", - "bbox": [ - 119, - 398, - 462, - 492 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 267, - 374, - 313, - 387 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 267, - 373, - 314, - 388 - ], - "spans": [ - { - "bbox": [ - 267, - 373, - 314, - 388 - ], - "score": 1.0, - "content": "Figure 7 ", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "image_body", - "bbox": [ - 119, - 398, - 462, - 492 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 119, - 398, - 462, - 492 - ], - "spans": [ - { - "bbox": [ - 119, - 398, - 462, - 492 - ], - "score": 0.945, - "type": "image", - "image_path": "afdb467c0e3976a0fbc7ca8e251a51ca8b5a95f7c60b84c7d9604ba3bf20fb0b.jpg" - } - ] - } - ], - "index": 9, - "virtual_lines": [ - { - "bbox": [ - 119, - 398, - 462, - 429.3333333333333 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 119, - 429.3333333333333, - 462, - 460.66666666666663 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 119, - 460.66666666666663, - 462, - 491.99999999999994 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 8.0 - }, - { - "type": "text", - "bbox": [ - 113, - 516, - 482, - 556 - ], - "lines": [ - { - "bbox": [ - 114, - 518, - 480, - 530 - ], - "spans": [ - { - "bbox": [ - 114, - 518, - 480, - 530 - ], - "score": 1.0, - "content": "Calculate the component of the momentum of the test vehicle in a direction", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 114, - 531, - 281, - 542 - ], - "spans": [ - { - "bbox": [ - 114, - 531, - 281, - 542 - ], - "score": 1.0, - "content": "along the line of the safety barrier.", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 113, - 543, - 316, - 556 - ], - "spans": [ - { - "bbox": [ - 113, - 543, - 316, - 556 - ], - "score": 1.0, - "content": "Give an appropriate unit for your answer. ", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 234, - 746, - 536, - 759 - ], - "lines": [ - { - "bbox": [ - 237, - 745, - 475, - 758 - ], - "spans": [ - { - "bbox": [ - 237, - 747, - 293, - 757 - ], - "score": 1.0, - "content": "momentum", - "type": "text" - }, - { - "bbox": [ - 293, - 747, - 304, - 756 - ], - "score": 0.66, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 11 - }, - { - "bbox": [ - 452, - 745, - 475, - 758 - ], - "score": 1.0, - "content": "unit ", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - } - ], - "layout_bboxes": [], - "page_idx": 13, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 119, - 398, - 462, - 492 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 267, - 374, - 313, - 387 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 267, - 373, - 314, - 388 - ], - "spans": [ - { - "bbox": [ - 267, - 373, - 314, - 388 - ], - "score": 1.0, - "content": "Figure 7 ", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "image_body", - "bbox": [ - 119, - 398, - 462, - 492 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 119, - 398, - 462, - 492 - ], - "spans": [ - { - "bbox": [ - 119, - 398, - 462, - 492 - ], - "score": 0.945, - "type": "image", - "image_path": "afdb467c0e3976a0fbc7ca8e251a51ca8b5a95f7c60b84c7d9604ba3bf20fb0b.jpg" - } - ] - } - ], - "index": 9, - "virtual_lines": [ - { - "bbox": [ - 119, - 398, - 462, - 429.3333333333333 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 119, - 429.3333333333333, - 462, - 460.66666666666663 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 119, - 460.66666666666663, - 462, - 491.99999999999994 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 8.0 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 584, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 824 - ], - "lines": [ - { - "bbox": [ - 72, - 817, - 78, - 823 - ], - "spans": [ - { - "bbox": [ - 72, - 817, - 78, - 823 - ], - "score": 0.9957278966903687, - "content": "4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 82, - 83 - ], - "lines": [ - { - "bbox": [ - 50, - 68, - 77, - 79 - ], - "spans": [ - { - "bbox": [ - 50, - 68, - 64, - 79 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 65, - 69, - 77, - 79 - ], - "score": 1.0, - "content": "5", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 158, - 105, - 176 - ], - "lines": [ - { - "bbox": [ - 47, - 161, - 100, - 174 - ], - "spans": [ - { - "bbox": [ - 47, - 161, - 67, - 173 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 65, - 161, - 100, - 174 - ], - "score": 1.0, - "content": "5 . 1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 295, - 39 - ], - "lines": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 14, - "width": 18 - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 343, - 105, - 361 - ], - "lines": [ - { - "bbox": [ - 47, - 345, - 103, - 360 - ], - "spans": [ - { - "bbox": [ - 47, - 345, - 103, - 360 - ], - "score": 1.0, - "content": "0 5 . 2 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 0, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 484, - 176, - 535, - 190 - ], - "lines": [ - { - "bbox": [ - 485, - 175, - 536, - 190 - ], - "spans": [ - { - "bbox": [ - 485, - 175, - 536, - 190 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 484, - 555, - 535, - 569 - ], - "lines": [ - { - "bbox": [ - 485, - 554, - 536, - 569 - ], - "spans": [ - { - "bbox": [ - 485, - 554, - 536, - 569 - ], - "score": 1.0, - "content": "[3 marks] ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 68, - 521, - 107 - ], - "lines": [ - { - "bbox": [ - 114, - 68, - 508, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 68, - 508, - 82 - ], - "score": 1.0, - "content": "Safety barriers are used on UK motorways to prevent vehicles crossing from one", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 83, - 519, - 93 - ], - "spans": [ - { - "bbox": [ - 114, - 83, - 519, - 93 - ], - "score": 1.0, - "content": "carriageway to the other carriageway. The barriers also absorb some of the kinetic", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 114, - 96, - 394, - 107 - ], - "spans": [ - { - "bbox": [ - 114, - 96, - 394, - 107 - ], - "score": 1.0, - "content": "energy of a vehicle and deflect vehicles along the barrier.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1, - "page_num": "page_13", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 68, - 519, - 107 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 120, - 530, - 147 - ], - "lines": [ - { - "bbox": [ - 114, - 121, - 528, - 133 - ], - "spans": [ - { - "bbox": [ - 114, - 121, - 528, - 133 - ], - "score": 1.0, - "content": "The standard test of a safety barrier uses a vehicle that contains dummies. The total", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 112, - 132, - 529, - 147 - ], - "spans": [ - { - "bbox": [ - 112, - 133, - 302, - 147 - ], - "score": 1.0, - "content": "mass of the vehicle and its contents is ", - "type": "text" - }, - { - "bbox": [ - 303, - 132, - 362, - 147 - ], - "score": 0.92, - "content": "1.5\\times10^{3}\\mathrm{kg}", - "type": "inline_equation", - "height": 15, - "width": 59 - }, - { - "bbox": [ - 363, - 133, - 471, - 147 - ], - "score": 1.0, - "content": " and its initial speed is ", - "type": "text" - }, - { - "bbox": [ - 472, - 132, - 526, - 146 - ], - "score": 0.88, - "content": "110\\mathrm{kmh^{-1}}", - "type": "inline_equation", - "height": 14, - "width": 54 - }, - { - "bbox": [ - 526, - 133, - 529, - 147 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5, - "page_num": "page_13", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 112, - 121, - 529, - 147 - ] - }, - { - "type": "text", - "bbox": [ - 114, - 161, - 419, - 176 - ], - "lines": [ - { - "bbox": [ - 114, - 162, - 419, - 175 - ], - "spans": [ - { - "bbox": [ - 114, - 163, - 382, - 175 - ], - "score": 1.0, - "content": "Show that the initial kinetic energy of the test vehicle is", - "type": "text" - }, - { - "bbox": [ - 383, - 162, - 416, - 175 - ], - "score": 0.8, - "content": "700\\mathrm{kJ}", - "type": "inline_equation", - "height": 13, - "width": 33 - }, - { - "bbox": [ - 416, - 163, - 419, - 175 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_13", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 162, - 419, - 175 - ] - }, - { - "type": "text", - "bbox": [ - 93, - 346, - 519, - 361 - ], - "lines": [ - { - "bbox": [ - 109, - 346, - 518, - 362 - ], - "spans": [ - { - "bbox": [ - 109, - 346, - 386, - 362 - ], - "score": 1.0, - "content": "The test vehicle hits a steel safety barrier at an angle of", - "type": "text" - }, - { - "bbox": [ - 387, - 348, - 405, - 359 - ], - "score": 0.86, - "content": "20^{\\circ}", - "type": "inline_equation", - "height": 11, - "width": 18 - }, - { - "bbox": [ - 405, - 346, - 518, - 362 - ], - "score": 1.0, - "content": ", as shown in Figure 7.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_13", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 109, - 346, - 518, - 362 - ] - }, - { - "type": "image", - "bbox": [ - 119, - 398, - 462, - 492 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 267, - 374, - 313, - 387 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 267, - 373, - 314, - 388 - ], - "spans": [ - { - "bbox": [ - 267, - 373, - 314, - 388 - ], - "score": 1.0, - "content": "Figure 7 ", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "image_body", - "bbox": [ - 119, - 398, - 462, - 492 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 119, - 398, - 462, - 492 - ], - "spans": [ - { - "bbox": [ - 119, - 398, - 462, - 492 - ], - "score": 0.945, - "type": "image", - "image_path": "afdb467c0e3976a0fbc7ca8e251a51ca8b5a95f7c60b84c7d9604ba3bf20fb0b.jpg" - } - ] - } - ], - "index": 9, - "virtual_lines": [ - { - "bbox": [ - 119, - 398, - 462, - 429.3333333333333 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 119, - 429.3333333333333, - 462, - 460.66666666666663 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 119, - 460.66666666666663, - 462, - 491.99999999999994 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 8.0, - "page_num": "page_13", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 113, - 516, - 482, - 556 - ], - "lines": [ - { - "bbox": [ - 114, - 518, - 480, - 530 - ], - "spans": [ - { - "bbox": [ - 114, - 518, - 480, - 530 - ], - "score": 1.0, - "content": "Calculate the component of the momentum of the test vehicle in a direction", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 114, - 531, - 281, - 542 - ], - "spans": [ - { - "bbox": [ - 114, - 531, - 281, - 542 - ], - "score": 1.0, - "content": "along the line of the safety barrier.", - "type": "text" - } - ], - "index": 12, - "is_list_end_line": true - }, - { - "bbox": [ - 113, - 543, - 316, - 556 - ], - "spans": [ - { - "bbox": [ - 113, - 543, - 316, - 556 - ], - "score": 1.0, - "content": "Give an appropriate unit for your answer. ", - "type": "text" - } - ], - "index": 13, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 12, - "page_num": "page_13", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 518, - 480, - 556 - ] - }, - { - "type": "text", - "bbox": [ - 234, - 746, - 536, - 759 - ], - "lines": [ - { - "bbox": [ - 237, - 745, - 475, - 758 - ], - "spans": [ - { - "bbox": [ - 237, - 747, - 293, - 757 - ], - "score": 1.0, - "content": "momentum", - "type": "text" - }, - { - "bbox": [ - 293, - 747, - 304, - 756 - ], - "score": 0.66, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 11 - }, - { - "bbox": [ - 452, - 745, - 475, - 758 - ], - "score": 1.0, - "content": "unit ", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_13", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 237, - 745, - 475, - 758 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 68, - 528, - 95 - ], - "lines": [ - { - "bbox": [ - 115, - 70, - 528, - 82 - ], - "spans": [ - { - "bbox": [ - 115, - 70, - 528, - 82 - ], - "score": 1.0, - "content": "Immediately after the collision, the test vehicle moves along the safety barrier with no", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 83, - 314, - 94 - ], - "spans": [ - { - "bbox": [ - 114, - 83, - 314, - 94 - ], - "score": 1.0, - "content": "change in its momentum in this direction.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 114, - 107, - 420, - 121 - ], - "lines": [ - { - "bbox": [ - 114, - 107, - 420, - 120 - ], - "spans": [ - { - "bbox": [ - 114, - 108, - 388, - 120 - ], - "score": 1.0, - "content": "Show that the kinetic energy lost in the collision is about", - "type": "text" - }, - { - "bbox": [ - 389, - 107, - 416, - 120 - ], - "score": 0.7, - "content": "80\\mathrm{kJ}", - "type": "inline_equation", - "height": 13, - "width": 27 - }, - { - "bbox": [ - 416, - 108, - 420, - 120 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 112, - 369, - 528, - 397 - ], - "lines": [ - { - "bbox": [ - 113, - 370, - 524, - 384 - ], - "spans": [ - { - "bbox": [ - 113, - 370, - 524, - 384 - ], - "score": 1.0, - "content": "The steel safety barrier deforms during the collision. For the barrier to pass the test,", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 113, - 383, - 509, - 398 - ], - "spans": [ - { - "bbox": [ - 113, - 383, - 326, - 398 - ], - "score": 1.0, - "content": "the test vehicle should not move more than", - "type": "text" - }, - { - "bbox": [ - 327, - 384, - 356, - 396 - ], - "score": 0.49, - "content": "1.5\\mathrm{m}", - "type": "inline_equation", - "height": 12, - "width": 29 - }, - { - "bbox": [ - 356, - 383, - 509, - 398 - ], - "score": 1.0, - "content": " towards the other carriageway.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5 - }, - { - "type": "text", - "bbox": [ - 113, - 410, - 454, - 436 - ], - "lines": [ - { - "bbox": [ - 113, - 410, - 453, - 424 - ], - "spans": [ - { - "bbox": [ - 113, - 410, - 318, - 424 - ], - "score": 1.0, - "content": "The barrier can apply an average force of", - "type": "text" - }, - { - "bbox": [ - 318, - 410, - 350, - 422 - ], - "score": 0.68, - "content": "60\\mathrm{kN}", - "type": "inline_equation", - "height": 12, - "width": 32 - }, - { - "bbox": [ - 351, - 410, - 453, - 424 - ], - "score": 1.0, - "content": "at right angles to the", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 113, - 424, - 178, - 437 - ], - "spans": [ - { - "bbox": [ - 113, - 424, - 178, - 437 - ], - "score": 1.0, - "content": "carriageway.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5.5 - }, - { - "type": "text", - "bbox": [ - 113, - 448, - 368, - 462 - ], - "lines": [ - { - "bbox": [ - 114, - 449, - 367, - 462 - ], - "spans": [ - { - "bbox": [ - 114, - 449, - 367, - 462 - ], - "score": 1.0, - "content": "Deduce whether the safety barrier will pass the test.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - } - ], - "layout_bboxes": [], - "page_idx": 14, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 584, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 584, - 61 - ], - "score": 1.0, - "content": "Do not write", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 573, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 573, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 367, - 105, - 384 - ], - "lines": [ - { - "bbox": [ - 50, - 369, - 100, - 382 - ], - "spans": [ - { - "bbox": [ - 50, - 370, - 65, - 381 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 65, - 369, - 100, - 382 - ], - "score": 1.0, - "content": "5 . 4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 540, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 540, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 105, - 83 - ], - "lines": [ - { - "bbox": [ - 49, - 68, - 100, - 80 - ], - "spans": [ - { - "bbox": [ - 49, - 68, - 100, - 80 - ], - "score": 1.0, - "content": "0 5 . 3", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 824 - ], - "lines": [ - { - "bbox": [ - 61, - 816, - 80, - 824 - ], - "spans": [ - { - "bbox": [ - 61, - 818, - 64, - 822 - ], - "score": 0.8628842830657959, - "content": "1", - "type": "text" - }, - { - "bbox": [ - 70, - 816, - 80, - 824 - ], - "score": 0.9997143149375916, - "content": "5", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "15 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 0, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 0.9991323947906494, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 538, - 784 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 484, - 461, - 535, - 475 - ], - "lines": [ - { - "bbox": [ - 485, - 460, - 536, - 475 - ], - "spans": [ - { - "bbox": [ - 485, - 460, - 536, - 475 - ], - "score": 1.0, - "content": "[3 marks] ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 190, - 748, - 393, - 761 - ], - "lines": [ - { - "bbox": [ - 190, - 748, - 394, - 761 - ], - "spans": [ - { - "bbox": [ - 190, - 748, - 394, - 761 - ], - "score": 1.0, - "content": "Question 5 continues on the next page", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 484, - 121, - 535, - 134 - ], - "lines": [ - { - "bbox": [ - 484, - 120, - 536, - 135 - ], - "spans": [ - { - "bbox": [ - 484, - 120, - 536, - 135 - ], - "score": 1.0, - "content": "[3 marks] ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 68, - 528, - 95 - ], - "lines": [ - { - "bbox": [ - 115, - 70, - 528, - 82 - ], - "spans": [ - { - "bbox": [ - 115, - 70, - 528, - 82 - ], - "score": 1.0, - "content": "Immediately after the collision, the test vehicle moves along the safety barrier with no", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 83, - 314, - 94 - ], - "spans": [ - { - "bbox": [ - 114, - 83, - 314, - 94 - ], - "score": 1.0, - "content": "change in its momentum in this direction.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_14", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 70, - 528, - 94 - ] - }, - { - "type": "text", - "bbox": [ - 114, - 107, - 420, - 121 - ], - "lines": [ - { - "bbox": [ - 114, - 107, - 420, - 120 - ], - "spans": [ - { - "bbox": [ - 114, - 108, - 388, - 120 - ], - "score": 1.0, - "content": "Show that the kinetic energy lost in the collision is about", - "type": "text" - }, - { - "bbox": [ - 389, - 107, - 416, - 120 - ], - "score": 0.7, - "content": "80\\mathrm{kJ}", - "type": "inline_equation", - "height": 13, - "width": 27 - }, - { - "bbox": [ - 416, - 108, - 420, - 120 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_14", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 107, - 420, - 120 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 369, - 528, - 397 - ], - "lines": [ - { - "bbox": [ - 113, - 370, - 524, - 384 - ], - "spans": [ - { - "bbox": [ - 113, - 370, - 524, - 384 - ], - "score": 1.0, - "content": "The steel safety barrier deforms during the collision. For the barrier to pass the test,", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 113, - 383, - 509, - 398 - ], - "spans": [ - { - "bbox": [ - 113, - 383, - 326, - 398 - ], - "score": 1.0, - "content": "the test vehicle should not move more than", - "type": "text" - }, - { - "bbox": [ - 327, - 384, - 356, - 396 - ], - "score": 0.49, - "content": "1.5\\mathrm{m}", - "type": "inline_equation", - "height": 12, - "width": 29 - }, - { - "bbox": [ - 356, - 383, - 509, - 398 - ], - "score": 1.0, - "content": " towards the other carriageway.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5, - "page_num": "page_14", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 370, - 524, - 398 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 410, - 454, - 436 - ], - "lines": [ - { - "bbox": [ - 113, - 410, - 453, - 424 - ], - "spans": [ - { - "bbox": [ - 113, - 410, - 318, - 424 - ], - "score": 1.0, - "content": "The barrier can apply an average force of", - "type": "text" - }, - { - "bbox": [ - 318, - 410, - 350, - 422 - ], - "score": 0.68, - "content": "60\\mathrm{kN}", - "type": "inline_equation", - "height": 12, - "width": 32 - }, - { - "bbox": [ - 351, - 410, - 453, - 424 - ], - "score": 1.0, - "content": "at right angles to the", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 113, - 424, - 178, - 437 - ], - "spans": [ - { - "bbox": [ - 113, - 424, - 178, - 437 - ], - "score": 1.0, - "content": "carriageway.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5.5, - "page_num": "page_14", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 410, - 453, - 437 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 448, - 368, - 462 - ], - "lines": [ - { - "bbox": [ - 114, - 449, - 367, - 462 - ], - "spans": [ - { - "bbox": [ - 114, - 449, - 367, - 462 - ], - "score": 1.0, - "content": "Deduce whether the safety barrier will pass the test.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_14", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 449, - 367, - 462 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 68, - 477, - 94 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 478, - 81 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 478, - 81 - ], - "score": 1.0, - "content": "A different safety barrier uses a solid concrete wall which does not deform.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 81, - 392, - 93 - ], - "spans": [ - { - "bbox": [ - 113, - 81, - 392, - 93 - ], - "score": 1.0, - "content": "The same standard test is carried out on a concrete wall.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 114, - 106, - 496, - 132 - ], - "lines": [ - { - "bbox": [ - 114, - 106, - 494, - 120 - ], - "spans": [ - { - "bbox": [ - 114, - 106, - 494, - 120 - ], - "score": 1.0, - "content": "Discuss which type of barrier would cause less damage to the dummies in the", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 113, - 120, - 137, - 133 - ], - "spans": [ - { - "bbox": [ - 113, - 120, - 137, - 133 - ], - "score": 1.0, - "content": "test.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5 - }, - { - "type": "text", - "bbox": [ - 484, - 132, - 535, - 145 - ], - "lines": [ - { - "bbox": [ - 484, - 132, - 535, - 145 - ], - "spans": [], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 112, - 135, - 537, - 302 - ], - "lines": [ - { - "bbox": [ - 484, - 131, - 537, - 147 - ], - "spans": [ - { - "bbox": [ - 484, - 131, - 537, - 147 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - } - ], - "layout_bboxes": [], - "page_idx": 15, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 545, - 260, - 577, - 302 - ], - "lines": [ - { - "bbox": [ - 553, - 284, - 569, - 295 - ], - "spans": [ - { - "bbox": [ - 553, - 284, - 569, - 295 - ], - "score": 1.0, - "content": "13 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 105, - 83 - ], - "lines": [ - { - "bbox": [ - 50, - 68, - 100, - 80 - ], - "spans": [ - { - "bbox": [ - 50, - 68, - 100, - 80 - ], - "score": 1.0, - "content": "0 5 . 5", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 824 - ], - "lines": [ - { - "bbox": [ - 72, - 816, - 79, - 824 - ], - "spans": [ - { - "bbox": [ - 72, - 816, - 79, - 824 - ], - "score": 0.9983957409858704, - "content": "6", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "16 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 569, - 0, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "list", - "bbox": [ - 113, - 68, - 477, - 94 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 478, - 81 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 478, - 81 - ], - "score": 1.0, - "content": "A different safety barrier uses a solid concrete wall which does not deform.", - "type": "text" - } - ], - "index": 0, - "is_list_end_line": true - }, - { - "bbox": [ - 113, - 81, - 392, - 93 - ], - "spans": [ - { - "bbox": [ - 113, - 81, - 392, - 93 - ], - "score": 1.0, - "content": "The same standard test is carried out on a concrete wall.", - "type": "text" - } - ], - "index": 1, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 0.5, - "page_num": "page_15", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 69, - 478, - 93 - ] - }, - { - "type": "text", - "bbox": [ - 114, - 106, - 496, - 132 - ], - "lines": [ - { - "bbox": [ - 114, - 106, - 494, - 120 - ], - "spans": [ - { - "bbox": [ - 114, - 106, - 494, - 120 - ], - "score": 1.0, - "content": "Discuss which type of barrier would cause less damage to the dummies in the", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 113, - 120, - 137, - 133 - ], - "spans": [ - { - "bbox": [ - 113, - 120, - 137, - 133 - ], - "score": 1.0, - "content": "test.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5, - "page_num": "page_15", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 106, - 494, - 133 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 132, - 535, - 145 - ], - "lines": [ - { - "bbox": [ - 484, - 132, - 535, - 145 - ], - "spans": [], - "index": 4 - } - ], - "index": 4, - "page_num": "page_15", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 484, - 132, - 535, - 145 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 135, - 537, - 302 - ], - "lines": [ - { - "bbox": [ - 484, - 131, - 537, - 147 - ], - "spans": [ - { - "bbox": [ - 484, - 131, - 537, - 147 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_15", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 484, - 131, - 537, - 147 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 68, - 529, - 108 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 418, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 418, - 82 - ], - "score": 1.0, - "content": "A loudspeaker cone is driven by a signal generator (oscillator).", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 82, - 528, - 95 - ], - "spans": [ - { - "bbox": [ - 114, - 82, - 383, - 95 - ], - "score": 1.0, - "content": "Figure 8 shows the variation of displacement with time ", - "type": "text" - }, - { - "bbox": [ - 383, - 83, - 389, - 93 - ], - "score": 0.33, - "content": "t", - "type": "inline_equation", - "height": 10, - "width": 6 - }, - { - "bbox": [ - 389, - 82, - 441, - 95 - ], - "score": 1.0, - "content": " for a point", - "type": "text" - }, - { - "bbox": [ - 442, - 82, - 451, - 93 - ], - "score": 0.39, - "content": "\\mathsf{P}", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 452, - 82, - 528, - 95 - ], - "score": 1.0, - "content": "at the centre of", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 113, - 95, - 381, - 107 - ], - "spans": [ - { - "bbox": [ - 113, - 95, - 381, - 107 - ], - "score": 1.0, - "content": "the cone. P is oscillating with simple harmonic motion.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1 - }, - { - "type": "image", - "bbox": [ - 72, - 138, - 510, - 433 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 268, - 122, - 313, - 135 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 122, - 314, - 136 - ], - "spans": [ - { - "bbox": [ - 268, - 122, - 314, - 136 - ], - "score": 1.0, - "content": "Figure 8 ", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "image_body", - "bbox": [ - 72, - 138, - 510, - 433 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 72, - 138, - 510, - 433 - ], - "spans": [ - { - "bbox": [ - 72, - 138, - 510, - 433 - ], - "score": 0.97, - "type": "image", - "image_path": "1b51321d182d4468f445d86a2bf2cf5aef4b47cbc27ffdf69d55b1c089987f7a.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 72, - 138, - 510, - 236.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 72, - 236.33333333333331, - 510, - 334.66666666666663 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 72, - 334.66666666666663, - 510, - 432.99999999999994 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 4.0 - }, - { - "type": "text", - "bbox": [ - 112, - 460, - 516, - 474 - ], - "lines": [ - { - "bbox": [ - 114, - 460, - 513, - 474 - ], - "spans": [ - { - "bbox": [ - 114, - 460, - 513, - 474 - ], - "score": 1.0, - "content": "State the time, in milliseconds, when P is moving at its maximum positive velocity.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 490, - 474, - 535, - 487 - ], - "lines": [ - { - "bbox": [ - 490, - 474, - 535, - 488 - ], - "spans": [ - { - "bbox": [ - 490, - 474, - 535, - 488 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 327, - 510, - 530, - 527 - ], - "lines": [ - { - "bbox": [ - 328, - 511, - 530, - 523 - ], - "spans": [ - { - "bbox": [ - 328, - 511, - 362, - 523 - ], - "score": 1.0, - "content": "time =", - "type": "text" - }, - { - "bbox": [ - 512, - 512, - 530, - 522 - ], - "score": 1.0, - "content": "ms ", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 113, - 550, - 319, - 566 - ], - "lines": [ - { - "bbox": [ - 114, - 553, - 318, - 564 - ], - "spans": [ - { - "bbox": [ - 114, - 553, - 318, - 564 - ], - "score": 1.0, - "content": "Calculate the maximum acceleration of P.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 483, - 565, - 535, - 579 - ], - "lines": [ - { - "bbox": [ - 485, - 565, - 536, - 579 - ], - "spans": [ - { - "bbox": [ - 485, - 565, - 536, - 579 - ], - "score": 1.0, - "content": "[3 marks] ", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 289, - 718, - 535, - 734 - ], - "lines": [ - { - "bbox": [ - 291, - 718, - 534, - 731 - ], - "spans": [ - { - "bbox": [ - 291, - 719, - 352, - 731 - ], - "score": 1.0, - "content": "acceleration", - "type": "text" - }, - { - "bbox": [ - 352, - 722, - 362, - 730 - ], - "score": 0.63, - "content": "=", - "type": "inline_equation", - "height": 8, - "width": 10 - }, - { - "bbox": [ - 507, - 718, - 534, - 730 - ], - "score": 1.0, - "content": "m s–2", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 188, - 746, - 392, - 759 - ], - "lines": [ - { - "bbox": [ - 187, - 746, - 391, - 759 - ], - "spans": [ - { - "bbox": [ - 187, - 746, - 391, - 759 - ], - "score": 1.0, - "content": "Question 6 continues on the next page", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - } - ], - "layout_bboxes": [], - "page_idx": 16, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 72, - 138, - 510, - 433 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 268, - 122, - 313, - 135 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 122, - 314, - 136 - ], - "spans": [ - { - "bbox": [ - 268, - 122, - 314, - 136 - ], - "score": 1.0, - "content": "Figure 8 ", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "image_body", - "bbox": [ - 72, - 138, - 510, - 433 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 72, - 138, - 510, - 433 - ], - "spans": [ - { - "bbox": [ - 72, - 138, - 510, - 433 - ], - "score": 0.97, - "type": "image", - "image_path": "1b51321d182d4468f445d86a2bf2cf5aef4b47cbc27ffdf69d55b1c089987f7a.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 72, - 138, - 510, - 236.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 72, - 236.33333333333331, - 510, - 334.66666666666663 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 72, - 334.66666666666663, - 510, - 432.99999999999994 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 4.0 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 82, - 82 - ], - "lines": [ - { - "bbox": [ - 51, - 69, - 76, - 78 - ], - "spans": [ - { - "bbox": [ - 51, - 69, - 60, - 78 - ], - "score": 1.0, - "content": "0", - "type": "text" - }, - { - "bbox": [ - 68, - 69, - 76, - 78 - ], - "score": 1.0, - "content": "6", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 457, - 105, - 475 - ], - "lines": [ - { - "bbox": [ - 50, - 461, - 99, - 472 - ], - "spans": [ - { - "bbox": [ - 50, - 461, - 62, - 472 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 68, - 461, - 78, - 471 - ], - "score": 1.0, - "content": "6 ", - "type": "text" - }, - { - "bbox": [ - 89, - 462, - 99, - 470 - ], - "score": 1.0, - "content": "1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 295, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 41 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 41 - ], - "score": 1.0, - "content": "17 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 549, - 105, - 566 - ], - "lines": [ - { - "bbox": [ - 51, - 552, - 99, - 563 - ], - "spans": [ - { - "bbox": [ - 51, - 552, - 62, - 563 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 67, - 553, - 76, - 562 - ], - "score": 1.0, - "content": "6", - "type": "text" - }, - { - "bbox": [ - 90, - 553, - 99, - 563 - ], - "score": 1.0, - "content": "2", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 824 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 570, - 0, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 0.9991323947906494, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 538, - 784 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "list", - "bbox": [ - 113, - 68, - 529, - 108 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 418, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 418, - 82 - ], - "score": 1.0, - "content": "A loudspeaker cone is driven by a signal generator (oscillator).", - "type": "text" - } - ], - "index": 0, - "is_list_end_line": true - }, - { - "bbox": [ - 114, - 82, - 528, - 95 - ], - "spans": [ - { - "bbox": [ - 114, - 82, - 383, - 95 - ], - "score": 1.0, - "content": "Figure 8 shows the variation of displacement with time ", - "type": "text" - }, - { - "bbox": [ - 383, - 83, - 389, - 93 - ], - "score": 0.33, - "content": "t", - "type": "inline_equation", - "height": 10, - "width": 6 - }, - { - "bbox": [ - 389, - 82, - 441, - 95 - ], - "score": 1.0, - "content": " for a point", - "type": "text" - }, - { - "bbox": [ - 442, - 82, - 451, - 93 - ], - "score": 0.39, - "content": "\\mathsf{P}", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 452, - 82, - 528, - 95 - ], - "score": 1.0, - "content": "at the centre of", - "type": "text" - } - ], - "index": 1, - "is_list_start_line": true - }, - { - "bbox": [ - 113, - 95, - 381, - 107 - ], - "spans": [ - { - "bbox": [ - 113, - 95, - 381, - 107 - ], - "score": 1.0, - "content": "the cone. P is oscillating with simple harmonic motion.", - "type": "text" - } - ], - "index": 2, - "is_list_end_line": true - } - ], - "index": 1, - "page_num": "page_16", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 69, - 528, - 107 - ] - }, - { - "type": "image", - "bbox": [ - 72, - 138, - 510, - 433 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 268, - 122, - 313, - 135 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 122, - 314, - 136 - ], - "spans": [ - { - "bbox": [ - 268, - 122, - 314, - 136 - ], - "score": 1.0, - "content": "Figure 8 ", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "image_body", - "bbox": [ - 72, - 138, - 510, - 433 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 72, - 138, - 510, - 433 - ], - "spans": [ - { - "bbox": [ - 72, - 138, - 510, - 433 - ], - "score": 0.97, - "type": "image", - "image_path": "1b51321d182d4468f445d86a2bf2cf5aef4b47cbc27ffdf69d55b1c089987f7a.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 72, - 138, - 510, - 236.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 72, - 236.33333333333331, - 510, - 334.66666666666663 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 72, - 334.66666666666663, - 510, - 432.99999999999994 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 4.0, - "page_num": "page_16", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 460, - 516, - 474 - ], - "lines": [ - { - "bbox": [ - 114, - 460, - 513, - 474 - ], - "spans": [ - { - "bbox": [ - 114, - 460, - 513, - 474 - ], - "score": 1.0, - "content": "State the time, in milliseconds, when P is moving at its maximum positive velocity.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_16", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 460, - 513, - 474 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 474, - 535, - 487 - ], - "lines": [ - { - "bbox": [ - 490, - 474, - 535, - 488 - ], - "spans": [ - { - "bbox": [ - 490, - 474, - 535, - 488 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_16", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 490, - 474, - 535, - 488 - ] - }, - { - "type": "text", - "bbox": [ - 327, - 510, - 530, - 527 - ], - "lines": [ - { - "bbox": [ - 328, - 511, - 530, - 523 - ], - "spans": [ - { - "bbox": [ - 328, - 511, - 362, - 523 - ], - "score": 1.0, - "content": "time =", - "type": "text" - }, - { - "bbox": [ - 512, - 512, - 530, - 522 - ], - "score": 1.0, - "content": "ms ", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_16", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 328, - 511, - 530, - 523 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 550, - 319, - 566 - ], - "lines": [ - { - "bbox": [ - 114, - 553, - 318, - 564 - ], - "spans": [ - { - "bbox": [ - 114, - 553, - 318, - 564 - ], - "score": 1.0, - "content": "Calculate the maximum acceleration of P.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_16", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 553, - 318, - 564 - ] - }, - { - "type": "text", - "bbox": [ - 483, - 565, - 535, - 579 - ], - "lines": [ - { - "bbox": [ - 485, - 565, - 536, - 579 - ], - "spans": [ - { - "bbox": [ - 485, - 565, - 536, - 579 - ], - "score": 1.0, - "content": "[3 marks] ", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_16", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 485, - 565, - 536, - 579 - ] - }, - { - "type": "text", - "bbox": [ - 289, - 718, - 535, - 734 - ], - "lines": [ - { - "bbox": [ - 291, - 718, - 534, - 731 - ], - "spans": [ - { - "bbox": [ - 291, - 719, - 352, - 731 - ], - "score": 1.0, - "content": "acceleration", - "type": "text" - }, - { - "bbox": [ - 352, - 722, - 362, - 730 - ], - "score": 0.63, - "content": "=", - "type": "inline_equation", - "height": 8, - "width": 10 - }, - { - "bbox": [ - 507, - 718, - 534, - 730 - ], - "score": 1.0, - "content": "m s–2", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_16", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 291, - 718, - 534, - 731 - ] - }, - { - "type": "text", - "bbox": [ - 188, - 746, - 392, - 759 - ], - "lines": [ - { - "bbox": [ - 187, - 746, - 391, - 759 - ], - "spans": [ - { - "bbox": [ - 187, - 746, - 391, - 759 - ], - "score": 1.0, - "content": "Question 6 continues on the next page", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_16", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 187, - 746, - 391, - 759 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 68, - 530, - 94 - ], - "lines": [ - { - "bbox": [ - 113, - 68, - 531, - 82 - ], - "spans": [ - { - "bbox": [ - 113, - 68, - 531, - 82 - ], - "score": 1.0, - "content": "The loudspeaker creates variations in pressure and produces a sound wave in the air ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 82, - 162, - 95 - ], - "spans": [ - { - "bbox": [ - 113, - 82, - 162, - 95 - ], - "score": 1.0, - "content": "around it.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 111, - 109, - 526, - 135 - ], - "lines": [ - { - "bbox": [ - 114, - 109, - 523, - 123 - ], - "spans": [ - { - "bbox": [ - 114, - 109, - 523, - 123 - ], - "score": 1.0, - "content": "State the type of wave produced and describe the motion of the particles in this type", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 113, - 122, - 157, - 136 - ], - "spans": [ - { - "bbox": [ - 113, - 122, - 157, - 136 - ], - "score": 1.0, - "content": "of wave.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5 - }, - { - "type": "text", - "bbox": [ - 112, - 136, - 536, - 253 - ], - "lines": [ - { - "bbox": [ - 490, - 135, - 537, - 151 - ], - "spans": [ - { - "bbox": [ - 490, - 135, - 537, - 151 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - } - ], - "layout_bboxes": [], - "page_idx": 17, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 543, - 211, - 576, - 253 - ], - "lines": [ - { - "bbox": [ - 556, - 236, - 564, - 246 - ], - "spans": [ - { - "bbox": [ - 556, - 236, - 564, - 246 - ], - "score": 1.0, - "content": "5", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 824 - ], - "lines": [ - { - "bbox": [ - 60, - 815, - 80, - 825 - ], - "spans": [ - { - "bbox": [ - 60, - 817, - 65, - 823 - ], - "score": 0.9973475933074951, - "content": "1", - "type": "text" - }, - { - "bbox": [ - 70, - 815, - 80, - 825 - ], - "score": 0.9967617392539978, - "content": "8", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 64, - 105, - 83 - ], - "lines": [ - { - "bbox": [ - 50, - 68, - 100, - 79 - ], - "spans": [ - { - "bbox": [ - 50, - 68, - 63, - 79 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 68, - 69, - 78, - 79 - ], - "score": 1.0, - "content": "6 ", - "type": "text" - }, - { - "bbox": [ - 89, - 68, - 100, - 79 - ], - "score": 1.0, - "content": "3", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "18 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 569, - 0, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 68, - 530, - 94 - ], - "lines": [ - { - "bbox": [ - 113, - 68, - 531, - 82 - ], - "spans": [ - { - "bbox": [ - 113, - 68, - 531, - 82 - ], - "score": 1.0, - "content": "The loudspeaker creates variations in pressure and produces a sound wave in the air ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 82, - 162, - 95 - ], - "spans": [ - { - "bbox": [ - 113, - 82, - 162, - 95 - ], - "score": 1.0, - "content": "around it.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_17", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 68, - 531, - 95 - ] - }, - { - "type": "text", - "bbox": [ - 111, - 109, - 526, - 135 - ], - "lines": [ - { - "bbox": [ - 114, - 109, - 523, - 123 - ], - "spans": [ - { - "bbox": [ - 114, - 109, - 523, - 123 - ], - "score": 1.0, - "content": "State the type of wave produced and describe the motion of the particles in this type", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 113, - 122, - 157, - 136 - ], - "spans": [ - { - "bbox": [ - 113, - 122, - 157, - 136 - ], - "score": 1.0, - "content": "of wave.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5, - "page_num": "page_17", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 109, - 523, - 136 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 136, - 536, - 253 - ], - "lines": [ - { - "bbox": [ - 490, - 135, - 537, - 151 - ], - "spans": [ - { - "bbox": [ - 490, - 135, - 537, - 151 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_17", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 490, - 135, - 537, - 151 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 68, - 519, - 108 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 516, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 516, - 82 - ], - "score": 1.0, - "content": "Figure 9 shows a practical circuit in which a variable resistor is used to control the ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 83, - 519, - 95 - ], - "spans": [ - { - "bbox": [ - 114, - 83, - 519, - 95 - ], - "score": 1.0, - "content": "brightness of a lamp. The voltmeter reading is monitored as the variable resistor is", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 114, - 95, - 287, - 108 - ], - "spans": [ - { - "bbox": [ - 114, - 95, - 287, - 108 - ], - "score": 1.0, - "content": "adjusted to make the lamp brighter.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1 - }, - { - "type": "image", - "bbox": [ - 221, - 151, - 359, - 273 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 268, - 124, - 313, - 138 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 124, - 314, - 138 - ], - "spans": [ - { - "bbox": [ - 268, - 124, - 314, - 138 - ], - "score": 1.0, - "content": "Figure 9 ", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "image_body", - "bbox": [ - 221, - 151, - 359, - 273 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 221, - 151, - 359, - 273 - ], - "spans": [ - { - "bbox": [ - 221, - 151, - 359, - 273 - ], - "score": 0.868, - "type": "image", - "image_path": "5acbfddb641053eb041bc9f7e66ff93d5feb92e11e3cca9d194eb37c8dff9a90.jpg" - } - ] - } - ], - "index": 4.5, - "virtual_lines": [ - { - "bbox": [ - 221, - 151, - 359, - 212.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 221, - 212.0, - 359, - 273.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 3.75 - }, - { - "type": "text", - "bbox": [ - 112, - 299, - 514, - 326 - ], - "lines": [ - { - "bbox": [ - 113, - 300, - 513, - 314 - ], - "spans": [ - { - "bbox": [ - 113, - 300, - 513, - 314 - ], - "score": 1.0, - "content": "Explain why the reading on the voltmeter decreases as the brightness of the lamp", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 113, - 314, - 165, - 326 - ], - "spans": [ - { - "bbox": [ - 113, - 314, - 165, - 326 - ], - "score": 1.0, - "content": "increases.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6.5 - }, - { - "type": "text", - "bbox": [ - 484, - 325, - 535, - 339 - ], - "lines": [ - { - "bbox": [ - 485, - 325, - 536, - 340 - ], - "spans": [ - { - "bbox": [ - 485, - 325, - 536, - 340 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 112, - 342, - 536, - 496 - ], - "lines": [ - { - "bbox": [ - 112, - 342, - 536, - 393.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 112, - 393.3333333333333, - 536, - 444.66666666666663 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 112, - 444.66666666666663, - 536, - 495.99999999999994 - ], - "spans": [], - "index": 11 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 113, - 520, - 534, - 561 - ], - "lines": [ - { - "bbox": [ - 113, - 521, - 532, - 534 - ], - "spans": [ - { - "bbox": [ - 113, - 521, - 504, - 534 - ], - "score": 1.0, - "content": "The variable resistor is adjusted so that the lamp is at its brightest. The reading ", - "type": "text" - }, - { - "bbox": [ - 504, - 521, - 517, - 534 - ], - "score": 0.85, - "content": "V_{1}", - "type": "inline_equation", - "height": 13, - "width": 13 - }, - { - "bbox": [ - 518, - 521, - 532, - 534 - ], - "score": 1.0, - "content": "on", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 114, - 537, - 519, - 547 - ], - "spans": [ - { - "bbox": [ - 114, - 537, - 519, - 547 - ], - "score": 1.0, - "content": "the voltmeter is noted. A second identical cell is then connected in parallel with the", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 114, - 548, - 421, - 561 - ], - "spans": [ - { - "bbox": [ - 114, - 549, - 282, - 561 - ], - "score": 1.0, - "content": "cell in Figure 9. The new reading ", - "type": "text" - }, - { - "bbox": [ - 282, - 548, - 295, - 561 - ], - "score": 0.87, - "content": "V_{2}", - "type": "inline_equation", - "height": 13, - "width": 13 - }, - { - "bbox": [ - 295, - 549, - 421, - 561 - ], - "score": 1.0, - "content": " on the voltmeter is noted.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 13 - }, - { - "type": "text", - "bbox": [ - 114, - 574, - 279, - 588 - ], - "lines": [ - { - "bbox": [ - 114, - 575, - 279, - 588 - ], - "spans": [ - { - "bbox": [ - 114, - 575, - 175, - 588 - ], - "score": 1.0, - "content": "Explain why ", - "type": "text" - }, - { - "bbox": [ - 175, - 575, - 188, - 587 - ], - "score": 0.86, - "content": "V_{2}", - "type": "inline_equation", - "height": 12, - "width": 13 - }, - { - "bbox": [ - 189, - 575, - 263, - 588 - ], - "score": 1.0, - "content": " is greater than ", - "type": "text" - }, - { - "bbox": [ - 263, - 575, - 276, - 587 - ], - "score": 0.87, - "content": "V_{1}", - "type": "inline_equation", - "height": 12, - "width": 13 - }, - { - "bbox": [ - 276, - 575, - 279, - 588 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "text", - "bbox": [ - 112, - 587, - 537, - 761 - ], - "lines": [ - { - "bbox": [ - 485, - 587, - 536, - 602 - ], - "spans": [ - { - "bbox": [ - 485, - 587, - 536, - 602 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16 - } - ], - "layout_bboxes": [], - "page_idx": 18, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 221, - 151, - 359, - 273 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 268, - 124, - 313, - 138 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 124, - 314, - 138 - ], - "spans": [ - { - "bbox": [ - 268, - 124, - 314, - 138 - ], - "score": 1.0, - "content": "Figure 9 ", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "image_body", - "bbox": [ - 221, - 151, - 359, - 273 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 221, - 151, - 359, - 273 - ], - "spans": [ - { - "bbox": [ - 221, - 151, - 359, - 273 - ], - "score": 0.868, - "type": "image", - "image_path": "5acbfddb641053eb041bc9f7e66ff93d5feb92e11e3cca9d194eb37c8dff9a90.jpg" - } - ] - } - ], - "index": 4.5, - "virtual_lines": [ - { - "bbox": [ - 221, - 151, - 359, - 212.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 221, - 212.0, - 359, - 273.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 3.75 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 545, - 716, - 578, - 757 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 45, - 517, - 105, - 535 - ], - "lines": [ - { - "bbox": [ - 47, - 518, - 103, - 535 - ], - "spans": [ - { - "bbox": [ - 47, - 518, - 103, - 535 - ], - "score": 1.0, - "content": "0 7 . 2 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 296, - 105, - 314 - ], - "lines": [ - { - "bbox": [ - 47, - 297, - 102, - 313 - ], - "spans": [ - { - "bbox": [ - 47, - 297, - 102, - 313 - ], - "score": 1.0, - "content": "0 7 . 1 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 82, - 83 - ], - "lines": [ - { - "bbox": [ - 48, - 66, - 79, - 81 - ], - "spans": [ - { - "bbox": [ - 48, - 66, - 79, - 81 - ], - "score": 1.0, - "content": "0 7 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 783 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 540, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 540, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 824 - ], - "lines": [ - { - "bbox": [ - 74, - 818, - 77, - 822 - ], - "spans": [ - { - "bbox": [ - 74, - 818, - 77, - 822 - ], - "score": 0.6974921226501465, - "content": "C", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "19 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 0, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 68, - 519, - 108 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 516, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 516, - 82 - ], - "score": 1.0, - "content": "Figure 9 shows a practical circuit in which a variable resistor is used to control the ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 83, - 519, - 95 - ], - "spans": [ - { - "bbox": [ - 114, - 83, - 519, - 95 - ], - "score": 1.0, - "content": "brightness of a lamp. The voltmeter reading is monitored as the variable resistor is", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 114, - 95, - 287, - 108 - ], - "spans": [ - { - "bbox": [ - 114, - 95, - 287, - 108 - ], - "score": 1.0, - "content": "adjusted to make the lamp brighter.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1, - "page_num": "page_18", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 69, - 519, - 108 - ] - }, - { - "type": "image", - "bbox": [ - 221, - 151, - 359, - 273 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 268, - 124, - 313, - 138 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 124, - 314, - 138 - ], - "spans": [ - { - "bbox": [ - 268, - 124, - 314, - 138 - ], - "score": 1.0, - "content": "Figure 9 ", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "image_body", - "bbox": [ - 221, - 151, - 359, - 273 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 221, - 151, - 359, - 273 - ], - "spans": [ - { - "bbox": [ - 221, - 151, - 359, - 273 - ], - "score": 0.868, - "type": "image", - "image_path": "5acbfddb641053eb041bc9f7e66ff93d5feb92e11e3cca9d194eb37c8dff9a90.jpg" - } - ] - } - ], - "index": 4.5, - "virtual_lines": [ - { - "bbox": [ - 221, - 151, - 359, - 212.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 221, - 212.0, - 359, - 273.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 3.75, - "page_num": "page_18", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 299, - 514, - 326 - ], - "lines": [ - { - "bbox": [ - 113, - 300, - 513, - 314 - ], - "spans": [ - { - "bbox": [ - 113, - 300, - 513, - 314 - ], - "score": 1.0, - "content": "Explain why the reading on the voltmeter decreases as the brightness of the lamp", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 113, - 314, - 165, - 326 - ], - "spans": [ - { - "bbox": [ - 113, - 314, - 165, - 326 - ], - "score": 1.0, - "content": "increases.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6.5, - "page_num": "page_18", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 300, - 513, - 326 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 325, - 535, - 339 - ], - "lines": [ - { - "bbox": [ - 485, - 325, - 536, - 340 - ], - "spans": [ - { - "bbox": [ - 485, - 325, - 536, - 340 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_18", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 485, - 325, - 536, - 340 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 342, - 536, - 496 - ], - "lines": [ - { - "bbox": [ - 112, - 342, - 536, - 393.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 112, - 393.3333333333333, - 536, - 444.66666666666663 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 112, - 444.66666666666663, - 536, - 495.99999999999994 - ], - "spans": [], - "index": 11 - } - ], - "index": 10, - "page_num": "page_18", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 112, - 342, - 536, - 495.99999999999994 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 520, - 534, - 561 - ], - "lines": [ - { - "bbox": [ - 113, - 521, - 532, - 534 - ], - "spans": [ - { - "bbox": [ - 113, - 521, - 504, - 534 - ], - "score": 1.0, - "content": "The variable resistor is adjusted so that the lamp is at its brightest. The reading ", - "type": "text" - }, - { - "bbox": [ - 504, - 521, - 517, - 534 - ], - "score": 0.85, - "content": "V_{1}", - "type": "inline_equation", - "height": 13, - "width": 13 - }, - { - "bbox": [ - 518, - 521, - 532, - 534 - ], - "score": 1.0, - "content": "on", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 114, - 537, - 519, - 547 - ], - "spans": [ - { - "bbox": [ - 114, - 537, - 519, - 547 - ], - "score": 1.0, - "content": "the voltmeter is noted. A second identical cell is then connected in parallel with the", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 114, - 548, - 421, - 561 - ], - "spans": [ - { - "bbox": [ - 114, - 549, - 282, - 561 - ], - "score": 1.0, - "content": "cell in Figure 9. The new reading ", - "type": "text" - }, - { - "bbox": [ - 282, - 548, - 295, - 561 - ], - "score": 0.87, - "content": "V_{2}", - "type": "inline_equation", - "height": 13, - "width": 13 - }, - { - "bbox": [ - 295, - 549, - 421, - 561 - ], - "score": 1.0, - "content": " on the voltmeter is noted.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 13, - "page_num": "page_18", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 521, - 532, - 561 - ] - }, - { - "type": "text", - "bbox": [ - 114, - 574, - 279, - 588 - ], - "lines": [ - { - "bbox": [ - 114, - 575, - 279, - 588 - ], - "spans": [ - { - "bbox": [ - 114, - 575, - 175, - 588 - ], - "score": 1.0, - "content": "Explain why ", - "type": "text" - }, - { - "bbox": [ - 175, - 575, - 188, - 587 - ], - "score": 0.86, - "content": "V_{2}", - "type": "inline_equation", - "height": 12, - "width": 13 - }, - { - "bbox": [ - 189, - 575, - 263, - 588 - ], - "score": 1.0, - "content": " is greater than ", - "type": "text" - }, - { - "bbox": [ - 263, - 575, - 276, - 587 - ], - "score": 0.87, - "content": "V_{1}", - "type": "inline_equation", - "height": 12, - "width": 13 - }, - { - "bbox": [ - 276, - 575, - 279, - 588 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_18", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 575, - 279, - 588 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 587, - 537, - 761 - ], - "lines": [ - { - "bbox": [ - 485, - 587, - 536, - 602 - ], - "spans": [ - { - "bbox": [ - 485, - 587, - 536, - 602 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16, - "page_num": "page_18", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 485, - 587, - 536, - 602 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 262, - 65, - 316, - 78 - ], - "lines": [ - { - "bbox": [ - 263, - 65, - 316, - 78 - ], - "spans": [ - { - "bbox": [ - 263, - 65, - 316, - 78 - ], - "score": 1.0, - "content": "Section B", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 112, - 91, - 464, - 105 - ], - "lines": [ - { - "bbox": [ - 114, - 92, - 464, - 104 - ], - "spans": [ - { - "bbox": [ - 114, - 92, - 464, - 104 - ], - "score": 1.0, - "content": "Each of Questions 8 to 32 is followed by four responses, A, B, C and D.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 181, - 117, - 396, - 130 - ], - "lines": [ - { - "bbox": [ - 182, - 117, - 397, - 130 - ], - "spans": [ - { - "bbox": [ - 182, - 117, - 397, - 130 - ], - "score": 1.0, - "content": "For each question select the best response.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "image", - "bbox": [ - 46, - 138, - 539, - 163 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 46, - 138, - 539, - 163 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 138, - 539, - 163 - ], - "spans": [ - { - "bbox": [ - 46, - 138, - 539, - 163 - ], - "score": 0.204, - "type": "image", - "image_path": "046272758a9f601e216ac9000a79e56ff1f0c83747fb4a54e9b882acb08608d1.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 46, - 138, - 539, - 163 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 45, - 167, - 437, - 194 - ], - "lines": [ - { - "bbox": [ - 48, - 166, - 250, - 181 - ], - "spans": [ - { - "bbox": [ - 48, - 166, - 250, - 181 - ], - "score": 1.0, - "content": "Only one answer per question is allowed.", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 47, - 181, - 434, - 194 - ], - "spans": [ - { - "bbox": [ - 47, - 181, - 434, - 194 - ], - "score": 1.0, - "content": "For each question completely fill in the circle alongside the appropriate answer.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5 - }, - { - "type": "text", - "bbox": [ - 47, - 207, - 116, - 217 - ], - "lines": [ - { - "bbox": [ - 48, - 209, - 115, - 216 - ], - "spans": [ - { - "bbox": [ - 48, - 209, - 115, - 216 - ], - "score": 1.0, - "content": "CORRECT METHOD", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 182, - 207, - 250, - 217 - ], - "lines": [ - { - "bbox": [ - 184, - 208, - 250, - 217 - ], - "spans": [ - { - "bbox": [ - 184, - 208, - 250, - 217 - ], - "score": 1.0, - "content": "WRONG METHODS", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 261, - 204, - 346, - 219 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 261, - 204, - 346, - 219 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 261, - 204, - 346, - 219 - ], - "spans": [ - { - "bbox": [ - 261, - 204, - 346, - 219 - ], - "score": 0.808, - "html": "
", - "type": "table", - "image_path": "9cec0251051fbb3775d6dbf9e72581e9f9580e9cf4622b4f8ff16008805b8209.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 261, - 204, - 346, - 219 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 8 - }, - { - "type": "image", - "bbox": [ - 467, - 215, - 491, - 233 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 467, - 215, - 491, - 233 - ], - "group_id": 3, - "lines": [], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 467, - 215, - 491, - 233 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 46, - 221, - 534, - 268 - ], - "lines": [ - { - "bbox": [ - 467, - 215, - 491, - 233 - ], - "spans": [ - { - "bbox": [ - 467, - 215, - 491, - 233 - ], - "score": 0.561, - "type": "image", - "image_path": "2385ad01c49b4dcb813021c2181c8cf3f346a5d4aec8018273a9d4bd47ce869e.jpg" - } - ], - "index": 10 - }, - { - "bbox": [ - 47, - 219, - 478, - 233 - ], - "spans": [ - { - "bbox": [ - 47, - 219, - 478, - 233 - ], - "score": 1.0, - "content": "If you want to change your answer you must cross out your original answer as shown. ", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 47, - 233, - 533, - 246 - ], - "spans": [ - { - "bbox": [ - 47, - 233, - 533, - 246 - ], - "score": 1.0, - "content": "If you wish to return to an answer previously crossed out, ring the answer you now wish to select as", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 47, - 245, - 84, - 259 - ], - "spans": [ - { - "bbox": [ - 47, - 245, - 84, - 259 - ], - "score": 1.0, - "content": "shown.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 11.0 - }, - { - "type": "text", - "bbox": [ - 46, - 276, - 507, - 303 - ], - "lines": [ - { - "bbox": [ - 47, - 277, - 507, - 290 - ], - "spans": [ - { - "bbox": [ - 47, - 277, - 507, - 290 - ], - "score": 1.0, - "content": "You may do your working in the blank space around each question but this will not be marked.", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 47, - 290, - 269, - 303 - ], - "spans": [ - { - "bbox": [ - 47, - 290, - 269, - 303 - ], - "score": 1.0, - "content": "Do not use additional sheets for this working.", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 14.5 - }, - { - "type": "text", - "bbox": [ - 91, - 336, - 380, - 350 - ], - "lines": [ - { - "bbox": [ - 92, - 336, - 379, - 350 - ], - "spans": [ - { - "bbox": [ - 92, - 336, - 215, - 350 - ], - "score": 1.0, - "content": "The process of beta plus ", - "type": "text" - }, - { - "bbox": [ - 215, - 336, - 234, - 350 - ], - "score": 0.85, - "content": "(\\beta^{+})", - "type": "inline_equation", - "height": 14, - "width": 19 - }, - { - "bbox": [ - 234, - 336, - 379, - 350 - ], - "score": 1.0, - "content": " decay can be represented by", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16 - }, - { - "type": "image", - "bbox": [ - 185, - 350, - 394, - 550 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 185, - 350, - 394, - 550 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 185, - 350, - 394, - 550 - ], - "spans": [ - { - "bbox": [ - 185, - 350, - 394, - 550 - ], - "score": 0.959, - "type": "image", - "image_path": "b4292b9ab6a0d61bebc36ea25d1e7aa52c17e4ff642dc2b318d623add9cc4dfd.jpg" - } - ] - } - ], - "index": 24.5, - "virtual_lines": [ - { - "bbox": [ - 185, - 350, - 394, - 363.0 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 185, - 363.0, - 394, - 376.0 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 185, - 376.0, - 394, - 389.0 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 185, - 389.0, - 394, - 402.0 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 185, - 402.0, - 394, - 415.0 - ], - "spans": [], - "index": 21 - }, - { - "bbox": [ - 185, - 415.0, - 394, - 428.0 - ], - "spans": [], - "index": 22 - }, - { - "bbox": [ - 185, - 428.0, - 394, - 441.0 - ], - "spans": [], - "index": 23 - }, - { - "bbox": [ - 185, - 441.0, - 394, - 454.0 - ], - "spans": [], - "index": 24 - }, - { - "bbox": [ - 185, - 454.0, - 394, - 467.0 - ], - "spans": [], - "index": 25 - }, - { - "bbox": [ - 185, - 467.0, - 394, - 480.0 - ], - "spans": [], - "index": 26 - }, - { - "bbox": [ - 185, - 480.0, - 394, - 493.0 - ], - "spans": [], - "index": 27 - }, - { - "bbox": [ - 185, - 493.0, - 394, - 506.0 - ], - "spans": [], - "index": 28 - }, - { - "bbox": [ - 185, - 506.0, - 394, - 519.0 - ], - "spans": [], - "index": 29 - }, - { - "bbox": [ - 185, - 519.0, - 394, - 532.0 - ], - "spans": [], - "index": 30 - }, - { - "bbox": [ - 185, - 532.0, - 394, - 545.0 - ], - "spans": [], - "index": 31 - }, - { - "bbox": [ - 185, - 545.0, - 394, - 558.0 - ], - "spans": [], - "index": 32 - } - ] - } - ], - "index": 24.5 - }, - { - "type": "text", - "bbox": [ - 91, - 563, - 287, - 577 - ], - "lines": [ - { - "bbox": [ - 92, - 564, - 286, - 577 - ], - "spans": [ - { - "bbox": [ - 92, - 564, - 286, - 577 - ], - "score": 1.0, - "content": "Which row identifies particles X and Y?", - "type": "text" - } - ], - "index": 33 - } - ], - "index": 33 - }, - { - "type": "text", - "bbox": [ - 491, - 577, - 536, - 591 - ], - "lines": [ - { - "bbox": [ - 491, - 577, - 536, - 591 - ], - "spans": [ - { - "bbox": [ - 491, - 577, - 536, - 591 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 34 - } - ], - "index": 34 - }, - { - "type": "image", - "bbox": [ - 288, - 637, - 317, - 742 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 288, - 637, - 317, - 742 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 288, - 637, - 317, - 742 - ], - "spans": [ - { - "bbox": [ - 288, - 637, - 317, - 742 - ], - "score": 0.101, - "type": "image", - "image_path": "f4152bf7f36be4eb4b5a5dbc1b2bc68a717e3aadd707d4770c6aef92ffe42808.jpg" - } - ] - } - ], - "index": 35, - "virtual_lines": [ - { - "bbox": [ - 288, - 637, - 317, - 742 - ], - "spans": [], - "index": 35 - } - ] - } - ], - "index": 35 - }, - { - "type": "table", - "bbox": [ - 90, - 601, - 281, - 748 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 90, - 601, - 281, - 748 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 90, - 601, - 281, - 748 - ], - "spans": [ - { - "bbox": [ - 90, - 601, - 281, - 748 - ], - "score": 0.608, - "html": "
XY
AW+Ve
BW+Ve
CW-Ve
DW-Ve
", - "type": "table", - "image_path": "4b012981154c1ce8d7ce1795ac00b0545a4e6d4a1e9f31cf806b90196cd35403.jpg" - } - ] - } - ], - "index": 41.5, - "virtual_lines": [ - { - "bbox": [ - 90, - 601, - 281, - 614.0 - ], - "spans": [], - "index": 36 - }, - { - "bbox": [ - 90, - 614.0, - 281, - 627.0 - ], - "spans": [], - "index": 37 - }, - { - "bbox": [ - 90, - 627.0, - 281, - 640.0 - ], - "spans": [], - "index": 38 - }, - { - "bbox": [ - 90, - 640.0, - 281, - 653.0 - ], - "spans": [], - "index": 39 - }, - { - "bbox": [ - 90, - 653.0, - 281, - 666.0 - ], - "spans": [], - "index": 40 - }, - { - "bbox": [ - 90, - 666.0, - 281, - 679.0 - ], - "spans": [], - "index": 41 - }, - { - "bbox": [ - 90, - 679.0, - 281, - 692.0 - ], - "spans": [], - "index": 42 - }, - { - "bbox": [ - 90, - 692.0, - 281, - 705.0 - ], - "spans": [], - "index": 43 - }, - { - "bbox": [ - 90, - 705.0, - 281, - 718.0 - ], - "spans": [], - "index": 44 - }, - { - "bbox": [ - 90, - 718.0, - 281, - 731.0 - ], - "spans": [], - "index": 45 - }, - { - "bbox": [ - 90, - 731.0, - 281, - 744.0 - ], - "spans": [], - "index": 46 - }, - { - "bbox": [ - 90, - 744.0, - 281, - 757.0 - ], - "spans": [], - "index": 47 - } - ] - } - ], - "index": 41.5 - } - ], - "layout_bboxes": [], - "page_idx": 19, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 46, - 138, - 539, - 163 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 46, - 138, - 539, - 163 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 138, - 539, - 163 - ], - "spans": [ - { - "bbox": [ - 46, - 138, - 539, - 163 - ], - "score": 0.204, - "type": "image", - "image_path": "046272758a9f601e216ac9000a79e56ff1f0c83747fb4a54e9b882acb08608d1.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 46, - 138, - 539, - 163 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 3 - }, - { - "type": "image", - "bbox": [ - 467, - 215, - 491, - 233 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 467, - 215, - 491, - 233 - ], - "group_id": 3, - "lines": [], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 467, - 215, - 491, - 233 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 10 - }, - { - "type": "image", - "bbox": [ - 185, - 350, - 394, - 550 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 185, - 350, - 394, - 550 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 185, - 350, - 394, - 550 - ], - "spans": [ - { - "bbox": [ - 185, - 350, - 394, - 550 - ], - "score": 0.959, - "type": "image", - "image_path": "b4292b9ab6a0d61bebc36ea25d1e7aa52c17e4ff642dc2b318d623add9cc4dfd.jpg" - } - ] - } - ], - "index": 24.5, - "virtual_lines": [ - { - "bbox": [ - 185, - 350, - 394, - 363.0 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 185, - 363.0, - 394, - 376.0 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 185, - 376.0, - 394, - 389.0 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 185, - 389.0, - 394, - 402.0 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 185, - 402.0, - 394, - 415.0 - ], - "spans": [], - "index": 21 - }, - { - "bbox": [ - 185, - 415.0, - 394, - 428.0 - ], - "spans": [], - "index": 22 - }, - { - "bbox": [ - 185, - 428.0, - 394, - 441.0 - ], - "spans": [], - "index": 23 - }, - { - "bbox": [ - 185, - 441.0, - 394, - 454.0 - ], - "spans": [], - "index": 24 - }, - { - "bbox": [ - 185, - 454.0, - 394, - 467.0 - ], - "spans": [], - "index": 25 - }, - { - "bbox": [ - 185, - 467.0, - 394, - 480.0 - ], - "spans": [], - "index": 26 - }, - { - "bbox": [ - 185, - 480.0, - 394, - 493.0 - ], - "spans": [], - "index": 27 - }, - { - "bbox": [ - 185, - 493.0, - 394, - 506.0 - ], - "spans": [], - "index": 28 - }, - { - "bbox": [ - 185, - 506.0, - 394, - 519.0 - ], - "spans": [], - "index": 29 - }, - { - "bbox": [ - 185, - 519.0, - 394, - 532.0 - ], - "spans": [], - "index": 30 - }, - { - "bbox": [ - 185, - 532.0, - 394, - 545.0 - ], - "spans": [], - "index": 31 - }, - { - "bbox": [ - 185, - 545.0, - 394, - 558.0 - ], - "spans": [], - "index": 32 - } - ] - } - ], - "index": 24.5 - }, - { - "type": "image", - "bbox": [ - 288, - 637, - 317, - 742 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 288, - 637, - 317, - 742 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 288, - 637, - 317, - 742 - ], - "spans": [ - { - "bbox": [ - 288, - 637, - 317, - 742 - ], - "score": 0.101, - "type": "image", - "image_path": "f4152bf7f36be4eb4b5a5dbc1b2bc68a717e3aadd707d4770c6aef92ffe42808.jpg" - } - ] - } - ], - "index": 35, - "virtual_lines": [ - { - "bbox": [ - 288, - 637, - 317, - 742 - ], - "spans": [], - "index": 35 - } - ] - } - ], - "index": 35 - } - ], - "tables": [ - { - "type": "table", - "bbox": [ - 261, - 204, - 346, - 219 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 261, - 204, - 346, - 219 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 261, - 204, - 346, - 219 - ], - "spans": [ - { - "bbox": [ - 261, - 204, - 346, - 219 - ], - "score": 0.808, - "html": "
", - "type": "table", - "image_path": "9cec0251051fbb3775d6dbf9e72581e9f9580e9cf4622b4f8ff16008805b8209.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 261, - 204, - 346, - 219 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 8 - }, - { - "type": "table", - "bbox": [ - 90, - 601, - 281, - 748 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 90, - 601, - 281, - 748 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 90, - 601, - 281, - 748 - ], - "spans": [ - { - "bbox": [ - 90, - 601, - 281, - 748 - ], - "score": 0.608, - "html": "
XY
AW+Ve
BW+Ve
CW-Ve
DW-Ve
", - "type": "table", - "image_path": "4b012981154c1ce8d7ce1795ac00b0545a4e6d4a1e9f31cf806b90196cd35403.jpg" - } - ] - } - ], - "index": 41.5, - "virtual_lines": [ - { - "bbox": [ - 90, - 601, - 281, - 614.0 - ], - "spans": [], - "index": 36 - }, - { - "bbox": [ - 90, - 614.0, - 281, - 627.0 - ], - "spans": [], - "index": 37 - }, - { - "bbox": [ - 90, - 627.0, - 281, - 640.0 - ], - "spans": [], - "index": 38 - }, - { - "bbox": [ - 90, - 640.0, - 281, - 653.0 - ], - "spans": [], - "index": 39 - }, - { - "bbox": [ - 90, - 653.0, - 281, - 666.0 - ], - "spans": [], - "index": 40 - }, - { - "bbox": [ - 90, - 666.0, - 281, - 679.0 - ], - "spans": [], - "index": 41 - }, - { - "bbox": [ - 90, - 679.0, - 281, - 692.0 - ], - "spans": [], - "index": 42 - }, - { - "bbox": [ - 90, - 692.0, - 281, - 705.0 - ], - "spans": [], - "index": 43 - }, - { - "bbox": [ - 90, - 705.0, - 281, - 718.0 - ], - "spans": [], - "index": 44 - }, - { - "bbox": [ - 90, - 718.0, - 281, - 731.0 - ], - "spans": [], - "index": 45 - }, - { - "bbox": [ - 90, - 731.0, - 281, - 744.0 - ], - "spans": [], - "index": 46 - }, - { - "bbox": [ - 90, - 744.0, - 281, - 757.0 - ], - "spans": [], - "index": 47 - } - ] - } - ], - "index": 41.5 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 71, - 816, - 79, - 824 - ], - "spans": [ - { - "bbox": [ - 71, - 816, - 79, - 824 - ], - "score": 0.9815819263458252, - "content": "0", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 40 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "20 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 333, - 81, - 349 - ], - "lines": [ - { - "bbox": [ - 51, - 336, - 77, - 347 - ], - "spans": [ - { - "bbox": [ - 51, - 336, - 60, - 347 - ], - "score": 1.0, - "content": "0", - "type": "text" - }, - { - "bbox": [ - 67, - 336, - 77, - 347 - ], - "score": 1.0, - "content": "8 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 569, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 0.9991323947906494, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 127, - 204, - 148, - 219 - ], - "lines": [] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 262, - 65, - 316, - 78 - ], - "lines": [ - { - "bbox": [ - 263, - 65, - 316, - 78 - ], - "spans": [ - { - "bbox": [ - 263, - 65, - 316, - 78 - ], - "score": 1.0, - "content": "Section B", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 91, - 464, - 105 - ], - "lines": [ - { - "bbox": [ - 114, - 92, - 464, - 104 - ], - "spans": [ - { - "bbox": [ - 114, - 92, - 464, - 104 - ], - "score": 1.0, - "content": "Each of Questions 8 to 32 is followed by four responses, A, B, C and D.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 92, - 464, - 104 - ] - }, - { - "type": "text", - "bbox": [ - 181, - 117, - 396, - 130 - ], - "lines": [ - { - "bbox": [ - 182, - 117, - 397, - 130 - ], - "spans": [ - { - "bbox": [ - 182, - 117, - 397, - 130 - ], - "score": 1.0, - "content": "For each question select the best response.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 182, - 117, - 397, - 130 - ] - }, - { - "type": "image", - "bbox": [ - 46, - 138, - 539, - 163 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 46, - 138, - 539, - 163 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 138, - 539, - 163 - ], - "spans": [ - { - "bbox": [ - 46, - 138, - 539, - 163 - ], - "score": 0.204, - "type": "image", - "image_path": "046272758a9f601e216ac9000a79e56ff1f0c83747fb4a54e9b882acb08608d1.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 46, - 138, - 539, - 163 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 3, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 45, - 167, - 437, - 194 - ], - "lines": [ - { - "bbox": [ - 48, - 166, - 250, - 181 - ], - "spans": [ - { - "bbox": [ - 48, - 166, - 250, - 181 - ], - "score": 1.0, - "content": "Only one answer per question is allowed.", - "type": "text" - } - ], - "index": 4, - "is_list_end_line": true - }, - { - "bbox": [ - 47, - 181, - 434, - 194 - ], - "spans": [ - { - "bbox": [ - 47, - 181, - 434, - 194 - ], - "score": 1.0, - "content": "For each question completely fill in the circle alongside the appropriate answer.", - "type": "text" - } - ], - "index": 5, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 4.5, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 47, - 166, - 434, - 194 - ] - }, - { - "type": "text", - "bbox": [ - 47, - 207, - 116, - 217 - ], - "lines": [ - { - "bbox": [ - 48, - 209, - 115, - 216 - ], - "spans": [ - { - "bbox": [ - 48, - 209, - 115, - 216 - ], - "score": 1.0, - "content": "CORRECT METHOD", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 48, - 209, - 115, - 216 - ] - }, - { - "type": "text", - "bbox": [ - 182, - 207, - 250, - 217 - ], - "lines": [ - { - "bbox": [ - 184, - 208, - 250, - 217 - ], - "spans": [ - { - "bbox": [ - 184, - 208, - 250, - 217 - ], - "score": 1.0, - "content": "WRONG METHODS", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 184, - 208, - 250, - 217 - ] - }, - { - "type": "table", - "bbox": [ - 261, - 204, - 346, - 219 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 261, - 204, - 346, - 219 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 261, - 204, - 346, - 219 - ], - "spans": [ - { - "bbox": [ - 261, - 204, - 346, - 219 - ], - "score": 0.808, - "html": "
", - "type": "table", - "image_path": "9cec0251051fbb3775d6dbf9e72581e9f9580e9cf4622b4f8ff16008805b8209.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 261, - 204, - 346, - 219 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 8, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "image", - "bbox": [ - 467, - 215, - 491, - 233 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 467, - 215, - 491, - 233 - ], - "group_id": 3, - "lines": [], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 467, - 215, - 491, - 233 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 10, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 46, - 221, - 534, - 268 - ], - "lines": [ - { - "bbox": [ - 467, - 215, - 491, - 233 - ], - "spans": [ - { - "bbox": [ - 467, - 215, - 491, - 233 - ], - "score": 0.561, - "type": "image", - "image_path": "2385ad01c49b4dcb813021c2181c8cf3f346a5d4aec8018273a9d4bd47ce869e.jpg" - } - ], - "index": 10 - }, - { - "bbox": [ - 47, - 219, - 478, - 233 - ], - "spans": [ - { - "bbox": [ - 47, - 219, - 478, - 233 - ], - "score": 1.0, - "content": "If you want to change your answer you must cross out your original answer as shown. ", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 47, - 233, - 533, - 246 - ], - "spans": [ - { - "bbox": [ - 47, - 233, - 533, - 246 - ], - "score": 1.0, - "content": "If you wish to return to an answer previously crossed out, ring the answer you now wish to select as", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 47, - 245, - 84, - 259 - ], - "spans": [ - { - "bbox": [ - 47, - 245, - 84, - 259 - ], - "score": 1.0, - "content": "shown.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 11.0, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 47, - 215, - 533, - 259 - ] - }, - { - "type": "list", - "bbox": [ - 46, - 276, - 507, - 303 - ], - "lines": [ - { - "bbox": [ - 47, - 277, - 507, - 290 - ], - "spans": [ - { - "bbox": [ - 47, - 277, - 507, - 290 - ], - "score": 1.0, - "content": "You may do your working in the blank space around each question but this will not be marked.", - "type": "text" - } - ], - "index": 14, - "is_list_end_line": true - }, - { - "bbox": [ - 47, - 290, - 269, - 303 - ], - "spans": [ - { - "bbox": [ - 47, - 290, - 269, - 303 - ], - "score": 1.0, - "content": "Do not use additional sheets for this working.", - "type": "text" - } - ], - "index": 15, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 14.5, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 47, - 277, - 507, - 303 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 336, - 380, - 350 - ], - "lines": [ - { - "bbox": [ - 92, - 336, - 379, - 350 - ], - "spans": [ - { - "bbox": [ - 92, - 336, - 215, - 350 - ], - "score": 1.0, - "content": "The process of beta plus ", - "type": "text" - }, - { - "bbox": [ - 215, - 336, - 234, - 350 - ], - "score": 0.85, - "content": "(\\beta^{+})", - "type": "inline_equation", - "height": 14, - "width": 19 - }, - { - "bbox": [ - 234, - 336, - 379, - 350 - ], - "score": 1.0, - "content": " decay can be represented by", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 336, - 379, - 350 - ] - }, - { - "type": "image", - "bbox": [ - 185, - 350, - 394, - 550 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 185, - 350, - 394, - 550 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 185, - 350, - 394, - 550 - ], - "spans": [ - { - "bbox": [ - 185, - 350, - 394, - 550 - ], - "score": 0.959, - "type": "image", - "image_path": "b4292b9ab6a0d61bebc36ea25d1e7aa52c17e4ff642dc2b318d623add9cc4dfd.jpg" - } - ] - } - ], - "index": 24.5, - "virtual_lines": [ - { - "bbox": [ - 185, - 350, - 394, - 363.0 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 185, - 363.0, - 394, - 376.0 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 185, - 376.0, - 394, - 389.0 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 185, - 389.0, - 394, - 402.0 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 185, - 402.0, - 394, - 415.0 - ], - "spans": [], - "index": 21 - }, - { - "bbox": [ - 185, - 415.0, - 394, - 428.0 - ], - "spans": [], - "index": 22 - }, - { - "bbox": [ - 185, - 428.0, - 394, - 441.0 - ], - "spans": [], - "index": 23 - }, - { - "bbox": [ - 185, - 441.0, - 394, - 454.0 - ], - "spans": [], - "index": 24 - }, - { - "bbox": [ - 185, - 454.0, - 394, - 467.0 - ], - "spans": [], - "index": 25 - }, - { - "bbox": [ - 185, - 467.0, - 394, - 480.0 - ], - "spans": [], - "index": 26 - }, - { - "bbox": [ - 185, - 480.0, - 394, - 493.0 - ], - "spans": [], - "index": 27 - }, - { - "bbox": [ - 185, - 493.0, - 394, - 506.0 - ], - "spans": [], - "index": 28 - }, - { - "bbox": [ - 185, - 506.0, - 394, - 519.0 - ], - "spans": [], - "index": 29 - }, - { - "bbox": [ - 185, - 519.0, - 394, - 532.0 - ], - "spans": [], - "index": 30 - }, - { - "bbox": [ - 185, - 532.0, - 394, - 545.0 - ], - "spans": [], - "index": 31 - }, - { - "bbox": [ - 185, - 545.0, - 394, - 558.0 - ], - "spans": [], - "index": 32 - } - ] - } - ], - "index": 24.5, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 563, - 287, - 577 - ], - "lines": [ - { - "bbox": [ - 92, - 564, - 286, - 577 - ], - "spans": [ - { - "bbox": [ - 92, - 564, - 286, - 577 - ], - "score": 1.0, - "content": "Which row identifies particles X and Y?", - "type": "text" - } - ], - "index": 33 - } - ], - "index": 33, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 564, - 286, - 577 - ] - }, - { - "type": "text", - "bbox": [ - 491, - 577, - 536, - 591 - ], - "lines": [ - { - "bbox": [ - 491, - 577, - 536, - 591 - ], - "spans": [ - { - "bbox": [ - 491, - 577, - 536, - 591 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 34 - } - ], - "index": 34, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 577, - 536, - 591 - ] - }, - { - "type": "image", - "bbox": [ - 288, - 637, - 317, - 742 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 288, - 637, - 317, - 742 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 288, - 637, - 317, - 742 - ], - "spans": [ - { - "bbox": [ - 288, - 637, - 317, - 742 - ], - "score": 0.101, - "type": "image", - "image_path": "f4152bf7f36be4eb4b5a5dbc1b2bc68a717e3aadd707d4770c6aef92ffe42808.jpg" - } - ] - } - ], - "index": 35, - "virtual_lines": [ - { - "bbox": [ - 288, - 637, - 317, - 742 - ], - "spans": [], - "index": 35 - } - ] - } - ], - "index": 35, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 90, - 601, - 281, - 748 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 90, - 601, - 281, - 748 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 90, - 601, - 281, - 748 - ], - "spans": [ - { - "bbox": [ - 90, - 601, - 281, - 748 - ], - "score": 0.608, - "html": "
XY
AW+Ve
BW+Ve
CW-Ve
DW-Ve
", - "type": "table", - "image_path": "4b012981154c1ce8d7ce1795ac00b0545a4e6d4a1e9f31cf806b90196cd35403.jpg" - } - ] - } - ], - "index": 41.5, - "virtual_lines": [ - { - "bbox": [ - 90, - 601, - 281, - 614.0 - ], - "spans": [], - "index": 36 - }, - { - "bbox": [ - 90, - 614.0, - 281, - 627.0 - ], - "spans": [], - "index": 37 - }, - { - "bbox": [ - 90, - 627.0, - 281, - 640.0 - ], - "spans": [], - "index": 38 - }, - { - "bbox": [ - 90, - 640.0, - 281, - 653.0 - ], - "spans": [], - "index": 39 - }, - { - "bbox": [ - 90, - 653.0, - 281, - 666.0 - ], - "spans": [], - "index": 40 - }, - { - "bbox": [ - 90, - 666.0, - 281, - 679.0 - ], - "spans": [], - "index": 41 - }, - { - "bbox": [ - 90, - 679.0, - 281, - 692.0 - ], - "spans": [], - "index": 42 - }, - { - "bbox": [ - 90, - 692.0, - 281, - 705.0 - ], - "spans": [], - "index": 43 - }, - { - "bbox": [ - 90, - 705.0, - 281, - 718.0 - ], - "spans": [], - "index": 44 - }, - { - "bbox": [ - 90, - 718.0, - 281, - 731.0 - ], - "spans": [], - "index": 45 - }, - { - "bbox": [ - 90, - 731.0, - 281, - 744.0 - ], - "spans": [], - "index": 46 - }, - { - "bbox": [ - 90, - 744.0, - 281, - 757.0 - ], - "spans": [], - "index": 47 - } - ] - } - ], - "index": 41.5, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 88, - 68, - 500, - 95 - ], - "lines": [ - { - "bbox": [ - 92, - 68, - 501, - 82 - ], - "spans": [ - { - "bbox": [ - 92, - 68, - 501, - 82 - ], - "score": 1.0, - "content": "An electron collides with an isolated atom and raises an orbiting electron to a higher", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 91, - 82, - 156, - 95 - ], - "spans": [ - { - "bbox": [ - 91, - 82, - 156, - 95 - ], - "score": 1.0, - "content": "energy level.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 91, - 111, - 230, - 125 - ], - "lines": [ - { - "bbox": [ - 92, - 112, - 228, - 124 - ], - "spans": [ - { - "bbox": [ - 92, - 112, - 228, - 124 - ], - "score": 1.0, - "content": "Which statement is correct?", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 491, - 124, - 536, - 138 - ], - "lines": [ - { - "bbox": [ - 491, - 124, - 536, - 138 - ], - "spans": [ - { - "bbox": [ - 491, - 124, - 536, - 138 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 90, - 156, - 433, - 285 - ], - "lines": [ - { - "bbox": [ - 92, - 158, - 403, - 171 - ], - "spans": [ - { - "bbox": [ - 92, - 158, - 403, - 171 - ], - "score": 1.0, - "content": "A The colliding electron is captured by the nucleus of the atom.", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 91, - 185, - 419, - 200 - ], - "spans": [ - { - "bbox": [ - 91, - 185, - 419, - 200 - ], - "score": 1.0, - "content": "B A photon is emitted when the electron rises to the higher energy", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 104, - 198, - 135, - 211 - ], - "spans": [ - { - "bbox": [ - 104, - 198, - 135, - 211 - ], - "score": 1.0, - "content": "level. ", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 92, - 222, - 408, - 233 - ], - "spans": [ - { - "bbox": [ - 92, - 222, - 408, - 233 - ], - "score": 1.0, - "content": "C An electron is emitted when the excited electron returns to the", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 105, - 236, - 171, - 246 - ], - "spans": [ - { - "bbox": [ - 105, - 236, - 171, - 246 - ], - "score": 1.0, - "content": "ground state.", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 91, - 258, - 407, - 271 - ], - "spans": [ - { - "bbox": [ - 91, - 258, - 407, - 271 - ], - "score": 1.0, - "content": "D Energy is transferred from the colliding electron to the orbiting", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 105, - 272, - 150, - 283 - ], - "spans": [ - { - "bbox": [ - 105, - 272, - 150, - 283 - ], - "score": 1.0, - "content": "electron.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 90, - 313, - 522, - 342 - ], - "lines": [ - { - "bbox": [ - 91, - 313, - 522, - 330 - ], - "spans": [ - { - "bbox": [ - 91, - 313, - 181, - 330 - ], - "score": 1.0, - "content": "Light of frequency", - "type": "text" - }, - { - "bbox": [ - 182, - 313, - 248, - 327 - ], - "score": 0.91, - "content": "2.0\\times10^{15}\\mathrm{Hz}", - "type": "inline_equation", - "height": 14, - "width": 66 - }, - { - "bbox": [ - 248, - 313, - 522, - 330 - ], - "score": 1.0, - "content": " is incident on a metal surface. The work function of the ", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 91, - 328, - 197, - 341 - ], - "spans": [ - { - "bbox": [ - 91, - 328, - 132, - 341 - ], - "score": 1.0, - "content": "metal is", - "type": "text" - }, - { - "bbox": [ - 132, - 328, - 193, - 341 - ], - "score": 0.91, - "content": "4.6\\times10^{-19}\\mathrm{~J}", - "type": "inline_equation", - "height": 13, - "width": 61 - }, - { - "bbox": [ - 193, - 328, - 197, - 341 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11.5 - }, - { - "type": "text", - "bbox": [ - 91, - 359, - 230, - 373 - ], - "lines": [ - { - "bbox": [ - 92, - 361, - 229, - 371 - ], - "spans": [ - { - "bbox": [ - 92, - 361, - 229, - 371 - ], - "score": 1.0, - "content": "Which statement is correct?", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "text", - "bbox": [ - 491, - 372, - 536, - 386 - ], - "lines": [ - { - "bbox": [ - 491, - 373, - 536, - 386 - ], - "spans": [ - { - "bbox": [ - 491, - 373, - 536, - 386 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "image", - "bbox": [ - 89, - 402, - 470, - 533 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 89, - 402, - 470, - 533 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 89, - 403, - 470, - 533 - ], - "spans": [ - { - "bbox": [ - 89, - 403, - 470, - 533 - ], - "score": 0.252, - "type": "image", - "image_path": "4b43b951db653f5a43ed85934e9802c981d24681065c8f4da844a2610378feaa.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 89, - 402, - 470, - 445.6666666666667 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 89, - 445.6666666666667, - 470, - 489.33333333333337 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 89, - 489.33333333333337, - 470, - 533.0 - ], - "spans": [], - "index": 17 - } - ] - } - ], - "index": 16 - }, - { - "type": "text", - "bbox": [ - 90, - 561, - 410, - 604 - ], - "lines": [ - { - "bbox": [ - 91, - 561, - 408, - 576 - ], - "spans": [ - { - "bbox": [ - 91, - 564, - 340, - 576 - ], - "score": 1.0, - "content": "A photon of ultraviolet radiation has a frequency of ", - "type": "text" - }, - { - "bbox": [ - 340, - 561, - 406, - 576 - ], - "score": 0.9, - "content": "1.5\\times10^{15}\\mathrm{Hz}", - "type": "inline_equation", - "height": 15, - "width": 66 - }, - { - "bbox": [ - 406, - 563, - 408, - 576 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 91, - 591, - 280, - 603 - ], - "spans": [ - { - "bbox": [ - 91, - 591, - 280, - 603 - ], - "score": 1.0, - "content": "What is the momentum of the photon?", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 18.5 - }, - { - "type": "text", - "bbox": [ - 491, - 603, - 536, - 616 - ], - "lines": [ - { - "bbox": [ - 491, - 602, - 537, - 617 - ], - "spans": [ - { - "bbox": [ - 491, - 602, - 537, - 617 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 20 - }, - { - "type": "text", - "bbox": [ - 90, - 633, - 203, - 736 - ], - "lines": [ - { - "bbox": [ - 91, - 633, - 202, - 650 - ], - "spans": [ - { - "bbox": [ - 91, - 634, - 104, - 649 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 105, - 633, - 202, - 650 - ], - "score": 0.38, - "content": "3.3\\times10^{-41}\\mathrm{kgms^{-1}}", - "type": "inline_equation", - "height": 17, - "width": 97 - } - ], - "index": 21 - }, - { - "bbox": [ - 90, - 662, - 201, - 678 - ], - "spans": [ - { - "bbox": [ - 90, - 662, - 201, - 678 - ], - "score": 1.0, - "content": "B 1.3 × 10–40 kg m s–1", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 91, - 690, - 200, - 706 - ], - "spans": [ - { - "bbox": [ - 91, - 690, - 200, - 706 - ], - "score": 1.0, - "content": "C 3.3 × 10–27 kg m s–1", - "type": "text" - } - ], - "index": 24 - }, - { - "bbox": [ - 90, - 720, - 202, - 735 - ], - "spans": [ - { - "bbox": [ - 90, - 720, - 202, - 735 - ], - "score": 1.0, - "content": "D 1.3 × 10–26 kg m s–1", - "type": "text" - } - ], - "index": 25 - } - ], - "index": 23.0 - }, - { - "type": "image", - "bbox": [ - 441, - 632, - 470, - 736 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 632, - 470, - 736 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 441, - 632, - 470, - 736 - ], - "spans": [ - { - "bbox": [ - 441, - 632, - 470, - 736 - ], - "score": 0.732, - "type": "image", - "image_path": "681578c65b0e5e04aa6b7755ce583140fdbd0996ce8f2c2b0ab50ea717a3c845.jpg" - } - ] - } - ], - "index": 23, - "virtual_lines": [ - { - "bbox": [ - 441, - 632, - 470, - 736 - ], - "spans": [], - "index": 23 - } - ] - } - ], - "index": 23 - } - ], - "layout_bboxes": [], - "page_idx": 20, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 89, - 402, - 470, - 533 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 89, - 402, - 470, - 533 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 89, - 403, - 470, - 533 - ], - "spans": [ - { - "bbox": [ - 89, - 403, - 470, - 533 - ], - "score": 0.252, - "type": "image", - "image_path": "4b43b951db653f5a43ed85934e9802c981d24681065c8f4da844a2610378feaa.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 89, - 402, - 470, - 445.6666666666667 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 89, - 445.6666666666667, - 470, - 489.33333333333337 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 89, - 489.33333333333337, - 470, - 533.0 - ], - "spans": [], - "index": 17 - } - ] - } - ], - "index": 16 - }, - { - "type": "image", - "bbox": [ - 441, - 632, - 470, - 736 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 632, - 470, - 736 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 441, - 632, - 470, - 736 - ], - "spans": [ - { - "bbox": [ - 441, - 632, - 470, - 736 - ], - "score": 0.732, - "type": "image", - "image_path": "681578c65b0e5e04aa6b7755ce583140fdbd0996ce8f2c2b0ab50ea717a3c845.jpg" - } - ] - } - ], - "index": 23, - "virtual_lines": [ - { - "bbox": [ - 441, - 632, - 470, - 736 - ], - "spans": [], - "index": 23 - } - ] - } - ], - "index": 23 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 312, - 82, - 329 - ], - "lines": [ - { - "bbox": [ - 50, - 314, - 77, - 326 - ], - "spans": [ - { - "bbox": [ - 50, - 314, - 77, - 326 - ], - "score": 1.0, - "content": "1 0 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 479, - 815, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 479, - 815, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 81, - 82 - ], - "lines": [ - { - "bbox": [ - 51, - 68, - 76, - 79 - ], - "spans": [ - { - "bbox": [ - 51, - 68, - 61, - 79 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 67, - 69, - 76, - 78 - ], - "score": 1.0, - "content": "9", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 60, - 816, - 79, - 824 - ], - "spans": [ - { - "bbox": [ - 60, - 816, - 67, - 824 - ], - "score": 0.9999097585678101, - "content": "2", - "type": "text" - }, - { - "bbox": [ - 70, - 816, - 79, - 824 - ], - "score": 0.9990310668945312, - "content": "1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 560, - 81, - 577 - ], - "lines": [ - { - "bbox": [ - 49, - 562, - 76, - 575 - ], - "spans": [ - { - "bbox": [ - 49, - 562, - 76, - 575 - ], - "score": 1.0, - "content": "1 1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 281, - 29, - 294, - 39 - ], - "lines": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "21 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 538, - 784 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 569, - 0, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 443, - 505, - 467, - 521 - ], - "lines": [] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 88, - 68, - 500, - 95 - ], - "lines": [ - { - "bbox": [ - 92, - 68, - 501, - 82 - ], - "spans": [ - { - "bbox": [ - 92, - 68, - 501, - 82 - ], - "score": 1.0, - "content": "An electron collides with an isolated atom and raises an orbiting electron to a higher", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 91, - 82, - 156, - 95 - ], - "spans": [ - { - "bbox": [ - 91, - 82, - 156, - 95 - ], - "score": 1.0, - "content": "energy level.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_20", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 68, - 501, - 95 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 111, - 230, - 125 - ], - "lines": [ - { - "bbox": [ - 92, - 112, - 228, - 124 - ], - "spans": [ - { - "bbox": [ - 92, - 112, - 228, - 124 - ], - "score": 1.0, - "content": "Which statement is correct?", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_20", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 112, - 228, - 124 - ] - }, - { - "type": "text", - "bbox": [ - 491, - 124, - 536, - 138 - ], - "lines": [ - { - "bbox": [ - 491, - 124, - 536, - 138 - ], - "spans": [ - { - "bbox": [ - 491, - 124, - 536, - 138 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_20", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 124, - 536, - 138 - ] - }, - { - "type": "list", - "bbox": [ - 90, - 156, - 433, - 285 - ], - "lines": [ - { - "bbox": [ - 92, - 158, - 403, - 171 - ], - "spans": [ - { - "bbox": [ - 92, - 158, - 403, - 171 - ], - "score": 1.0, - "content": "A The colliding electron is captured by the nucleus of the atom.", - "type": "text" - } - ], - "index": 4, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 185, - 419, - 200 - ], - "spans": [ - { - "bbox": [ - 91, - 185, - 419, - 200 - ], - "score": 1.0, - "content": "B A photon is emitted when the electron rises to the higher energy", - "type": "text" - } - ], - "index": 5, - "is_list_start_line": true - }, - { - "bbox": [ - 104, - 198, - 135, - 211 - ], - "spans": [ - { - "bbox": [ - 104, - 198, - 135, - 211 - ], - "score": 1.0, - "content": "level. ", - "type": "text" - } - ], - "index": 6, - "is_list_end_line": true - }, - { - "bbox": [ - 92, - 222, - 408, - 233 - ], - "spans": [ - { - "bbox": [ - 92, - 222, - 408, - 233 - ], - "score": 1.0, - "content": "C An electron is emitted when the excited electron returns to the", - "type": "text" - } - ], - "index": 7, - "is_list_start_line": true - }, - { - "bbox": [ - 105, - 236, - 171, - 246 - ], - "spans": [ - { - "bbox": [ - 105, - 236, - 171, - 246 - ], - "score": 1.0, - "content": "ground state.", - "type": "text" - } - ], - "index": 8, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 258, - 407, - 271 - ], - "spans": [ - { - "bbox": [ - 91, - 258, - 407, - 271 - ], - "score": 1.0, - "content": "D Energy is transferred from the colliding electron to the orbiting", - "type": "text" - } - ], - "index": 9, - "is_list_start_line": true - }, - { - "bbox": [ - 105, - 272, - 150, - 283 - ], - "spans": [ - { - "bbox": [ - 105, - 272, - 150, - 283 - ], - "score": 1.0, - "content": "electron.", - "type": "text" - } - ], - "index": 10, - "is_list_end_line": true - } - ], - "index": 7, - "page_num": "page_20", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 158, - 419, - 283 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 313, - 522, - 342 - ], - "lines": [ - { - "bbox": [ - 91, - 313, - 522, - 330 - ], - "spans": [ - { - "bbox": [ - 91, - 313, - 181, - 330 - ], - "score": 1.0, - "content": "Light of frequency", - "type": "text" - }, - { - "bbox": [ - 182, - 313, - 248, - 327 - ], - "score": 0.91, - "content": "2.0\\times10^{15}\\mathrm{Hz}", - "type": "inline_equation", - "height": 14, - "width": 66 - }, - { - "bbox": [ - 248, - 313, - 522, - 330 - ], - "score": 1.0, - "content": " is incident on a metal surface. The work function of the ", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 91, - 328, - 197, - 341 - ], - "spans": [ - { - "bbox": [ - 91, - 328, - 132, - 341 - ], - "score": 1.0, - "content": "metal is", - "type": "text" - }, - { - "bbox": [ - 132, - 328, - 193, - 341 - ], - "score": 0.91, - "content": "4.6\\times10^{-19}\\mathrm{~J}", - "type": "inline_equation", - "height": 13, - "width": 61 - }, - { - "bbox": [ - 193, - 328, - 197, - 341 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11.5, - "page_num": "page_20", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 313, - 522, - 341 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 359, - 230, - 373 - ], - "lines": [ - { - "bbox": [ - 92, - 361, - 229, - 371 - ], - "spans": [ - { - "bbox": [ - 92, - 361, - 229, - 371 - ], - "score": 1.0, - "content": "Which statement is correct?", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_20", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 361, - 229, - 371 - ] - }, - { - "type": "text", - "bbox": [ - 491, - 372, - 536, - 386 - ], - "lines": [ - { - "bbox": [ - 491, - 373, - 536, - 386 - ], - "spans": [ - { - "bbox": [ - 491, - 373, - 536, - 386 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_20", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 373, - 536, - 386 - ] - }, - { - "type": "image", - "bbox": [ - 89, - 402, - 470, - 533 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 89, - 402, - 470, - 533 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 89, - 403, - 470, - 533 - ], - "spans": [ - { - "bbox": [ - 89, - 403, - 470, - 533 - ], - "score": 0.252, - "type": "image", - "image_path": "4b43b951db653f5a43ed85934e9802c981d24681065c8f4da844a2610378feaa.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 89, - 402, - 470, - 445.6666666666667 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 89, - 445.6666666666667, - 470, - 489.33333333333337 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 89, - 489.33333333333337, - 470, - 533.0 - ], - "spans": [], - "index": 17 - } - ] - } - ], - "index": 16, - "page_num": "page_20", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 561, - 410, - 604 - ], - "lines": [ - { - "bbox": [ - 91, - 561, - 408, - 576 - ], - "spans": [ - { - "bbox": [ - 91, - 564, - 340, - 576 - ], - "score": 1.0, - "content": "A photon of ultraviolet radiation has a frequency of ", - "type": "text" - }, - { - "bbox": [ - 340, - 561, - 406, - 576 - ], - "score": 0.9, - "content": "1.5\\times10^{15}\\mathrm{Hz}", - "type": "inline_equation", - "height": 15, - "width": 66 - }, - { - "bbox": [ - 406, - 563, - 408, - 576 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 91, - 591, - 280, - 603 - ], - "spans": [ - { - "bbox": [ - 91, - 591, - 280, - 603 - ], - "score": 1.0, - "content": "What is the momentum of the photon?", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 18.5, - "page_num": "page_20", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 561, - 408, - 603 - ] - }, - { - "type": "text", - "bbox": [ - 491, - 603, - 536, - 616 - ], - "lines": [ - { - "bbox": [ - 491, - 602, - 537, - 617 - ], - "spans": [ - { - "bbox": [ - 491, - 602, - 537, - 617 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 20, - "page_num": "page_20", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 602, - 537, - 617 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 633, - 203, - 736 - ], - "lines": [ - { - "bbox": [ - 91, - 633, - 202, - 650 - ], - "spans": [ - { - "bbox": [ - 91, - 634, - 104, - 649 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 105, - 633, - 202, - 650 - ], - "score": 0.38, - "content": "3.3\\times10^{-41}\\mathrm{kgms^{-1}}", - "type": "inline_equation", - "height": 17, - "width": 97 - } - ], - "index": 21 - }, - { - "bbox": [ - 90, - 662, - 201, - 678 - ], - "spans": [ - { - "bbox": [ - 90, - 662, - 201, - 678 - ], - "score": 1.0, - "content": "B 1.3 × 10–40 kg m s–1", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 91, - 690, - 200, - 706 - ], - "spans": [ - { - "bbox": [ - 91, - 690, - 200, - 706 - ], - "score": 1.0, - "content": "C 3.3 × 10–27 kg m s–1", - "type": "text" - } - ], - "index": 24 - }, - { - "bbox": [ - 90, - 720, - 202, - 735 - ], - "spans": [ - { - "bbox": [ - 90, - 720, - 202, - 735 - ], - "score": 1.0, - "content": "D 1.3 × 10–26 kg m s–1", - "type": "text" - } - ], - "index": 25 - } - ], - "index": 23.0, - "page_num": "page_20", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 90, - 633, - 202, - 735 - ] - }, - { - "type": "image", - "bbox": [ - 441, - 632, - 470, - 736 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 632, - 470, - 736 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 441, - 632, - 470, - 736 - ], - "spans": [ - { - "bbox": [ - 441, - 632, - 470, - 736 - ], - "score": 0.732, - "type": "image", - "image_path": "681578c65b0e5e04aa6b7755ce583140fdbd0996ce8f2c2b0ab50ea717a3c845.jpg" - } - ] - } - ], - "index": 23, - "virtual_lines": [ - { - "bbox": [ - 441, - 632, - 470, - 736 - ], - "spans": [], - "index": 23 - } - ] - } - ], - "index": 23, - "page_num": "page_20", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 91, - 67, - 310, - 82 - ], - "lines": [ - { - "bbox": [ - 92, - 69, - 309, - 80 - ], - "spans": [ - { - "bbox": [ - 92, - 69, - 309, - 80 - ], - "score": 1.0, - "content": "Which statement about a couple is not true?", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 90, - 114, - 279, - 214 - ], - "lines": [ - { - "bbox": [ - 91, - 115, - 269, - 127 - ], - "spans": [ - { - "bbox": [ - 91, - 115, - 269, - 127 - ], - "score": 1.0, - "content": "A It must consist of coplanar forces.", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 92, - 144, - 264, - 155 - ], - "spans": [ - { - "bbox": [ - 92, - 144, - 264, - 155 - ], - "score": 1.0, - "content": "B It can produce rotational motion.", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 92, - 172, - 278, - 184 - ], - "spans": [ - { - "bbox": [ - 92, - 172, - 278, - 184 - ], - "score": 1.0, - "content": "C It can produce translational motion.", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 91, - 200, - 261, - 212 - ], - "spans": [ - { - "bbox": [ - 91, - 201, - 236, - 212 - ], - "score": 1.0, - "content": "D It has a moment with units", - "type": "text" - }, - { - "bbox": [ - 236, - 200, - 259, - 212 - ], - "score": 0.56, - "content": "\\mathrm{N}\\mathrm{m}", - "type": "inline_equation", - "height": 12, - "width": 23 - }, - { - "bbox": [ - 259, - 201, - 261, - 212 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 2.5 - }, - { - "type": "image", - "bbox": [ - 441, - 111, - 469, - 216 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 111, - 469, - 216 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 441, - 111, - 469, - 216 - ], - "spans": [ - { - "bbox": [ - 441, - 111, - 469, - 216 - ], - "score": 0.622, - "type": "image", - "image_path": "1406274efcc816dedfc4944b865335093faa06ac99f49182b9bbf91f467a4223.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 441, - 111, - 469, - 216 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 90, - 247, - 470, - 289 - ], - "lines": [ - { - "bbox": [ - 92, - 248, - 469, - 260 - ], - "spans": [ - { - "bbox": [ - 92, - 248, - 469, - 260 - ], - "score": 1.0, - "content": "Two cars P and Q leave from the same point and travel in the same direction.", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 91, - 262, - 352, - 274 - ], - "spans": [ - { - "bbox": [ - 91, - 262, - 102, - 273 - ], - "score": 0.29, - "content": "\\pmb{\\Omega}", - "type": "inline_equation", - "height": 11, - "width": 11 - }, - { - "bbox": [ - 103, - 262, - 173, - 274 - ], - "score": 1.0, - "content": "leaves at time", - "type": "text" - }, - { - "bbox": [ - 173, - 262, - 198, - 273 - ], - "score": 0.89, - "content": "t=0", - "type": "inline_equation", - "height": 11, - "width": 25 - }, - { - "bbox": [ - 198, - 262, - 220, - 274 - ], - "score": 1.0, - "content": " and", - "type": "text" - }, - { - "bbox": [ - 220, - 262, - 230, - 273 - ], - "score": 0.29, - "content": "\\mathsf{\\textbf{P}}", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 230, - 262, - 352, - 274 - ], - "score": 1.0, - "content": " leaves one second later.", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 92, - 276, - 355, - 288 - ], - "spans": [ - { - "bbox": [ - 92, - 276, - 355, - 288 - ], - "score": 1.0, - "content": "The figure shows the velocity–time graph for P and Q.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7 - }, - { - "type": "image", - "bbox": [ - 136, - 301, - 445, - 467 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 136, - 301, - 445, - 467 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 136, - 301, - 445, - 467 - ], - "spans": [ - { - "bbox": [ - 136, - 301, - 445, - 467 - ], - "score": 0.969, - "type": "image", - "image_path": "ed0e1d08ba703ff647c64b472741f8c9da88f767c5352d59e15a35a581f0f473.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 136, - 301, - 445, - 356.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 136, - 356.3333333333333, - 445, - 411.66666666666663 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 136, - 411.66666666666663, - 445, - 466.99999999999994 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 91, - 480, - 350, - 495 - ], - "lines": [ - { - "bbox": [ - 92, - 482, - 348, - 493 - ], - "spans": [ - { - "bbox": [ - 92, - 482, - 270, - 493 - ], - "score": 1.0, - "content": "What is the distance between Q and", - "type": "text" - }, - { - "bbox": [ - 271, - 482, - 281, - 493 - ], - "score": 0.32, - "content": "\\mathsf{\\textbf{P}}", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 281, - 482, - 310, - 493 - ], - "score": 1.0, - "content": " when", - "type": "text" - }, - { - "bbox": [ - 310, - 482, - 335, - 493 - ], - "score": 0.43, - "content": "t=8", - "type": "inline_equation", - "height": 11, - "width": 25 - }, - { - "bbox": [ - 335, - 482, - 348, - 493 - ], - "score": 1.0, - "content": " s?", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 491, - 495, - 536, - 509 - ], - "lines": [ - { - "bbox": [ - 491, - 494, - 536, - 509 - ], - "spans": [ - { - "bbox": [ - 491, - 494, - 536, - 509 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "image", - "bbox": [ - 441, - 525, - 470, - 628 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 525, - 470, - 628 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 441, - 525, - 470, - 628 - ], - "spans": [ - { - "bbox": [ - 441, - 525, - 470, - 628 - ], - "score": 0.714, - "type": "image", - "image_path": "353c155147e5e92821617ea22c8ece0fe19d27a67b9b7f4293b1edf57a664ac9.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 441, - 525, - 470, - 628 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 89, - 528, - 139, - 627 - ], - "lines": [ - { - "bbox": [ - 90, - 528, - 132, - 541 - ], - "spans": [ - { - "bbox": [ - 90, - 528, - 132, - 541 - ], - "score": 1.0, - "content": "A 40 m", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 90, - 556, - 133, - 570 - ], - "spans": [ - { - "bbox": [ - 90, - 556, - 133, - 570 - ], - "score": 1.0, - "content": "B 80 m ", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 90, - 585, - 139, - 599 - ], - "spans": [ - { - "bbox": [ - 90, - 585, - 139, - 599 - ], - "score": 1.0, - "content": "C 160 m ", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 90, - 613, - 139, - 626 - ], - "spans": [ - { - "bbox": [ - 90, - 613, - 139, - 626 - ], - "score": 1.0, - "content": "D 180 m ", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 16.5 - } - ], - "layout_bboxes": [], - "page_idx": 21, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 441, - 111, - 469, - 216 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 111, - 469, - 216 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 441, - 111, - 469, - 216 - ], - "spans": [ - { - "bbox": [ - 441, - 111, - 469, - 216 - ], - "score": 0.622, - "type": "image", - "image_path": "1406274efcc816dedfc4944b865335093faa06ac99f49182b9bbf91f467a4223.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 441, - 111, - 469, - 216 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 4 - }, - { - "type": "image", - "bbox": [ - 136, - 301, - 445, - 467 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 136, - 301, - 445, - 467 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 136, - 301, - 445, - 467 - ], - "spans": [ - { - "bbox": [ - 136, - 301, - 445, - 467 - ], - "score": 0.969, - "type": "image", - "image_path": "ed0e1d08ba703ff647c64b472741f8c9da88f767c5352d59e15a35a581f0f473.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 136, - 301, - 445, - 356.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 136, - 356.3333333333333, - 445, - 411.66666666666663 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 136, - 411.66666666666663, - 445, - 466.99999999999994 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "image", - "bbox": [ - 441, - 525, - 470, - 628 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 525, - 470, - 628 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 441, - 525, - 470, - 628 - ], - "spans": [ - { - "bbox": [ - 441, - 525, - 470, - 628 - ], - "score": 0.714, - "type": "image", - "image_path": "353c155147e5e92821617ea22c8ece0fe19d27a67b9b7f4293b1edf57a664ac9.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 441, - 525, - 470, - 628 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 14 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 70, - 816, - 80, - 825 - ], - "spans": [ - { - "bbox": [ - 70, - 816, - 80, - 825 - ], - "score": 0.9996654987335205, - "content": "2", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 46, - 245, - 81, - 262 - ], - "lines": [ - { - "bbox": [ - 49, - 247, - 77, - 260 - ], - "spans": [ - { - "bbox": [ - 49, - 247, - 77, - 260 - ], - "score": 1.0, - "content": "1 3 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 40 - ], - "lines": [ - { - "bbox": [ - 280, - 28, - 298, - 43 - ], - "spans": [ - { - "bbox": [ - 280, - 28, - 298, - 43 - ], - "score": 1.0, - "content": "22 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 569, - 0, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 81, - 82 - ], - "lines": [ - { - "bbox": [ - 49, - 66, - 79, - 81 - ], - "spans": [ - { - "bbox": [ - 49, - 66, - 79, - 81 - ], - "score": 1.0, - "content": "1 2 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 491, - 82, - 535, - 95 - ], - "lines": [ - { - "bbox": [ - 491, - 81, - 537, - 96 - ], - "spans": [ - { - "bbox": [ - 491, - 81, - 537, - 96 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 91, - 67, - 310, - 82 - ], - "lines": [ - { - "bbox": [ - 92, - 69, - 309, - 80 - ], - "spans": [ - { - "bbox": [ - 92, - 69, - 309, - 80 - ], - "score": 1.0, - "content": "Which statement about a couple is not true?", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_21", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 69, - 309, - 80 - ] - }, - { - "type": "list", - "bbox": [ - 90, - 114, - 279, - 214 - ], - "lines": [ - { - "bbox": [ - 91, - 115, - 269, - 127 - ], - "spans": [ - { - "bbox": [ - 91, - 115, - 269, - 127 - ], - "score": 1.0, - "content": "A It must consist of coplanar forces.", - "type": "text" - } - ], - "index": 1, - "is_list_end_line": true - }, - { - "bbox": [ - 92, - 144, - 264, - 155 - ], - "spans": [ - { - "bbox": [ - 92, - 144, - 264, - 155 - ], - "score": 1.0, - "content": "B It can produce rotational motion.", - "type": "text" - } - ], - "index": 2, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 92, - 172, - 278, - 184 - ], - "spans": [ - { - "bbox": [ - 92, - 172, - 278, - 184 - ], - "score": 1.0, - "content": "C It can produce translational motion.", - "type": "text" - } - ], - "index": 3, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 200, - 261, - 212 - ], - "spans": [ - { - "bbox": [ - 91, - 201, - 236, - 212 - ], - "score": 1.0, - "content": "D It has a moment with units", - "type": "text" - }, - { - "bbox": [ - 236, - 200, - 259, - 212 - ], - "score": 0.56, - "content": "\\mathrm{N}\\mathrm{m}", - "type": "inline_equation", - "height": 12, - "width": 23 - }, - { - "bbox": [ - 259, - 201, - 261, - 212 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 5, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 92, - 248, - 469, - 260 - ], - "spans": [ - { - "bbox": [ - 92, - 248, - 469, - 260 - ], - "score": 1.0, - "content": "Two cars P and Q leave from the same point and travel in the same direction.", - "type": "text" - } - ], - "index": 6, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 262, - 352, - 274 - ], - "spans": [ - { - "bbox": [ - 91, - 262, - 102, - 273 - ], - "score": 0.29, - "content": "\\pmb{\\Omega}", - "type": "inline_equation", - "height": 11, - "width": 11 - }, - { - "bbox": [ - 103, - 262, - 173, - 274 - ], - "score": 1.0, - "content": "leaves at time", - "type": "text" - }, - { - "bbox": [ - 173, - 262, - 198, - 273 - ], - "score": 0.89, - "content": "t=0", - "type": "inline_equation", - "height": 11, - "width": 25 - }, - { - "bbox": [ - 198, - 262, - 220, - 274 - ], - "score": 1.0, - "content": " and", - "type": "text" - }, - { - "bbox": [ - 220, - 262, - 230, - 273 - ], - "score": 0.29, - "content": "\\mathsf{\\textbf{P}}", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 230, - 262, - 352, - 274 - ], - "score": 1.0, - "content": " leaves one second later.", - "type": "text" - } - ], - "index": 7, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 92, - 276, - 355, - 288 - ], - "spans": [ - { - "bbox": [ - 92, - 276, - 355, - 288 - ], - "score": 1.0, - "content": "The figure shows the velocity–time graph for P and Q.", - "type": "text" - } - ], - "index": 8, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 2.5, - "page_num": "page_21", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 115, - 278, - 212 - ] - }, - { - "type": "image", - "bbox": [ - 441, - 111, - 469, - 216 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 111, - 469, - 216 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 441, - 111, - 469, - 216 - ], - "spans": [ - { - "bbox": [ - 441, - 111, - 469, - 216 - ], - "score": 0.622, - "type": "image", - "image_path": "1406274efcc816dedfc4944b865335093faa06ac99f49182b9bbf91f467a4223.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 441, - 111, - 469, - 216 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 4, - "page_num": "page_21", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 90, - 247, - 470, - 289 - ], - "lines": [], - "index": 7, - "page_num": "page_21", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 248, - 469, - 288 - ], - "lines_deleted": true - }, - { - "type": "image", - "bbox": [ - 136, - 301, - 445, - 467 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 136, - 301, - 445, - 467 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 136, - 301, - 445, - 467 - ], - "spans": [ - { - "bbox": [ - 136, - 301, - 445, - 467 - ], - "score": 0.969, - "type": "image", - "image_path": "ed0e1d08ba703ff647c64b472741f8c9da88f767c5352d59e15a35a581f0f473.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 136, - 301, - 445, - 356.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 136, - 356.3333333333333, - 445, - 411.66666666666663 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 136, - 411.66666666666663, - 445, - 466.99999999999994 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10, - "page_num": "page_21", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 480, - 350, - 495 - ], - "lines": [ - { - "bbox": [ - 92, - 482, - 348, - 493 - ], - "spans": [ - { - "bbox": [ - 92, - 482, - 270, - 493 - ], - "score": 1.0, - "content": "What is the distance between Q and", - "type": "text" - }, - { - "bbox": [ - 271, - 482, - 281, - 493 - ], - "score": 0.32, - "content": "\\mathsf{\\textbf{P}}", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 281, - 482, - 310, - 493 - ], - "score": 1.0, - "content": " when", - "type": "text" - }, - { - "bbox": [ - 310, - 482, - 335, - 493 - ], - "score": 0.43, - "content": "t=8", - "type": "inline_equation", - "height": 11, - "width": 25 - }, - { - "bbox": [ - 335, - 482, - 348, - 493 - ], - "score": 1.0, - "content": " s?", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_21", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 482, - 348, - 493 - ] - }, - { - "type": "text", - "bbox": [ - 491, - 495, - 536, - 509 - ], - "lines": [ - { - "bbox": [ - 491, - 494, - 536, - 509 - ], - "spans": [ - { - "bbox": [ - 491, - 494, - 536, - 509 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_21", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 494, - 536, - 509 - ] - }, - { - "type": "image", - "bbox": [ - 441, - 525, - 470, - 628 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 525, - 470, - 628 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 441, - 525, - 470, - 628 - ], - "spans": [ - { - "bbox": [ - 441, - 525, - 470, - 628 - ], - "score": 0.714, - "type": "image", - "image_path": "353c155147e5e92821617ea22c8ece0fe19d27a67b9b7f4293b1edf57a664ac9.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 441, - 525, - 470, - 628 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 14, - "page_num": "page_21", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 89, - 528, - 139, - 627 - ], - "lines": [ - { - "bbox": [ - 90, - 528, - 132, - 541 - ], - "spans": [ - { - "bbox": [ - 90, - 528, - 132, - 541 - ], - "score": 1.0, - "content": "A 40 m", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 90, - 556, - 133, - 570 - ], - "spans": [ - { - "bbox": [ - 90, - 556, - 133, - 570 - ], - "score": 1.0, - "content": "B 80 m ", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 90, - 585, - 139, - 599 - ], - "spans": [ - { - "bbox": [ - 90, - 585, - 139, - 599 - ], - "score": 1.0, - "content": "C 160 m ", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 90, - 613, - 139, - 626 - ], - "spans": [ - { - "bbox": [ - 90, - 613, - 139, - 626 - ], - "score": 1.0, - "content": "D 180 m ", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 16.5, - "page_num": "page_21", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 90, - 528, - 139, - 626 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 91, - 68, - 483, - 110 - ], - "lines": [ - { - "bbox": [ - 91, - 68, - 482, - 83 - ], - "spans": [ - { - "bbox": [ - 91, - 68, - 139, - 82 - ], - "score": 0.67, - "content": "\\mathbb{A}0.20\\mathrm{kg}", - "type": "inline_equation", - "height": 14, - "width": 48 - }, - { - "bbox": [ - 140, - 70, - 321, - 82 - ], - "score": 1.0, - "content": " mass is suspended from a spring. A", - "type": "text" - }, - { - "bbox": [ - 322, - 69, - 360, - 83 - ], - "score": 0.71, - "content": "0.10\\mathrm{kg}", - "type": "inline_equation", - "height": 14, - "width": 38 - }, - { - "bbox": [ - 360, - 70, - 482, - 82 - ], - "score": 1.0, - "content": " mass is suspended from", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 91, - 82, - 343, - 97 - ], - "spans": [ - { - "bbox": [ - 91, - 82, - 109, - 97 - ], - "score": 1.0, - "content": "the", - "type": "text" - }, - { - "bbox": [ - 109, - 83, - 148, - 96 - ], - "score": 0.74, - "content": "0.20\\mathrm{kg}", - "type": "inline_equation", - "height": 13, - "width": 39 - }, - { - "bbox": [ - 148, - 82, - 343, - 97 - ], - "score": 1.0, - "content": " mass using a thread of negligible mass.", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 91, - 97, - 359, - 110 - ], - "spans": [ - { - "bbox": [ - 91, - 97, - 359, - 110 - ], - "score": 1.0, - "content": "The system is in equilibrium and the thread is then cut.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1 - }, - { - "type": "image", - "bbox": [ - 250, - 119, - 377, - 359 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 250, - 119, - 377, - 359 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 250, - 119, - 377, - 359 - ], - "spans": [ - { - "bbox": [ - 250, - 119, - 377, - 359 - ], - "score": 0.958, - "type": "image", - "image_path": "7ac40b1fcd1ddcf16449f2caf39baea59c8d308085d8edbf5214743500ec21eb.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 250, - 119, - 377, - 359 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 91, - 371, - 535, - 397 - ], - "lines": [ - { - "bbox": [ - 92, - 372, - 524, - 386 - ], - "spans": [ - { - "bbox": [ - 92, - 373, - 281, - 385 - ], - "score": 1.0, - "content": "What is the upward acceleration of the", - "type": "text" - }, - { - "bbox": [ - 281, - 372, - 320, - 386 - ], - "score": 0.77, - "content": "0.20\\mathrm{kg}", - "type": "inline_equation", - "height": 14, - "width": 39 - }, - { - "bbox": [ - 320, - 373, - 524, - 385 - ], - "score": 1.0, - "content": " mass at the instant that the thread is cut?", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 490, - 385, - 538, - 399 - ], - "spans": [ - { - "bbox": [ - 490, - 385, - 538, - 399 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5 - }, - { - "type": "text", - "bbox": [ - 90, - 417, - 152, - 518 - ], - "lines": [ - { - "bbox": [ - 92, - 417, - 151, - 433 - ], - "spans": [ - { - "bbox": [ - 92, - 419, - 104, - 431 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 105, - 417, - 151, - 433 - ], - "score": 0.42, - "content": "3.3\\mathrm{m~s}^{-2}", - "type": "inline_equation", - "height": 16, - "width": 46 - } - ], - "index": 6 - }, - { - "bbox": [ - 89, - 446, - 152, - 461 - ], - "spans": [ - { - "bbox": [ - 89, - 446, - 152, - 461 - ], - "score": 1.0, - "content": "B 4.9 m s–2 ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 89, - 473, - 153, - 491 - ], - "spans": [ - { - "bbox": [ - 89, - 473, - 153, - 491 - ], - "score": 1.0, - "content": "C 6.5 m s–2 ", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 90, - 503, - 151, - 517 - ], - "spans": [ - { - "bbox": [ - 90, - 503, - 151, - 517 - ], - "score": 1.0, - "content": "D 9.8 m s–2", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 7.5 - }, - { - "type": "image", - "bbox": [ - 441, - 416, - 469, - 520 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 416, - 469, - 520 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 441, - 416, - 469, - 520 - ], - "spans": [ - { - "bbox": [ - 441, - 416, - 469, - 520 - ], - "score": 0.722, - "type": "image", - "image_path": "1d589cccb55276ec12548654ba735da0c12ed7d491898b6ac22c6f92b6359180.jpg" - } - ] - } - ], - "index": 9, - "virtual_lines": [ - { - "bbox": [ - 441, - 416, - 469, - 520 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 89, - 552, - 479, - 580 - ], - "lines": [ - { - "bbox": [ - 91, - 553, - 478, - 565 - ], - "spans": [ - { - "bbox": [ - 91, - 553, - 157, - 565 - ], - "score": 1.0, - "content": "A lift of mass", - "type": "text" - }, - { - "bbox": [ - 157, - 553, - 170, - 565 - ], - "score": 0.53, - "content": "M", - "type": "inline_equation", - "height": 12, - "width": 13 - }, - { - "bbox": [ - 170, - 553, - 478, - 565 - ], - "score": 1.0, - "content": " is suspended from a cable. The lift descends with a downward", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 92, - 567, - 337, - 579 - ], - "spans": [ - { - "bbox": [ - 92, - 568, - 156, - 579 - ], - "score": 1.0, - "content": "acceleration,", - "type": "text" - }, - { - "bbox": [ - 157, - 569, - 164, - 578 - ], - "score": 0.37, - "content": "a", - "type": "inline_equation", - "height": 9, - "width": 7 - }, - { - "bbox": [ - 165, - 568, - 253, - 579 - ], - "score": 1.0, - "content": ". A frictional force", - "type": "text" - }, - { - "bbox": [ - 253, - 567, - 263, - 578 - ], - "score": 0.75, - "content": "F", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 264, - 568, - 337, - 579 - ], - "score": 1.0, - "content": " acts on the lift.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11.5 - }, - { - "type": "text", - "bbox": [ - 91, - 593, - 263, - 606 - ], - "lines": [ - { - "bbox": [ - 92, - 594, - 261, - 605 - ], - "spans": [ - { - "bbox": [ - 92, - 594, - 188, - 605 - ], - "score": 1.0, - "content": "What is the tension ", - "type": "text" - }, - { - "bbox": [ - 188, - 594, - 197, - 605 - ], - "score": 0.66, - "content": "T", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 198, - 594, - 261, - 605 - ], - "score": 1.0, - "content": "in the cable?", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "text", - "bbox": [ - 491, - 607, - 536, - 620 - ], - "lines": [ - { - "bbox": [ - 491, - 606, - 537, - 621 - ], - "spans": [ - { - "bbox": [ - 491, - 606, - 537, - 621 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "image", - "bbox": [ - 441, - 637, - 469, - 741 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 637, - 469, - 741 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 441, - 637, - 469, - 741 - ], - "spans": [ - { - "bbox": [ - 441, - 637, - 469, - 741 - ], - "score": 0.606, - "type": "image", - "image_path": "9c756f7308b5ce6c68f8ea520a992f52919cf84bc4e9246ba2d147dba4db4a8b.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 441, - 637, - 469, - 741 - ], - "spans": [], - "index": 16 - } - ] - } - ], - "index": 16 - }, - { - "type": "text", - "bbox": [ - 90, - 639, - 195, - 740 - ], - "lines": [ - { - "bbox": [ - 92, - 640, - 165, - 653 - ], - "spans": [ - { - "bbox": [ - 92, - 642, - 105, - 652 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 105, - 640, - 165, - 653 - ], - "score": 0.74, - "content": "T=M a+F", - "type": "inline_equation", - "height": 13, - "width": 60 - } - ], - "index": 15 - }, - { - "bbox": [ - 92, - 669, - 164, - 681 - ], - "spans": [ - { - "bbox": [ - 92, - 669, - 105, - 681 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 105, - 669, - 164, - 681 - ], - "score": 0.61, - "content": "T=M a-F", - "type": "inline_equation", - "height": 12, - "width": 59 - } - ], - "index": 17 - }, - { - "bbox": [ - 91, - 697, - 193, - 711 - ], - "spans": [ - { - "bbox": [ - 91, - 698, - 105, - 710 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 105, - 697, - 193, - 711 - ], - "score": 0.67, - "content": "{\\cal T}={\\cal M}\\left(g+a\\right)-{\\cal F}", - "type": "inline_equation", - "height": 14, - "width": 88 - } - ], - "index": 18 - }, - { - "bbox": [ - 91, - 725, - 193, - 740 - ], - "spans": [ - { - "bbox": [ - 91, - 725, - 105, - 740 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 105, - 725, - 193, - 739 - ], - "score": 0.46, - "content": "T=M\\left(g-a\\right)-F", - "type": "inline_equation", - "height": 14, - "width": 88 - } - ], - "index": 19 - } - ], - "index": 17.5 - } - ], - "layout_bboxes": [], - "page_idx": 22, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 250, - 119, - 377, - 359 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 250, - 119, - 377, - 359 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 250, - 119, - 377, - 359 - ], - "spans": [ - { - "bbox": [ - 250, - 119, - 377, - 359 - ], - "score": 0.958, - "type": "image", - "image_path": "7ac40b1fcd1ddcf16449f2caf39baea59c8d308085d8edbf5214743500ec21eb.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 250, - 119, - 377, - 359 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 3 - }, - { - "type": "image", - "bbox": [ - 441, - 416, - 469, - 520 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 416, - 469, - 520 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 441, - 416, - 469, - 520 - ], - "spans": [ - { - "bbox": [ - 441, - 416, - 469, - 520 - ], - "score": 0.722, - "type": "image", - "image_path": "1d589cccb55276ec12548654ba735da0c12ed7d491898b6ac22c6f92b6359180.jpg" - } - ] - } - ], - "index": 9, - "virtual_lines": [ - { - "bbox": [ - 441, - 416, - 469, - 520 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 9 - }, - { - "type": "image", - "bbox": [ - 441, - 637, - 469, - 741 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 637, - 469, - 741 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 441, - 637, - 469, - 741 - ], - "spans": [ - { - "bbox": [ - 441, - 637, - 469, - 741 - ], - "score": 0.606, - "type": "image", - "image_path": "9c756f7308b5ce6c68f8ea520a992f52919cf84bc4e9246ba2d147dba4db4a8b.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 441, - 637, - 469, - 741 - ], - "spans": [], - "index": 16 - } - ] - } - ], - "index": 16 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 549, - 81, - 566 - ], - "lines": [ - { - "bbox": [ - 49, - 551, - 79, - 565 - ], - "spans": [ - { - "bbox": [ - 49, - 551, - 79, - 565 - ], - "score": 1.0, - "content": "1 5 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 479, - 815, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 479, - 815, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 60, - 816, - 80, - 824 - ], - "spans": [ - { - "bbox": [ - 60, - 817, - 67, - 824 - ], - "score": 0.9999147653579712, - "content": "2", - "type": "text" - }, - { - "bbox": [ - 70, - 816, - 80, - 824 - ], - "score": 0.9999197721481323, - "content": "3", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 81, - 82 - ], - "lines": [ - { - "bbox": [ - 49, - 68, - 77, - 80 - ], - "spans": [ - { - "bbox": [ - 49, - 68, - 77, - 80 - ], - "score": 1.0, - "content": "1 4 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 280, - 27, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 280, - 27, - 298, - 42 - ], - "score": 1.0, - "content": "23 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 569, - 0, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 538, - 784 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "list", - "bbox": [ - 91, - 68, - 483, - 110 - ], - "lines": [ - { - "bbox": [ - 91, - 68, - 482, - 83 - ], - "spans": [ - { - "bbox": [ - 91, - 68, - 139, - 82 - ], - "score": 0.67, - "content": "\\mathbb{A}0.20\\mathrm{kg}", - "type": "inline_equation", - "height": 14, - "width": 48 - }, - { - "bbox": [ - 140, - 70, - 321, - 82 - ], - "score": 1.0, - "content": " mass is suspended from a spring. A", - "type": "text" - }, - { - "bbox": [ - 322, - 69, - 360, - 83 - ], - "score": 0.71, - "content": "0.10\\mathrm{kg}", - "type": "inline_equation", - "height": 14, - "width": 38 - }, - { - "bbox": [ - 360, - 70, - 482, - 82 - ], - "score": 1.0, - "content": " mass is suspended from", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 91, - 82, - 343, - 97 - ], - "spans": [ - { - "bbox": [ - 91, - 82, - 109, - 97 - ], - "score": 1.0, - "content": "the", - "type": "text" - }, - { - "bbox": [ - 109, - 83, - 148, - 96 - ], - "score": 0.74, - "content": "0.20\\mathrm{kg}", - "type": "inline_equation", - "height": 13, - "width": 39 - }, - { - "bbox": [ - 148, - 82, - 343, - 97 - ], - "score": 1.0, - "content": " mass using a thread of negligible mass.", - "type": "text" - } - ], - "index": 1, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 97, - 359, - 110 - ], - "spans": [ - { - "bbox": [ - 91, - 97, - 359, - 110 - ], - "score": 1.0, - "content": "The system is in equilibrium and the thread is then cut.", - "type": "text" - } - ], - "index": 2, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 1, - "page_num": "page_22", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 68, - 482, - 110 - ] - }, - { - "type": "image", - "bbox": [ - 250, - 119, - 377, - 359 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 250, - 119, - 377, - 359 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 250, - 119, - 377, - 359 - ], - "spans": [ - { - "bbox": [ - 250, - 119, - 377, - 359 - ], - "score": 0.958, - "type": "image", - "image_path": "7ac40b1fcd1ddcf16449f2caf39baea59c8d308085d8edbf5214743500ec21eb.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 250, - 119, - 377, - 359 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 3, - "page_num": "page_22", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 371, - 535, - 397 - ], - "lines": [ - { - "bbox": [ - 92, - 372, - 524, - 386 - ], - "spans": [ - { - "bbox": [ - 92, - 373, - 281, - 385 - ], - "score": 1.0, - "content": "What is the upward acceleration of the", - "type": "text" - }, - { - "bbox": [ - 281, - 372, - 320, - 386 - ], - "score": 0.77, - "content": "0.20\\mathrm{kg}", - "type": "inline_equation", - "height": 14, - "width": 39 - }, - { - "bbox": [ - 320, - 373, - 524, - 385 - ], - "score": 1.0, - "content": " mass at the instant that the thread is cut?", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 490, - 385, - 538, - 399 - ], - "spans": [ - { - "bbox": [ - 490, - 385, - 538, - 399 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5, - "page_num": "page_22", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 372, - 538, - 399 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 417, - 152, - 518 - ], - "lines": [ - { - "bbox": [ - 92, - 417, - 151, - 433 - ], - "spans": [ - { - "bbox": [ - 92, - 419, - 104, - 431 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 105, - 417, - 151, - 433 - ], - "score": 0.42, - "content": "3.3\\mathrm{m~s}^{-2}", - "type": "inline_equation", - "height": 16, - "width": 46 - } - ], - "index": 6 - }, - { - "bbox": [ - 89, - 446, - 152, - 461 - ], - "spans": [ - { - "bbox": [ - 89, - 446, - 152, - 461 - ], - "score": 1.0, - "content": "B 4.9 m s–2 ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 89, - 473, - 153, - 491 - ], - "spans": [ - { - "bbox": [ - 89, - 473, - 153, - 491 - ], - "score": 1.0, - "content": "C 6.5 m s–2 ", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 90, - 503, - 151, - 517 - ], - "spans": [ - { - "bbox": [ - 90, - 503, - 151, - 517 - ], - "score": 1.0, - "content": "D 9.8 m s–2", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 7.5, - "page_num": "page_22", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 89, - 417, - 153, - 517 - ] - }, - { - "type": "image", - "bbox": [ - 441, - 416, - 469, - 520 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 416, - 469, - 520 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 441, - 416, - 469, - 520 - ], - "spans": [ - { - "bbox": [ - 441, - 416, - 469, - 520 - ], - "score": 0.722, - "type": "image", - "image_path": "1d589cccb55276ec12548654ba735da0c12ed7d491898b6ac22c6f92b6359180.jpg" - } - ] - } - ], - "index": 9, - "virtual_lines": [ - { - "bbox": [ - 441, - 416, - 469, - 520 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 9, - "page_num": "page_22", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 89, - 552, - 479, - 580 - ], - "lines": [ - { - "bbox": [ - 91, - 553, - 478, - 565 - ], - "spans": [ - { - "bbox": [ - 91, - 553, - 157, - 565 - ], - "score": 1.0, - "content": "A lift of mass", - "type": "text" - }, - { - "bbox": [ - 157, - 553, - 170, - 565 - ], - "score": 0.53, - "content": "M", - "type": "inline_equation", - "height": 12, - "width": 13 - }, - { - "bbox": [ - 170, - 553, - 478, - 565 - ], - "score": 1.0, - "content": " is suspended from a cable. The lift descends with a downward", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 92, - 567, - 337, - 579 - ], - "spans": [ - { - "bbox": [ - 92, - 568, - 156, - 579 - ], - "score": 1.0, - "content": "acceleration,", - "type": "text" - }, - { - "bbox": [ - 157, - 569, - 164, - 578 - ], - "score": 0.37, - "content": "a", - "type": "inline_equation", - "height": 9, - "width": 7 - }, - { - "bbox": [ - 165, - 568, - 253, - 579 - ], - "score": 1.0, - "content": ". A frictional force", - "type": "text" - }, - { - "bbox": [ - 253, - 567, - 263, - 578 - ], - "score": 0.75, - "content": "F", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 264, - 568, - 337, - 579 - ], - "score": 1.0, - "content": " acts on the lift.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11.5, - "page_num": "page_22", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 553, - 478, - 579 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 593, - 263, - 606 - ], - "lines": [ - { - "bbox": [ - 92, - 594, - 261, - 605 - ], - "spans": [ - { - "bbox": [ - 92, - 594, - 188, - 605 - ], - "score": 1.0, - "content": "What is the tension ", - "type": "text" - }, - { - "bbox": [ - 188, - 594, - 197, - 605 - ], - "score": 0.66, - "content": "T", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 198, - 594, - 261, - 605 - ], - "score": 1.0, - "content": "in the cable?", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_22", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 594, - 261, - 605 - ] - }, - { - "type": "text", - "bbox": [ - 491, - 607, - 536, - 620 - ], - "lines": [ - { - "bbox": [ - 491, - 606, - 537, - 621 - ], - "spans": [ - { - "bbox": [ - 491, - 606, - 537, - 621 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_22", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 606, - 537, - 621 - ] - }, - { - "type": "image", - "bbox": [ - 441, - 637, - 469, - 741 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 637, - 469, - 741 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 441, - 637, - 469, - 741 - ], - "spans": [ - { - "bbox": [ - 441, - 637, - 469, - 741 - ], - "score": 0.606, - "type": "image", - "image_path": "9c756f7308b5ce6c68f8ea520a992f52919cf84bc4e9246ba2d147dba4db4a8b.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 441, - 637, - 469, - 741 - ], - "spans": [], - "index": 16 - } - ] - } - ], - "index": 16, - "page_num": "page_22", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 639, - 195, - 740 - ], - "lines": [ - { - "bbox": [ - 92, - 640, - 165, - 653 - ], - "spans": [ - { - "bbox": [ - 92, - 642, - 105, - 652 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 105, - 640, - 165, - 653 - ], - "score": 0.74, - "content": "T=M a+F", - "type": "inline_equation", - "height": 13, - "width": 60 - } - ], - "index": 15 - }, - { - "bbox": [ - 92, - 669, - 164, - 681 - ], - "spans": [ - { - "bbox": [ - 92, - 669, - 105, - 681 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 105, - 669, - 164, - 681 - ], - "score": 0.61, - "content": "T=M a-F", - "type": "inline_equation", - "height": 12, - "width": 59 - } - ], - "index": 17 - }, - { - "bbox": [ - 91, - 697, - 193, - 711 - ], - "spans": [ - { - "bbox": [ - 91, - 698, - 105, - 710 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 105, - 697, - 193, - 711 - ], - "score": 0.67, - "content": "{\\cal T}={\\cal M}\\left(g+a\\right)-{\\cal F}", - "type": "inline_equation", - "height": 14, - "width": 88 - } - ], - "index": 18 - }, - { - "bbox": [ - 91, - 725, - 193, - 740 - ], - "spans": [ - { - "bbox": [ - 91, - 725, - 105, - 740 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 105, - 725, - 193, - 739 - ], - "score": 0.46, - "content": "T=M\\left(g-a\\right)-F", - "type": "inline_equation", - "height": 14, - "width": 88 - } - ], - "index": 19 - } - ], - "index": 17.5, - "page_num": "page_22", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 640, - 193, - 740 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 90, - 67, - 382, - 109 - ], - "lines": [ - { - "bbox": [ - 91, - 69, - 337, - 82 - ], - "spans": [ - { - "bbox": [ - 91, - 69, - 337, - 82 - ], - "score": 1.0, - "content": "A body of constant mass falls freely due to gravity.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 92, - 94, - 380, - 107 - ], - "spans": [ - { - "bbox": [ - 92, - 94, - 380, - 107 - ], - "score": 1.0, - "content": "The rate of change of momentum of the body is equal to its", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 491, - 107, - 536, - 121 - ], - "lines": [ - { - "bbox": [ - 491, - 107, - 536, - 121 - ], - "spans": [ - { - "bbox": [ - 491, - 107, - 536, - 121 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 90, - 140, - 251, - 240 - ], - "lines": [ - { - "bbox": [ - 91, - 141, - 178, - 155 - ], - "spans": [ - { - "bbox": [ - 91, - 141, - 178, - 155 - ], - "score": 1.0, - "content": "A kinetic energy.", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 90, - 169, - 137, - 182 - ], - "spans": [ - { - "bbox": [ - 90, - 169, - 137, - 182 - ], - "score": 1.0, - "content": "B mass.", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 91, - 198, - 251, - 211 - ], - "spans": [ - { - "bbox": [ - 91, - 198, - 251, - 211 - ], - "score": 1.0, - "content": "C gravitational potential energy.", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 90, - 226, - 143, - 240 - ], - "spans": [ - { - "bbox": [ - 90, - 226, - 143, - 240 - ], - "score": 1.0, - "content": "D weight.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 5.0 - }, - { - "type": "image", - "bbox": [ - 441, - 137, - 469, - 241 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 137, - 469, - 241 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 441, - 137, - 469, - 241 - ], - "spans": [ - { - "bbox": [ - 441, - 137, - 469, - 241 - ], - "score": 0.719, - "type": "image", - "image_path": "8da7ff924c1989577c679b9a6c0d45be475bb3fa3c2017ffa7186a3efb0d0c94.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 441, - 137, - 469, - 241 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 91, - 273, - 481, - 314 - ], - "lines": [ - { - "bbox": [ - 91, - 274, - 479, - 288 - ], - "spans": [ - { - "bbox": [ - 91, - 274, - 479, - 288 - ], - "score": 1.0, - "content": "An electric vehicle is driven by a motor which produces a constant driving force.", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 91, - 287, - 389, - 301 - ], - "spans": [ - { - "bbox": [ - 91, - 287, - 389, - 301 - ], - "score": 1.0, - "content": "The vehicle travels from rest along a straight horizontal road.", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 91, - 300, - 291, - 314 - ], - "spans": [ - { - "bbox": [ - 91, - 300, - 291, - 314 - ], - "score": 1.0, - "content": "Friction and air resistance are negligible.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 90, - 325, - 527, - 340 - ], - "lines": [ - { - "bbox": [ - 91, - 326, - 523, - 340 - ], - "spans": [ - { - "bbox": [ - 91, - 326, - 523, - 340 - ], - "score": 1.0, - "content": "Which statement describes the variation with time of the power developed by the motor?", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 491, - 340, - 535, - 352 - ], - "lines": [ - { - "bbox": [ - 491, - 338, - 536, - 354 - ], - "spans": [ - { - "bbox": [ - 491, - 338, - 536, - 354 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "image", - "bbox": [ - 88, - 368, - 472, - 473 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 88, - 368, - 472, - 473 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 88, - 368, - 472, - 473 - ], - "spans": [ - { - "bbox": [ - 88, - 368, - 472, - 473 - ], - "score": 0.367, - "type": "image", - "image_path": "b26ce9f6714b3da27ff71e8ebb73ec9e95252a2e7209c9633a1c15c39b1c05b1.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 88, - 368, - 472, - 403.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 88, - 403.0, - 472, - 438.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 88, - 438.0, - 472, - 473.0 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 90, - 505, - 362, - 520 - ], - "lines": [ - { - "bbox": [ - 91, - 506, - 360, - 519 - ], - "spans": [ - { - "bbox": [ - 91, - 506, - 360, - 519 - ], - "score": 1.0, - "content": "Which is a correct statement about mechanical power?", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16 - }, - { - "type": "text", - "bbox": [ - 491, - 519, - 536, - 532 - ], - "lines": [ - { - "bbox": [ - 491, - 518, - 537, - 533 - ], - "spans": [ - { - "bbox": [ - 491, - 518, - 537, - 533 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 17 - }, - { - "type": "text", - "bbox": [ - 90, - 552, - 349, - 652 - ], - "lines": [ - { - "bbox": [ - 92, - 552, - 210, - 565 - ], - "spans": [ - { - "bbox": [ - 92, - 552, - 210, - 565 - ], - "score": 1.0, - "content": "A It is a vector quantity.", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 92, - 581, - 198, - 592 - ], - "spans": [ - { - "bbox": [ - 92, - 581, - 198, - 592 - ], - "score": 1.0, - "content": "B It is measured in J.", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 89, - 606, - 305, - 623 - ], - "spans": [ - { - "bbox": [ - 89, - 607, - 255, - 623 - ], - "score": 1.0, - "content": "C In fundamental units, its unit is", - "type": "text" - }, - { - "bbox": [ - 256, - 606, - 303, - 623 - ], - "score": 0.86, - "content": "\\mathrm{kg}\\mathrm{m}^{2}\\mathrm{s}^{-3}", - "type": "inline_equation", - "height": 17, - "width": 47 - }, - { - "bbox": [ - 303, - 607, - 305, - 623 - ], - "score": 1.0, - "content": " ", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 92, - 638, - 347, - 649 - ], - "spans": [ - { - "bbox": [ - 92, - 638, - 255, - 649 - ], - "score": 1.0, - "content": "D It can be calculated from force", - "type": "text" - }, - { - "bbox": [ - 255, - 640, - 264, - 649 - ], - "score": 0.76, - "content": "\\times", - "type": "inline_equation", - "height": 9, - "width": 9 - }, - { - "bbox": [ - 265, - 638, - 347, - 649 - ], - "score": 1.0, - "content": " distance moved.", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 20.0 - }, - { - "type": "image", - "bbox": [ - 442, - 548, - 469, - 653 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 442, - 548, - 469, - 653 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 442, - 548, - 469, - 653 - ], - "spans": [ - { - "bbox": [ - 442, - 548, - 469, - 653 - ], - "score": 0.753, - "type": "image", - "image_path": "d4b9ea543fa7fecbd310e55676ac451822c1761ce42383ab75893e6bf2abe5da.jpg" - } - ] - } - ], - "index": 20, - "virtual_lines": [ - { - "bbox": [ - 442, - 548, - 469, - 653 - ], - "spans": [], - "index": 20 - } - ] - } - ], - "index": 20 - } - ], - "layout_bboxes": [], - "page_idx": 23, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 441, - 137, - 469, - 241 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 137, - 469, - 241 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 441, - 137, - 469, - 241 - ], - "spans": [ - { - "bbox": [ - 441, - 137, - 469, - 241 - ], - "score": 0.719, - "type": "image", - "image_path": "8da7ff924c1989577c679b9a6c0d45be475bb3fa3c2017ffa7186a3efb0d0c94.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 441, - 137, - 469, - 241 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 5 - }, - { - "type": "image", - "bbox": [ - 88, - 368, - 472, - 473 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 88, - 368, - 472, - 473 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 88, - 368, - 472, - 473 - ], - "spans": [ - { - "bbox": [ - 88, - 368, - 472, - 473 - ], - "score": 0.367, - "type": "image", - "image_path": "b26ce9f6714b3da27ff71e8ebb73ec9e95252a2e7209c9633a1c15c39b1c05b1.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 88, - 368, - 472, - 403.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 88, - 403.0, - 472, - 438.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 88, - 438.0, - 472, - 473.0 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 14 - }, - { - "type": "image", - "bbox": [ - 442, - 548, - 469, - 653 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 442, - 548, - 469, - 653 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 442, - 548, - 469, - 653 - ], - "spans": [ - { - "bbox": [ - 442, - 548, - 469, - 653 - ], - "score": 0.753, - "type": "image", - "image_path": "d4b9ea543fa7fecbd310e55676ac451822c1761ce42383ab75893e6bf2abe5da.jpg" - } - ] - } - ], - "index": 20, - "virtual_lines": [ - { - "bbox": [ - 442, - 548, - 469, - 653 - ], - "spans": [], - "index": 20 - } - ] - } - ], - "index": 20 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 73, - 817, - 79, - 822 - ], - "spans": [ - { - "bbox": [ - 73, - 817, - 79, - 822 - ], - "score": 0.9451321363449097, - "content": "4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 271, - 81, - 288 - ], - "lines": [ - { - "bbox": [ - 48, - 272, - 78, - 286 - ], - "spans": [ - { - "bbox": [ - 48, - 272, - 78, - 286 - ], - "score": 1.0, - "content": "1 7 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 502, - 81, - 519 - ], - "lines": [ - { - "bbox": [ - 49, - 505, - 77, - 517 - ], - "spans": [ - { - "bbox": [ - 49, - 505, - 77, - 517 - ], - "score": 1.0, - "content": "1 8 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 297, - 41 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 297, - 41 - ], - "score": 1.0, - "content": "24 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 81, - 82 - ], - "lines": [ - { - "bbox": [ - 49, - 67, - 76, - 80 - ], - "spans": [ - { - "bbox": [ - 49, - 67, - 76, - 80 - ], - "score": 1.0, - "content": "1 6", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 569, - 0, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 90, - 67, - 382, - 109 - ], - "lines": [ - { - "bbox": [ - 91, - 69, - 337, - 82 - ], - "spans": [ - { - "bbox": [ - 91, - 69, - 337, - 82 - ], - "score": 1.0, - "content": "A body of constant mass falls freely due to gravity.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 92, - 94, - 380, - 107 - ], - "spans": [ - { - "bbox": [ - 92, - 94, - 380, - 107 - ], - "score": 1.0, - "content": "The rate of change of momentum of the body is equal to its", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_23", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 69, - 380, - 107 - ] - }, - { - "type": "text", - "bbox": [ - 491, - 107, - 536, - 121 - ], - "lines": [ - { - "bbox": [ - 491, - 107, - 536, - 121 - ], - "spans": [ - { - "bbox": [ - 491, - 107, - 536, - 121 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_23", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 107, - 536, - 121 - ] - }, - { - "type": "list", - "bbox": [ - 90, - 140, - 251, - 240 - ], - "lines": [ - { - "bbox": [ - 91, - 141, - 178, - 155 - ], - "spans": [ - { - "bbox": [ - 91, - 141, - 178, - 155 - ], - "score": 1.0, - "content": "A kinetic energy.", - "type": "text" - } - ], - "index": 3, - "is_list_end_line": true - }, - { - "bbox": [ - 90, - 169, - 137, - 182 - ], - "spans": [ - { - "bbox": [ - 90, - 169, - 137, - 182 - ], - "score": 1.0, - "content": "B mass.", - "type": "text" - } - ], - "index": 4, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 198, - 251, - 211 - ], - "spans": [ - { - "bbox": [ - 91, - 198, - 251, - 211 - ], - "score": 1.0, - "content": "C gravitational potential energy.", - "type": "text" - } - ], - "index": 6, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 90, - 226, - 143, - 240 - ], - "spans": [ - { - "bbox": [ - 90, - 226, - 143, - 240 - ], - "score": 1.0, - "content": "D weight.", - "type": "text" - } - ], - "index": 7, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 274, - 479, - 288 - ], - "spans": [ - { - "bbox": [ - 91, - 274, - 479, - 288 - ], - "score": 1.0, - "content": "An electric vehicle is driven by a motor which produces a constant driving force.", - "type": "text" - } - ], - "index": 8, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 287, - 389, - 301 - ], - "spans": [ - { - "bbox": [ - 91, - 287, - 389, - 301 - ], - "score": 1.0, - "content": "The vehicle travels from rest along a straight horizontal road.", - "type": "text" - } - ], - "index": 9, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 300, - 291, - 314 - ], - "spans": [ - { - "bbox": [ - 91, - 300, - 291, - 314 - ], - "score": 1.0, - "content": "Friction and air resistance are negligible.", - "type": "text" - } - ], - "index": 10, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 5.0, - "page_num": "page_23", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 90, - 141, - 251, - 240 - ] - }, - { - "type": "image", - "bbox": [ - 441, - 137, - 469, - 241 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 137, - 469, - 241 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 441, - 137, - 469, - 241 - ], - "spans": [ - { - "bbox": [ - 441, - 137, - 469, - 241 - ], - "score": 0.719, - "type": "image", - "image_path": "8da7ff924c1989577c679b9a6c0d45be475bb3fa3c2017ffa7186a3efb0d0c94.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 441, - 137, - 469, - 241 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 5, - "page_num": "page_23", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 91, - 273, - 481, - 314 - ], - "lines": [], - "index": 9, - "page_num": "page_23", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 274, - 479, - 314 - ], - "lines_deleted": true - }, - { - "type": "text", - "bbox": [ - 90, - 325, - 527, - 340 - ], - "lines": [ - { - "bbox": [ - 91, - 326, - 523, - 340 - ], - "spans": [ - { - "bbox": [ - 91, - 326, - 523, - 340 - ], - "score": 1.0, - "content": "Which statement describes the variation with time of the power developed by the motor?", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_23", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 326, - 523, - 340 - ] - }, - { - "type": "text", - "bbox": [ - 491, - 340, - 535, - 352 - ], - "lines": [ - { - "bbox": [ - 491, - 338, - 536, - 354 - ], - "spans": [ - { - "bbox": [ - 491, - 338, - 536, - 354 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_23", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 338, - 536, - 354 - ] - }, - { - "type": "image", - "bbox": [ - 88, - 368, - 472, - 473 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 88, - 368, - 472, - 473 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 88, - 368, - 472, - 473 - ], - "spans": [ - { - "bbox": [ - 88, - 368, - 472, - 473 - ], - "score": 0.367, - "type": "image", - "image_path": "b26ce9f6714b3da27ff71e8ebb73ec9e95252a2e7209c9633a1c15c39b1c05b1.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 88, - 368, - 472, - 403.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 88, - 403.0, - 472, - 438.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 88, - 438.0, - 472, - 473.0 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 14, - "page_num": "page_23", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 505, - 362, - 520 - ], - "lines": [ - { - "bbox": [ - 91, - 506, - 360, - 519 - ], - "spans": [ - { - "bbox": [ - 91, - 506, - 360, - 519 - ], - "score": 1.0, - "content": "Which is a correct statement about mechanical power?", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16, - "page_num": "page_23", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 506, - 360, - 519 - ] - }, - { - "type": "text", - "bbox": [ - 491, - 519, - 536, - 532 - ], - "lines": [ - { - "bbox": [ - 491, - 518, - 537, - 533 - ], - "spans": [ - { - "bbox": [ - 491, - 518, - 537, - 533 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 17, - "page_num": "page_23", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 518, - 537, - 533 - ] - }, - { - "type": "list", - "bbox": [ - 90, - 552, - 349, - 652 - ], - "lines": [ - { - "bbox": [ - 92, - 552, - 210, - 565 - ], - "spans": [ - { - "bbox": [ - 92, - 552, - 210, - 565 - ], - "score": 1.0, - "content": "A It is a vector quantity.", - "type": "text" - } - ], - "index": 18, - "is_list_end_line": true - }, - { - "bbox": [ - 92, - 581, - 198, - 592 - ], - "spans": [ - { - "bbox": [ - 92, - 581, - 198, - 592 - ], - "score": 1.0, - "content": "B It is measured in J.", - "type": "text" - } - ], - "index": 19, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 89, - 606, - 305, - 623 - ], - "spans": [ - { - "bbox": [ - 89, - 607, - 255, - 623 - ], - "score": 1.0, - "content": "C In fundamental units, its unit is", - "type": "text" - }, - { - "bbox": [ - 256, - 606, - 303, - 623 - ], - "score": 0.86, - "content": "\\mathrm{kg}\\mathrm{m}^{2}\\mathrm{s}^{-3}", - "type": "inline_equation", - "height": 17, - "width": 47 - }, - { - "bbox": [ - 303, - 607, - 305, - 623 - ], - "score": 1.0, - "content": " ", - "type": "text" - } - ], - "index": 21, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 92, - 638, - 347, - 649 - ], - "spans": [ - { - "bbox": [ - 92, - 638, - 255, - 649 - ], - "score": 1.0, - "content": "D It can be calculated from force", - "type": "text" - }, - { - "bbox": [ - 255, - 640, - 264, - 649 - ], - "score": 0.76, - "content": "\\times", - "type": "inline_equation", - "height": 9, - "width": 9 - }, - { - "bbox": [ - 265, - 638, - 347, - 649 - ], - "score": 1.0, - "content": " distance moved.", - "type": "text" - } - ], - "index": 22, - "is_list_start_line": true - } - ], - "index": 20.0, - "page_num": "page_23", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 89, - 552, - 347, - 649 - ] - }, - { - "type": "image", - "bbox": [ - 442, - 548, - 469, - 653 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 442, - 548, - 469, - 653 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 442, - 548, - 469, - 653 - ], - "spans": [ - { - "bbox": [ - 442, - 548, - 469, - 653 - ], - "score": 0.753, - "type": "image", - "image_path": "d4b9ea543fa7fecbd310e55676ac451822c1761ce42383ab75893e6bf2abe5da.jpg" - } - ] - } - ], - "index": 20, - "virtual_lines": [ - { - "bbox": [ - 442, - 548, - 469, - 653 - ], - "spans": [], - "index": 20 - } - ] - } - ], - "index": 20, - "page_num": "page_23", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 86, - 68, - 501, - 83 - ], - "lines": [ - { - "bbox": [ - 91, - 66, - 501, - 82 - ], - "spans": [ - { - "bbox": [ - 91, - 68, - 137, - 82 - ], - "score": 1.0, - "content": "A load of", - "type": "text" - }, - { - "bbox": [ - 138, - 68, - 163, - 81 - ], - "score": 0.57, - "content": "50\\mathrm{N}", - "type": "inline_equation", - "height": 13, - "width": 25 - }, - { - "bbox": [ - 164, - 68, - 465, - 82 - ], - "score": 1.0, - "content": " is suspended from a wire that has an area of cross-section of ", - "type": "text" - }, - { - "bbox": [ - 465, - 66, - 498, - 81 - ], - "score": 0.85, - "content": "1\\mathrm{mm}^{2}", - "type": "inline_equation", - "height": 15, - "width": 33 - }, - { - "bbox": [ - 499, - 68, - 501, - 82 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 91, - 95, - 287, - 109 - ], - "lines": [ - { - "bbox": [ - 92, - 96, - 286, - 108 - ], - "spans": [ - { - "bbox": [ - 92, - 96, - 286, - 108 - ], - "score": 1.0, - "content": "The stress in the wire, in Pa, is between", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 490, - 109, - 536, - 122 - ], - "lines": [ - { - "bbox": [ - 491, - 109, - 536, - 123 - ], - "spans": [ - { - "bbox": [ - 491, - 109, - 536, - 123 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 90, - 140, - 168, - 241 - ], - "lines": [ - { - "bbox": [ - 91, - 140, - 164, - 155 - ], - "spans": [ - { - "bbox": [ - 91, - 140, - 105, - 155 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 105, - 140, - 123, - 155 - ], - "score": 0.43, - "content": "10^{0}", - "type": "inline_equation", - "height": 15, - "width": 18 - }, - { - "bbox": [ - 124, - 140, - 146, - 155 - ], - "score": 1.0, - "content": " and ", - "type": "text" - }, - { - "bbox": [ - 146, - 140, - 164, - 155 - ], - "score": 0.41, - "content": "10^{3}", - "type": "inline_equation", - "height": 15, - "width": 18 - } - ], - "index": 3 - }, - { - "bbox": [ - 90, - 168, - 164, - 184 - ], - "spans": [ - { - "bbox": [ - 90, - 168, - 105, - 184 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 105, - 168, - 123, - 183 - ], - "score": 0.58, - "content": "{10}^{3}", - "type": "inline_equation", - "height": 15, - "width": 18 - }, - { - "bbox": [ - 124, - 168, - 146, - 184 - ], - "score": 1.0, - "content": " and ", - "type": "text" - }, - { - "bbox": [ - 146, - 168, - 164, - 183 - ], - "score": 0.4, - "content": "{10}^{6}", - "type": "inline_equation", - "height": 15, - "width": 18 - } - ], - "index": 4 - }, - { - "bbox": [ - 91, - 196, - 164, - 212 - ], - "spans": [ - { - "bbox": [ - 91, - 198, - 105, - 211 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 105, - 196, - 124, - 212 - ], - "score": 0.58, - "content": "10^{6}", - "type": "inline_equation", - "height": 16, - "width": 19 - }, - { - "bbox": [ - 124, - 198, - 146, - 211 - ], - "score": 1.0, - "content": " and ", - "type": "text" - }, - { - "bbox": [ - 146, - 197, - 164, - 212 - ], - "score": 0.53, - "content": "{10}^{9}", - "type": "inline_equation", - "height": 15, - "width": 18 - } - ], - "index": 5 - }, - { - "bbox": [ - 90, - 225, - 168, - 240 - ], - "spans": [ - { - "bbox": [ - 90, - 226, - 105, - 240 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 105, - 225, - 123, - 240 - ], - "score": 0.72, - "content": "10^{9}", - "type": "inline_equation", - "height": 15, - "width": 18 - }, - { - "bbox": [ - 124, - 226, - 146, - 240 - ], - "score": 1.0, - "content": " and ", - "type": "text" - }, - { - "bbox": [ - 146, - 225, - 168, - 240 - ], - "score": 0.62, - "content": "10^{12}", - "type": "inline_equation", - "height": 15, - "width": 22 - } - ], - "index": 7 - } - ], - "index": 4.5 - }, - { - "type": "image", - "bbox": [ - 441, - 138, - 470, - 243 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 138, - 470, - 243 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 441, - 138, - 470, - 243 - ], - "spans": [ - { - "bbox": [ - 441, - 138, - 470, - 243 - ], - "score": 0.788, - "type": "image", - "image_path": "e358e7f4aa36894fd37ef2f8ed5eaae0486a936cceaf4da51821e4590eed089c.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 441, - 138, - 470, - 243 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 90, - 275, - 531, - 302 - ], - "lines": [ - { - "bbox": [ - 92, - 276, - 530, - 289 - ], - "spans": [ - { - "bbox": [ - 92, - 276, - 530, - 289 - ], - "score": 1.0, - "content": "Which combination of properties would produce the smallest extension of a wire when the", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 92, - 290, - 292, - 301 - ], - "spans": [ - { - "bbox": [ - 92, - 290, - 292, - 301 - ], - "score": 1.0, - "content": "same tensile force is applied to the wire?", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8.5 - }, - { - "type": "text", - "bbox": [ - 491, - 302, - 535, - 315 - ], - "lines": [ - { - "bbox": [ - 491, - 300, - 537, - 316 - ], - "spans": [ - { - "bbox": [ - 491, - 300, - 537, - 316 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "table", - "bbox": [ - 90, - 326, - 424, - 473 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 90, - 326, - 424, - 473 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 90, - 326, - 424, - 473 - ], - "spans": [ - { - "bbox": [ - 90, - 326, - 424, - 473 - ], - "score": 0.966, - "html": "
Cross-sectional areaLengthYoung modulus of material
AX3LE
B2X7E
CX3L4E
D2X74E
", - "type": "table", - "image_path": "d0f8df12e078fe5004d479e019cc81f8f9d3d0c2f07cfd8fcb2f3723c6b2edf3.jpg" - } - ] - } - ], - "index": 12, - "virtual_lines": [ - { - "bbox": [ - 90, - 326, - 424, - 375.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 90, - 375.0, - 424, - 424.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 90, - 424.0, - 424, - 473.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 12 - }, - { - "type": "image", - "bbox": [ - 436, - 361, - 465, - 467 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 436, - 361, - 465, - 467 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 436, - 361, - 465, - 467 - ], - "spans": [ - { - "bbox": [ - 436, - 361, - 465, - 467 - ], - "score": 0.27, - "type": "image", - "image_path": "5400a1bc747a225e13f223a7294e1e88168637c81beb088a13a4bab7776de572.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 436, - 361, - 465, - 467 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "index": 13 - }, - { - "type": "text", - "bbox": [ - 206, - 522, - 372, - 536 - ], - "lines": [ - { - "bbox": [ - 207, - 523, - 371, - 535 - ], - "spans": [ - { - "bbox": [ - 207, - 523, - 371, - 535 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - } - ], - "layout_bboxes": [], - "page_idx": 24, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 441, - 138, - 470, - 243 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 138, - 470, - 243 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 441, - 138, - 470, - 243 - ], - "spans": [ - { - "bbox": [ - 441, - 138, - 470, - 243 - ], - "score": 0.788, - "type": "image", - "image_path": "e358e7f4aa36894fd37ef2f8ed5eaae0486a936cceaf4da51821e4590eed089c.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 441, - 138, - 470, - 243 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 6 - }, - { - "type": "image", - "bbox": [ - 436, - 361, - 465, - 467 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 436, - 361, - 465, - 467 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 436, - 361, - 465, - 467 - ], - "spans": [ - { - "bbox": [ - 436, - 361, - 465, - 467 - ], - "score": 0.27, - "type": "image", - "image_path": "5400a1bc747a225e13f223a7294e1e88168637c81beb088a13a4bab7776de572.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 436, - 361, - 465, - 467 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "index": 13 - } - ], - "tables": [ - { - "type": "table", - "bbox": [ - 90, - 326, - 424, - 473 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 90, - 326, - 424, - 473 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 90, - 326, - 424, - 473 - ], - "spans": [ - { - "bbox": [ - 90, - 326, - 424, - 473 - ], - "score": 0.966, - "html": "
Cross-sectional areaLengthYoung modulus of material
AX3LE
B2X7E
CX3L4E
D2X74E
", - "type": "table", - "image_path": "d0f8df12e078fe5004d479e019cc81f8f9d3d0c2f07cfd8fcb2f3723c6b2edf3.jpg" - } - ] - } - ], - "index": 12, - "virtual_lines": [ - { - "bbox": [ - 90, - 326, - 424, - 375.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 90, - 375.0, - 424, - 424.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 90, - 424.0, - 424, - 473.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 12 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 60, - 816, - 79, - 824 - ], - "spans": [ - { - "bbox": [ - 60, - 816, - 66, - 824 - ], - "score": 0.9998762607574463, - "content": "2", - "type": "text" - }, - { - "bbox": [ - 70, - 816, - 79, - 824 - ], - "score": 0.829309344291687, - "content": " 5", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 783 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 272, - 81, - 289 - ], - "lines": [ - { - "bbox": [ - 50, - 275, - 77, - 287 - ], - "spans": [ - { - "bbox": [ - 50, - 275, - 62, - 287 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - }, - { - "bbox": [ - 66, - 276, - 77, - 286 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 540, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 540, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 281, - 29, - 296, - 40 - ], - "lines": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "25 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 81, - 82 - ], - "lines": [ - { - "bbox": [ - 49, - 67, - 78, - 80 - ], - "spans": [ - { - "bbox": [ - 49, - 67, - 78, - 80 - ], - "score": 1.0, - "content": "1 9 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 569, - 0, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 86, - 68, - 501, - 83 - ], - "lines": [ - { - "bbox": [ - 91, - 66, - 501, - 82 - ], - "spans": [ - { - "bbox": [ - 91, - 68, - 137, - 82 - ], - "score": 1.0, - "content": "A load of", - "type": "text" - }, - { - "bbox": [ - 138, - 68, - 163, - 81 - ], - "score": 0.57, - "content": "50\\mathrm{N}", - "type": "inline_equation", - "height": 13, - "width": 25 - }, - { - "bbox": [ - 164, - 68, - 465, - 82 - ], - "score": 1.0, - "content": " is suspended from a wire that has an area of cross-section of ", - "type": "text" - }, - { - "bbox": [ - 465, - 66, - 498, - 81 - ], - "score": 0.85, - "content": "1\\mathrm{mm}^{2}", - "type": "inline_equation", - "height": 15, - "width": 33 - }, - { - "bbox": [ - 499, - 68, - 501, - 82 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_24", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 66, - 501, - 82 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 95, - 287, - 109 - ], - "lines": [ - { - "bbox": [ - 92, - 96, - 286, - 108 - ], - "spans": [ - { - "bbox": [ - 92, - 96, - 286, - 108 - ], - "score": 1.0, - "content": "The stress in the wire, in Pa, is between", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_24", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 96, - 286, - 108 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 109, - 536, - 122 - ], - "lines": [ - { - "bbox": [ - 491, - 109, - 536, - 123 - ], - "spans": [ - { - "bbox": [ - 491, - 109, - 536, - 123 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_24", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 109, - 536, - 123 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 140, - 168, - 241 - ], - "lines": [ - { - "bbox": [ - 91, - 140, - 164, - 155 - ], - "spans": [ - { - "bbox": [ - 91, - 140, - 105, - 155 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 105, - 140, - 123, - 155 - ], - "score": 0.43, - "content": "10^{0}", - "type": "inline_equation", - "height": 15, - "width": 18 - }, - { - "bbox": [ - 124, - 140, - 146, - 155 - ], - "score": 1.0, - "content": " and ", - "type": "text" - }, - { - "bbox": [ - 146, - 140, - 164, - 155 - ], - "score": 0.41, - "content": "10^{3}", - "type": "inline_equation", - "height": 15, - "width": 18 - } - ], - "index": 3 - }, - { - "bbox": [ - 90, - 168, - 164, - 184 - ], - "spans": [ - { - "bbox": [ - 90, - 168, - 105, - 184 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 105, - 168, - 123, - 183 - ], - "score": 0.58, - "content": "{10}^{3}", - "type": "inline_equation", - "height": 15, - "width": 18 - }, - { - "bbox": [ - 124, - 168, - 146, - 184 - ], - "score": 1.0, - "content": " and ", - "type": "text" - }, - { - "bbox": [ - 146, - 168, - 164, - 183 - ], - "score": 0.4, - "content": "{10}^{6}", - "type": "inline_equation", - "height": 15, - "width": 18 - } - ], - "index": 4 - }, - { - "bbox": [ - 91, - 196, - 164, - 212 - ], - "spans": [ - { - "bbox": [ - 91, - 198, - 105, - 211 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 105, - 196, - 124, - 212 - ], - "score": 0.58, - "content": "10^{6}", - "type": "inline_equation", - "height": 16, - "width": 19 - }, - { - "bbox": [ - 124, - 198, - 146, - 211 - ], - "score": 1.0, - "content": " and ", - "type": "text" - }, - { - "bbox": [ - 146, - 197, - 164, - 212 - ], - "score": 0.53, - "content": "{10}^{9}", - "type": "inline_equation", - "height": 15, - "width": 18 - } - ], - "index": 5 - }, - { - "bbox": [ - 90, - 225, - 168, - 240 - ], - "spans": [ - { - "bbox": [ - 90, - 226, - 105, - 240 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 105, - 225, - 123, - 240 - ], - "score": 0.72, - "content": "10^{9}", - "type": "inline_equation", - "height": 15, - "width": 18 - }, - { - "bbox": [ - 124, - 226, - 146, - 240 - ], - "score": 1.0, - "content": " and ", - "type": "text" - }, - { - "bbox": [ - 146, - 225, - 168, - 240 - ], - "score": 0.62, - "content": "10^{12}", - "type": "inline_equation", - "height": 15, - "width": 22 - } - ], - "index": 7 - } - ], - "index": 4.5, - "page_num": "page_24", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 90, - 140, - 168, - 240 - ] - }, - { - "type": "image", - "bbox": [ - 441, - 138, - 470, - 243 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 138, - 470, - 243 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 441, - 138, - 470, - 243 - ], - "spans": [ - { - "bbox": [ - 441, - 138, - 470, - 243 - ], - "score": 0.788, - "type": "image", - "image_path": "e358e7f4aa36894fd37ef2f8ed5eaae0486a936cceaf4da51821e4590eed089c.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 441, - 138, - 470, - 243 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 6, - "page_num": "page_24", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 275, - 531, - 302 - ], - "lines": [ - { - "bbox": [ - 92, - 276, - 530, - 289 - ], - "spans": [ - { - "bbox": [ - 92, - 276, - 530, - 289 - ], - "score": 1.0, - "content": "Which combination of properties would produce the smallest extension of a wire when the", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 92, - 290, - 292, - 301 - ], - "spans": [ - { - "bbox": [ - 92, - 290, - 292, - 301 - ], - "score": 1.0, - "content": "same tensile force is applied to the wire?", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8.5, - "page_num": "page_24", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 276, - 530, - 301 - ] - }, - { - "type": "text", - "bbox": [ - 491, - 302, - 535, - 315 - ], - "lines": [ - { - "bbox": [ - 491, - 300, - 537, - 316 - ], - "spans": [ - { - "bbox": [ - 491, - 300, - 537, - 316 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_24", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 300, - 537, - 316 - ] - }, - { - "type": "table", - "bbox": [ - 90, - 326, - 424, - 473 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 90, - 326, - 424, - 473 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 90, - 326, - 424, - 473 - ], - "spans": [ - { - "bbox": [ - 90, - 326, - 424, - 473 - ], - "score": 0.966, - "html": "
Cross-sectional areaLengthYoung modulus of material
AX3LE
B2X7E
CX3L4E
D2X74E
", - "type": "table", - "image_path": "d0f8df12e078fe5004d479e019cc81f8f9d3d0c2f07cfd8fcb2f3723c6b2edf3.jpg" - } - ] - } - ], - "index": 12, - "virtual_lines": [ - { - "bbox": [ - 90, - 326, - 424, - 375.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 90, - 375.0, - 424, - 424.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 90, - 424.0, - 424, - 473.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 12, - "page_num": "page_24", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "image", - "bbox": [ - 436, - 361, - 465, - 467 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 436, - 361, - 465, - 467 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 436, - 361, - 465, - 467 - ], - "spans": [ - { - "bbox": [ - 436, - 361, - 465, - 467 - ], - "score": 0.27, - "type": "image", - "image_path": "5400a1bc747a225e13f223a7294e1e88168637c81beb088a13a4bab7776de572.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 436, - 361, - 465, - 467 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "index": 13, - "page_num": "page_24", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 206, - 522, - 372, - 536 - ], - "lines": [ - { - "bbox": [ - 207, - 523, - 371, - 535 - ], - "spans": [ - { - "bbox": [ - 207, - 523, - 371, - 535 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_24", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 207, - 523, - 371, - 535 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 88, - 68, - 520, - 123 - ], - "lines": [ - { - "bbox": [ - 91, - 69, - 504, - 82 - ], - "spans": [ - { - "bbox": [ - 91, - 69, - 361, - 82 - ], - "score": 1.0, - "content": "A rubber belt in an electrostatic machine has a width of", - "type": "text" - }, - { - "bbox": [ - 362, - 69, - 391, - 81 - ], - "score": 0.6, - "content": "0.1\\textrm{m}", - "type": "inline_equation", - "height": 12, - "width": 29 - }, - { - "bbox": [ - 392, - 69, - 504, - 82 - ], - "score": 1.0, - "content": "and moves with speed", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 91, - 81, - 139, - 95 - ], - "spans": [ - { - "bbox": [ - 91, - 81, - 135, - 95 - ], - "score": 0.87, - "content": "0.4\\mathrm{m~s}^{-1}", - "type": "inline_equation", - "height": 14, - "width": 44 - }, - { - "bbox": [ - 136, - 82, - 139, - 95 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 91, - 96, - 520, - 110 - ], - "spans": [ - { - "bbox": [ - 91, - 96, - 320, - 110 - ], - "score": 1.0, - "content": "Each square metre of the belt carries a charge", - "type": "text" - }, - { - "bbox": [ - 321, - 97, - 332, - 110 - ], - "score": 0.63, - "content": "Q", - "type": "inline_equation", - "height": 13, - "width": 11 - }, - { - "bbox": [ - 332, - 96, - 520, - 110 - ], - "score": 1.0, - "content": " coulomb. The charge is removed and ", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 91, - 111, - 236, - 123 - ], - "spans": [ - { - "bbox": [ - 91, - 111, - 236, - 123 - ], - "score": 1.0, - "content": "transferred to a metal sphere.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 1.5 - }, - { - "type": "image", - "bbox": [ - 190, - 136, - 436, - 437 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 190, - 136, - 436, - 437 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 190, - 136, - 436, - 437 - ], - "spans": [ - { - "bbox": [ - 190, - 136, - 436, - 437 - ], - "score": 0.965, - "type": "image", - "image_path": "9c68d31c621d2ab4783e16299f2168c3d9b65c7668044d30d3455aa4e98d8043.jpg" - } - ] - } - ], - "index": 14.5, - "virtual_lines": [ - { - "bbox": [ - 190, - 136, - 436, - 150.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 190, - 150.0, - 436, - 164.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 190, - 164.0, - 436, - 178.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 190, - 178.0, - 436, - 192.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 190, - 192.0, - 436, - 206.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 190, - 206.0, - 436, - 220.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 190, - 220.0, - 436, - 234.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 190, - 234.0, - 436, - 248.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 190, - 248.0, - 436, - 262.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 190, - 262.0, - 436, - 276.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 190, - 276.0, - 436, - 290.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 190, - 290.0, - 436, - 304.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 190, - 304.0, - 436, - 318.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 190, - 318.0, - 436, - 332.0 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 190, - 332.0, - 436, - 346.0 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 190, - 346.0, - 436, - 360.0 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 190, - 360.0, - 436, - 374.0 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 190, - 374.0, - 436, - 388.0 - ], - "spans": [], - "index": 21 - }, - { - "bbox": [ - 190, - 388.0, - 436, - 402.0 - ], - "spans": [], - "index": 22 - }, - { - "bbox": [ - 190, - 402.0, - 436, - 416.0 - ], - "spans": [], - "index": 23 - }, - { - "bbox": [ - 190, - 416.0, - 436, - 430.0 - ], - "spans": [], - "index": 24 - }, - { - "bbox": [ - 190, - 430.0, - 436, - 444.0 - ], - "spans": [], - "index": 25 - } - ] - } - ], - "index": 14.5 - }, - { - "type": "text", - "bbox": [ - 90, - 463, - 373, - 477 - ], - "lines": [ - { - "bbox": [ - 91, - 463, - 373, - 477 - ], - "spans": [ - { - "bbox": [ - 91, - 463, - 373, - 477 - ], - "score": 1.0, - "content": "What is the charge collected by the sphere each second?", - "type": "text" - } - ], - "index": 26 - } - ], - "index": 26 - }, - { - "type": "text", - "bbox": [ - 491, - 476, - 536, - 490 - ], - "lines": [ - { - "bbox": [ - 491, - 476, - 536, - 490 - ], - "spans": [ - { - "bbox": [ - 491, - 476, - 536, - 490 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 27 - } - ], - "index": 27 - }, - { - "type": "text", - "bbox": [ - 90, - 508, - 144, - 609 - ], - "lines": [ - { - "bbox": [ - 91, - 509, - 144, - 524 - ], - "spans": [ - { - "bbox": [ - 91, - 509, - 144, - 524 - ], - "score": 1.0, - "content": "A 0.016Q ", - "type": "text" - } - ], - "index": 28 - }, - { - "bbox": [ - 91, - 537, - 138, - 552 - ], - "spans": [ - { - "bbox": [ - 91, - 537, - 138, - 552 - ], - "score": 1.0, - "content": "B 0.04Q ", - "type": "text" - } - ], - "index": 29 - }, - { - "bbox": [ - 91, - 565, - 138, - 581 - ], - "spans": [ - { - "bbox": [ - 91, - 565, - 138, - 581 - ], - "score": 1.0, - "content": "C 0.25Q ", - "type": "text" - } - ], - "index": 31 - }, - { - "bbox": [ - 90, - 593, - 124, - 610 - ], - "spans": [ - { - "bbox": [ - 90, - 593, - 124, - 610 - ], - "score": 1.0, - "content": "D 4Q ", - "type": "text" - } - ], - "index": 32 - } - ], - "index": 30.0 - }, - { - "type": "image", - "bbox": [ - 441, - 506, - 470, - 610 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 506, - 470, - 610 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 441, - 506, - 470, - 610 - ], - "spans": [ - { - "bbox": [ - 441, - 506, - 470, - 610 - ], - "score": 0.712, - "type": "image", - "image_path": "a4d70f89757c75f39d00c133a4b5d7878e86ac591d26af27642c3048e8d93446.jpg" - } - ] - } - ], - "index": 30, - "virtual_lines": [ - { - "bbox": [ - 441, - 506, - 470, - 610 - ], - "spans": [], - "index": 30 - } - ] - } - ], - "index": 30 - } - ], - "layout_bboxes": [], - "page_idx": 25, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 190, - 136, - 436, - 437 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 190, - 136, - 436, - 437 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 190, - 136, - 436, - 437 - ], - "spans": [ - { - "bbox": [ - 190, - 136, - 436, - 437 - ], - "score": 0.965, - "type": "image", - "image_path": "9c68d31c621d2ab4783e16299f2168c3d9b65c7668044d30d3455aa4e98d8043.jpg" - } - ] - } - ], - "index": 14.5, - "virtual_lines": [ - { - "bbox": [ - 190, - 136, - 436, - 150.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 190, - 150.0, - 436, - 164.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 190, - 164.0, - 436, - 178.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 190, - 178.0, - 436, - 192.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 190, - 192.0, - 436, - 206.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 190, - 206.0, - 436, - 220.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 190, - 220.0, - 436, - 234.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 190, - 234.0, - 436, - 248.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 190, - 248.0, - 436, - 262.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 190, - 262.0, - 436, - 276.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 190, - 276.0, - 436, - 290.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 190, - 290.0, - 436, - 304.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 190, - 304.0, - 436, - 318.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 190, - 318.0, - 436, - 332.0 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 190, - 332.0, - 436, - 346.0 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 190, - 346.0, - 436, - 360.0 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 190, - 360.0, - 436, - 374.0 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 190, - 374.0, - 436, - 388.0 - ], - "spans": [], - "index": 21 - }, - { - "bbox": [ - 190, - 388.0, - 436, - 402.0 - ], - "spans": [], - "index": 22 - }, - { - "bbox": [ - 190, - 402.0, - 436, - 416.0 - ], - "spans": [], - "index": 23 - }, - { - "bbox": [ - 190, - 416.0, - 436, - 430.0 - ], - "spans": [], - "index": 24 - }, - { - "bbox": [ - 190, - 430.0, - 436, - 444.0 - ], - "spans": [], - "index": 25 - } - ] - } - ], - "index": 14.5 - }, - { - "type": "image", - "bbox": [ - 441, - 506, - 470, - 610 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 506, - 470, - 610 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 441, - 506, - 470, - 610 - ], - "spans": [ - { - "bbox": [ - 441, - 506, - 470, - 610 - ], - "score": 0.712, - "type": "image", - "image_path": "a4d70f89757c75f39d00c133a4b5d7878e86ac591d26af27642c3048e8d93446.jpg" - } - ] - } - ], - "index": 30, - "virtual_lines": [ - { - "bbox": [ - 441, - 506, - 470, - 610 - ], - "spans": [], - "index": 30 - } - ] - } - ], - "index": 30 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 786, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 73, - 817, - 79, - 824 - ], - "spans": [ - { - "bbox": [ - 73, - 817, - 79, - 824 - ], - "score": 0.9992523789405823, - "content": "6", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 81, - 82 - ], - "lines": [ - { - "bbox": [ - 50, - 68, - 76, - 80 - ], - "spans": [ - { - "bbox": [ - 50, - 68, - 76, - 80 - ], - "score": 1.0, - "content": "2 1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "26 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 569, - 0, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "list", - "bbox": [ - 88, - 68, - 520, - 123 - ], - "lines": [ - { - "bbox": [ - 91, - 69, - 504, - 82 - ], - "spans": [ - { - "bbox": [ - 91, - 69, - 361, - 82 - ], - "score": 1.0, - "content": "A rubber belt in an electrostatic machine has a width of", - "type": "text" - }, - { - "bbox": [ - 362, - 69, - 391, - 81 - ], - "score": 0.6, - "content": "0.1\\textrm{m}", - "type": "inline_equation", - "height": 12, - "width": 29 - }, - { - "bbox": [ - 392, - 69, - 504, - 82 - ], - "score": 1.0, - "content": "and moves with speed", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 91, - 81, - 139, - 95 - ], - "spans": [ - { - "bbox": [ - 91, - 81, - 135, - 95 - ], - "score": 0.87, - "content": "0.4\\mathrm{m~s}^{-1}", - "type": "inline_equation", - "height": 14, - "width": 44 - }, - { - "bbox": [ - 136, - 82, - 139, - 95 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 1, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 96, - 520, - 110 - ], - "spans": [ - { - "bbox": [ - 91, - 96, - 320, - 110 - ], - "score": 1.0, - "content": "Each square metre of the belt carries a charge", - "type": "text" - }, - { - "bbox": [ - 321, - 97, - 332, - 110 - ], - "score": 0.63, - "content": "Q", - "type": "inline_equation", - "height": 13, - "width": 11 - }, - { - "bbox": [ - 332, - 96, - 520, - 110 - ], - "score": 1.0, - "content": " coulomb. The charge is removed and ", - "type": "text" - } - ], - "index": 2, - "is_list_start_line": true - }, - { - "bbox": [ - 91, - 111, - 236, - 123 - ], - "spans": [ - { - "bbox": [ - 91, - 111, - 236, - 123 - ], - "score": 1.0, - "content": "transferred to a metal sphere.", - "type": "text" - } - ], - "index": 3, - "is_list_end_line": true - } - ], - "index": 1.5, - "page_num": "page_25", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 69, - 520, - 123 - ] - }, - { - "type": "image", - "bbox": [ - 190, - 136, - 436, - 437 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 190, - 136, - 436, - 437 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 190, - 136, - 436, - 437 - ], - "spans": [ - { - "bbox": [ - 190, - 136, - 436, - 437 - ], - "score": 0.965, - "type": "image", - "image_path": "9c68d31c621d2ab4783e16299f2168c3d9b65c7668044d30d3455aa4e98d8043.jpg" - } - ] - } - ], - "index": 14.5, - "virtual_lines": [ - { - "bbox": [ - 190, - 136, - 436, - 150.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 190, - 150.0, - 436, - 164.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 190, - 164.0, - 436, - 178.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 190, - 178.0, - 436, - 192.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 190, - 192.0, - 436, - 206.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 190, - 206.0, - 436, - 220.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 190, - 220.0, - 436, - 234.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 190, - 234.0, - 436, - 248.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 190, - 248.0, - 436, - 262.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 190, - 262.0, - 436, - 276.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 190, - 276.0, - 436, - 290.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 190, - 290.0, - 436, - 304.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 190, - 304.0, - 436, - 318.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 190, - 318.0, - 436, - 332.0 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 190, - 332.0, - 436, - 346.0 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 190, - 346.0, - 436, - 360.0 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 190, - 360.0, - 436, - 374.0 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 190, - 374.0, - 436, - 388.0 - ], - "spans": [], - "index": 21 - }, - { - "bbox": [ - 190, - 388.0, - 436, - 402.0 - ], - "spans": [], - "index": 22 - }, - { - "bbox": [ - 190, - 402.0, - 436, - 416.0 - ], - "spans": [], - "index": 23 - }, - { - "bbox": [ - 190, - 416.0, - 436, - 430.0 - ], - "spans": [], - "index": 24 - }, - { - "bbox": [ - 190, - 430.0, - 436, - 444.0 - ], - "spans": [], - "index": 25 - } - ] - } - ], - "index": 14.5, - "page_num": "page_25", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 463, - 373, - 477 - ], - "lines": [ - { - "bbox": [ - 91, - 463, - 373, - 477 - ], - "spans": [ - { - "bbox": [ - 91, - 463, - 373, - 477 - ], - "score": 1.0, - "content": "What is the charge collected by the sphere each second?", - "type": "text" - } - ], - "index": 26 - } - ], - "index": 26, - "page_num": "page_25", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 463, - 373, - 477 - ] - }, - { - "type": "text", - "bbox": [ - 491, - 476, - 536, - 490 - ], - "lines": [ - { - "bbox": [ - 491, - 476, - 536, - 490 - ], - "spans": [ - { - "bbox": [ - 491, - 476, - 536, - 490 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 27 - } - ], - "index": 27, - "page_num": "page_25", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 476, - 536, - 490 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 508, - 144, - 609 - ], - "lines": [ - { - "bbox": [ - 91, - 509, - 144, - 524 - ], - "spans": [ - { - "bbox": [ - 91, - 509, - 144, - 524 - ], - "score": 1.0, - "content": "A 0.016Q ", - "type": "text" - } - ], - "index": 28 - }, - { - "bbox": [ - 91, - 537, - 138, - 552 - ], - "spans": [ - { - "bbox": [ - 91, - 537, - 138, - 552 - ], - "score": 1.0, - "content": "B 0.04Q ", - "type": "text" - } - ], - "index": 29 - }, - { - "bbox": [ - 91, - 565, - 138, - 581 - ], - "spans": [ - { - "bbox": [ - 91, - 565, - 138, - 581 - ], - "score": 1.0, - "content": "C 0.25Q ", - "type": "text" - } - ], - "index": 31 - }, - { - "bbox": [ - 90, - 593, - 124, - 610 - ], - "spans": [ - { - "bbox": [ - 90, - 593, - 124, - 610 - ], - "score": 1.0, - "content": "D 4Q ", - "type": "text" - } - ], - "index": 32 - } - ], - "index": 30.0, - "page_num": "page_25", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 90, - 509, - 144, - 610 - ] - }, - { - "type": "image", - "bbox": [ - 441, - 506, - 470, - 610 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 506, - 470, - 610 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 441, - 506, - 470, - 610 - ], - "spans": [ - { - "bbox": [ - 441, - 506, - 470, - 610 - ], - "score": 0.712, - "type": "image", - "image_path": "a4d70f89757c75f39d00c133a4b5d7878e86ac591d26af27642c3048e8d93446.jpg" - } - ] - } - ], - "index": 30, - "virtual_lines": [ - { - "bbox": [ - 441, - 506, - 470, - 610 - ], - "spans": [], - "index": 30 - } - ] - } - ], - "index": 30, - "page_num": "page_25", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 43, - 67, - 447, - 83 - ], - "lines": [ - { - "bbox": [ - 44, - 66, - 449, - 85 - ], - "spans": [ - { - "bbox": [ - 44, - 66, - 449, - 85 - ], - "score": 1.0, - "content": " 2 2 Charged plates X and Y have a potential difference 1.5 V between them. ", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "image", - "bbox": [ - 208, - 93, - 371, - 212 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 208, - 93, - 371, - 212 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 208, - 93, - 371, - 212 - ], - "spans": [ - { - "bbox": [ - 208, - 93, - 371, - 212 - ], - "score": 0.952, - "type": "image", - "image_path": "68652cb80907f916334c1c88a8b63137ea940564c05ca05dda97a3644e29ea0f.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 208, - 93, - 371, - 107.5 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 208, - 107.5, - 371, - 122.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 208, - 122.0, - 371, - 136.5 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 208, - 136.5, - 371, - 151.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 208, - 151.0, - 371, - 165.5 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 208, - 165.5, - 371, - 180.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 208, - 180.0, - 371, - 194.5 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 208, - 194.5, - 371, - 209.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 208, - 209.0, - 371, - 223.5 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 91, - 224, - 443, - 240 - ], - "lines": [ - { - "bbox": [ - 92, - 225, - 442, - 239 - ], - "spans": [ - { - "bbox": [ - 92, - 226, - 192, - 239 - ], - "score": 1.0, - "content": "Which particle gains", - "type": "text" - }, - { - "bbox": [ - 193, - 225, - 227, - 238 - ], - "score": 0.69, - "content": "3.0\\mathrm{eV}", - "type": "inline_equation", - "height": 13, - "width": 34 - }, - { - "bbox": [ - 227, - 226, - 442, - 239 - ], - "score": 1.0, - "content": " of kinetic energy when moving from Y to X?", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 491, - 239, - 536, - 253 - ], - "lines": [ - { - "bbox": [ - 491, - 238, - 536, - 253 - ], - "spans": [ - { - "bbox": [ - 491, - 238, - 536, - 253 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 90, - 272, - 174, - 372 - ], - "lines": [ - { - "bbox": [ - 91, - 273, - 139, - 286 - ], - "spans": [ - { - "bbox": [ - 91, - 273, - 139, - 286 - ], - "score": 1.0, - "content": "A proton", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 90, - 300, - 147, - 315 - ], - "spans": [ - { - "bbox": [ - 90, - 300, - 147, - 315 - ], - "score": 1.0, - "content": "B positron", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 91, - 330, - 147, - 341 - ], - "spans": [ - { - "bbox": [ - 91, - 330, - 147, - 341 - ], - "score": 1.0, - "content": "C electron", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 91, - 357, - 172, - 372 - ], - "spans": [ - { - "bbox": [ - 91, - 357, - 172, - 372 - ], - "score": 1.0, - "content": "D alpha particle", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 14.0 - }, - { - "type": "image", - "bbox": [ - 441, - 269, - 469, - 374 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 269, - 469, - 374 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 441, - 269, - 469, - 374 - ], - "spans": [ - { - "bbox": [ - 441, - 269, - 469, - 374 - ], - "score": 0.692, - "type": "image", - "image_path": "01c45e6ab071d4b21b95d3898710c437392fcecdc2a1e316a57eb913d0040b0f.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 441, - 269, - 469, - 374 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 206, - 428, - 372, - 442 - ], - "lines": [ - { - "bbox": [ - 208, - 429, - 371, - 441 - ], - "spans": [ - { - "bbox": [ - 208, - 429, - 371, - 441 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 17 - } - ], - "layout_bboxes": [], - "page_idx": 26, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 208, - 93, - 371, - 212 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 208, - 93, - 371, - 212 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 208, - 93, - 371, - 212 - ], - "spans": [ - { - "bbox": [ - 208, - 93, - 371, - 212 - ], - "score": 0.952, - "type": "image", - "image_path": "68652cb80907f916334c1c88a8b63137ea940564c05ca05dda97a3644e29ea0f.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 208, - 93, - 371, - 107.5 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 208, - 107.5, - 371, - 122.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 208, - 122.0, - 371, - 136.5 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 208, - 136.5, - 371, - 151.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 208, - 151.0, - 371, - 165.5 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 208, - 165.5, - 371, - 180.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 208, - 180.0, - 371, - 194.5 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 208, - 194.5, - 371, - 209.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 208, - 209.0, - 371, - 223.5 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 5 - }, - { - "type": "image", - "bbox": [ - 441, - 269, - 469, - 374 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 269, - 469, - 374 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 441, - 269, - 469, - 374 - ], - "spans": [ - { - "bbox": [ - 441, - 269, - 469, - 374 - ], - "score": 0.692, - "type": "image", - "image_path": "01c45e6ab071d4b21b95d3898710c437392fcecdc2a1e316a57eb913d0040b0f.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 441, - 269, - 469, - 374 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 14 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 783 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 479, - 815, - 540, - 824 - ], - "spans": [ - { - "bbox": [ - 479, - 815, - 540, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 295, - 39 - ], - "lines": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "27 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 569, - 0, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 46, - 65, - 81, - 82 - ], - "lines": [] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 43, - 67, - 447, - 83 - ], - "lines": [ - { - "bbox": [ - 44, - 66, - 449, - 85 - ], - "spans": [ - { - "bbox": [ - 44, - 66, - 449, - 85 - ], - "score": 1.0, - "content": " 2 2 Charged plates X and Y have a potential difference 1.5 V between them. ", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_26", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 44, - 66, - 449, - 85 - ] - }, - { - "type": "image", - "bbox": [ - 208, - 93, - 371, - 212 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 208, - 93, - 371, - 212 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 208, - 93, - 371, - 212 - ], - "spans": [ - { - "bbox": [ - 208, - 93, - 371, - 212 - ], - "score": 0.952, - "type": "image", - "image_path": "68652cb80907f916334c1c88a8b63137ea940564c05ca05dda97a3644e29ea0f.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 208, - 93, - 371, - 107.5 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 208, - 107.5, - 371, - 122.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 208, - 122.0, - 371, - 136.5 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 208, - 136.5, - 371, - 151.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 208, - 151.0, - 371, - 165.5 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 208, - 165.5, - 371, - 180.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 208, - 180.0, - 371, - 194.5 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 208, - 194.5, - 371, - 209.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 208, - 209.0, - 371, - 223.5 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 5, - "page_num": "page_26", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 224, - 443, - 240 - ], - "lines": [ - { - "bbox": [ - 92, - 225, - 442, - 239 - ], - "spans": [ - { - "bbox": [ - 92, - 226, - 192, - 239 - ], - "score": 1.0, - "content": "Which particle gains", - "type": "text" - }, - { - "bbox": [ - 193, - 225, - 227, - 238 - ], - "score": 0.69, - "content": "3.0\\mathrm{eV}", - "type": "inline_equation", - "height": 13, - "width": 34 - }, - { - "bbox": [ - 227, - 226, - 442, - 239 - ], - "score": 1.0, - "content": " of kinetic energy when moving from Y to X?", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_26", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 225, - 442, - 239 - ] - }, - { - "type": "text", - "bbox": [ - 491, - 239, - 536, - 253 - ], - "lines": [ - { - "bbox": [ - 491, - 238, - 536, - 253 - ], - "spans": [ - { - "bbox": [ - 491, - 238, - 536, - 253 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_26", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 238, - 536, - 253 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 272, - 174, - 372 - ], - "lines": [ - { - "bbox": [ - 91, - 273, - 139, - 286 - ], - "spans": [ - { - "bbox": [ - 91, - 273, - 139, - 286 - ], - "score": 1.0, - "content": "A proton", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 90, - 300, - 147, - 315 - ], - "spans": [ - { - "bbox": [ - 90, - 300, - 147, - 315 - ], - "score": 1.0, - "content": "B positron", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 91, - 330, - 147, - 341 - ], - "spans": [ - { - "bbox": [ - 91, - 330, - 147, - 341 - ], - "score": 1.0, - "content": "C electron", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 91, - 357, - 172, - 372 - ], - "spans": [ - { - "bbox": [ - 91, - 357, - 172, - 372 - ], - "score": 1.0, - "content": "D alpha particle", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 14.0, - "page_num": "page_26", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 90, - 273, - 172, - 372 - ] - }, - { - "type": "image", - "bbox": [ - 441, - 269, - 469, - 374 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 269, - 469, - 374 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 441, - 269, - 469, - 374 - ], - "spans": [ - { - "bbox": [ - 441, - 269, - 469, - 374 - ], - "score": 0.692, - "type": "image", - "image_path": "01c45e6ab071d4b21b95d3898710c437392fcecdc2a1e316a57eb913d0040b0f.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 441, - 269, - 469, - 374 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 14, - "page_num": "page_26", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 206, - 428, - 372, - 442 - ], - "lines": [ - { - "bbox": [ - 208, - 429, - 371, - 441 - ], - "spans": [ - { - "bbox": [ - 208, - 429, - 371, - 441 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 17, - "page_num": "page_26", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 208, - 429, - 371, - 441 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 89, - 68, - 411, - 82 - ], - "lines": [ - { - "bbox": [ - 91, - 68, - 411, - 82 - ], - "spans": [ - { - "bbox": [ - 91, - 68, - 411, - 82 - ], - "score": 1.0, - "content": "The diagram shows part of a circuit and the currents in the circuit.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "image", - "bbox": [ - 205, - 93, - 376, - 318 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 205, - 93, - 376, - 318 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 205, - 93, - 376, - 318 - ], - "spans": [ - { - "bbox": [ - 205, - 93, - 376, - 318 - ], - "score": 0.96, - "type": "image", - "image_path": "3f576db96ea0abf9c1b89284326055f51e6339a887c12f6aa02cb0302ab2deba.jpg" - } - ] - } - ], - "index": 9.5, - "virtual_lines": [ - { - "bbox": [ - 205, - 93, - 376, - 106 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 205, - 106, - 376, - 119 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 205, - 119, - 376, - 132 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 205, - 132, - 376, - 145 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 205, - 145, - 376, - 158 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 205, - 158, - 376, - 171 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 205, - 171, - 376, - 184 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 205, - 184, - 376, - 197 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 205, - 197, - 376, - 210 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 205, - 210, - 376, - 223 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 205, - 223, - 376, - 236 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 205, - 236, - 376, - 249 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 205, - 249, - 376, - 262 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 205, - 262, - 376, - 275 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 205, - 275, - 376, - 288 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 205, - 288, - 376, - 301 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 205, - 301, - 376, - 314 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 205, - 314, - 376, - 327 - ], - "spans": [], - "index": 18 - } - ] - } - ], - "index": 9.5 - }, - { - "type": "text", - "bbox": [ - 90, - 328, - 383, - 343 - ], - "lines": [ - { - "bbox": [ - 92, - 330, - 382, - 342 - ], - "spans": [ - { - "bbox": [ - 92, - 330, - 382, - 342 - ], - "score": 1.0, - "content": "What is the potential difference between point P and earth?", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 19 - }, - { - "type": "text", - "bbox": [ - 491, - 342, - 536, - 356 - ], - "lines": [ - { - "bbox": [ - 491, - 343, - 536, - 356 - ], - "spans": [ - { - "bbox": [ - 491, - 343, - 536, - 356 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 20 - }, - { - "type": "text", - "bbox": [ - 90, - 375, - 138, - 474 - ], - "lines": [ - { - "bbox": [ - 90, - 376, - 132, - 389 - ], - "spans": [ - { - "bbox": [ - 90, - 376, - 132, - 389 - ], - "score": 1.0, - "content": "A 60 V ", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 90, - 404, - 138, - 418 - ], - "spans": [ - { - "bbox": [ - 90, - 404, - 138, - 418 - ], - "score": 1.0, - "content": "B 100 V ", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 91, - 433, - 138, - 445 - ], - "spans": [ - { - "bbox": [ - 91, - 433, - 138, - 445 - ], - "score": 1.0, - "content": "C 120 V ", - "type": "text" - } - ], - "index": 24 - }, - { - "bbox": [ - 91, - 461, - 138, - 473 - ], - "spans": [ - { - "bbox": [ - 91, - 461, - 138, - 473 - ], - "score": 1.0, - "content": "D 140 V ", - "type": "text" - } - ], - "index": 25 - } - ], - "index": 23.0 - }, - { - "type": "image", - "bbox": [ - 441, - 372, - 469, - 476 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 372, - 469, - 476 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 441, - 372, - 469, - 476 - ], - "spans": [ - { - "bbox": [ - 441, - 372, - 469, - 476 - ], - "score": 0.539, - "type": "image", - "image_path": "fdb096c8aaf4f45c67f73ec1592b5496c5dffb1dfd4c3c3b27f71beab04b2f99.jpg" - } - ] - } - ], - "index": 23, - "virtual_lines": [ - { - "bbox": [ - 441, - 372, - 469, - 476 - ], - "spans": [], - "index": 23 - } - ] - } - ], - "index": 23 - }, - { - "type": "text", - "bbox": [ - 90, - 508, - 513, - 536 - ], - "lines": [ - { - "bbox": [ - 91, - 509, - 511, - 522 - ], - "spans": [ - { - "bbox": [ - 91, - 510, - 245, - 522 - ], - "score": 1.0, - "content": "A voltmeter has a resistance of", - "type": "text" - }, - { - "bbox": [ - 245, - 509, - 281, - 522 - ], - "score": 0.78, - "content": "4.0\\mathrm{k}\\Omega", - "type": "inline_equation", - "height": 13, - "width": 36 - }, - { - "bbox": [ - 281, - 510, - 334, - 522 - ], - "score": 1.0, - "content": " and reads ", - "type": "text" - }, - { - "bbox": [ - 334, - 509, - 362, - 522 - ], - "score": 0.54, - "content": "1.0\\:\\mathrm{V}", - "type": "inline_equation", - "height": 13, - "width": 28 - }, - { - "bbox": [ - 362, - 510, - 511, - 522 - ], - "score": 1.0, - "content": " for every scale division on the", - "type": "text" - } - ], - "index": 26 - }, - { - "bbox": [ - 90, - 524, - 125, - 537 - ], - "spans": [ - { - "bbox": [ - 90, - 524, - 125, - 537 - ], - "score": 1.0, - "content": "meter.", - "type": "text" - } - ], - "index": 27 - } - ], - "index": 26.5 - }, - { - "type": "text", - "bbox": [ - 89, - 548, - 514, - 576 - ], - "lines": [ - { - "bbox": [ - 91, - 549, - 514, - 562 - ], - "spans": [ - { - "bbox": [ - 91, - 550, - 203, - 562 - ], - "score": 1.0, - "content": "A power supply of emf", - "type": "text" - }, - { - "bbox": [ - 203, - 549, - 229, - 562 - ], - "score": 0.47, - "content": "20\\mathrm{~V~}", - "type": "inline_equation", - "height": 13, - "width": 26 - }, - { - "bbox": [ - 229, - 550, - 514, - 562 - ], - "score": 1.0, - "content": " and negligible internal resistance is connected across this ", - "type": "text" - } - ], - "index": 28 - }, - { - "bbox": [ - 92, - 564, - 427, - 575 - ], - "spans": [ - { - "bbox": [ - 92, - 564, - 427, - 575 - ], - "score": 1.0, - "content": "voltmeter and a resistor in series. The voltmeter reads two divisions.", - "type": "text" - } - ], - "index": 29 - } - ], - "index": 28.5 - }, - { - "type": "text", - "bbox": [ - 92, - 588, - 254, - 602 - ], - "lines": [ - { - "bbox": [ - 92, - 590, - 253, - 601 - ], - "spans": [ - { - "bbox": [ - 92, - 590, - 253, - 601 - ], - "score": 1.0, - "content": "What is the value of the resistor?", - "type": "text" - } - ], - "index": 30 - } - ], - "index": 30 - }, - { - "type": "text", - "bbox": [ - 491, - 601, - 536, - 615 - ], - "lines": [ - { - "bbox": [ - 491, - 602, - 536, - 615 - ], - "spans": [ - { - "bbox": [ - 491, - 602, - 536, - 615 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 31 - } - ], - "index": 31 - }, - { - "type": "image", - "bbox": [ - 441, - 632, - 470, - 736 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 632, - 470, - 736 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 441, - 632, - 470, - 736 - ], - "spans": [ - { - "bbox": [ - 441, - 632, - 470, - 736 - ], - "score": 0.803, - "type": "image", - "image_path": "f196269a0925414c8b0dafa701109262a2054259282780d5e061a25a3267fbb2.jpg" - } - ] - } - ], - "index": 32, - "virtual_lines": [ - { - "bbox": [ - 441, - 632, - 470, - 736 - ], - "spans": [], - "index": 32 - } - ] - } - ], - "index": 32 - }, - { - "type": "text", - "bbox": [ - 90, - 634, - 142, - 734 - ], - "lines": [ - { - "bbox": [ - 91, - 635, - 138, - 647 - ], - "spans": [ - { - "bbox": [ - 91, - 635, - 138, - 647 - ], - "score": 1.0, - "content": "A 44 kΩ", - "type": "text" - } - ], - "index": 33 - }, - { - "bbox": [ - 92, - 664, - 138, - 676 - ], - "spans": [ - { - "bbox": [ - 92, - 664, - 138, - 676 - ], - "score": 1.0, - "content": "B 36 kΩ", - "type": "text" - } - ], - "index": 34 - }, - { - "bbox": [ - 91, - 692, - 141, - 705 - ], - "spans": [ - { - "bbox": [ - 91, - 692, - 141, - 705 - ], - "score": 1.0, - "content": "C 4.4 kΩ", - "type": "text" - } - ], - "index": 35 - }, - { - "bbox": [ - 91, - 721, - 141, - 733 - ], - "spans": [ - { - "bbox": [ - 91, - 721, - 141, - 733 - ], - "score": 1.0, - "content": "D 3.6 kΩ", - "type": "text" - } - ], - "index": 36 - } - ], - "index": 34.5 - } - ], - "layout_bboxes": [], - "page_idx": 27, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 205, - 93, - 376, - 318 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 205, - 93, - 376, - 318 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 205, - 93, - 376, - 318 - ], - "spans": [ - { - "bbox": [ - 205, - 93, - 376, - 318 - ], - "score": 0.96, - "type": "image", - "image_path": "3f576db96ea0abf9c1b89284326055f51e6339a887c12f6aa02cb0302ab2deba.jpg" - } - ] - } - ], - "index": 9.5, - "virtual_lines": [ - { - "bbox": [ - 205, - 93, - 376, - 106 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 205, - 106, - 376, - 119 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 205, - 119, - 376, - 132 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 205, - 132, - 376, - 145 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 205, - 145, - 376, - 158 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 205, - 158, - 376, - 171 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 205, - 171, - 376, - 184 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 205, - 184, - 376, - 197 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 205, - 197, - 376, - 210 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 205, - 210, - 376, - 223 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 205, - 223, - 376, - 236 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 205, - 236, - 376, - 249 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 205, - 249, - 376, - 262 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 205, - 262, - 376, - 275 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 205, - 275, - 376, - 288 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 205, - 288, - 376, - 301 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 205, - 301, - 376, - 314 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 205, - 314, - 376, - 327 - ], - "spans": [], - "index": 18 - } - ] - } - ], - "index": 9.5 - }, - { - "type": "image", - "bbox": [ - 441, - 372, - 469, - 476 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 372, - 469, - 476 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 441, - 372, - 469, - 476 - ], - "spans": [ - { - "bbox": [ - 441, - 372, - 469, - 476 - ], - "score": 0.539, - "type": "image", - "image_path": "fdb096c8aaf4f45c67f73ec1592b5496c5dffb1dfd4c3c3b27f71beab04b2f99.jpg" - } - ] - } - ], - "index": 23, - "virtual_lines": [ - { - "bbox": [ - 441, - 372, - 469, - 476 - ], - "spans": [], - "index": 23 - } - ] - } - ], - "index": 23 - }, - { - "type": "image", - "bbox": [ - 441, - 632, - 470, - 736 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 632, - 470, - 736 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 441, - 632, - 470, - 736 - ], - "spans": [ - { - "bbox": [ - 441, - 632, - 470, - 736 - ], - "score": 0.803, - "type": "image", - "image_path": "f196269a0925414c8b0dafa701109262a2054259282780d5e061a25a3267fbb2.jpg" - } - ] - } - ], - "index": 32, - "virtual_lines": [ - { - "bbox": [ - 441, - 632, - 470, - 736 - ], - "spans": [], - "index": 32 - } - ] - } - ], - "index": 32 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 545, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 559, - 68, - 573, - 77 - ], - "spans": [ - { - "bbox": [ - 559, - 68, - 573, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 72, - 816, - 79, - 824 - ], - "spans": [ - { - "bbox": [ - 72, - 816, - 79, - 824 - ], - "score": 0.9992895126342773, - "content": "8", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 479, - 815, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 479, - 815, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 506, - 81, - 523 - ], - "lines": [ - { - "bbox": [ - 50, - 509, - 76, - 520 - ], - "spans": [ - { - "bbox": [ - 50, - 509, - 61, - 520 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - }, - { - "bbox": [ - 67, - 510, - 76, - 519 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 40 - ], - "lines": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "28 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 569, - 0, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 46, - 65, - 81, - 82 - ], - "lines": [ - { - "bbox": [ - 50, - 67, - 77, - 80 - ], - "spans": [ - { - "bbox": [ - 50, - 67, - 77, - 80 - ], - "score": 1.0, - "content": "2 3 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 89, - 68, - 411, - 82 - ], - "lines": [ - { - "bbox": [ - 91, - 68, - 411, - 82 - ], - "spans": [ - { - "bbox": [ - 91, - 68, - 411, - 82 - ], - "score": 1.0, - "content": "The diagram shows part of a circuit and the currents in the circuit.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_27", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 68, - 411, - 82 - ] - }, - { - "type": "image", - "bbox": [ - 205, - 93, - 376, - 318 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 205, - 93, - 376, - 318 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 205, - 93, - 376, - 318 - ], - "spans": [ - { - "bbox": [ - 205, - 93, - 376, - 318 - ], - "score": 0.96, - "type": "image", - "image_path": "3f576db96ea0abf9c1b89284326055f51e6339a887c12f6aa02cb0302ab2deba.jpg" - } - ] - } - ], - "index": 9.5, - "virtual_lines": [ - { - "bbox": [ - 205, - 93, - 376, - 106 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 205, - 106, - 376, - 119 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 205, - 119, - 376, - 132 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 205, - 132, - 376, - 145 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 205, - 145, - 376, - 158 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 205, - 158, - 376, - 171 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 205, - 171, - 376, - 184 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 205, - 184, - 376, - 197 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 205, - 197, - 376, - 210 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 205, - 210, - 376, - 223 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 205, - 223, - 376, - 236 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 205, - 236, - 376, - 249 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 205, - 249, - 376, - 262 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 205, - 262, - 376, - 275 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 205, - 275, - 376, - 288 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 205, - 288, - 376, - 301 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 205, - 301, - 376, - 314 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 205, - 314, - 376, - 327 - ], - "spans": [], - "index": 18 - } - ] - } - ], - "index": 9.5, - "page_num": "page_27", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 328, - 383, - 343 - ], - "lines": [ - { - "bbox": [ - 92, - 330, - 382, - 342 - ], - "spans": [ - { - "bbox": [ - 92, - 330, - 382, - 342 - ], - "score": 1.0, - "content": "What is the potential difference between point P and earth?", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 19, - "page_num": "page_27", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 330, - 382, - 342 - ] - }, - { - "type": "text", - "bbox": [ - 491, - 342, - 536, - 356 - ], - "lines": [ - { - "bbox": [ - 491, - 343, - 536, - 356 - ], - "spans": [ - { - "bbox": [ - 491, - 343, - 536, - 356 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 20, - "page_num": "page_27", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 343, - 536, - 356 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 375, - 138, - 474 - ], - "lines": [ - { - "bbox": [ - 90, - 376, - 132, - 389 - ], - "spans": [ - { - "bbox": [ - 90, - 376, - 132, - 389 - ], - "score": 1.0, - "content": "A 60 V ", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 90, - 404, - 138, - 418 - ], - "spans": [ - { - "bbox": [ - 90, - 404, - 138, - 418 - ], - "score": 1.0, - "content": "B 100 V ", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 91, - 433, - 138, - 445 - ], - "spans": [ - { - "bbox": [ - 91, - 433, - 138, - 445 - ], - "score": 1.0, - "content": "C 120 V ", - "type": "text" - } - ], - "index": 24 - }, - { - "bbox": [ - 91, - 461, - 138, - 473 - ], - "spans": [ - { - "bbox": [ - 91, - 461, - 138, - 473 - ], - "score": 1.0, - "content": "D 140 V ", - "type": "text" - } - ], - "index": 25 - } - ], - "index": 23.0, - "page_num": "page_27", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 90, - 376, - 138, - 473 - ] - }, - { - "type": "image", - "bbox": [ - 441, - 372, - 469, - 476 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 372, - 469, - 476 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 441, - 372, - 469, - 476 - ], - "spans": [ - { - "bbox": [ - 441, - 372, - 469, - 476 - ], - "score": 0.539, - "type": "image", - "image_path": "fdb096c8aaf4f45c67f73ec1592b5496c5dffb1dfd4c3c3b27f71beab04b2f99.jpg" - } - ] - } - ], - "index": 23, - "virtual_lines": [ - { - "bbox": [ - 441, - 372, - 469, - 476 - ], - "spans": [], - "index": 23 - } - ] - } - ], - "index": 23, - "page_num": "page_27", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 508, - 513, - 536 - ], - "lines": [ - { - "bbox": [ - 91, - 509, - 511, - 522 - ], - "spans": [ - { - "bbox": [ - 91, - 510, - 245, - 522 - ], - "score": 1.0, - "content": "A voltmeter has a resistance of", - "type": "text" - }, - { - "bbox": [ - 245, - 509, - 281, - 522 - ], - "score": 0.78, - "content": "4.0\\mathrm{k}\\Omega", - "type": "inline_equation", - "height": 13, - "width": 36 - }, - { - "bbox": [ - 281, - 510, - 334, - 522 - ], - "score": 1.0, - "content": " and reads ", - "type": "text" - }, - { - "bbox": [ - 334, - 509, - 362, - 522 - ], - "score": 0.54, - "content": "1.0\\:\\mathrm{V}", - "type": "inline_equation", - "height": 13, - "width": 28 - }, - { - "bbox": [ - 362, - 510, - 511, - 522 - ], - "score": 1.0, - "content": " for every scale division on the", - "type": "text" - } - ], - "index": 26 - }, - { - "bbox": [ - 90, - 524, - 125, - 537 - ], - "spans": [ - { - "bbox": [ - 90, - 524, - 125, - 537 - ], - "score": 1.0, - "content": "meter.", - "type": "text" - } - ], - "index": 27 - } - ], - "index": 26.5, - "page_num": "page_27", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 90, - 509, - 511, - 537 - ] - }, - { - "type": "text", - "bbox": [ - 89, - 548, - 514, - 576 - ], - "lines": [ - { - "bbox": [ - 91, - 549, - 514, - 562 - ], - "spans": [ - { - "bbox": [ - 91, - 550, - 203, - 562 - ], - "score": 1.0, - "content": "A power supply of emf", - "type": "text" - }, - { - "bbox": [ - 203, - 549, - 229, - 562 - ], - "score": 0.47, - "content": "20\\mathrm{~V~}", - "type": "inline_equation", - "height": 13, - "width": 26 - }, - { - "bbox": [ - 229, - 550, - 514, - 562 - ], - "score": 1.0, - "content": " and negligible internal resistance is connected across this ", - "type": "text" - } - ], - "index": 28 - }, - { - "bbox": [ - 92, - 564, - 427, - 575 - ], - "spans": [ - { - "bbox": [ - 92, - 564, - 427, - 575 - ], - "score": 1.0, - "content": "voltmeter and a resistor in series. The voltmeter reads two divisions.", - "type": "text" - } - ], - "index": 29 - } - ], - "index": 28.5, - "page_num": "page_27", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 549, - 514, - 575 - ] - }, - { - "type": "text", - "bbox": [ - 92, - 588, - 254, - 602 - ], - "lines": [ - { - "bbox": [ - 92, - 590, - 253, - 601 - ], - "spans": [ - { - "bbox": [ - 92, - 590, - 253, - 601 - ], - "score": 1.0, - "content": "What is the value of the resistor?", - "type": "text" - } - ], - "index": 30 - } - ], - "index": 30, - "page_num": "page_27", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 590, - 253, - 601 - ] - }, - { - "type": "text", - "bbox": [ - 491, - 601, - 536, - 615 - ], - "lines": [ - { - "bbox": [ - 491, - 602, - 536, - 615 - ], - "spans": [ - { - "bbox": [ - 491, - 602, - 536, - 615 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 31 - } - ], - "index": 31, - "page_num": "page_27", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 602, - 536, - 615 - ] - }, - { - "type": "image", - "bbox": [ - 441, - 632, - 470, - 736 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 632, - 470, - 736 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 441, - 632, - 470, - 736 - ], - "spans": [ - { - "bbox": [ - 441, - 632, - 470, - 736 - ], - "score": 0.803, - "type": "image", - "image_path": "f196269a0925414c8b0dafa701109262a2054259282780d5e061a25a3267fbb2.jpg" - } - ] - } - ], - "index": 32, - "virtual_lines": [ - { - "bbox": [ - 441, - 632, - 470, - 736 - ], - "spans": [], - "index": 32 - } - ] - } - ], - "index": 32, - "page_num": "page_27", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 634, - 142, - 734 - ], - "lines": [ - { - "bbox": [ - 91, - 635, - 138, - 647 - ], - "spans": [ - { - "bbox": [ - 91, - 635, - 138, - 647 - ], - "score": 1.0, - "content": "A 44 kΩ", - "type": "text" - } - ], - "index": 33 - }, - { - "bbox": [ - 92, - 664, - 138, - 676 - ], - "spans": [ - { - "bbox": [ - 92, - 664, - 138, - 676 - ], - "score": 1.0, - "content": "B 36 kΩ", - "type": "text" - } - ], - "index": 34 - }, - { - "bbox": [ - 91, - 692, - 141, - 705 - ], - "spans": [ - { - "bbox": [ - 91, - 692, - 141, - 705 - ], - "score": 1.0, - "content": "C 4.4 kΩ", - "type": "text" - } - ], - "index": 35 - }, - { - "bbox": [ - 91, - 721, - 141, - 733 - ], - "spans": [ - { - "bbox": [ - 91, - 721, - 141, - 733 - ], - "score": 1.0, - "content": "D 3.6 kΩ", - "type": "text" - } - ], - "index": 36 - } - ], - "index": 34.5, - "page_num": "page_27", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 635, - 141, - 733 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 91, - 68, - 489, - 95 - ], - "lines": [ - { - "bbox": [ - 92, - 69, - 489, - 81 - ], - "spans": [ - { - "bbox": [ - 92, - 69, - 227, - 81 - ], - "score": 1.0, - "content": "Two cylindrical wires P and ", - "type": "text" - }, - { - "bbox": [ - 227, - 69, - 238, - 80 - ], - "score": 0.46, - "content": "\\pmb{\\Omega}", - "type": "inline_equation", - "height": 11, - "width": 11 - }, - { - "bbox": [ - 238, - 69, - 489, - 81 - ], - "score": 1.0, - "content": " are of equal length and made of the same material.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 91, - 81, - 301, - 95 - ], - "spans": [ - { - "bbox": [ - 91, - 81, - 171, - 95 - ], - "score": 1.0, - "content": "The diameter of", - "type": "text" - }, - { - "bbox": [ - 171, - 82, - 181, - 93 - ], - "score": 0.35, - "content": "\\mathsf{P}", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 181, - 81, - 301, - 95 - ], - "score": 1.0, - "content": " is greater than that of Q.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 89, - 107, - 511, - 134 - ], - "lines": [ - { - "bbox": [ - 91, - 107, - 510, - 120 - ], - "spans": [ - { - "bbox": [ - 91, - 107, - 122, - 120 - ], - "score": 1.0, - "content": "P and", - "type": "text" - }, - { - "bbox": [ - 123, - 107, - 134, - 119 - ], - "score": 0.42, - "content": "\\pmb{\\Omega}", - "type": "inline_equation", - "height": 12, - "width": 11 - }, - { - "bbox": [ - 134, - 107, - 510, - 120 - ], - "score": 1.0, - "content": " are connected in series and the ends of this arrangement are connected to a", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 91, - 122, - 160, - 134 - ], - "spans": [ - { - "bbox": [ - 91, - 122, - 160, - 134 - ], - "score": 1.0, - "content": "power supply.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5 - }, - { - "type": "image", - "bbox": [ - 146, - 156, - 434, - 218 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 146, - 156, - 434, - 218 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 146, - 156, - 434, - 218 - ], - "spans": [ - { - "bbox": [ - 146, - 156, - 434, - 218 - ], - "score": 0.963, - "type": "image", - "image_path": "a917e8581e8ead4fed205c229ae8504393b6bf37cbabef89a852da1bd27e24dd.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 146, - 156, - 434, - 176.66666666666666 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 146, - 176.66666666666666, - 434, - 197.33333333333331 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 146, - 197.33333333333331, - 434, - 217.99999999999997 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 91, - 242, - 327, - 257 - ], - "lines": [ - { - "bbox": [ - 91, - 244, - 327, - 256 - ], - "spans": [ - { - "bbox": [ - 91, - 244, - 327, - 256 - ], - "score": 1.0, - "content": "Which two quantities are the same for P and Q?", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 491, - 256, - 536, - 269 - ], - "lines": [ - { - "bbox": [ - 491, - 256, - 537, - 271 - ], - "spans": [ - { - "bbox": [ - 491, - 256, - 537, - 271 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "image", - "bbox": [ - 91, - 281, - 487, - 399 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 91, - 281, - 487, - 399 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 91, - 281, - 487, - 399 - ], - "spans": [ - { - "bbox": [ - 91, - 281, - 487, - 399 - ], - "score": 0.858, - "type": "image", - "image_path": "9224e2ca294c6476680c41903d9f1a8f76b6f25447a8767ca2e779fdc7395170.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 91, - 281, - 487, - 320.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 91, - 320.3333333333333, - 487, - 359.66666666666663 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 91, - 359.66666666666663, - 487, - 398.99999999999994 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 206, - 448, - 372, - 462 - ], - "lines": [ - { - "bbox": [ - 207, - 449, - 371, - 461 - ], - "spans": [ - { - "bbox": [ - 207, - 449, - 371, - 461 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - } - ], - "layout_bboxes": [], - "page_idx": 28, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 146, - 156, - 434, - 218 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 146, - 156, - 434, - 218 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 146, - 156, - 434, - 218 - ], - "spans": [ - { - "bbox": [ - 146, - 156, - 434, - 218 - ], - "score": 0.963, - "type": "image", - "image_path": "a917e8581e8ead4fed205c229ae8504393b6bf37cbabef89a852da1bd27e24dd.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 146, - 156, - 434, - 176.66666666666666 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 146, - 176.66666666666666, - 434, - 197.33333333333331 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 146, - 197.33333333333331, - 434, - 217.99999999999997 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5 - }, - { - "type": "image", - "bbox": [ - 91, - 281, - 487, - 399 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 91, - 281, - 487, - 399 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 91, - 281, - 487, - 399 - ], - "spans": [ - { - "bbox": [ - 91, - 281, - 487, - 399 - ], - "score": 0.858, - "type": "image", - "image_path": "9224e2ca294c6476680c41903d9f1a8f76b6f25447a8767ca2e779fdc7395170.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 91, - 281, - 487, - 320.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 91, - 320.3333333333333, - 487, - 359.66666666666663 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 91, - 359.66666666666663, - 487, - 398.99999999999994 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 783 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 72, - 817, - 80, - 822 - ], - "spans": [ - { - "bbox": [ - 72, - 817, - 80, - 822 - ], - "score": 0.9802271127700806, - "content": "9", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 540, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 540, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "29 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 82, - 82 - ], - "lines": [ - { - "bbox": [ - 49, - 66, - 78, - 80 - ], - "spans": [ - { - "bbox": [ - 49, - 66, - 78, - 80 - ], - "score": 1.0, - "content": "2 5 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "list", - "bbox": [ - 91, - 68, - 489, - 95 - ], - "lines": [ - { - "bbox": [ - 92, - 69, - 489, - 81 - ], - "spans": [ - { - "bbox": [ - 92, - 69, - 227, - 81 - ], - "score": 1.0, - "content": "Two cylindrical wires P and ", - "type": "text" - }, - { - "bbox": [ - 227, - 69, - 238, - 80 - ], - "score": 0.46, - "content": "\\pmb{\\Omega}", - "type": "inline_equation", - "height": 11, - "width": 11 - }, - { - "bbox": [ - 238, - 69, - 489, - 81 - ], - "score": 1.0, - "content": " are of equal length and made of the same material.", - "type": "text" - } - ], - "index": 0, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 81, - 301, - 95 - ], - "spans": [ - { - "bbox": [ - 91, - 81, - 171, - 95 - ], - "score": 1.0, - "content": "The diameter of", - "type": "text" - }, - { - "bbox": [ - 171, - 82, - 181, - 93 - ], - "score": 0.35, - "content": "\\mathsf{P}", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 181, - 81, - 301, - 95 - ], - "score": 1.0, - "content": " is greater than that of Q.", - "type": "text" - } - ], - "index": 1, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 0.5, - "page_num": "page_28", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 69, - 489, - 95 - ] - }, - { - "type": "text", - "bbox": [ - 89, - 107, - 511, - 134 - ], - "lines": [ - { - "bbox": [ - 91, - 107, - 510, - 120 - ], - "spans": [ - { - "bbox": [ - 91, - 107, - 122, - 120 - ], - "score": 1.0, - "content": "P and", - "type": "text" - }, - { - "bbox": [ - 123, - 107, - 134, - 119 - ], - "score": 0.42, - "content": "\\pmb{\\Omega}", - "type": "inline_equation", - "height": 12, - "width": 11 - }, - { - "bbox": [ - 134, - 107, - 510, - 120 - ], - "score": 1.0, - "content": " are connected in series and the ends of this arrangement are connected to a", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 91, - 122, - 160, - 134 - ], - "spans": [ - { - "bbox": [ - 91, - 122, - 160, - 134 - ], - "score": 1.0, - "content": "power supply.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5, - "page_num": "page_28", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 107, - 510, - 134 - ] - }, - { - "type": "image", - "bbox": [ - 146, - 156, - 434, - 218 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 146, - 156, - 434, - 218 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 146, - 156, - 434, - 218 - ], - "spans": [ - { - "bbox": [ - 146, - 156, - 434, - 218 - ], - "score": 0.963, - "type": "image", - "image_path": "a917e8581e8ead4fed205c229ae8504393b6bf37cbabef89a852da1bd27e24dd.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 146, - 156, - 434, - 176.66666666666666 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 146, - 176.66666666666666, - 434, - 197.33333333333331 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 146, - 197.33333333333331, - 434, - 217.99999999999997 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5, - "page_num": "page_28", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 242, - 327, - 257 - ], - "lines": [ - { - "bbox": [ - 91, - 244, - 327, - 256 - ], - "spans": [ - { - "bbox": [ - 91, - 244, - 327, - 256 - ], - "score": 1.0, - "content": "Which two quantities are the same for P and Q?", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_28", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 244, - 327, - 256 - ] - }, - { - "type": "text", - "bbox": [ - 491, - 256, - 536, - 269 - ], - "lines": [ - { - "bbox": [ - 491, - 256, - 537, - 271 - ], - "spans": [ - { - "bbox": [ - 491, - 256, - 537, - 271 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_28", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 256, - 537, - 271 - ] - }, - { - "type": "image", - "bbox": [ - 91, - 281, - 487, - 399 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 91, - 281, - 487, - 399 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 91, - 281, - 487, - 399 - ], - "spans": [ - { - "bbox": [ - 91, - 281, - 487, - 399 - ], - "score": 0.858, - "type": "image", - "image_path": "9224e2ca294c6476680c41903d9f1a8f76b6f25447a8767ca2e779fdc7395170.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 91, - 281, - 487, - 320.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 91, - 320.3333333333333, - 487, - 359.66666666666663 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 91, - 359.66666666666663, - 487, - 398.99999999999994 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10, - "page_num": "page_28", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 206, - 448, - 372, - 462 - ], - "lines": [ - { - "bbox": [ - 207, - 449, - 371, - 461 - ], - "spans": [ - { - "bbox": [ - 207, - 449, - 371, - 461 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_28", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 207, - 449, - 371, - 461 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 90, - 67, - 360, - 82 - ], - "lines": [ - { - "bbox": [ - 92, - 69, - 360, - 81 - ], - "spans": [ - { - "bbox": [ - 92, - 69, - 360, - 81 - ], - "score": 1.0, - "content": "In the circuit below, the initial voltmeter reading is zero.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "image", - "bbox": [ - 181, - 93, - 400, - 214 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 181, - 93, - 400, - 214 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 181, - 93, - 400, - 214 - ], - "spans": [ - { - "bbox": [ - 181, - 93, - 400, - 214 - ], - "score": 0.966, - "type": "image", - "image_path": "15b9c6a01998d98ccddc3091fe62ae55ec2299ffd56e834d44279c258845d2be.jpg" - } - ] - } - ], - "index": 5.5, - "virtual_lines": [ - { - "bbox": [ - 181, - 93, - 400, - 106.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 181, - 106.0, - 400, - 119.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 181, - 119.0, - 400, - 132.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 181, - 132.0, - 400, - 145.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 181, - 145.0, - 400, - 158.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 181, - 158.0, - 400, - 171.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 181, - 171.0, - 400, - 184.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 181, - 184.0, - 400, - 197.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 181, - 197.0, - 400, - 210.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 181, - 210.0, - 400, - 223.0 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 5.5 - }, - { - "type": "text", - "bbox": [ - 91, - 227, - 516, - 268 - ], - "lines": [ - { - "bbox": [ - 92, - 227, - 515, - 241 - ], - "spans": [ - { - "bbox": [ - 92, - 227, - 515, - 241 - ], - "score": 1.0, - "content": "The temperature of the negative temperature coefficient thermistor T is then increased.", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 91, - 253, - 442, - 267 - ], - "spans": [ - { - "bbox": [ - 91, - 253, - 442, - 267 - ], - "score": 1.0, - "content": "Which change to the circuit could restore the voltmeter reading to zero?", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11.5 - }, - { - "type": "text", - "bbox": [ - 491, - 267, - 536, - 280 - ], - "lines": [ - { - "bbox": [ - 491, - 266, - 536, - 281 - ], - "spans": [ - { - "bbox": [ - 491, - 266, - 536, - 281 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "text", - "bbox": [ - 90, - 299, - 262, - 399 - ], - "lines": [ - { - "bbox": [ - 91, - 300, - 260, - 312 - ], - "spans": [ - { - "bbox": [ - 91, - 300, - 260, - 312 - ], - "score": 1.0, - "content": "A Decreasing the resistance of R.", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 92, - 329, - 255, - 341 - ], - "spans": [ - { - "bbox": [ - 92, - 329, - 255, - 341 - ], - "score": 1.0, - "content": "B Increasing the resistance of R.", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 91, - 357, - 260, - 370 - ], - "spans": [ - { - "bbox": [ - 91, - 357, - 260, - 370 - ], - "score": 1.0, - "content": "C Decreasing the resistance of P.", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 92, - 385, - 256, - 398 - ], - "spans": [ - { - "bbox": [ - 92, - 385, - 256, - 398 - ], - "score": 1.0, - "content": "D Increasing the resistance of Q.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 16.0 - }, - { - "type": "image", - "bbox": [ - 442, - 296, - 469, - 401 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 442, - 296, - 469, - 401 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 442, - 296, - 469, - 401 - ], - "spans": [ - { - "bbox": [ - 442, - 296, - 469, - 401 - ], - "score": 0.722, - "type": "image", - "image_path": "0f9535557d9dc0b2323ec38d0fb1dbf2960e2d69d4755cfca5ece9492f52a822.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 442, - 296, - 469, - 401 - ], - "spans": [], - "index": 16 - } - ] - } - ], - "index": 16 - }, - { - "type": "text", - "bbox": [ - 91, - 433, - 464, - 461 - ], - "lines": [ - { - "bbox": [ - 92, - 434, - 463, - 447 - ], - "spans": [ - { - "bbox": [ - 92, - 434, - 410, - 447 - ], - "score": 1.0, - "content": "An electric motor lifts a load of weight W through a vertical height ", - "type": "text" - }, - { - "bbox": [ - 410, - 434, - 418, - 445 - ], - "score": 0.65, - "content": "h", - "type": "inline_equation", - "height": 11, - "width": 8 - }, - { - "bbox": [ - 419, - 434, - 454, - 447 - ], - "score": 1.0, - "content": " in time", - "type": "text" - }, - { - "bbox": [ - 454, - 435, - 460, - 445 - ], - "score": 0.51, - "content": "t", - "type": "inline_equation", - "height": 10, - "width": 6 - }, - { - "bbox": [ - 460, - 434, - 463, - 447 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 92, - 447, - 459, - 460 - ], - "spans": [ - { - "bbox": [ - 92, - 448, - 305, - 460 - ], - "score": 1.0, - "content": "The potential difference across the motor is", - "type": "text" - }, - { - "bbox": [ - 306, - 447, - 316, - 459 - ], - "score": 0.45, - "content": "V", - "type": "inline_equation", - "height": 12, - "width": 10 - }, - { - "bbox": [ - 316, - 448, - 452, - 460 - ], - "score": 1.0, - "content": "and the current through it is", - "type": "text" - }, - { - "bbox": [ - 452, - 448, - 459, - 459 - ], - "score": 0.55, - "content": "I.", - "type": "inline_equation", - "height": 11, - "width": 7 - } - ], - "index": 20 - } - ], - "index": 19.5 - }, - { - "type": "text", - "bbox": [ - 92, - 473, - 266, - 487 - ], - "lines": [ - { - "bbox": [ - 92, - 474, - 265, - 487 - ], - "spans": [ - { - "bbox": [ - 92, - 474, - 265, - 487 - ], - "score": 1.0, - "content": "What is the efficiency of the motor?", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 21 - }, - { - "type": "text", - "bbox": [ - 491, - 487, - 536, - 500 - ], - "lines": [ - { - "bbox": [ - 491, - 486, - 536, - 501 - ], - "spans": [ - { - "bbox": [ - 491, - 486, - 536, - 501 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 22 - }, - { - "type": "interline_equation", - "bbox": [ - 88, - 499, - 131, - 664 - ], - "lines": [ - { - "bbox": [ - 88, - 499, - 131, - 664 - ], - "spans": [ - { - "bbox": [ - 88, - 499, - 131, - 664 - ], - "score": 0.29, - "content": "\\begin{array}{r l}&{\\textsf{A}\\frac{W h t}{V I}}\\ &{}\\ &{\\textsf{B}\\frac{V I}{W h t}}\\ &{\\textsf{C}\\frac{W h}{V I t}}\\ &{}\\ &{\\textsf{D}\\frac{V I t}{W h}}\\end{array}", - "type": "interline_equation" - } - ] - } - ], - "index": 23, - "virtual_lines": [ - { - "bbox": [ - 88, - 499, - 131, - 664 - ], - "spans": [], - "index": 23 - } - ] - }, - { - "type": "image", - "bbox": [ - 441, - 518, - 469, - 650 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 518, - 469, - 650 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 441, - 518, - 469, - 650 - ], - "spans": [ - { - "bbox": [ - 441, - 518, - 469, - 650 - ], - "score": 0.518, - "type": "image", - "image_path": "1efd430ca87371be6652ac0ca207b44b81b2fceb6a978214b56340b28e216d51.jpg" - } - ] - } - ], - "index": 24, - "virtual_lines": [ - { - "bbox": [ - 441, - 518, - 469, - 650 - ], - "spans": [], - "index": 24 - } - ] - } - ], - "index": 24 - } - ], - "layout_bboxes": [], - "page_idx": 29, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 181, - 93, - 400, - 214 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 181, - 93, - 400, - 214 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 181, - 93, - 400, - 214 - ], - "spans": [ - { - "bbox": [ - 181, - 93, - 400, - 214 - ], - "score": 0.966, - "type": "image", - "image_path": "15b9c6a01998d98ccddc3091fe62ae55ec2299ffd56e834d44279c258845d2be.jpg" - } - ] - } - ], - "index": 5.5, - "virtual_lines": [ - { - "bbox": [ - 181, - 93, - 400, - 106.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 181, - 106.0, - 400, - 119.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 181, - 119.0, - 400, - 132.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 181, - 132.0, - 400, - 145.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 181, - 145.0, - 400, - 158.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 181, - 158.0, - 400, - 171.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 181, - 171.0, - 400, - 184.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 181, - 184.0, - 400, - 197.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 181, - 197.0, - 400, - 210.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 181, - 210.0, - 400, - 223.0 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 5.5 - }, - { - "type": "image", - "bbox": [ - 442, - 296, - 469, - 401 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 442, - 296, - 469, - 401 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 442, - 296, - 469, - 401 - ], - "spans": [ - { - "bbox": [ - 442, - 296, - 469, - 401 - ], - "score": 0.722, - "type": "image", - "image_path": "0f9535557d9dc0b2323ec38d0fb1dbf2960e2d69d4755cfca5ece9492f52a822.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 442, - 296, - 469, - 401 - ], - "spans": [], - "index": 16 - } - ] - } - ], - "index": 16 - }, - { - "type": "image", - "bbox": [ - 441, - 518, - 469, - 650 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 518, - 469, - 650 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 441, - 518, - 469, - 650 - ], - "spans": [ - { - "bbox": [ - 441, - 518, - 469, - 650 - ], - "score": 0.518, - "type": "image", - "image_path": "1efd430ca87371be6652ac0ca207b44b81b2fceb6a978214b56340b28e216d51.jpg" - } - ] - } - ], - "index": 24, - "virtual_lines": [ - { - "bbox": [ - 441, - 518, - 469, - 650 - ], - "spans": [], - "index": 24 - } - ] - } - ], - "index": 24 - } - ], - "tables": [], - "interline_equations": [ - { - "type": "interline_equation", - "bbox": [ - 88, - 499, - 131, - 664 - ], - "lines": [ - { - "bbox": [ - 88, - 499, - 131, - 664 - ], - "spans": [ - { - "bbox": [ - 88, - 499, - 131, - 664 - ], - "score": 0.29, - "content": "\\begin{array}{r l}&{\\textsf{A}\\frac{W h t}{V I}}\\ &{}\\ &{\\textsf{B}\\frac{V I}{W h t}}\\ &{\\textsf{C}\\frac{W h}{V I t}}\\ &{}\\ &{\\textsf{D}\\frac{V I t}{W h}}\\end{array}", - "type": "interline_equation" - } - ] - } - ], - "index": 23, - "virtual_lines": [ - { - "bbox": [ - 88, - 499, - 131, - 664 - ], - "spans": [], - "index": 23 - } - ] - } - ], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 58, - 814, - 81, - 826 - ], - "spans": [ - { - "bbox": [ - 58, - 814, - 81, - 826 - ], - "score": 0.784358024597168, - "content": "3 0", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 430, - 81, - 447 - ], - "lines": [ - { - "bbox": [ - 50, - 433, - 77, - 445 - ], - "spans": [ - { - "bbox": [ - 50, - 433, - 77, - 445 - ], - "score": 1.0, - "content": "2 7 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 40 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "30 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 46, - 65, - 81, - 82 - ], - "lines": [ - { - "bbox": [ - 50, - 68, - 77, - 80 - ], - "spans": [ - { - "bbox": [ - 50, - 68, - 61, - 80 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - }, - { - "bbox": [ - 65, - 68, - 77, - 80 - ], - "score": 1.0, - "content": "6 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 569, - 0, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 443, - 634, - 467, - 650 - ], - "lines": [] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 90, - 67, - 360, - 82 - ], - "lines": [ - { - "bbox": [ - 92, - 69, - 360, - 81 - ], - "spans": [ - { - "bbox": [ - 92, - 69, - 360, - 81 - ], - "score": 1.0, - "content": "In the circuit below, the initial voltmeter reading is zero.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_29", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 69, - 360, - 81 - ] - }, - { - "type": "image", - "bbox": [ - 181, - 93, - 400, - 214 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 181, - 93, - 400, - 214 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 181, - 93, - 400, - 214 - ], - "spans": [ - { - "bbox": [ - 181, - 93, - 400, - 214 - ], - "score": 0.966, - "type": "image", - "image_path": "15b9c6a01998d98ccddc3091fe62ae55ec2299ffd56e834d44279c258845d2be.jpg" - } - ] - } - ], - "index": 5.5, - "virtual_lines": [ - { - "bbox": [ - 181, - 93, - 400, - 106.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 181, - 106.0, - 400, - 119.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 181, - 119.0, - 400, - 132.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 181, - 132.0, - 400, - 145.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 181, - 145.0, - 400, - 158.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 181, - 158.0, - 400, - 171.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 181, - 171.0, - 400, - 184.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 181, - 184.0, - 400, - 197.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 181, - 197.0, - 400, - 210.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 181, - 210.0, - 400, - 223.0 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 5.5, - "page_num": "page_29", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 227, - 516, - 268 - ], - "lines": [ - { - "bbox": [ - 92, - 227, - 515, - 241 - ], - "spans": [ - { - "bbox": [ - 92, - 227, - 515, - 241 - ], - "score": 1.0, - "content": "The temperature of the negative temperature coefficient thermistor T is then increased.", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 91, - 253, - 442, - 267 - ], - "spans": [ - { - "bbox": [ - 91, - 253, - 442, - 267 - ], - "score": 1.0, - "content": "Which change to the circuit could restore the voltmeter reading to zero?", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11.5, - "page_num": "page_29", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 227, - 515, - 267 - ] - }, - { - "type": "text", - "bbox": [ - 491, - 267, - 536, - 280 - ], - "lines": [ - { - "bbox": [ - 491, - 266, - 536, - 281 - ], - "spans": [ - { - "bbox": [ - 491, - 266, - 536, - 281 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_29", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 266, - 536, - 281 - ] - }, - { - "type": "list", - "bbox": [ - 90, - 299, - 262, - 399 - ], - "lines": [ - { - "bbox": [ - 91, - 300, - 260, - 312 - ], - "spans": [ - { - "bbox": [ - 91, - 300, - 260, - 312 - ], - "score": 1.0, - "content": "A Decreasing the resistance of R.", - "type": "text" - } - ], - "index": 14, - "is_list_end_line": true - }, - { - "bbox": [ - 92, - 329, - 255, - 341 - ], - "spans": [ - { - "bbox": [ - 92, - 329, - 255, - 341 - ], - "score": 1.0, - "content": "B Increasing the resistance of R.", - "type": "text" - } - ], - "index": 15, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 357, - 260, - 370 - ], - "spans": [ - { - "bbox": [ - 91, - 357, - 260, - 370 - ], - "score": 1.0, - "content": "C Decreasing the resistance of P.", - "type": "text" - } - ], - "index": 17, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 92, - 385, - 256, - 398 - ], - "spans": [ - { - "bbox": [ - 92, - 385, - 256, - 398 - ], - "score": 1.0, - "content": "D Increasing the resistance of Q.", - "type": "text" - } - ], - "index": 18, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 16.0, - "page_num": "page_29", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 300, - 260, - 398 - ] - }, - { - "type": "image", - "bbox": [ - 442, - 296, - 469, - 401 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 442, - 296, - 469, - 401 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 442, - 296, - 469, - 401 - ], - "spans": [ - { - "bbox": [ - 442, - 296, - 469, - 401 - ], - "score": 0.722, - "type": "image", - "image_path": "0f9535557d9dc0b2323ec38d0fb1dbf2960e2d69d4755cfca5ece9492f52a822.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 442, - 296, - 469, - 401 - ], - "spans": [], - "index": 16 - } - ] - } - ], - "index": 16, - "page_num": "page_29", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 433, - 464, - 461 - ], - "lines": [ - { - "bbox": [ - 92, - 434, - 463, - 447 - ], - "spans": [ - { - "bbox": [ - 92, - 434, - 410, - 447 - ], - "score": 1.0, - "content": "An electric motor lifts a load of weight W through a vertical height ", - "type": "text" - }, - { - "bbox": [ - 410, - 434, - 418, - 445 - ], - "score": 0.65, - "content": "h", - "type": "inline_equation", - "height": 11, - "width": 8 - }, - { - "bbox": [ - 419, - 434, - 454, - 447 - ], - "score": 1.0, - "content": " in time", - "type": "text" - }, - { - "bbox": [ - 454, - 435, - 460, - 445 - ], - "score": 0.51, - "content": "t", - "type": "inline_equation", - "height": 10, - "width": 6 - }, - { - "bbox": [ - 460, - 434, - 463, - 447 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 92, - 447, - 459, - 460 - ], - "spans": [ - { - "bbox": [ - 92, - 448, - 305, - 460 - ], - "score": 1.0, - "content": "The potential difference across the motor is", - "type": "text" - }, - { - "bbox": [ - 306, - 447, - 316, - 459 - ], - "score": 0.45, - "content": "V", - "type": "inline_equation", - "height": 12, - "width": 10 - }, - { - "bbox": [ - 316, - 448, - 452, - 460 - ], - "score": 1.0, - "content": "and the current through it is", - "type": "text" - }, - { - "bbox": [ - 452, - 448, - 459, - 459 - ], - "score": 0.55, - "content": "I.", - "type": "inline_equation", - "height": 11, - "width": 7 - } - ], - "index": 20 - } - ], - "index": 19.5, - "page_num": "page_29", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 434, - 463, - 460 - ] - }, - { - "type": "text", - "bbox": [ - 92, - 473, - 266, - 487 - ], - "lines": [ - { - "bbox": [ - 92, - 474, - 265, - 487 - ], - "spans": [ - { - "bbox": [ - 92, - 474, - 265, - 487 - ], - "score": 1.0, - "content": "What is the efficiency of the motor?", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 21, - "page_num": "page_29", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 474, - 265, - 487 - ] - }, - { - "type": "text", - "bbox": [ - 491, - 487, - 536, - 500 - ], - "lines": [ - { - "bbox": [ - 491, - 486, - 536, - 501 - ], - "spans": [ - { - "bbox": [ - 491, - 486, - 536, - 501 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 22, - "page_num": "page_29", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 486, - 536, - 501 - ] - }, - { - "type": "interline_equation", - "bbox": [ - 88, - 499, - 131, - 664 - ], - "lines": [ - { - "bbox": [ - 88, - 499, - 131, - 664 - ], - "spans": [ - { - "bbox": [ - 88, - 499, - 131, - 664 - ], - "score": 0.29, - "content": "\\begin{array}{r l}&{\\textsf{A}\\frac{W h t}{V I}}\\ &{}\\ &{\\textsf{B}\\frac{V I}{W h t}}\\ &{\\textsf{C}\\frac{W h}{V I t}}\\ &{}\\ &{\\textsf{D}\\frac{V I t}{W h}}\\end{array}", - "type": "interline_equation" - } - ] - } - ], - "index": 23, - "virtual_lines": [ - { - "bbox": [ - 88, - 499, - 131, - 664 - ], - "spans": [], - "index": 23 - } - ], - "page_num": "page_29", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "image", - "bbox": [ - 441, - 518, - 469, - 650 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 518, - 469, - 650 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 441, - 518, - 469, - 650 - ], - "spans": [ - { - "bbox": [ - 441, - 518, - 469, - 650 - ], - "score": 0.518, - "type": "image", - "image_path": "1efd430ca87371be6652ac0ca207b44b81b2fceb6a978214b56340b28e216d51.jpg" - } - ] - } - ], - "index": 24, - "virtual_lines": [ - { - "bbox": [ - 441, - 518, - 469, - 650 - ], - "spans": [], - "index": 24 - } - ] - } - ], - "index": 24, - "page_num": "page_29", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 90, - 66, - 536, - 110 - ], - "lines": [ - { - "bbox": [ - 92, - 70, - 535, - 81 - ], - "spans": [ - { - "bbox": [ - 92, - 70, - 323, - 81 - ], - "score": 1.0, - "content": "An object of mass m moves in a circle of radius", - "type": "text" - }, - { - "bbox": [ - 323, - 71, - 330, - 80 - ], - "score": 0.53, - "content": "r", - "type": "inline_equation", - "height": 9, - "width": 7 - }, - { - "bbox": [ - 331, - 70, - 399, - 81 - ], - "score": 1.0, - "content": ". It completes", - "type": "text" - }, - { - "bbox": [ - 399, - 71, - 408, - 80 - ], - "score": 0.46, - "content": "n", - "type": "inline_equation", - "height": 9, - "width": 9 - }, - { - "bbox": [ - 408, - 70, - 535, - 81 - ], - "score": 1.0, - "content": " revolutions every second.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 91, - 95, - 288, - 109 - ], - "spans": [ - { - "bbox": [ - 91, - 95, - 288, - 109 - ], - "score": 1.0, - "content": "What is the kinetic energy of the object?", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 491, - 108, - 536, - 122 - ], - "lines": [ - { - "bbox": [ - 491, - 107, - 537, - 123 - ], - "spans": [ - { - "bbox": [ - 491, - 107, - 537, - 123 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 90, - 135, - 153, - 271 - ], - "lines": [ - { - "bbox": [ - 123, - 136, - 139, - 144 - ], - "spans": [ - { - "bbox": [ - 123, - 136, - 139, - 144 - ], - "score": 1.0, - "content": "2 2", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 108, - 140, - 136, - 150 - ], - "spans": [ - { - "bbox": [ - 108, - 140, - 136, - 150 - ], - "score": 1.0, - "content": "mn r", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 91, - 144, - 102, - 156 - ], - "spans": [ - { - "bbox": [ - 91, - 144, - 102, - 156 - ], - "score": 1.0, - "content": "A", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 111, - 152, - 136, - 168 - ], - "spans": [ - { - "bbox": [ - 111, - 152, - 136, - 168 - ], - "score": 1.0, - "content": "8π2", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 91, - 174, - 142, - 206 - ], - "spans": [ - { - "bbox": [ - 91, - 184, - 102, - 196 - ], - "score": 1.0, - "content": "B", - "type": "text" - }, - { - "bbox": [ - 106, - 174, - 142, - 206 - ], - "score": 0.31, - "content": "\\frac{m n^{2}r^{2}}{4\\pi^{2}}", - "type": "inline_equation", - "height": 32, - "width": 36 - } - ], - "index": 7 - }, - { - "bbox": [ - 89, - 216, - 154, - 235 - ], - "spans": [ - { - "bbox": [ - 89, - 216, - 154, - 235 - ], - "score": 1.0, - "content": "C 2mπ2n2r2 ", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 91, - 254, - 151, - 270 - ], - "spans": [ - { - "bbox": [ - 91, - 254, - 151, - 270 - ], - "score": 1.0, - "content": "D 4mπ2n2r2", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 6 - }, - { - "type": "image", - "bbox": [ - 441, - 140, - 470, - 272 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 140, - 470, - 272 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 441, - 140, - 470, - 272 - ], - "spans": [ - { - "bbox": [ - 441, - 140, - 470, - 272 - ], - "score": 0.419, - "type": "image", - "image_path": "3869272d01fa7d807b87241f0a196d688b1f30669d80572c17ada0bcff2f223e.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 441, - 140, - 470, - 272 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 207, - 327, - 372, - 341 - ], - "lines": [ - { - "bbox": [ - 207, - 328, - 371, - 340 - ], - "spans": [ - { - "bbox": [ - 207, - 328, - 371, - 340 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - } - ], - "layout_bboxes": [], - "page_idx": 30, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 441, - 140, - 470, - 272 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 140, - 470, - 272 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 441, - 140, - 470, - 272 - ], - "spans": [ - { - "bbox": [ - 441, - 140, - 470, - 272 - ], - "score": 0.419, - "type": "image", - "image_path": "3869272d01fa7d807b87241f0a196d688b1f30669d80572c17ada0bcff2f223e.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 441, - 140, - 470, - 272 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 10 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 59, - 815, - 80, - 825 - ], - "spans": [ - { - "bbox": [ - 59, - 815, - 80, - 825 - ], - "score": 0.9464449882507324, - "content": "3 1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 783 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 479, - 815, - 540, - 824 - ], - "spans": [ - { - "bbox": [ - 479, - 815, - 540, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 281, - 29, - 295, - 40 - ], - "lines": [ - { - "bbox": [ - 280, - 28, - 297, - 42 - ], - "spans": [ - { - "bbox": [ - 280, - 28, - 297, - 42 - ], - "score": 1.0, - "content": "31 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 569, - 0, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 81, - 82 - ], - "lines": [ - { - "bbox": [ - 49, - 67, - 77, - 80 - ], - "spans": [ - { - "bbox": [ - 49, - 67, - 77, - 80 - ], - "score": 1.0, - "content": "2 8 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 90, - 66, - 536, - 110 - ], - "lines": [ - { - "bbox": [ - 92, - 70, - 535, - 81 - ], - "spans": [ - { - "bbox": [ - 92, - 70, - 323, - 81 - ], - "score": 1.0, - "content": "An object of mass m moves in a circle of radius", - "type": "text" - }, - { - "bbox": [ - 323, - 71, - 330, - 80 - ], - "score": 0.53, - "content": "r", - "type": "inline_equation", - "height": 9, - "width": 7 - }, - { - "bbox": [ - 331, - 70, - 399, - 81 - ], - "score": 1.0, - "content": ". It completes", - "type": "text" - }, - { - "bbox": [ - 399, - 71, - 408, - 80 - ], - "score": 0.46, - "content": "n", - "type": "inline_equation", - "height": 9, - "width": 9 - }, - { - "bbox": [ - 408, - 70, - 535, - 81 - ], - "score": 1.0, - "content": " revolutions every second.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 91, - 95, - 288, - 109 - ], - "spans": [ - { - "bbox": [ - 91, - 95, - 288, - 109 - ], - "score": 1.0, - "content": "What is the kinetic energy of the object?", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_30", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 70, - 535, - 109 - ] - }, - { - "type": "text", - "bbox": [ - 491, - 108, - 536, - 122 - ], - "lines": [ - { - "bbox": [ - 491, - 107, - 537, - 123 - ], - "spans": [ - { - "bbox": [ - 491, - 107, - 537, - 123 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_30", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 107, - 537, - 123 - ] - }, - { - "type": "list", - "bbox": [ - 90, - 135, - 153, - 271 - ], - "lines": [ - { - "bbox": [ - 123, - 136, - 139, - 144 - ], - "spans": [ - { - "bbox": [ - 123, - 136, - 139, - 144 - ], - "score": 1.0, - "content": "2 2", - "type": "text" - } - ], - "index": 3, - "is_list_end_line": true - }, - { - "bbox": [ - 108, - 140, - 136, - 150 - ], - "spans": [ - { - "bbox": [ - 108, - 140, - 136, - 150 - ], - "score": 1.0, - "content": "mn r", - "type": "text" - } - ], - "index": 5, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 144, - 102, - 156 - ], - "spans": [ - { - "bbox": [ - 91, - 144, - 102, - 156 - ], - "score": 1.0, - "content": "A", - "type": "text" - } - ], - "index": 4, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 111, - 152, - 136, - 168 - ], - "spans": [ - { - "bbox": [ - 111, - 152, - 136, - 168 - ], - "score": 1.0, - "content": "8π2", - "type": "text" - } - ], - "index": 6, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 174, - 142, - 206 - ], - "spans": [ - { - "bbox": [ - 91, - 184, - 102, - 196 - ], - "score": 1.0, - "content": "B", - "type": "text" - }, - { - "bbox": [ - 106, - 174, - 142, - 206 - ], - "score": 0.31, - "content": "\\frac{m n^{2}r^{2}}{4\\pi^{2}}", - "type": "inline_equation", - "height": 32, - "width": 36 - } - ], - "index": 7, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 89, - 216, - 154, - 235 - ], - "spans": [ - { - "bbox": [ - 89, - 216, - 154, - 235 - ], - "score": 1.0, - "content": "C 2mπ2n2r2 ", - "type": "text" - } - ], - "index": 8, - "is_list_start_line": true - }, - { - "bbox": [ - 91, - 254, - 151, - 270 - ], - "spans": [ - { - "bbox": [ - 91, - 254, - 151, - 270 - ], - "score": 1.0, - "content": "D 4mπ2n2r2", - "type": "text" - } - ], - "index": 9, - "is_list_start_line": true - } - ], - "index": 6, - "page_num": "page_30", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 89, - 136, - 154, - 270 - ] - }, - { - "type": "image", - "bbox": [ - 441, - 140, - 470, - 272 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 441, - 140, - 470, - 272 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 441, - 140, - 470, - 272 - ], - "spans": [ - { - "bbox": [ - 441, - 140, - 470, - 272 - ], - "score": 0.419, - "type": "image", - "image_path": "3869272d01fa7d807b87241f0a196d688b1f30669d80572c17ada0bcff2f223e.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 441, - 140, - 470, - 272 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 10, - "page_num": "page_30", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 207, - 327, - 372, - 341 - ], - "lines": [ - { - "bbox": [ - 207, - 328, - 371, - 340 - ], - "spans": [ - { - "bbox": [ - 207, - 328, - 371, - 340 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_30", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 207, - 328, - 371, - 340 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 90, - 68, - 508, - 96 - ], - "lines": [ - { - "bbox": [ - 92, - 69, - 507, - 82 - ], - "spans": [ - { - "bbox": [ - 92, - 69, - 322, - 82 - ], - "score": 1.0, - "content": "The graph shows the variation of displacement ", - "type": "text" - }, - { - "bbox": [ - 322, - 69, - 330, - 80 - ], - "score": 0.69, - "content": "d", - "type": "inline_equation", - "height": 11, - "width": 8 - }, - { - "bbox": [ - 331, - 69, - 377, - 82 - ], - "score": 1.0, - "content": "with time", - "type": "text" - }, - { - "bbox": [ - 377, - 71, - 383, - 80 - ], - "score": 0.68, - "content": "t", - "type": "inline_equation", - "height": 9, - "width": 6 - }, - { - "bbox": [ - 384, - 69, - 507, - 82 - ], - "score": 1.0, - "content": "for a particle moving with", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 92, - 83, - 268, - 96 - ], - "spans": [ - { - "bbox": [ - 92, - 83, - 256, - 96 - ], - "score": 1.0, - "content": "simple harmonic motion of period", - "type": "text" - }, - { - "bbox": [ - 257, - 83, - 266, - 94 - ], - "score": 0.34, - "content": "T.", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 266, - 83, - 268, - 96 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "image", - "bbox": [ - 196, - 107, - 385, - 210 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 196, - 107, - 385, - 210 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 196, - 107, - 385, - 210 - ], - "spans": [ - { - "bbox": [ - 196, - 107, - 385, - 210 - ], - "score": 0.955, - "type": "image", - "image_path": "a6110daf80338d3809ad4e230772f9952bda886d4d4d562a668e977a4264e527.jpg" - } - ] - } - ], - "index": 5.5, - "virtual_lines": [ - { - "bbox": [ - 196, - 107, - 385, - 120.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 196, - 120.0, - 385, - 133.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 196, - 133.0, - 385, - 146.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 196, - 146.0, - 385, - 159.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 196, - 159.0, - 385, - 172.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 196, - 172.0, - 385, - 185.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 196, - 185.0, - 385, - 198.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 196, - 198.0, - 385, - 211.0 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 5.5 - }, - { - "type": "text", - "bbox": [ - 91, - 224, - 472, - 239 - ], - "lines": [ - { - "bbox": [ - 92, - 225, - 472, - 238 - ], - "spans": [ - { - "bbox": [ - 92, - 225, - 336, - 238 - ], - "score": 1.0, - "content": "Which graph shows the variation of kinetic energy", - "type": "text" - }, - { - "bbox": [ - 336, - 225, - 350, - 237 - ], - "score": 0.87, - "content": "E_{\\mathrm{k}}", - "type": "inline_equation", - "height": 12, - "width": 14 - }, - { - "bbox": [ - 350, - 225, - 472, - 238 - ], - "score": 1.0, - "content": " of the particle with time?", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 491, - 238, - 536, - 252 - ], - "lines": [ - { - "bbox": [ - 491, - 239, - 536, - 252 - ], - "spans": [ - { - "bbox": [ - 491, - 239, - 536, - 252 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "image", - "bbox": [ - 104, - 263, - 524, - 535 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 104, - 263, - 524, - 535 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 104, - 263, - 524, - 534 - ], - "spans": [ - { - "bbox": [ - 104, - 263, - 524, - 534 - ], - "score": 0.829, - "type": "image", - "image_path": "987a29e481fb9fd331b10c8e28fd602d6ec79bff053c07b0a0aa34056366cf6c.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 104, - 263, - 524, - 353.6666666666667 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 104, - 353.6666666666667, - 524, - 444.33333333333337 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 104, - 444.33333333333337, - 524, - 535.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - }, - { - "type": "text", - "bbox": [ - 89, - 550, - 161, - 655 - ], - "lines": [ - { - "bbox": [ - 91, - 555, - 152, - 567 - ], - "spans": [ - { - "bbox": [ - 91, - 555, - 102, - 567 - ], - "score": 1.0, - "content": "A", - "type": "text" - }, - { - "bbox": [ - 141, - 559, - 152, - 564 - ], - "score": 0.26, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 5, - "width": 11 - } - ], - "index": 15 - }, - { - "bbox": [ - 91, - 583, - 152, - 596 - ], - "spans": [ - { - "bbox": [ - 91, - 583, - 102, - 596 - ], - "score": 1.0, - "content": "B", - "type": "text" - }, - { - "bbox": [ - 141, - 587, - 152, - 592 - ], - "score": 0.53, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 5, - "width": 11 - } - ], - "index": 16 - }, - { - "bbox": [ - 90, - 611, - 152, - 624 - ], - "spans": [ - { - "bbox": [ - 90, - 611, - 103, - 624 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 141, - 616, - 152, - 621 - ], - "score": 0.54, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 5, - "width": 11 - } - ], - "index": 17 - }, - { - "bbox": [ - 90, - 639, - 152, - 652 - ], - "spans": [ - { - "bbox": [ - 90, - 639, - 103, - 652 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 141, - 644, - 152, - 649 - ], - "score": 0.56, - "content": "\\subset", - "type": "inline_equation", - "height": 5, - "width": 11 - } - ], - "index": 18 - } - ], - "index": 16.5 - } - ], - "layout_bboxes": [], - "page_idx": 31, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 196, - 107, - 385, - 210 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 196, - 107, - 385, - 210 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 196, - 107, - 385, - 210 - ], - "spans": [ - { - "bbox": [ - 196, - 107, - 385, - 210 - ], - "score": 0.955, - "type": "image", - "image_path": "a6110daf80338d3809ad4e230772f9952bda886d4d4d562a668e977a4264e527.jpg" - } - ] - } - ], - "index": 5.5, - "virtual_lines": [ - { - "bbox": [ - 196, - 107, - 385, - 120.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 196, - 120.0, - 385, - 133.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 196, - 133.0, - 385, - 146.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 196, - 146.0, - 385, - 159.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 196, - 159.0, - 385, - 172.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 196, - 172.0, - 385, - 185.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 196, - 185.0, - 385, - 198.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 196, - 198.0, - 385, - 211.0 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 5.5 - }, - { - "type": "image", - "bbox": [ - 104, - 263, - 524, - 535 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 104, - 263, - 524, - 535 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 104, - 263, - 524, - 534 - ], - "spans": [ - { - "bbox": [ - 104, - 263, - 524, - 534 - ], - "score": 0.829, - "type": "image", - "image_path": "987a29e481fb9fd331b10c8e28fd602d6ec79bff053c07b0a0aa34056366cf6c.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 104, - 263, - 524, - 353.6666666666667 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 104, - 353.6666666666667, - 524, - 444.33333333333337 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 104, - 444.33333333333337, - 524, - 535.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 58, - 813, - 81, - 826 - ], - "spans": [ - { - "bbox": [ - 58, - 813, - 81, - 826 - ], - "score": 0.8395773768424988, - "content": "3\"2", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "32 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 81, - 82 - ], - "lines": [ - { - "bbox": [ - 49, - 67, - 77, - 80 - ], - "spans": [ - { - "bbox": [ - 49, - 67, - 77, - 80 - ], - "score": 1.0, - "content": "2 9 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 569, - 0, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 90, - 68, - 508, - 96 - ], - "lines": [ - { - "bbox": [ - 92, - 69, - 507, - 82 - ], - "spans": [ - { - "bbox": [ - 92, - 69, - 322, - 82 - ], - "score": 1.0, - "content": "The graph shows the variation of displacement ", - "type": "text" - }, - { - "bbox": [ - 322, - 69, - 330, - 80 - ], - "score": 0.69, - "content": "d", - "type": "inline_equation", - "height": 11, - "width": 8 - }, - { - "bbox": [ - 331, - 69, - 377, - 82 - ], - "score": 1.0, - "content": "with time", - "type": "text" - }, - { - "bbox": [ - 377, - 71, - 383, - 80 - ], - "score": 0.68, - "content": "t", - "type": "inline_equation", - "height": 9, - "width": 6 - }, - { - "bbox": [ - 384, - 69, - 507, - 82 - ], - "score": 1.0, - "content": "for a particle moving with", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 92, - 83, - 268, - 96 - ], - "spans": [ - { - "bbox": [ - 92, - 83, - 256, - 96 - ], - "score": 1.0, - "content": "simple harmonic motion of period", - "type": "text" - }, - { - "bbox": [ - 257, - 83, - 266, - 94 - ], - "score": 0.34, - "content": "T.", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 266, - 83, - 268, - 96 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_31", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 69, - 507, - 96 - ] - }, - { - "type": "image", - "bbox": [ - 196, - 107, - 385, - 210 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 196, - 107, - 385, - 210 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 196, - 107, - 385, - 210 - ], - "spans": [ - { - "bbox": [ - 196, - 107, - 385, - 210 - ], - "score": 0.955, - "type": "image", - "image_path": "a6110daf80338d3809ad4e230772f9952bda886d4d4d562a668e977a4264e527.jpg" - } - ] - } - ], - "index": 5.5, - "virtual_lines": [ - { - "bbox": [ - 196, - 107, - 385, - 120.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 196, - 120.0, - 385, - 133.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 196, - 133.0, - 385, - 146.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 196, - 146.0, - 385, - 159.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 196, - 159.0, - 385, - 172.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 196, - 172.0, - 385, - 185.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 196, - 185.0, - 385, - 198.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 196, - 198.0, - 385, - 211.0 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 5.5, - "page_num": "page_31", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 224, - 472, - 239 - ], - "lines": [ - { - "bbox": [ - 92, - 225, - 472, - 238 - ], - "spans": [ - { - "bbox": [ - 92, - 225, - 336, - 238 - ], - "score": 1.0, - "content": "Which graph shows the variation of kinetic energy", - "type": "text" - }, - { - "bbox": [ - 336, - 225, - 350, - 237 - ], - "score": 0.87, - "content": "E_{\\mathrm{k}}", - "type": "inline_equation", - "height": 12, - "width": 14 - }, - { - "bbox": [ - 350, - 225, - 472, - 238 - ], - "score": 1.0, - "content": " of the particle with time?", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_31", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 225, - 472, - 238 - ] - }, - { - "type": "text", - "bbox": [ - 491, - 238, - 536, - 252 - ], - "lines": [ - { - "bbox": [ - 491, - 239, - 536, - 252 - ], - "spans": [ - { - "bbox": [ - 491, - 239, - 536, - 252 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_31", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 239, - 536, - 252 - ] - }, - { - "type": "image", - "bbox": [ - 104, - 263, - 524, - 535 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 104, - 263, - 524, - 535 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 104, - 263, - 524, - 534 - ], - "spans": [ - { - "bbox": [ - 104, - 263, - 524, - 534 - ], - "score": 0.829, - "type": "image", - "image_path": "987a29e481fb9fd331b10c8e28fd602d6ec79bff053c07b0a0aa34056366cf6c.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 104, - 263, - 524, - 353.6666666666667 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 104, - 353.6666666666667, - 524, - 444.33333333333337 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 104, - 444.33333333333337, - 524, - 535.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13, - "page_num": "page_31", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 89, - 550, - 161, - 655 - ], - "lines": [ - { - "bbox": [ - 91, - 555, - 152, - 567 - ], - "spans": [ - { - "bbox": [ - 91, - 555, - 102, - 567 - ], - "score": 1.0, - "content": "A", - "type": "text" - }, - { - "bbox": [ - 141, - 559, - 152, - 564 - ], - "score": 0.26, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 5, - "width": 11 - } - ], - "index": 15 - }, - { - "bbox": [ - 91, - 583, - 152, - 596 - ], - "spans": [ - { - "bbox": [ - 91, - 583, - 102, - 596 - ], - "score": 1.0, - "content": "B", - "type": "text" - }, - { - "bbox": [ - 141, - 587, - 152, - 592 - ], - "score": 0.53, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 5, - "width": 11 - } - ], - "index": 16 - }, - { - "bbox": [ - 90, - 611, - 152, - 624 - ], - "spans": [ - { - "bbox": [ - 90, - 611, - 103, - 624 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 141, - 616, - 152, - 621 - ], - "score": 0.54, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 5, - "width": 11 - } - ], - "index": 17 - }, - { - "bbox": [ - 90, - 639, - 152, - 652 - ], - "spans": [ - { - "bbox": [ - 90, - 639, - 103, - 652 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 141, - 644, - 152, - 649 - ], - "score": 0.56, - "content": "\\subset", - "type": "inline_equation", - "height": 5, - "width": 11 - } - ], - "index": 18 - } - ], - "index": 16.5, - "page_num": "page_31", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 90, - 555, - 152, - 652 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 90, - 68, - 403, - 95 - ], - "lines": [ - { - "bbox": [ - 92, - 69, - 401, - 80 - ], - "spans": [ - { - "bbox": [ - 92, - 69, - 401, - 80 - ], - "score": 1.0, - "content": "Two pendulums A and B oscillate with simple harmonic motion.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 92, - 82, - 401, - 94 - ], - "spans": [ - { - "bbox": [ - 92, - 83, - 368, - 94 - ], - "score": 1.0, - "content": "The time period of A is 2.00 s and the time period of B is", - "type": "text" - }, - { - "bbox": [ - 369, - 82, - 399, - 94 - ], - "score": 0.28, - "content": "1.98\\mathrm{s}", - "type": "inline_equation", - "height": 12, - "width": 30 - }, - { - "bbox": [ - 399, - 83, - 401, - 94 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 92, - 107, - 246, - 122 - ], - "lines": [ - { - "bbox": [ - 92, - 109, - 244, - 120 - ], - "spans": [ - { - "bbox": [ - 92, - 109, - 244, - 120 - ], - "score": 1.0, - "content": "A and B are released in phase.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 91, - 133, - 453, - 147 - ], - "lines": [ - { - "bbox": [ - 92, - 134, - 452, - 146 - ], - "spans": [ - { - "bbox": [ - 92, - 134, - 452, - 146 - ], - "score": 1.0, - "content": "What is the number of oscillations of A before A and B are next in phase?", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 491, - 147, - 536, - 161 - ], - "lines": [ - { - "bbox": [ - 491, - 147, - 536, - 161 - ], - "spans": [ - { - "bbox": [ - 491, - 147, - 536, - 161 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 90, - 179, - 127, - 278 - ], - "lines": [ - { - "bbox": [ - 90, - 180, - 121, - 194 - ], - "spans": [ - { - "bbox": [ - 90, - 180, - 121, - 194 - ], - "score": 1.0, - "content": "A 49 ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 90, - 209, - 121, - 222 - ], - "spans": [ - { - "bbox": [ - 90, - 209, - 121, - 222 - ], - "score": 1.0, - "content": "B 50 ", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 90, - 237, - 121, - 251 - ], - "spans": [ - { - "bbox": [ - 90, - 237, - 121, - 251 - ], - "score": 1.0, - "content": "C 99 ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 90, - 266, - 126, - 278 - ], - "spans": [ - { - "bbox": [ - 90, - 266, - 126, - 278 - ], - "score": 1.0, - "content": "D 100", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 6.5 - }, - { - "type": "image", - "bbox": [ - 298, - 177, - 328, - 281 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 298, - 177, - 328, - 281 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 298, - 177, - 328, - 281 - ], - "spans": [ - { - "bbox": [ - 298, - 177, - 328, - 281 - ], - "score": 0.53, - "type": "image", - "image_path": "b2edc2a2a00f86f4bd4d91426ee61a95d5babe2e34416d17a60a156b3d6ed111.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 298, - 177, - 328, - 281 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 43, - 313, - 535, - 341 - ], - "lines": [ - { - "bbox": [ - 89, - 313, - 534, - 330 - ], - "spans": [ - { - "bbox": [ - 89, - 313, - 330, - 330 - ], - "score": 1.0, - "content": "The frequency of oscillation of a vertical spring is", - "type": "text" - }, - { - "bbox": [ - 330, - 315, - 338, - 328 - ], - "score": 0.65, - "content": "f", - "type": "inline_equation", - "height": 13, - "width": 8 - }, - { - "bbox": [ - 339, - 313, - 534, - 330 - ], - "score": 1.0, - "content": "when the mass hanging from the spring ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 90, - 329, - 117, - 341 - ], - "spans": [ - { - "bbox": [ - 90, - 329, - 117, - 341 - ], - "score": 1.0, - "content": "is m. ", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5 - }, - { - "type": "text", - "bbox": [ - 90, - 354, - 299, - 368 - ], - "lines": [ - { - "bbox": [ - 91, - 354, - 298, - 368 - ], - "spans": [ - { - "bbox": [ - 91, - 354, - 251, - 368 - ], - "score": 1.0, - "content": "What is the relationship between", - "type": "text" - }, - { - "bbox": [ - 252, - 355, - 260, - 368 - ], - "score": 0.74, - "content": "f", - "type": "inline_equation", - "height": 13, - "width": 8 - }, - { - "bbox": [ - 260, - 354, - 298, - 368 - ], - "score": 1.0, - "content": "and m?", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 491, - 368, - 536, - 382 - ], - "lines": [ - { - "bbox": [ - 491, - 368, - 536, - 382 - ], - "spans": [ - { - "bbox": [ - 491, - 368, - 536, - 382 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "text", - "bbox": [ - 87, - 396, - 328, - 505 - ], - "lines": [ - { - "bbox": [ - 143, - 398, - 147, - 403 - ], - "spans": [ - { - "bbox": [ - 143, - 398, - 147, - 403 - ], - "score": 1.0, - "content": "1", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 91, - 405, - 149, - 419 - ], - "spans": [ - { - "bbox": [ - 91, - 405, - 149, - 419 - ], - "score": 1.0, - "content": "A f ∝ m 2", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 89, - 431, - 319, - 447 - ], - "spans": [ - { - "bbox": [ - 89, - 431, - 105, - 447 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 106, - 431, - 152, - 447 - ], - "score": 0.34, - "content": "f\\propto m^{-2}", - "type": "inline_equation", - "height": 16, - "width": 46 - }, - { - "bbox": [ - 152, - 431, - 154, - 447 - ], - "score": 1.0, - "content": " ", - "type": "text" - }, - { - "bbox": [ - 308, - 435, - 319, - 440 - ], - "score": 0.63, - "content": "\\smile", - "type": "inline_equation", - "height": 5, - "width": 11 - } - ], - "index": 16 - }, - { - "bbox": [ - 137, - 453, - 144, - 462 - ], - "spans": [ - { - "bbox": [ - 137, - 453, - 144, - 462 - ], - "score": 1.0, - "content": "1", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 90, - 460, - 319, - 476 - ], - "spans": [ - { - "bbox": [ - 90, - 460, - 145, - 476 - ], - "score": 1.0, - "content": "C f ∝ m2", - "type": "text" - }, - { - "bbox": [ - 308, - 464, - 319, - 468 - ], - "score": 0.76, - "content": "\\smile", - "type": "inline_equation", - "height": 4, - "width": 11 - } - ], - "index": 18 - }, - { - "bbox": [ - 90, - 487, - 319, - 504 - ], - "spans": [ - { - "bbox": [ - 90, - 488, - 105, - 503 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 106, - 487, - 148, - 504 - ], - "score": 0.36, - "content": "f\\propto m^{2}", - "type": "inline_equation", - "height": 17, - "width": 42 - }, - { - "bbox": [ - 308, - 492, - 319, - 496 - ], - "score": 0.75, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 4, - "width": 11 - } - ], - "index": 19 - } - ], - "index": 16.5 - }, - { - "type": "text", - "bbox": [ - 206, - 583, - 372, - 597 - ], - "lines": [ - { - "bbox": [ - 208, - 584, - 371, - 596 - ], - "spans": [ - { - "bbox": [ - 208, - 584, - 371, - 596 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 20 - } - ], - "layout_bboxes": [], - "page_idx": 32, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 298, - 177, - 328, - 281 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 298, - 177, - 328, - 281 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 298, - 177, - 328, - 281 - ], - "spans": [ - { - "bbox": [ - 298, - 177, - 328, - 281 - ], - "score": 0.53, - "type": "image", - "image_path": "b2edc2a2a00f86f4bd4d91426ee61a95d5babe2e34416d17a60a156b3d6ed111.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 298, - 177, - 328, - 281 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 8 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 783 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 58, - 814, - 81, - 826 - ], - "spans": [ - { - "bbox": [ - 58, - 814, - 81, - 826 - ], - "score": 0.8051392436027527, - "content": "3 3", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 82, - 82 - ], - "lines": [ - { - "bbox": [ - 50, - 68, - 77, - 79 - ], - "spans": [ - { - "bbox": [ - 50, - 68, - 62, - 79 - ], - "score": 1.0, - "content": "3 ", - "type": "text" - }, - { - "bbox": [ - 65, - 69, - 77, - 79 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 40 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "33 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 569, - 0, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 310, - 82, - 327 - ], - "lines": [ - { - "bbox": [ - 46, - 313, - 80, - 326 - ], - "spans": [ - { - "bbox": [ - 46, - 313, - 80, - 326 - ], - "score": 1.0, - "content": "3 1 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "list", - "bbox": [ - 90, - 68, - 403, - 95 - ], - "lines": [ - { - "bbox": [ - 92, - 69, - 401, - 80 - ], - "spans": [ - { - "bbox": [ - 92, - 69, - 401, - 80 - ], - "score": 1.0, - "content": "Two pendulums A and B oscillate with simple harmonic motion.", - "type": "text" - } - ], - "index": 0, - "is_list_end_line": true - }, - { - "bbox": [ - 92, - 82, - 401, - 94 - ], - "spans": [ - { - "bbox": [ - 92, - 83, - 368, - 94 - ], - "score": 1.0, - "content": "The time period of A is 2.00 s and the time period of B is", - "type": "text" - }, - { - "bbox": [ - 369, - 82, - 399, - 94 - ], - "score": 0.28, - "content": "1.98\\mathrm{s}", - "type": "inline_equation", - "height": 12, - "width": 30 - }, - { - "bbox": [ - 399, - 83, - 401, - 94 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 1, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 0.5, - "page_num": "page_32", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 69, - 401, - 94 - ] - }, - { - "type": "text", - "bbox": [ - 92, - 107, - 246, - 122 - ], - "lines": [ - { - "bbox": [ - 92, - 109, - 244, - 120 - ], - "spans": [ - { - "bbox": [ - 92, - 109, - 244, - 120 - ], - "score": 1.0, - "content": "A and B are released in phase.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_32", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 109, - 244, - 120 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 133, - 453, - 147 - ], - "lines": [ - { - "bbox": [ - 92, - 134, - 452, - 146 - ], - "spans": [ - { - "bbox": [ - 92, - 134, - 452, - 146 - ], - "score": 1.0, - "content": "What is the number of oscillations of A before A and B are next in phase?", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_32", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 134, - 452, - 146 - ] - }, - { - "type": "text", - "bbox": [ - 491, - 147, - 536, - 161 - ], - "lines": [ - { - "bbox": [ - 491, - 147, - 536, - 161 - ], - "spans": [ - { - "bbox": [ - 491, - 147, - 536, - 161 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_32", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 147, - 536, - 161 - ] - }, - { - "type": "index", - "bbox": [ - 90, - 179, - 127, - 278 - ], - "lines": [ - { - "bbox": [ - 90, - 180, - 121, - 194 - ], - "spans": [ - { - "bbox": [ - 90, - 180, - 121, - 194 - ], - "score": 1.0, - "content": "A 49 ", - "type": "text" - } - ], - "index": 5, - "is_list_start_line": true - }, - { - "bbox": [ - 90, - 209, - 121, - 222 - ], - "spans": [ - { - "bbox": [ - 90, - 209, - 121, - 222 - ], - "score": 1.0, - "content": "B 50 ", - "type": "text" - } - ], - "index": 6, - "is_list_start_line": true - }, - { - "bbox": [ - 90, - 237, - 121, - 251 - ], - "spans": [ - { - "bbox": [ - 90, - 237, - 121, - 251 - ], - "score": 1.0, - "content": "C 99 ", - "type": "text" - } - ], - "index": 7, - "is_list_start_line": true - }, - { - "bbox": [ - 90, - 266, - 126, - 278 - ], - "spans": [ - { - "bbox": [ - 90, - 266, - 126, - 278 - ], - "score": 1.0, - "content": "D 100", - "type": "text" - } - ], - "index": 9, - "is_list_start_line": true - } - ], - "index": 6.5, - "page_num": "page_32", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 90, - 180, - 126, - 278 - ] - }, - { - "type": "image", - "bbox": [ - 298, - 177, - 328, - 281 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 298, - 177, - 328, - 281 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 298, - 177, - 328, - 281 - ], - "spans": [ - { - "bbox": [ - 298, - 177, - 328, - 281 - ], - "score": 0.53, - "type": "image", - "image_path": "b2edc2a2a00f86f4bd4d91426ee61a95d5babe2e34416d17a60a156b3d6ed111.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 298, - 177, - 328, - 281 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 8, - "page_num": "page_32", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 43, - 313, - 535, - 341 - ], - "lines": [ - { - "bbox": [ - 89, - 313, - 534, - 330 - ], - "spans": [ - { - "bbox": [ - 89, - 313, - 330, - 330 - ], - "score": 1.0, - "content": "The frequency of oscillation of a vertical spring is", - "type": "text" - }, - { - "bbox": [ - 330, - 315, - 338, - 328 - ], - "score": 0.65, - "content": "f", - "type": "inline_equation", - "height": 13, - "width": 8 - }, - { - "bbox": [ - 339, - 313, - 534, - 330 - ], - "score": 1.0, - "content": "when the mass hanging from the spring ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 90, - 329, - 117, - 341 - ], - "spans": [ - { - "bbox": [ - 90, - 329, - 117, - 341 - ], - "score": 1.0, - "content": "is m. ", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5, - "page_num": "page_32", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 89, - 313, - 534, - 341 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 354, - 299, - 368 - ], - "lines": [ - { - "bbox": [ - 91, - 354, - 298, - 368 - ], - "spans": [ - { - "bbox": [ - 91, - 354, - 251, - 368 - ], - "score": 1.0, - "content": "What is the relationship between", - "type": "text" - }, - { - "bbox": [ - 252, - 355, - 260, - 368 - ], - "score": 0.74, - "content": "f", - "type": "inline_equation", - "height": 13, - "width": 8 - }, - { - "bbox": [ - 260, - 354, - 298, - 368 - ], - "score": 1.0, - "content": "and m?", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_32", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 354, - 298, - 368 - ] - }, - { - "type": "text", - "bbox": [ - 491, - 368, - 536, - 382 - ], - "lines": [ - { - "bbox": [ - 491, - 368, - 536, - 382 - ], - "spans": [ - { - "bbox": [ - 491, - 368, - 536, - 382 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_32", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 368, - 536, - 382 - ] - }, - { - "type": "list", - "bbox": [ - 87, - 396, - 328, - 505 - ], - "lines": [ - { - "bbox": [ - 143, - 398, - 147, - 403 - ], - "spans": [ - { - "bbox": [ - 143, - 398, - 147, - 403 - ], - "score": 1.0, - "content": "1", - "type": "text" - } - ], - "index": 14, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 405, - 149, - 419 - ], - "spans": [ - { - "bbox": [ - 91, - 405, - 149, - 419 - ], - "score": 1.0, - "content": "A f ∝ m 2", - "type": "text" - } - ], - "index": 15, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 89, - 431, - 319, - 447 - ], - "spans": [ - { - "bbox": [ - 89, - 431, - 105, - 447 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 106, - 431, - 152, - 447 - ], - "score": 0.34, - "content": "f\\propto m^{-2}", - "type": "inline_equation", - "height": 16, - "width": 46 - }, - { - "bbox": [ - 152, - 431, - 154, - 447 - ], - "score": 1.0, - "content": " ", - "type": "text" - }, - { - "bbox": [ - 308, - 435, - 319, - 440 - ], - "score": 0.63, - "content": "\\smile", - "type": "inline_equation", - "height": 5, - "width": 11 - } - ], - "index": 16, - "is_list_start_line": true - }, - { - "bbox": [ - 137, - 453, - 144, - 462 - ], - "spans": [ - { - "bbox": [ - 137, - 453, - 144, - 462 - ], - "score": 1.0, - "content": "1", - "type": "text" - } - ], - "index": 17, - "is_list_end_line": true - }, - { - "bbox": [ - 90, - 460, - 319, - 476 - ], - "spans": [ - { - "bbox": [ - 90, - 460, - 145, - 476 - ], - "score": 1.0, - "content": "C f ∝ m2", - "type": "text" - }, - { - "bbox": [ - 308, - 464, - 319, - 468 - ], - "score": 0.76, - "content": "\\smile", - "type": "inline_equation", - "height": 4, - "width": 11 - } - ], - "index": 18, - "is_list_start_line": true - }, - { - "bbox": [ - 90, - 487, - 319, - 504 - ], - "spans": [ - { - "bbox": [ - 90, - 488, - 105, - 503 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 106, - 487, - 148, - 504 - ], - "score": 0.36, - "content": "f\\propto m^{2}", - "type": "inline_equation", - "height": 17, - "width": 42 - }, - { - "bbox": [ - 308, - 492, - 319, - 496 - ], - "score": 0.75, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 4, - "width": 11 - } - ], - "index": 19, - "is_list_start_line": true - } - ], - "index": 16.5, - "page_num": "page_32", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 89, - 398, - 319, - 504 - ] - }, - { - "type": "text", - "bbox": [ - 206, - 583, - 372, - 597 - ], - "lines": [ - { - "bbox": [ - 208, - 584, - 371, - 596 - ], - "spans": [ - { - "bbox": [ - 208, - 584, - 371, - 596 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 20, - "page_num": "page_32", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 208, - 584, - 371, - 596 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 90, - 68, - 532, - 109 - ], - "lines": [ - { - "bbox": [ - 92, - 70, - 531, - 82 - ], - "spans": [ - { - "bbox": [ - 92, - 70, - 447, - 82 - ], - "score": 1.0, - "content": "A metal panel is driven to vibrate at different frequencies. The amplitude", - "type": "text" - }, - { - "bbox": [ - 447, - 71, - 456, - 80 - ], - "score": 0.64, - "content": "a", - "type": "inline_equation", - "height": 9, - "width": 9 - }, - { - "bbox": [ - 456, - 70, - 531, - 82 - ], - "score": 1.0, - "content": " of the vibration", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 90, - 82, - 519, - 96 - ], - "spans": [ - { - "bbox": [ - 90, - 82, - 519, - 96 - ], - "score": 1.0, - "content": "is measured at each frequency. The graph shows the variation of amplitude with driven", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 90, - 94, - 145, - 110 - ], - "spans": [ - { - "bbox": [ - 90, - 94, - 145, - 110 - ], - "score": 1.0, - "content": "frequency.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1 - }, - { - "type": "image", - "bbox": [ - 167, - 119, - 412, - 330 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 167, - 119, - 412, - 330 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 167, - 119, - 412, - 330 - ], - "spans": [ - { - "bbox": [ - 167, - 119, - 412, - 330 - ], - "score": 0.965, - "type": "image", - "image_path": "201f1959d2f8348670644b70641547d3247582cc72191f18d312acedc401a130.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 167, - 119, - 412, - 133.5 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 167, - 133.5, - 412, - 148.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 167, - 148.0, - 412, - 162.5 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 167, - 162.5, - 412, - 177.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 167, - 177.0, - 412, - 191.5 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 167, - 191.5, - 412, - 206.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 167, - 206.0, - 412, - 220.5 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 167, - 220.5, - 412, - 235.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 167, - 235.0, - 412, - 249.5 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 167, - 249.5, - 412, - 264.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 167, - 264.0, - 412, - 278.5 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 167, - 278.5, - 412, - 293.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 167, - 293.0, - 412, - 307.5 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 167, - 307.5, - 412, - 322.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 167, - 322.0, - 412, - 336.5 - ], - "spans": [], - "index": 17 - } - ] - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 91, - 355, - 507, - 369 - ], - "lines": [ - { - "bbox": [ - 91, - 356, - 507, - 370 - ], - "spans": [ - { - "bbox": [ - 91, - 356, - 507, - 370 - ], - "score": 1.0, - "content": "The damping of the metal panel is increased without changing the mass of the panel.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18 - }, - { - "type": "text", - "bbox": [ - 91, - 381, - 528, - 408 - ], - "lines": [ - { - "bbox": [ - 91, - 381, - 528, - 396 - ], - "spans": [ - { - "bbox": [ - 91, - 381, - 371, - 396 - ], - "score": 1.0, - "content": "Which graph on the opposite page shows the variation of", - "type": "text" - }, - { - "bbox": [ - 371, - 384, - 379, - 393 - ], - "score": 0.32, - "content": "a", - "type": "inline_equation", - "height": 9, - "width": 8 - }, - { - "bbox": [ - 379, - 381, - 528, - 396 - ], - "score": 1.0, - "content": " with frequency with increased ", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 91, - 395, - 143, - 411 - ], - "spans": [ - { - "bbox": [ - 91, - 395, - 143, - 411 - ], - "score": 1.0, - "content": "damping? ", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 19.5 - } - ], - "layout_bboxes": [], - "page_idx": 33, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 167, - 119, - 412, - 330 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 167, - 119, - 412, - 330 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 167, - 119, - 412, - 330 - ], - "spans": [ - { - "bbox": [ - 167, - 119, - 412, - 330 - ], - "score": 0.965, - "type": "image", - "image_path": "201f1959d2f8348670644b70641547d3247582cc72191f18d312acedc401a130.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 167, - 119, - 412, - 133.5 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 167, - 133.5, - 412, - 148.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 167, - 148.0, - 412, - 162.5 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 167, - 162.5, - 412, - 177.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 167, - 177.0, - 412, - 191.5 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 167, - 191.5, - 412, - 206.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 167, - 206.0, - 412, - 220.5 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 167, - 220.5, - 412, - 235.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 167, - 235.0, - 412, - 249.5 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 167, - 249.5, - 412, - 264.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 167, - 264.0, - 412, - 278.5 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 167, - 278.5, - 412, - 293.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 167, - 293.0, - 412, - 307.5 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 167, - 307.5, - 412, - 322.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 167, - 322.0, - 412, - 336.5 - ], - "spans": [], - "index": 17 - } - ] - } - ], - "index": 10 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 584, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 824 - ], - "lines": [ - { - "bbox": [ - 59, - 815, - 81, - 825 - ], - "spans": [ - { - "bbox": [ - 59, - 815, - 81, - 825 - ], - "score": 0.962070882320404, - "content": "3 4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 295, - 39 - ], - "lines": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "34 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 81, - 82 - ], - "lines": [ - { - "bbox": [ - 50, - 68, - 78, - 80 - ], - "spans": [ - { - "bbox": [ - 50, - 68, - 64, - 80 - ], - "score": 1.0, - "content": "3 ", - "type": "text" - }, - { - "bbox": [ - 64, - 68, - 78, - 80 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 0, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 0.9991323947906494, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 491, - 408, - 535, - 422 - ], - "lines": [ - { - "bbox": [ - 491, - 407, - 536, - 423 - ], - "spans": [ - { - "bbox": [ - 491, - 407, - 536, - 423 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 90, - 68, - 532, - 109 - ], - "lines": [ - { - "bbox": [ - 92, - 70, - 531, - 82 - ], - "spans": [ - { - "bbox": [ - 92, - 70, - 447, - 82 - ], - "score": 1.0, - "content": "A metal panel is driven to vibrate at different frequencies. The amplitude", - "type": "text" - }, - { - "bbox": [ - 447, - 71, - 456, - 80 - ], - "score": 0.64, - "content": "a", - "type": "inline_equation", - "height": 9, - "width": 9 - }, - { - "bbox": [ - 456, - 70, - 531, - 82 - ], - "score": 1.0, - "content": " of the vibration", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 90, - 82, - 519, - 96 - ], - "spans": [ - { - "bbox": [ - 90, - 82, - 519, - 96 - ], - "score": 1.0, - "content": "is measured at each frequency. The graph shows the variation of amplitude with driven", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 90, - 94, - 145, - 110 - ], - "spans": [ - { - "bbox": [ - 90, - 94, - 145, - 110 - ], - "score": 1.0, - "content": "frequency.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1, - "page_num": "page_33", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 90, - 70, - 531, - 110 - ] - }, - { - "type": "image", - "bbox": [ - 167, - 119, - 412, - 330 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 167, - 119, - 412, - 330 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 167, - 119, - 412, - 330 - ], - "spans": [ - { - "bbox": [ - 167, - 119, - 412, - 330 - ], - "score": 0.965, - "type": "image", - "image_path": "201f1959d2f8348670644b70641547d3247582cc72191f18d312acedc401a130.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 167, - 119, - 412, - 133.5 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 167, - 133.5, - 412, - 148.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 167, - 148.0, - 412, - 162.5 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 167, - 162.5, - 412, - 177.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 167, - 177.0, - 412, - 191.5 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 167, - 191.5, - 412, - 206.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 167, - 206.0, - 412, - 220.5 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 167, - 220.5, - 412, - 235.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 167, - 235.0, - 412, - 249.5 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 167, - 249.5, - 412, - 264.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 167, - 264.0, - 412, - 278.5 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 167, - 278.5, - 412, - 293.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 167, - 293.0, - 412, - 307.5 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 167, - 307.5, - 412, - 322.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 167, - 322.0, - 412, - 336.5 - ], - "spans": [], - "index": 17 - } - ] - } - ], - "index": 10, - "page_num": "page_33", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 355, - 507, - 369 - ], - "lines": [ - { - "bbox": [ - 91, - 356, - 507, - 370 - ], - "spans": [ - { - "bbox": [ - 91, - 356, - 507, - 370 - ], - "score": 1.0, - "content": "The damping of the metal panel is increased without changing the mass of the panel.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18, - "page_num": "page_33", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 356, - 507, - 370 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 381, - 528, - 408 - ], - "lines": [ - { - "bbox": [ - 91, - 381, - 528, - 396 - ], - "spans": [ - { - "bbox": [ - 91, - 381, - 371, - 396 - ], - "score": 1.0, - "content": "Which graph on the opposite page shows the variation of", - "type": "text" - }, - { - "bbox": [ - 371, - 384, - 379, - 393 - ], - "score": 0.32, - "content": "a", - "type": "inline_equation", - "height": 9, - "width": 8 - }, - { - "bbox": [ - 379, - 381, - 528, - 396 - ], - "score": 1.0, - "content": " with frequency with increased ", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 91, - 395, - 143, - 411 - ], - "spans": [ - { - "bbox": [ - 91, - 395, - 143, - 411 - ], - "score": 1.0, - "content": "damping? ", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 19.5, - "page_num": "page_33", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 381, - 528, - 411 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "image", - "bbox": [ - 42, - 58, - 535, - 590 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 42, - 58, - 535, - 590 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 42, - 58, - 535, - 590 - ], - "spans": [ - { - "bbox": [ - 42, - 58, - 535, - 590 - ], - "score": 0.928, - "type": "image", - "image_path": "a6170c918ad88811d00ba23894b2ca436ccb90514531f171d45402df961e14f3.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 42, - 58, - 535, - 235.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 42, - 235.33333333333334, - 535, - 412.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 42, - 412.6666666666667, - 535, - 590.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 89, - 609, - 161, - 713 - ], - "lines": [ - { - "bbox": [ - 91, - 613, - 102, - 625 - ], - "spans": [ - { - "bbox": [ - 91, - 613, - 102, - 625 - ], - "score": 1.0, - "content": "A", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 91, - 641, - 152, - 654 - ], - "spans": [ - { - "bbox": [ - 91, - 641, - 102, - 654 - ], - "score": 1.0, - "content": "B", - "type": "text" - }, - { - "bbox": [ - 140, - 646, - 152, - 651 - ], - "score": 0.32, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 5, - "width": 12 - } - ], - "index": 4 - }, - { - "bbox": [ - 90, - 669, - 152, - 683 - ], - "spans": [ - { - "bbox": [ - 90, - 669, - 103, - 683 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 140, - 674, - 152, - 679 - ], - "score": 0.34, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 5, - "width": 12 - } - ], - "index": 5 - }, - { - "bbox": [ - 90, - 698, - 103, - 711 - ], - "spans": [ - { - "bbox": [ - 90, - 698, - 103, - 711 - ], - "score": 1.0, - "content": "D ", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 4.5 - } - ], - "layout_bboxes": [], - "page_idx": 34, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 42, - 58, - 535, - 590 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 42, - 58, - 535, - 590 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 42, - 58, - 535, - 590 - ], - "spans": [ - { - "bbox": [ - 42, - 58, - 535, - 590 - ], - "score": 0.928, - "type": "image", - "image_path": "a6170c918ad88811d00ba23894b2ca436ccb90514531f171d45402df961e14f3.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 42, - 58, - 535, - 235.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 42, - 235.33333333333334, - 535, - 412.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 42, - 412.6666666666667, - 535, - 590.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 42, - 786, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 58, - 814, - 81, - 826 - ], - "spans": [ - { - "bbox": [ - 58, - 814, - 81, - 826 - ], - "score": 0.8332378268241882, - "content": "3\"5", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 544, - 52, - 583, - 76 - ], - "lines": [ - { - "bbox": [ - 545, - 52, - 583, - 61 - ], - "spans": [ - { - "bbox": [ - 545, - 52, - 583, - 61 - ], - "score": 1.0, - "content": "Do not write", - "type": "text" - } - ] - }, - { - "bbox": [ - 546, - 61, - 583, - 69 - ], - "spans": [ - { - "bbox": [ - 546, - 61, - 583, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 556, - 68, - 572, - 77 - ], - "spans": [ - { - "bbox": [ - 556, - 68, - 572, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 27, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 27, - 298, - 42 - ], - "score": 1.0, - "content": "35 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 230, - 730, - 349, - 744 - ], - "lines": [ - { - "bbox": [ - 231, - 731, - 347, - 743 - ], - "spans": [ - { - "bbox": [ - 231, - 731, - 347, - 743 - ], - "score": 1.0, - "content": "END OF QUESTIONS", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "image", - "bbox": [ - 42, - 58, - 535, - 590 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 42, - 58, - 535, - 590 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 42, - 58, - 535, - 590 - ], - "spans": [ - { - "bbox": [ - 42, - 58, - 535, - 590 - ], - "score": 0.928, - "type": "image", - "image_path": "a6170c918ad88811d00ba23894b2ca436ccb90514531f171d45402df961e14f3.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 42, - 58, - 535, - 235.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 42, - 235.33333333333334, - 535, - 412.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 42, - 412.6666666666667, - 535, - 590.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_34", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 89, - 609, - 161, - 713 - ], - "lines": [ - { - "bbox": [ - 91, - 613, - 102, - 625 - ], - "spans": [ - { - "bbox": [ - 91, - 613, - 102, - 625 - ], - "score": 1.0, - "content": "A", - "type": "text" - } - ], - "index": 3, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 641, - 152, - 654 - ], - "spans": [ - { - "bbox": [ - 91, - 641, - 102, - 654 - ], - "score": 1.0, - "content": "B", - "type": "text" - }, - { - "bbox": [ - 140, - 646, - 152, - 651 - ], - "score": 0.32, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 5, - "width": 12 - } - ], - "index": 4, - "is_list_start_line": true - }, - { - "bbox": [ - 90, - 669, - 152, - 683 - ], - "spans": [ - { - "bbox": [ - 90, - 669, - 103, - 683 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 140, - 674, - 152, - 679 - ], - "score": 0.34, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 5, - "width": 12 - } - ], - "index": 5 - }, - { - "bbox": [ - 90, - 698, - 103, - 711 - ], - "spans": [ - { - "bbox": [ - 90, - 698, - 103, - 711 - ], - "score": 1.0, - "content": "D ", - "type": "text" - } - ], - "index": 6, - "is_list_end_line": true - } - ], - "index": 4.5, - "page_num": "page_34", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 90, - 613, - 152, - 711 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "image", - "bbox": [ - 36, - 54, - 540, - 768 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 36, - 54, - 540, - 768 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 36, - 54, - 540, - 768 - ], - "spans": [ - { - "bbox": [ - 36, - 54, - 540, - 768 - ], - "score": 0.564, - "type": "image", - "image_path": "5cd0702bdc366f5fc7c168eba29229f73b51ca7707aa7f1acb56491fc04ba792.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 36, - 54, - 540, - 292.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 36, - 292.0, - 540, - 530.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 36, - 530.0, - 540, - 768.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 35, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 36, - 54, - 540, - 768 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 36, - 54, - 540, - 768 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 36, - 54, - 540, - 768 - ], - "spans": [ - { - "bbox": [ - 36, - 54, - 540, - 768 - ], - "score": 0.564, - "type": "image", - "image_path": "5cd0702bdc366f5fc7c168eba29229f73b51ca7707aa7f1acb56491fc04ba792.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 36, - 54, - 540, - 292.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 36, - 292.0, - 540, - 530.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 36, - 530.0, - 540, - 768.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 42, - 786, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 58, - 813, - 81, - 826 - ], - "spans": [ - { - "bbox": [ - 58, - 813, - 81, - 826 - ], - "score": 0.8501489162445068, - "content": "3\"6", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "36 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "image", - "bbox": [ - 36, - 54, - 540, - 768 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 36, - 54, - 540, - 768 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 36, - 54, - 540, - 768 - ], - "spans": [ - { - "bbox": [ - 36, - 54, - 540, - 768 - ], - "score": 0.564, - "type": "image", - "image_path": "5cd0702bdc366f5fc7c168eba29229f73b51ca7707aa7f1acb56491fc04ba792.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 36, - 54, - 540, - 292.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 36, - 292.0, - 540, - 530.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 36, - 530.0, - 540, - 768.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_35", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 47, - 64, - 528, - 744 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 64, - 528, - 744 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 47, - 64, - 528, - 744 - ], - "spans": [ - { - "bbox": [ - 47, - 64, - 528, - 744 - ], - "score": 0.953, - "html": "
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
", - "type": "table", - "image_path": "db22b44bd39f12e148b3f3fb24796dac867d480b6e05301c5b425486067b70a0.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 47, - 64, - 528, - 290.66666666666663 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 47, - 290.66666666666663, - 528, - 517.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 47, - 517.3333333333333, - 528, - 743.9999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 36, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 47, - 64, - 528, - 744 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 64, - 528, - 744 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 47, - 64, - 528, - 744 - ], - "spans": [ - { - "bbox": [ - 47, - 64, - 528, - 744 - ], - "score": 0.953, - "html": "
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
", - "type": "table", - "image_path": "db22b44bd39f12e148b3f3fb24796dac867d480b6e05301c5b425486067b70a0.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 47, - 64, - 528, - 290.66666666666663 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 47, - 290.66666666666663, - 528, - 517.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 47, - 517.3333333333333, - 528, - 743.9999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 42, - 786, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 59, - 815, - 79, - 825 - ], - "spans": [ - { - "bbox": [ - 59, - 815, - 79, - 825 - ], - "score": 0.9467996954917908, - "content": "3 7", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 540, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 540, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 295, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 297, - 41 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 297, - 41 - ], - "score": 1.0, - "content": "37 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 0.9991323947906494, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 544, - 52, - 583, - 76 - ], - "lines": [ - { - "bbox": [ - 545, - 52, - 583, - 61 - ], - "spans": [ - { - "bbox": [ - 545, - 52, - 583, - 61 - ], - "score": 1.0, - "content": "Do not write", - "type": "text" - } - ] - }, - { - "bbox": [ - 546, - 61, - 583, - 69 - ], - "spans": [ - { - "bbox": [ - 546, - 61, - 583, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 556, - 68, - 572, - 77 - ], - "spans": [ - { - "bbox": [ - 556, - 68, - 572, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 47, - 64, - 528, - 744 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 64, - 528, - 744 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 47, - 64, - 528, - 744 - ], - "spans": [ - { - "bbox": [ - 47, - 64, - 528, - 744 - ], - "score": 0.953, - "html": "
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
", - "type": "table", - "image_path": "db22b44bd39f12e148b3f3fb24796dac867d480b6e05301c5b425486067b70a0.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 47, - 64, - 528, - 290.66666666666663 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 47, - 290.66666666666663, - 528, - 517.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 47, - 517.3333333333333, - 528, - 743.9999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_36", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 47, - 64, - 528, - 744 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 64, - 528, - 744 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 47, - 64, - 528, - 744 - ], - "spans": [ - { - "bbox": [ - 47, - 64, - 528, - 744 - ], - "score": 0.951, - "html": "
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
", - "type": "table", - "image_path": "6ab34b205e9aaaee2efc6b2e1859b1d6c8ab157414588aec02126af39a42b95c.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 47, - 64, - 528, - 290.66666666666663 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 47, - 290.66666666666663, - 528, - 517.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 47, - 517.3333333333333, - 528, - 743.9999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 37, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 47, - 64, - 528, - 744 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 64, - 528, - 744 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 47, - 64, - 528, - 744 - ], - "spans": [ - { - "bbox": [ - 47, - 64, - 528, - 744 - ], - "score": 0.951, - "html": "
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
", - "type": "table", - "image_path": "6ab34b205e9aaaee2efc6b2e1859b1d6c8ab157414588aec02126af39a42b95c.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 47, - 64, - 528, - 290.66666666666663 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 47, - 290.66666666666663, - 528, - 517.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 47, - 517.3333333333333, - 528, - 743.9999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 42, - 786, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 58, - 814, - 81, - 826 - ], - "spans": [ - { - "bbox": [ - 58, - 814, - 81, - 826 - ], - "score": 0.8661027550697327, - "content": "3 8", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 540, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 540, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "38 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 47, - 64, - 528, - 744 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 64, - 528, - 744 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 47, - 64, - 528, - 744 - ], - "spans": [ - { - "bbox": [ - 47, - 64, - 528, - 744 - ], - "score": 0.951, - "html": "
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
", - "type": "table", - "image_path": "6ab34b205e9aaaee2efc6b2e1859b1d6c8ab157414588aec02126af39a42b95c.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 47, - 64, - 528, - 290.66666666666663 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 47, - 290.66666666666663, - 528, - 517.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 47, - 517.3333333333333, - 528, - 743.9999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_37", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 47, - 64, - 528, - 744 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 64, - 528, - 744 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 47, - 64, - 528, - 744 - ], - "spans": [ - { - "bbox": [ - 47, - 64, - 528, - 744 - ], - "score": 0.952, - "html": "
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
", - "type": "table", - "image_path": "cec4d7067800f674ca4048c0facede294d80c82a33a27099484a5b3517504db7.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 47, - 64, - 528, - 290.66666666666663 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 47, - 290.66666666666663, - 528, - 517.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 47, - 517.3333333333333, - 528, - 743.9999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 38, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 47, - 64, - 528, - 744 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 64, - 528, - 744 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 47, - 64, - 528, - 744 - ], - "spans": [ - { - "bbox": [ - 47, - 64, - 528, - 744 - ], - "score": 0.952, - "html": "
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
", - "type": "table", - "image_path": "cec4d7067800f674ca4048c0facede294d80c82a33a27099484a5b3517504db7.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 47, - 64, - 528, - 290.66666666666663 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 47, - 290.66666666666663, - 528, - 517.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 47, - 517.3333333333333, - 528, - 743.9999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 42, - 786, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 59, - 815, - 81, - 825 - ], - "spans": [ - { - "bbox": [ - 59, - 815, - 81, - 825 - ], - "score": 0.9677810072898865, - "content": "3 9", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 540, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 540, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 295, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "39 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 47, - 64, - 528, - 744 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 64, - 528, - 744 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 47, - 64, - 528, - 744 - ], - "spans": [ - { - "bbox": [ - 47, - 64, - 528, - 744 - ], - "score": 0.952, - "html": "
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
", - "type": "table", - "image_path": "cec4d7067800f674ca4048c0facede294d80c82a33a27099484a5b3517504db7.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 47, - 64, - 528, - 290.66666666666663 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 47, - 290.66666666666663, - 528, - 517.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 47, - 517.3333333333333, - 528, - 743.9999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_38", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 49, - 65, - 528, - 758 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 49, - 65, - 528, - 758 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 49, - 65, - 528, - 758 - ], - "spans": [ - { - "bbox": [ - 49, - 65, - 528, - 758 - ], - "score": 0.939, - "html": "
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
Copyrightinformation
For confidentiality purposes, acknowledgements of third-party copyright material are published in a separate booklet rather than including them onthe examinationpaperorsupport materials.Thisbooklet is published after eachexamination series and is availableforfreedownloadfromwww.aqa.org.ukaftertheliveexaminationseries. Permission to reproduce all copyright material hasbeen applied for. In some cases,efforts to contact copyright-holders may have
", - "type": "table", - "image_path": "84f7a6f3a80b387a1519775205d7a921757193312816f74cad954e6efbb3232b.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 49, - 65, - 528, - 296.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 49, - 296.0, - 528, - 527.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 49, - 527.0, - 528, - 758.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 39, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 49, - 65, - 528, - 758 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 49, - 65, - 528, - 758 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 49, - 65, - 528, - 758 - ], - "spans": [ - { - "bbox": [ - 49, - 65, - 528, - 758 - ], - "score": 0.939, - "html": "
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
Copyrightinformation
For confidentiality purposes, acknowledgements of third-party copyright material are published in a separate booklet rather than including them onthe examinationpaperorsupport materials.Thisbooklet is published after eachexamination series and is availableforfreedownloadfromwww.aqa.org.ukaftertheliveexaminationseries. Permission to reproduce all copyright material hasbeen applied for. In some cases,efforts to contact copyright-holders may have
", - "type": "table", - "image_path": "84f7a6f3a80b387a1519775205d7a921757193312816f74cad954e6efbb3232b.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 49, - 65, - 528, - 296.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 49, - 296.0, - 528, - 527.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 49, - 527.0, - 528, - 758.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 372, - 766, - 539, - 805 - ], - "lines": [ - { - "bbox": [ - 391, - 795, - 505, - 804 - ], - "spans": [ - { - "bbox": [ - 391, - 795, - 505, - 804 - ], - "score": 0.9798867702484131, - "content": "196A7408", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 60, - 816, - 80, - 825 - ], - "spans": [ - { - "bbox": [ - 60, - 816, - 80, - 825 - ], - "score": 0.9310181140899658, - "content": "4 0", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 51, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun19/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "40 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 14 - ], - "score": 0.9991536140441895, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 49, - 65, - 528, - 758 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 49, - 65, - 528, - 758 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 49, - 65, - 528, - 758 - ], - "spans": [ - { - "bbox": [ - 49, - 65, - 528, - 758 - ], - "score": 0.939, - "html": "
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
Copyrightinformation
For confidentiality purposes, acknowledgements of third-party copyright material are published in a separate booklet rather than including them onthe examinationpaperorsupport materials.Thisbooklet is published after eachexamination series and is availableforfreedownloadfromwww.aqa.org.ukaftertheliveexaminationseries. Permission to reproduce all copyright material hasbeen applied for. In some cases,efforts to contact copyright-holders may have
", - "type": "table", - "image_path": "84f7a6f3a80b387a1519775205d7a921757193312816f74cad954e6efbb3232b.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 49, - 65, - 528, - 296.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 49, - 296.0, - 528, - 527.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 49, - 527.0, - 528, - 758.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_39", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 56, - 115, - 235, - 129 - ], - "lines": [ - { - "bbox": [ - 56, - 116, - 234, - 129 - ], - "spans": [ - { - "bbox": [ - 56, - 116, - 234, - 129 - ], - "score": 1.0, - "content": "Please write clearly in block capitals.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "image", - "bbox": [ - 55, - 138, - 532, - 171 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 55, - 138, - 532, - 171 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 57, - 138, - 532, - 171 - ], - "spans": [ - { - "bbox": [ - 57, - 138, - 532, - 171 - ], - "score": 0.108, - "type": "image", - "image_path": "2dc6eb1feb9b638e506f876ed84f3e449e02d28e394081421b10c96570567031.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 55, - 138, - 532, - 149.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 55, - 149.0, - 532, - 160.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 55, - 160.0, - 532, - 171.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 47, - 185, - 533, - 268 - ], - "lines": [ - { - "bbox": [ - 55, - 186, - 103, - 201 - ], - "spans": [ - { - "bbox": [ - 55, - 186, - 103, - 201 - ], - "score": 1.0, - "content": "Surname ", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 55, - 211, - 121, - 227 - ], - "spans": [ - { - "bbox": [ - 55, - 211, - 121, - 227 - ], - "score": 1.0, - "content": "Forename(s)", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 55, - 238, - 156, - 253 - ], - "spans": [ - { - "bbox": [ - 55, - 238, - 156, - 253 - ], - "score": 1.0, - "content": "Candidate signature", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 164, - 251, - 298, - 266 - ], - "spans": [ - { - "bbox": [ - 164, - 251, - 298, - 266 - ], - "score": 1.0, - "content": "I declare this is my own work.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 5.5 - }, - { - "type": "title", - "bbox": [ - 39, - 285, - 148, - 348 - ], - "lines": [ - { - "bbox": [ - 40, - 287, - 126, - 311 - ], - "spans": [ - { - "bbox": [ - 40, - 287, - 126, - 311 - ], - "score": 1.0, - "content": "A-level", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 42, - 323, - 145, - 344 - ], - "spans": [ - { - "bbox": [ - 42, - 323, - 145, - 344 - ], - "score": 1.0, - "content": "PHYSICS", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8.5 - }, - { - "type": "text", - "bbox": [ - 40, - 358, - 95, - 376 - ], - "lines": [ - { - "bbox": [ - 39, - 358, - 96, - 376 - ], - "spans": [ - { - "bbox": [ - 39, - 358, - 96, - 376 - ], - "score": 1.0, - "content": "Paper 1", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "title", - "bbox": [ - 39, - 412, - 202, - 430 - ], - "lines": [ - { - "bbox": [ - 39, - 415, - 201, - 430 - ], - "spans": [ - { - "bbox": [ - 39, - 415, - 201, - 430 - ], - "score": 1.0, - "content": "Wednesday 24 May 2023", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "title", - "bbox": [ - 261, - 413, - 327, - 430 - ], - "lines": [ - { - "bbox": [ - 262, - 413, - 328, - 431 - ], - "spans": [ - { - "bbox": [ - 262, - 413, - 328, - 431 - ], - "score": 1.0, - "content": "Afternoon", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "title", - "bbox": [ - 401, - 413, - 546, - 430 - ], - "lines": [ - { - "bbox": [ - 402, - 415, - 544, - 428 - ], - "spans": [ - { - "bbox": [ - 402, - 415, - 544, - 428 - ], - "score": 1.0, - "content": "Time allowed: 2 hours", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "title", - "bbox": [ - 39, - 445, - 92, - 457 - ], - "lines": [ - { - "bbox": [ - 39, - 445, - 92, - 458 - ], - "spans": [ - { - "bbox": [ - 39, - 445, - 92, - 458 - ], - "score": 1.0, - "content": "Materials", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 39, - 460, - 186, - 473 - ], - "lines": [ - { - "bbox": [ - 39, - 460, - 186, - 472 - ], - "spans": [ - { - "bbox": [ - 39, - 460, - 186, - 472 - ], - "score": 1.0, - "content": "For this paper you must have:", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "text", - "bbox": [ - 38, - 473, - 196, - 525 - ], - "lines": [ - { - "bbox": [ - 42, - 474, - 145, - 484 - ], - "spans": [ - { - "bbox": [ - 42, - 474, - 145, - 484 - ], - "score": 1.0, - "content": "• a pencil and a ruler", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 43, - 487, - 153, - 498 - ], - "spans": [ - { - "bbox": [ - 43, - 487, - 153, - 498 - ], - "score": 1.0, - "content": " a scientific calculator", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 44, - 501, - 195, - 510 - ], - "spans": [ - { - "bbox": [ - 44, - 501, - 195, - 510 - ], - "score": 1.0, - "content": " a Data and Formulae Booklet", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 47, - 514, - 110, - 526 - ], - "spans": [ - { - "bbox": [ - 47, - 514, - 110, - 526 - ], - "score": 1.0, - "content": "a protractor.", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 17.5 - }, - { - "type": "title", - "bbox": [ - 38, - 536, - 109, - 548 - ], - "lines": [ - { - "bbox": [ - 38, - 536, - 109, - 548 - ], - "spans": [ - { - "bbox": [ - 38, - 536, - 109, - 548 - ], - "score": 1.0, - "content": "Instructions", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 20 - }, - { - "type": "table", - "bbox": [ - 443, - 449, - 545, - 629 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 443, - 449, - 545, - 629 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 443, - 449, - 545, - 629 - ], - "spans": [ - { - "bbox": [ - 443, - 449, - 545, - 629 - ], - "score": 0.968, - "html": "
For Examiner's Use
QuestionMark
1
2
3
4
5
9
7-31
TOTAL
", - "type": "table", - "image_path": "6d4b17f3897c2425b971603390f7397c8b021dbce7cc1b53711c7a4ab466afde.jpg" - } - ] - } - ], - "index": 21, - "virtual_lines": [ - { - "bbox": [ - 443, - 449, - 545, - 629 - ], - "spans": [], - "index": 21 - } - ] - } - ], - "index": 21 - }, - { - "type": "text", - "bbox": [ - 38, - 550, - 425, - 682 - ], - "lines": [ - { - "bbox": [ - 39, - 550, - 229, - 562 - ], - "spans": [ - { - "bbox": [ - 39, - 550, - 229, - 562 - ], - "score": 1.0, - "content": "• Use black ink or black ball-point pen.", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 40, - 563, - 238, - 576 - ], - "spans": [ - { - "bbox": [ - 40, - 563, - 238, - 576 - ], - "score": 1.0, - "content": "• Fill in the boxes at the top of this page.", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 41, - 577, - 157, - 589 - ], - "spans": [ - { - "bbox": [ - 41, - 577, - 157, - 589 - ], - "score": 1.0, - "content": "• Answer all questions.", - "type": "text" - } - ], - "index": 24 - }, - { - "bbox": [ - 42, - 590, - 385, - 602 - ], - "spans": [ - { - "bbox": [ - 42, - 590, - 385, - 602 - ], - "score": 1.0, - "content": "• You must answer the questions in the spaces provided. Do not write", - "type": "text" - } - ], - "index": 25 - }, - { - "bbox": [ - 49, - 603, - 310, - 616 - ], - "spans": [ - { - "bbox": [ - 49, - 603, - 310, - 616 - ], - "score": 1.0, - "content": "outside the box around each page or on blank pages.", - "type": "text" - } - ], - "index": 26 - }, - { - "bbox": [ - 47, - 617, - 424, - 629 - ], - "spans": [ - { - "bbox": [ - 47, - 617, - 424, - 629 - ], - "score": 1.0, - "content": "If you need extra space for your answer(s), use the lined pages at the end of", - "type": "text" - } - ], - "index": 27 - }, - { - "bbox": [ - 49, - 629, - 350, - 642 - ], - "spans": [ - { - "bbox": [ - 49, - 629, - 350, - 642 - ], - "score": 1.0, - "content": "this book. Write the question number against your answer(s).", - "type": "text" - } - ], - "index": 28 - }, - { - "bbox": [ - 40, - 642, - 403, - 655 - ], - "spans": [ - { - "bbox": [ - 40, - 642, - 403, - 655 - ], - "score": 1.0, - "content": "• Do all rough work in this book. Cross through any work you do not want ", - "type": "text" - } - ], - "index": 29 - }, - { - "bbox": [ - 50, - 656, - 118, - 668 - ], - "spans": [ - { - "bbox": [ - 50, - 656, - 118, - 668 - ], - "score": 1.0, - "content": "to be marked.", - "type": "text" - } - ], - "index": 30 - }, - { - "bbox": [ - 40, - 669, - 161, - 682 - ], - "spans": [ - { - "bbox": [ - 40, - 669, - 161, - 682 - ], - "score": 1.0, - "content": "• Show all your working.", - "type": "text" - } - ], - "index": 31 - } - ], - "index": 26.5 - }, - { - "type": "title", - "bbox": [ - 39, - 691, - 106, - 704 - ], - "lines": [ - { - "bbox": [ - 38, - 691, - 106, - 703 - ], - "spans": [ - { - "bbox": [ - 38, - 691, - 106, - 703 - ], - "score": 1.0, - "content": "Information", - "type": "text" - } - ], - "index": 32 - } - ], - "index": 32 - }, - { - "type": "text", - "bbox": [ - 38, - 705, - 370, - 759 - ], - "lines": [ - { - "bbox": [ - 43, - 706, - 282, - 717 - ], - "spans": [ - { - "bbox": [ - 43, - 706, - 282, - 717 - ], - "score": 1.0, - "content": " The marks for questions are shown in brackets.", - "type": "text" - } - ], - "index": 33 - }, - { - "bbox": [ - 42, - 718, - 245, - 732 - ], - "spans": [ - { - "bbox": [ - 42, - 718, - 245, - 732 - ], - "score": 1.0, - "content": "• The maximum mark for this paper is 85.", - "type": "text" - } - ], - "index": 34 - }, - { - "bbox": [ - 42, - 732, - 370, - 745 - ], - "spans": [ - { - "bbox": [ - 42, - 732, - 370, - 745 - ], - "score": 1.0, - "content": "• You are expected to use a scientific calculator where appropriate.", - "type": "text" - } - ], - "index": 35 - }, - { - "bbox": [ - 39, - 746, - 338, - 758 - ], - "spans": [ - { - "bbox": [ - 39, - 746, - 338, - 758 - ], - "score": 1.0, - "content": "• A Data and Formulae Booklet is provided as a loose insert.", - "type": "text" - } - ], - "index": 36 - } - ], - "index": 34.5 - } - ], - "layout_bboxes": [], - "page_idx": 40, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 55, - 138, - 532, - 171 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 55, - 138, - 532, - 171 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 57, - 138, - 532, - 171 - ], - "spans": [ - { - "bbox": [ - 57, - 138, - 532, - 171 - ], - "score": 0.108, - "type": "image", - "image_path": "2dc6eb1feb9b638e506f876ed84f3e449e02d28e394081421b10c96570567031.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 55, - 138, - 532, - 149.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 55, - 149.0, - 532, - 160.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 55, - 160.0, - 532, - 171.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - } - ], - "tables": [ - { - "type": "table", - "bbox": [ - 443, - 449, - 545, - 629 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 443, - 449, - 545, - 629 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 443, - 449, - 545, - 629 - ], - "spans": [ - { - "bbox": [ - 443, - 449, - 545, - 629 - ], - "score": 0.968, - "html": "
For Examiner's Use
QuestionMark
1
2
3
4
5
9
7-31
TOTAL
", - "type": "table", - "image_path": "6d4b17f3897c2425b971603390f7397c8b021dbce7cc1b53711c7a4ab466afde.jpg" - } - ] - } - ], - "index": 21, - "virtual_lines": [ - { - "bbox": [ - 443, - 449, - 545, - 629 - ], - "spans": [], - "index": 21 - } - ] - } - ], - "index": 21 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 316, - 818, - 363, - 827 - ], - "lines": [ - { - "bbox": [ - 316, - 818, - 364, - 827 - ], - "spans": [ - { - "bbox": [ - 316, - 818, - 364, - 827 - ], - "score": 1.0, - "content": "IB/M/Jun23/E8 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 40, - 787, - 234, - 826 - ], - "lines": [ - { - "bbox": [ - 57, - 815, - 214, - 825 - ], - "spans": [ - { - "bbox": [ - 57, - 815, - 214, - 825 - ], - "score": 0.9770538210868835, - "content": "JUN237408101", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 481, - 806, - 545, - 827 - ], - "lines": [ - { - "bbox": [ - 481, - 807, - 545, - 826 - ], - "spans": [ - { - "bbox": [ - 481, - 807, - 545, - 826 - ], - "score": 1.0, - "content": "7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "spans": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 37, - 43, - 169, - 92 - ], - "lines": [ - { - "bbox": [ - 33, - 45, - 175, - 94 - ], - "spans": [ - { - "bbox": [ - 33, - 45, - 175, - 94 - ], - "score": 0.9958717823028564, - "content": "AQA", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 56, - 115, - 235, - 129 - ], - "lines": [ - { - "bbox": [ - 56, - 116, - 234, - 129 - ], - "spans": [ - { - "bbox": [ - 56, - 116, - 234, - 129 - ], - "score": 1.0, - "content": "Please write clearly in block capitals.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_40", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 56, - 116, - 234, - 129 - ] - }, - { - "type": "image", - "bbox": [ - 55, - 138, - 532, - 171 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 55, - 138, - 532, - 171 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 57, - 138, - 532, - 171 - ], - "spans": [ - { - "bbox": [ - 57, - 138, - 532, - 171 - ], - "score": 0.108, - "type": "image", - "image_path": "2dc6eb1feb9b638e506f876ed84f3e449e02d28e394081421b10c96570567031.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 55, - 138, - 532, - 149.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 55, - 149.0, - 532, - 160.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 55, - 160.0, - 532, - 171.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2, - "page_num": "page_40", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 47, - 185, - 533, - 268 - ], - "lines": [ - { - "bbox": [ - 55, - 186, - 103, - 201 - ], - "spans": [ - { - "bbox": [ - 55, - 186, - 103, - 201 - ], - "score": 1.0, - "content": "Surname ", - "type": "text" - } - ], - "index": 4, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 55, - 211, - 121, - 227 - ], - "spans": [ - { - "bbox": [ - 55, - 211, - 121, - 227 - ], - "score": 1.0, - "content": "Forename(s)", - "type": "text" - } - ], - "index": 5, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 55, - 238, - 156, - 253 - ], - "spans": [ - { - "bbox": [ - 55, - 238, - 156, - 253 - ], - "score": 1.0, - "content": "Candidate signature", - "type": "text" - } - ], - "index": 6, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 164, - 251, - 298, - 266 - ], - "spans": [ - { - "bbox": [ - 164, - 251, - 298, - 266 - ], - "score": 1.0, - "content": "I declare this is my own work.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 5.5, - "page_num": "page_40", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 55, - 186, - 298, - 266 - ] - }, - { - "type": "title", - "bbox": [ - 39, - 285, - 148, - 348 - ], - "lines": [ - { - "bbox": [ - 40, - 287, - 126, - 311 - ], - "spans": [ - { - "bbox": [ - 40, - 287, - 126, - 311 - ], - "score": 1.0, - "content": "A-level", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 42, - 323, - 145, - 344 - ], - "spans": [ - { - "bbox": [ - 42, - 323, - 145, - 344 - ], - "score": 1.0, - "content": "PHYSICS", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8.5, - "page_num": "page_40", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 40, - 358, - 95, - 376 - ], - "lines": [ - { - "bbox": [ - 39, - 358, - 96, - 376 - ], - "spans": [ - { - "bbox": [ - 39, - 358, - 96, - 376 - ], - "score": 1.0, - "content": "Paper 1", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_40", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 39, - 358, - 96, - 376 - ] - }, - { - "type": "title", - "bbox": [ - 39, - 412, - 202, - 430 - ], - "lines": [ - { - "bbox": [ - 39, - 415, - 201, - 430 - ], - "spans": [ - { - "bbox": [ - 39, - 415, - 201, - 430 - ], - "score": 1.0, - "content": "Wednesday 24 May 2023", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_40", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 261, - 413, - 327, - 430 - ], - "lines": [ - { - "bbox": [ - 262, - 413, - 328, - 431 - ], - "spans": [ - { - "bbox": [ - 262, - 413, - 328, - 431 - ], - "score": 1.0, - "content": "Afternoon", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_40", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 401, - 413, - 546, - 430 - ], - "lines": [ - { - "bbox": [ - 402, - 415, - 544, - 428 - ], - "spans": [ - { - "bbox": [ - 402, - 415, - 544, - 428 - ], - "score": 1.0, - "content": "Time allowed: 2 hours", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_40", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 39, - 445, - 92, - 457 - ], - "lines": [ - { - "bbox": [ - 39, - 445, - 92, - 458 - ], - "spans": [ - { - "bbox": [ - 39, - 445, - 92, - 458 - ], - "score": 1.0, - "content": "Materials", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_40", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 39, - 460, - 186, - 473 - ], - "lines": [ - { - "bbox": [ - 39, - 460, - 186, - 472 - ], - "spans": [ - { - "bbox": [ - 39, - 460, - 186, - 472 - ], - "score": 1.0, - "content": "For this paper you must have:", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_40", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 39, - 460, - 186, - 472 - ] - }, - { - "type": "text", - "bbox": [ - 38, - 473, - 196, - 525 - ], - "lines": [ - { - "bbox": [ - 42, - 474, - 145, - 484 - ], - "spans": [ - { - "bbox": [ - 42, - 474, - 145, - 484 - ], - "score": 1.0, - "content": "• a pencil and a ruler", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 43, - 487, - 153, - 498 - ], - "spans": [ - { - "bbox": [ - 43, - 487, - 153, - 498 - ], - "score": 1.0, - "content": " a scientific calculator", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 44, - 501, - 195, - 510 - ], - "spans": [ - { - "bbox": [ - 44, - 501, - 195, - 510 - ], - "score": 1.0, - "content": " a Data and Formulae Booklet", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 47, - 514, - 110, - 526 - ], - "spans": [ - { - "bbox": [ - 47, - 514, - 110, - 526 - ], - "score": 1.0, - "content": "a protractor.", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 17.5, - "page_num": "page_40", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 474, - 195, - 526 - ] - }, - { - "type": "title", - "bbox": [ - 38, - 536, - 109, - 548 - ], - "lines": [ - { - "bbox": [ - 38, - 536, - 109, - 548 - ], - "spans": [ - { - "bbox": [ - 38, - 536, - 109, - 548 - ], - "score": 1.0, - "content": "Instructions", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 20, - "page_num": "page_40", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 443, - 449, - 545, - 629 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 443, - 449, - 545, - 629 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 443, - 449, - 545, - 629 - ], - "spans": [ - { - "bbox": [ - 443, - 449, - 545, - 629 - ], - "score": 0.968, - "html": "
For Examiner's Use
QuestionMark
1
2
3
4
5
9
7-31
TOTAL
", - "type": "table", - "image_path": "6d4b17f3897c2425b971603390f7397c8b021dbce7cc1b53711c7a4ab466afde.jpg" - } - ] - } - ], - "index": 21, - "virtual_lines": [ - { - "bbox": [ - 443, - 449, - 545, - 629 - ], - "spans": [], - "index": 21 - } - ] - } - ], - "index": 21, - "page_num": "page_40", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 38, - 550, - 425, - 682 - ], - "lines": [ - { - "bbox": [ - 39, - 550, - 229, - 562 - ], - "spans": [ - { - "bbox": [ - 39, - 550, - 229, - 562 - ], - "score": 1.0, - "content": "• Use black ink or black ball-point pen.", - "type": "text" - } - ], - "index": 22, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 40, - 563, - 238, - 576 - ], - "spans": [ - { - "bbox": [ - 40, - 563, - 238, - 576 - ], - "score": 1.0, - "content": "• Fill in the boxes at the top of this page.", - "type": "text" - } - ], - "index": 23, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 41, - 577, - 157, - 589 - ], - "spans": [ - { - "bbox": [ - 41, - 577, - 157, - 589 - ], - "score": 1.0, - "content": "• Answer all questions.", - "type": "text" - } - ], - "index": 24, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 42, - 590, - 385, - 602 - ], - "spans": [ - { - "bbox": [ - 42, - 590, - 385, - 602 - ], - "score": 1.0, - "content": "• You must answer the questions in the spaces provided. Do not write", - "type": "text" - } - ], - "index": 25, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 49, - 603, - 310, - 616 - ], - "spans": [ - { - "bbox": [ - 49, - 603, - 310, - 616 - ], - "score": 1.0, - "content": "outside the box around each page or on blank pages.", - "type": "text" - } - ], - "index": 26, - "is_list_end_line": true - }, - { - "bbox": [ - 47, - 617, - 424, - 629 - ], - "spans": [ - { - "bbox": [ - 47, - 617, - 424, - 629 - ], - "score": 1.0, - "content": "If you need extra space for your answer(s), use the lined pages at the end of", - "type": "text" - } - ], - "index": 27 - }, - { - "bbox": [ - 49, - 629, - 350, - 642 - ], - "spans": [ - { - "bbox": [ - 49, - 629, - 350, - 642 - ], - "score": 1.0, - "content": "this book. Write the question number against your answer(s).", - "type": "text" - } - ], - "index": 28, - "is_list_end_line": true - }, - { - "bbox": [ - 40, - 642, - 403, - 655 - ], - "spans": [ - { - "bbox": [ - 40, - 642, - 403, - 655 - ], - "score": 1.0, - "content": "• Do all rough work in this book. Cross through any work you do not want ", - "type": "text" - } - ], - "index": 29, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 50, - 656, - 118, - 668 - ], - "spans": [ - { - "bbox": [ - 50, - 656, - 118, - 668 - ], - "score": 1.0, - "content": "to be marked.", - "type": "text" - } - ], - "index": 30, - "is_list_end_line": true - }, - { - "bbox": [ - 40, - 669, - 161, - 682 - ], - "spans": [ - { - "bbox": [ - 40, - 669, - 161, - 682 - ], - "score": 1.0, - "content": "• Show all your working.", - "type": "text" - } - ], - "index": 31, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 26.5, - "page_num": "page_40", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 39, - 550, - 424, - 682 - ] - }, - { - "type": "title", - "bbox": [ - 39, - 691, - 106, - 704 - ], - "lines": [ - { - "bbox": [ - 38, - 691, - 106, - 703 - ], - "spans": [ - { - "bbox": [ - 38, - 691, - 106, - 703 - ], - "score": 1.0, - "content": "Information", - "type": "text" - } - ], - "index": 32 - } - ], - "index": 32, - "page_num": "page_40", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 38, - 705, - 370, - 759 - ], - "lines": [ - { - "bbox": [ - 43, - 706, - 282, - 717 - ], - "spans": [ - { - "bbox": [ - 43, - 706, - 282, - 717 - ], - "score": 1.0, - "content": " The marks for questions are shown in brackets.", - "type": "text" - } - ], - "index": 33, - "is_list_end_line": true - }, - { - "bbox": [ - 42, - 718, - 245, - 732 - ], - "spans": [ - { - "bbox": [ - 42, - 718, - 245, - 732 - ], - "score": 1.0, - "content": "• The maximum mark for this paper is 85.", - "type": "text" - } - ], - "index": 34, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 42, - 732, - 370, - 745 - ], - "spans": [ - { - "bbox": [ - 42, - 732, - 370, - 745 - ], - "score": 1.0, - "content": "• You are expected to use a scientific calculator where appropriate.", - "type": "text" - } - ], - "index": 35, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 39, - 746, - 338, - 758 - ], - "spans": [ - { - "bbox": [ - 39, - 746, - 338, - 758 - ], - "score": 1.0, - "content": "• A Data and Formulae Booklet is provided as a loose insert.", - "type": "text" - } - ], - "index": 36, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 34.5, - "page_num": "page_40", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 39, - 706, - 370, - 758 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 262, - 65, - 316, - 78 - ], - "lines": [ - { - "bbox": [ - 263, - 66, - 315, - 77 - ], - "spans": [ - { - "bbox": [ - 263, - 66, - 315, - 77 - ], - "score": 1.0, - "content": "Section A", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 200, - 91, - 377, - 105 - ], - "lines": [ - { - "bbox": [ - 202, - 92, - 377, - 104 - ], - "spans": [ - { - "bbox": [ - 202, - 92, - 377, - 104 - ], - "score": 1.0, - "content": "Answer all questions in this section.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 112, - 129, - 444, - 172 - ], - "lines": [ - { - "bbox": [ - 114, - 130, - 444, - 144 - ], - "spans": [ - { - "bbox": [ - 114, - 132, - 249, - 144 - ], - "score": 1.0, - "content": "The neutral lambda particle", - "type": "text" - }, - { - "bbox": [ - 250, - 130, - 265, - 143 - ], - "score": 0.89, - "content": "\\Lambda^{0}", - "type": "inline_equation", - "height": 13, - "width": 15 - }, - { - "bbox": [ - 265, - 132, - 429, - 144 - ], - "score": 1.0, - "content": " is a baryon with a strangeness of", - "type": "text" - }, - { - "bbox": [ - 429, - 131, - 444, - 143 - ], - "score": 0.28, - "content": "^{-1}", - "type": "inline_equation", - "height": 12, - "width": 15 - } - ], - "index": 2 - }, - { - "bbox": [ - 113, - 157, - 264, - 171 - ], - "spans": [ - { - "bbox": [ - 113, - 158, - 237, - 171 - ], - "score": 1.0, - "content": "One possible decay for a", - "type": "text" - }, - { - "bbox": [ - 238, - 157, - 253, - 170 - ], - "score": 0.88, - "content": "{\\Lambda}^{0}", - "type": "inline_equation", - "height": 13, - "width": 15 - }, - { - "bbox": [ - 254, - 158, - 264, - 171 - ], - "score": 1.0, - "content": "is", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5 - }, - { - "type": "interline_equation", - "bbox": [ - 258, - 184, - 322, - 200 - ], - "lines": [ - { - "bbox": [ - 258, - 184, - 322, - 200 - ], - "spans": [ - { - "bbox": [ - 258, - 184, - 322, - 200 - ], - "score": 0.88, - "content": "\\Lambda^{0}\\to\\pi^{0}+{\\mathfrak n}", - "type": "interline_equation" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 258, - 184, - 322, - 200 - ], - "spans": [], - "index": 4 - } - ] - }, - { - "type": "text", - "bbox": [ - 112, - 214, - 288, - 229 - ], - "lines": [ - { - "bbox": [ - 113, - 215, - 287, - 228 - ], - "spans": [ - { - "bbox": [ - 113, - 216, - 270, - 228 - ], - "score": 1.0, - "content": "Deduce the quark structure of a", - "type": "text" - }, - { - "bbox": [ - 270, - 215, - 285, - 227 - ], - "score": 0.86, - "content": "\\Lambda^{0}", - "type": "inline_equation", - "height": 12, - "width": 15 - }, - { - "bbox": [ - 285, - 216, - 287, - 228 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 490, - 229, - 535, - 243 - ], - "lines": [ - { - "bbox": [ - 490, - 229, - 535, - 243 - ], - "spans": [ - { - "bbox": [ - 490, - 229, - 535, - 243 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 112, - 382, - 537, - 515 - ], - "lines": [ - { - "bbox": [ - 114, - 384, - 407, - 397 - ], - "spans": [ - { - "bbox": [ - 114, - 384, - 407, - 397 - ], - "score": 1.0, - "content": "State and explain which interaction is involved in this decay.", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 483, - 396, - 537, - 411 - ], - "spans": [ - { - "bbox": [ - 483, - 396, - 537, - 411 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7.5 - }, - { - "type": "text", - "bbox": [ - 112, - 539, - 533, - 580 - ], - "lines": [ - { - "bbox": [ - 114, - 542, - 531, - 554 - ], - "spans": [ - { - "bbox": [ - 114, - 542, - 531, - 554 - ], - "score": 1.0, - "content": "An antiparticle of the neutral lambda particle decays into a neutral pion and particle X.", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 112, - 565, - 165, - 581 - ], - "spans": [ - { - "bbox": [ - 112, - 565, - 165, - 581 - ], - "score": 1.0, - "content": "Identify X.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9.5 - }, - { - "type": "text", - "bbox": [ - 490, - 579, - 535, - 593 - ], - "lines": [ - { - "bbox": [ - 490, - 579, - 536, - 594 - ], - "spans": [ - { - "bbox": [ - 490, - 579, - 536, - 594 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - } - ], - "layout_bboxes": [], - "page_idx": 41, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [ - { - "type": "interline_equation", - "bbox": [ - 258, - 184, - 322, - 200 - ], - "lines": [ - { - "bbox": [ - 258, - 184, - 322, - 200 - ], - "spans": [ - { - "bbox": [ - 258, - 184, - 322, - 200 - ], - "score": 0.88, - "content": "\\Lambda^{0}\\to\\pi^{0}+{\\mathfrak n}", - "type": "interline_equation" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 258, - 184, - 322, - 200 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 544, - 52, - 583, - 76 - ], - "lines": [ - { - "bbox": [ - 545, - 52, - 583, - 61 - ], - "spans": [ - { - "bbox": [ - 545, - 52, - 583, - 61 - ], - "score": 1.0, - "content": "Do not write", - "type": "text" - } - ] - }, - { - "bbox": [ - 545, - 61, - 583, - 68 - ], - "spans": [ - { - "bbox": [ - 545, - 61, - 583, - 68 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 556, - 68, - 572, - 77 - ], - "spans": [ - { - "bbox": [ - 556, - 68, - 572, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 537, - 105, - 555 - ], - "lines": [ - { - "bbox": [ - 48, - 538, - 101, - 553 - ], - "spans": [ - { - "bbox": [ - 48, - 538, - 101, - 553 - ], - "score": 1.0, - "content": "0 1 . 3 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 380, - 106, - 398 - ], - "lines": [ - { - "bbox": [ - 48, - 381, - 103, - 397 - ], - "spans": [ - { - "bbox": [ - 48, - 381, - 103, - 397 - ], - "score": 1.0, - "content": "0 1 . 2 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 46, - 127, - 82, - 145 - ], - "lines": [ - { - "bbox": [ - 51, - 131, - 76, - 141 - ], - "spans": [ - { - "bbox": [ - 51, - 131, - 61, - 141 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 67, - 131, - 76, - 141 - ], - "score": 1.0, - "content": "1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 59, - 815, - 79, - 825 - ], - "spans": [ - { - "bbox": [ - 59, - 816, - 69, - 824 - ], - "score": 0.992315411567688, - "content": "0", - "type": "text" - }, - { - "bbox": [ - 71, - 815, - 79, - 825 - ], - "score": 0.9983772039413452, - "content": "2", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 212, - 105, - 229 - ], - "lines": [ - { - "bbox": [ - 49, - 213, - 101, - 228 - ], - "spans": [ - { - "bbox": [ - 49, - 213, - 101, - 228 - ], - "score": 1.0, - "content": "0 1 . 1 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 479, - 815, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 479, - 815, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 569, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 0, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 0, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 284, - 28, - 293, - 39 - ], - "lines": [ - { - "bbox": [ - 283, - 28, - 294, - 42 - ], - "spans": [ - { - "bbox": [ - 283, - 28, - 294, - 42 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 262, - 65, - 316, - 78 - ], - "lines": [ - { - "bbox": [ - 263, - 66, - 315, - 77 - ], - "spans": [ - { - "bbox": [ - 263, - 66, - 315, - 77 - ], - "score": 1.0, - "content": "Section A", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_41", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 200, - 91, - 377, - 105 - ], - "lines": [ - { - "bbox": [ - 202, - 92, - 377, - 104 - ], - "spans": [ - { - "bbox": [ - 202, - 92, - 377, - 104 - ], - "score": 1.0, - "content": "Answer all questions in this section.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_41", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 202, - 92, - 377, - 104 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 129, - 444, - 172 - ], - "lines": [ - { - "bbox": [ - 114, - 130, - 444, - 144 - ], - "spans": [ - { - "bbox": [ - 114, - 132, - 249, - 144 - ], - "score": 1.0, - "content": "The neutral lambda particle", - "type": "text" - }, - { - "bbox": [ - 250, - 130, - 265, - 143 - ], - "score": 0.89, - "content": "\\Lambda^{0}", - "type": "inline_equation", - "height": 13, - "width": 15 - }, - { - "bbox": [ - 265, - 132, - 429, - 144 - ], - "score": 1.0, - "content": " is a baryon with a strangeness of", - "type": "text" - }, - { - "bbox": [ - 429, - 131, - 444, - 143 - ], - "score": 0.28, - "content": "^{-1}", - "type": "inline_equation", - "height": 12, - "width": 15 - } - ], - "index": 2 - }, - { - "bbox": [ - 113, - 157, - 264, - 171 - ], - "spans": [ - { - "bbox": [ - 113, - 158, - 237, - 171 - ], - "score": 1.0, - "content": "One possible decay for a", - "type": "text" - }, - { - "bbox": [ - 238, - 157, - 253, - 170 - ], - "score": 0.88, - "content": "{\\Lambda}^{0}", - "type": "inline_equation", - "height": 13, - "width": 15 - }, - { - "bbox": [ - 254, - 158, - 264, - 171 - ], - "score": 1.0, - "content": "is", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5, - "page_num": "page_41", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 130, - 444, - 171 - ] - }, - { - "type": "interline_equation", - "bbox": [ - 258, - 184, - 322, - 200 - ], - "lines": [ - { - "bbox": [ - 258, - 184, - 322, - 200 - ], - "spans": [ - { - "bbox": [ - 258, - 184, - 322, - 200 - ], - "score": 0.88, - "content": "\\Lambda^{0}\\to\\pi^{0}+{\\mathfrak n}", - "type": "interline_equation" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 258, - 184, - 322, - 200 - ], - "spans": [], - "index": 4 - } - ], - "page_num": "page_41", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 214, - 288, - 229 - ], - "lines": [ - { - "bbox": [ - 113, - 215, - 287, - 228 - ], - "spans": [ - { - "bbox": [ - 113, - 216, - 270, - 228 - ], - "score": 1.0, - "content": "Deduce the quark structure of a", - "type": "text" - }, - { - "bbox": [ - 270, - 215, - 285, - 227 - ], - "score": 0.86, - "content": "\\Lambda^{0}", - "type": "inline_equation", - "height": 12, - "width": 15 - }, - { - "bbox": [ - 285, - 216, - 287, - 228 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_41", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 215, - 287, - 228 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 229, - 535, - 243 - ], - "lines": [ - { - "bbox": [ - 490, - 229, - 535, - 243 - ], - "spans": [ - { - "bbox": [ - 490, - 229, - 535, - 243 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_41", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 490, - 229, - 535, - 243 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 382, - 537, - 515 - ], - "lines": [ - { - "bbox": [ - 114, - 384, - 407, - 397 - ], - "spans": [ - { - "bbox": [ - 114, - 384, - 407, - 397 - ], - "score": 1.0, - "content": "State and explain which interaction is involved in this decay.", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 483, - 396, - 537, - 411 - ], - "spans": [ - { - "bbox": [ - 483, - 396, - 537, - 411 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7.5, - "page_num": "page_41", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 384, - 537, - 411 - ] - }, - { - "type": "list", - "bbox": [ - 112, - 539, - 533, - 580 - ], - "lines": [ - { - "bbox": [ - 114, - 542, - 531, - 554 - ], - "spans": [ - { - "bbox": [ - 114, - 542, - 531, - 554 - ], - "score": 1.0, - "content": "An antiparticle of the neutral lambda particle decays into a neutral pion and particle X.", - "type": "text" - } - ], - "index": 9, - "is_list_end_line": true - }, - { - "bbox": [ - 112, - 565, - 165, - 581 - ], - "spans": [ - { - "bbox": [ - 112, - 565, - 165, - 581 - ], - "score": 1.0, - "content": "Identify X.", - "type": "text" - } - ], - "index": 10, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 9.5, - "page_num": "page_41", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 112, - 542, - 531, - 581 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 579, - 535, - 593 - ], - "lines": [ - { - "bbox": [ - 490, - 579, - 536, - 594 - ], - "spans": [ - { - "bbox": [ - 490, - 579, - 536, - 594 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_41", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 490, - 579, - 536, - 594 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 68, - 480, - 96 - ], - "lines": [ - { - "bbox": [ - 113, - 68, - 479, - 83 - ], - "spans": [ - { - "bbox": [ - 113, - 69, - 214, - 83 - ], - "score": 1.0, - "content": "The rest energy of a", - "type": "text" - }, - { - "bbox": [ - 215, - 68, - 230, - 81 - ], - "score": 0.88, - "content": "\\Lambda^{0}", - "type": "inline_equation", - "height": 13, - "width": 15 - }, - { - "bbox": [ - 230, - 69, - 479, - 83 - ], - "score": 1.0, - "content": " is equal to the energy of a photon with a frequency", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 82, - 201, - 96 - ], - "spans": [ - { - "bbox": [ - 114, - 83, - 125, - 95 - ], - "score": 1.0, - "content": "of", - "type": "text" - }, - { - "bbox": [ - 126, - 82, - 198, - 96 - ], - "score": 0.9, - "content": "2.69\\times10^{23}\\mathrm{Hz}", - "type": "inline_equation", - "height": 14, - "width": 72 - }, - { - "bbox": [ - 198, - 83, - 201, - 95 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 113, - 109, - 329, - 124 - ], - "lines": [ - { - "bbox": [ - 113, - 109, - 328, - 123 - ], - "spans": [ - { - "bbox": [ - 113, - 109, - 181, - 123 - ], - "score": 1.0, - "content": "Determine, in", - "type": "text" - }, - { - "bbox": [ - 181, - 110, - 208, - 122 - ], - "score": 0.3, - "content": "\\mathrm{_{MeV}}", - "type": "inline_equation", - "height": 12, - "width": 27 - }, - { - "bbox": [ - 208, - 109, - 310, - 123 - ], - "score": 1.0, - "content": ", the rest energy of a", - "type": "text" - }, - { - "bbox": [ - 310, - 109, - 325, - 122 - ], - "score": 0.87, - "content": "{\\Lambda}^{0}", - "type": "inline_equation", - "height": 13, - "width": 15 - }, - { - "bbox": [ - 325, - 109, - 328, - 123 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 490, - 123, - 535, - 137 - ], - "lines": [ - { - "bbox": [ - 490, - 122, - 536, - 137 - ], - "spans": [ - { - "bbox": [ - 490, - 122, - 536, - 137 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 288, - 358, - 532, - 375 - ], - "lines": [ - { - "bbox": [ - 290, - 359, - 533, - 373 - ], - "spans": [ - { - "bbox": [ - 290, - 359, - 347, - 373 - ], - "score": 1.0, - "content": "rest energy", - "type": "text" - }, - { - "bbox": [ - 347, - 361, - 358, - 370 - ], - "score": 0.42, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 11 - }, - { - "bbox": [ - 504, - 359, - 533, - 371 - ], - "score": 1.0, - "content": " MeV ", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 112, - 402, - 508, - 430 - ], - "lines": [ - { - "bbox": [ - 113, - 402, - 509, - 417 - ], - "spans": [ - { - "bbox": [ - 113, - 402, - 300, - 417 - ], - "score": 1.0, - "content": "The discovery of particles such as the", - "type": "text" - }, - { - "bbox": [ - 300, - 402, - 315, - 415 - ], - "score": 0.88, - "content": "{\\Lambda}^{0}", - "type": "inline_equation", - "height": 13, - "width": 15 - }, - { - "bbox": [ - 316, - 402, - 509, - 417 - ], - "score": 1.0, - "content": " is made by large international research ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 113, - 416, - 149, - 430 - ], - "spans": [ - { - "bbox": [ - 113, - 416, - 149, - 430 - ], - "score": 1.0, - "content": "teams.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5.5 - }, - { - "type": "text", - "bbox": [ - 114, - 442, - 254, - 456 - ], - "lines": [ - { - "bbox": [ - 114, - 443, - 253, - 455 - ], - "spans": [ - { - "bbox": [ - 114, - 443, - 253, - 455 - ], - "score": 1.0, - "content": "Suggest one reason for this.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 112, - 457, - 536, - 547 - ], - "lines": [ - { - "bbox": [ - 112, - 457, - 536, - 487.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 112, - 487.0, - 536, - 517.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 112, - 517.0, - 536, - 547.0 - ], - "spans": [], - "index": 10 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 206, - 608, - 372, - 622 - ], - "lines": [ - { - "bbox": [ - 207, - 609, - 371, - 621 - ], - "spans": [ - { - "bbox": [ - 207, - 609, - 371, - 621 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - } - ], - "layout_bboxes": [], - "page_idx": 42, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 77 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 559, - 69, - 573, - 78 - ], - "spans": [ - { - "bbox": [ - 559, - 69, - 573, - 78 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 544, - 503, - 576, - 545 - ], - "lines": [ - { - "bbox": [ - 556, - 530, - 563, - 537 - ], - "spans": [ - { - "bbox": [ - 556, - 530, - 563, - 537 - ], - "score": 1.0, - "content": "6", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 398, - 105, - 416 - ], - "lines": [ - { - "bbox": [ - 49, - 400, - 102, - 415 - ], - "spans": [ - { - "bbox": [ - 49, - 400, - 102, - 415 - ], - "score": 1.0, - "content": "0 1 . 5 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 783 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 58, - 815, - 81, - 825 - ], - "spans": [ - { - "bbox": [ - 58, - 815, - 81, - 825 - ], - "score": 0.8537846207618713, - "content": "0 3", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 64, - 105, - 83 - ], - "lines": [ - { - "bbox": [ - 50, - 67, - 102, - 80 - ], - "spans": [ - { - "bbox": [ - 50, - 67, - 102, - 80 - ], - "score": 1.0, - "content": "0 1 . 4 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 285, - 29, - 293, - 39 - ], - "lines": [ - { - "bbox": [ - 284, - 28, - 294, - 41 - ], - "spans": [ - { - "bbox": [ - 284, - 28, - 294, - 41 - ], - "score": 1.0, - "content": "3 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 490, - 455, - 535, - 469 - ], - "lines": [ - { - "bbox": [ - 491, - 455, - 536, - 470 - ], - "spans": [ - { - "bbox": [ - 491, - 455, - 536, - 470 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 68, - 480, - 96 - ], - "lines": [ - { - "bbox": [ - 113, - 68, - 479, - 83 - ], - "spans": [ - { - "bbox": [ - 113, - 69, - 214, - 83 - ], - "score": 1.0, - "content": "The rest energy of a", - "type": "text" - }, - { - "bbox": [ - 215, - 68, - 230, - 81 - ], - "score": 0.88, - "content": "\\Lambda^{0}", - "type": "inline_equation", - "height": 13, - "width": 15 - }, - { - "bbox": [ - 230, - 69, - 479, - 83 - ], - "score": 1.0, - "content": " is equal to the energy of a photon with a frequency", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 82, - 201, - 96 - ], - "spans": [ - { - "bbox": [ - 114, - 83, - 125, - 95 - ], - "score": 1.0, - "content": "of", - "type": "text" - }, - { - "bbox": [ - 126, - 82, - 198, - 96 - ], - "score": 0.9, - "content": "2.69\\times10^{23}\\mathrm{Hz}", - "type": "inline_equation", - "height": 14, - "width": 72 - }, - { - "bbox": [ - 198, - 83, - 201, - 95 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_42", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 68, - 479, - 96 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 109, - 329, - 124 - ], - "lines": [ - { - "bbox": [ - 113, - 109, - 328, - 123 - ], - "spans": [ - { - "bbox": [ - 113, - 109, - 181, - 123 - ], - "score": 1.0, - "content": "Determine, in", - "type": "text" - }, - { - "bbox": [ - 181, - 110, - 208, - 122 - ], - "score": 0.3, - "content": "\\mathrm{_{MeV}}", - "type": "inline_equation", - "height": 12, - "width": 27 - }, - { - "bbox": [ - 208, - 109, - 310, - 123 - ], - "score": 1.0, - "content": ", the rest energy of a", - "type": "text" - }, - { - "bbox": [ - 310, - 109, - 325, - 122 - ], - "score": 0.87, - "content": "{\\Lambda}^{0}", - "type": "inline_equation", - "height": 13, - "width": 15 - }, - { - "bbox": [ - 325, - 109, - 328, - 123 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_42", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 109, - 328, - 123 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 123, - 535, - 137 - ], - "lines": [ - { - "bbox": [ - 490, - 122, - 536, - 137 - ], - "spans": [ - { - "bbox": [ - 490, - 122, - 536, - 137 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_42", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 490, - 122, - 536, - 137 - ] - }, - { - "type": "text", - "bbox": [ - 288, - 358, - 532, - 375 - ], - "lines": [ - { - "bbox": [ - 290, - 359, - 533, - 373 - ], - "spans": [ - { - "bbox": [ - 290, - 359, - 347, - 373 - ], - "score": 1.0, - "content": "rest energy", - "type": "text" - }, - { - "bbox": [ - 347, - 361, - 358, - 370 - ], - "score": 0.42, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 11 - }, - { - "bbox": [ - 504, - 359, - 533, - 371 - ], - "score": 1.0, - "content": " MeV ", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_42", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 290, - 359, - 533, - 373 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 402, - 508, - 430 - ], - "lines": [ - { - "bbox": [ - 113, - 402, - 509, - 417 - ], - "spans": [ - { - "bbox": [ - 113, - 402, - 300, - 417 - ], - "score": 1.0, - "content": "The discovery of particles such as the", - "type": "text" - }, - { - "bbox": [ - 300, - 402, - 315, - 415 - ], - "score": 0.88, - "content": "{\\Lambda}^{0}", - "type": "inline_equation", - "height": 13, - "width": 15 - }, - { - "bbox": [ - 316, - 402, - 509, - 417 - ], - "score": 1.0, - "content": " is made by large international research ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 113, - 416, - 149, - 430 - ], - "spans": [ - { - "bbox": [ - 113, - 416, - 149, - 430 - ], - "score": 1.0, - "content": "teams.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5.5, - "page_num": "page_42", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 402, - 509, - 430 - ] - }, - { - "type": "text", - "bbox": [ - 114, - 442, - 254, - 456 - ], - "lines": [ - { - "bbox": [ - 114, - 443, - 253, - 455 - ], - "spans": [ - { - "bbox": [ - 114, - 443, - 253, - 455 - ], - "score": 1.0, - "content": "Suggest one reason for this.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_42", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 443, - 253, - 455 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 457, - 536, - 547 - ], - "lines": [ - { - "bbox": [ - 112, - 457, - 536, - 487.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 112, - 487.0, - 536, - 517.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 112, - 517.0, - 536, - 547.0 - ], - "spans": [], - "index": 10 - } - ], - "index": 9, - "page_num": "page_42", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 112, - 457, - 536, - 547.0 - ] - }, - { - "type": "text", - "bbox": [ - 206, - 608, - 372, - 622 - ], - "lines": [ - { - "bbox": [ - 207, - 609, - 371, - 621 - ], - "spans": [ - { - "bbox": [ - 207, - 609, - 371, - 621 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_42", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 207, - 609, - 371, - 621 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "image", - "bbox": [ - 37, - 52, - 540, - 769 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 37, - 52, - 540, - 769 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 37, - 52, - 540, - 769 - ], - "spans": [ - { - "bbox": [ - 37, - 52, - 540, - 769 - ], - "score": 0.562, - "type": "image", - "image_path": "2aeffab49a778cb119c80f10ec0ff8dbc52fe852dfbab42b4a39df0a24da26b4.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 37, - 52, - 540, - 291.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 37, - 291.0, - 540, - 530.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 37, - 530.0, - 540, - 769.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 43, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 37, - 52, - 540, - 769 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 37, - 52, - 540, - 769 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 37, - 52, - 540, - 769 - ], - "spans": [ - { - "bbox": [ - 37, - 52, - 540, - 769 - ], - "score": 0.562, - "type": "image", - "image_path": "2aeffab49a778cb119c80f10ec0ff8dbc52fe852dfbab42b4a39df0a24da26b4.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 37, - 52, - 540, - 291.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 37, - 291.0, - 540, - 530.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 37, - 530.0, - 540, - 769.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 824 - ], - "lines": [ - { - "bbox": [ - 60, - 816, - 79, - 824 - ], - "spans": [ - { - "bbox": [ - 60, - 817, - 67, - 824 - ], - "score": 0.9975185394287109, - "content": "0", - "type": "text" - }, - { - "bbox": [ - 70, - 816, - 79, - 824 - ], - "score": 0.9989859461784363, - "content": "4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "spans": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 285, - 30, - 292, - 39 - ], - "lines": [ - { - "bbox": [ - 285, - 29, - 294, - 41 - ], - "spans": [ - { - "bbox": [ - 285, - 29, - 294, - 41 - ], - "score": 1.0, - "content": "4 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 77 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 573, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 573, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "image", - "bbox": [ - 37, - 52, - 540, - 769 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 37, - 52, - 540, - 769 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 37, - 52, - 540, - 769 - ], - "spans": [ - { - "bbox": [ - 37, - 52, - 540, - 769 - ], - "score": 0.562, - "type": "image", - "image_path": "2aeffab49a778cb119c80f10ec0ff8dbc52fe852dfbab42b4a39df0a24da26b4.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 37, - 52, - 540, - 291.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 37, - 291.0, - 540, - 530.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 37, - 530.0, - 540, - 769.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_43", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 109, - 68, - 536, - 109 - ], - "lines": [ - { - "bbox": [ - 113, - 68, - 378, - 82 - ], - "spans": [ - { - "bbox": [ - 113, - 69, - 315, - 82 - ], - "score": 1.0, - "content": "In 2021 the world land speed record was ", - "type": "text" - }, - { - "bbox": [ - 315, - 68, - 376, - 82 - ], - "score": 0.9, - "content": "1230\\mathrm{kmh^{-1}}", - "type": "inline_equation", - "height": 14, - "width": 61 - }, - { - "bbox": [ - 376, - 69, - 378, - 82 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 83, - 536, - 96 - ], - "spans": [ - { - "bbox": [ - 113, - 83, - 536, - 96 - ], - "score": 1.0, - "content": "This was the average speed achieved by a jet-powered car in two runs. Each run was ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 113, - 96, - 299, - 109 - ], - "spans": [ - { - "bbox": [ - 113, - 97, - 255, - 109 - ], - "score": 1.0, - "content": "measured over a distance of", - "type": "text" - }, - { - "bbox": [ - 256, - 96, - 296, - 108 - ], - "score": 0.64, - "content": "1.61~\\mathrm{km}", - "type": "inline_equation", - "height": 12, - "width": 40 - }, - { - "bbox": [ - 296, - 97, - 299, - 109 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 114, - 124, - 389, - 138 - ], - "lines": [ - { - "bbox": [ - 114, - 124, - 387, - 137 - ], - "spans": [ - { - "bbox": [ - 114, - 125, - 337, - 136 - ], - "score": 1.0, - "content": "The average speed for one of these runs was", - "type": "text" - }, - { - "bbox": [ - 338, - 124, - 386, - 137 - ], - "score": 0.87, - "content": "343\\mathrm{m~s}^{-1}", - "type": "inline_equation", - "height": 13, - "width": 48 - }, - { - "bbox": [ - 386, - 125, - 387, - 136 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 114, - 151, - 440, - 165 - ], - "lines": [ - { - "bbox": [ - 114, - 153, - 439, - 164 - ], - "spans": [ - { - "bbox": [ - 114, - 153, - 439, - 164 - ], - "score": 1.0, - "content": "Calculate, in s, the time taken for the car to complete the other run.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 484, - 165, - 535, - 178 - ], - "lines": [ - { - "bbox": [ - 484, - 165, - 535, - 179 - ], - "spans": [ - { - "bbox": [ - 484, - 165, - 535, - 179 - ], - "score": 1.0, - "content": "[2 marks]", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 343, - 362, - 530, - 374 - ], - "lines": [ - { - "bbox": [ - 344, - 361, - 531, - 372 - ], - "spans": [ - { - "bbox": [ - 344, - 361, - 377, - 372 - ], - "score": 1.0, - "content": "time =", - "type": "text" - }, - { - "bbox": [ - 525, - 364, - 531, - 371 - ], - "score": 1.0, - "content": "s", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 187, - 449, - 391, - 463 - ], - "lines": [ - { - "bbox": [ - 187, - 450, - 391, - 463 - ], - "spans": [ - { - "bbox": [ - 187, - 450, - 391, - 463 - ], - "score": 1.0, - "content": "Question 2 continues on the next page", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - } - ], - "layout_bboxes": [], - "page_idx": 44, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 77 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 78 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 78 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 783 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 824 - ], - "lines": [ - { - "bbox": [ - 59, - 816, - 80, - 825 - ], - "spans": [ - { - "bbox": [ - 59, - 816, - 69, - 824 - ], - "score": 0.992315411567688, - "content": "0", - "type": "text" - }, - { - "bbox": [ - 70, - 816, - 80, - 825 - ], - "score": 0.8120515942573547, - "content": " 5", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 120, - 105, - 138 - ], - "lines": [ - { - "bbox": [ - 48, - 122, - 102, - 137 - ], - "spans": [ - { - "bbox": [ - 48, - 122, - 102, - 137 - ], - "score": 1.0, - "content": "0 2 . 1 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 82, - 82 - ], - "lines": [ - { - "bbox": [ - 49, - 66, - 79, - 81 - ], - "spans": [ - { - "bbox": [ - 49, - 66, - 79, - 81 - ], - "score": 1.0, - "content": "0 2 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 285, - 29, - 293, - 39 - ], - "lines": [ - { - "bbox": [ - 284, - 28, - 294, - 42 - ], - "spans": [ - { - "bbox": [ - 284, - 28, - 294, - 42 - ], - "score": 1.0, - "content": "5 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "list", - "bbox": [ - 109, - 68, - 536, - 109 - ], - "lines": [ - { - "bbox": [ - 113, - 68, - 378, - 82 - ], - "spans": [ - { - "bbox": [ - 113, - 69, - 315, - 82 - ], - "score": 1.0, - "content": "In 2021 the world land speed record was ", - "type": "text" - }, - { - "bbox": [ - 315, - 68, - 376, - 82 - ], - "score": 0.9, - "content": "1230\\mathrm{kmh^{-1}}", - "type": "inline_equation", - "height": 14, - "width": 61 - }, - { - "bbox": [ - 376, - 69, - 378, - 82 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 0, - "is_list_end_line": true - }, - { - "bbox": [ - 113, - 83, - 536, - 96 - ], - "spans": [ - { - "bbox": [ - 113, - 83, - 536, - 96 - ], - "score": 1.0, - "content": "This was the average speed achieved by a jet-powered car in two runs. Each run was ", - "type": "text" - } - ], - "index": 1, - "is_list_start_line": true - }, - { - "bbox": [ - 113, - 96, - 299, - 109 - ], - "spans": [ - { - "bbox": [ - 113, - 97, - 255, - 109 - ], - "score": 1.0, - "content": "measured over a distance of", - "type": "text" - }, - { - "bbox": [ - 256, - 96, - 296, - 108 - ], - "score": 0.64, - "content": "1.61~\\mathrm{km}", - "type": "inline_equation", - "height": 12, - "width": 40 - }, - { - "bbox": [ - 296, - 97, - 299, - 109 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 2, - "is_list_end_line": true - } - ], - "index": 1, - "page_num": "page_44", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 68, - 536, - 109 - ] - }, - { - "type": "text", - "bbox": [ - 114, - 124, - 389, - 138 - ], - "lines": [ - { - "bbox": [ - 114, - 124, - 387, - 137 - ], - "spans": [ - { - "bbox": [ - 114, - 125, - 337, - 136 - ], - "score": 1.0, - "content": "The average speed for one of these runs was", - "type": "text" - }, - { - "bbox": [ - 338, - 124, - 386, - 137 - ], - "score": 0.87, - "content": "343\\mathrm{m~s}^{-1}", - "type": "inline_equation", - "height": 13, - "width": 48 - }, - { - "bbox": [ - 386, - 125, - 387, - 136 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_44", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 124, - 387, - 137 - ] - }, - { - "type": "text", - "bbox": [ - 114, - 151, - 440, - 165 - ], - "lines": [ - { - "bbox": [ - 114, - 153, - 439, - 164 - ], - "spans": [ - { - "bbox": [ - 114, - 153, - 439, - 164 - ], - "score": 1.0, - "content": "Calculate, in s, the time taken for the car to complete the other run.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_44", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 153, - 439, - 164 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 165, - 535, - 178 - ], - "lines": [ - { - "bbox": [ - 484, - 165, - 535, - 179 - ], - "spans": [ - { - "bbox": [ - 484, - 165, - 535, - 179 - ], - "score": 1.0, - "content": "[2 marks]", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_44", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 484, - 165, - 535, - 179 - ] - }, - { - "type": "text", - "bbox": [ - 343, - 362, - 530, - 374 - ], - "lines": [ - { - "bbox": [ - 344, - 361, - 531, - 372 - ], - "spans": [ - { - "bbox": [ - 344, - 361, - 377, - 372 - ], - "score": 1.0, - "content": "time =", - "type": "text" - }, - { - "bbox": [ - 525, - 364, - 531, - 371 - ], - "score": 1.0, - "content": "s", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_44", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 344, - 361, - 531, - 372 - ] - }, - { - "type": "text", - "bbox": [ - 187, - 449, - 391, - 463 - ], - "lines": [ - { - "bbox": [ - 187, - 450, - 391, - 463 - ], - "spans": [ - { - "bbox": [ - 187, - 450, - 391, - 463 - ], - "score": 1.0, - "content": "Question 2 continues on the next page", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_44", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 187, - 450, - 391, - 463 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 68, - 445, - 82 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 445, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 445, - 82 - ], - "score": 1.0, - "content": "Engineers are designing a new jet-powered car to break this record.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 111, - 94, - 520, - 120 - ], - "lines": [ - { - "bbox": [ - 114, - 95, - 519, - 108 - ], - "spans": [ - { - "bbox": [ - 114, - 95, - 519, - 108 - ], - "score": 1.0, - "content": "Figure 1 shows the variation of speed with distance for the car, as predicted by the", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 114, - 109, - 166, - 122 - ], - "spans": [ - { - "bbox": [ - 114, - 109, - 166, - 122 - ], - "score": 1.0, - "content": "engineers.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5 - }, - { - "type": "image", - "bbox": [ - 94, - 158, - 525, - 440 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 268, - 133, - 312, - 147 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 134, - 312, - 147 - ], - "spans": [ - { - "bbox": [ - 268, - 134, - 312, - 147 - ], - "score": 1.0, - "content": "Figure 1", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "image_body", - "bbox": [ - 94, - 158, - 525, - 440 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 94, - 158, - 525, - 440 - ], - "spans": [ - { - "bbox": [ - 94, - 158, - 525, - 440 - ], - "score": 0.961, - "type": "image", - "image_path": "525c53aa6dfc03507ebfd7e0b0233f6b52d6485465e88c7bbdb3f3288423d9a1.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 94, - 158, - 525, - 252.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 94, - 252.0, - 525, - 346.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 94, - 346.0, - 525, - 440.0 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 4.0 - }, - { - "type": "text", - "bbox": [ - 114, - 453, - 482, - 482 - ], - "lines": [ - { - "bbox": [ - 115, - 454, - 481, - 466 - ], - "spans": [ - { - "bbox": [ - 115, - 455, - 372, - 466 - ], - "score": 1.0, - "content": "The car reaches its maximum acceleration when it is ", - "type": "text" - }, - { - "bbox": [ - 372, - 454, - 411, - 466 - ], - "score": 0.62, - "content": "5600\\mathrm{m}", - "type": "inline_equation", - "height": 12, - "width": 39 - }, - { - "bbox": [ - 411, - 455, - 481, - 466 - ], - "score": 1.0, - "content": " from the start.", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 113, - 467, - 350, - 482 - ], - "spans": [ - { - "bbox": [ - 113, - 468, - 282, - 482 - ], - "score": 1.0, - "content": "At this point the mass of the car is ", - "type": "text" - }, - { - "bbox": [ - 282, - 467, - 348, - 482 - ], - "score": 0.91, - "content": "6.50\\times10^{3}\\mathrm{kg}", - "type": "inline_equation", - "height": 15, - "width": 66 - }, - { - "bbox": [ - 348, - 468, - 350, - 482 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7.5 - }, - { - "type": "text", - "bbox": [ - 113, - 494, - 447, - 508 - ], - "lines": [ - { - "bbox": [ - 113, - 494, - 447, - 507 - ], - "spans": [ - { - "bbox": [ - 113, - 494, - 447, - 507 - ], - "score": 1.0, - "content": "Determine the kinetic energy of the car at its maximum acceleration.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 484, - 507, - 535, - 521 - ], - "lines": [ - { - "bbox": [ - 484, - 507, - 535, - 521 - ], - "spans": [ - { - "bbox": [ - 484, - 507, - 535, - 521 - ], - "score": 1.0, - "content": "[2 marks]", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 295, - 672, - 532, - 689 - ], - "lines": [ - { - "bbox": [ - 297, - 672, - 532, - 686 - ], - "spans": [ - { - "bbox": [ - 297, - 672, - 366, - 686 - ], - "score": 1.0, - "content": "kinetic energy", - "type": "text" - }, - { - "bbox": [ - 366, - 674, - 377, - 683 - ], - "score": 0.49, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 11 - }, - { - "bbox": [ - 524, - 673, - 532, - 683 - ], - "score": 1.0, - "content": " J ", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - } - ], - "layout_bboxes": [], - "page_idx": 45, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 94, - 158, - 525, - 440 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 268, - 133, - 312, - 147 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 134, - 312, - 147 - ], - "spans": [ - { - "bbox": [ - 268, - 134, - 312, - 147 - ], - "score": 1.0, - "content": "Figure 1", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "image_body", - "bbox": [ - 94, - 158, - 525, - 440 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 94, - 158, - 525, - 440 - ], - "spans": [ - { - "bbox": [ - 94, - 158, - 525, - 440 - ], - "score": 0.961, - "type": "image", - "image_path": "525c53aa6dfc03507ebfd7e0b0233f6b52d6485465e88c7bbdb3f3288423d9a1.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 94, - 158, - 525, - 252.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 94, - 252.0, - 525, - 346.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 94, - 346.0, - 525, - 440.0 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 4.0 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 60, - 816, - 80, - 825 - ], - "spans": [ - { - "bbox": [ - 60, - 816, - 68, - 824 - ], - "score": 0.9934693574905396, - "content": "0", - "type": "text" - }, - { - "bbox": [ - 69, - 816, - 80, - 825 - ], - "score": 0.9959516525268555, - "content": "6", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 105, - 82 - ], - "lines": [ - { - "bbox": [ - 48, - 66, - 102, - 82 - ], - "spans": [ - { - "bbox": [ - 48, - 66, - 102, - 82 - ], - "score": 1.0, - "content": "0 2 . 2 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 285, - 29, - 292, - 39 - ], - "lines": [ - { - "bbox": [ - 285, - 28, - 294, - 41 - ], - "spans": [ - { - "bbox": [ - 285, - 28, - 294, - 41 - ], - "score": 1.0, - "content": "6 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 68, - 445, - 82 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 445, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 445, - 82 - ], - "score": 1.0, - "content": "Engineers are designing a new jet-powered car to break this record.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_45", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 69, - 445, - 82 - ] - }, - { - "type": "text", - "bbox": [ - 111, - 94, - 520, - 120 - ], - "lines": [ - { - "bbox": [ - 114, - 95, - 519, - 108 - ], - "spans": [ - { - "bbox": [ - 114, - 95, - 519, - 108 - ], - "score": 1.0, - "content": "Figure 1 shows the variation of speed with distance for the car, as predicted by the", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 114, - 109, - 166, - 122 - ], - "spans": [ - { - "bbox": [ - 114, - 109, - 166, - 122 - ], - "score": 1.0, - "content": "engineers.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5, - "page_num": "page_45", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 95, - 519, - 122 - ] - }, - { - "type": "image", - "bbox": [ - 94, - 158, - 525, - 440 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 268, - 133, - 312, - 147 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 134, - 312, - 147 - ], - "spans": [ - { - "bbox": [ - 268, - 134, - 312, - 147 - ], - "score": 1.0, - "content": "Figure 1", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "image_body", - "bbox": [ - 94, - 158, - 525, - 440 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 94, - 158, - 525, - 440 - ], - "spans": [ - { - "bbox": [ - 94, - 158, - 525, - 440 - ], - "score": 0.961, - "type": "image", - "image_path": "525c53aa6dfc03507ebfd7e0b0233f6b52d6485465e88c7bbdb3f3288423d9a1.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 94, - 158, - 525, - 252.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 94, - 252.0, - 525, - 346.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 94, - 346.0, - 525, - 440.0 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 4.0, - "page_num": "page_45", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 114, - 453, - 482, - 482 - ], - "lines": [ - { - "bbox": [ - 115, - 454, - 481, - 466 - ], - "spans": [ - { - "bbox": [ - 115, - 455, - 372, - 466 - ], - "score": 1.0, - "content": "The car reaches its maximum acceleration when it is ", - "type": "text" - }, - { - "bbox": [ - 372, - 454, - 411, - 466 - ], - "score": 0.62, - "content": "5600\\mathrm{m}", - "type": "inline_equation", - "height": 12, - "width": 39 - }, - { - "bbox": [ - 411, - 455, - 481, - 466 - ], - "score": 1.0, - "content": " from the start.", - "type": "text" - } - ], - "index": 7, - "is_list_end_line": true - }, - { - "bbox": [ - 113, - 467, - 350, - 482 - ], - "spans": [ - { - "bbox": [ - 113, - 468, - 282, - 482 - ], - "score": 1.0, - "content": "At this point the mass of the car is ", - "type": "text" - }, - { - "bbox": [ - 282, - 467, - 348, - 482 - ], - "score": 0.91, - "content": "6.50\\times10^{3}\\mathrm{kg}", - "type": "inline_equation", - "height": 15, - "width": 66 - }, - { - "bbox": [ - 348, - 468, - 350, - 482 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 8, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 7.5, - "page_num": "page_45", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 454, - 481, - 482 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 494, - 447, - 508 - ], - "lines": [ - { - "bbox": [ - 113, - 494, - 447, - 507 - ], - "spans": [ - { - "bbox": [ - 113, - 494, - 447, - 507 - ], - "score": 1.0, - "content": "Determine the kinetic energy of the car at its maximum acceleration.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_45", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 494, - 447, - 507 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 507, - 535, - 521 - ], - "lines": [ - { - "bbox": [ - 484, - 507, - 535, - 521 - ], - "spans": [ - { - "bbox": [ - 484, - 507, - 535, - 521 - ], - "score": 1.0, - "content": "[2 marks]", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_45", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 484, - 507, - 535, - 521 - ] - }, - { - "type": "text", - "bbox": [ - 295, - 672, - 532, - 689 - ], - "lines": [ - { - "bbox": [ - 297, - 672, - 532, - 686 - ], - "spans": [ - { - "bbox": [ - 297, - 672, - 366, - 686 - ], - "score": 1.0, - "content": "kinetic energy", - "type": "text" - }, - { - "bbox": [ - 366, - 674, - 377, - 683 - ], - "score": 0.49, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 11 - }, - { - "bbox": [ - 524, - 673, - 532, - 683 - ], - "score": 1.0, - "content": " J ", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_45", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 297, - 672, - 532, - 686 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 68, - 438, - 82 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 437, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 437, - 82 - ], - "score": 1.0, - "content": "At any point on the graph in Figure 1, the acceleration is given by:", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 201, - 95, - 392, - 109 - ], - "lines": [ - { - "bbox": [ - 203, - 96, - 391, - 108 - ], - "spans": [ - { - "bbox": [ - 203, - 96, - 263, - 108 - ], - "score": 1.0, - "content": "acceleration", - "type": "text" - }, - { - "bbox": [ - 263, - 97, - 274, - 106 - ], - "score": 0.75, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 11 - }, - { - "bbox": [ - 274, - 96, - 306, - 108 - ], - "score": 1.0, - "content": " speed", - "type": "text" - }, - { - "bbox": [ - 307, - 96, - 317, - 107 - ], - "score": 0.66, - "content": "\\times", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 317, - 96, - 391, - 108 - ], - "score": 1.0, - "content": " gradient of line", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 113, - 121, - 500, - 148 - ], - "lines": [ - { - "bbox": [ - 113, - 121, - 499, - 135 - ], - "spans": [ - { - "bbox": [ - 113, - 121, - 499, - 135 - ], - "score": 1.0, - "content": "When the car is at its maximum acceleration, the power input to the jet engines", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 113, - 135, - 172, - 147 - ], - "spans": [ - { - "bbox": [ - 113, - 135, - 172, - 147 - ], - "score": 1.0, - "content": "is 640 MW.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5 - }, - { - "type": "text", - "bbox": [ - 113, - 160, - 485, - 187 - ], - "lines": [ - { - "bbox": [ - 114, - 161, - 485, - 174 - ], - "spans": [ - { - "bbox": [ - 114, - 161, - 485, - 174 - ], - "score": 1.0, - "content": "Calculate the percentage of the input power used to accelerate the car at its", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 114, - 176, - 228, - 186 - ], - "spans": [ - { - "bbox": [ - 114, - 176, - 228, - 186 - ], - "score": 1.0, - "content": "maximum acceleration.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5 - }, - { - "type": "text", - "bbox": [ - 111, - 528, - 531, - 556 - ], - "lines": [ - { - "bbox": [ - 114, - 529, - 530, - 542 - ], - "spans": [ - { - "bbox": [ - 114, - 529, - 530, - 542 - ], - "score": 1.0, - "content": "Scientists recommend that the average deceleration of the driver of the car should be", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 113, - 541, - 177, - 557 - ], - "spans": [ - { - "bbox": [ - 113, - 541, - 160, - 557 - ], - "score": 1.0, - "content": "less than", - "type": "text" - }, - { - "bbox": [ - 160, - 542, - 174, - 556 - ], - "score": 0.37, - "content": "3g", - "type": "inline_equation", - "height": 14, - "width": 14 - }, - { - "bbox": [ - 174, - 541, - 177, - 557 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6.5 - }, - { - "type": "text", - "bbox": [ - 113, - 568, - 396, - 583 - ], - "lines": [ - { - "bbox": [ - 114, - 569, - 394, - 583 - ], - "spans": [ - { - "bbox": [ - 114, - 569, - 378, - 582 - ], - "score": 1.0, - "content": "Deduce whether the average deceleration is less than", - "type": "text" - }, - { - "bbox": [ - 379, - 570, - 393, - 583 - ], - "score": 0.43, - "content": "3g", - "type": "inline_equation", - "height": 13, - "width": 14 - }, - { - "bbox": [ - 393, - 569, - 394, - 582 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - } - ], - "layout_bboxes": [], - "page_idx": 46, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 77 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 78 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 78 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 544, - 690, - 576, - 732 - ], - "lines": [ - { - "bbox": [ - 553, - 714, - 567, - 725 - ], - "spans": [ - { - "bbox": [ - 553, - 714, - 567, - 725 - ], - "score": 1.0, - "content": "10", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 525, - 105, - 543 - ], - "lines": [ - { - "bbox": [ - 49, - 527, - 100, - 541 - ], - "spans": [ - { - "bbox": [ - 49, - 527, - 87, - 541 - ], - "score": 1.0, - "content": "0 2 . ", - "type": "text" - }, - { - "bbox": [ - 89, - 529, - 100, - 539 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 783 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 824 - ], - "lines": [ - { - "bbox": [ - 60, - 816, - 67, - 824 - ], - "spans": [ - { - "bbox": [ - 60, - 816, - 67, - 824 - ], - "score": 0.9977365732192993, - "content": "0", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 64, - 105, - 83 - ], - "lines": [ - { - "bbox": [ - 48, - 66, - 102, - 82 - ], - "spans": [ - { - "bbox": [ - 48, - 66, - 102, - 82 - ], - "score": 1.0, - "content": "0 2 . 3 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 285, - 29, - 292, - 39 - ], - "lines": [ - { - "bbox": [ - 283, - 28, - 295, - 41 - ], - "spans": [ - { - "bbox": [ - 283, - 28, - 295, - 41 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 13, - "width": 12 - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 484, - 187, - 535, - 201 - ], - "lines": [ - { - "bbox": [ - 484, - 187, - 536, - 201 - ], - "spans": [ - { - "bbox": [ - 484, - 187, - 536, - 201 - ], - "score": 1.0, - "content": "[4 marks] ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 229, - 484, - 531, - 501 - ], - "lines": [ - { - "bbox": [ - 233, - 485, - 532, - 498 - ], - "spans": [ - { - "bbox": [ - 233, - 488, - 361, - 498 - ], - "score": 1.0, - "content": "percentage of input power", - "type": "text" - }, - { - "bbox": [ - 361, - 487, - 372, - 497 - ], - "score": 0.61, - "content": "=", - "type": "inline_equation", - "height": 10, - "width": 11 - }, - { - "bbox": [ - 519, - 485, - 532, - 498 - ], - "score": 1.0, - "content": "% ", - "type": "text" - } - ] - } - ] - }, - { - "type": "text", - "bbox": [ - 484, - 582, - 535, - 596 - ], - "lines": [] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 68, - 438, - 82 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 437, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 437, - 82 - ], - "score": 1.0, - "content": "At any point on the graph in Figure 1, the acceleration is given by:", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_46", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 69, - 437, - 82 - ] - }, - { - "type": "text", - "bbox": [ - 201, - 95, - 392, - 109 - ], - "lines": [ - { - "bbox": [ - 203, - 96, - 391, - 108 - ], - "spans": [ - { - "bbox": [ - 203, - 96, - 263, - 108 - ], - "score": 1.0, - "content": "acceleration", - "type": "text" - }, - { - "bbox": [ - 263, - 97, - 274, - 106 - ], - "score": 0.75, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 11 - }, - { - "bbox": [ - 274, - 96, - 306, - 108 - ], - "score": 1.0, - "content": " speed", - "type": "text" - }, - { - "bbox": [ - 307, - 96, - 317, - 107 - ], - "score": 0.66, - "content": "\\times", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 317, - 96, - 391, - 108 - ], - "score": 1.0, - "content": " gradient of line", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_46", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 203, - 96, - 391, - 108 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 121, - 500, - 148 - ], - "lines": [ - { - "bbox": [ - 113, - 121, - 499, - 135 - ], - "spans": [ - { - "bbox": [ - 113, - 121, - 499, - 135 - ], - "score": 1.0, - "content": "When the car is at its maximum acceleration, the power input to the jet engines", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 113, - 135, - 172, - 147 - ], - "spans": [ - { - "bbox": [ - 113, - 135, - 172, - 147 - ], - "score": 1.0, - "content": "is 640 MW.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5, - "page_num": "page_46", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 121, - 499, - 147 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 160, - 485, - 187 - ], - "lines": [ - { - "bbox": [ - 114, - 161, - 485, - 174 - ], - "spans": [ - { - "bbox": [ - 114, - 161, - 485, - 174 - ], - "score": 1.0, - "content": "Calculate the percentage of the input power used to accelerate the car at its", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 114, - 176, - 228, - 186 - ], - "spans": [ - { - "bbox": [ - 114, - 176, - 228, - 186 - ], - "score": 1.0, - "content": "maximum acceleration.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5, - "page_num": "page_46", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 161, - 485, - 186 - ] - }, - { - "type": "text", - "bbox": [ - 111, - 528, - 531, - 556 - ], - "lines": [ - { - "bbox": [ - 114, - 529, - 530, - 542 - ], - "spans": [ - { - "bbox": [ - 114, - 529, - 530, - 542 - ], - "score": 1.0, - "content": "Scientists recommend that the average deceleration of the driver of the car should be", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 113, - 541, - 177, - 557 - ], - "spans": [ - { - "bbox": [ - 113, - 541, - 160, - 557 - ], - "score": 1.0, - "content": "less than", - "type": "text" - }, - { - "bbox": [ - 160, - 542, - 174, - 556 - ], - "score": 0.37, - "content": "3g", - "type": "inline_equation", - "height": 14, - "width": 14 - }, - { - "bbox": [ - 174, - 541, - 177, - 557 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6.5, - "page_num": "page_46", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 529, - 530, - 557 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 568, - 396, - 583 - ], - "lines": [ - { - "bbox": [ - 114, - 569, - 394, - 583 - ], - "spans": [ - { - "bbox": [ - 114, - 569, - 378, - 582 - ], - "score": 1.0, - "content": "Deduce whether the average deceleration is less than", - "type": "text" - }, - { - "bbox": [ - 379, - 570, - 393, - 583 - ], - "score": 0.43, - "content": "3g", - "type": "inline_equation", - "height": 13, - "width": 14 - }, - { - "bbox": [ - 393, - 569, - 394, - 582 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_46", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 569, - 394, - 583 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "image", - "bbox": [ - 37, - 52, - 541, - 768 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 37, - 52, - 541, - 768 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 37, - 52, - 541, - 768 - ], - "spans": [ - { - "bbox": [ - 37, - 52, - 541, - 768 - ], - "score": 0.576, - "type": "image", - "image_path": "ff7ac384adbdd82b394556f406fa6e2759de5cd4ae0aaef93676518d53fa2706.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 37, - 52, - 541, - 290.66666666666663 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 37, - 290.66666666666663, - 541, - 529.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 37, - 529.3333333333333, - 541, - 767.9999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 47, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 37, - 52, - 541, - 768 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 37, - 52, - 541, - 768 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 37, - 52, - 541, - 768 - ], - "spans": [ - { - "bbox": [ - 37, - 52, - 541, - 768 - ], - "score": 0.576, - "type": "image", - "image_path": "ff7ac384adbdd82b394556f406fa6e2759de5cd4ae0aaef93676518d53fa2706.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 37, - 52, - 541, - 290.66666666666663 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 37, - 290.66666666666663, - 541, - 529.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 37, - 529.3333333333333, - 541, - 767.9999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 58, - 814, - 81, - 826 - ], - "spans": [ - { - "bbox": [ - 58, - 814, - 81, - 826 - ], - "score": 0.8199148178100586, - "content": "0 8", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "spans": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 77 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 573, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 573, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 285, - 29, - 292, - 39 - ], - "lines": [ - { - "bbox": [ - 284, - 28, - 294, - 41 - ], - "spans": [ - { - "bbox": [ - 284, - 28, - 294, - 41 - ], - "score": 1.0, - "content": "8 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "image", - "bbox": [ - 37, - 52, - 541, - 768 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 37, - 52, - 541, - 768 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 37, - 52, - 541, - 768 - ], - "spans": [ - { - "bbox": [ - 37, - 52, - 541, - 768 - ], - "score": 0.576, - "type": "image", - "image_path": "ff7ac384adbdd82b394556f406fa6e2759de5cd4ae0aaef93676518d53fa2706.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 37, - 52, - 541, - 290.66666666666663 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 37, - 290.66666666666663, - 541, - 529.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 37, - 529.3333333333333, - 541, - 767.9999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_47", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 111, - 68, - 383, - 83 - ], - "lines": [ - { - "bbox": [ - 114, - 70, - 382, - 81 - ], - "spans": [ - { - "bbox": [ - 114, - 70, - 251, - 81 - ], - "score": 1.0, - "content": "In Figure 2 the cell has emf", - "type": "text" - }, - { - "bbox": [ - 251, - 71, - 258, - 81 - ], - "score": 0.58, - "content": "\\varepsilon", - "type": "inline_equation", - "height": 10, - "width": 7 - }, - { - "bbox": [ - 259, - 70, - 373, - 81 - ], - "score": 1.0, - "content": " and internal resistance", - "type": "text" - }, - { - "bbox": [ - 373, - 72, - 380, - 80 - ], - "score": 0.54, - "content": "r", - "type": "inline_equation", - "height": 8, - "width": 7 - }, - { - "bbox": [ - 380, - 70, - 382, - 81 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "image", - "bbox": [ - 186, - 124, - 394, - 260 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 266, - 99, - 312, - 113 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 267, - 100, - 312, - 113 - ], - "spans": [ - { - "bbox": [ - 267, - 100, - 312, - 113 - ], - "score": 1.0, - "content": "Figure 2", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "image_body", - "bbox": [ - 186, - 124, - 394, - 260 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 186, - 124, - 394, - 260 - ], - "spans": [ - { - "bbox": [ - 186, - 124, - 394, - 260 - ], - "score": 0.967, - "type": "image", - "image_path": "5abbdd19ad01175edda239875d47c069530f6522e97aa81b4fb9d816008d7da5.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 186, - 124, - 394, - 137.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 186, - 137.0, - 394, - 150.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 186, - 150.0, - 394, - 163.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 186, - 163.0, - 394, - 176.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 186, - 176.0, - 394, - 189.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 186, - 189.0, - 394, - 202.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 186, - 202.0, - 394, - 215.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 186, - 215.0, - 394, - 228.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 186, - 228.0, - 394, - 241.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 186, - 241.0, - 394, - 254.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 186, - 254.0, - 394, - 267.0 - ], - "spans": [], - "index": 12 - } - ] - } - ], - "index": 4.0 - }, - { - "type": "text", - "bbox": [ - 114, - 273, - 255, - 287 - ], - "lines": [ - { - "bbox": [ - 114, - 275, - 254, - 286 - ], - "spans": [ - { - "bbox": [ - 114, - 275, - 244, - 286 - ], - "score": 1.0, - "content": "The current in the circuit is", - "type": "text" - }, - { - "bbox": [ - 245, - 275, - 251, - 285 - ], - "score": 0.29, - "content": "I", - "type": "inline_equation", - "height": 10, - "width": 6 - }, - { - "bbox": [ - 252, - 275, - 254, - 286 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "text", - "bbox": [ - 114, - 300, - 463, - 314 - ], - "lines": [ - { - "bbox": [ - 114, - 301, - 461, - 314 - ], - "spans": [ - { - "bbox": [ - 114, - 301, - 289, - 314 - ], - "score": 1.0, - "content": "The potential difference (pd) across", - "type": "text" - }, - { - "bbox": [ - 289, - 301, - 303, - 314 - ], - "score": 0.87, - "content": "{\\mathrm{R}}_{1}", - "type": "inline_equation", - "height": 13, - "width": 14 - }, - { - "bbox": [ - 304, - 301, - 316, - 314 - ], - "score": 1.0, - "content": " is ", - "type": "text" - }, - { - "bbox": [ - 316, - 301, - 329, - 314 - ], - "score": 0.87, - "content": "V_{1}", - "type": "inline_equation", - "height": 13, - "width": 13 - }, - { - "bbox": [ - 329, - 301, - 420, - 314 - ], - "score": 1.0, - "content": " and the pd across", - "type": "text" - }, - { - "bbox": [ - 420, - 301, - 435, - 314 - ], - "score": 0.87, - "content": "{\\bf R}_{2}", - "type": "inline_equation", - "height": 13, - "width": 15 - }, - { - "bbox": [ - 435, - 301, - 446, - 314 - ], - "score": 1.0, - "content": " is", - "type": "text" - }, - { - "bbox": [ - 447, - 301, - 460, - 314 - ], - "score": 0.85, - "content": "V_{2}", - "type": "inline_equation", - "height": 13, - "width": 13 - }, - { - "bbox": [ - 460, - 301, - 461, - 314 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 113, - 329, - 505, - 356 - ], - "lines": [ - { - "bbox": [ - 114, - 329, - 443, - 343 - ], - "spans": [ - { - "bbox": [ - 114, - 329, - 443, - 343 - ], - "score": 1.0, - "content": "Explain how the law of conservation of energy applies in this circuit.", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 114, - 342, - 505, - 355 - ], - "spans": [ - { - "bbox": [ - 114, - 342, - 505, - 355 - ], - "score": 1.0, - "content": "You should consider the movement of one coulomb of charge around the circuit.", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 15.5 - }, - { - "type": "text", - "bbox": [ - 484, - 356, - 535, - 368 - ], - "lines": [ - { - "bbox": [ - 485, - 354, - 536, - 369 - ], - "spans": [ - { - "bbox": [ - 485, - 354, - 536, - 369 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 17 - }, - { - "type": "text", - "bbox": [ - 112, - 381, - 536, - 577 - ], - "lines": [ - { - "bbox": [ - 112, - 381, - 536, - 446.3333333333333 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 112, - 446.3333333333333, - 536, - 511.66666666666663 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 112, - 511.66666666666663, - 536, - 577.0 - ], - "spans": [], - "index": 20 - } - ], - "index": 19 - }, - { - "type": "text", - "bbox": [ - 187, - 702, - 391, - 716 - ], - "lines": [ - { - "bbox": [ - 187, - 703, - 391, - 716 - ], - "spans": [ - { - "bbox": [ - 187, - 703, - 391, - 716 - ], - "score": 1.0, - "content": "Question 3 continues on the next page", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 21 - } - ], - "layout_bboxes": [], - "page_idx": 48, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 186, - 124, - 394, - 260 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 266, - 99, - 312, - 113 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 267, - 100, - 312, - 113 - ], - "spans": [ - { - "bbox": [ - 267, - 100, - 312, - 113 - ], - "score": 1.0, - "content": "Figure 2", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "image_body", - "bbox": [ - 186, - 124, - 394, - 260 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 186, - 124, - 394, - 260 - ], - "spans": [ - { - "bbox": [ - 186, - 124, - 394, - 260 - ], - "score": 0.967, - "type": "image", - "image_path": "5abbdd19ad01175edda239875d47c069530f6522e97aa81b4fb9d816008d7da5.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 186, - 124, - 394, - 137.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 186, - 137.0, - 394, - 150.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 186, - 150.0, - 394, - 163.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 186, - 163.0, - 394, - 176.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 186, - 176.0, - 394, - 189.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 186, - 189.0, - 394, - 202.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 186, - 202.0, - 394, - 215.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 186, - 215.0, - 394, - 228.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 186, - 228.0, - 394, - 241.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 186, - 241.0, - 394, - 254.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 186, - 254.0, - 394, - 267.0 - ], - "spans": [], - "index": 12 - } - ] - } - ], - "index": 4.0 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 77 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 559, - 69, - 573, - 78 - ], - "spans": [ - { - "bbox": [ - 559, - 69, - 573, - 78 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 824 - ], - "lines": [ - { - "bbox": [ - 60, - 816, - 79, - 824 - ], - "spans": [ - { - "bbox": [ - 60, - 816, - 68, - 824 - ], - "score": 0.9934693574905396, - "content": "0", - "type": "text" - }, - { - "bbox": [ - 69, - 816, - 79, - 824 - ], - "score": 0.9875374436378479, - "content": "9", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 783 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 479, - 815, - 540, - 824 - ], - "spans": [ - { - "bbox": [ - 479, - 815, - 540, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 64, - 105, - 82 - ], - "lines": [ - { - "bbox": [ - 50, - 68, - 98, - 79 - ], - "spans": [ - { - "bbox": [ - 50, - 68, - 64, - 79 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 67, - 69, - 79, - 79 - ], - "score": 1.0, - "content": "3 ", - "type": "text" - }, - { - "bbox": [ - 88, - 70, - 98, - 77 - ], - "score": 1.0, - "content": "1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 285, - 29, - 292, - 39 - ], - "lines": [ - { - "bbox": [ - 285, - 29, - 294, - 41 - ], - "spans": [ - { - "bbox": [ - 285, - 29, - 294, - 41 - ], - "score": 1.0, - "content": "9 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 111, - 68, - 383, - 83 - ], - "lines": [ - { - "bbox": [ - 114, - 70, - 382, - 81 - ], - "spans": [ - { - "bbox": [ - 114, - 70, - 251, - 81 - ], - "score": 1.0, - "content": "In Figure 2 the cell has emf", - "type": "text" - }, - { - "bbox": [ - 251, - 71, - 258, - 81 - ], - "score": 0.58, - "content": "\\varepsilon", - "type": "inline_equation", - "height": 10, - "width": 7 - }, - { - "bbox": [ - 259, - 70, - 373, - 81 - ], - "score": 1.0, - "content": " and internal resistance", - "type": "text" - }, - { - "bbox": [ - 373, - 72, - 380, - 80 - ], - "score": 0.54, - "content": "r", - "type": "inline_equation", - "height": 8, - "width": 7 - }, - { - "bbox": [ - 380, - 70, - 382, - 81 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_48", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 70, - 382, - 81 - ] - }, - { - "type": "image", - "bbox": [ - 186, - 124, - 394, - 260 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 266, - 99, - 312, - 113 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 267, - 100, - 312, - 113 - ], - "spans": [ - { - "bbox": [ - 267, - 100, - 312, - 113 - ], - "score": 1.0, - "content": "Figure 2", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "image_body", - "bbox": [ - 186, - 124, - 394, - 260 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 186, - 124, - 394, - 260 - ], - "spans": [ - { - "bbox": [ - 186, - 124, - 394, - 260 - ], - "score": 0.967, - "type": "image", - "image_path": "5abbdd19ad01175edda239875d47c069530f6522e97aa81b4fb9d816008d7da5.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 186, - 124, - 394, - 137.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 186, - 137.0, - 394, - 150.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 186, - 150.0, - 394, - 163.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 186, - 163.0, - 394, - 176.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 186, - 176.0, - 394, - 189.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 186, - 189.0, - 394, - 202.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 186, - 202.0, - 394, - 215.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 186, - 215.0, - 394, - 228.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 186, - 228.0, - 394, - 241.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 186, - 241.0, - 394, - 254.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 186, - 254.0, - 394, - 267.0 - ], - "spans": [], - "index": 12 - } - ] - } - ], - "index": 4.0, - "page_num": "page_48", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 114, - 273, - 255, - 287 - ], - "lines": [ - { - "bbox": [ - 114, - 275, - 254, - 286 - ], - "spans": [ - { - "bbox": [ - 114, - 275, - 244, - 286 - ], - "score": 1.0, - "content": "The current in the circuit is", - "type": "text" - }, - { - "bbox": [ - 245, - 275, - 251, - 285 - ], - "score": 0.29, - "content": "I", - "type": "inline_equation", - "height": 10, - "width": 6 - }, - { - "bbox": [ - 252, - 275, - 254, - 286 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_48", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 275, - 254, - 286 - ] - }, - { - "type": "text", - "bbox": [ - 114, - 300, - 463, - 314 - ], - "lines": [ - { - "bbox": [ - 114, - 301, - 461, - 314 - ], - "spans": [ - { - "bbox": [ - 114, - 301, - 289, - 314 - ], - "score": 1.0, - "content": "The potential difference (pd) across", - "type": "text" - }, - { - "bbox": [ - 289, - 301, - 303, - 314 - ], - "score": 0.87, - "content": "{\\mathrm{R}}_{1}", - "type": "inline_equation", - "height": 13, - "width": 14 - }, - { - "bbox": [ - 304, - 301, - 316, - 314 - ], - "score": 1.0, - "content": " is ", - "type": "text" - }, - { - "bbox": [ - 316, - 301, - 329, - 314 - ], - "score": 0.87, - "content": "V_{1}", - "type": "inline_equation", - "height": 13, - "width": 13 - }, - { - "bbox": [ - 329, - 301, - 420, - 314 - ], - "score": 1.0, - "content": " and the pd across", - "type": "text" - }, - { - "bbox": [ - 420, - 301, - 435, - 314 - ], - "score": 0.87, - "content": "{\\bf R}_{2}", - "type": "inline_equation", - "height": 13, - "width": 15 - }, - { - "bbox": [ - 435, - 301, - 446, - 314 - ], - "score": 1.0, - "content": " is", - "type": "text" - }, - { - "bbox": [ - 447, - 301, - 460, - 314 - ], - "score": 0.85, - "content": "V_{2}", - "type": "inline_equation", - "height": 13, - "width": 13 - }, - { - "bbox": [ - 460, - 301, - 461, - 314 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_48", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 301, - 461, - 314 - ] - }, - { - "type": "list", - "bbox": [ - 113, - 329, - 505, - 356 - ], - "lines": [ - { - "bbox": [ - 114, - 329, - 443, - 343 - ], - "spans": [ - { - "bbox": [ - 114, - 329, - 443, - 343 - ], - "score": 1.0, - "content": "Explain how the law of conservation of energy applies in this circuit.", - "type": "text" - } - ], - "index": 15, - "is_list_end_line": true - }, - { - "bbox": [ - 114, - 342, - 505, - 355 - ], - "spans": [ - { - "bbox": [ - 114, - 342, - 505, - 355 - ], - "score": 1.0, - "content": "You should consider the movement of one coulomb of charge around the circuit.", - "type": "text" - } - ], - "index": 16, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 15.5, - "page_num": "page_48", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 329, - 505, - 355 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 356, - 535, - 368 - ], - "lines": [ - { - "bbox": [ - 485, - 354, - 536, - 369 - ], - "spans": [ - { - "bbox": [ - 485, - 354, - 536, - 369 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 17, - "page_num": "page_48", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 485, - 354, - 536, - 369 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 381, - 536, - 577 - ], - "lines": [ - { - "bbox": [ - 112, - 381, - 536, - 446.3333333333333 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 112, - 446.3333333333333, - 536, - 511.66666666666663 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 112, - 511.66666666666663, - 536, - 577.0 - ], - "spans": [], - "index": 20 - } - ], - "index": 19, - "page_num": "page_48", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 112, - 381, - 536, - 577.0 - ] - }, - { - "type": "text", - "bbox": [ - 187, - 702, - 391, - 716 - ], - "lines": [ - { - "bbox": [ - 187, - 703, - 391, - 716 - ], - "spans": [ - { - "bbox": [ - 187, - 703, - 391, - 716 - ], - "score": 1.0, - "content": "Question 3 continues on the next page", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 21, - "page_num": "page_48", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 187, - 703, - 391, - 716 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 111, - 68, - 480, - 95 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 480, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 480, - 82 - ], - "score": 1.0, - "content": "Figure 3 shows a variable resistor made with a thin conducting layer on an", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 82, - 191, - 95 - ], - "spans": [ - { - "bbox": [ - 113, - 82, - 191, - 95 - ], - "score": 1.0, - "content": "insulating base.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "image", - "bbox": [ - 187, - 132, - 393, - 224 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 268, - 107, - 313, - 121 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 108, - 313, - 121 - ], - "spans": [ - { - "bbox": [ - 268, - 108, - 313, - 121 - ], - "score": 1.0, - "content": "Figure 3", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "image_body", - "bbox": [ - 187, - 132, - 393, - 224 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 187, - 132, - 393, - 224 - ], - "spans": [ - { - "bbox": [ - 187, - 132, - 393, - 224 - ], - "score": 0.958, - "type": "image", - "image_path": "469a3e10e6dff61f6ab5b50b4a42aab0a12fdcb118ae677a19f1d4b60c17aaa3.jpg" - } - ] - } - ], - "index": 6.5, - "virtual_lines": [ - { - "bbox": [ - 187, - 132, - 393, - 145 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 187, - 145, - 393, - 158 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 187, - 158, - 393, - 171 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 187, - 171, - 393, - 184 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 187, - 184, - 393, - 197 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 187, - 197, - 393, - 210 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 187, - 210, - 393, - 223 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 187, - 223, - 393, - 236 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 4.25 - }, - { - "type": "text", - "bbox": [ - 113, - 239, - 535, - 292 - ], - "lines": [ - { - "bbox": [ - 114, - 241, - 516, - 253 - ], - "spans": [ - { - "bbox": [ - 114, - 241, - 516, - 253 - ], - "score": 1.0, - "content": "The conducting layer has constant width and thickness and has connections at the", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 114, - 254, - 186, - 266 - ], - "spans": [ - { - "bbox": [ - 114, - 254, - 186, - 266 - ], - "score": 1.0, - "content": "ends A and B.", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 113, - 266, - 534, - 279 - ], - "spans": [ - { - "bbox": [ - 113, - 266, - 534, - 279 - ], - "score": 1.0, - "content": "C is a sliding contact that can move along the surface of the conducting layer between", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 113, - 279, - 159, - 293 - ], - "spans": [ - { - "bbox": [ - 113, - 279, - 159, - 293 - ], - "score": 1.0, - "content": "A and B.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 12.5 - }, - { - "type": "text", - "bbox": [ - 113, - 304, - 487, - 318 - ], - "lines": [ - { - "bbox": [ - 114, - 305, - 487, - 318 - ], - "spans": [ - { - "bbox": [ - 114, - 305, - 487, - 318 - ], - "score": 1.0, - "content": "Figure 4 shows a circuit that uses the variable resistor as a potential divider.", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "image", - "bbox": [ - 157, - 354, - 424, - 490 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 268, - 330, - 313, - 344 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 268, - 331, - 313, - 344 - ], - "spans": [ - { - "bbox": [ - 268, - 331, - 313, - 344 - ], - "score": 1.0, - "content": "Figure 4", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16 - }, - { - "type": "image_body", - "bbox": [ - 157, - 354, - 424, - 490 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 157, - 354, - 424, - 490 - ], - "spans": [ - { - "bbox": [ - 157, - 354, - 424, - 490 - ], - "score": 0.958, - "type": "image", - "image_path": "dd645ace588ac4d57fbdb977f36a28fafb86bd2b891c142ab43107962ff781b4.jpg" - } - ] - } - ], - "index": 18, - "virtual_lines": [ - { - "bbox": [ - 157, - 354, - 424, - 399.3333333333333 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 157, - 399.3333333333333, - 424, - 444.66666666666663 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 157, - 444.66666666666663, - 424, - 489.99999999999994 - ], - "spans": [], - "index": 19 - } - ] - } - ], - "index": 17.0 - }, - { - "type": "text", - "bbox": [ - 113, - 505, - 533, - 534 - ], - "lines": [ - { - "bbox": [ - 113, - 506, - 532, - 520 - ], - "spans": [ - { - "bbox": [ - 113, - 506, - 372, - 520 - ], - "score": 1.0, - "content": "The variable resistor is connected to a battery of emf", - "type": "text" - }, - { - "bbox": [ - 373, - 506, - 407, - 519 - ], - "score": 0.64, - "content": "3.00\\mathrm{V}", - "type": "inline_equation", - "height": 13, - "width": 34 - }, - { - "bbox": [ - 408, - 506, - 522, - 520 - ], - "score": 1.0, - "content": " and internal resistance ", - "type": "text" - }, - { - "bbox": [ - 522, - 509, - 529, - 518 - ], - "score": 0.5, - "content": "r", - "type": "inline_equation", - "height": 9, - "width": 7 - }, - { - "bbox": [ - 529, - 506, - 532, - 520 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 113, - 520, - 436, - 534 - ], - "spans": [ - { - "bbox": [ - 113, - 520, - 402, - 534 - ], - "score": 1.0, - "content": "The resistance of the conducting layer between A and B is ", - "type": "text" - }, - { - "bbox": [ - 402, - 520, - 433, - 532 - ], - "score": 0.79, - "content": "125\\Omega", - "type": "inline_equation", - "height": 12, - "width": 31 - }, - { - "bbox": [ - 433, - 520, - 436, - 534 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 20.5 - } - ], - "layout_bboxes": [], - "page_idx": 49, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 187, - 132, - 393, - 224 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 268, - 107, - 313, - 121 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 108, - 313, - 121 - ], - "spans": [ - { - "bbox": [ - 268, - 108, - 313, - 121 - ], - "score": 1.0, - "content": "Figure 3", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "image_body", - "bbox": [ - 187, - 132, - 393, - 224 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 187, - 132, - 393, - 224 - ], - "spans": [ - { - "bbox": [ - 187, - 132, - 393, - 224 - ], - "score": 0.958, - "type": "image", - "image_path": "469a3e10e6dff61f6ab5b50b4a42aab0a12fdcb118ae677a19f1d4b60c17aaa3.jpg" - } - ] - } - ], - "index": 6.5, - "virtual_lines": [ - { - "bbox": [ - 187, - 132, - 393, - 145 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 187, - 145, - 393, - 158 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 187, - 158, - 393, - 171 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 187, - 171, - 393, - 184 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 187, - 184, - 393, - 197 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 187, - 197, - 393, - 210 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 187, - 210, - 393, - 223 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 187, - 223, - 393, - 236 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 4.25 - }, - { - "type": "image", - "bbox": [ - 157, - 354, - 424, - 490 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 268, - 330, - 313, - 344 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 268, - 331, - 313, - 344 - ], - "spans": [ - { - "bbox": [ - 268, - 331, - 313, - 344 - ], - "score": 1.0, - "content": "Figure 4", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16 - }, - { - "type": "image_body", - "bbox": [ - 157, - 354, - 424, - 490 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 157, - 354, - 424, - 490 - ], - "spans": [ - { - "bbox": [ - 157, - 354, - 424, - 490 - ], - "score": 0.958, - "type": "image", - "image_path": "dd645ace588ac4d57fbdb977f36a28fafb86bd2b891c142ab43107962ff781b4.jpg" - } - ] - } - ], - "index": 18, - "virtual_lines": [ - { - "bbox": [ - 157, - 354, - 424, - 399.3333333333333 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 157, - 399.3333333333333, - 424, - 444.66666666666663 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 157, - 444.66666666666663, - 424, - 489.99999999999994 - ], - "spans": [], - "index": 19 - } - ] - } - ], - "index": 17.0 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 559, - 68, - 573, - 77 - ], - "spans": [ - { - "bbox": [ - 559, - 68, - 573, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 824 - ], - "lines": [ - { - "bbox": [ - 60, - 816, - 80, - 824 - ], - "spans": [ - { - "bbox": [ - 60, - 817, - 65, - 823 - ], - "score": 0.9985781908035278, - "content": "1", - "type": "text" - }, - { - "bbox": [ - 69, - 816, - 80, - 824 - ], - "score": 0.9903310537338257, - "content": "0", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 479, - 815, - 540, - 824 - ], - "spans": [ - { - "bbox": [ - 479, - 815, - 540, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "10 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 111, - 68, - 480, - 95 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 480, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 480, - 82 - ], - "score": 1.0, - "content": "Figure 3 shows a variable resistor made with a thin conducting layer on an", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 82, - 191, - 95 - ], - "spans": [ - { - "bbox": [ - 113, - 82, - 191, - 95 - ], - "score": 1.0, - "content": "insulating base.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_49", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 69, - 480, - 95 - ] - }, - { - "type": "image", - "bbox": [ - 187, - 132, - 393, - 224 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 268, - 107, - 313, - 121 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 108, - 313, - 121 - ], - "spans": [ - { - "bbox": [ - 268, - 108, - 313, - 121 - ], - "score": 1.0, - "content": "Figure 3", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "image_body", - "bbox": [ - 187, - 132, - 393, - 224 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 187, - 132, - 393, - 224 - ], - "spans": [ - { - "bbox": [ - 187, - 132, - 393, - 224 - ], - "score": 0.958, - "type": "image", - "image_path": "469a3e10e6dff61f6ab5b50b4a42aab0a12fdcb118ae677a19f1d4b60c17aaa3.jpg" - } - ] - } - ], - "index": 6.5, - "virtual_lines": [ - { - "bbox": [ - 187, - 132, - 393, - 145 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 187, - 145, - 393, - 158 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 187, - 158, - 393, - 171 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 187, - 171, - 393, - 184 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 187, - 184, - 393, - 197 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 187, - 197, - 393, - 210 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 187, - 210, - 393, - 223 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 187, - 223, - 393, - 236 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 4.25, - "page_num": "page_49", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 113, - 239, - 535, - 292 - ], - "lines": [ - { - "bbox": [ - 114, - 241, - 516, - 253 - ], - "spans": [ - { - "bbox": [ - 114, - 241, - 516, - 253 - ], - "score": 1.0, - "content": "The conducting layer has constant width and thickness and has connections at the", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 114, - 254, - 186, - 266 - ], - "spans": [ - { - "bbox": [ - 114, - 254, - 186, - 266 - ], - "score": 1.0, - "content": "ends A and B.", - "type": "text" - } - ], - "index": 12, - "is_list_end_line": true - }, - { - "bbox": [ - 113, - 266, - 534, - 279 - ], - "spans": [ - { - "bbox": [ - 113, - 266, - 534, - 279 - ], - "score": 1.0, - "content": "C is a sliding contact that can move along the surface of the conducting layer between", - "type": "text" - } - ], - "index": 13, - "is_list_start_line": true - }, - { - "bbox": [ - 113, - 279, - 159, - 293 - ], - "spans": [ - { - "bbox": [ - 113, - 279, - 159, - 293 - ], - "score": 1.0, - "content": "A and B.", - "type": "text" - } - ], - "index": 14, - "is_list_end_line": true - } - ], - "index": 12.5, - "page_num": "page_49", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 241, - 534, - 293 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 304, - 487, - 318 - ], - "lines": [ - { - "bbox": [ - 114, - 305, - 487, - 318 - ], - "spans": [ - { - "bbox": [ - 114, - 305, - 487, - 318 - ], - "score": 1.0, - "content": "Figure 4 shows a circuit that uses the variable resistor as a potential divider.", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_49", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 305, - 487, - 318 - ] - }, - { - "type": "image", - "bbox": [ - 157, - 354, - 424, - 490 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 268, - 330, - 313, - 344 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 268, - 331, - 313, - 344 - ], - "spans": [ - { - "bbox": [ - 268, - 331, - 313, - 344 - ], - "score": 1.0, - "content": "Figure 4", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16 - }, - { - "type": "image_body", - "bbox": [ - 157, - 354, - 424, - 490 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 157, - 354, - 424, - 490 - ], - "spans": [ - { - "bbox": [ - 157, - 354, - 424, - 490 - ], - "score": 0.958, - "type": "image", - "image_path": "dd645ace588ac4d57fbdb977f36a28fafb86bd2b891c142ab43107962ff781b4.jpg" - } - ] - } - ], - "index": 18, - "virtual_lines": [ - { - "bbox": [ - 157, - 354, - 424, - 399.3333333333333 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 157, - 399.3333333333333, - 424, - 444.66666666666663 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 157, - 444.66666666666663, - 424, - 489.99999999999994 - ], - "spans": [], - "index": 19 - } - ] - } - ], - "index": 17.0, - "page_num": "page_49", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 113, - 505, - 533, - 534 - ], - "lines": [ - { - "bbox": [ - 113, - 506, - 532, - 520 - ], - "spans": [ - { - "bbox": [ - 113, - 506, - 372, - 520 - ], - "score": 1.0, - "content": "The variable resistor is connected to a battery of emf", - "type": "text" - }, - { - "bbox": [ - 373, - 506, - 407, - 519 - ], - "score": 0.64, - "content": "3.00\\mathrm{V}", - "type": "inline_equation", - "height": 13, - "width": 34 - }, - { - "bbox": [ - 408, - 506, - 522, - 520 - ], - "score": 1.0, - "content": " and internal resistance ", - "type": "text" - }, - { - "bbox": [ - 522, - 509, - 529, - 518 - ], - "score": 0.5, - "content": "r", - "type": "inline_equation", - "height": 9, - "width": 7 - }, - { - "bbox": [ - 529, - 506, - 532, - 520 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 20, - "is_list_end_line": true - }, - { - "bbox": [ - 113, - 520, - 436, - 534 - ], - "spans": [ - { - "bbox": [ - 113, - 520, - 402, - 534 - ], - "score": 1.0, - "content": "The resistance of the conducting layer between A and B is ", - "type": "text" - }, - { - "bbox": [ - 402, - 520, - 433, - 532 - ], - "score": 0.79, - "content": "125\\Omega", - "type": "inline_equation", - "height": 12, - "width": 31 - }, - { - "bbox": [ - 433, - 520, - 436, - 534 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 21, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 114, - 69, - 531, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 531, - 82 - ], - "score": 1.0, - "content": "The sliding contact C is moved to end B of the variable resistor. The switch is closed.", - "type": "text", - "cross_page": true - } - ], - "index": 0, - "is_list_end_line": true - }, - { - "bbox": [ - 113, - 82, - 284, - 95 - ], - "spans": [ - { - "bbox": [ - 113, - 82, - 246, - 95 - ], - "score": 1.0, - "content": "The digital voltmeter reads ", - "type": "text", - "cross_page": true - }, - { - "bbox": [ - 246, - 82, - 280, - 95 - ], - "score": 0.38, - "content": "2.89\\mathrm{V}", - "type": "inline_equation", - "height": 13, - "width": 34, - "cross_page": true - }, - { - "bbox": [ - 280, - 82, - 284, - 95 - ], - "score": 1.0, - "content": ".", - "type": "text", - "cross_page": true - } - ], - "index": 1, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 20.5, - "page_num": "page_49", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 506, - 532, - 534 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 68, - 530, - 95 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 531, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 531, - 82 - ], - "score": 1.0, - "content": "The sliding contact C is moved to end B of the variable resistor. The switch is closed.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 82, - 284, - 95 - ], - "spans": [ - { - "bbox": [ - 113, - 82, - 246, - 95 - ], - "score": 1.0, - "content": "The digital voltmeter reads ", - "type": "text" - }, - { - "bbox": [ - 246, - 82, - 280, - 95 - ], - "score": 0.38, - "content": "2.89\\mathrm{V}", - "type": "inline_equation", - "height": 13, - "width": 34 - }, - { - "bbox": [ - 280, - 82, - 284, - 95 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 114, - 108, - 287, - 122 - ], - "lines": [ - { - "bbox": [ - 114, - 109, - 286, - 122 - ], - "spans": [ - { - "bbox": [ - 114, - 109, - 165, - 122 - ], - "score": 1.0, - "content": "Show that", - "type": "text" - }, - { - "bbox": [ - 165, - 111, - 172, - 120 - ], - "score": 0.53, - "content": "r", - "type": "inline_equation", - "height": 9, - "width": 7 - }, - { - "bbox": [ - 173, - 109, - 255, - 122 - ], - "score": 1.0, - "content": "is approximately", - "type": "text" - }, - { - "bbox": [ - 255, - 109, - 284, - 121 - ], - "score": 0.62, - "content": "4.8\\Omega", - "type": "inline_equation", - "height": 12, - "width": 29 - }, - { - "bbox": [ - 285, - 109, - 286, - 122 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 483, - 122, - 535, - 136 - ], - "lines": [ - { - "bbox": [ - 484, - 123, - 536, - 136 - ], - "spans": [ - { - "bbox": [ - 484, - 123, - 536, - 136 - ], - "score": 1.0, - "content": "[3 marks] ", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 111, - 417, - 534, - 489 - ], - "lines": [ - { - "bbox": [ - 114, - 417, - 532, - 446 - ], - "spans": [ - { - "bbox": [ - 114, - 425, - 166, - 437 - ], - "score": 1.0, - "content": "C is set at ", - "type": "text" - }, - { - "bbox": [ - 166, - 417, - 178, - 446 - ], - "score": 0.78, - "content": "\\frac{1}{5}", - "type": "inline_equation", - "height": 29, - "width": 12 - }, - { - "bbox": [ - 179, - 425, - 532, - 438 - ], - "score": 1.0, - "content": " of the distance between A and B. The thickness of the conducting layer", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 113, - 448, - 387, - 460 - ], - "spans": [ - { - "bbox": [ - 113, - 448, - 349, - 460 - ], - "score": 1.0, - "content": "is uniform so the resistance between A and C is", - "type": "text" - }, - { - "bbox": [ - 349, - 448, - 384, - 460 - ], - "score": 0.71, - "content": "25.0\\Omega", - "type": "inline_equation", - "height": 12, - "width": 35 - }, - { - "bbox": [ - 385, - 448, - 387, - 460 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 114, - 474, - 343, - 488 - ], - "spans": [ - { - "bbox": [ - 114, - 474, - 343, - 488 - ], - "score": 1.0, - "content": "Determine the voltmeter reading at this setting.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 483, - 487, - 535, - 501 - ], - "lines": [ - { - "bbox": [ - 484, - 487, - 536, - 501 - ], - "spans": [ - { - "bbox": [ - 484, - 487, - 536, - 501 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 272, - 623, - 530, - 640 - ], - "lines": [ - { - "bbox": [ - 274, - 624, - 529, - 637 - ], - "spans": [ - { - "bbox": [ - 274, - 624, - 361, - 637 - ], - "score": 1.0, - "content": "voltmeter reading", - "type": "text" - }, - { - "bbox": [ - 361, - 626, - 372, - 635 - ], - "score": 0.53, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 11 - }, - { - "bbox": [ - 521, - 626, - 529, - 633 - ], - "score": 1.0, - "content": "V", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 187, - 689, - 392, - 703 - ], - "lines": [ - { - "bbox": [ - 187, - 689, - 390, - 703 - ], - "spans": [ - { - "bbox": [ - 187, - 689, - 390, - 703 - ], - "score": 1.0, - "content": "Question 3 continues on the next page", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - } - ], - "layout_bboxes": [], - "page_idx": 50, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 77 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 559, - 69, - 573, - 78 - ], - "spans": [ - { - "bbox": [ - 559, - 69, - 573, - 78 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 784 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 419, - 105, - 437 - ], - "lines": [ - { - "bbox": [ - 49, - 421, - 102, - 435 - ], - "spans": [ - { - "bbox": [ - 49, - 421, - 102, - 435 - ], - "score": 1.0, - "content": "0 3 . 3 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 824 - ], - "lines": [ - { - "bbox": [ - 61, - 818, - 77, - 822 - ], - "spans": [ - { - "bbox": [ - 61, - 818, - 65, - 821 - ], - "score": 0.5130922794342041, - "content": "1", - "type": "text" - }, - { - "bbox": [ - 75, - 818, - 77, - 822 - ], - "score": 0.644063413143158, - "content": "1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 64, - 105, - 83 - ], - "lines": [ - { - "bbox": [ - 48, - 66, - 103, - 82 - ], - "spans": [ - { - "bbox": [ - 48, - 66, - 103, - 82 - ], - "score": 1.0, - "content": "0 3 . 2 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 294, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 297, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 297, - 42 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 14, - "width": 16 - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "list", - "bbox": [ - 113, - 68, - 530, - 95 - ], - "lines": [], - "index": 0.5, - "page_num": "page_50", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 69, - 531, - 95 - ], - "lines_deleted": true - }, - { - "type": "text", - "bbox": [ - 114, - 108, - 287, - 122 - ], - "lines": [ - { - "bbox": [ - 114, - 109, - 286, - 122 - ], - "spans": [ - { - "bbox": [ - 114, - 109, - 165, - 122 - ], - "score": 1.0, - "content": "Show that", - "type": "text" - }, - { - "bbox": [ - 165, - 111, - 172, - 120 - ], - "score": 0.53, - "content": "r", - "type": "inline_equation", - "height": 9, - "width": 7 - }, - { - "bbox": [ - 173, - 109, - 255, - 122 - ], - "score": 1.0, - "content": "is approximately", - "type": "text" - }, - { - "bbox": [ - 255, - 109, - 284, - 121 - ], - "score": 0.62, - "content": "4.8\\Omega", - "type": "inline_equation", - "height": 12, - "width": 29 - }, - { - "bbox": [ - 285, - 109, - 286, - 122 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_50", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 109, - 286, - 122 - ] - }, - { - "type": "text", - "bbox": [ - 483, - 122, - 535, - 136 - ], - "lines": [ - { - "bbox": [ - 484, - 123, - 536, - 136 - ], - "spans": [ - { - "bbox": [ - 484, - 123, - 536, - 136 - ], - "score": 1.0, - "content": "[3 marks] ", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_50", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 484, - 123, - 536, - 136 - ] - }, - { - "type": "list", - "bbox": [ - 111, - 417, - 534, - 489 - ], - "lines": [ - { - "bbox": [ - 114, - 417, - 532, - 446 - ], - "spans": [ - { - "bbox": [ - 114, - 425, - 166, - 437 - ], - "score": 1.0, - "content": "C is set at ", - "type": "text" - }, - { - "bbox": [ - 166, - 417, - 178, - 446 - ], - "score": 0.78, - "content": "\\frac{1}{5}", - "type": "inline_equation", - "height": 29, - "width": 12 - }, - { - "bbox": [ - 179, - 425, - 532, - 438 - ], - "score": 1.0, - "content": " of the distance between A and B. The thickness of the conducting layer", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 113, - 448, - 387, - 460 - ], - "spans": [ - { - "bbox": [ - 113, - 448, - 349, - 460 - ], - "score": 1.0, - "content": "is uniform so the resistance between A and C is", - "type": "text" - }, - { - "bbox": [ - 349, - 448, - 384, - 460 - ], - "score": 0.71, - "content": "25.0\\Omega", - "type": "inline_equation", - "height": 12, - "width": 35 - }, - { - "bbox": [ - 385, - 448, - 387, - 460 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 5, - "is_list_end_line": true - }, - { - "bbox": [ - 114, - 474, - 343, - 488 - ], - "spans": [ - { - "bbox": [ - 114, - 474, - 343, - 488 - ], - "score": 1.0, - "content": "Determine the voltmeter reading at this setting.", - "type": "text" - } - ], - "index": 6, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 5, - "page_num": "page_50", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 417, - 532, - 488 - ] - }, - { - "type": "text", - "bbox": [ - 483, - 487, - 535, - 501 - ], - "lines": [ - { - "bbox": [ - 484, - 487, - 536, - 501 - ], - "spans": [ - { - "bbox": [ - 484, - 487, - 536, - 501 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_50", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 484, - 487, - 536, - 501 - ] - }, - { - "type": "text", - "bbox": [ - 272, - 623, - 530, - 640 - ], - "lines": [ - { - "bbox": [ - 274, - 624, - 529, - 637 - ], - "spans": [ - { - "bbox": [ - 274, - 624, - 361, - 637 - ], - "score": 1.0, - "content": "voltmeter reading", - "type": "text" - }, - { - "bbox": [ - 361, - 626, - 372, - 635 - ], - "score": 0.53, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 11 - }, - { - "bbox": [ - 521, - 626, - 529, - 633 - ], - "score": 1.0, - "content": "V", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_50", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 274, - 624, - 529, - 637 - ] - }, - { - "type": "text", - "bbox": [ - 187, - 689, - 392, - 703 - ], - "lines": [ - { - "bbox": [ - 187, - 689, - 390, - 703 - ], - "spans": [ - { - "bbox": [ - 187, - 689, - 390, - 703 - ], - "score": 1.0, - "content": "Question 3 continues on the next page", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_50", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 187, - 689, - 390, - 703 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 68, - 521, - 95 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 521, - 81 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 521, - 81 - ], - "score": 1.0, - "content": "Figure 5 shows a variable resistor similar to the one shown in Figure 3 but with the", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 82, - 291, - 95 - ], - "spans": [ - { - "bbox": [ - 113, - 82, - 291, - 95 - ], - "score": 1.0, - "content": "following three manufacturing faults:", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 113, - 107, - 516, - 161 - ], - "lines": [ - { - "bbox": [ - 114, - 109, - 497, - 120 - ], - "spans": [ - { - "bbox": [ - 114, - 109, - 497, - 120 - ], - "score": 1.0, - "content": "• at P the conducting layer changes in thickness so that AP is thinner than PB", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 113, - 122, - 516, - 135 - ], - "spans": [ - { - "bbox": [ - 113, - 124, - 121, - 132 - ], - "score": 0.26, - "content": "\\bullet", - "type": "inline_equation", - "height": 8, - "width": 8 - }, - { - "bbox": [ - 121, - 122, - 516, - 135 - ], - "score": 1.0, - "content": " at Q there is a scratch into the surface of the conducting layer and across its full ", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 123, - 134, - 154, - 148 - ], - "spans": [ - { - "bbox": [ - 123, - 134, - 154, - 148 - ], - "score": 1.0, - "content": "width ", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 113, - 147, - 469, - 161 - ], - "spans": [ - { - "bbox": [ - 113, - 147, - 469, - 161 - ], - "score": 1.0, - "content": "• from R to B the conducting connector is laid over the conducting layer.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 3.5 - }, - { - "type": "text", - "bbox": [ - 113, - 173, - 336, - 187 - ], - "lines": [ - { - "bbox": [ - 114, - 174, - 334, - 186 - ], - "spans": [ - { - "bbox": [ - 114, - 174, - 334, - 186 - ], - "score": 1.0, - "content": "The width of the conducting layer is constant.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 113, - 199, - 311, - 226 - ], - "lines": [ - { - "bbox": [ - 114, - 199, - 311, - 212 - ], - "spans": [ - { - "bbox": [ - 114, - 200, - 151, - 212 - ], - "score": 1.0, - "content": "A pd of", - "type": "text" - }, - { - "bbox": [ - 151, - 199, - 180, - 212 - ], - "score": 0.6, - "content": "3.0\\mathrm{V}", - "type": "inline_equation", - "height": 13, - "width": 29 - }, - { - "bbox": [ - 180, - 200, - 311, - 212 - ], - "score": 1.0, - "content": " is applied across A and B.", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 114, - 213, - 232, - 224 - ], - "spans": [ - { - "bbox": [ - 114, - 213, - 232, - 224 - ], - "score": 1.0, - "content": "C is moved from A to B.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7.5 - }, - { - "type": "image", - "bbox": [ - 107, - 262, - 474, - 361 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 268, - 238, - 313, - 252 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 239, - 313, - 252 - ], - "spans": [ - { - "bbox": [ - 268, - 239, - 313, - 252 - ], - "score": 1.0, - "content": "Figure 5", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "image_body", - "bbox": [ - 107, - 262, - 474, - 361 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 107, - 262, - 474, - 361 - ], - "spans": [ - { - "bbox": [ - 107, - 262, - 474, - 361 - ], - "score": 0.96, - "type": "image", - "image_path": "b093eec94cb17567e3ee76cdd17f1d084a3cb4d3c516419fa17327fb25936124.jpg" - } - ] - } - ], - "index": 11, - "virtual_lines": [ - { - "bbox": [ - 107, - 262, - 474, - 295.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 107, - 295.0, - 474, - 328.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 107, - 328.0, - 474, - 361.0 - ], - "spans": [], - "index": 12 - } - ] - } - ], - "index": 10.0 - }, - { - "type": "text", - "bbox": [ - 111, - 383, - 532, - 409 - ], - "lines": [ - { - "bbox": [ - 115, - 384, - 531, - 396 - ], - "spans": [ - { - "bbox": [ - 115, - 384, - 531, - 396 - ], - "score": 1.0, - "content": "Sketch, on the axes in Figure 6, a graph to show how the pd between A and C varies", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 114, - 398, - 247, - 408 - ], - "spans": [ - { - "bbox": [ - 114, - 398, - 247, - 408 - ], - "score": 1.0, - "content": "as C is moved from A to B.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 13.5 - }, - { - "type": "text", - "bbox": [ - 484, - 409, - 535, - 423 - ], - "lines": [ - { - "bbox": [ - 484, - 408, - 536, - 424 - ], - "spans": [ - { - "bbox": [ - 484, - 408, - 536, - 424 - ], - "score": 1.0, - "content": "[4 marks] ", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "image", - "bbox": [ - 79, - 474, - 457, - 763 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 268, - 435, - 313, - 449 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 268, - 436, - 313, - 449 - ], - "spans": [ - { - "bbox": [ - 268, - 436, - 313, - 449 - ], - "score": 1.0, - "content": "Figure 6", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16 - }, - { - "type": "image_body", - "bbox": [ - 79, - 474, - 457, - 763 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 79, - 474, - 457, - 763 - ], - "spans": [ - { - "bbox": [ - 79, - 474, - 457, - 763 - ], - "score": 0.932, - "type": "image", - "image_path": "e15b5c0a90d2d0538a480bbb998b1e999c5ce87cecdf0a09c885a9045a934b40.jpg" - } - ] - } - ], - "index": 18, - "virtual_lines": [ - { - "bbox": [ - 79, - 474, - 457, - 570.3333333333334 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 79, - 570.3333333333334, - 457, - 666.6666666666667 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 79, - 666.6666666666667, - 457, - 763.0000000000001 - ], - "spans": [], - "index": 19 - } - ] - } - ], - "index": 17.0 - } - ], - "layout_bboxes": [], - "page_idx": 51, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 107, - 262, - 474, - 361 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 268, - 238, - 313, - 252 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 239, - 313, - 252 - ], - "spans": [ - { - "bbox": [ - 268, - 239, - 313, - 252 - ], - "score": 1.0, - "content": "Figure 5", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "image_body", - "bbox": [ - 107, - 262, - 474, - 361 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 107, - 262, - 474, - 361 - ], - "spans": [ - { - "bbox": [ - 107, - 262, - 474, - 361 - ], - "score": 0.96, - "type": "image", - "image_path": "b093eec94cb17567e3ee76cdd17f1d084a3cb4d3c516419fa17327fb25936124.jpg" - } - ] - } - ], - "index": 11, - "virtual_lines": [ - { - "bbox": [ - 107, - 262, - 474, - 295.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 107, - 295.0, - 474, - 328.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 107, - 328.0, - 474, - 361.0 - ], - "spans": [], - "index": 12 - } - ] - } - ], - "index": 10.0 - }, - { - "type": "image", - "bbox": [ - 79, - 474, - 457, - 763 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 268, - 435, - 313, - 449 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 268, - 436, - 313, - 449 - ], - "spans": [ - { - "bbox": [ - 268, - 436, - 313, - 449 - ], - "score": 1.0, - "content": "Figure 6", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16 - }, - { - "type": "image_body", - "bbox": [ - 79, - 474, - 457, - 763 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 79, - 474, - 457, - 763 - ], - "spans": [ - { - "bbox": [ - 79, - 474, - 457, - 763 - ], - "score": 0.932, - "type": "image", - "image_path": "e15b5c0a90d2d0538a480bbb998b1e999c5ce87cecdf0a09c885a9045a934b40.jpg" - } - ] - } - ], - "index": 18, - "virtual_lines": [ - { - "bbox": [ - 79, - 474, - 457, - 570.3333333333334 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 79, - 570.3333333333334, - 457, - 666.6666666666667 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 79, - 666.6666666666667, - 457, - 763.0000000000001 - ], - "spans": [], - "index": 19 - } - ] - } - ], - "index": 17.0 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 61, - 816, - 80, - 825 - ], - "spans": [ - { - "bbox": [ - 61, - 818, - 64, - 822 - ], - "score": 0.8500092029571533, - "content": "1", - "type": "text" - }, - { - "bbox": [ - 70, - 816, - 80, - 825 - ], - "score": 0.9996758699417114, - "content": "2", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 105, - 82 - ], - "lines": [ - { - "bbox": [ - 50, - 68, - 99, - 80 - ], - "spans": [ - { - "bbox": [ - 50, - 68, - 81, - 80 - ], - "score": 1.0, - "content": "0 3 ", - "type": "text" - }, - { - "bbox": [ - 89, - 69, - 99, - 78 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 542, - 719, - 576, - 761 - ], - "lines": [ - { - "bbox": [ - 552, - 744, - 566, - 754 - ], - "spans": [ - { - "bbox": [ - 552, - 744, - 566, - 754 - ], - "score": 1.0, - "content": "11", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 479, - 815, - 540, - 824 - ], - "spans": [ - { - "bbox": [ - 479, - 815, - 540, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "12 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 68, - 521, - 95 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 521, - 81 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 521, - 81 - ], - "score": 1.0, - "content": "Figure 5 shows a variable resistor similar to the one shown in Figure 3 but with the", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 82, - 291, - 95 - ], - "spans": [ - { - "bbox": [ - 113, - 82, - 291, - 95 - ], - "score": 1.0, - "content": "following three manufacturing faults:", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_51", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 69, - 521, - 95 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 107, - 516, - 161 - ], - "lines": [ - { - "bbox": [ - 114, - 109, - 497, - 120 - ], - "spans": [ - { - "bbox": [ - 114, - 109, - 497, - 120 - ], - "score": 1.0, - "content": "• at P the conducting layer changes in thickness so that AP is thinner than PB", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 113, - 122, - 516, - 135 - ], - "spans": [ - { - "bbox": [ - 113, - 124, - 121, - 132 - ], - "score": 0.26, - "content": "\\bullet", - "type": "inline_equation", - "height": 8, - "width": 8 - }, - { - "bbox": [ - 121, - 122, - 516, - 135 - ], - "score": 1.0, - "content": " at Q there is a scratch into the surface of the conducting layer and across its full ", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 123, - 134, - 154, - 148 - ], - "spans": [ - { - "bbox": [ - 123, - 134, - 154, - 148 - ], - "score": 1.0, - "content": "width ", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 113, - 147, - 469, - 161 - ], - "spans": [ - { - "bbox": [ - 113, - 147, - 469, - 161 - ], - "score": 1.0, - "content": "• from R to B the conducting connector is laid over the conducting layer.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 3.5, - "page_num": "page_51", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 109, - 516, - 161 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 173, - 336, - 187 - ], - "lines": [ - { - "bbox": [ - 114, - 174, - 334, - 186 - ], - "spans": [ - { - "bbox": [ - 114, - 174, - 334, - 186 - ], - "score": 1.0, - "content": "The width of the conducting layer is constant.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_51", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 174, - 334, - 186 - ] - }, - { - "type": "list", - "bbox": [ - 113, - 199, - 311, - 226 - ], - "lines": [ - { - "bbox": [ - 114, - 199, - 311, - 212 - ], - "spans": [ - { - "bbox": [ - 114, - 200, - 151, - 212 - ], - "score": 1.0, - "content": "A pd of", - "type": "text" - }, - { - "bbox": [ - 151, - 199, - 180, - 212 - ], - "score": 0.6, - "content": "3.0\\mathrm{V}", - "type": "inline_equation", - "height": 13, - "width": 29 - }, - { - "bbox": [ - 180, - 200, - 311, - 212 - ], - "score": 1.0, - "content": " is applied across A and B.", - "type": "text" - } - ], - "index": 7, - "is_list_end_line": true - }, - { - "bbox": [ - 114, - 213, - 232, - 224 - ], - "spans": [ - { - "bbox": [ - 114, - 213, - 232, - 224 - ], - "score": 1.0, - "content": "C is moved from A to B.", - "type": "text" - } - ], - "index": 8, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 7.5, - "page_num": "page_51", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 199, - 311, - 224 - ] - }, - { - "type": "image", - "bbox": [ - 107, - 262, - 474, - 361 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 268, - 238, - 313, - 252 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 239, - 313, - 252 - ], - "spans": [ - { - "bbox": [ - 268, - 239, - 313, - 252 - ], - "score": 1.0, - "content": "Figure 5", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "image_body", - "bbox": [ - 107, - 262, - 474, - 361 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 107, - 262, - 474, - 361 - ], - "spans": [ - { - "bbox": [ - 107, - 262, - 474, - 361 - ], - "score": 0.96, - "type": "image", - "image_path": "b093eec94cb17567e3ee76cdd17f1d084a3cb4d3c516419fa17327fb25936124.jpg" - } - ] - } - ], - "index": 11, - "virtual_lines": [ - { - "bbox": [ - 107, - 262, - 474, - 295.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 107, - 295.0, - 474, - 328.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 107, - 328.0, - 474, - 361.0 - ], - "spans": [], - "index": 12 - } - ] - } - ], - "index": 10.0, - "page_num": "page_51", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 111, - 383, - 532, - 409 - ], - "lines": [ - { - "bbox": [ - 115, - 384, - 531, - 396 - ], - "spans": [ - { - "bbox": [ - 115, - 384, - 531, - 396 - ], - "score": 1.0, - "content": "Sketch, on the axes in Figure 6, a graph to show how the pd between A and C varies", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 114, - 398, - 247, - 408 - ], - "spans": [ - { - "bbox": [ - 114, - 398, - 247, - 408 - ], - "score": 1.0, - "content": "as C is moved from A to B.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 13.5, - "page_num": "page_51", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 384, - 531, - 408 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 409, - 535, - 423 - ], - "lines": [ - { - "bbox": [ - 484, - 408, - 536, - 424 - ], - "spans": [ - { - "bbox": [ - 484, - 408, - 536, - 424 - ], - "score": 1.0, - "content": "[4 marks] ", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_51", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 484, - 408, - 536, - 424 - ] - }, - { - "type": "image", - "bbox": [ - 79, - 474, - 457, - 763 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 268, - 435, - 313, - 449 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 268, - 436, - 313, - 449 - ], - "spans": [ - { - "bbox": [ - 268, - 436, - 313, - 449 - ], - "score": 1.0, - "content": "Figure 6", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16 - }, - { - "type": "image_body", - "bbox": [ - 79, - 474, - 457, - 763 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 79, - 474, - 457, - 763 - ], - "spans": [ - { - "bbox": [ - 79, - 474, - 457, - 763 - ], - "score": 0.932, - "type": "image", - "image_path": "e15b5c0a90d2d0538a480bbb998b1e999c5ce87cecdf0a09c885a9045a934b40.jpg" - } - ] - } - ], - "index": 18, - "virtual_lines": [ - { - "bbox": [ - 79, - 474, - 457, - 570.3333333333334 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 79, - 570.3333333333334, - 457, - 666.6666666666667 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 79, - 666.6666666666667, - 457, - 763.0000000000001 - ], - "spans": [], - "index": 19 - } - ] - } - ], - "index": 17.0, - "page_num": "page_51", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 68, - 519, - 95 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 518, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 518, - 82 - ], - "score": 1.0, - "content": "Porro prisms are used in binoculars to reverse the path of the light. The prism is in", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 82, - 336, - 95 - ], - "spans": [ - { - "bbox": [ - 113, - 82, - 336, - 95 - ], - "score": 1.0, - "content": "the shape of a right-angled isosceles triangle.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 110, - 107, - 497, - 134 - ], - "lines": [ - { - "bbox": [ - 114, - 107, - 496, - 122 - ], - "spans": [ - { - "bbox": [ - 114, - 107, - 496, - 122 - ], - "score": 1.0, - "content": "Figure 7 shows a ray of light, at normal incidence on the longest side, passing", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 114, - 121, - 253, - 134 - ], - "spans": [ - { - "bbox": [ - 114, - 121, - 253, - 134 - ], - "score": 1.0, - "content": "through a glass Porro prism.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5 - }, - { - "type": "image", - "bbox": [ - 162, - 169, - 419, - 345 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 267, - 146, - 313, - 160 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 147, - 313, - 160 - ], - "spans": [ - { - "bbox": [ - 268, - 147, - 313, - 160 - ], - "score": 1.0, - "content": "Figure 7", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "image_body", - "bbox": [ - 162, - 169, - 419, - 345 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 162, - 169, - 419, - 345 - ], - "spans": [ - { - "bbox": [ - 162, - 169, - 419, - 345 - ], - "score": 0.966, - "type": "image", - "image_path": "a1fe560a1181e67cc06b8a8eb79894f34669d2031b50659cdd72fd7d90dd00a2.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 162, - 169, - 419, - 227.66666666666666 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 162, - 227.66666666666666, - 419, - 286.3333333333333 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 162, - 286.3333333333333, - 419, - 345.0 - ], - "spans": [], - "index": 7 - } - ] - } - ], - "index": 5.0 - }, - { - "type": "text", - "bbox": [ - 113, - 358, - 340, - 372 - ], - "lines": [ - { - "bbox": [ - 114, - 358, - 340, - 372 - ], - "spans": [ - { - "bbox": [ - 114, - 358, - 309, - 372 - ], - "score": 1.0, - "content": "The critical angle for light in the prism is", - "type": "text" - }, - { - "bbox": [ - 309, - 358, - 337, - 371 - ], - "score": 0.81, - "content": "41.5^{\\circ}", - "type": "inline_equation", - "height": 13, - "width": 28 - }, - { - "bbox": [ - 337, - 358, - 340, - 372 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 111, - 387, - 531, - 415 - ], - "lines": [ - { - "bbox": [ - 114, - 388, - 498, - 401 - ], - "spans": [ - { - "bbox": [ - 114, - 388, - 498, - 401 - ], - "score": 1.0, - "content": "Show that the glass used to make the prism has a refractive index of about 1.5", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 488, - 401, - 532, - 414 - ], - "spans": [ - { - "bbox": [ - 488, - 401, - 532, - 414 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9.5 - }, - { - "type": "text", - "bbox": [ - 112, - 526, - 389, - 541 - ], - "lines": [ - { - "bbox": [ - 114, - 527, - 388, - 541 - ], - "spans": [ - { - "bbox": [ - 114, - 527, - 388, - 541 - ], - "score": 1.0, - "content": "Explain why the ray emerges parallel to the incident ray.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 112, - 544, - 537, - 683 - ], - "lines": [ - { - "bbox": [ - 484, - 539, - 536, - 554 - ], - "spans": [ - { - "bbox": [ - 484, - 539, - 536, - 554 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "title", - "bbox": [ - 484, - 539, - 535, - 553 - ], - "lines": [ - { - "bbox": [ - 484, - 539, - 535, - 553 - ], - "spans": [], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "text", - "bbox": [ - 187, - 718, - 391, - 733 - ], - "lines": [ - { - "bbox": [ - 187, - 719, - 390, - 732 - ], - "spans": [ - { - "bbox": [ - 187, - 719, - 390, - 732 - ], - "score": 1.0, - "content": "Question 4 continues on the next page", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - } - ], - "layout_bboxes": [], - "page_idx": 52, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 162, - 169, - 419, - 345 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 267, - 146, - 313, - 160 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 147, - 313, - 160 - ], - "spans": [ - { - "bbox": [ - 268, - 147, - 313, - 160 - ], - "score": 1.0, - "content": "Figure 7", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "image_body", - "bbox": [ - 162, - 169, - 419, - 345 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 162, - 169, - 419, - 345 - ], - "spans": [ - { - "bbox": [ - 162, - 169, - 419, - 345 - ], - "score": 0.966, - "type": "image", - "image_path": "a1fe560a1181e67cc06b8a8eb79894f34669d2031b50659cdd72fd7d90dd00a2.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 162, - 169, - 419, - 227.66666666666666 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 162, - 227.66666666666666, - 419, - 286.3333333333333 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 162, - 286.3333333333333, - 419, - 345.0 - ], - "spans": [], - "index": 7 - } - ] - } - ], - "index": 5.0 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 77 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 78 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 78 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 383, - 105, - 401 - ], - "lines": [ - { - "bbox": [ - 50, - 385, - 101, - 399 - ], - "spans": [ - { - "bbox": [ - 50, - 385, - 101, - 399 - ], - "score": 1.0, - "content": "0 4 . 1 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 82, - 82 - ], - "lines": [ - { - "bbox": [ - 51, - 69, - 77, - 79 - ], - "spans": [ - { - "bbox": [ - 51, - 69, - 64, - 79 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 65, - 69, - 77, - 79 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 523, - 105, - 541 - ], - "lines": [ - { - "bbox": [ - 48, - 524, - 103, - 541 - ], - "spans": [ - { - "bbox": [ - 48, - 524, - 103, - 541 - ], - "score": 1.0, - "content": "0 4 . 2 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 784 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 824 - ], - "lines": [ - { - "bbox": [ - 60, - 816, - 80, - 824 - ], - "spans": [ - { - "bbox": [ - 60, - 817, - 65, - 823 - ], - "score": 0.9985781908035278, - "content": "1", - "type": "text" - }, - { - "bbox": [ - 70, - 816, - 80, - 824 - ], - "score": 0.9999203681945801, - "content": "3", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "13 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 68, - 519, - 95 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 518, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 518, - 82 - ], - "score": 1.0, - "content": "Porro prisms are used in binoculars to reverse the path of the light. The prism is in", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 82, - 336, - 95 - ], - "spans": [ - { - "bbox": [ - 113, - 82, - 336, - 95 - ], - "score": 1.0, - "content": "the shape of a right-angled isosceles triangle.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_52", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 69, - 518, - 95 - ] - }, - { - "type": "text", - "bbox": [ - 110, - 107, - 497, - 134 - ], - "lines": [ - { - "bbox": [ - 114, - 107, - 496, - 122 - ], - "spans": [ - { - "bbox": [ - 114, - 107, - 496, - 122 - ], - "score": 1.0, - "content": "Figure 7 shows a ray of light, at normal incidence on the longest side, passing", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 114, - 121, - 253, - 134 - ], - "spans": [ - { - "bbox": [ - 114, - 121, - 253, - 134 - ], - "score": 1.0, - "content": "through a glass Porro prism.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5, - "page_num": "page_52", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 107, - 496, - 134 - ] - }, - { - "type": "image", - "bbox": [ - 162, - 169, - 419, - 345 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 267, - 146, - 313, - 160 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 147, - 313, - 160 - ], - "spans": [ - { - "bbox": [ - 268, - 147, - 313, - 160 - ], - "score": 1.0, - "content": "Figure 7", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "image_body", - "bbox": [ - 162, - 169, - 419, - 345 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 162, - 169, - 419, - 345 - ], - "spans": [ - { - "bbox": [ - 162, - 169, - 419, - 345 - ], - "score": 0.966, - "type": "image", - "image_path": "a1fe560a1181e67cc06b8a8eb79894f34669d2031b50659cdd72fd7d90dd00a2.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 162, - 169, - 419, - 227.66666666666666 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 162, - 227.66666666666666, - 419, - 286.3333333333333 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 162, - 286.3333333333333, - 419, - 345.0 - ], - "spans": [], - "index": 7 - } - ] - } - ], - "index": 5.0, - "page_num": "page_52", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 358, - 340, - 372 - ], - "lines": [ - { - "bbox": [ - 114, - 358, - 340, - 372 - ], - "spans": [ - { - "bbox": [ - 114, - 358, - 309, - 372 - ], - "score": 1.0, - "content": "The critical angle for light in the prism is", - "type": "text" - }, - { - "bbox": [ - 309, - 358, - 337, - 371 - ], - "score": 0.81, - "content": "41.5^{\\circ}", - "type": "inline_equation", - "height": 13, - "width": 28 - }, - { - "bbox": [ - 337, - 358, - 340, - 372 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_52", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 358, - 340, - 372 - ] - }, - { - "type": "text", - "bbox": [ - 111, - 387, - 531, - 415 - ], - "lines": [ - { - "bbox": [ - 114, - 388, - 498, - 401 - ], - "spans": [ - { - "bbox": [ - 114, - 388, - 498, - 401 - ], - "score": 1.0, - "content": "Show that the glass used to make the prism has a refractive index of about 1.5", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 488, - 401, - 532, - 414 - ], - "spans": [ - { - "bbox": [ - 488, - 401, - 532, - 414 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9.5, - "page_num": "page_52", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 388, - 532, - 414 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 526, - 389, - 541 - ], - "lines": [ - { - "bbox": [ - 114, - 527, - 388, - 541 - ], - "spans": [ - { - "bbox": [ - 114, - 527, - 388, - 541 - ], - "score": 1.0, - "content": "Explain why the ray emerges parallel to the incident ray.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_52", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 527, - 388, - 541 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 544, - 537, - 683 - ], - "lines": [ - { - "bbox": [ - 484, - 539, - 536, - 554 - ], - "spans": [ - { - "bbox": [ - 484, - 539, - 536, - 554 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_52", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 484, - 539, - 536, - 554 - ] - }, - { - "type": "title", - "bbox": [ - 484, - 539, - 535, - 553 - ], - "lines": [ - { - "bbox": [ - 484, - 539, - 535, - 553 - ], - "spans": [], - "index": 13 - } - ], - "index": 13, - "page_num": "page_52", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 187, - 718, - 391, - 733 - ], - "lines": [ - { - "bbox": [ - 187, - 719, - 390, - 732 - ], - "spans": [ - { - "bbox": [ - 187, - 719, - 390, - 732 - ], - "score": 1.0, - "content": "Question 4 continues on the next page", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_52", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 187, - 719, - 390, - 732 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 69, - 496, - 96 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 496, - 83 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 466, - 83 - ], - "score": 1.0, - "content": "Figure 8 shows a ray of light entering the prism at an angle of incidence", - "type": "text" - }, - { - "bbox": [ - 467, - 70, - 475, - 81 - ], - "score": 0.67, - "content": "\\theta", - "type": "inline_equation", - "height": 11, - "width": 8 - }, - { - "bbox": [ - 476, - 69, - 496, - 83 - ], - "score": 1.0, - "content": "and", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 84, - 296, - 95 - ], - "spans": [ - { - "bbox": [ - 114, - 84, - 296, - 95 - ], - "score": 1.0, - "content": "reflecting off one of the shorter sides.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "image", - "bbox": [ - 100, - 155, - 482, - 434 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 268, - 108, - 313, - 122 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 109, - 313, - 122 - ], - "spans": [ - { - "bbox": [ - 268, - 109, - 313, - 122 - ], - "score": 1.0, - "content": "Figure 8", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "image_body", - "bbox": [ - 100, - 155, - 482, - 434 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 100, - 155, - 482, - 434 - ], - "spans": [ - { - "bbox": [ - 100, - 155, - 482, - 434 - ], - "score": 0.969, - "type": "image", - "image_path": "b59926f9d24baebce0e545ebefa26e68114d5a6877489ee9acadf8b24ce7341e.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 100, - 155, - 482, - 248.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 100, - 248.0, - 482, - 341.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 100, - 341.0, - 482, - 434.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 3.0 - }, - { - "type": "text", - "bbox": [ - 113, - 461, - 487, - 488 - ], - "lines": [ - { - "bbox": [ - 113, - 462, - 487, - 475 - ], - "spans": [ - { - "bbox": [ - 113, - 462, - 122, - 474 - ], - "score": 0.62, - "content": "\\theta", - "type": "inline_equation", - "height": 12, - "width": 9 - }, - { - "bbox": [ - 122, - 462, - 487, - 475 - ], - "score": 1.0, - "content": " is the largest angle of incidence for which all of the light leaves through the", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 114, - 476, - 177, - 489 - ], - "spans": [ - { - "bbox": [ - 114, - 476, - 177, - 489 - ], - "score": 1.0, - "content": "longest side.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6.5 - }, - { - "type": "text", - "bbox": [ - 112, - 502, - 506, - 529 - ], - "lines": [ - { - "bbox": [ - 114, - 503, - 505, - 517 - ], - "spans": [ - { - "bbox": [ - 114, - 503, - 505, - 517 - ], - "score": 1.0, - "content": "Draw on Figure 8 the path of the ray of light as it continues inside the prism and", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 114, - 518, - 267, - 530 - ], - "spans": [ - { - "bbox": [ - 114, - 518, - 267, - 530 - ], - "score": 1.0, - "content": "emerges from the longest side.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8.5 - } - ], - "layout_bboxes": [], - "page_idx": 53, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 100, - 155, - 482, - 434 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 268, - 108, - 313, - 122 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 109, - 313, - 122 - ], - "spans": [ - { - "bbox": [ - 268, - 109, - 313, - 122 - ], - "score": 1.0, - "content": "Figure 8", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "image_body", - "bbox": [ - 100, - 155, - 482, - 434 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 100, - 155, - 482, - 434 - ], - "spans": [ - { - "bbox": [ - 100, - 155, - 482, - 434 - ], - "score": 0.969, - "type": "image", - "image_path": "b59926f9d24baebce0e545ebefa26e68114d5a6877489ee9acadf8b24ce7341e.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 100, - 155, - 482, - 248.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 100, - 248.0, - 482, - 341.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 100, - 341.0, - 482, - 434.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 3.0 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 499, - 105, - 517 - ], - "lines": [ - { - "bbox": [ - 50, - 502, - 101, - 516 - ], - "spans": [ - { - "bbox": [ - 50, - 502, - 101, - 516 - ], - "score": 1.0, - "content": "0 4 . 3 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 824 - ], - "lines": [ - { - "bbox": [ - 61, - 816, - 79, - 824 - ], - "spans": [ - { - "bbox": [ - 61, - 818, - 65, - 821 - ], - "score": 0.5130922794342041, - "content": "1", - "type": "text" - }, - { - "bbox": [ - 71, - 816, - 79, - 824 - ], - "score": 0.9996349811553955, - "content": "4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 479, - 815, - 540, - 824 - ], - "spans": [ - { - "bbox": [ - 479, - 815, - 540, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 295, - 39 - ], - "lines": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 14, - "width": 18 - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 484, - 529, - 535, - 542 - ], - "lines": [ - { - "bbox": [ - 485, - 529, - 536, - 543 - ], - "spans": [ - { - "bbox": [ - 485, - 529, - 536, - 543 - ], - "score": 1.0, - "content": "[3 marks] ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 69, - 496, - 96 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 496, - 83 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 466, - 83 - ], - "score": 1.0, - "content": "Figure 8 shows a ray of light entering the prism at an angle of incidence", - "type": "text" - }, - { - "bbox": [ - 467, - 70, - 475, - 81 - ], - "score": 0.67, - "content": "\\theta", - "type": "inline_equation", - "height": 11, - "width": 8 - }, - { - "bbox": [ - 476, - 69, - 496, - 83 - ], - "score": 1.0, - "content": "and", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 84, - 296, - 95 - ], - "spans": [ - { - "bbox": [ - 114, - 84, - 296, - 95 - ], - "score": 1.0, - "content": "reflecting off one of the shorter sides.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_53", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 69, - 496, - 95 - ] - }, - { - "type": "image", - "bbox": [ - 100, - 155, - 482, - 434 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 268, - 108, - 313, - 122 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 268, - 109, - 313, - 122 - ], - "spans": [ - { - "bbox": [ - 268, - 109, - 313, - 122 - ], - "score": 1.0, - "content": "Figure 8", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "image_body", - "bbox": [ - 100, - 155, - 482, - 434 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 100, - 155, - 482, - 434 - ], - "spans": [ - { - "bbox": [ - 100, - 155, - 482, - 434 - ], - "score": 0.969, - "type": "image", - "image_path": "b59926f9d24baebce0e545ebefa26e68114d5a6877489ee9acadf8b24ce7341e.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 100, - 155, - 482, - 248.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 100, - 248.0, - 482, - 341.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 100, - 341.0, - 482, - 434.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 3.0, - "page_num": "page_53", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 461, - 487, - 488 - ], - "lines": [ - { - "bbox": [ - 113, - 462, - 487, - 475 - ], - "spans": [ - { - "bbox": [ - 113, - 462, - 122, - 474 - ], - "score": 0.62, - "content": "\\theta", - "type": "inline_equation", - "height": 12, - "width": 9 - }, - { - "bbox": [ - 122, - 462, - 487, - 475 - ], - "score": 1.0, - "content": " is the largest angle of incidence for which all of the light leaves through the", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 114, - 476, - 177, - 489 - ], - "spans": [ - { - "bbox": [ - 114, - 476, - 177, - 489 - ], - "score": 1.0, - "content": "longest side.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6.5, - "page_num": "page_53", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 462, - 487, - 489 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 502, - 506, - 529 - ], - "lines": [ - { - "bbox": [ - 114, - 503, - 505, - 517 - ], - "spans": [ - { - "bbox": [ - 114, - 503, - 505, - 517 - ], - "score": 1.0, - "content": "Draw on Figure 8 the path of the ray of light as it continues inside the prism and", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 114, - 518, - 267, - 530 - ], - "spans": [ - { - "bbox": [ - 114, - 518, - 267, - 530 - ], - "score": 1.0, - "content": "emerges from the longest side.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8.5, - "page_num": "page_53", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 503, - 505, - 530 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 68, - 517, - 109 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 516, - 83 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 328, - 83 - ], - "score": 1.0, - "content": "When the angle of incidence is greater than", - "type": "text" - }, - { - "bbox": [ - 329, - 70, - 337, - 81 - ], - "score": 0.64, - "content": "\\theta", - "type": "inline_equation", - "height": 11, - "width": 8 - }, - { - "bbox": [ - 337, - 69, - 516, - 83 - ], - "score": 1.0, - "content": ", some of the light escapes the prism", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 83, - 273, - 96 - ], - "spans": [ - { - "bbox": [ - 114, - 83, - 273, - 96 - ], - "score": 1.0, - "content": "through one of the shorter sides.", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 113, - 96, - 449, - 109 - ], - "spans": [ - { - "bbox": [ - 113, - 96, - 417, - 109 - ], - "score": 1.0, - "content": "Assume that the refractive index is 1.5 and the critical angle is", - "type": "text" - }, - { - "bbox": [ - 418, - 96, - 445, - 108 - ], - "score": 0.78, - "content": "41.5^{\\circ}", - "type": "inline_equation", - "height": 12, - "width": 27 - }, - { - "bbox": [ - 446, - 96, - 449, - 109 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 113, - 123, - 300, - 150 - ], - "lines": [ - { - "bbox": [ - 114, - 123, - 231, - 135 - ], - "spans": [ - { - "bbox": [ - 114, - 124, - 165, - 134 - ], - "score": 1.0, - "content": "Show that", - "type": "text" - }, - { - "bbox": [ - 165, - 123, - 174, - 134 - ], - "score": 0.77, - "content": "\\theta", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 174, - 124, - 215, - 134 - ], - "score": 1.0, - "content": " is about", - "type": "text" - }, - { - "bbox": [ - 216, - 123, - 228, - 135 - ], - "score": 0.84, - "content": "5^{\\circ}", - "type": "inline_equation", - "height": 12, - "width": 12 - }, - { - "bbox": [ - 228, - 124, - 231, - 134 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 114, - 136, - 301, - 150 - ], - "spans": [ - { - "bbox": [ - 114, - 136, - 301, - 150 - ], - "score": 1.0, - "content": "You can use Figure 8 in your answer.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5 - } - ], - "layout_bboxes": [], - "page_idx": 54, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 77 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 78 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 78 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 783 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 105, - 83 - ], - "lines": [ - { - "bbox": [ - 50, - 68, - 100, - 80 - ], - "spans": [ - { - "bbox": [ - 50, - 68, - 86, - 80 - ], - "score": 1.0, - "content": "0 4 .", - "type": "text" - }, - { - "bbox": [ - 89, - 69, - 100, - 79 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 824 - ], - "lines": [ - { - "bbox": [ - 60, - 816, - 80, - 824 - ], - "spans": [ - { - "bbox": [ - 60, - 817, - 65, - 823 - ], - "score": 0.9985781908035278, - "content": "1", - "type": "text" - }, - { - "bbox": [ - 70, - 816, - 80, - 824 - ], - "score": 0.999723494052887, - "content": "5", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "15 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 484, - 149, - 535, - 163 - ], - "lines": [ - { - "bbox": [ - 484, - 149, - 536, - 163 - ], - "spans": [ - { - "bbox": [ - 484, - 149, - 536, - 163 - ], - "score": 1.0, - "content": "[4 marks] ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 188, - 745, - 391, - 758 - ], - "lines": [ - { - "bbox": [ - 188, - 745, - 391, - 758 - ], - "spans": [ - { - "bbox": [ - 188, - 745, - 391, - 758 - ], - "score": 1.0, - "content": "Question 4 continues on the next page", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 68, - 517, - 109 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 516, - 83 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 328, - 83 - ], - "score": 1.0, - "content": "When the angle of incidence is greater than", - "type": "text" - }, - { - "bbox": [ - 329, - 70, - 337, - 81 - ], - "score": 0.64, - "content": "\\theta", - "type": "inline_equation", - "height": 11, - "width": 8 - }, - { - "bbox": [ - 337, - 69, - 516, - 83 - ], - "score": 1.0, - "content": ", some of the light escapes the prism", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 83, - 273, - 96 - ], - "spans": [ - { - "bbox": [ - 114, - 83, - 273, - 96 - ], - "score": 1.0, - "content": "through one of the shorter sides.", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 113, - 96, - 449, - 109 - ], - "spans": [ - { - "bbox": [ - 113, - 96, - 417, - 109 - ], - "score": 1.0, - "content": "Assume that the refractive index is 1.5 and the critical angle is", - "type": "text" - }, - { - "bbox": [ - 418, - 96, - 445, - 108 - ], - "score": 0.78, - "content": "41.5^{\\circ}", - "type": "inline_equation", - "height": 12, - "width": 27 - }, - { - "bbox": [ - 446, - 96, - 449, - 109 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1, - "page_num": "page_54", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 69, - 516, - 109 - ] - }, - { - "type": "list", - "bbox": [ - 113, - 123, - 300, - 150 - ], - "lines": [ - { - "bbox": [ - 114, - 123, - 231, - 135 - ], - "spans": [ - { - "bbox": [ - 114, - 124, - 165, - 134 - ], - "score": 1.0, - "content": "Show that", - "type": "text" - }, - { - "bbox": [ - 165, - 123, - 174, - 134 - ], - "score": 0.77, - "content": "\\theta", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 174, - 124, - 215, - 134 - ], - "score": 1.0, - "content": " is about", - "type": "text" - }, - { - "bbox": [ - 216, - 123, - 228, - 135 - ], - "score": 0.84, - "content": "5^{\\circ}", - "type": "inline_equation", - "height": 12, - "width": 12 - }, - { - "bbox": [ - 228, - 124, - 231, - 134 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 3, - "is_list_end_line": true - }, - { - "bbox": [ - 114, - 136, - 301, - 150 - ], - "spans": [ - { - "bbox": [ - 114, - 136, - 301, - 150 - ], - "score": 1.0, - "content": "You can use Figure 8 in your answer.", - "type": "text" - } - ], - "index": 4, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 3.5, - "page_num": "page_54", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 123, - 301, - 150 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 114, - 69, - 421, - 83 - ], - "lines": [ - { - "bbox": [ - 114, - 70, - 419, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 70, - 409, - 82 - ], - "score": 1.0, - "content": "A manufacturer wants to make a prism with a larger value of", - "type": "text" - }, - { - "bbox": [ - 410, - 70, - 417, - 80 - ], - "score": 0.48, - "content": "\\theta", - "type": "inline_equation", - "height": 10, - "width": 7 - }, - { - "bbox": [ - 418, - 70, - 419, - 82 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 113, - 95, - 476, - 109 - ], - "lines": [ - { - "bbox": [ - 114, - 96, - 476, - 109 - ], - "spans": [ - { - "bbox": [ - 114, - 96, - 476, - 109 - ], - "score": 1.0, - "content": "Two alternative changes to the original design of the prism are suggested:", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 110, - 121, - 521, - 174 - ], - "lines": [ - { - "bbox": [ - 114, - 121, - 518, - 135 - ], - "spans": [ - { - "bbox": [ - 114, - 121, - 518, - 135 - ], - "score": 1.0, - "content": "1. use a prism of the original glass in the shape of an equilateral triangle, as shown", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 124, - 136, - 182, - 148 - ], - "spans": [ - { - "bbox": [ - 124, - 136, - 182, - 148 - ], - "score": 1.0, - "content": "in Figure 9", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 113, - 147, - 521, - 161 - ], - "spans": [ - { - "bbox": [ - 113, - 147, - 521, - 161 - ], - "score": 1.0, - "content": "2. use a prism of the original shape made from glass with a smaller refractive index,", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 125, - 161, - 239, - 173 - ], - "spans": [ - { - "bbox": [ - 125, - 161, - 239, - 173 - ], - "score": 1.0, - "content": "as shown in Figure 10.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 3.5 - }, - { - "type": "image", - "bbox": [ - 106, - 210, - 232, - 321 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 145, - 186, - 191, - 199 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 145, - 185, - 192, - 200 - ], - "spans": [ - { - "bbox": [ - 145, - 185, - 192, - 200 - ], - "score": 1.0, - "content": "Figure 9 ", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "image_body", - "bbox": [ - 106, - 210, - 232, - 321 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 106, - 210, - 232, - 321 - ], - "spans": [ - { - "bbox": [ - 106, - 210, - 232, - 321 - ], - "score": 0.897, - "type": "image", - "image_path": "d5311b2001e7c70634cbbc6703a6866357ab24d260dc32abf9eb5df4c04a1ff8.jpg" - } - ] - } - ], - "index": 10.5, - "virtual_lines": [ - { - "bbox": [ - 106, - 210, - 232, - 265.5 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 106, - 265.5, - 232, - 321.0 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "index": 8.25 - }, - { - "type": "image", - "bbox": [ - 324, - 226, - 500, - 321 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 387, - 186, - 438, - 199 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 387, - 186, - 438, - 199 - ], - "spans": [ - { - "bbox": [ - 387, - 186, - 438, - 199 - ], - "score": 1.0, - "content": "Figure 10", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "image_body", - "bbox": [ - 324, - 226, - 500, - 321 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 324, - 226, - 500, - 321 - ], - "spans": [ - { - "bbox": [ - 324, - 226, - 500, - 321 - ], - "score": 0.955, - "type": "image", - "image_path": "8abee1e6ec31997b2ac7625b6d5bf329ec4b092da8a4308cdd8918686801058a.jpg" - } - ] - } - ], - "index": 13.0, - "virtual_lines": [ - { - "bbox": [ - 324, - 226, - 500, - 239.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 324, - 239.0, - 500, - 252.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 324, - 252.0, - 500, - 265.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 324, - 265.0, - 500, - 278.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 324, - 278.0, - 500, - 291.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 324, - 291.0, - 500, - 304.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 324, - 304.0, - 500, - 317.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 324, - 317.0, - 500, - 330.0 - ], - "spans": [], - "index": 17 - } - ] - } - ], - "index": 10.0 - }, - { - "type": "text", - "bbox": [ - 113, - 348, - 401, - 362 - ], - "lines": [ - { - "bbox": [ - 114, - 348, - 400, - 362 - ], - "spans": [ - { - "bbox": [ - 114, - 348, - 400, - 362 - ], - "score": 1.0, - "content": "Discuss whether either of the two suggestions would work.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18 - }, - { - "type": "text", - "bbox": [ - 484, - 361, - 535, - 375 - ], - "lines": [ - { - "bbox": [ - 484, - 361, - 536, - 376 - ], - "spans": [ - { - "bbox": [ - 484, - 361, - 536, - 376 - ], - "score": 1.0, - "content": "[4 marks] ", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 19 - }, - { - "type": "text", - "bbox": [ - 111, - 384, - 536, - 765 - ], - "lines": [ - { - "bbox": [ - 114, - 389, - 122, - 398 - ], - "spans": [ - { - "bbox": [ - 114, - 389, - 122, - 398 - ], - "score": 1.0, - "content": "1", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 113, - 567, - 122, - 579 - ], - "spans": [ - { - "bbox": [ - 113, - 567, - 122, - 579 - ], - "score": 1.0, - "content": "2", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 20.5 - } - ], - "layout_bboxes": [], - "page_idx": 55, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 106, - 210, - 232, - 321 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 145, - 186, - 191, - 199 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 145, - 185, - 192, - 200 - ], - "spans": [ - { - "bbox": [ - 145, - 185, - 192, - 200 - ], - "score": 1.0, - "content": "Figure 9 ", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "image_body", - "bbox": [ - 106, - 210, - 232, - 321 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 106, - 210, - 232, - 321 - ], - "spans": [ - { - "bbox": [ - 106, - 210, - 232, - 321 - ], - "score": 0.897, - "type": "image", - "image_path": "d5311b2001e7c70634cbbc6703a6866357ab24d260dc32abf9eb5df4c04a1ff8.jpg" - } - ] - } - ], - "index": 10.5, - "virtual_lines": [ - { - "bbox": [ - 106, - 210, - 232, - 265.5 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 106, - 265.5, - 232, - 321.0 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "index": 8.25 - }, - { - "type": "image", - "bbox": [ - 324, - 226, - 500, - 321 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 387, - 186, - 438, - 199 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 387, - 186, - 438, - 199 - ], - "spans": [ - { - "bbox": [ - 387, - 186, - 438, - 199 - ], - "score": 1.0, - "content": "Figure 10", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "image_body", - "bbox": [ - 324, - 226, - 500, - 321 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 324, - 226, - 500, - 321 - ], - "spans": [ - { - "bbox": [ - 324, - 226, - 500, - 321 - ], - "score": 0.955, - "type": "image", - "image_path": "8abee1e6ec31997b2ac7625b6d5bf329ec4b092da8a4308cdd8918686801058a.jpg" - } - ] - } - ], - "index": 13.0, - "virtual_lines": [ - { - "bbox": [ - 324, - 226, - 500, - 239.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 324, - 239.0, - 500, - 252.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 324, - 252.0, - 500, - 265.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 324, - 265.0, - 500, - 278.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 324, - 278.0, - 500, - 291.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 324, - 291.0, - 500, - 304.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 324, - 304.0, - 500, - 317.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 324, - 317.0, - 500, - 330.0 - ], - "spans": [], - "index": 17 - } - ] - } - ], - "index": 10.0 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 559, - 68, - 573, - 77 - ], - "spans": [ - { - "bbox": [ - 559, - 68, - 573, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 544, - 693, - 576, - 735 - ], - "lines": [ - { - "bbox": [ - 553, - 717, - 568, - 728 - ], - "spans": [ - { - "bbox": [ - 553, - 717, - 568, - 728 - ], - "score": 1.0, - "content": "14 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 297, - 41 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 297, - 41 - ], - "score": 1.0, - "content": "16 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 64, - 105, - 83 - ], - "lines": [ - { - "bbox": [ - 50, - 68, - 100, - 79 - ], - "spans": [ - { - "bbox": [ - 50, - 68, - 64, - 79 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 66, - 68, - 100, - 79 - ], - "score": 1.0, - "content": "4 . 5", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 114, - 69, - 421, - 83 - ], - "lines": [ - { - "bbox": [ - 114, - 70, - 419, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 70, - 409, - 82 - ], - "score": 1.0, - "content": "A manufacturer wants to make a prism with a larger value of", - "type": "text" - }, - { - "bbox": [ - 410, - 70, - 417, - 80 - ], - "score": 0.48, - "content": "\\theta", - "type": "inline_equation", - "height": 10, - "width": 7 - }, - { - "bbox": [ - 418, - 70, - 419, - 82 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_55", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 70, - 419, - 82 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 95, - 476, - 109 - ], - "lines": [ - { - "bbox": [ - 114, - 96, - 476, - 109 - ], - "spans": [ - { - "bbox": [ - 114, - 96, - 476, - 109 - ], - "score": 1.0, - "content": "Two alternative changes to the original design of the prism are suggested:", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_55", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 96, - 476, - 109 - ] - }, - { - "type": "list", - "bbox": [ - 110, - 121, - 521, - 174 - ], - "lines": [ - { - "bbox": [ - 114, - 121, - 518, - 135 - ], - "spans": [ - { - "bbox": [ - 114, - 121, - 518, - 135 - ], - "score": 1.0, - "content": "1. use a prism of the original glass in the shape of an equilateral triangle, as shown", - "type": "text" - } - ], - "index": 2, - "is_list_start_line": true - }, - { - "bbox": [ - 124, - 136, - 182, - 148 - ], - "spans": [ - { - "bbox": [ - 124, - 136, - 182, - 148 - ], - "score": 1.0, - "content": "in Figure 9", - "type": "text" - } - ], - "index": 3, - "is_list_end_line": true - }, - { - "bbox": [ - 113, - 147, - 521, - 161 - ], - "spans": [ - { - "bbox": [ - 113, - 147, - 521, - 161 - ], - "score": 1.0, - "content": "2. use a prism of the original shape made from glass with a smaller refractive index,", - "type": "text" - } - ], - "index": 4, - "is_list_start_line": true - }, - { - "bbox": [ - 125, - 161, - 239, - 173 - ], - "spans": [ - { - "bbox": [ - 125, - 161, - 239, - 173 - ], - "score": 1.0, - "content": "as shown in Figure 10.", - "type": "text" - } - ], - "index": 5, - "is_list_end_line": true - } - ], - "index": 3.5, - "page_num": "page_55", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 121, - 521, - 173 - ] - }, - { - "type": "image", - "bbox": [ - 106, - 210, - 232, - 321 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 145, - 186, - 191, - 199 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 145, - 185, - 192, - 200 - ], - "spans": [ - { - "bbox": [ - 145, - 185, - 192, - 200 - ], - "score": 1.0, - "content": "Figure 9 ", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "image_body", - "bbox": [ - 106, - 210, - 232, - 321 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 106, - 210, - 232, - 321 - ], - "spans": [ - { - "bbox": [ - 106, - 210, - 232, - 321 - ], - "score": 0.897, - "type": "image", - "image_path": "d5311b2001e7c70634cbbc6703a6866357ab24d260dc32abf9eb5df4c04a1ff8.jpg" - } - ] - } - ], - "index": 10.5, - "virtual_lines": [ - { - "bbox": [ - 106, - 210, - 232, - 265.5 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 106, - 265.5, - 232, - 321.0 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "index": 8.25, - "page_num": "page_55", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "image", - "bbox": [ - 324, - 226, - 500, - 321 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 387, - 186, - 438, - 199 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 387, - 186, - 438, - 199 - ], - "spans": [ - { - "bbox": [ - 387, - 186, - 438, - 199 - ], - "score": 1.0, - "content": "Figure 10", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "image_body", - "bbox": [ - 324, - 226, - 500, - 321 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 324, - 226, - 500, - 321 - ], - "spans": [ - { - "bbox": [ - 324, - 226, - 500, - 321 - ], - "score": 0.955, - "type": "image", - "image_path": "8abee1e6ec31997b2ac7625b6d5bf329ec4b092da8a4308cdd8918686801058a.jpg" - } - ] - } - ], - "index": 13.0, - "virtual_lines": [ - { - "bbox": [ - 324, - 226, - 500, - 239.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 324, - 239.0, - 500, - 252.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 324, - 252.0, - 500, - 265.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 324, - 265.0, - 500, - 278.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 324, - 278.0, - 500, - 291.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 324, - 291.0, - 500, - 304.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 324, - 304.0, - 500, - 317.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 324, - 317.0, - 500, - 330.0 - ], - "spans": [], - "index": 17 - } - ] - } - ], - "index": 10.0, - "page_num": "page_55", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 348, - 401, - 362 - ], - "lines": [ - { - "bbox": [ - 114, - 348, - 400, - 362 - ], - "spans": [ - { - "bbox": [ - 114, - 348, - 400, - 362 - ], - "score": 1.0, - "content": "Discuss whether either of the two suggestions would work.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18, - "page_num": "page_55", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 348, - 400, - 362 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 361, - 535, - 375 - ], - "lines": [ - { - "bbox": [ - 484, - 361, - 536, - 376 - ], - "spans": [ - { - "bbox": [ - 484, - 361, - 536, - 376 - ], - "score": 1.0, - "content": "[4 marks] ", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 19, - "page_num": "page_55", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 484, - 361, - 536, - 376 - ] - }, - { - "type": "index", - "bbox": [ - 111, - 384, - 536, - 765 - ], - "lines": [ - { - "bbox": [ - 114, - 389, - 122, - 398 - ], - "spans": [ - { - "bbox": [ - 114, - 389, - 122, - 398 - ], - "score": 1.0, - "content": "1", - "type": "text" - } - ], - "index": 20, - "is_list_start_line": true - }, - { - "bbox": [ - 113, - 567, - 122, - 579 - ], - "spans": [ - { - "bbox": [ - 113, - 567, - 122, - 579 - ], - "score": 1.0, - "content": "2", - "type": "text" - } - ], - "index": 21, - "is_list_start_line": true - } - ], - "index": 20.5, - "page_num": "page_55", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 389, - 122, - 579 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 111, - 68, - 534, - 94 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 535, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 535, - 82 - ], - "score": 1.0, - "content": "Figure 11 shows the stress–strain graph for a metal in tension up to the point at which", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 82, - 170, - 95 - ], - "spans": [ - { - "bbox": [ - 113, - 82, - 170, - 95 - ], - "score": 1.0, - "content": "it fractures.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "image", - "bbox": [ - 102, - 131, - 402, - 374 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 264, - 107, - 315, - 121 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 265, - 108, - 316, - 121 - ], - "spans": [ - { - "bbox": [ - 265, - 108, - 316, - 121 - ], - "score": 1.0, - "content": "Figure 11", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "image_body", - "bbox": [ - 102, - 131, - 402, - 374 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 102, - 131, - 402, - 374 - ], - "spans": [ - { - "bbox": [ - 102, - 131, - 402, - 374 - ], - "score": 0.966, - "type": "image", - "image_path": "8497e6cd14aa20c9ca5e9f454cbcb887974bec9216b18142a7bb60ebec73ec54.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 102, - 131, - 402, - 212.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 102, - 212.0, - 402, - 293.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 102, - 293.0, - 402, - 374.0 - ], - "spans": [], - "index": 5 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 113, - 412, - 414, - 427 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 114, - 413, - 415, - 426 - ], - "spans": [ - { - "bbox": [ - 114, - 413, - 415, - 426 - ], - "score": 1.0, - "content": "Determine, using Figure 11, the Young modulus of the metal.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 490, - 426, - 535, - 440 - ], - "lines": [ - { - "bbox": [ - 490, - 426, - 535, - 440 - ], - "spans": [ - { - "bbox": [ - 490, - 426, - 535, - 440 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 281, - 505, - 534, - 523 - ], - "lines": [ - { - "bbox": [ - 283, - 506, - 535, - 519 - ], - "spans": [ - { - "bbox": [ - 283, - 507, - 361, - 519 - ], - "score": 1.0, - "content": "Young modulus", - "type": "text" - }, - { - "bbox": [ - 361, - 508, - 372, - 517 - ], - "score": 0.5, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 11 - }, - { - "bbox": [ - 518, - 506, - 535, - 519 - ], - "score": 1.0, - "content": " Pa ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 112, - 548, - 374, - 563 - ], - "lines": [ - { - "bbox": [ - 115, - 550, - 374, - 563 - ], - "spans": [ - { - "bbox": [ - 115, - 550, - 374, - 563 - ], - "score": 1.0, - "content": "Explain how the graph shows that this metal is brittle.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 490, - 562, - 535, - 576 - ], - "lines": [ - { - "bbox": [ - 490, - 562, - 535, - 576 - ], - "spans": [], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 112, - 565, - 536, - 655 - ], - "lines": [ - { - "bbox": [ - 490, - 561, - 536, - 577 - ], - "spans": [ - { - "bbox": [ - 490, - 561, - 536, - 577 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 185, - 716, - 392, - 730 - ], - "lines": [ - { - "bbox": [ - 187, - 716, - 391, - 730 - ], - "spans": [ - { - "bbox": [ - 187, - 716, - 391, - 730 - ], - "score": 1.0, - "content": "Question 5 continues on the next page", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - } - ], - "layout_bboxes": [], - "page_idx": 56, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 102, - 131, - 402, - 374 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 264, - 107, - 315, - 121 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 265, - 108, - 316, - 121 - ], - "spans": [ - { - "bbox": [ - 265, - 108, - 316, - 121 - ], - "score": 1.0, - "content": "Figure 11", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "image_body", - "bbox": [ - 102, - 131, - 402, - 374 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 102, - 131, - 402, - 374 - ], - "spans": [ - { - "bbox": [ - 102, - 131, - 402, - 374 - ], - "score": 0.966, - "type": "image", - "image_path": "8497e6cd14aa20c9ca5e9f454cbcb887974bec9216b18142a7bb60ebec73ec54.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 102, - 131, - 402, - 212.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 102, - 212.0, - 402, - 293.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 102, - 293.0, - 402, - 374.0 - ], - "spans": [], - "index": 5 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 113, - 412, - 414, - 427 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 114, - 413, - 415, - 426 - ], - "spans": [ - { - "bbox": [ - 114, - 413, - 415, - 426 - ], - "score": 1.0, - "content": "Determine, using Figure 11, the Young modulus of the metal.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - } - ], - "index": 4 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 77 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 78 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 78 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 546, - 105, - 563 - ], - "lines": [ - { - "bbox": [ - 48, - 546, - 103, - 563 - ], - "spans": [ - { - "bbox": [ - 48, - 546, - 103, - 563 - ], - "score": 1.0, - "content": "0 5 . 2 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 82, - 82 - ], - "lines": [ - { - "bbox": [ - 51, - 68, - 77, - 79 - ], - "spans": [ - { - "bbox": [ - 51, - 68, - 64, - 79 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 65, - 68, - 77, - 79 - ], - "score": 1.0, - "content": "5", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 784 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 409, - 105, - 427 - ], - "lines": [ - { - "bbox": [ - 49, - 411, - 101, - 425 - ], - "spans": [ - { - "bbox": [ - 49, - 411, - 101, - 425 - ], - "score": 1.0, - "content": "0 5 . 1 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 824 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 295, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 41 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 41 - ], - "score": 1.0, - "content": "17 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 111, - 68, - 534, - 94 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 535, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 535, - 82 - ], - "score": 1.0, - "content": "Figure 11 shows the stress–strain graph for a metal in tension up to the point at which", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 82, - 170, - 95 - ], - "spans": [ - { - "bbox": [ - 113, - 82, - 170, - 95 - ], - "score": 1.0, - "content": "it fractures.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_56", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 69, - 535, - 95 - ] - }, - { - "type": "image", - "bbox": [ - 102, - 131, - 402, - 374 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 264, - 107, - 315, - 121 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 265, - 108, - 316, - 121 - ], - "spans": [ - { - "bbox": [ - 265, - 108, - 316, - 121 - ], - "score": 1.0, - "content": "Figure 11", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "image_body", - "bbox": [ - 102, - 131, - 402, - 374 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 102, - 131, - 402, - 374 - ], - "spans": [ - { - "bbox": [ - 102, - 131, - 402, - 374 - ], - "score": 0.966, - "type": "image", - "image_path": "8497e6cd14aa20c9ca5e9f454cbcb887974bec9216b18142a7bb60ebec73ec54.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 102, - 131, - 402, - 212.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 102, - 212.0, - 402, - 293.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 102, - 293.0, - 402, - 374.0 - ], - "spans": [], - "index": 5 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 113, - 412, - 414, - 427 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 114, - 413, - 415, - 426 - ], - "spans": [ - { - "bbox": [ - 114, - 413, - 415, - 426 - ], - "score": 1.0, - "content": "Determine, using Figure 11, the Young modulus of the metal.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - } - ], - "index": 4, - "page_num": "page_56", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 426, - 535, - 440 - ], - "lines": [ - { - "bbox": [ - 490, - 426, - 535, - 440 - ], - "spans": [ - { - "bbox": [ - 490, - 426, - 535, - 440 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_56", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 490, - 426, - 535, - 440 - ] - }, - { - "type": "text", - "bbox": [ - 281, - 505, - 534, - 523 - ], - "lines": [ - { - "bbox": [ - 283, - 506, - 535, - 519 - ], - "spans": [ - { - "bbox": [ - 283, - 507, - 361, - 519 - ], - "score": 1.0, - "content": "Young modulus", - "type": "text" - }, - { - "bbox": [ - 361, - 508, - 372, - 517 - ], - "score": 0.5, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 11 - }, - { - "bbox": [ - 518, - 506, - 535, - 519 - ], - "score": 1.0, - "content": " Pa ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_56", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 283, - 506, - 535, - 519 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 548, - 374, - 563 - ], - "lines": [ - { - "bbox": [ - 115, - 550, - 374, - 563 - ], - "spans": [ - { - "bbox": [ - 115, - 550, - 374, - 563 - ], - "score": 1.0, - "content": "Explain how the graph shows that this metal is brittle.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_56", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 115, - 550, - 374, - 563 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 562, - 535, - 576 - ], - "lines": [ - { - "bbox": [ - 490, - 562, - 535, - 576 - ], - "spans": [], - "index": 10 - } - ], - "index": 10, - "page_num": "page_56", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 490, - 562, - 535, - 576 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 565, - 536, - 655 - ], - "lines": [ - { - "bbox": [ - 490, - 561, - 536, - 577 - ], - "spans": [ - { - "bbox": [ - 490, - 561, - 536, - 577 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_56", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 490, - 561, - 536, - 577 - ] - }, - { - "type": "text", - "bbox": [ - 185, - 716, - 392, - 730 - ], - "lines": [ - { - "bbox": [ - 187, - 716, - 391, - 730 - ], - "spans": [ - { - "bbox": [ - 187, - 716, - 391, - 730 - ], - "score": 1.0, - "content": "Question 5 continues on the next page", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_56", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 187, - 716, - 391, - 730 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 111, - 68, - 529, - 95 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 527, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 527, - 82 - ], - "score": 1.0, - "content": "Figure 12 shows a uniform rigid lighting beam AB suspended from a fixed horizontal", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 83, - 529, - 94 - ], - "spans": [ - { - "bbox": [ - 113, - 83, - 529, - 94 - ], - "score": 1.0, - "content": "support by two identical vertical steel wires. A lamp is attached to the midpoint of AB.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "image", - "bbox": [ - 92, - 132, - 487, - 322 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 264, - 107, - 316, - 121 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 265, - 108, - 316, - 121 - ], - "spans": [ - { - "bbox": [ - 265, - 108, - 316, - 121 - ], - "score": 1.0, - "content": "Figure 12", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "image_body", - "bbox": [ - 92, - 132, - 487, - 322 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 92, - 132, - 487, - 322 - ], - "spans": [ - { - "bbox": [ - 92, - 132, - 487, - 322 - ], - "score": 0.96, - "type": "image", - "image_path": "93ff3930946f9d84389c70d9a39970d476a23f32097eef05828f2edf98c516be.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 92, - 132, - 487, - 195.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 92, - 195.33333333333334, - 487, - 258.6666666666667 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 92, - 258.6666666666667, - 487, - 322.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 3.0 - }, - { - "type": "text", - "bbox": [ - 114, - 336, - 509, - 363 - ], - "lines": [ - { - "bbox": [ - 114, - 336, - 507, - 349 - ], - "spans": [ - { - "bbox": [ - 114, - 337, - 328, - 349 - ], - "score": 1.0, - "content": "The unloaded length of each steel wire was ", - "type": "text" - }, - { - "bbox": [ - 328, - 336, - 364, - 349 - ], - "score": 0.6, - "content": "1.20\\:\\mathrm{m}", - "type": "inline_equation", - "height": 13, - "width": 36 - }, - { - "bbox": [ - 364, - 337, - 507, - 349 - ], - "score": 1.0, - "content": " before it was attached to AB.", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 114, - 350, - 196, - 363 - ], - "spans": [ - { - "bbox": [ - 114, - 350, - 196, - 363 - ], - "score": 1.0, - "content": "AB is horizontal.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6.5 - }, - { - "type": "text", - "bbox": [ - 131, - 376, - 331, - 445 - ], - "lines": [ - { - "bbox": [ - 131, - 376, - 234, - 390 - ], - "spans": [ - { - "bbox": [ - 131, - 376, - 174, - 390 - ], - "score": 1.0, - "content": " mass of ", - "type": "text" - }, - { - "bbox": [ - 174, - 376, - 234, - 389 - ], - "score": 0.91, - "content": "\\mathsf{A B}=4.4\\mathrm{kg}", - "type": "inline_equation", - "height": 13, - "width": 60 - } - ], - "index": 8 - }, - { - "bbox": [ - 131, - 390, - 248, - 404 - ], - "spans": [ - { - "bbox": [ - 131, - 390, - 194, - 404 - ], - "score": 1.0, - "content": " mass of lam", - "type": "text" - }, - { - "bbox": [ - 194, - 390, - 248, - 404 - ], - "score": 0.81, - "content": ")=16.0\\mathrm{kg}", - "type": "inline_equation", - "height": 14, - "width": 54 - } - ], - "index": 9 - }, - { - "bbox": [ - 132, - 404, - 294, - 416 - ], - "spans": [ - { - "bbox": [ - 132, - 404, - 245, - 416 - ], - "score": 1.0, - "content": "distance between wires", - "type": "text" - }, - { - "bbox": [ - 246, - 404, - 294, - 416 - ], - "score": 0.71, - "content": ";=2.00\\mathrm{m}", - "type": "inline_equation", - "height": 12, - "width": 48 - } - ], - "index": 10 - }, - { - "bbox": [ - 132, - 418, - 301, - 430 - ], - "spans": [ - { - "bbox": [ - 132, - 419, - 238, - 429 - ], - "score": 1.0, - "content": "diameter of each wire", - "type": "text" - }, - { - "bbox": [ - 238, - 418, - 301, - 430 - ], - "score": 0.79, - "content": "=0.800\\mathrm{mm}", - "type": "inline_equation", - "height": 12, - "width": 63 - } - ], - "index": 11 - }, - { - "bbox": [ - 132, - 430, - 330, - 444 - ], - "spans": [ - { - "bbox": [ - 132, - 432, - 247, - 443 - ], - "score": 1.0, - "content": "Young modulus of steel", - "type": "text" - }, - { - "bbox": [ - 248, - 430, - 326, - 444 - ], - "score": 0.81, - "content": "=2.10\\times10^{11}\\mathrm{P}\\mathrm{:}", - "type": "inline_equation", - "height": 14, - "width": 78 - }, - { - "bbox": [ - 327, - 432, - 330, - 443 - ], - "score": 1.0, - "content": "a", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 45, - 457, - 296, - 474 - ], - "lines": [ - { - "bbox": [ - 114, - 461, - 294, - 471 - ], - "spans": [ - { - "bbox": [ - 114, - 461, - 294, - 471 - ], - "score": 1.0, - "content": "Calculate the extension of each wire.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - } - ], - "layout_bboxes": [], - "page_idx": 57, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 92, - 132, - 487, - 322 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 264, - 107, - 316, - 121 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 265, - 108, - 316, - 121 - ], - "spans": [ - { - "bbox": [ - 265, - 108, - 316, - 121 - ], - "score": 1.0, - "content": "Figure 12", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "image_body", - "bbox": [ - 92, - 132, - 487, - 322 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 92, - 132, - 487, - 322 - ], - "spans": [ - { - "bbox": [ - 92, - 132, - 487, - 322 - ], - "score": 0.96, - "type": "image", - "image_path": "93ff3930946f9d84389c70d9a39970d476a23f32097eef05828f2edf98c516be.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 92, - 132, - 487, - 195.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 92, - 195.33333333333334, - 487, - 258.6666666666667 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 92, - 258.6666666666667, - 487, - 322.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 3.0 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 824 - ], - "lines": [ - { - "bbox": [ - 60, - 816, - 80, - 825 - ], - "spans": [ - { - "bbox": [ - 60, - 817, - 65, - 823 - ], - "score": 0.9985781908035278, - "content": "1", - "type": "text" - }, - { - "bbox": [ - 70, - 816, - 80, - 825 - ], - "score": 0.9990707039833069, - "content": "8", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "18 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 46, - 456, - 105, - 474 - ], - "lines": [ - { - "bbox": [ - 49, - 458, - 99, - 472 - ], - "spans": [ - { - "bbox": [ - 49, - 458, - 99, - 472 - ], - "score": 1.0, - "content": "0 5 . 3", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 484, - 473, - 535, - 487 - ], - "lines": [ - { - "bbox": [ - 485, - 473, - 536, - 487 - ], - "spans": [ - { - "bbox": [ - 485, - 473, - 536, - 487 - ], - "score": 1.0, - "content": "[3 marks] ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 310, - 716, - 531, - 730 - ], - "lines": [ - { - "bbox": [ - 313, - 715, - 532, - 728 - ], - "spans": [ - { - "bbox": [ - 313, - 715, - 361, - 726 - ], - "score": 1.0, - "content": "extension", - "type": "text" - }, - { - "bbox": [ - 361, - 716, - 372, - 726 - ], - "score": 0.4, - "content": "=", - "type": "inline_equation", - "height": 10, - "width": 11 - }, - { - "bbox": [ - 518, - 717, - 532, - 728 - ], - "score": 1.0, - "content": " m ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 111, - 68, - 529, - 95 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 527, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 527, - 82 - ], - "score": 1.0, - "content": "Figure 12 shows a uniform rigid lighting beam AB suspended from a fixed horizontal", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 83, - 529, - 94 - ], - "spans": [ - { - "bbox": [ - 113, - 83, - 529, - 94 - ], - "score": 1.0, - "content": "support by two identical vertical steel wires. A lamp is attached to the midpoint of AB.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_57", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 69, - 529, - 94 - ] - }, - { - "type": "image", - "bbox": [ - 92, - 132, - 487, - 322 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 264, - 107, - 316, - 121 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 265, - 108, - 316, - 121 - ], - "spans": [ - { - "bbox": [ - 265, - 108, - 316, - 121 - ], - "score": 1.0, - "content": "Figure 12", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "image_body", - "bbox": [ - 92, - 132, - 487, - 322 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 92, - 132, - 487, - 322 - ], - "spans": [ - { - "bbox": [ - 92, - 132, - 487, - 322 - ], - "score": 0.96, - "type": "image", - "image_path": "93ff3930946f9d84389c70d9a39970d476a23f32097eef05828f2edf98c516be.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 92, - 132, - 487, - 195.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 92, - 195.33333333333334, - 487, - 258.6666666666667 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 92, - 258.6666666666667, - 487, - 322.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 3.0, - "page_num": "page_57", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 114, - 336, - 509, - 363 - ], - "lines": [ - { - "bbox": [ - 114, - 336, - 507, - 349 - ], - "spans": [ - { - "bbox": [ - 114, - 337, - 328, - 349 - ], - "score": 1.0, - "content": "The unloaded length of each steel wire was ", - "type": "text" - }, - { - "bbox": [ - 328, - 336, - 364, - 349 - ], - "score": 0.6, - "content": "1.20\\:\\mathrm{m}", - "type": "inline_equation", - "height": 13, - "width": 36 - }, - { - "bbox": [ - 364, - 337, - 507, - 349 - ], - "score": 1.0, - "content": " before it was attached to AB.", - "type": "text" - } - ], - "index": 6, - "is_list_end_line": true - }, - { - "bbox": [ - 114, - 350, - 196, - 363 - ], - "spans": [ - { - "bbox": [ - 114, - 350, - 196, - 363 - ], - "score": 1.0, - "content": "AB is horizontal.", - "type": "text" - } - ], - "index": 7, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 131, - 376, - 234, - 390 - ], - "spans": [ - { - "bbox": [ - 131, - 376, - 174, - 390 - ], - "score": 1.0, - "content": " mass of ", - "type": "text" - }, - { - "bbox": [ - 174, - 376, - 234, - 389 - ], - "score": 0.91, - "content": "\\mathsf{A B}=4.4\\mathrm{kg}", - "type": "inline_equation", - "height": 13, - "width": 60 - } - ], - "index": 8, - "is_list_start_line": true - }, - { - "bbox": [ - 131, - 390, - 248, - 404 - ], - "spans": [ - { - "bbox": [ - 131, - 390, - 194, - 404 - ], - "score": 1.0, - "content": " mass of lam", - "type": "text" - }, - { - "bbox": [ - 194, - 390, - 248, - 404 - ], - "score": 0.81, - "content": ")=16.0\\mathrm{kg}", - "type": "inline_equation", - "height": 14, - "width": 54 - } - ], - "index": 9, - "is_list_start_line": true - }, - { - "bbox": [ - 132, - 404, - 294, - 416 - ], - "spans": [ - { - "bbox": [ - 132, - 404, - 245, - 416 - ], - "score": 1.0, - "content": "distance between wires", - "type": "text" - }, - { - "bbox": [ - 246, - 404, - 294, - 416 - ], - "score": 0.71, - "content": ";=2.00\\mathrm{m}", - "type": "inline_equation", - "height": 12, - "width": 48 - } - ], - "index": 10, - "is_list_start_line": true - }, - { - "bbox": [ - 132, - 418, - 301, - 430 - ], - "spans": [ - { - "bbox": [ - 132, - 419, - 238, - 429 - ], - "score": 1.0, - "content": "diameter of each wire", - "type": "text" - }, - { - "bbox": [ - 238, - 418, - 301, - 430 - ], - "score": 0.79, - "content": "=0.800\\mathrm{mm}", - "type": "inline_equation", - "height": 12, - "width": 63 - } - ], - "index": 11, - "is_list_start_line": true - }, - { - "bbox": [ - 132, - 430, - 330, - 444 - ], - "spans": [ - { - "bbox": [ - 132, - 432, - 247, - 443 - ], - "score": 1.0, - "content": "Young modulus of steel", - "type": "text" - }, - { - "bbox": [ - 248, - 430, - 326, - 444 - ], - "score": 0.81, - "content": "=2.10\\times10^{11}\\mathrm{P}\\mathrm{:}", - "type": "inline_equation", - "height": 14, - "width": 78 - }, - { - "bbox": [ - 327, - 432, - 330, - 443 - ], - "score": 1.0, - "content": "a", - "type": "text" - } - ], - "index": 12, - "is_list_start_line": true - } - ], - "index": 6.5, - "page_num": "page_57", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 336, - 507, - 363 - ] - }, - { - "type": "list", - "bbox": [ - 131, - 376, - 331, - 445 - ], - "lines": [], - "index": 10, - "page_num": "page_57", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 131, - 376, - 330, - 444 - ], - "lines_deleted": true - }, - { - "type": "text", - "bbox": [ - 45, - 457, - 296, - 474 - ], - "lines": [ - { - "bbox": [ - 114, - 461, - 294, - 471 - ], - "spans": [ - { - "bbox": [ - 114, - 461, - 294, - 471 - ], - "score": 1.0, - "content": "Calculate the extension of each wire.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_57", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 461, - 294, - 471 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 68, - 530, - 109 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 488, - 81 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 488, - 81 - ], - "score": 1.0, - "content": "The right-hand steel wire is removed and replaced with an aluminium wire of ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 82, - 529, - 95 - ], - "spans": [ - { - "bbox": [ - 114, - 83, - 159, - 95 - ], - "score": 1.0, - "content": "diameter", - "type": "text" - }, - { - "bbox": [ - 160, - 82, - 203, - 95 - ], - "score": 0.69, - "content": "1.60\\mathrm{mm}", - "type": "inline_equation", - "height": 13, - "width": 43 - }, - { - "bbox": [ - 204, - 83, - 529, - 95 - ], - "score": 1.0, - "content": ". The unloaded length of the aluminium wire is the same as that of ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 114, - 96, - 221, - 109 - ], - "spans": [ - { - "bbox": [ - 114, - 96, - 221, - 109 - ], - "score": 1.0, - "content": "the original steel wire.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 113, - 121, - 531, - 161 - ], - "lines": [ - { - "bbox": [ - 113, - 121, - 532, - 135 - ], - "spans": [ - { - "bbox": [ - 113, - 121, - 532, - 135 - ], - "score": 1.0, - "content": "When the lamp is at the midpoint of AB, one of the wires extends more than the other", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 113, - 135, - 521, - 147 - ], - "spans": [ - { - "bbox": [ - 113, - 135, - 521, - 147 - ], - "score": 1.0, - "content": "so that AB is not horizontal. To make AB horizontal the lamp has to be moved to a", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 114, - 148, - 403, - 161 - ], - "spans": [ - { - "bbox": [ - 114, - 148, - 156, - 161 - ], - "score": 1.0, - "content": "distance", - "type": "text" - }, - { - "bbox": [ - 157, - 150, - 165, - 160 - ], - "score": 0.71, - "content": "x", - "type": "inline_equation", - "height": 10, - "width": 8 - }, - { - "bbox": [ - 165, - 148, - 403, - 161 - ], - "score": 1.0, - "content": " from A. Figure 13 shows the new arrangement.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4 - }, - { - "type": "image", - "bbox": [ - 86, - 197, - 496, - 389 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 264, - 174, - 316, - 188 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 266, - 175, - 316, - 187 - ], - "spans": [ - { - "bbox": [ - 266, - 175, - 316, - 187 - ], - "score": 1.0, - "content": "Figure 13", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "image_body", - "bbox": [ - 86, - 197, - 496, - 389 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 86, - 197, - 496, - 389 - ], - "spans": [ - { - "bbox": [ - 86, - 197, - 496, - 389 - ], - "score": 0.966, - "type": "image", - "image_path": "59794ad74e3c90f35560f033094612b7bd0d38e73b7a1e043fec98d9de64372a.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 86, - 197, - 496, - 261.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 86, - 261.0, - 496, - 325.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 86, - 325.0, - 496, - 389.0 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 7.0 - }, - { - "type": "text", - "bbox": [ - 113, - 400, - 367, - 442 - ], - "lines": [ - { - "bbox": [ - 114, - 400, - 366, - 413 - ], - "spans": [ - { - "bbox": [ - 114, - 401, - 291, - 413 - ], - "score": 1.0, - "content": "The Young modulus of aluminium is", - "type": "text" - }, - { - "bbox": [ - 292, - 400, - 363, - 413 - ], - "score": 0.89, - "content": "7.00\\times10^{10}\\mathrm{Pa}", - "type": "inline_equation", - "height": 13, - "width": 71 - }, - { - "bbox": [ - 363, - 401, - 366, - 413 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 114, - 429, - 209, - 440 - ], - "spans": [ - { - "bbox": [ - 114, - 429, - 197, - 440 - ], - "score": 1.0, - "content": "Deduce distance", - "type": "text" - }, - { - "bbox": [ - 198, - 431, - 205, - 439 - ], - "score": 0.33, - "content": "x", - "type": "inline_equation", - "height": 8, - "width": 7 - }, - { - "bbox": [ - 206, - 429, - 209, - 440 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5 - } - ], - "layout_bboxes": [], - "page_idx": 58, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 86, - 197, - 496, - 389 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 264, - 174, - 316, - 188 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 266, - 175, - 316, - 187 - ], - "spans": [ - { - "bbox": [ - 266, - 175, - 316, - 187 - ], - "score": 1.0, - "content": "Figure 13", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "image_body", - "bbox": [ - 86, - 197, - 496, - 389 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 86, - 197, - 496, - 389 - ], - "spans": [ - { - "bbox": [ - 86, - 197, - 496, - 389 - ], - "score": 0.966, - "type": "image", - "image_path": "59794ad74e3c90f35560f033094612b7bd0d38e73b7a1e043fec98d9de64372a.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 86, - 197, - 496, - 261.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 86, - 261.0, - 496, - 325.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 86, - 325.0, - 496, - 389.0 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 7.0 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 78 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 78 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 824 - ], - "lines": [ - { - "bbox": [ - 61, - 818, - 65, - 821 - ], - "spans": [ - { - "bbox": [ - 61, - 818, - 65, - 821 - ], - "score": 0.5130922794342041, - "content": "1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 783 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 535, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 535, - 783 - ], - "score": 1.0, - "content": "Turn over ►", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 64, - 105, - 83 - ], - "lines": [ - { - "bbox": [ - 49, - 66, - 102, - 81 - ], - "spans": [ - { - "bbox": [ - 49, - 66, - 102, - 81 - ], - "score": 1.0, - "content": "0 5 . 4 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "19 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 544, - 714, - 576, - 757 - ], - "lines": [ - { - "bbox": [ - 553, - 740, - 568, - 750 - ], - "spans": [ - { - "bbox": [ - 553, - 740, - 568, - 750 - ], - "score": 1.0, - "content": "10 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 519, - 745, - 530, - 754 - ], - "lines": [ - { - "bbox": [ - 518, - 745, - 532, - 756 - ], - "spans": [ - { - "bbox": [ - 518, - 745, - 532, - 756 - ], - "score": 1.0, - "content": " m ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 483, - 441, - 535, - 455 - ], - "lines": [ - { - "bbox": [ - 484, - 442, - 536, - 455 - ], - "spans": [ - { - "bbox": [ - 484, - 442, - 536, - 455 - ], - "score": 1.0, - "content": "[5 marks] ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 354, - 746, - 371, - 754 - ], - "lines": [ - { - "bbox": [ - 354, - 747, - 371, - 754 - ], - "spans": [ - { - "bbox": [ - 354, - 747, - 371, - 754 - ], - "score": 0.25, - "content": "x=", - "type": "inline_equation", - "height": 7, - "width": 17 - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 68, - 530, - 109 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 488, - 81 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 488, - 81 - ], - "score": 1.0, - "content": "The right-hand steel wire is removed and replaced with an aluminium wire of ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 82, - 529, - 95 - ], - "spans": [ - { - "bbox": [ - 114, - 83, - 159, - 95 - ], - "score": 1.0, - "content": "diameter", - "type": "text" - }, - { - "bbox": [ - 160, - 82, - 203, - 95 - ], - "score": 0.69, - "content": "1.60\\mathrm{mm}", - "type": "inline_equation", - "height": 13, - "width": 43 - }, - { - "bbox": [ - 204, - 83, - 529, - 95 - ], - "score": 1.0, - "content": ". The unloaded length of the aluminium wire is the same as that of ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 114, - 96, - 221, - 109 - ], - "spans": [ - { - "bbox": [ - 114, - 96, - 221, - 109 - ], - "score": 1.0, - "content": "the original steel wire.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1, - "page_num": "page_58", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 69, - 529, - 109 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 121, - 531, - 161 - ], - "lines": [ - { - "bbox": [ - 113, - 121, - 532, - 135 - ], - "spans": [ - { - "bbox": [ - 113, - 121, - 532, - 135 - ], - "score": 1.0, - "content": "When the lamp is at the midpoint of AB, one of the wires extends more than the other", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 113, - 135, - 521, - 147 - ], - "spans": [ - { - "bbox": [ - 113, - 135, - 521, - 147 - ], - "score": 1.0, - "content": "so that AB is not horizontal. To make AB horizontal the lamp has to be moved to a", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 114, - 148, - 403, - 161 - ], - "spans": [ - { - "bbox": [ - 114, - 148, - 156, - 161 - ], - "score": 1.0, - "content": "distance", - "type": "text" - }, - { - "bbox": [ - 157, - 150, - 165, - 160 - ], - "score": 0.71, - "content": "x", - "type": "inline_equation", - "height": 10, - "width": 8 - }, - { - "bbox": [ - 165, - 148, - 403, - 161 - ], - "score": 1.0, - "content": " from A. Figure 13 shows the new arrangement.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4, - "page_num": "page_58", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 121, - 532, - 161 - ] - }, - { - "type": "image", - "bbox": [ - 86, - 197, - 496, - 389 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 264, - 174, - 316, - 188 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 266, - 175, - 316, - 187 - ], - "spans": [ - { - "bbox": [ - 266, - 175, - 316, - 187 - ], - "score": 1.0, - "content": "Figure 13", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "image_body", - "bbox": [ - 86, - 197, - 496, - 389 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 86, - 197, - 496, - 389 - ], - "spans": [ - { - "bbox": [ - 86, - 197, - 496, - 389 - ], - "score": 0.966, - "type": "image", - "image_path": "59794ad74e3c90f35560f033094612b7bd0d38e73b7a1e043fec98d9de64372a.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 86, - 197, - 496, - 261.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 86, - 261.0, - 496, - 325.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 86, - 325.0, - 496, - 389.0 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 7.0, - "page_num": "page_58", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 113, - 400, - 367, - 442 - ], - "lines": [ - { - "bbox": [ - 114, - 400, - 366, - 413 - ], - "spans": [ - { - "bbox": [ - 114, - 401, - 291, - 413 - ], - "score": 1.0, - "content": "The Young modulus of aluminium is", - "type": "text" - }, - { - "bbox": [ - 292, - 400, - 363, - 413 - ], - "score": 0.89, - "content": "7.00\\times10^{10}\\mathrm{Pa}", - "type": "inline_equation", - "height": 13, - "width": 71 - }, - { - "bbox": [ - 363, - 401, - 366, - 413 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 10, - "is_list_end_line": true - }, - { - "bbox": [ - 114, - 429, - 209, - 440 - ], - "spans": [ - { - "bbox": [ - 114, - 429, - 197, - 440 - ], - "score": 1.0, - "content": "Deduce distance", - "type": "text" - }, - { - "bbox": [ - 198, - 431, - 205, - 439 - ], - "score": 0.33, - "content": "x", - "type": "inline_equation", - "height": 8, - "width": 7 - }, - { - "bbox": [ - 206, - 429, - 209, - 440 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 11, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 114, - 69, - 503, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 503, - 82 - ], - "score": 1.0, - "content": "A pencil is weighted with a thin coil of wire. The volume of the wire is negligible.", - "type": "text", - "cross_page": true - } - ], - "index": 0, - "is_list_end_line": true - }, - { - "bbox": [ - 114, - 82, - 445, - 95 - ], - "spans": [ - { - "bbox": [ - 114, - 82, - 445, - 95 - ], - "score": 1.0, - "content": "Figure 14 shows the pencil and wire floating in equilibrium in water.", - "type": "text", - "cross_page": true - } - ], - "index": 1, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 10.5, - "page_num": "page_58", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 400, - 366, - 440 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 68, - 504, - 95 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 503, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 503, - 82 - ], - "score": 1.0, - "content": "A pencil is weighted with a thin coil of wire. The volume of the wire is negligible.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 82, - 445, - 95 - ], - "spans": [ - { - "bbox": [ - 114, - 82, - 445, - 95 - ], - "score": 1.0, - "content": "Figure 14 shows the pencil and wire floating in equilibrium in water.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "image", - "bbox": [ - 141, - 132, - 440, - 329 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 198, - 107, - 250, - 121 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 198, - 107, - 250, - 122 - ], - "spans": [ - { - "bbox": [ - 198, - 107, - 250, - 122 - ], - "score": 1.0, - "content": " Figure 14", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "image_caption", - "bbox": [ - 348, - 107, - 400, - 121 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 349, - 108, - 399, - 121 - ], - "spans": [ - { - "bbox": [ - 349, - 108, - 399, - 121 - ], - "score": 1.0, - "content": "Figure 15", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "image_body", - "bbox": [ - 141, - 132, - 440, - 329 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 141, - 132, - 440, - 329 - ], - "spans": [ - { - "bbox": [ - 141, - 132, - 440, - 329 - ], - "score": 0.949, - "type": "image", - "image_path": "4b9a8fc761c493dcf513cfe98d12648514d62b9dcd5f1e9573834c61e2ced345.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 141, - 132, - 440, - 197.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 141, - 197.66666666666669, - 440, - 263.33333333333337 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 141, - 263.33333333333337, - 440, - 329.00000000000006 - ], - "spans": [], - "index": 6 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 111, - 344, - 530, - 427 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 114, - 346, - 528, - 358 - ], - "spans": [ - { - "bbox": [ - 114, - 346, - 528, - 358 - ], - "score": 1.0, - "content": "In Figure 14 the combined weight of the pencil and wire is equal to an upwards force", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 114, - 359, - 475, - 372 - ], - "spans": [ - { - "bbox": [ - 114, - 359, - 475, - 372 - ], - "score": 1.0, - "content": "called the buoyancy force. The length of the pencil that is submerged is l.", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 114, - 373, - 521, - 385 - ], - "spans": [ - { - "bbox": [ - 114, - 373, - 521, - 385 - ], - "score": 1.0, - "content": "A student pushes the pencil down through a displacement y as shown in Figure 15.", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 113, - 385, - 365, - 399 - ], - "spans": [ - { - "bbox": [ - 113, - 385, - 365, - 399 - ], - "score": 1.0, - "content": "The buoyancy force is now greater than the weight.", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 113, - 399, - 528, - 413 - ], - "spans": [ - { - "bbox": [ - 113, - 399, - 276, - 413 - ], - "score": 1.0, - "content": "There is a resultant upward force", - "type": "text" - }, - { - "bbox": [ - 277, - 400, - 287, - 411 - ], - "score": 0.83, - "content": "F", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 287, - 399, - 528, - 413 - ], - "score": 1.0, - "content": " acting on the pencil when the student releases it.", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 113, - 413, - 353, - 427 - ], - "spans": [ - { - "bbox": [ - 113, - 413, - 201, - 427 - ], - "score": 1.0, - "content": "The magnitude of", - "type": "text" - }, - { - "bbox": [ - 202, - 413, - 211, - 424 - ], - "score": 0.83, - "content": "F", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 212, - 413, - 290, - 427 - ], - "score": 1.0, - "content": " for any value of", - "type": "text" - }, - { - "bbox": [ - 290, - 415, - 298, - 426 - ], - "score": 0.5, - "content": "y", - "type": "inline_equation", - "height": 11, - "width": 8 - }, - { - "bbox": [ - 299, - 413, - 353, - 427 - ], - "score": 1.0, - "content": " is given by", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 9.5 - } - ], - "index": 4.0 - }, - { - "type": "interline_equation", - "bbox": [ - 263, - 439, - 311, - 453 - ], - "lines": [ - { - "bbox": [ - 263, - 439, - 311, - 453 - ], - "spans": [ - { - "bbox": [ - 263, - 439, - 311, - 453 - ], - "score": 0.91, - "content": "F=A\\rho g y", - "type": "interline_equation" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 263, - 439, - 311, - 453 - ], - "spans": [], - "index": 13 - } - ] - }, - { - "type": "text", - "bbox": [ - 113, - 466, - 350, - 508 - ], - "lines": [ - { - "bbox": [ - 116, - 467, - 349, - 479 - ], - "spans": [ - { - "bbox": [ - 116, - 467, - 145, - 479 - ], - "score": 1.0, - "content": "where", - "type": "text" - }, - { - "bbox": [ - 146, - 467, - 155, - 478 - ], - "score": 0.74, - "content": "A", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 155, - 468, - 349, - 479 - ], - "score": 1.0, - "content": " is the cross-sectional area of the pencil", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 145, - 482, - 264, - 494 - ], - "spans": [ - { - "bbox": [ - 145, - 483, - 154, - 494 - ], - "score": 0.81, - "content": "\\rho", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 154, - 482, - 264, - 493 - ], - "score": 1.0, - "content": " is the density of water", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 146, - 494, - 318, - 508 - ], - "spans": [ - { - "bbox": [ - 146, - 497, - 154, - 508 - ], - "score": 0.75, - "content": "g", - "type": "inline_equation", - "height": 11, - "width": 8 - }, - { - "bbox": [ - 154, - 494, - 318, - 508 - ], - "score": 1.0, - "content": " is the acceleration due to gravity.", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 15 - }, - { - "type": "text", - "bbox": [ - 112, - 520, - 524, - 547 - ], - "lines": [ - { - "bbox": [ - 114, - 521, - 522, - 533 - ], - "spans": [ - { - "bbox": [ - 114, - 521, - 522, - 533 - ], - "score": 1.0, - "content": "The pencil is pushed down and released. The pencil then oscillates vertically about", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 114, - 535, - 231, - 547 - ], - "spans": [ - { - "bbox": [ - 114, - 535, - 231, - 547 - ], - "score": 1.0, - "content": "the equilibrium position.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 17.5 - } - ], - "layout_bboxes": [], - "page_idx": 59, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 141, - 132, - 440, - 329 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 198, - 107, - 250, - 121 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 198, - 107, - 250, - 122 - ], - "spans": [ - { - "bbox": [ - 198, - 107, - 250, - 122 - ], - "score": 1.0, - "content": " Figure 14", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "image_caption", - "bbox": [ - 348, - 107, - 400, - 121 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 349, - 108, - 399, - 121 - ], - "spans": [ - { - "bbox": [ - 349, - 108, - 399, - 121 - ], - "score": 1.0, - "content": "Figure 15", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "image_body", - "bbox": [ - 141, - 132, - 440, - 329 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 141, - 132, - 440, - 329 - ], - "spans": [ - { - "bbox": [ - 141, - 132, - 440, - 329 - ], - "score": 0.949, - "type": "image", - "image_path": "4b9a8fc761c493dcf513cfe98d12648514d62b9dcd5f1e9573834c61e2ced345.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 141, - 132, - 440, - 197.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 141, - 197.66666666666669, - 440, - 263.33333333333337 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 141, - 263.33333333333337, - 440, - 329.00000000000006 - ], - "spans": [], - "index": 6 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 111, - 344, - 530, - 427 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 114, - 346, - 528, - 358 - ], - "spans": [ - { - "bbox": [ - 114, - 346, - 528, - 358 - ], - "score": 1.0, - "content": "In Figure 14 the combined weight of the pencil and wire is equal to an upwards force", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 114, - 359, - 475, - 372 - ], - "spans": [ - { - "bbox": [ - 114, - 359, - 475, - 372 - ], - "score": 1.0, - "content": "called the buoyancy force. The length of the pencil that is submerged is l.", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 114, - 373, - 521, - 385 - ], - "spans": [ - { - "bbox": [ - 114, - 373, - 521, - 385 - ], - "score": 1.0, - "content": "A student pushes the pencil down through a displacement y as shown in Figure 15.", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 113, - 385, - 365, - 399 - ], - "spans": [ - { - "bbox": [ - 113, - 385, - 365, - 399 - ], - "score": 1.0, - "content": "The buoyancy force is now greater than the weight.", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 113, - 399, - 528, - 413 - ], - "spans": [ - { - "bbox": [ - 113, - 399, - 276, - 413 - ], - "score": 1.0, - "content": "There is a resultant upward force", - "type": "text" - }, - { - "bbox": [ - 277, - 400, - 287, - 411 - ], - "score": 0.83, - "content": "F", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 287, - 399, - 528, - 413 - ], - "score": 1.0, - "content": " acting on the pencil when the student releases it.", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 113, - 413, - 353, - 427 - ], - "spans": [ - { - "bbox": [ - 113, - 413, - 201, - 427 - ], - "score": 1.0, - "content": "The magnitude of", - "type": "text" - }, - { - "bbox": [ - 202, - 413, - 211, - 424 - ], - "score": 0.83, - "content": "F", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 212, - 413, - 290, - 427 - ], - "score": 1.0, - "content": " for any value of", - "type": "text" - }, - { - "bbox": [ - 290, - 415, - 298, - 426 - ], - "score": 0.5, - "content": "y", - "type": "inline_equation", - "height": 11, - "width": 8 - }, - { - "bbox": [ - 299, - 413, - 353, - 427 - ], - "score": 1.0, - "content": " is given by", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 9.5 - } - ], - "index": 4.0 - } - ], - "tables": [], - "interline_equations": [ - { - "type": "interline_equation", - "bbox": [ - 263, - 439, - 311, - 453 - ], - "lines": [ - { - "bbox": [ - 263, - 439, - 311, - 453 - ], - "spans": [ - { - "bbox": [ - 263, - 439, - 311, - 453 - ], - "score": 0.91, - "content": "F=A\\rho g y", - "type": "interline_equation" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 263, - 439, - 311, - 453 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 60, - 816, - 80, - 825 - ], - "spans": [ - { - "bbox": [ - 60, - 816, - 67, - 824 - ], - "score": 0.9999097585678101, - "content": "2", - "type": "text" - }, - { - "bbox": [ - 69, - 816, - 80, - 825 - ], - "score": 0.9852889180183411, - "content": "0", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 82, - 82 - ], - "lines": [ - { - "bbox": [ - 51, - 69, - 77, - 79 - ], - "spans": [ - { - "bbox": [ - 51, - 69, - 60, - 79 - ], - "score": 1.0, - "content": "0", - "type": "text" - }, - { - "bbox": [ - 68, - 69, - 77, - 79 - ], - "score": 1.0, - "content": "6", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "20 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "list", - "bbox": [ - 113, - 68, - 504, - 95 - ], - "lines": [], - "index": 0.5, - "page_num": "page_59", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 69, - 503, - 95 - ], - "lines_deleted": true - }, - { - "type": "image", - "bbox": [ - 141, - 132, - 440, - 329 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 198, - 107, - 250, - 121 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 198, - 107, - 250, - 122 - ], - "spans": [ - { - "bbox": [ - 198, - 107, - 250, - 122 - ], - "score": 1.0, - "content": " Figure 14", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "image_caption", - "bbox": [ - 348, - 107, - 400, - 121 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 349, - 108, - 399, - 121 - ], - "spans": [ - { - "bbox": [ - 349, - 108, - 399, - 121 - ], - "score": 1.0, - "content": "Figure 15", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "image_body", - "bbox": [ - 141, - 132, - 440, - 329 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 141, - 132, - 440, - 329 - ], - "spans": [ - { - "bbox": [ - 141, - 132, - 440, - 329 - ], - "score": 0.949, - "type": "image", - "image_path": "4b9a8fc761c493dcf513cfe98d12648514d62b9dcd5f1e9573834c61e2ced345.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 141, - 132, - 440, - 197.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 141, - 197.66666666666669, - 440, - 263.33333333333337 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 141, - 263.33333333333337, - 440, - 329.00000000000006 - ], - "spans": [], - "index": 6 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 111, - 344, - 530, - 427 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 114, - 346, - 528, - 358 - ], - "spans": [ - { - "bbox": [ - 114, - 346, - 528, - 358 - ], - "score": 1.0, - "content": "In Figure 14 the combined weight of the pencil and wire is equal to an upwards force", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 114, - 359, - 475, - 372 - ], - "spans": [ - { - "bbox": [ - 114, - 359, - 475, - 372 - ], - "score": 1.0, - "content": "called the buoyancy force. The length of the pencil that is submerged is l.", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 114, - 373, - 521, - 385 - ], - "spans": [ - { - "bbox": [ - 114, - 373, - 521, - 385 - ], - "score": 1.0, - "content": "A student pushes the pencil down through a displacement y as shown in Figure 15.", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 113, - 385, - 365, - 399 - ], - "spans": [ - { - "bbox": [ - 113, - 385, - 365, - 399 - ], - "score": 1.0, - "content": "The buoyancy force is now greater than the weight.", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 113, - 399, - 528, - 413 - ], - "spans": [ - { - "bbox": [ - 113, - 399, - 276, - 413 - ], - "score": 1.0, - "content": "There is a resultant upward force", - "type": "text" - }, - { - "bbox": [ - 277, - 400, - 287, - 411 - ], - "score": 0.83, - "content": "F", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 287, - 399, - 528, - 413 - ], - "score": 1.0, - "content": " acting on the pencil when the student releases it.", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 113, - 413, - 353, - 427 - ], - "spans": [ - { - "bbox": [ - 113, - 413, - 201, - 427 - ], - "score": 1.0, - "content": "The magnitude of", - "type": "text" - }, - { - "bbox": [ - 202, - 413, - 211, - 424 - ], - "score": 0.83, - "content": "F", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 212, - 413, - 290, - 427 - ], - "score": 1.0, - "content": " for any value of", - "type": "text" - }, - { - "bbox": [ - 290, - 415, - 298, - 426 - ], - "score": 0.5, - "content": "y", - "type": "inline_equation", - "height": 11, - "width": 8 - }, - { - "bbox": [ - 299, - 413, - 353, - 427 - ], - "score": 1.0, - "content": " is given by", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 9.5 - } - ], - "index": 4.0, - "page_num": "page_59", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "interline_equation", - "bbox": [ - 263, - 439, - 311, - 453 - ], - "lines": [ - { - "bbox": [ - 263, - 439, - 311, - 453 - ], - "spans": [ - { - "bbox": [ - 263, - 439, - 311, - 453 - ], - "score": 0.91, - "content": "F=A\\rho g y", - "type": "interline_equation" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 263, - 439, - 311, - 453 - ], - "spans": [], - "index": 13 - } - ], - "page_num": "page_59", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 466, - 350, - 508 - ], - "lines": [ - { - "bbox": [ - 116, - 467, - 349, - 479 - ], - "spans": [ - { - "bbox": [ - 116, - 467, - 145, - 479 - ], - "score": 1.0, - "content": "where", - "type": "text" - }, - { - "bbox": [ - 146, - 467, - 155, - 478 - ], - "score": 0.74, - "content": "A", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 155, - 468, - 349, - 479 - ], - "score": 1.0, - "content": " is the cross-sectional area of the pencil", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 145, - 482, - 264, - 494 - ], - "spans": [ - { - "bbox": [ - 145, - 483, - 154, - 494 - ], - "score": 0.81, - "content": "\\rho", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 154, - 482, - 264, - 493 - ], - "score": 1.0, - "content": " is the density of water", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 146, - 494, - 318, - 508 - ], - "spans": [ - { - "bbox": [ - 146, - 497, - 154, - 508 - ], - "score": 0.75, - "content": "g", - "type": "inline_equation", - "height": 11, - "width": 8 - }, - { - "bbox": [ - 154, - 494, - 318, - 508 - ], - "score": 1.0, - "content": " is the acceleration due to gravity.", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 15, - "page_num": "page_59", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 116, - 467, - 349, - 508 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 520, - 524, - 547 - ], - "lines": [ - { - "bbox": [ - 114, - 521, - 522, - 533 - ], - "spans": [ - { - "bbox": [ - 114, - 521, - 522, - 533 - ], - "score": 1.0, - "content": "The pencil is pushed down and released. The pencil then oscillates vertically about", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 114, - 535, - 231, - 547 - ], - "spans": [ - { - "bbox": [ - 114, - 535, - 231, - 547 - ], - "score": 1.0, - "content": "the equilibrium position.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 17.5, - "page_num": "page_59", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 521, - 522, - 547 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 111, - 67, - 395, - 82 - ], - "lines": [ - { - "bbox": [ - 114, - 68, - 394, - 81 - ], - "spans": [ - { - "bbox": [ - 114, - 68, - 394, - 81 - ], - "score": 1.0, - "content": "Show that the pencil moves with simple harmonic motion.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 484, - 81, - 535, - 95 - ], - "lines": [ - { - "bbox": [ - 484, - 80, - 536, - 96 - ], - "spans": [ - { - "bbox": [ - 484, - 80, - 536, - 96 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 112, - 338, - 383, - 354 - ], - "lines": [ - { - "bbox": [ - 114, - 340, - 381, - 353 - ], - "spans": [ - { - "bbox": [ - 114, - 340, - 193, - 353 - ], - "score": 1.0, - "content": "The time period ", - "type": "text" - }, - { - "bbox": [ - 193, - 340, - 202, - 352 - ], - "score": 0.73, - "content": "T", - "type": "inline_equation", - "height": 12, - "width": 9 - }, - { - "bbox": [ - 203, - 340, - 381, - 353 - ], - "score": 1.0, - "content": "of the vertical oscillations is given by", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "interline_equation", - "bbox": [ - 258, - 365, - 316, - 403 - ], - "lines": [ - { - "bbox": [ - 258, - 365, - 316, - 403 - ], - "spans": [ - { - "bbox": [ - 258, - 365, - 316, - 403 - ], - "score": 0.91, - "content": "T=2\\pi\\sqrt{\\frac{l}{g}}", - "type": "interline_equation" - } - ] - } - ], - "index": 3.5, - "virtual_lines": [ - { - "bbox": [ - 258, - 365, - 316, - 384.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 258, - 384.0, - 316, - 403.0 - ], - "spans": [], - "index": 4 - } - ] - }, - { - "type": "text", - "bbox": [ - 113, - 416, - 357, - 444 - ], - "lines": [ - { - "bbox": [ - 114, - 417, - 348, - 429 - ], - "spans": [ - { - "bbox": [ - 114, - 417, - 229, - 429 - ], - "score": 1.0, - "content": "The measured value of ", - "type": "text" - }, - { - "bbox": [ - 229, - 417, - 234, - 429 - ], - "score": 0.36, - "content": "l", - "type": "inline_equation", - "height": 12, - "width": 5 - }, - { - "bbox": [ - 235, - 417, - 310, - 429 - ], - "score": 1.0, - "content": " in Figure 15 is ", - "type": "text" - }, - { - "bbox": [ - 310, - 417, - 345, - 429 - ], - "score": 0.72, - "content": "85\\mathrm{mm}", - "type": "inline_equation", - "height": 12, - "width": 35 - }, - { - "bbox": [ - 345, - 417, - 348, - 429 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 114, - 431, - 354, - 443 - ], - "spans": [ - { - "bbox": [ - 114, - 431, - 246, - 443 - ], - "score": 1.0, - "content": "The pencil is pushed down", - "type": "text" - }, - { - "bbox": [ - 247, - 431, - 286, - 443 - ], - "score": 0.56, - "content": "5.0\\mathrm{mm}", - "type": "inline_equation", - "height": 12, - "width": 39 - }, - { - "bbox": [ - 286, - 431, - 354, - 443 - ], - "score": 1.0, - "content": " and released.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5.5 - }, - { - "type": "text", - "bbox": [ - 113, - 456, - 358, - 471 - ], - "lines": [ - { - "bbox": [ - 114, - 457, - 357, - 469 - ], - "spans": [ - { - "bbox": [ - 114, - 457, - 357, - 469 - ], - "score": 1.0, - "content": "Calculate the maximum acceleration of the pencil.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 483, - 470, - 535, - 484 - ], - "lines": [ - { - "bbox": [ - 485, - 469, - 536, - 484 - ], - "spans": [ - { - "bbox": [ - 485, - 469, - 536, - 484 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 229, - 659, - 531, - 677 - ], - "lines": [ - { - "bbox": [ - 233, - 660, - 534, - 673 - ], - "spans": [ - { - "bbox": [ - 233, - 662, - 344, - 672 - ], - "score": 1.0, - "content": "maximum acceleration", - "type": "text" - }, - { - "bbox": [ - 344, - 662, - 355, - 672 - ], - "score": 0.65, - "content": "=", - "type": "inline_equation", - "height": 10, - "width": 11 - }, - { - "bbox": [ - 499, - 660, - 534, - 673 - ], - "score": 1.0, - "content": " m s−2 ", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 187, - 719, - 392, - 734 - ], - "lines": [ - { - "bbox": [ - 187, - 719, - 390, - 734 - ], - "spans": [ - { - "bbox": [ - 187, - 719, - 390, - 734 - ], - "score": 1.0, - "content": "Question 6 continues on the next page", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - } - ], - "layout_bboxes": [], - "page_idx": 60, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [ - { - "type": "interline_equation", - "bbox": [ - 258, - 365, - 316, - 403 - ], - "lines": [ - { - "bbox": [ - 258, - 365, - 316, - 403 - ], - "spans": [ - { - "bbox": [ - 258, - 365, - 316, - 403 - ], - "score": 0.91, - "content": "T=2\\pi\\sqrt{\\frac{l}{g}}", - "type": "interline_equation" - } - ] - } - ], - "index": 3.5, - "virtual_lines": [ - { - "bbox": [ - 258, - 365, - 316, - 384.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 258, - 384.0, - 316, - 403.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 77 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 559, - 69, - 573, - 78 - ], - "spans": [ - { - "bbox": [ - 559, - 69, - 573, - 78 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 45, - 335, - 105, - 353 - ], - "lines": [ - { - "bbox": [ - 50, - 337, - 102, - 352 - ], - "spans": [ - { - "bbox": [ - 50, - 337, - 102, - 352 - ], - "score": 1.0, - "content": "0 6 . 2 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 784 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 479, - 815, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 479, - 815, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 294, - 39 - ], - "lines": [ - { - "bbox": [ - 280, - 27, - 297, - 42 - ], - "spans": [ - { - "bbox": [ - 280, - 27, - 297, - 42 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 15, - "width": 17 - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 105, - 83 - ], - "lines": [ - { - "bbox": [ - 50, - 68, - 100, - 80 - ], - "spans": [ - { - "bbox": [ - 50, - 68, - 69, - 80 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 63, - 69, - 81, - 79 - ], - "score": 1.0, - "content": "6", - "type": "text" - }, - { - "bbox": [ - 74, - 68, - 100, - 80 - ], - "score": 1.0, - "content": " . 1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 111, - 67, - 395, - 82 - ], - "lines": [ - { - "bbox": [ - 114, - 68, - 394, - 81 - ], - "spans": [ - { - "bbox": [ - 114, - 68, - 394, - 81 - ], - "score": 1.0, - "content": "Show that the pencil moves with simple harmonic motion.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_60", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 68, - 394, - 81 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 81, - 535, - 95 - ], - "lines": [ - { - "bbox": [ - 484, - 80, - 536, - 96 - ], - "spans": [ - { - "bbox": [ - 484, - 80, - 536, - 96 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_60", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 484, - 80, - 536, - 96 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 338, - 383, - 354 - ], - "lines": [ - { - "bbox": [ - 114, - 340, - 381, - 353 - ], - "spans": [ - { - "bbox": [ - 114, - 340, - 193, - 353 - ], - "score": 1.0, - "content": "The time period ", - "type": "text" - }, - { - "bbox": [ - 193, - 340, - 202, - 352 - ], - "score": 0.73, - "content": "T", - "type": "inline_equation", - "height": 12, - "width": 9 - }, - { - "bbox": [ - 203, - 340, - 381, - 353 - ], - "score": 1.0, - "content": "of the vertical oscillations is given by", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_60", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 340, - 381, - 353 - ] - }, - { - "type": "interline_equation", - "bbox": [ - 258, - 365, - 316, - 403 - ], - "lines": [ - { - "bbox": [ - 258, - 365, - 316, - 403 - ], - "spans": [ - { - "bbox": [ - 258, - 365, - 316, - 403 - ], - "score": 0.91, - "content": "T=2\\pi\\sqrt{\\frac{l}{g}}", - "type": "interline_equation" - } - ] - } - ], - "index": 3.5, - "virtual_lines": [ - { - "bbox": [ - 258, - 365, - 316, - 384.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 258, - 384.0, - 316, - 403.0 - ], - "spans": [], - "index": 4 - } - ], - "page_num": "page_60", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 113, - 416, - 357, - 444 - ], - "lines": [ - { - "bbox": [ - 114, - 417, - 348, - 429 - ], - "spans": [ - { - "bbox": [ - 114, - 417, - 229, - 429 - ], - "score": 1.0, - "content": "The measured value of ", - "type": "text" - }, - { - "bbox": [ - 229, - 417, - 234, - 429 - ], - "score": 0.36, - "content": "l", - "type": "inline_equation", - "height": 12, - "width": 5 - }, - { - "bbox": [ - 235, - 417, - 310, - 429 - ], - "score": 1.0, - "content": " in Figure 15 is ", - "type": "text" - }, - { - "bbox": [ - 310, - 417, - 345, - 429 - ], - "score": 0.72, - "content": "85\\mathrm{mm}", - "type": "inline_equation", - "height": 12, - "width": 35 - }, - { - "bbox": [ - 345, - 417, - 348, - 429 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 5, - "is_list_end_line": true - }, - { - "bbox": [ - 114, - 431, - 354, - 443 - ], - "spans": [ - { - "bbox": [ - 114, - 431, - 246, - 443 - ], - "score": 1.0, - "content": "The pencil is pushed down", - "type": "text" - }, - { - "bbox": [ - 247, - 431, - 286, - 443 - ], - "score": 0.56, - "content": "5.0\\mathrm{mm}", - "type": "inline_equation", - "height": 12, - "width": 39 - }, - { - "bbox": [ - 286, - 431, - 354, - 443 - ], - "score": 1.0, - "content": " and released.", - "type": "text" - } - ], - "index": 6, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 5.5, - "page_num": "page_60", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 417, - 354, - 443 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 456, - 358, - 471 - ], - "lines": [ - { - "bbox": [ - 114, - 457, - 357, - 469 - ], - "spans": [ - { - "bbox": [ - 114, - 457, - 357, - 469 - ], - "score": 1.0, - "content": "Calculate the maximum acceleration of the pencil.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_60", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 457, - 357, - 469 - ] - }, - { - "type": "text", - "bbox": [ - 483, - 470, - 535, - 484 - ], - "lines": [ - { - "bbox": [ - 485, - 469, - 536, - 484 - ], - "spans": [ - { - "bbox": [ - 485, - 469, - 536, - 484 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_60", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 485, - 469, - 536, - 484 - ] - }, - { - "type": "text", - "bbox": [ - 229, - 659, - 531, - 677 - ], - "lines": [ - { - "bbox": [ - 233, - 660, - 534, - 673 - ], - "spans": [ - { - "bbox": [ - 233, - 662, - 344, - 672 - ], - "score": 1.0, - "content": "maximum acceleration", - "type": "text" - }, - { - "bbox": [ - 344, - 662, - 355, - 672 - ], - "score": 0.65, - "content": "=", - "type": "inline_equation", - "height": 10, - "width": 11 - }, - { - "bbox": [ - 499, - 660, - 534, - 673 - ], - "score": 1.0, - "content": " m s−2 ", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_60", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 233, - 660, - 534, - 673 - ] - }, - { - "type": "text", - "bbox": [ - 187, - 719, - 392, - 734 - ], - "lines": [ - { - "bbox": [ - 187, - 719, - 390, - 734 - ], - "spans": [ - { - "bbox": [ - 187, - 719, - 390, - 734 - ], - "score": 1.0, - "content": "Question 6 continues on the next page", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_60", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 187, - 719, - 390, - 734 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 110, - 68, - 508, - 95 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 466, - 81 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 466, - 81 - ], - "score": 1.0, - "content": "A ship floating in the sea can be modelled by the pencil floating in water.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 115, - 82, - 492, - 95 - ], - "spans": [ - { - "bbox": [ - 115, - 82, - 492, - 95 - ], - "score": 1.0, - "content": "The ship can oscillate vertically. These oscillations are called heave oscillatio", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 110, - 107, - 527, - 134 - ], - "lines": [ - { - "bbox": [ - 114, - 108, - 526, - 120 - ], - "spans": [ - { - "bbox": [ - 114, - 108, - 526, - 120 - ], - "score": 1.0, - "content": "Wave motion causes forced oscillations of the ship. Under certain conditions, heave", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 114, - 123, - 247, - 133 - ], - "spans": [ - { - "bbox": [ - 114, - 123, - 247, - 133 - ], - "score": 1.0, - "content": "resonance may then occur.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5 - }, - { - "type": "text", - "bbox": [ - 114, - 148, - 294, - 162 - ], - "lines": [ - { - "bbox": [ - 114, - 149, - 294, - 161 - ], - "spans": [ - { - "bbox": [ - 114, - 149, - 294, - 161 - ], - "score": 1.0, - "content": "Explain what is meant by resonance.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 112, - 162, - 537, - 384 - ], - "lines": [ - { - "bbox": [ - 485, - 161, - 536, - 176 - ], - "spans": [ - { - "bbox": [ - 485, - 161, - 536, - 176 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 112, - 450, - 538, - 478 - ], - "lines": [ - { - "bbox": [ - 114, - 451, - 534, - 465 - ], - "spans": [ - { - "bbox": [ - 114, - 451, - 260, - 465 - ], - "score": 1.0, - "content": "The ship is moving steadily at", - "type": "text" - }, - { - "bbox": [ - 261, - 451, - 306, - 464 - ], - "score": 0.86, - "content": "8.0\\mathrm{m~s}^{-1}", - "type": "inline_equation", - "height": 13, - "width": 45 - }, - { - "bbox": [ - 306, - 451, - 534, - 465 - ], - "score": 1.0, - "content": " relative to the seabed in the same direction as", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 113, - 464, - 168, - 479 - ], - "spans": [ - { - "bbox": [ - 113, - 464, - 168, - 479 - ], - "score": 1.0, - "content": "the waves.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8.5 - }, - { - "type": "image", - "bbox": [ - 133, - 515, - 447, - 620 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 114, - 410, - 506, - 438 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 115, - 410, - 505, - 424 - ], - "spans": [ - { - "bbox": [ - 115, - 411, - 473, - 424 - ], - "score": 1.0, - "content": "Figure 16 shows a ship moving through continuous waves of wavelength ", - "type": "text" - }, - { - "bbox": [ - 473, - 410, - 505, - 423 - ], - "score": 0.49, - "content": "118\\mathrm{m}", - "type": "inline_equation", - "height": 13, - "width": 32 - } - ], - "index": 6 - }, - { - "bbox": [ - 113, - 424, - 228, - 438 - ], - "spans": [ - { - "bbox": [ - 113, - 425, - 175, - 438 - ], - "score": 1.0, - "content": "and velocity ", - "type": "text" - }, - { - "bbox": [ - 176, - 424, - 225, - 437 - ], - "score": 0.88, - "content": "14.2\\mathrm{m~s}^{-1}", - "type": "inline_equation", - "height": 13, - "width": 49 - }, - { - "bbox": [ - 226, - 425, - 228, - 438 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6.5 - }, - { - "type": "image_caption", - "bbox": [ - 264, - 489, - 317, - 504 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 265, - 490, - 316, - 505 - ], - "spans": [ - { - "bbox": [ - 265, - 490, - 316, - 505 - ], - "score": 1.0, - "content": "Figure 16", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "image_body", - "bbox": [ - 133, - 515, - 447, - 620 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 133, - 515, - 447, - 620 - ], - "spans": [ - { - "bbox": [ - 133, - 515, - 447, - 620 - ], - "score": 0.964, - "type": "image", - "image_path": "094b4450e7343638a1ec955e5f1af99ac05903bd9003eb54d02ef61f4d31b4ab.jpg" - } - ] - } - ], - "index": 12, - "virtual_lines": [ - { - "bbox": [ - 133, - 515, - 447, - 550.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 133, - 550.0, - 447, - 585.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 133, - 585.0, - 447, - 620.0 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "index": 10 - } - ], - "layout_bboxes": [], - "page_idx": 61, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 133, - 515, - 447, - 620 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 114, - 410, - 506, - 438 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 115, - 410, - 505, - 424 - ], - "spans": [ - { - "bbox": [ - 115, - 411, - 473, - 424 - ], - "score": 1.0, - "content": "Figure 16 shows a ship moving through continuous waves of wavelength ", - "type": "text" - }, - { - "bbox": [ - 473, - 410, - 505, - 423 - ], - "score": 0.49, - "content": "118\\mathrm{m}", - "type": "inline_equation", - "height": 13, - "width": 32 - } - ], - "index": 6 - }, - { - "bbox": [ - 113, - 424, - 228, - 438 - ], - "spans": [ - { - "bbox": [ - 113, - 425, - 175, - 438 - ], - "score": 1.0, - "content": "and velocity ", - "type": "text" - }, - { - "bbox": [ - 176, - 424, - 225, - 437 - ], - "score": 0.88, - "content": "14.2\\mathrm{m~s}^{-1}", - "type": "inline_equation", - "height": 13, - "width": 49 - }, - { - "bbox": [ - 226, - 425, - 228, - 438 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6.5 - }, - { - "type": "image_caption", - "bbox": [ - 264, - 489, - 317, - 504 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 265, - 490, - 316, - 505 - ], - "spans": [ - { - "bbox": [ - 265, - 490, - 316, - 505 - ], - "score": 1.0, - "content": "Figure 16", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "image_body", - "bbox": [ - 133, - 515, - 447, - 620 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 133, - 515, - 447, - 620 - ], - "spans": [ - { - "bbox": [ - 133, - 515, - 447, - 620 - ], - "score": 0.964, - "type": "image", - "image_path": "094b4450e7343638a1ec955e5f1af99ac05903bd9003eb54d02ef61f4d31b4ab.jpg" - } - ] - } - ], - "index": 12, - "virtual_lines": [ - { - "bbox": [ - 133, - 515, - 447, - 550.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 133, - 550.0, - 447, - 585.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 133, - 585.0, - 447, - 620.0 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "index": 10 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 559, - 68, - 573, - 77 - ], - "spans": [ - { - "bbox": [ - 559, - 68, - 573, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 145, - 105, - 162 - ], - "lines": [ - { - "bbox": [ - 51, - 149, - 99, - 159 - ], - "spans": [ - { - "bbox": [ - 51, - 149, - 62, - 159 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 68, - 149, - 77, - 159 - ], - "score": 1.0, - "content": "6", - "type": "text" - }, - { - "bbox": [ - 89, - 149, - 99, - 159 - ], - "score": 1.0, - "content": "3", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 406, - 105, - 424 - ], - "lines": [ - { - "bbox": [ - 51, - 409, - 98, - 421 - ], - "spans": [ - { - "bbox": [ - 51, - 409, - 62, - 421 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 68, - 411, - 77, - 420 - ], - "score": 1.0, - "content": "6", - "type": "text" - }, - { - "bbox": [ - 92, - 412, - 98, - 419 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 73, - 817, - 79, - 824 - ], - "spans": [ - { - "bbox": [ - 73, - 817, - 79, - 824 - ], - "score": 0.9999557733535767, - "content": "2", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 280, - 27, - 299, - 43 - ], - "spans": [ - { - "bbox": [ - 280, - 27, - 299, - 43 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 16, - "width": 19 - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 110, - 68, - 508, - 95 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 466, - 81 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 466, - 81 - ], - "score": 1.0, - "content": "A ship floating in the sea can be modelled by the pencil floating in water.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 115, - 82, - 492, - 95 - ], - "spans": [ - { - "bbox": [ - 115, - 82, - 492, - 95 - ], - "score": 1.0, - "content": "The ship can oscillate vertically. These oscillations are called heave oscillatio", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_61", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 69, - 492, - 95 - ] - }, - { - "type": "text", - "bbox": [ - 110, - 107, - 527, - 134 - ], - "lines": [ - { - "bbox": [ - 114, - 108, - 526, - 120 - ], - "spans": [ - { - "bbox": [ - 114, - 108, - 526, - 120 - ], - "score": 1.0, - "content": "Wave motion causes forced oscillations of the ship. Under certain conditions, heave", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 114, - 123, - 247, - 133 - ], - "spans": [ - { - "bbox": [ - 114, - 123, - 247, - 133 - ], - "score": 1.0, - "content": "resonance may then occur.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5, - "page_num": "page_61", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 108, - 526, - 133 - ] - }, - { - "type": "text", - "bbox": [ - 114, - 148, - 294, - 162 - ], - "lines": [ - { - "bbox": [ - 114, - 149, - 294, - 161 - ], - "spans": [ - { - "bbox": [ - 114, - 149, - 294, - 161 - ], - "score": 1.0, - "content": "Explain what is meant by resonance.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_61", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 149, - 294, - 161 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 162, - 537, - 384 - ], - "lines": [ - { - "bbox": [ - 485, - 161, - 536, - 176 - ], - "spans": [ - { - "bbox": [ - 485, - 161, - 536, - 176 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_61", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 485, - 161, - 536, - 176 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 450, - 538, - 478 - ], - "lines": [ - { - "bbox": [ - 114, - 451, - 534, - 465 - ], - "spans": [ - { - "bbox": [ - 114, - 451, - 260, - 465 - ], - "score": 1.0, - "content": "The ship is moving steadily at", - "type": "text" - }, - { - "bbox": [ - 261, - 451, - 306, - 464 - ], - "score": 0.86, - "content": "8.0\\mathrm{m~s}^{-1}", - "type": "inline_equation", - "height": 13, - "width": 45 - }, - { - "bbox": [ - 306, - 451, - 534, - 465 - ], - "score": 1.0, - "content": " relative to the seabed in the same direction as", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 113, - 464, - 168, - 479 - ], - "spans": [ - { - "bbox": [ - 113, - 464, - 168, - 479 - ], - "score": 1.0, - "content": "the waves.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8.5, - "page_num": "page_61", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 451, - 534, - 479 - ] - }, - { - "type": "image", - "bbox": [ - 133, - 515, - 447, - 620 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 114, - 410, - 506, - 438 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 115, - 410, - 505, - 424 - ], - "spans": [ - { - "bbox": [ - 115, - 411, - 473, - 424 - ], - "score": 1.0, - "content": "Figure 16 shows a ship moving through continuous waves of wavelength ", - "type": "text" - }, - { - "bbox": [ - 473, - 410, - 505, - 423 - ], - "score": 0.49, - "content": "118\\mathrm{m}", - "type": "inline_equation", - "height": 13, - "width": 32 - } - ], - "index": 6 - }, - { - "bbox": [ - 113, - 424, - 228, - 438 - ], - "spans": [ - { - "bbox": [ - 113, - 425, - 175, - 438 - ], - "score": 1.0, - "content": "and velocity ", - "type": "text" - }, - { - "bbox": [ - 176, - 424, - 225, - 437 - ], - "score": 0.88, - "content": "14.2\\mathrm{m~s}^{-1}", - "type": "inline_equation", - "height": 13, - "width": 49 - }, - { - "bbox": [ - 226, - 425, - 228, - 438 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6.5 - }, - { - "type": "image_caption", - "bbox": [ - 264, - 489, - 317, - 504 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 265, - 490, - 316, - 505 - ], - "spans": [ - { - "bbox": [ - 265, - 490, - 316, - 505 - ], - "score": 1.0, - "content": "Figure 16", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "image_body", - "bbox": [ - 133, - 515, - 447, - 620 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 133, - 515, - 447, - 620 - ], - "spans": [ - { - "bbox": [ - 133, - 515, - 447, - 620 - ], - "score": 0.964, - "type": "image", - "image_path": "094b4450e7343638a1ec955e5f1af99ac05903bd9003eb54d02ef61f4d31b4ab.jpg" - } - ] - } - ], - "index": 12, - "virtual_lines": [ - { - "bbox": [ - 133, - 515, - 447, - 550.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 133, - 550.0, - 447, - 585.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 133, - 585.0, - 447, - 620.0 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "index": 10, - "page_num": "page_61", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 115, - 69, - 433, - 82 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 433, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 390, - 82 - ], - "score": 1.0, - "content": "The natural frequency of heave oscillations of the ship is", - "type": "text" - }, - { - "bbox": [ - 390, - 69, - 430, - 82 - ], - "score": 0.76, - "content": "0.13\\:\\mathrm{Hz}", - "type": "inline_equation", - "height": 13, - "width": 40 - }, - { - "bbox": [ - 430, - 69, - 433, - 82 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 114, - 95, - 523, - 122 - ], - "lines": [ - { - "bbox": [ - 114, - 96, - 522, - 110 - ], - "spans": [ - { - "bbox": [ - 114, - 96, - 522, - 110 - ], - "score": 1.0, - "content": "A crew member needs an emergency operation. The ship’s doctor is confident that ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 113, - 108, - 394, - 123 - ], - "spans": [ - { - "bbox": [ - 113, - 108, - 394, - 123 - ], - "score": 1.0, - "content": "she can do the operation if the ship remains fairly steady.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5 - }, - { - "type": "text", - "bbox": [ - 114, - 136, - 224, - 150 - ], - "lines": [ - { - "bbox": [ - 114, - 137, - 224, - 150 - ], - "spans": [ - { - "bbox": [ - 114, - 137, - 224, - 150 - ], - "score": 1.0, - "content": "There are two options:", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 114, - 163, - 441, - 189 - ], - "lines": [ - { - "bbox": [ - 115, - 164, - 440, - 175 - ], - "spans": [ - { - "bbox": [ - 115, - 164, - 440, - 175 - ], - "score": 1.0, - "content": "• stop the ship’s motors and loosely anchor the ship to the seabed", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 115, - 176, - 407, - 188 - ], - "spans": [ - { - "bbox": [ - 115, - 178, - 255, - 188 - ], - "score": 1.0, - "content": "• continue to sail the ship at ", - "type": "text" - }, - { - "bbox": [ - 255, - 176, - 300, - 188 - ], - "score": 0.88, - "content": "8.0\\mathrm{m~s}^{-1}", - "type": "inline_equation", - "height": 12, - "width": 45 - }, - { - "bbox": [ - 300, - 178, - 407, - 188 - ], - "score": 1.0, - "content": " in the same direction.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5 - }, - { - "type": "text", - "bbox": [ - 113, - 202, - 307, - 229 - ], - "lines": [ - { - "bbox": [ - 114, - 203, - 280, - 215 - ], - "spans": [ - { - "bbox": [ - 114, - 203, - 280, - 215 - ], - "score": 1.0, - "content": "Deduce which is the better option.", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 114, - 216, - 306, - 228 - ], - "spans": [ - { - "bbox": [ - 114, - 216, - 306, - 228 - ], - "score": 1.0, - "content": "Support your answer with a calculation.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6.5 - }, - { - "type": "text", - "bbox": [ - 484, - 229, - 535, - 242 - ], - "lines": [ - { - "bbox": [ - 485, - 229, - 536, - 242 - ], - "spans": [ - { - "bbox": [ - 485, - 229, - 536, - 242 - ], - "score": 1.0, - "content": "[3 marks] ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 231, - 695, - 346, - 709 - ], - "lines": [ - { - "bbox": [ - 232, - 697, - 347, - 707 - ], - "spans": [ - { - "bbox": [ - 232, - 697, - 347, - 707 - ], - "score": 1.0, - "content": "END OF SECTION A", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - } - ], - "layout_bboxes": [], - "page_idx": 62, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 77 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 78 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 78 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 543, - 582, - 576, - 624 - ], - "lines": [ - { - "bbox": [ - 556, - 608, - 563, - 615 - ], - "spans": [ - { - "bbox": [ - 556, - 608, - 563, - 615 - ], - "score": 1.0, - "content": "9", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 60, - 816, - 80, - 824 - ], - "spans": [ - { - "bbox": [ - 60, - 817, - 65, - 823 - ], - "score": 0.9970778226852417, - "content": "2", - "type": "text" - }, - { - "bbox": [ - 70, - 816, - 80, - 824 - ], - "score": 0.9999203681945801, - "content": "3", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 783 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "23 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 115, - 69, - 433, - 82 - ], - "lines": [ - { - "bbox": [ - 114, - 69, - 433, - 82 - ], - "spans": [ - { - "bbox": [ - 114, - 69, - 390, - 82 - ], - "score": 1.0, - "content": "The natural frequency of heave oscillations of the ship is", - "type": "text" - }, - { - "bbox": [ - 390, - 69, - 430, - 82 - ], - "score": 0.76, - "content": "0.13\\:\\mathrm{Hz}", - "type": "inline_equation", - "height": 13, - "width": 40 - }, - { - "bbox": [ - 430, - 69, - 433, - 82 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_62", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 69, - 433, - 82 - ] - }, - { - "type": "text", - "bbox": [ - 114, - 95, - 523, - 122 - ], - "lines": [ - { - "bbox": [ - 114, - 96, - 522, - 110 - ], - "spans": [ - { - "bbox": [ - 114, - 96, - 522, - 110 - ], - "score": 1.0, - "content": "A crew member needs an emergency operation. The ship’s doctor is confident that ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 113, - 108, - 394, - 123 - ], - "spans": [ - { - "bbox": [ - 113, - 108, - 394, - 123 - ], - "score": 1.0, - "content": "she can do the operation if the ship remains fairly steady.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5, - "page_num": "page_62", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 96, - 522, - 123 - ] - }, - { - "type": "text", - "bbox": [ - 114, - 136, - 224, - 150 - ], - "lines": [ - { - "bbox": [ - 114, - 137, - 224, - 150 - ], - "spans": [ - { - "bbox": [ - 114, - 137, - 224, - 150 - ], - "score": 1.0, - "content": "There are two options:", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_62", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 137, - 224, - 150 - ] - }, - { - "type": "text", - "bbox": [ - 114, - 163, - 441, - 189 - ], - "lines": [ - { - "bbox": [ - 115, - 164, - 440, - 175 - ], - "spans": [ - { - "bbox": [ - 115, - 164, - 440, - 175 - ], - "score": 1.0, - "content": "• stop the ship’s motors and loosely anchor the ship to the seabed", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 115, - 176, - 407, - 188 - ], - "spans": [ - { - "bbox": [ - 115, - 178, - 255, - 188 - ], - "score": 1.0, - "content": "• continue to sail the ship at ", - "type": "text" - }, - { - "bbox": [ - 255, - 176, - 300, - 188 - ], - "score": 0.88, - "content": "8.0\\mathrm{m~s}^{-1}", - "type": "inline_equation", - "height": 12, - "width": 45 - }, - { - "bbox": [ - 300, - 178, - 407, - 188 - ], - "score": 1.0, - "content": " in the same direction.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5, - "page_num": "page_62", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 115, - 164, - 440, - 188 - ] - }, - { - "type": "list", - "bbox": [ - 113, - 202, - 307, - 229 - ], - "lines": [ - { - "bbox": [ - 114, - 203, - 280, - 215 - ], - "spans": [ - { - "bbox": [ - 114, - 203, - 280, - 215 - ], - "score": 1.0, - "content": "Deduce which is the better option.", - "type": "text" - } - ], - "index": 6, - "is_list_end_line": true - }, - { - "bbox": [ - 114, - 216, - 306, - 228 - ], - "spans": [ - { - "bbox": [ - 114, - 216, - 306, - 228 - ], - "score": 1.0, - "content": "Support your answer with a calculation.", - "type": "text" - } - ], - "index": 7, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 6.5, - "page_num": "page_62", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 203, - 306, - 228 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 229, - 535, - 242 - ], - "lines": [ - { - "bbox": [ - 485, - 229, - 536, - 242 - ], - "spans": [ - { - "bbox": [ - 485, - 229, - 536, - 242 - ], - "score": 1.0, - "content": "[3 marks] ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_62", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 485, - 229, - 536, - 242 - ] - }, - { - "type": "text", - "bbox": [ - 231, - 695, - 346, - 709 - ], - "lines": [ - { - "bbox": [ - 232, - 697, - 347, - 707 - ], - "spans": [ - { - "bbox": [ - 232, - 697, - 347, - 707 - ], - "score": 1.0, - "content": "END OF SECTION A", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_62", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 232, - 697, - 347, - 707 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 262, - 65, - 316, - 78 - ], - "lines": [ - { - "bbox": [ - 263, - 65, - 316, - 78 - ], - "spans": [ - { - "bbox": [ - 263, - 65, - 316, - 78 - ], - "score": 1.0, - "content": "Section B", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 108, - 91, - 466, - 105 - ], - "lines": [ - { - "bbox": [ - 111, - 92, - 467, - 104 - ], - "spans": [ - { - "bbox": [ - 111, - 92, - 467, - 104 - ], - "score": 1.0, - "content": "Each of Questions 07 to 31 is followed by four responses, A, B, C and D.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 181, - 117, - 396, - 131 - ], - "lines": [ - { - "bbox": [ - 182, - 118, - 396, - 130 - ], - "spans": [ - { - "bbox": [ - 182, - 118, - 396, - 130 - ], - "score": 1.0, - "content": "For each question select the best response.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 51, - 174, - 449, - 202 - ], - "lines": [ - { - "bbox": [ - 55, - 176, - 256, - 188 - ], - "spans": [ - { - "bbox": [ - 55, - 176, - 256, - 188 - ], - "score": 1.0, - "content": "Only one answer per question is allowed.", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 54, - 189, - 444, - 202 - ], - "spans": [ - { - "bbox": [ - 54, - 189, - 444, - 202 - ], - "score": 1.0, - "content": "For each question, completely fill in the circle alongside the appropriate answer. ", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5 - }, - { - "type": "text", - "bbox": [ - 54, - 214, - 123, - 226 - ], - "lines": [ - { - "bbox": [ - 55, - 217, - 122, - 224 - ], - "spans": [ - { - "bbox": [ - 55, - 217, - 122, - 224 - ], - "score": 1.0, - "content": "CORRECT METHOD", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "image", - "bbox": [ - 192, - 212, - 353, - 228 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 192, - 212, - 353, - 228 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 192, - 212, - 353, - 228 - ], - "spans": [ - { - "bbox": [ - 192, - 212, - 353, - 228 - ], - "score": 0.243, - "type": "image", - "image_path": "fc90fe09eb45c0e24e0102ba561fcf3790dfbd2bc6039fb07037f0b360e27e1b.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 192, - 212, - 353, - 228 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 50, - 240, - 469, - 254 - ], - "lines": [ - { - "bbox": [ - 52, - 240, - 469, - 253 - ], - "spans": [ - { - "bbox": [ - 52, - 240, - 469, - 253 - ], - "score": 1.0, - "content": "If you want to change your answer you must cross out your original answer as shown.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "image", - "bbox": [ - 475, - 236, - 501, - 255 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 475, - 236, - 501, - 255 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 475, - 236, - 501, - 255 - ], - "spans": [ - { - "bbox": [ - 475, - 236, - 501, - 255 - ], - "score": 0.789, - "type": "image", - "image_path": "d5adcc1c8d2076adfaa968721816e1ece8cce5bb575f889b544f54dacf508b3d.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 475, - 236, - 501, - 255 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 50, - 265, - 525, - 300 - ], - "lines": [ - { - "bbox": [ - 51, - 266, - 523, - 280 - ], - "spans": [ - { - "bbox": [ - 51, - 266, - 523, - 280 - ], - "score": 1.0, - "content": "If you wish to return to an answer previously crossed out, ring the answer you now wish to select ", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 51, - 280, - 102, - 292 - ], - "spans": [ - { - "bbox": [ - 51, - 280, - 102, - 292 - ], - "score": 1.0, - "content": "as shown.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9.5 - }, - { - "type": "text", - "bbox": [ - 49, - 309, - 512, - 337 - ], - "lines": [ - { - "bbox": [ - 51, - 309, - 511, - 323 - ], - "spans": [ - { - "bbox": [ - 51, - 309, - 511, - 323 - ], - "score": 1.0, - "content": "You may do your working in the blank space around each question but this will not be marked.", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 50, - 323, - 273, - 337 - ], - "spans": [ - { - "bbox": [ - 50, - 323, - 273, - 337 - ], - "score": 1.0, - "content": "Do not use additional sheets for this working.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11.5 - }, - { - "type": "text", - "bbox": [ - 90, - 381, - 499, - 408 - ], - "lines": [ - { - "bbox": [ - 91, - 381, - 498, - 395 - ], - "spans": [ - { - "bbox": [ - 91, - 381, - 498, - 395 - ], - "score": 1.0, - "content": "Which combination of an object’s speed and journey time gives a distance travelled", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 91, - 395, - 138, - 408 - ], - "spans": [ - { - "bbox": [ - 91, - 395, - 103, - 408 - ], - "score": 1.0, - "content": "of", - "type": "text" - }, - { - "bbox": [ - 103, - 395, - 138, - 408 - ], - "score": 0.4, - "content": "1\\mathrm{mm}?", - "type": "inline_equation", - "height": 13, - "width": 35 - } - ], - "index": 14 - } - ], - "index": 13.5 - }, - { - "type": "text", - "bbox": [ - 490, - 408, - 535, - 422 - ], - "lines": [ - { - "bbox": [ - 491, - 407, - 536, - 422 - ], - "spans": [ - { - "bbox": [ - 491, - 407, - 536, - 422 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "table", - "bbox": [ - 90, - 433, - 434, - 580 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 90, - 433, - 434, - 580 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 90, - 433, - 434, - 580 - ], - "spans": [ - { - "bbox": [ - 90, - 433, - 434, - 580 - ], - "score": 0.595, - "html": "
SpeedJourney time
A10 μm s-1100 s
B10 km s-10.01 μs
C1 nm s-11 Gs
D0.1 Mm s-1100 ns
", - "type": "table", - "image_path": "29bd375d1bfae31c93b54ba0523be6ec40a9e5cda5128c1800b2b32214a29cdb.jpg" - } - ] - } - ], - "index": 17, - "virtual_lines": [ - { - "bbox": [ - 90, - 433, - 434, - 482.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 90, - 482.0, - 434, - 531.0 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 90, - 531.0, - 434, - 580.0 - ], - "spans": [], - "index": 18 - } - ] - } - ], - "index": 17 - } - ], - "layout_bboxes": [], - "page_idx": 63, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 192, - 212, - 353, - 228 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 192, - 212, - 353, - 228 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 192, - 212, - 353, - 228 - ], - "spans": [ - { - "bbox": [ - 192, - 212, - 353, - 228 - ], - "score": 0.243, - "type": "image", - "image_path": "fc90fe09eb45c0e24e0102ba561fcf3790dfbd2bc6039fb07037f0b360e27e1b.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 192, - 212, - 353, - 228 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 6 - }, - { - "type": "image", - "bbox": [ - 475, - 236, - 501, - 255 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 475, - 236, - 501, - 255 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 475, - 236, - 501, - 255 - ], - "spans": [ - { - "bbox": [ - 475, - 236, - 501, - 255 - ], - "score": 0.789, - "type": "image", - "image_path": "d5adcc1c8d2076adfaa968721816e1ece8cce5bb575f889b544f54dacf508b3d.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 475, - 236, - 501, - 255 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 8 - } - ], - "tables": [ - { - "type": "table", - "bbox": [ - 90, - 433, - 434, - 580 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 90, - 433, - 434, - 580 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 90, - 433, - 434, - 580 - ], - "spans": [ - { - "bbox": [ - 90, - 433, - 434, - 580 - ], - "score": 0.595, - "html": "
SpeedJourney time
A10 μm s-1100 s
B10 km s-10.01 μs
C1 nm s-11 Gs
D0.1 Mm s-1100 ns
", - "type": "table", - "image_path": "29bd375d1bfae31c93b54ba0523be6ec40a9e5cda5128c1800b2b32214a29cdb.jpg" - } - ] - } - ], - "index": 17, - "virtual_lines": [ - { - "bbox": [ - 90, - 433, - 434, - 482.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 90, - 482.0, - 434, - 531.0 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 90, - 531.0, - 434, - 580.0 - ], - "spans": [], - "index": 18 - } - ] - } - ], - "index": 17 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 559, - 68, - 573, - 77 - ], - "spans": [ - { - "bbox": [ - 559, - 68, - 573, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 46, - 378, - 81, - 395 - ], - "lines": [ - { - "bbox": [ - 50, - 380, - 77, - 393 - ], - "spans": [ - { - "bbox": [ - 50, - 380, - 77, - 393 - ], - "score": 1.0, - "content": "0 7", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "24 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 569, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 134, - 212, - 154, - 227 - ], - "lines": [] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 262, - 65, - 316, - 78 - ], - "lines": [ - { - "bbox": [ - 263, - 65, - 316, - 78 - ], - "spans": [ - { - "bbox": [ - 263, - 65, - 316, - 78 - ], - "score": 1.0, - "content": "Section B", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_63", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 108, - 91, - 466, - 105 - ], - "lines": [ - { - "bbox": [ - 111, - 92, - 467, - 104 - ], - "spans": [ - { - "bbox": [ - 111, - 92, - 467, - 104 - ], - "score": 1.0, - "content": "Each of Questions 07 to 31 is followed by four responses, A, B, C and D.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_63", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 111, - 92, - 467, - 104 - ] - }, - { - "type": "text", - "bbox": [ - 181, - 117, - 396, - 131 - ], - "lines": [ - { - "bbox": [ - 182, - 118, - 396, - 130 - ], - "spans": [ - { - "bbox": [ - 182, - 118, - 396, - 130 - ], - "score": 1.0, - "content": "For each question select the best response.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_63", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 182, - 118, - 396, - 130 - ] - }, - { - "type": "list", - "bbox": [ - 51, - 174, - 449, - 202 - ], - "lines": [ - { - "bbox": [ - 55, - 176, - 256, - 188 - ], - "spans": [ - { - "bbox": [ - 55, - 176, - 256, - 188 - ], - "score": 1.0, - "content": "Only one answer per question is allowed.", - "type": "text" - } - ], - "index": 3, - "is_list_end_line": true - }, - { - "bbox": [ - 54, - 189, - 444, - 202 - ], - "spans": [ - { - "bbox": [ - 54, - 189, - 444, - 202 - ], - "score": 1.0, - "content": "For each question, completely fill in the circle alongside the appropriate answer. ", - "type": "text" - } - ], - "index": 4, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 3.5, - "page_num": "page_63", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 54, - 176, - 444, - 202 - ] - }, - { - "type": "text", - "bbox": [ - 54, - 214, - 123, - 226 - ], - "lines": [ - { - "bbox": [ - 55, - 217, - 122, - 224 - ], - "spans": [ - { - "bbox": [ - 55, - 217, - 122, - 224 - ], - "score": 1.0, - "content": "CORRECT METHOD", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_63", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 55, - 217, - 122, - 224 - ] - }, - { - "type": "image", - "bbox": [ - 192, - 212, - 353, - 228 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 192, - 212, - 353, - 228 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 192, - 212, - 353, - 228 - ], - "spans": [ - { - "bbox": [ - 192, - 212, - 353, - 228 - ], - "score": 0.243, - "type": "image", - "image_path": "fc90fe09eb45c0e24e0102ba561fcf3790dfbd2bc6039fb07037f0b360e27e1b.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 192, - 212, - 353, - 228 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 6, - "page_num": "page_63", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 50, - 240, - 469, - 254 - ], - "lines": [ - { - "bbox": [ - 52, - 240, - 469, - 253 - ], - "spans": [ - { - "bbox": [ - 52, - 240, - 469, - 253 - ], - "score": 1.0, - "content": "If you want to change your answer you must cross out your original answer as shown.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_63", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 52, - 240, - 469, - 253 - ] - }, - { - "type": "image", - "bbox": [ - 475, - 236, - 501, - 255 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 475, - 236, - 501, - 255 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 475, - 236, - 501, - 255 - ], - "spans": [ - { - "bbox": [ - 475, - 236, - 501, - 255 - ], - "score": 0.789, - "type": "image", - "image_path": "d5adcc1c8d2076adfaa968721816e1ece8cce5bb575f889b544f54dacf508b3d.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 475, - 236, - 501, - 255 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 8, - "page_num": "page_63", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 50, - 265, - 525, - 300 - ], - "lines": [ - { - "bbox": [ - 51, - 266, - 523, - 280 - ], - "spans": [ - { - "bbox": [ - 51, - 266, - 523, - 280 - ], - "score": 1.0, - "content": "If you wish to return to an answer previously crossed out, ring the answer you now wish to select ", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 51, - 280, - 102, - 292 - ], - "spans": [ - { - "bbox": [ - 51, - 280, - 102, - 292 - ], - "score": 1.0, - "content": "as shown.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9.5, - "page_num": "page_63", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 51, - 266, - 523, - 292 - ] - }, - { - "type": "list", - "bbox": [ - 49, - 309, - 512, - 337 - ], - "lines": [ - { - "bbox": [ - 51, - 309, - 511, - 323 - ], - "spans": [ - { - "bbox": [ - 51, - 309, - 511, - 323 - ], - "score": 1.0, - "content": "You may do your working in the blank space around each question but this will not be marked.", - "type": "text" - } - ], - "index": 11, - "is_list_end_line": true - }, - { - "bbox": [ - 50, - 323, - 273, - 337 - ], - "spans": [ - { - "bbox": [ - 50, - 323, - 273, - 337 - ], - "score": 1.0, - "content": "Do not use additional sheets for this working.", - "type": "text" - } - ], - "index": 12, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 11.5, - "page_num": "page_63", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 50, - 309, - 511, - 337 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 381, - 499, - 408 - ], - "lines": [ - { - "bbox": [ - 91, - 381, - 498, - 395 - ], - "spans": [ - { - "bbox": [ - 91, - 381, - 498, - 395 - ], - "score": 1.0, - "content": "Which combination of an object’s speed and journey time gives a distance travelled", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 91, - 395, - 138, - 408 - ], - "spans": [ - { - "bbox": [ - 91, - 395, - 103, - 408 - ], - "score": 1.0, - "content": "of", - "type": "text" - }, - { - "bbox": [ - 103, - 395, - 138, - 408 - ], - "score": 0.4, - "content": "1\\mathrm{mm}?", - "type": "inline_equation", - "height": 13, - "width": 35 - } - ], - "index": 14 - } - ], - "index": 13.5, - "page_num": "page_63", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 381, - 498, - 408 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 408, - 535, - 422 - ], - "lines": [ - { - "bbox": [ - 491, - 407, - 536, - 422 - ], - "spans": [ - { - "bbox": [ - 491, - 407, - 536, - 422 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_63", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 407, - 536, - 422 - ] - }, - { - "type": "table", - "bbox": [ - 90, - 433, - 434, - 580 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 90, - 433, - 434, - 580 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 90, - 433, - 434, - 580 - ], - "spans": [ - { - "bbox": [ - 90, - 433, - 434, - 580 - ], - "score": 0.595, - "html": "
SpeedJourney time
A10 μm s-1100 s
B10 km s-10.01 μs
C1 nm s-11 Gs
D0.1 Mm s-1100 ns
", - "type": "table", - "image_path": "29bd375d1bfae31c93b54ba0523be6ec40a9e5cda5128c1800b2b32214a29cdb.jpg" - } - ] - } - ], - "index": 17, - "virtual_lines": [ - { - "bbox": [ - 90, - 433, - 434, - 482.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 90, - 482.0, - 434, - 531.0 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 90, - 531.0, - 434, - 580.0 - ], - "spans": [], - "index": 18 - } - ] - } - ], - "index": 17, - "page_num": "page_63", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 90, - 67, - 470, - 109 - ], - "lines": [ - { - "bbox": [ - 92, - 69, - 387, - 82 - ], - "spans": [ - { - "bbox": [ - 92, - 69, - 387, - 82 - ], - "score": 1.0, - "content": "A person jumps as high as she can from a standing position.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 92, - 95, - 468, - 107 - ], - "spans": [ - { - "bbox": [ - 92, - 95, - 468, - 107 - ], - "score": 1.0, - "content": "What is a reasonable estimate of her speed just after she leaves the ground?", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 490, - 108, - 535, - 121 - ], - "lines": [ - { - "bbox": [ - 491, - 107, - 536, - 122 - ], - "spans": [ - { - "bbox": [ - 491, - 107, - 536, - 122 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 89, - 138, - 220, - 241 - ], - "lines": [ - { - "bbox": [ - 90, - 141, - 142, - 154 - ], - "spans": [ - { - "bbox": [ - 90, - 141, - 142, - 154 - ], - "score": 1.0, - "content": "A 2 m s−1", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 90, - 169, - 142, - 182 - ], - "spans": [ - { - "bbox": [ - 90, - 169, - 142, - 182 - ], - "score": 1.0, - "content": "B 4 m s−1", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 90, - 197, - 209, - 210 - ], - "spans": [ - { - "bbox": [ - 90, - 197, - 142, - 210 - ], - "score": 1.0, - "content": "C 8 m s−1", - "type": "text" - }, - { - "bbox": [ - 197, - 203, - 209, - 207 - ], - "score": 0.48, - "content": "\\subset", - "type": "inline_equation", - "height": 4, - "width": 12 - } - ], - "index": 5 - }, - { - "bbox": [ - 89, - 226, - 209, - 239 - ], - "spans": [ - { - "bbox": [ - 89, - 226, - 148, - 239 - ], - "score": 1.0, - "content": "D 10 m s−1", - "type": "text" - }, - { - "bbox": [ - 197, - 231, - 209, - 235 - ], - "score": 0.49, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 4, - "width": 12 - } - ], - "index": 6 - } - ], - "index": 4.5 - }, - { - "type": "text", - "bbox": [ - 87, - 274, - 538, - 330 - ], - "lines": [ - { - "bbox": [ - 91, - 276, - 316, - 288 - ], - "spans": [ - { - "bbox": [ - 91, - 276, - 185, - 288 - ], - "score": 1.0, - "content": "A nucleus contains", - "type": "text" - }, - { - "bbox": [ - 186, - 276, - 197, - 287 - ], - "score": 0.5, - "content": "N", - "type": "inline_equation", - "height": 11, - "width": 11 - }, - { - "bbox": [ - 198, - 276, - 264, - 288 - ], - "score": 1.0, - "content": "neutrons and", - "type": "text" - }, - { - "bbox": [ - 264, - 276, - 274, - 287 - ], - "score": 0.33, - "content": "Z", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 274, - 276, - 316, - 288 - ], - "score": 1.0, - "content": " protons.", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 91, - 302, - 486, - 316 - ], - "spans": [ - { - "bbox": [ - 91, - 302, - 198, - 316 - ], - "score": 1.0, - "content": "Which combination of", - "type": "text" - }, - { - "bbox": [ - 199, - 303, - 210, - 314 - ], - "score": 0.74, - "content": "N", - "type": "inline_equation", - "height": 11, - "width": 11 - }, - { - "bbox": [ - 210, - 302, - 231, - 316 - ], - "score": 1.0, - "content": " and", - "type": "text" - }, - { - "bbox": [ - 231, - 303, - 241, - 314 - ], - "score": 0.67, - "content": "Z", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 241, - 302, - 486, - 316 - ], - "score": 1.0, - "content": " gives a nucleus with the greatest specific charge?", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 490, - 315, - 537, - 330 - ], - "spans": [ - { - "bbox": [ - 490, - 315, - 537, - 330 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8 - }, - { - "type": "image", - "bbox": [ - 90, - 340, - 292, - 486 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 90, - 340, - 292, - 486 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 90, - 340, - 292, - 486 - ], - "spans": [ - { - "bbox": [ - 90, - 340, - 292, - 486 - ], - "score": 0.678, - "type": "image", - "image_path": "f06bc7de8b270c4f2c3be9d0ce85ede5e7cfa45dd91ea708cbd1931e5d8331cf.jpg" - } - ] - } - ], - "index": 15.5, - "virtual_lines": [ - { - "bbox": [ - 90, - 340, - 292, - 353.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 90, - 353.0, - 292, - 366.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 90, - 366.0, - 292, - 379.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 90, - 379.0, - 292, - 392.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 90, - 392.0, - 292, - 405.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 90, - 405.0, - 292, - 418.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 90, - 418.0, - 292, - 431.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 90, - 431.0, - 292, - 444.0 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 90, - 444.0, - 292, - 457.0 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 90, - 457.0, - 292, - 470.0 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 90, - 470.0, - 292, - 483.0 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 90, - 483.0, - 292, - 496.0 - ], - "spans": [], - "index": 21 - } - ] - } - ], - "index": 15.5 - }, - { - "type": "text", - "bbox": [ - 90, - 513, - 297, - 528 - ], - "lines": [ - { - "bbox": [ - 92, - 515, - 295, - 527 - ], - "spans": [ - { - "bbox": [ - 92, - 515, - 295, - 527 - ], - "score": 1.0, - "content": "Which statement about muons is correct?", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 22 - }, - { - "type": "text", - "bbox": [ - 490, - 528, - 535, - 541 - ], - "lines": [ - { - "bbox": [ - 491, - 527, - 536, - 542 - ], - "spans": [ - { - "bbox": [ - 491, - 527, - 536, - 542 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 23 - }, - { - "type": "text", - "bbox": [ - 89, - 559, - 349, - 661 - ], - "lines": [ - { - "bbox": [ - 92, - 561, - 307, - 574 - ], - "spans": [ - { - "bbox": [ - 92, - 561, - 307, - 574 - ], - "score": 1.0, - "content": "A They consist of a quark and an antiquark.", - "type": "text" - } - ], - "index": 24 - }, - { - "bbox": [ - 92, - 590, - 255, - 602 - ], - "spans": [ - { - "bbox": [ - 92, - 590, - 255, - 602 - ], - "score": 1.0, - "content": "B They include pions and kaons.", - "type": "text" - } - ], - "index": 25 - }, - { - "bbox": [ - 91, - 618, - 343, - 631 - ], - "spans": [ - { - "bbox": [ - 91, - 618, - 309, - 631 - ], - "score": 1.0, - "content": "C They are subject to the strong interaction.", - "type": "text" - }, - { - "bbox": [ - 330, - 620, - 343, - 627 - ], - "score": 0.36, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 7, - "width": 13 - } - ], - "index": 26 - }, - { - "bbox": [ - 92, - 646, - 235, - 659 - ], - "spans": [ - { - "bbox": [ - 92, - 646, - 235, - 659 - ], - "score": 1.0, - "content": "D They decay into electrons.", - "type": "text" - } - ], - "index": 27 - } - ], - "index": 25.5 - } - ], - "layout_bboxes": [], - "page_idx": 64, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 90, - 340, - 292, - 486 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 90, - 340, - 292, - 486 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 90, - 340, - 292, - 486 - ], - "spans": [ - { - "bbox": [ - 90, - 340, - 292, - 486 - ], - "score": 0.678, - "type": "image", - "image_path": "f06bc7de8b270c4f2c3be9d0ce85ede5e7cfa45dd91ea708cbd1931e5d8331cf.jpg" - } - ] - } - ], - "index": 15.5, - "virtual_lines": [ - { - "bbox": [ - 90, - 340, - 292, - 353.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 90, - 353.0, - 292, - 366.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 90, - 366.0, - 292, - 379.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 90, - 379.0, - 292, - 392.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 90, - 392.0, - 292, - 405.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 90, - 405.0, - 292, - 418.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 90, - 418.0, - 292, - 431.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 90, - 431.0, - 292, - 444.0 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 90, - 444.0, - 292, - 457.0 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 90, - 457.0, - 292, - 470.0 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 90, - 470.0, - 292, - 483.0 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 90, - 483.0, - 292, - 496.0 - ], - "spans": [], - "index": 21 - } - ] - } - ], - "index": 15.5 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 77 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 559, - 68, - 573, - 78 - ], - "spans": [ - { - "bbox": [ - 559, - 68, - 573, - 78 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 511, - 82, - 528 - ], - "lines": [ - { - "bbox": [ - 50, - 513, - 76, - 526 - ], - "spans": [ - { - "bbox": [ - 50, - 513, - 76, - 526 - ], - "score": 1.0, - "content": "1 0", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 45, - 272, - 81, - 289 - ], - "lines": [ - { - "bbox": [ - 51, - 275, - 76, - 286 - ], - "spans": [ - { - "bbox": [ - 51, - 275, - 61, - 286 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 67, - 275, - 76, - 285 - ], - "score": 1.0, - "content": "9", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 783 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 535, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 535, - 783 - ], - "score": 1.0, - "content": "Turn over ►", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 40 - ], - "lines": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "25 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 46, - 65, - 81, - 82 - ], - "lines": [ - { - "bbox": [ - 51, - 69, - 76, - 79 - ], - "spans": [ - { - "bbox": [ - 51, - 69, - 60, - 79 - ], - "score": 1.0, - "content": "0", - "type": "text" - }, - { - "bbox": [ - 68, - 69, - 76, - 79 - ], - "score": 1.0, - "content": "8", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 569, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 0, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 0, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 90, - 67, - 470, - 109 - ], - "lines": [ - { - "bbox": [ - 92, - 69, - 387, - 82 - ], - "spans": [ - { - "bbox": [ - 92, - 69, - 387, - 82 - ], - "score": 1.0, - "content": "A person jumps as high as she can from a standing position.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 92, - 95, - 468, - 107 - ], - "spans": [ - { - "bbox": [ - 92, - 95, - 468, - 107 - ], - "score": 1.0, - "content": "What is a reasonable estimate of her speed just after she leaves the ground?", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_64", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 69, - 468, - 107 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 108, - 535, - 121 - ], - "lines": [ - { - "bbox": [ - 491, - 107, - 536, - 122 - ], - "spans": [ - { - "bbox": [ - 491, - 107, - 536, - 122 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_64", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 107, - 536, - 122 - ] - }, - { - "type": "index", - "bbox": [ - 89, - 138, - 220, - 241 - ], - "lines": [ - { - "bbox": [ - 90, - 141, - 142, - 154 - ], - "spans": [ - { - "bbox": [ - 90, - 141, - 142, - 154 - ], - "score": 1.0, - "content": "A 2 m s−1", - "type": "text" - } - ], - "index": 3, - "is_list_start_line": true - }, - { - "bbox": [ - 90, - 169, - 142, - 182 - ], - "spans": [ - { - "bbox": [ - 90, - 169, - 142, - 182 - ], - "score": 1.0, - "content": "B 4 m s−1", - "type": "text" - } - ], - "index": 4, - "is_list_start_line": true - }, - { - "bbox": [ - 90, - 197, - 209, - 210 - ], - "spans": [ - { - "bbox": [ - 90, - 197, - 142, - 210 - ], - "score": 1.0, - "content": "C 8 m s−1", - "type": "text" - }, - { - "bbox": [ - 197, - 203, - 209, - 207 - ], - "score": 0.48, - "content": "\\subset", - "type": "inline_equation", - "height": 4, - "width": 12 - } - ], - "index": 5, - "is_list_start_line": true - }, - { - "bbox": [ - 89, - 226, - 209, - 239 - ], - "spans": [ - { - "bbox": [ - 89, - 226, - 148, - 239 - ], - "score": 1.0, - "content": "D 10 m s−1", - "type": "text" - }, - { - "bbox": [ - 197, - 231, - 209, - 235 - ], - "score": 0.49, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 4, - "width": 12 - } - ], - "index": 6, - "is_list_start_line": true - } - ], - "index": 4.5, - "page_num": "page_64", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 89, - 141, - 209, - 239 - ] - }, - { - "type": "text", - "bbox": [ - 87, - 274, - 538, - 330 - ], - "lines": [ - { - "bbox": [ - 91, - 276, - 316, - 288 - ], - "spans": [ - { - "bbox": [ - 91, - 276, - 185, - 288 - ], - "score": 1.0, - "content": "A nucleus contains", - "type": "text" - }, - { - "bbox": [ - 186, - 276, - 197, - 287 - ], - "score": 0.5, - "content": "N", - "type": "inline_equation", - "height": 11, - "width": 11 - }, - { - "bbox": [ - 198, - 276, - 264, - 288 - ], - "score": 1.0, - "content": "neutrons and", - "type": "text" - }, - { - "bbox": [ - 264, - 276, - 274, - 287 - ], - "score": 0.33, - "content": "Z", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 274, - 276, - 316, - 288 - ], - "score": 1.0, - "content": " protons.", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 91, - 302, - 486, - 316 - ], - "spans": [ - { - "bbox": [ - 91, - 302, - 198, - 316 - ], - "score": 1.0, - "content": "Which combination of", - "type": "text" - }, - { - "bbox": [ - 199, - 303, - 210, - 314 - ], - "score": 0.74, - "content": "N", - "type": "inline_equation", - "height": 11, - "width": 11 - }, - { - "bbox": [ - 210, - 302, - 231, - 316 - ], - "score": 1.0, - "content": " and", - "type": "text" - }, - { - "bbox": [ - 231, - 303, - 241, - 314 - ], - "score": 0.67, - "content": "Z", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 241, - 302, - 486, - 316 - ], - "score": 1.0, - "content": " gives a nucleus with the greatest specific charge?", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 490, - 315, - 537, - 330 - ], - "spans": [ - { - "bbox": [ - 490, - 315, - 537, - 330 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8, - "page_num": "page_64", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 276, - 537, - 330 - ] - }, - { - "type": "image", - "bbox": [ - 90, - 340, - 292, - 486 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 90, - 340, - 292, - 486 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 90, - 340, - 292, - 486 - ], - "spans": [ - { - "bbox": [ - 90, - 340, - 292, - 486 - ], - "score": 0.678, - "type": "image", - "image_path": "f06bc7de8b270c4f2c3be9d0ce85ede5e7cfa45dd91ea708cbd1931e5d8331cf.jpg" - } - ] - } - ], - "index": 15.5, - "virtual_lines": [ - { - "bbox": [ - 90, - 340, - 292, - 353.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 90, - 353.0, - 292, - 366.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 90, - 366.0, - 292, - 379.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 90, - 379.0, - 292, - 392.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 90, - 392.0, - 292, - 405.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 90, - 405.0, - 292, - 418.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 90, - 418.0, - 292, - 431.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 90, - 431.0, - 292, - 444.0 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 90, - 444.0, - 292, - 457.0 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 90, - 457.0, - 292, - 470.0 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 90, - 470.0, - 292, - 483.0 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 90, - 483.0, - 292, - 496.0 - ], - "spans": [], - "index": 21 - } - ] - } - ], - "index": 15.5, - "page_num": "page_64", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 513, - 297, - 528 - ], - "lines": [ - { - "bbox": [ - 92, - 515, - 295, - 527 - ], - "spans": [ - { - "bbox": [ - 92, - 515, - 295, - 527 - ], - "score": 1.0, - "content": "Which statement about muons is correct?", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 22, - "page_num": "page_64", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 515, - 295, - 527 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 528, - 535, - 541 - ], - "lines": [ - { - "bbox": [ - 491, - 527, - 536, - 542 - ], - "spans": [ - { - "bbox": [ - 491, - 527, - 536, - 542 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 23, - "page_num": "page_64", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 527, - 536, - 542 - ] - }, - { - "type": "list", - "bbox": [ - 89, - 559, - 349, - 661 - ], - "lines": [ - { - "bbox": [ - 92, - 561, - 307, - 574 - ], - "spans": [ - { - "bbox": [ - 92, - 561, - 307, - 574 - ], - "score": 1.0, - "content": "A They consist of a quark and an antiquark.", - "type": "text" - } - ], - "index": 24, - "is_list_end_line": true - }, - { - "bbox": [ - 92, - 590, - 255, - 602 - ], - "spans": [ - { - "bbox": [ - 92, - 590, - 255, - 602 - ], - "score": 1.0, - "content": "B They include pions and kaons.", - "type": "text" - } - ], - "index": 25, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 618, - 343, - 631 - ], - "spans": [ - { - "bbox": [ - 91, - 618, - 309, - 631 - ], - "score": 1.0, - "content": "C They are subject to the strong interaction.", - "type": "text" - }, - { - "bbox": [ - 330, - 620, - 343, - 627 - ], - "score": 0.36, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 7, - "width": 13 - } - ], - "index": 26, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 92, - 646, - 235, - 659 - ], - "spans": [ - { - "bbox": [ - 92, - 646, - 235, - 659 - ], - "score": 1.0, - "content": "D They decay into electrons.", - "type": "text" - } - ], - "index": 27, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 25.5, - "page_num": "page_64", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 561, - 343, - 659 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 65, - 68, - 511, - 82 - ], - "lines": [ - { - "bbox": [ - 90, - 68, - 512, - 83 - ], - "spans": [ - { - "bbox": [ - 90, - 68, - 512, - 83 - ], - "score": 1.0, - "content": "The diagram represents a quark change in which an electron antineutrino is produced.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "image", - "bbox": [ - 198, - 93, - 383, - 269 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 198, - 93, - 383, - 269 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 198, - 93, - 383, - 269 - ], - "spans": [ - { - "bbox": [ - 198, - 93, - 383, - 269 - ], - "score": 0.96, - "type": "image", - "image_path": "552ea65dfae798a061f6d16b93136390e65d935169ecff89841ed7ecc8cb18e2.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 198, - 93, - 383, - 107.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 198, - 107.0, - 383, - 121.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 198, - 121.0, - 383, - 135.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 198, - 135.0, - 383, - 149.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 198, - 149.0, - 383, - 163.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 198, - 163.0, - 383, - 177.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 198, - 177.0, - 383, - 191.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 198, - 191.0, - 383, - 205.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 198, - 205.0, - 383, - 219.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 198, - 219.0, - 383, - 233.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 198, - 233.0, - 383, - 247.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 198, - 247.0, - 383, - 261.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 198, - 261.0, - 383, - 275.0 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 91, - 283, - 201, - 297 - ], - "lines": [ - { - "bbox": [ - 92, - 285, - 199, - 295 - ], - "spans": [ - { - "bbox": [ - 92, - 285, - 199, - 295 - ], - "score": 1.0, - "content": "What are E, F and G?", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 490, - 296, - 535, - 310 - ], - "lines": [ - { - "bbox": [ - 491, - 297, - 536, - 311 - ], - "spans": [ - { - "bbox": [ - 491, - 297, - 536, - 311 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "table", - "bbox": [ - 90, - 321, - 420, - 467 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 90, - 321, - 420, - 467 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 90, - 321, - 420, - 467 - ], - "spans": [ - { - "bbox": [ - 90, - 321, - 420, - 467 - ], - "score": 0.814, - "html": "
EFG
Aup quarkdown quarkβ
Bdown quarkup quarkβ
Cup quarkdown quarkβ+
Ddown quarkup quark+8
", - "type": "table", - "image_path": "ca7d0aa420f562544b429b85300501c17ca7881f4eb566a71e117f42b87f590c.jpg" - } - ] - } - ], - "index": 17, - "virtual_lines": [ - { - "bbox": [ - 90, - 321, - 420, - 369.6666666666667 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 90, - 369.6666666666667, - 420, - 418.33333333333337 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 90, - 418.33333333333337, - 420, - 467.00000000000006 - ], - "spans": [], - "index": 18 - } - ] - } - ], - "index": 17 - }, - { - "type": "text", - "bbox": [ - 90, - 494, - 467, - 536 - ], - "lines": [ - { - "bbox": [ - 91, - 495, - 466, - 510 - ], - "spans": [ - { - "bbox": [ - 91, - 495, - 466, - 510 - ], - "score": 1.0, - "content": "Photoelectrons are released when monochromatic light with a photon energy", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 91, - 508, - 314, - 522 - ], - "spans": [ - { - "bbox": [ - 91, - 508, - 103, - 522 - ], - "score": 1.0, - "content": "of", - "type": "text" - }, - { - "bbox": [ - 103, - 508, - 159, - 521 - ], - "score": 0.89, - "content": "4.2\\times10^{-19}", - "type": "inline_equation", - "height": 13, - "width": 56 - }, - { - "bbox": [ - 159, - 508, - 314, - 522 - ], - "score": 1.0, - "content": "J is incident on a metal surface.", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 92, - 523, - 299, - 535 - ], - "spans": [ - { - "bbox": [ - 92, - 523, - 261, - 535 - ], - "score": 1.0, - "content": "The work function of the surface is", - "type": "text" - }, - { - "bbox": [ - 261, - 523, - 295, - 535 - ], - "score": 0.66, - "content": "2.4\\mathrm{eV}", - "type": "inline_equation", - "height": 12, - "width": 34 - }, - { - "bbox": [ - 296, - 523, - 299, - 535 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 20 - }, - { - "type": "text", - "bbox": [ - 92, - 548, - 470, - 563 - ], - "lines": [ - { - "bbox": [ - 91, - 549, - 469, - 562 - ], - "spans": [ - { - "bbox": [ - 91, - 549, - 469, - 562 - ], - "score": 1.0, - "content": "What is the maximum speed of the photoelectrons as they leave the surface?", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 22 - }, - { - "type": "text", - "bbox": [ - 490, - 562, - 535, - 576 - ], - "lines": [ - { - "bbox": [ - 491, - 562, - 536, - 576 - ], - "spans": [ - { - "bbox": [ - 491, - 562, - 536, - 576 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 23 - }, - { - "type": "text", - "bbox": [ - 89, - 593, - 243, - 696 - ], - "lines": [ - { - "bbox": [ - 91, - 595, - 180, - 609 - ], - "spans": [ - { - "bbox": [ - 91, - 595, - 105, - 607 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 105, - 595, - 180, - 609 - ], - "score": 0.8, - "content": "1.3\\times10^{6}\\mathrm{m}\\mathrm{s}^{-1}", - "type": "inline_equation", - "height": 14, - "width": 75 - } - ], - "index": 24 - }, - { - "bbox": [ - 90, - 623, - 234, - 637 - ], - "spans": [ - { - "bbox": [ - 90, - 623, - 104, - 636 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 105, - 623, - 179, - 637 - ], - "score": 0.51, - "content": "6.3\\times10^{5}\\mathrm{~m~s~}^{-1}", - "type": "inline_equation", - "height": 14, - "width": 74 - }, - { - "bbox": [ - 222, - 628, - 234, - 633 - ], - "score": 0.4, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 5, - "width": 12 - } - ], - "index": 25 - }, - { - "bbox": [ - 90, - 651, - 234, - 665 - ], - "spans": [ - { - "bbox": [ - 90, - 651, - 105, - 665 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 105, - 651, - 179, - 665 - ], - "score": 0.42, - "content": "2.8\\times10^{5}\\mathrm{ms^{-1}}", - "type": "inline_equation", - "height": 14, - "width": 74 - }, - { - "bbox": [ - 223, - 657, - 234, - 662 - ], - "score": 0.71, - "content": "\\subset", - "type": "inline_equation", - "height": 5, - "width": 11 - } - ], - "index": 26 - }, - { - "bbox": [ - 90, - 680, - 234, - 694 - ], - "spans": [ - { - "bbox": [ - 90, - 681, - 105, - 692 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 105, - 680, - 179, - 694 - ], - "score": 0.45, - "content": "2.0\\times10^{5}\\mathrm{ms^{-1}}", - "type": "inline_equation", - "height": 14, - "width": 74 - }, - { - "bbox": [ - 223, - 685, - 234, - 690 - ], - "score": 0.76, - "content": "\\subset", - "type": "inline_equation", - "height": 5, - "width": 11 - } - ], - "index": 27 - } - ], - "index": 25.5 - } - ], - "layout_bboxes": [], - "page_idx": 65, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 198, - 93, - 383, - 269 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 198, - 93, - 383, - 269 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 198, - 93, - 383, - 269 - ], - "spans": [ - { - "bbox": [ - 198, - 93, - 383, - 269 - ], - "score": 0.96, - "type": "image", - "image_path": "552ea65dfae798a061f6d16b93136390e65d935169ecff89841ed7ecc8cb18e2.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 198, - 93, - 383, - 107.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 198, - 107.0, - 383, - 121.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 198, - 121.0, - 383, - 135.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 198, - 135.0, - 383, - 149.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 198, - 149.0, - 383, - 163.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 198, - 163.0, - 383, - 177.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 198, - 177.0, - 383, - 191.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 198, - 191.0, - 383, - 205.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 198, - 205.0, - 383, - 219.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 198, - 219.0, - 383, - 233.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 198, - 233.0, - 383, - 247.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 198, - 247.0, - 383, - 261.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 198, - 261.0, - 383, - 275.0 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "index": 7 - } - ], - "tables": [ - { - "type": "table", - "bbox": [ - 90, - 321, - 420, - 467 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 90, - 321, - 420, - 467 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 90, - 321, - 420, - 467 - ], - "spans": [ - { - "bbox": [ - 90, - 321, - 420, - 467 - ], - "score": 0.814, - "html": "
EFG
Aup quarkdown quarkβ
Bdown quarkup quarkβ
Cup quarkdown quarkβ+
Ddown quarkup quark+8
", - "type": "table", - "image_path": "ca7d0aa420f562544b429b85300501c17ca7881f4eb566a71e117f42b87f590c.jpg" - } - ] - } - ], - "index": 17, - "virtual_lines": [ - { - "bbox": [ - 90, - 321, - 420, - 369.6666666666667 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 90, - 369.6666666666667, - 420, - 418.33333333333337 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 90, - 418.33333333333337, - 420, - 467.00000000000006 - ], - "spans": [], - "index": 18 - } - ] - } - ], - "index": 17 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 559, - 68, - 573, - 77 - ], - "spans": [ - { - "bbox": [ - 559, - 68, - 573, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 46, - 492, - 81, - 509 - ], - "lines": [ - { - "bbox": [ - 49, - 493, - 78, - 508 - ], - "spans": [ - { - "bbox": [ - 49, - 493, - 78, - 508 - ], - "score": 1.0, - "content": "1 2 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 40 - ], - "lines": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "26 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 46, - 65, - 82, - 82 - ], - "lines": [ - { - "bbox": [ - 49, - 67, - 76, - 80 - ], - "spans": [ - { - "bbox": [ - 49, - 67, - 76, - 80 - ], - "score": 1.0, - "content": "1 1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 65, - 68, - 511, - 82 - ], - "lines": [ - { - "bbox": [ - 90, - 68, - 512, - 83 - ], - "spans": [ - { - "bbox": [ - 90, - 68, - 512, - 83 - ], - "score": 1.0, - "content": "The diagram represents a quark change in which an electron antineutrino is produced.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_65", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 90, - 68, - 512, - 83 - ] - }, - { - "type": "image", - "bbox": [ - 198, - 93, - 383, - 269 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 198, - 93, - 383, - 269 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 198, - 93, - 383, - 269 - ], - "spans": [ - { - "bbox": [ - 198, - 93, - 383, - 269 - ], - "score": 0.96, - "type": "image", - "image_path": "552ea65dfae798a061f6d16b93136390e65d935169ecff89841ed7ecc8cb18e2.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 198, - 93, - 383, - 107.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 198, - 107.0, - 383, - 121.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 198, - 121.0, - 383, - 135.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 198, - 135.0, - 383, - 149.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 198, - 149.0, - 383, - 163.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 198, - 163.0, - 383, - 177.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 198, - 177.0, - 383, - 191.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 198, - 191.0, - 383, - 205.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 198, - 205.0, - 383, - 219.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 198, - 219.0, - 383, - 233.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 198, - 233.0, - 383, - 247.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 198, - 247.0, - 383, - 261.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 198, - 261.0, - 383, - 275.0 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "index": 7, - "page_num": "page_65", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 283, - 201, - 297 - ], - "lines": [ - { - "bbox": [ - 92, - 285, - 199, - 295 - ], - "spans": [ - { - "bbox": [ - 92, - 285, - 199, - 295 - ], - "score": 1.0, - "content": "What are E, F and G?", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_65", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 285, - 199, - 295 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 296, - 535, - 310 - ], - "lines": [ - { - "bbox": [ - 491, - 297, - 536, - 311 - ], - "spans": [ - { - "bbox": [ - 491, - 297, - 536, - 311 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_65", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 297, - 536, - 311 - ] - }, - { - "type": "table", - "bbox": [ - 90, - 321, - 420, - 467 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 90, - 321, - 420, - 467 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 90, - 321, - 420, - 467 - ], - "spans": [ - { - "bbox": [ - 90, - 321, - 420, - 467 - ], - "score": 0.814, - "html": "
EFG
Aup quarkdown quarkβ
Bdown quarkup quarkβ
Cup quarkdown quarkβ+
Ddown quarkup quark+8
", - "type": "table", - "image_path": "ca7d0aa420f562544b429b85300501c17ca7881f4eb566a71e117f42b87f590c.jpg" - } - ] - } - ], - "index": 17, - "virtual_lines": [ - { - "bbox": [ - 90, - 321, - 420, - 369.6666666666667 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 90, - 369.6666666666667, - 420, - 418.33333333333337 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 90, - 418.33333333333337, - 420, - 467.00000000000006 - ], - "spans": [], - "index": 18 - } - ] - } - ], - "index": 17, - "page_num": "page_65", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 90, - 494, - 467, - 536 - ], - "lines": [ - { - "bbox": [ - 91, - 495, - 466, - 510 - ], - "spans": [ - { - "bbox": [ - 91, - 495, - 466, - 510 - ], - "score": 1.0, - "content": "Photoelectrons are released when monochromatic light with a photon energy", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 91, - 508, - 314, - 522 - ], - "spans": [ - { - "bbox": [ - 91, - 508, - 103, - 522 - ], - "score": 1.0, - "content": "of", - "type": "text" - }, - { - "bbox": [ - 103, - 508, - 159, - 521 - ], - "score": 0.89, - "content": "4.2\\times10^{-19}", - "type": "inline_equation", - "height": 13, - "width": 56 - }, - { - "bbox": [ - 159, - 508, - 314, - 522 - ], - "score": 1.0, - "content": "J is incident on a metal surface.", - "type": "text" - } - ], - "index": 20, - "is_list_end_line": true - }, - { - "bbox": [ - 92, - 523, - 299, - 535 - ], - "spans": [ - { - "bbox": [ - 92, - 523, - 261, - 535 - ], - "score": 1.0, - "content": "The work function of the surface is", - "type": "text" - }, - { - "bbox": [ - 261, - 523, - 295, - 535 - ], - "score": 0.66, - "content": "2.4\\mathrm{eV}", - "type": "inline_equation", - "height": 12, - "width": 34 - }, - { - "bbox": [ - 296, - 523, - 299, - 535 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 21, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 20, - "page_num": "page_65", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 495, - 466, - 535 - ] - }, - { - "type": "text", - "bbox": [ - 92, - 548, - 470, - 563 - ], - "lines": [ - { - "bbox": [ - 91, - 549, - 469, - 562 - ], - "spans": [ - { - "bbox": [ - 91, - 549, - 469, - 562 - ], - "score": 1.0, - "content": "What is the maximum speed of the photoelectrons as they leave the surface?", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 22, - "page_num": "page_65", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 549, - 469, - 562 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 562, - 535, - 576 - ], - "lines": [ - { - "bbox": [ - 491, - 562, - 536, - 576 - ], - "spans": [ - { - "bbox": [ - 491, - 562, - 536, - 576 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 23, - "page_num": "page_65", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 562, - 536, - 576 - ] - }, - { - "type": "text", - "bbox": [ - 89, - 593, - 243, - 696 - ], - "lines": [ - { - "bbox": [ - 91, - 595, - 180, - 609 - ], - "spans": [ - { - "bbox": [ - 91, - 595, - 105, - 607 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 105, - 595, - 180, - 609 - ], - "score": 0.8, - "content": "1.3\\times10^{6}\\mathrm{m}\\mathrm{s}^{-1}", - "type": "inline_equation", - "height": 14, - "width": 75 - } - ], - "index": 24 - }, - { - "bbox": [ - 90, - 623, - 234, - 637 - ], - "spans": [ - { - "bbox": [ - 90, - 623, - 104, - 636 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 105, - 623, - 179, - 637 - ], - "score": 0.51, - "content": "6.3\\times10^{5}\\mathrm{~m~s~}^{-1}", - "type": "inline_equation", - "height": 14, - "width": 74 - }, - { - "bbox": [ - 222, - 628, - 234, - 633 - ], - "score": 0.4, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 5, - "width": 12 - } - ], - "index": 25 - }, - { - "bbox": [ - 90, - 651, - 234, - 665 - ], - "spans": [ - { - "bbox": [ - 90, - 651, - 105, - 665 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 105, - 651, - 179, - 665 - ], - "score": 0.42, - "content": "2.8\\times10^{5}\\mathrm{ms^{-1}}", - "type": "inline_equation", - "height": 14, - "width": 74 - }, - { - "bbox": [ - 223, - 657, - 234, - 662 - ], - "score": 0.71, - "content": "\\subset", - "type": "inline_equation", - "height": 5, - "width": 11 - } - ], - "index": 26 - }, - { - "bbox": [ - 90, - 680, - 234, - 694 - ], - "spans": [ - { - "bbox": [ - 90, - 681, - 105, - 692 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 105, - 680, - 179, - 694 - ], - "score": 0.45, - "content": "2.0\\times10^{5}\\mathrm{ms^{-1}}", - "type": "inline_equation", - "height": 14, - "width": 74 - }, - { - "bbox": [ - 223, - 685, - 234, - 690 - ], - "score": 0.76, - "content": "\\subset", - "type": "inline_equation", - "height": 5, - "width": 11 - } - ], - "index": 27 - } - ], - "index": 25.5, - "page_num": "page_65", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 90, - 595, - 234, - 694 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 83, - 68, - 497, - 108 - ], - "lines": [ - { - "bbox": [ - 91, - 68, - 495, - 82 - ], - "spans": [ - { - "bbox": [ - 91, - 68, - 495, - 82 - ], - "score": 1.0, - "content": "Electrons with a certain kinetic energy pass through a powdered crystalline sample", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 92, - 82, - 292, - 94 - ], - "spans": [ - { - "bbox": [ - 92, - 82, - 292, - 94 - ], - "score": 1.0, - "content": "and are incident on a fluorescent screen.", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 91, - 95, - 403, - 108 - ], - "spans": [ - { - "bbox": [ - 91, - 95, - 403, - 108 - ], - "score": 1.0, - "content": "The diagram shows a sketch of the diffraction pattern produced.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1 - }, - { - "type": "image", - "bbox": [ - 218, - 119, - 361, - 261 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 218, - 119, - 361, - 261 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 218, - 119, - 361, - 261 - ], - "spans": [ - { - "bbox": [ - 218, - 119, - 361, - 261 - ], - "score": 0.963, - "type": "image", - "image_path": "d0bcade1d6eecd11c7b01a830874a85e0bdc19ea90eb2b78af4ae3d59d3ae4f8.jpg" - } - ] - } - ], - "index": 3.5, - "virtual_lines": [ - { - "bbox": [ - 218, - 119, - 361, - 190.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 218, - 190.0, - 361, - 261.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3.5 - }, - { - "type": "text", - "bbox": [ - 90, - 289, - 361, - 303 - ], - "lines": [ - { - "bbox": [ - 92, - 290, - 361, - 303 - ], - "spans": [ - { - "bbox": [ - 92, - 290, - 361, - 303 - ], - "score": 1.0, - "content": "A change is made and this second pattern is produced.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "image", - "bbox": [ - 218, - 326, - 361, - 469 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 218, - 326, - 361, - 469 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 218, - 326, - 361, - 469 - ], - "spans": [ - { - "bbox": [ - 218, - 326, - 361, - 469 - ], - "score": 0.961, - "type": "image", - "image_path": "cd4ce3af50f954eb058f6cc8093cb9da40b553f64860b24e882b21a6c3fc8950.jpg" - } - ] - } - ], - "index": 6.5, - "virtual_lines": [ - { - "bbox": [ - 218, - 326, - 361, - 397.5 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 218, - 397.5, - 361, - 469.0 - ], - "spans": [], - "index": 7 - } - ] - } - ], - "index": 6.5 - }, - { - "type": "text", - "bbox": [ - 90, - 497, - 336, - 511 - ], - "lines": [ - { - "bbox": [ - 92, - 498, - 335, - 510 - ], - "spans": [ - { - "bbox": [ - 92, - 498, - 335, - 510 - ], - "score": 1.0, - "content": "Which change could produce the second pattern?", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 491, - 511, - 535, - 524 - ], - "lines": [ - { - "bbox": [ - 491, - 510, - 536, - 525 - ], - "spans": [ - { - "bbox": [ - 491, - 510, - 536, - 525 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 90, - 542, - 470, - 644 - ], - "lines": [ - { - "bbox": [ - 92, - 545, - 329, - 557 - ], - "spans": [ - { - "bbox": [ - 92, - 545, - 329, - 557 - ], - "score": 1.0, - "content": "A decreasing the kinetic energy of the electrons", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 91, - 571, - 423, - 587 - ], - "spans": [ - { - "bbox": [ - 91, - 571, - 423, - 587 - ], - "score": 1.0, - "content": "B replacing the electrons with protons with the same kinetic energy", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 91, - 601, - 427, - 615 - ], - "spans": [ - { - "bbox": [ - 91, - 601, - 427, - 615 - ], - "score": 1.0, - "content": "C using a crystalline sample with a wider spacing between its atoms", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 91, - 629, - 350, - 642 - ], - "spans": [ - { - "bbox": [ - 91, - 629, - 350, - 642 - ], - "score": 1.0, - "content": "D moving the screen closer to the crystalline sample", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 11.5 - } - ], - "layout_bboxes": [], - "page_idx": 66, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 218, - 119, - 361, - 261 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 218, - 119, - 361, - 261 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 218, - 119, - 361, - 261 - ], - "spans": [ - { - "bbox": [ - 218, - 119, - 361, - 261 - ], - "score": 0.963, - "type": "image", - "image_path": "d0bcade1d6eecd11c7b01a830874a85e0bdc19ea90eb2b78af4ae3d59d3ae4f8.jpg" - } - ] - } - ], - "index": 3.5, - "virtual_lines": [ - { - "bbox": [ - 218, - 119, - 361, - 190.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 218, - 190.0, - 361, - 261.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3.5 - }, - { - "type": "image", - "bbox": [ - 218, - 326, - 361, - 469 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 218, - 326, - 361, - 469 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 218, - 326, - 361, - 469 - ], - "spans": [ - { - "bbox": [ - 218, - 326, - 361, - 469 - ], - "score": 0.961, - "type": "image", - "image_path": "cd4ce3af50f954eb058f6cc8093cb9da40b553f64860b24e882b21a6c3fc8950.jpg" - } - ] - } - ], - "index": 6.5, - "virtual_lines": [ - { - "bbox": [ - 218, - 326, - 361, - 397.5 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 218, - 397.5, - 361, - 469.0 - ], - "spans": [], - "index": 7 - } - ] - } - ], - "index": 6.5 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 77 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 78 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 78 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 783 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 295, - 39 - ], - "lines": [ - { - "bbox": [ - 280, - 28, - 298, - 43 - ], - "spans": [ - { - "bbox": [ - 280, - 28, - 298, - 43 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 15, - "width": 18 - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 46, - 65, - 81, - 82 - ], - "lines": [ - { - "bbox": [ - 49, - 66, - 78, - 80 - ], - "spans": [ - { - "bbox": [ - 49, - 66, - 78, - 80 - ], - "score": 1.0, - "content": "1 3 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 83, - 68, - 497, - 108 - ], - "lines": [ - { - "bbox": [ - 91, - 68, - 495, - 82 - ], - "spans": [ - { - "bbox": [ - 91, - 68, - 495, - 82 - ], - "score": 1.0, - "content": "Electrons with a certain kinetic energy pass through a powdered crystalline sample", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 92, - 82, - 292, - 94 - ], - "spans": [ - { - "bbox": [ - 92, - 82, - 292, - 94 - ], - "score": 1.0, - "content": "and are incident on a fluorescent screen.", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 91, - 95, - 403, - 108 - ], - "spans": [ - { - "bbox": [ - 91, - 95, - 403, - 108 - ], - "score": 1.0, - "content": "The diagram shows a sketch of the diffraction pattern produced.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1, - "page_num": "page_66", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 68, - 495, - 108 - ] - }, - { - "type": "image", - "bbox": [ - 218, - 119, - 361, - 261 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 218, - 119, - 361, - 261 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 218, - 119, - 361, - 261 - ], - "spans": [ - { - "bbox": [ - 218, - 119, - 361, - 261 - ], - "score": 0.963, - "type": "image", - "image_path": "d0bcade1d6eecd11c7b01a830874a85e0bdc19ea90eb2b78af4ae3d59d3ae4f8.jpg" - } - ] - } - ], - "index": 3.5, - "virtual_lines": [ - { - "bbox": [ - 218, - 119, - 361, - 190.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 218, - 190.0, - 361, - 261.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3.5, - "page_num": "page_66", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 289, - 361, - 303 - ], - "lines": [ - { - "bbox": [ - 92, - 290, - 361, - 303 - ], - "spans": [ - { - "bbox": [ - 92, - 290, - 361, - 303 - ], - "score": 1.0, - "content": "A change is made and this second pattern is produced.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_66", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 290, - 361, - 303 - ] - }, - { - "type": "image", - "bbox": [ - 218, - 326, - 361, - 469 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 218, - 326, - 361, - 469 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 218, - 326, - 361, - 469 - ], - "spans": [ - { - "bbox": [ - 218, - 326, - 361, - 469 - ], - "score": 0.961, - "type": "image", - "image_path": "cd4ce3af50f954eb058f6cc8093cb9da40b553f64860b24e882b21a6c3fc8950.jpg" - } - ] - } - ], - "index": 6.5, - "virtual_lines": [ - { - "bbox": [ - 218, - 326, - 361, - 397.5 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 218, - 397.5, - 361, - 469.0 - ], - "spans": [], - "index": 7 - } - ] - } - ], - "index": 6.5, - "page_num": "page_66", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 497, - 336, - 511 - ], - "lines": [ - { - "bbox": [ - 92, - 498, - 335, - 510 - ], - "spans": [ - { - "bbox": [ - 92, - 498, - 335, - 510 - ], - "score": 1.0, - "content": "Which change could produce the second pattern?", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_66", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 498, - 335, - 510 - ] - }, - { - "type": "text", - "bbox": [ - 491, - 511, - 535, - 524 - ], - "lines": [ - { - "bbox": [ - 491, - 510, - 536, - 525 - ], - "spans": [ - { - "bbox": [ - 491, - 510, - 536, - 525 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_66", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 510, - 536, - 525 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 542, - 470, - 644 - ], - "lines": [ - { - "bbox": [ - 92, - 545, - 329, - 557 - ], - "spans": [ - { - "bbox": [ - 92, - 545, - 329, - 557 - ], - "score": 1.0, - "content": "A decreasing the kinetic energy of the electrons", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 91, - 571, - 423, - 587 - ], - "spans": [ - { - "bbox": [ - 91, - 571, - 423, - 587 - ], - "score": 1.0, - "content": "B replacing the electrons with protons with the same kinetic energy", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 91, - 601, - 427, - 615 - ], - "spans": [ - { - "bbox": [ - 91, - 601, - 427, - 615 - ], - "score": 1.0, - "content": "C using a crystalline sample with a wider spacing between its atoms", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 91, - 629, - 350, - 642 - ], - "spans": [ - { - "bbox": [ - 91, - 629, - 350, - 642 - ], - "score": 1.0, - "content": "D moving the screen closer to the crystalline sample", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 11.5, - "page_num": "page_66", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 545, - 427, - 642 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 91, - 69, - 447, - 96 - ], - "lines": [ - { - "bbox": [ - 92, - 69, - 395, - 82 - ], - "spans": [ - { - "bbox": [ - 92, - 70, - 208, - 82 - ], - "score": 1.0, - "content": "A string with a length of", - "type": "text" - }, - { - "bbox": [ - 209, - 69, - 238, - 82 - ], - "score": 0.59, - "content": "1.2\\textrm{m}", - "type": "inline_equation", - "height": 13, - "width": 29 - }, - { - "bbox": [ - 239, - 70, - 395, - 82 - ], - "score": 1.0, - "content": "vibrates at its second harmonic.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 91, - 83, - 448, - 96 - ], - "spans": [ - { - "bbox": [ - 91, - 83, - 448, - 96 - ], - "score": 1.0, - "content": "The diagram shows the displacement–time graph for a point on the string.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "image", - "bbox": [ - 57, - 119, - 525, - 363 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 57, - 119, - 525, - 363 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 57, - 119, - 525, - 363 - ], - "spans": [ - { - "bbox": [ - 57, - 119, - 525, - 363 - ], - "score": 0.959, - "type": "image", - "image_path": "3e901f3fea35b80edd32390c7e3c2a7b11e5e18779065ebbf16c8fed8caa2a5b.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 57, - 119, - 525, - 200.33333333333331 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 57, - 200.33333333333331, - 525, - 281.66666666666663 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 57, - 281.66666666666663, - 525, - 362.99999999999994 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 90, - 390, - 418, - 404 - ], - "lines": [ - { - "bbox": [ - 91, - 391, - 416, - 404 - ], - "spans": [ - { - "bbox": [ - 91, - 391, - 416, - 404 - ], - "score": 1.0, - "content": "What are the wavelength and frequency of the wave on the string?", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 490, - 404, - 535, - 417 - ], - "lines": [ - { - "bbox": [ - 491, - 404, - 536, - 418 - ], - "spans": [ - { - "bbox": [ - 491, - 404, - 536, - 418 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "image", - "bbox": [ - 90, - 428, - 407, - 575 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 90, - 428, - 407, - 575 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 90, - 428, - 407, - 575 - ], - "spans": [ - { - "bbox": [ - 90, - 428, - 407, - 575 - ], - "score": 0.495, - "type": "image", - "image_path": "44b1d4cf7a79b186f6049d6ec7f972462a57f574c3cb41e18b1a810022551015.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 90, - 428, - 407, - 477.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 90, - 477.0, - 407, - 526.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 90, - 526.0, - 407, - 575.0 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 8 - } - ], - "layout_bboxes": [], - "page_idx": 67, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 57, - 119, - 525, - 363 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 57, - 119, - 525, - 363 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 57, - 119, - 525, - 363 - ], - "spans": [ - { - "bbox": [ - 57, - 119, - 525, - 363 - ], - "score": 0.959, - "type": "image", - "image_path": "3e901f3fea35b80edd32390c7e3c2a7b11e5e18779065ebbf16c8fed8caa2a5b.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 57, - 119, - 525, - 200.33333333333331 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 57, - 200.33333333333331, - 525, - 281.66666666666663 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 57, - 281.66666666666663, - 525, - 362.99999999999994 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3 - }, - { - "type": "image", - "bbox": [ - 90, - 428, - 407, - 575 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 90, - 428, - 407, - 575 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 90, - 428, - 407, - 575 - ], - "spans": [ - { - "bbox": [ - 90, - 428, - 407, - 575 - ], - "score": 0.495, - "type": "image", - "image_path": "44b1d4cf7a79b186f6049d6ec7f972462a57f574c3cb41e18b1a810022551015.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 90, - 428, - 407, - 477.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 90, - 477.0, - 407, - 526.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 90, - 526.0, - 407, - 575.0 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 8 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 60, - 816, - 80, - 824 - ], - "spans": [ - { - "bbox": [ - 60, - 817, - 65, - 822 - ], - "score": 0.6038756966590881, - "content": "2", - "type": "text" - }, - { - "bbox": [ - 72, - 816, - 80, - 824 - ], - "score": 0.9995629191398621, - "content": "8", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 479, - 815, - 540, - 824 - ], - "spans": [ - { - "bbox": [ - 479, - 815, - 540, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "28 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 46, - 65, - 81, - 82 - ], - "lines": [ - { - "bbox": [ - 49, - 67, - 77, - 80 - ], - "spans": [ - { - "bbox": [ - 49, - 67, - 77, - 80 - ], - "score": 1.0, - "content": "1 4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "list", - "bbox": [ - 91, - 69, - 447, - 96 - ], - "lines": [ - { - "bbox": [ - 92, - 69, - 395, - 82 - ], - "spans": [ - { - "bbox": [ - 92, - 70, - 208, - 82 - ], - "score": 1.0, - "content": "A string with a length of", - "type": "text" - }, - { - "bbox": [ - 209, - 69, - 238, - 82 - ], - "score": 0.59, - "content": "1.2\\textrm{m}", - "type": "inline_equation", - "height": 13, - "width": 29 - }, - { - "bbox": [ - 239, - 70, - 395, - 82 - ], - "score": 1.0, - "content": "vibrates at its second harmonic.", - "type": "text" - } - ], - "index": 0, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 83, - 448, - 96 - ], - "spans": [ - { - "bbox": [ - 91, - 83, - 448, - 96 - ], - "score": 1.0, - "content": "The diagram shows the displacement–time graph for a point on the string.", - "type": "text" - } - ], - "index": 1, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 0.5, - "page_num": "page_67", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 69, - 448, - 96 - ] - }, - { - "type": "image", - "bbox": [ - 57, - 119, - 525, - 363 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 57, - 119, - 525, - 363 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 57, - 119, - 525, - 363 - ], - "spans": [ - { - "bbox": [ - 57, - 119, - 525, - 363 - ], - "score": 0.959, - "type": "image", - "image_path": "3e901f3fea35b80edd32390c7e3c2a7b11e5e18779065ebbf16c8fed8caa2a5b.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 57, - 119, - 525, - 200.33333333333331 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 57, - 200.33333333333331, - 525, - 281.66666666666663 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 57, - 281.66666666666663, - 525, - 362.99999999999994 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3, - "page_num": "page_67", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 390, - 418, - 404 - ], - "lines": [ - { - "bbox": [ - 91, - 391, - 416, - 404 - ], - "spans": [ - { - "bbox": [ - 91, - 391, - 416, - 404 - ], - "score": 1.0, - "content": "What are the wavelength and frequency of the wave on the string?", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_67", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 391, - 416, - 404 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 404, - 535, - 417 - ], - "lines": [ - { - "bbox": [ - 491, - 404, - 536, - 418 - ], - "spans": [ - { - "bbox": [ - 491, - 404, - 536, - 418 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_67", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 404, - 536, - 418 - ] - }, - { - "type": "image", - "bbox": [ - 90, - 428, - 407, - 575 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 90, - 428, - 407, - 575 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 90, - 428, - 407, - 575 - ], - "spans": [ - { - "bbox": [ - 90, - 428, - 407, - 575 - ], - "score": 0.495, - "type": "image", - "image_path": "44b1d4cf7a79b186f6049d6ec7f972462a57f574c3cb41e18b1a810022551015.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 90, - 428, - 407, - 477.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 90, - 477.0, - 407, - 526.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 90, - 526.0, - 407, - 575.0 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 8, - "page_num": "page_67", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 84, - 66, - 536, - 122 - ], - "lines": [ - { - "bbox": [ - 91, - 69, - 281, - 82 - ], - "spans": [ - { - "bbox": [ - 91, - 69, - 281, - 82 - ], - "score": 1.0, - "content": "A standing wave is created on a string.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 91, - 93, - 500, - 107 - ], - "spans": [ - { - "bbox": [ - 91, - 93, - 500, - 107 - ], - "score": 1.0, - "content": "Which statement about the two waves that create the standing wave is not correct?", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 489, - 107, - 537, - 122 - ], - "spans": [ - { - "bbox": [ - 489, - 107, - 537, - 122 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 89, - 139, - 358, - 241 - ], - "lines": [ - { - "bbox": [ - 92, - 142, - 260, - 154 - ], - "spans": [ - { - "bbox": [ - 92, - 142, - 260, - 154 - ], - "score": 1.0, - "content": "A They have the same frequency.", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 91, - 170, - 306, - 183 - ], - "spans": [ - { - "bbox": [ - 91, - 170, - 306, - 183 - ], - "score": 1.0, - "content": "B They have a constant phase relationship.", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 91, - 199, - 351, - 210 - ], - "spans": [ - { - "bbox": [ - 91, - 199, - 269, - 210 - ], - "score": 1.0, - "content": "C They travel in opposite directions.", - "type": "text" - }, - { - "bbox": [ - 339, - 202, - 351, - 207 - ], - "score": 0.32, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 5, - "width": 12 - } - ], - "index": 5 - }, - { - "bbox": [ - 92, - 227, - 351, - 239 - ], - "spans": [ - { - "bbox": [ - 92, - 227, - 242, - 239 - ], - "score": 1.0, - "content": "D They have the same speed.", - "type": "text" - }, - { - "bbox": [ - 339, - 230, - 351, - 236 - ], - "score": 0.27, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 6, - "width": 12 - } - ], - "index": 6 - } - ], - "index": 4.5 - }, - { - "type": "text", - "bbox": [ - 89, - 275, - 502, - 332 - ], - "lines": [ - { - "bbox": [ - 91, - 276, - 434, - 289 - ], - "spans": [ - { - "bbox": [ - 91, - 276, - 239, - 289 - ], - "score": 1.0, - "content": "A double slit with a separation", - "type": "text" - }, - { - "bbox": [ - 240, - 278, - 247, - 287 - ], - "score": 0.52, - "content": "s", - "type": "inline_equation", - "height": 9, - "width": 7 - }, - { - "bbox": [ - 247, - 276, - 423, - 289 - ], - "score": 1.0, - "content": " is illuminated by light of wavelength", - "type": "text" - }, - { - "bbox": [ - 423, - 276, - 431, - 287 - ], - "score": 0.72, - "content": "\\uplambda", - "type": "inline_equation", - "height": 11, - "width": 8 - }, - { - "bbox": [ - 432, - 276, - 434, - 289 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 91, - 290, - 501, - 303 - ], - "spans": [ - { - "bbox": [ - 91, - 290, - 194, - 303 - ], - "score": 1.0, - "content": "Fringes with spacing", - "type": "text" - }, - { - "bbox": [ - 194, - 291, - 205, - 301 - ], - "score": 0.67, - "content": "w", - "type": "inline_equation", - "height": 10, - "width": 11 - }, - { - "bbox": [ - 205, - 290, - 422, - 303 - ], - "score": 1.0, - "content": " are produced on a screen placed a distance", - "type": "text" - }, - { - "bbox": [ - 422, - 290, - 433, - 301 - ], - "score": 0.8, - "content": "D", - "type": "inline_equation", - "height": 11, - "width": 11 - }, - { - "bbox": [ - 434, - 290, - 501, - 303 - ], - "score": 1.0, - "content": " from the slits.", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 91, - 304, - 374, - 333 - ], - "spans": [ - { - "bbox": [ - 91, - 311, - 357, - 324 - ], - "score": 1.0, - "content": "The distance from the slits to the screen is changed to", - "type": "text" - }, - { - "bbox": [ - 358, - 304, - 374, - 333 - ], - "score": 0.86, - "content": "\\frac{D}{2}", - "type": "inline_equation", - "height": 29, - "width": 16 - } - ], - "index": 9 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 89, - 346, - 534, - 373 - ], - "lines": [ - { - "bbox": [ - 91, - 346, - 533, - 361 - ], - "spans": [ - { - "bbox": [ - 91, - 346, - 492, - 361 - ], - "score": 1.0, - "content": "Which combination of slit separation and wavelength produces a fringe spacing of ", - "type": "text" - }, - { - "bbox": [ - 492, - 347, - 517, - 359 - ], - "score": 0.81, - "content": "1.5w", - "type": "inline_equation", - "height": 12, - "width": 25 - }, - { - "bbox": [ - 518, - 346, - 533, - 361 - ], - "score": 1.0, - "content": "on ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 91, - 361, - 150, - 373 - ], - "spans": [ - { - "bbox": [ - 91, - 361, - 150, - 373 - ], - "score": 1.0, - "content": "the screen?", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5 - }, - { - "type": "text", - "bbox": [ - 490, - 373, - 535, - 387 - ], - "lines": [ - { - "bbox": [ - 491, - 374, - 536, - 387 - ], - "spans": [ - { - "bbox": [ - 491, - 374, - 536, - 387 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "image", - "bbox": [ - 90, - 397, - 474, - 545 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 90, - 397, - 474, - 545 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 90, - 397, - 474, - 545 - ], - "spans": [ - { - "bbox": [ - 90, - 397, - 474, - 545 - ], - "score": 0.545, - "type": "image", - "image_path": "4cc79f3b36b865d03cd79b60f417c2cc67740b3fa5c2224c535b4ef3c77ce1ac.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 90, - 397, - 474, - 446.3333333333333 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 90, - 446.3333333333333, - 474, - 495.66666666666663 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 90, - 495.66666666666663, - 474, - 545.0 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 206, - 608, - 372, - 621 - ], - "lines": [ - { - "bbox": [ - 207, - 609, - 371, - 620 - ], - "spans": [ - { - "bbox": [ - 207, - 609, - 371, - 620 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16 - } - ], - "layout_bboxes": [], - "page_idx": 68, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 90, - 397, - 474, - 545 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 90, - 397, - 474, - 545 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 90, - 397, - 474, - 545 - ], - "spans": [ - { - "bbox": [ - 90, - 397, - 474, - 545 - ], - "score": 0.545, - "type": "image", - "image_path": "4cc79f3b36b865d03cd79b60f417c2cc67740b3fa5c2224c535b4ef3c77ce1ac.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 90, - 397, - 474, - 446.3333333333333 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 90, - 446.3333333333333, - 474, - 495.66666666666663 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 90, - 495.66666666666663, - 474, - 545.0 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 14 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 77 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 559, - 69, - 573, - 78 - ], - "spans": [ - { - "bbox": [ - 559, - 69, - 573, - 78 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 783 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 535, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 535, - 783 - ], - "score": 1.0, - "content": "Turn over ►", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 46, - 272, - 81, - 289 - ], - "lines": [ - { - "bbox": [ - 50, - 274, - 76, - 287 - ], - "spans": [ - { - "bbox": [ - 50, - 274, - 67, - 287 - ], - "score": 1.0, - "content": "1 ", - "type": "text" - }, - { - "bbox": [ - 68, - 275, - 76, - 286 - ], - "score": 1.0, - "content": "6", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 281, - 29, - 296, - 40 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 297, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 297, - 42 - ], - "score": 1.0, - "content": "29 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 46, - 65, - 81, - 82 - ], - "lines": [ - { - "bbox": [ - 49, - 67, - 77, - 80 - ], - "spans": [ - { - "bbox": [ - 49, - 67, - 77, - 80 - ], - "score": 1.0, - "content": "1 5", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 84, - 66, - 536, - 122 - ], - "lines": [ - { - "bbox": [ - 91, - 69, - 281, - 82 - ], - "spans": [ - { - "bbox": [ - 91, - 69, - 281, - 82 - ], - "score": 1.0, - "content": "A standing wave is created on a string.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 91, - 93, - 500, - 107 - ], - "spans": [ - { - "bbox": [ - 91, - 93, - 500, - 107 - ], - "score": 1.0, - "content": "Which statement about the two waves that create the standing wave is not correct?", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 489, - 107, - 537, - 122 - ], - "spans": [ - { - "bbox": [ - 489, - 107, - 537, - 122 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1, - "page_num": "page_68", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 69, - 537, - 122 - ] - }, - { - "type": "list", - "bbox": [ - 89, - 139, - 358, - 241 - ], - "lines": [ - { - "bbox": [ - 92, - 142, - 260, - 154 - ], - "spans": [ - { - "bbox": [ - 92, - 142, - 260, - 154 - ], - "score": 1.0, - "content": "A They have the same frequency.", - "type": "text" - } - ], - "index": 3, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 170, - 306, - 183 - ], - "spans": [ - { - "bbox": [ - 91, - 170, - 306, - 183 - ], - "score": 1.0, - "content": "B They have a constant phase relationship.", - "type": "text" - } - ], - "index": 4, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 199, - 351, - 210 - ], - "spans": [ - { - "bbox": [ - 91, - 199, - 269, - 210 - ], - "score": 1.0, - "content": "C They travel in opposite directions.", - "type": "text" - }, - { - "bbox": [ - 339, - 202, - 351, - 207 - ], - "score": 0.32, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 5, - "width": 12 - } - ], - "index": 5, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 92, - 227, - 351, - 239 - ], - "spans": [ - { - "bbox": [ - 92, - 227, - 242, - 239 - ], - "score": 1.0, - "content": "D They have the same speed.", - "type": "text" - }, - { - "bbox": [ - 339, - 230, - 351, - 236 - ], - "score": 0.27, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 6, - "width": 12 - } - ], - "index": 6, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 4.5, - "page_num": "page_68", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 142, - 351, - 239 - ] - }, - { - "type": "text", - "bbox": [ - 89, - 275, - 502, - 332 - ], - "lines": [ - { - "bbox": [ - 91, - 276, - 434, - 289 - ], - "spans": [ - { - "bbox": [ - 91, - 276, - 239, - 289 - ], - "score": 1.0, - "content": "A double slit with a separation", - "type": "text" - }, - { - "bbox": [ - 240, - 278, - 247, - 287 - ], - "score": 0.52, - "content": "s", - "type": "inline_equation", - "height": 9, - "width": 7 - }, - { - "bbox": [ - 247, - 276, - 423, - 289 - ], - "score": 1.0, - "content": " is illuminated by light of wavelength", - "type": "text" - }, - { - "bbox": [ - 423, - 276, - 431, - 287 - ], - "score": 0.72, - "content": "\\uplambda", - "type": "inline_equation", - "height": 11, - "width": 8 - }, - { - "bbox": [ - 432, - 276, - 434, - 289 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 91, - 290, - 501, - 303 - ], - "spans": [ - { - "bbox": [ - 91, - 290, - 194, - 303 - ], - "score": 1.0, - "content": "Fringes with spacing", - "type": "text" - }, - { - "bbox": [ - 194, - 291, - 205, - 301 - ], - "score": 0.67, - "content": "w", - "type": "inline_equation", - "height": 10, - "width": 11 - }, - { - "bbox": [ - 205, - 290, - 422, - 303 - ], - "score": 1.0, - "content": " are produced on a screen placed a distance", - "type": "text" - }, - { - "bbox": [ - 422, - 290, - 433, - 301 - ], - "score": 0.8, - "content": "D", - "type": "inline_equation", - "height": 11, - "width": 11 - }, - { - "bbox": [ - 434, - 290, - 501, - 303 - ], - "score": 1.0, - "content": " from the slits.", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 91, - 304, - 374, - 333 - ], - "spans": [ - { - "bbox": [ - 91, - 311, - 357, - 324 - ], - "score": 1.0, - "content": "The distance from the slits to the screen is changed to", - "type": "text" - }, - { - "bbox": [ - 358, - 304, - 374, - 333 - ], - "score": 0.86, - "content": "\\frac{D}{2}", - "type": "inline_equation", - "height": 29, - "width": 16 - } - ], - "index": 9 - } - ], - "index": 8, - "page_num": "page_68", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 276, - 501, - 333 - ] - }, - { - "type": "text", - "bbox": [ - 89, - 346, - 534, - 373 - ], - "lines": [ - { - "bbox": [ - 91, - 346, - 533, - 361 - ], - "spans": [ - { - "bbox": [ - 91, - 346, - 492, - 361 - ], - "score": 1.0, - "content": "Which combination of slit separation and wavelength produces a fringe spacing of ", - "type": "text" - }, - { - "bbox": [ - 492, - 347, - 517, - 359 - ], - "score": 0.81, - "content": "1.5w", - "type": "inline_equation", - "height": 12, - "width": 25 - }, - { - "bbox": [ - 518, - 346, - 533, - 361 - ], - "score": 1.0, - "content": "on ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 91, - 361, - 150, - 373 - ], - "spans": [ - { - "bbox": [ - 91, - 361, - 150, - 373 - ], - "score": 1.0, - "content": "the screen?", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5, - "page_num": "page_68", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 346, - 533, - 373 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 373, - 535, - 387 - ], - "lines": [ - { - "bbox": [ - 491, - 374, - 536, - 387 - ], - "spans": [ - { - "bbox": [ - 491, - 374, - 536, - 387 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_68", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 374, - 536, - 387 - ] - }, - { - "type": "image", - "bbox": [ - 90, - 397, - 474, - 545 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 90, - 397, - 474, - 545 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 90, - 397, - 474, - 545 - ], - "spans": [ - { - "bbox": [ - 90, - 397, - 474, - 545 - ], - "score": 0.545, - "type": "image", - "image_path": "4cc79f3b36b865d03cd79b60f417c2cc67740b3fa5c2224c535b4ef3c77ce1ac.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 90, - 397, - 474, - 446.3333333333333 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 90, - 446.3333333333333, - 474, - 495.66666666666663 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 90, - 495.66666666666663, - 474, - 545.0 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 14, - "page_num": "page_68", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 206, - 608, - 372, - 621 - ], - "lines": [ - { - "bbox": [ - 207, - 609, - 371, - 620 - ], - "spans": [ - { - "bbox": [ - 207, - 609, - 371, - 620 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16, - "page_num": "page_68", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 207, - 609, - 371, - 620 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 90, - 68, - 496, - 94 - ], - "lines": [ - { - "bbox": [ - 92, - 69, - 495, - 81 - ], - "spans": [ - { - "bbox": [ - 92, - 69, - 495, - 81 - ], - "score": 1.0, - "content": "A single narrow slit is illuminated with monochromatic light and a diffraction pattern", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 90, - 82, - 153, - 95 - ], - "spans": [ - { - "bbox": [ - 90, - 82, - 153, - 95 - ], - "score": 1.0, - "content": "is produced.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 92, - 107, - 222, - 121 - ], - "lines": [ - { - "bbox": [ - 92, - 109, - 221, - 119 - ], - "spans": [ - { - "bbox": [ - 92, - 109, - 221, - 119 - ], - "score": 1.0, - "content": "The slit width is increased.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 90, - 133, - 501, - 160 - ], - "lines": [ - { - "bbox": [ - 91, - 133, - 498, - 147 - ], - "spans": [ - { - "bbox": [ - 91, - 133, - 498, - 147 - ], - "score": 1.0, - "content": "What happens to the width and brightness of the central maximum of the diffraction", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 90, - 147, - 134, - 160 - ], - "spans": [ - { - "bbox": [ - 90, - 147, - 134, - 160 - ], - "score": 1.0, - "content": "pattern?", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5 - }, - { - "type": "text", - "bbox": [ - 490, - 160, - 535, - 173 - ], - "lines": [ - { - "bbox": [ - 491, - 159, - 536, - 174 - ], - "spans": [ - { - "bbox": [ - 491, - 159, - 536, - 174 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "table", - "bbox": [ - 90, - 184, - 474, - 331 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 90, - 184, - 474, - 331 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 90, - 184, - 474, - 331 - ], - "spans": [ - { - "bbox": [ - 90, - 184, - 474, - 331 - ], - "score": 0.75, - "html": "
WidthofcentralmaximumBrightness of central maximum
Aincreasesincreases
Bincreasesdecreases
Cdecreasesincreases
Ddecreasesdecreases
", - "type": "table", - "image_path": "bc0d117ccd2413548ce8a0b16acf1fac1dd445e2518b732875699fa7385cd5ef.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 90, - 184, - 474, - 233.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 90, - 233.0, - 474, - 282.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 90, - 282.0, - 474, - 331.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 90, - 358, - 491, - 412 - ], - "lines": [ - { - "bbox": [ - 91, - 359, - 489, - 372 - ], - "spans": [ - { - "bbox": [ - 91, - 359, - 439, - 372 - ], - "score": 1.0, - "content": "A ball is kicked from point P on level ground. The ball initially travels at", - "type": "text" - }, - { - "bbox": [ - 440, - 359, - 458, - 371 - ], - "score": 0.86, - "content": "45^{\\circ}", - "type": "inline_equation", - "height": 12, - "width": 18 - }, - { - "bbox": [ - 459, - 359, - 489, - 372 - ], - "score": 1.0, - "content": " to the", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 91, - 372, - 144, - 385 - ], - "spans": [ - { - "bbox": [ - 91, - 372, - 144, - 385 - ], - "score": 1.0, - "content": "horizontal.", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 92, - 385, - 371, - 399 - ], - "spans": [ - { - "bbox": [ - 92, - 386, - 343, - 398 - ], - "score": 1.0, - "content": "The ball reaches its maximum height after a time of", - "type": "text" - }, - { - "bbox": [ - 344, - 385, - 368, - 398 - ], - "score": 0.5, - "content": "2.0\\mathrm{~s~}", - "type": "inline_equation", - "height": 13, - "width": 24 - }, - { - "bbox": [ - 368, - 386, - 371, - 399 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 91, - 399, - 238, - 412 - ], - "spans": [ - { - "bbox": [ - 91, - 399, - 238, - 412 - ], - "score": 1.0, - "content": "Air resistance can be ignored.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 10.5 - }, - { - "type": "image", - "bbox": [ - 216, - 422, - 365, - 504 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 216, - 422, - 365, - 504 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 216, - 422, - 365, - 504 - ], - "spans": [ - { - "bbox": [ - 216, - 422, - 365, - 504 - ], - "score": 0.961, - "type": "image", - "image_path": "0b5f6d4f2e6fc2a8232dfa1d2565264abb0403a362dd2751b0b9bd00bc0b508d.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 216, - 422, - 365, - 435.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 216, - 435.0, - 365, - 448.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 216, - 448.0, - 365, - 461.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 216, - 461.0, - 365, - 474.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 216, - 474.0, - 365, - 487.0 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 216, - 487.0, - 365, - 500.0 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 216, - 500.0, - 365, - 513.0 - ], - "spans": [], - "index": 19 - } - ] - } - ], - "index": 16 - }, - { - "type": "text", - "bbox": [ - 91, - 519, - 448, - 533 - ], - "lines": [ - { - "bbox": [ - 92, - 521, - 447, - 532 - ], - "spans": [ - { - "bbox": [ - 92, - 521, - 447, - 532 - ], - "score": 1.0, - "content": "What is the displacement of the ball from P when at its maximum height?", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 20 - }, - { - "type": "text", - "bbox": [ - 490, - 533, - 535, - 546 - ], - "lines": [ - { - "bbox": [ - 491, - 532, - 536, - 547 - ], - "spans": [ - { - "bbox": [ - 491, - 532, - 536, - 547 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 21 - }, - { - "type": "text", - "bbox": [ - 90, - 566, - 133, - 665 - ], - "lines": [ - { - "bbox": [ - 90, - 565, - 133, - 579 - ], - "spans": [ - { - "bbox": [ - 90, - 565, - 133, - 579 - ], - "score": 1.0, - "content": "A 20 m ", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 90, - 593, - 133, - 608 - ], - "spans": [ - { - "bbox": [ - 90, - 593, - 133, - 608 - ], - "score": 1.0, - "content": "B 40 m ", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 90, - 623, - 132, - 636 - ], - "spans": [ - { - "bbox": [ - 90, - 623, - 132, - 636 - ], - "score": 1.0, - "content": "C 45 m", - "type": "text" - } - ], - "index": 24 - }, - { - "bbox": [ - 90, - 650, - 133, - 665 - ], - "spans": [ - { - "bbox": [ - 90, - 650, - 133, - 665 - ], - "score": 1.0, - "content": "D 60 m ", - "type": "text" - } - ], - "index": 26 - } - ], - "index": 23.5 - }, - { - "type": "text", - "bbox": [ - 189, - 563, - 218, - 666 - ], - "lines": [ - { - "bbox": [ - 197, - 628, - 208, - 632 - ], - "spans": [ - { - "bbox": [ - 197, - 628, - 208, - 632 - ], - "score": 0.65, - "content": "\\smile", - "type": "inline_equation", - "height": 4, - "width": 11 - } - ], - "index": 25 - }, - { - "bbox": [ - 197, - 656, - 209, - 661 - ], - "spans": [ - { - "bbox": [ - 197, - 656, - 209, - 661 - ], - "score": 0.55, - "content": "\\smile", - "type": "inline_equation", - "height": 5, - "width": 12 - } - ], - "index": 27 - } - ], - "index": 26.0 - } - ], - "layout_bboxes": [], - "page_idx": 69, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 216, - 422, - 365, - 504 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 216, - 422, - 365, - 504 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 216, - 422, - 365, - 504 - ], - "spans": [ - { - "bbox": [ - 216, - 422, - 365, - 504 - ], - "score": 0.961, - "type": "image", - "image_path": "0b5f6d4f2e6fc2a8232dfa1d2565264abb0403a362dd2751b0b9bd00bc0b508d.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 216, - 422, - 365, - 435.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 216, - 435.0, - 365, - 448.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 216, - 448.0, - 365, - 461.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 216, - 461.0, - 365, - 474.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 216, - 474.0, - 365, - 487.0 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 216, - 487.0, - 365, - 500.0 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 216, - 500.0, - 365, - 513.0 - ], - "spans": [], - "index": 19 - } - ] - } - ], - "index": 16 - } - ], - "tables": [ - { - "type": "table", - "bbox": [ - 90, - 184, - 474, - 331 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 90, - 184, - 474, - 331 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 90, - 184, - 474, - 331 - ], - "spans": [ - { - "bbox": [ - 90, - 184, - 474, - 331 - ], - "score": 0.75, - "html": "
WidthofcentralmaximumBrightness of central maximum
Aincreasesincreases
Bincreasesdecreases
Cdecreasesincreases
Ddecreasesdecreases
", - "type": "table", - "image_path": "bc0d117ccd2413548ce8a0b16acf1fac1dd445e2518b732875699fa7385cd5ef.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 90, - 184, - 474, - 233.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 90, - 233.0, - 474, - 282.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 90, - 282.0, - 474, - 331.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 559, - 68, - 573, - 77 - ], - "spans": [ - { - "bbox": [ - 559, - 68, - 573, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 46, - 355, - 81, - 372 - ], - "lines": [ - { - "bbox": [ - 49, - 357, - 77, - 370 - ], - "spans": [ - { - "bbox": [ - 49, - 357, - 77, - 370 - ], - "score": 1.0, - "content": "1 8", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 58, - 814, - 81, - 826 - ], - "spans": [ - { - "bbox": [ - 58, - 814, - 81, - 826 - ], - "score": 0.7646403312683105, - "content": "3\"0", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 81, - 82 - ], - "lines": [ - { - "bbox": [ - 48, - 66, - 78, - 80 - ], - "spans": [ - { - "bbox": [ - 48, - 66, - 78, - 80 - ], - "score": 1.0, - "content": "1 7 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 40 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "30 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 90, - 68, - 496, - 94 - ], - "lines": [ - { - "bbox": [ - 92, - 69, - 495, - 81 - ], - "spans": [ - { - "bbox": [ - 92, - 69, - 495, - 81 - ], - "score": 1.0, - "content": "A single narrow slit is illuminated with monochromatic light and a diffraction pattern", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 90, - 82, - 153, - 95 - ], - "spans": [ - { - "bbox": [ - 90, - 82, - 153, - 95 - ], - "score": 1.0, - "content": "is produced.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_69", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 90, - 69, - 495, - 95 - ] - }, - { - "type": "text", - "bbox": [ - 92, - 107, - 222, - 121 - ], - "lines": [ - { - "bbox": [ - 92, - 109, - 221, - 119 - ], - "spans": [ - { - "bbox": [ - 92, - 109, - 221, - 119 - ], - "score": 1.0, - "content": "The slit width is increased.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_69", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 109, - 221, - 119 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 133, - 501, - 160 - ], - "lines": [ - { - "bbox": [ - 91, - 133, - 498, - 147 - ], - "spans": [ - { - "bbox": [ - 91, - 133, - 498, - 147 - ], - "score": 1.0, - "content": "What happens to the width and brightness of the central maximum of the diffraction", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 90, - 147, - 134, - 160 - ], - "spans": [ - { - "bbox": [ - 90, - 147, - 134, - 160 - ], - "score": 1.0, - "content": "pattern?", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5, - "page_num": "page_69", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 90, - 133, - 498, - 160 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 160, - 535, - 173 - ], - "lines": [ - { - "bbox": [ - 491, - 159, - 536, - 174 - ], - "spans": [ - { - "bbox": [ - 491, - 159, - 536, - 174 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_69", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 159, - 536, - 174 - ] - }, - { - "type": "table", - "bbox": [ - 90, - 184, - 474, - 331 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 90, - 184, - 474, - 331 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 90, - 184, - 474, - 331 - ], - "spans": [ - { - "bbox": [ - 90, - 184, - 474, - 331 - ], - "score": 0.75, - "html": "
WidthofcentralmaximumBrightness of central maximum
Aincreasesincreases
Bincreasesdecreases
Cdecreasesincreases
Ddecreasesdecreases
", - "type": "table", - "image_path": "bc0d117ccd2413548ce8a0b16acf1fac1dd445e2518b732875699fa7385cd5ef.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 90, - 184, - 474, - 233.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 90, - 233.0, - 474, - 282.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 90, - 282.0, - 474, - 331.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_69", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 90, - 358, - 491, - 412 - ], - "lines": [ - { - "bbox": [ - 91, - 359, - 489, - 372 - ], - "spans": [ - { - "bbox": [ - 91, - 359, - 439, - 372 - ], - "score": 1.0, - "content": "A ball is kicked from point P on level ground. The ball initially travels at", - "type": "text" - }, - { - "bbox": [ - 440, - 359, - 458, - 371 - ], - "score": 0.86, - "content": "45^{\\circ}", - "type": "inline_equation", - "height": 12, - "width": 18 - }, - { - "bbox": [ - 459, - 359, - 489, - 372 - ], - "score": 1.0, - "content": " to the", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 91, - 372, - 144, - 385 - ], - "spans": [ - { - "bbox": [ - 91, - 372, - 144, - 385 - ], - "score": 1.0, - "content": "horizontal.", - "type": "text" - } - ], - "index": 10, - "is_list_end_line": true - }, - { - "bbox": [ - 92, - 385, - 371, - 399 - ], - "spans": [ - { - "bbox": [ - 92, - 386, - 343, - 398 - ], - "score": 1.0, - "content": "The ball reaches its maximum height after a time of", - "type": "text" - }, - { - "bbox": [ - 344, - 385, - 368, - 398 - ], - "score": 0.5, - "content": "2.0\\mathrm{~s~}", - "type": "inline_equation", - "height": 13, - "width": 24 - }, - { - "bbox": [ - 368, - 386, - 371, - 399 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 11, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 399, - 238, - 412 - ], - "spans": [ - { - "bbox": [ - 91, - 399, - 238, - 412 - ], - "score": 1.0, - "content": "Air resistance can be ignored.", - "type": "text" - } - ], - "index": 12, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 10.5, - "page_num": "page_69", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 359, - 489, - 412 - ] - }, - { - "type": "image", - "bbox": [ - 216, - 422, - 365, - 504 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 216, - 422, - 365, - 504 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 216, - 422, - 365, - 504 - ], - "spans": [ - { - "bbox": [ - 216, - 422, - 365, - 504 - ], - "score": 0.961, - "type": "image", - "image_path": "0b5f6d4f2e6fc2a8232dfa1d2565264abb0403a362dd2751b0b9bd00bc0b508d.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 216, - 422, - 365, - 435.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 216, - 435.0, - 365, - 448.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 216, - 448.0, - 365, - 461.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 216, - 461.0, - 365, - 474.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 216, - 474.0, - 365, - 487.0 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 216, - 487.0, - 365, - 500.0 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 216, - 500.0, - 365, - 513.0 - ], - "spans": [], - "index": 19 - } - ] - } - ], - "index": 16, - "page_num": "page_69", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 519, - 448, - 533 - ], - "lines": [ - { - "bbox": [ - 92, - 521, - 447, - 532 - ], - "spans": [ - { - "bbox": [ - 92, - 521, - 447, - 532 - ], - "score": 1.0, - "content": "What is the displacement of the ball from P when at its maximum height?", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 20, - "page_num": "page_69", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 521, - 447, - 532 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 533, - 535, - 546 - ], - "lines": [ - { - "bbox": [ - 491, - 532, - 536, - 547 - ], - "spans": [ - { - "bbox": [ - 491, - 532, - 536, - 547 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 21, - "page_num": "page_69", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 532, - 536, - 547 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 566, - 133, - 665 - ], - "lines": [ - { - "bbox": [ - 90, - 565, - 133, - 579 - ], - "spans": [ - { - "bbox": [ - 90, - 565, - 133, - 579 - ], - "score": 1.0, - "content": "A 20 m ", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 90, - 593, - 133, - 608 - ], - "spans": [ - { - "bbox": [ - 90, - 593, - 133, - 608 - ], - "score": 1.0, - "content": "B 40 m ", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 90, - 623, - 132, - 636 - ], - "spans": [ - { - "bbox": [ - 90, - 623, - 132, - 636 - ], - "score": 1.0, - "content": "C 45 m", - "type": "text" - } - ], - "index": 24 - }, - { - "bbox": [ - 90, - 650, - 133, - 665 - ], - "spans": [ - { - "bbox": [ - 90, - 650, - 133, - 665 - ], - "score": 1.0, - "content": "D 60 m ", - "type": "text" - } - ], - "index": 26 - }, - { - "bbox": [ - 197, - 628, - 208, - 632 - ], - "spans": [ - { - "bbox": [ - 197, - 628, - 208, - 632 - ], - "score": 0.65, - "content": "\\smile", - "type": "inline_equation", - "height": 4, - "width": 11 - } - ], - "index": 25 - }, - { - "bbox": [ - 197, - 656, - 209, - 661 - ], - "spans": [ - { - "bbox": [ - 197, - 656, - 209, - 661 - ], - "score": 0.55, - "content": "\\smile", - "type": "inline_equation", - "height": 5, - "width": 12 - } - ], - "index": 27 - } - ], - "index": 23.5, - "page_num": "page_69", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 90, - 565, - 133, - 665 - ] - }, - { - "type": "text", - "bbox": [ - 189, - 563, - 218, - 666 - ], - "lines": [], - "index": 26.0, - "page_num": "page_69", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 197, - 628, - 209, - 661 - ], - "lines_deleted": true - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 91, - 68, - 499, - 95 - ], - "lines": [ - { - "bbox": [ - 92, - 69, - 498, - 82 - ], - "spans": [ - { - "bbox": [ - 92, - 69, - 498, - 82 - ], - "score": 1.0, - "content": "An object is moving in a straight line. A graph is plotted to show the variation of the", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 91, - 82, - 260, - 94 - ], - "spans": [ - { - "bbox": [ - 91, - 82, - 260, - 94 - ], - "score": 1.0, - "content": "momentum of the object with time.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 88, - 107, - 508, - 134 - ], - "lines": [ - { - "bbox": [ - 91, - 107, - 507, - 122 - ], - "spans": [ - { - "bbox": [ - 91, - 107, - 507, - 122 - ], - "score": 1.0, - "content": "Which quantities can be calculated from the gradient of the graph and the area under", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 90, - 120, - 148, - 135 - ], - "spans": [ - { - "bbox": [ - 90, - 120, - 148, - 135 - ], - "score": 1.0, - "content": "the graph? ", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5 - }, - { - "type": "text", - "bbox": [ - 490, - 134, - 535, - 147 - ], - "lines": [ - { - "bbox": [ - 490, - 133, - 536, - 148 - ], - "spans": [ - { - "bbox": [ - 490, - 133, - 536, - 148 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 90, - 158, - 474, - 305 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 90, - 158, - 474, - 305 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 90, - 158, - 474, - 305 - ], - "spans": [ - { - "bbox": [ - 90, - 158, - 474, - 305 - ], - "score": 0.633, - "html": "
Gradient of graphArea under graph
Apowermass x displacement
Bforceworkdonex time
Cpowerworkdone×time
Dforcemassxdisplacement
", - "type": "table", - "image_path": "0801163dd5d73fa65ba88e570473f58c1a58298d0e4b992a1ec0cef9b6929853.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 90, - 158, - 474, - 207.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 90, - 207.0, - 474, - 256.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 90, - 256.0, - 474, - 305.0 - ], - "spans": [], - "index": 7 - } - ] - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 91, - 331, - 223, - 345 - ], - "lines": [ - { - "bbox": [ - 91, - 333, - 222, - 345 - ], - "spans": [ - { - "bbox": [ - 91, - 333, - 222, - 345 - ], - "score": 1.0, - "content": "Which is a pair of vectors?", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 490, - 345, - 535, - 359 - ], - "lines": [ - { - "bbox": [ - 491, - 345, - 536, - 359 - ], - "spans": [ - { - "bbox": [ - 491, - 345, - 536, - 359 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 90, - 376, - 288, - 479 - ], - "lines": [ - { - "bbox": [ - 92, - 380, - 187, - 392 - ], - "spans": [ - { - "bbox": [ - 92, - 380, - 187, - 392 - ], - "score": 1.0, - "content": "A weight and work", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 91, - 406, - 190, - 421 - ], - "spans": [ - { - "bbox": [ - 91, - 406, - 190, - 421 - ], - "score": 1.0, - "content": "B force and energy", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 92, - 437, - 251, - 448 - ], - "spans": [ - { - "bbox": [ - 92, - 437, - 251, - 448 - ], - "score": 1.0, - "content": "C displacement and momentum", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 91, - 465, - 221, - 477 - ], - "spans": [ - { - "bbox": [ - 91, - 465, - 221, - 477 - ], - "score": 1.0, - "content": "D acceleration and power", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 11.5 - }, - { - "type": "text", - "bbox": [ - 90, - 511, - 383, - 527 - ], - "lines": [ - { - "bbox": [ - 91, - 512, - 382, - 526 - ], - "spans": [ - { - "bbox": [ - 91, - 512, - 382, - 526 - ], - "score": 1.0, - "content": "Which statement about a superconducting metal is correct?", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 491, - 526, - 535, - 539 - ], - "lines": [ - { - "bbox": [ - 491, - 526, - 536, - 539 - ], - "spans": [ - { - "bbox": [ - 491, - 526, - 536, - 539 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "text", - "bbox": [ - 90, - 557, - 465, - 660 - ], - "lines": [ - { - "bbox": [ - 92, - 559, - 271, - 572 - ], - "spans": [ - { - "bbox": [ - 92, - 559, - 271, - 572 - ], - "score": 1.0, - "content": "A Its resistivity is small but not zero.", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 91, - 587, - 296, - 600 - ], - "spans": [ - { - "bbox": [ - 91, - 587, - 296, - 600 - ], - "score": 1.0, - "content": "B A current in it causes no heating effect.", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 91, - 616, - 456, - 629 - ], - "spans": [ - { - "bbox": [ - 91, - 616, - 429, - 629 - ], - "score": 1.0, - "content": "C Its critical temperature is independent of the metal it is made from.", - "type": "text" - }, - { - "bbox": [ - 443, - 618, - 456, - 626 - ], - "score": 0.37, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 8, - "width": 13 - } - ], - "index": 18 - }, - { - "bbox": [ - 91, - 644, - 331, - 658 - ], - "spans": [ - { - "bbox": [ - 91, - 644, - 331, - 658 - ], - "score": 1.0, - "content": "D Keeping it cold makes it too expensive to use.", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 17.5 - } - ], - "layout_bboxes": [], - "page_idx": 70, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 90, - 158, - 474, - 305 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 90, - 158, - 474, - 305 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 90, - 158, - 474, - 305 - ], - "spans": [ - { - "bbox": [ - 90, - 158, - 474, - 305 - ], - "score": 0.633, - "html": "
Gradient of graphArea under graph
Apowermass x displacement
Bforceworkdonex time
Cpowerworkdone×time
Dforcemassxdisplacement
", - "type": "table", - "image_path": "0801163dd5d73fa65ba88e570473f58c1a58298d0e4b992a1ec0cef9b6929853.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 90, - 158, - 474, - 207.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 90, - 207.0, - 474, - 256.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 90, - 256.0, - 474, - 305.0 - ], - "spans": [], - "index": 7 - } - ] - } - ], - "index": 6 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 77 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 559, - 69, - 573, - 78 - ], - "spans": [ - { - "bbox": [ - 559, - 69, - 573, - 78 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 59, - 815, - 80, - 825 - ], - "spans": [ - { - "bbox": [ - 59, - 815, - 80, - 825 - ], - "score": 0.9414427876472473, - "content": "3 1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 783 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 81, - 82 - ], - "lines": [ - { - "bbox": [ - 49, - 68, - 73, - 80 - ], - "spans": [ - { - "bbox": [ - 49, - 68, - 67, - 80 - ], - "score": 1.0, - "content": "1 ", - "type": "text" - }, - { - "bbox": [ - 69, - 69, - 73, - 79 - ], - "score": 1.0, - "content": "9", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 294, - 39 - ], - "lines": [ - { - "bbox": [ - 280, - 28, - 297, - 42 - ], - "spans": [ - { - "bbox": [ - 280, - 28, - 297, - 42 - ], - "score": 1.0, - "content": "31 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 509, - 81, - 526 - ], - "lines": [ - { - "bbox": [ - 50, - 512, - 76, - 524 - ], - "spans": [ - { - "bbox": [ - 50, - 512, - 62, - 524 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - }, - { - "bbox": [ - 65, - 513, - 76, - 523 - ], - "score": 1.0, - "content": "1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 46, - 329, - 81, - 346 - ], - "lines": [ - { - "bbox": [ - 50, - 331, - 77, - 344 - ], - "spans": [ - { - "bbox": [ - 50, - 332, - 62, - 343 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - }, - { - "bbox": [ - 66, - 331, - 77, - 344 - ], - "score": 1.0, - "content": "0", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 91, - 68, - 499, - 95 - ], - "lines": [ - { - "bbox": [ - 92, - 69, - 498, - 82 - ], - "spans": [ - { - "bbox": [ - 92, - 69, - 498, - 82 - ], - "score": 1.0, - "content": "An object is moving in a straight line. A graph is plotted to show the variation of the", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 91, - 82, - 260, - 94 - ], - "spans": [ - { - "bbox": [ - 91, - 82, - 260, - 94 - ], - "score": 1.0, - "content": "momentum of the object with time.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_70", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 69, - 498, - 94 - ] - }, - { - "type": "text", - "bbox": [ - 88, - 107, - 508, - 134 - ], - "lines": [ - { - "bbox": [ - 91, - 107, - 507, - 122 - ], - "spans": [ - { - "bbox": [ - 91, - 107, - 507, - 122 - ], - "score": 1.0, - "content": "Which quantities can be calculated from the gradient of the graph and the area under", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 90, - 120, - 148, - 135 - ], - "spans": [ - { - "bbox": [ - 90, - 120, - 148, - 135 - ], - "score": 1.0, - "content": "the graph? ", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5, - "page_num": "page_70", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 90, - 107, - 507, - 135 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 134, - 535, - 147 - ], - "lines": [ - { - "bbox": [ - 490, - 133, - 536, - 148 - ], - "spans": [ - { - "bbox": [ - 490, - 133, - 536, - 148 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_70", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 490, - 133, - 536, - 148 - ] - }, - { - "type": "table", - "bbox": [ - 90, - 158, - 474, - 305 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 90, - 158, - 474, - 305 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 90, - 158, - 474, - 305 - ], - "spans": [ - { - "bbox": [ - 90, - 158, - 474, - 305 - ], - "score": 0.633, - "html": "
Gradient of graphArea under graph
Apowermass x displacement
Bforceworkdonex time
Cpowerworkdone×time
Dforcemassxdisplacement
", - "type": "table", - "image_path": "0801163dd5d73fa65ba88e570473f58c1a58298d0e4b992a1ec0cef9b6929853.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 90, - 158, - 474, - 207.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 90, - 207.0, - 474, - 256.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 90, - 256.0, - 474, - 305.0 - ], - "spans": [], - "index": 7 - } - ] - } - ], - "index": 6, - "page_num": "page_70", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 331, - 223, - 345 - ], - "lines": [ - { - "bbox": [ - 91, - 333, - 222, - 345 - ], - "spans": [ - { - "bbox": [ - 91, - 333, - 222, - 345 - ], - "score": 1.0, - "content": "Which is a pair of vectors?", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_70", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 333, - 222, - 345 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 345, - 535, - 359 - ], - "lines": [ - { - "bbox": [ - 491, - 345, - 536, - 359 - ], - "spans": [ - { - "bbox": [ - 491, - 345, - 536, - 359 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_70", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 345, - 536, - 359 - ] - }, - { - "type": "list", - "bbox": [ - 90, - 376, - 288, - 479 - ], - "lines": [ - { - "bbox": [ - 92, - 380, - 187, - 392 - ], - "spans": [ - { - "bbox": [ - 92, - 380, - 187, - 392 - ], - "score": 1.0, - "content": "A weight and work", - "type": "text" - } - ], - "index": 10, - "is_list_start_line": true - }, - { - "bbox": [ - 91, - 406, - 190, - 421 - ], - "spans": [ - { - "bbox": [ - 91, - 406, - 190, - 421 - ], - "score": 1.0, - "content": "B force and energy", - "type": "text" - } - ], - "index": 11, - "is_list_start_line": true - }, - { - "bbox": [ - 92, - 437, - 251, - 448 - ], - "spans": [ - { - "bbox": [ - 92, - 437, - 251, - 448 - ], - "score": 1.0, - "content": "C displacement and momentum", - "type": "text" - } - ], - "index": 12, - "is_list_start_line": true - }, - { - "bbox": [ - 91, - 465, - 221, - 477 - ], - "spans": [ - { - "bbox": [ - 91, - 465, - 221, - 477 - ], - "score": 1.0, - "content": "D acceleration and power", - "type": "text" - } - ], - "index": 13, - "is_list_start_line": true - } - ], - "index": 11.5, - "page_num": "page_70", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 380, - 251, - 477 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 511, - 383, - 527 - ], - "lines": [ - { - "bbox": [ - 91, - 512, - 382, - 526 - ], - "spans": [ - { - "bbox": [ - 91, - 512, - 382, - 526 - ], - "score": 1.0, - "content": "Which statement about a superconducting metal is correct?", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_70", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 512, - 382, - 526 - ] - }, - { - "type": "text", - "bbox": [ - 491, - 526, - 535, - 539 - ], - "lines": [ - { - "bbox": [ - 491, - 526, - 536, - 539 - ], - "spans": [ - { - "bbox": [ - 491, - 526, - 536, - 539 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_70", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 526, - 536, - 539 - ] - }, - { - "type": "list", - "bbox": [ - 90, - 557, - 465, - 660 - ], - "lines": [ - { - "bbox": [ - 92, - 559, - 271, - 572 - ], - "spans": [ - { - "bbox": [ - 92, - 559, - 271, - 572 - ], - "score": 1.0, - "content": "A Its resistivity is small but not zero.", - "type": "text" - } - ], - "index": 16, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 587, - 296, - 600 - ], - "spans": [ - { - "bbox": [ - 91, - 587, - 296, - 600 - ], - "score": 1.0, - "content": "B A current in it causes no heating effect.", - "type": "text" - } - ], - "index": 17, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 616, - 456, - 629 - ], - "spans": [ - { - "bbox": [ - 91, - 616, - 429, - 629 - ], - "score": 1.0, - "content": "C Its critical temperature is independent of the metal it is made from.", - "type": "text" - }, - { - "bbox": [ - 443, - 618, - 456, - 626 - ], - "score": 0.37, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 8, - "width": 13 - } - ], - "index": 18, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 644, - 331, - 658 - ], - "spans": [ - { - "bbox": [ - 91, - 644, - 331, - 658 - ], - "score": 1.0, - "content": "D Keeping it cold makes it too expensive to use.", - "type": "text" - } - ], - "index": 19, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 17.5, - "page_num": "page_70", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 559, - 456, - 658 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 44, - 67, - 497, - 82 - ], - "lines": [ - { - "bbox": [ - 46, - 65, - 499, - 86 - ], - "spans": [ - { - "bbox": [ - 46, - 65, - 499, - 86 - ], - "score": 1.0, - "content": " 2 2 A heavy uniform trapdoor is hinged to the floor. It is held open by a rope as shown. ", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "image", - "bbox": [ - 132, - 93, - 450, - 254 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 132, - 93, - 450, - 254 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 132, - 93, - 450, - 254 - ], - "spans": [ - { - "bbox": [ - 132, - 93, - 450, - 254 - ], - "score": 0.962, - "type": "image", - "image_path": "10fe5965c77c0bb40c20f2cd2f8b631e93193e67d44e858a850d7e1f2451532f.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 132, - 93, - 450, - 146.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 132, - 146.66666666666666, - 450, - 200.33333333333331 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 132, - 200.33333333333331, - 450, - 253.99999999999997 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 92, - 268, - 533, - 295 - ], - "lines": [ - { - "bbox": [ - 91, - 269, - 497, - 283 - ], - "spans": [ - { - "bbox": [ - 91, - 269, - 497, - 283 - ], - "score": 1.0, - "content": "Which arrow shows the direction of the reaction force of the hinge on the trapdoor?", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 490, - 282, - 535, - 297 - ], - "spans": [ - { - "bbox": [ - 490, - 282, - 535, - 297 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5 - }, - { - "type": "text", - "bbox": [ - 89, - 312, - 161, - 416 - ], - "lines": [ - { - "bbox": [ - 91, - 317, - 101, - 328 - ], - "spans": [ - { - "bbox": [ - 91, - 317, - 101, - 328 - ], - "score": 1.0, - "content": "A", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 91, - 344, - 101, - 357 - ], - "spans": [ - { - "bbox": [ - 91, - 344, - 101, - 357 - ], - "score": 1.0, - "content": "B", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 90, - 372, - 103, - 386 - ], - "spans": [ - { - "bbox": [ - 90, - 372, - 103, - 386 - ], - "score": 1.0, - "content": "C ", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 90, - 401, - 103, - 414 - ], - "spans": [ - { - "bbox": [ - 90, - 401, - 103, - 414 - ], - "score": 1.0, - "content": "D ", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 7.5 - }, - { - "type": "text", - "bbox": [ - 91, - 449, - 391, - 478 - ], - "lines": [ - { - "bbox": [ - 91, - 451, - 279, - 463 - ], - "spans": [ - { - "bbox": [ - 91, - 451, - 269, - 463 - ], - "score": 1.0, - "content": "A sphere of mass m falls with speed", - "type": "text" - }, - { - "bbox": [ - 270, - 453, - 277, - 461 - ], - "score": 0.57, - "content": "\\nu", - "type": "inline_equation", - "height": 8, - "width": 7 - }, - { - "bbox": [ - 277, - 451, - 279, - 463 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 91, - 465, - 390, - 477 - ], - "spans": [ - { - "bbox": [ - 91, - 465, - 265, - 477 - ], - "score": 1.0, - "content": "The resistive force on the sphere is", - "type": "text" - }, - { - "bbox": [ - 265, - 465, - 278, - 476 - ], - "score": 0.78, - "content": "k\\nu", - "type": "inline_equation", - "height": 11, - "width": 13 - }, - { - "bbox": [ - 278, - 465, - 314, - 477 - ], - "score": 1.0, - "content": ", where", - "type": "text" - }, - { - "bbox": [ - 315, - 465, - 323, - 475 - ], - "score": 0.79, - "content": "k", - "type": "inline_equation", - "height": 10, - "width": 8 - }, - { - "bbox": [ - 323, - 465, - 390, - 477 - ], - "score": 1.0, - "content": " is a constant.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5 - }, - { - "type": "text", - "bbox": [ - 91, - 490, - 298, - 504 - ], - "lines": [ - { - "bbox": [ - 91, - 490, - 296, - 503 - ], - "spans": [ - { - "bbox": [ - 91, - 490, - 296, - 503 - ], - "score": 1.0, - "content": "What is the terminal speed of the sphere?", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 490, - 503, - 535, - 517 - ], - "lines": [ - { - "bbox": [ - 491, - 503, - 536, - 517 - ], - "spans": [ - { - "bbox": [ - 491, - 503, - 536, - 517 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "image", - "bbox": [ - 89, - 532, - 220, - 692 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 89, - 532, - 220, - 692 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 89, - 532, - 220, - 692 - ], - "spans": [ - { - "bbox": [ - 89, - 532, - 220, - 692 - ], - "score": 0.365, - "type": "image", - "image_path": "ce27ad9bc78f9bc1162d578b67e29e78a971663103a5283f2c87a0d03181ff33.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 89, - 532, - 220, - 692 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 14 - } - ], - "layout_bboxes": [], - "page_idx": 71, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 132, - 93, - 450, - 254 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 132, - 93, - 450, - 254 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 132, - 93, - 450, - 254 - ], - "spans": [ - { - "bbox": [ - 132, - 93, - 450, - 254 - ], - "score": 0.962, - "type": "image", - "image_path": "10fe5965c77c0bb40c20f2cd2f8b631e93193e67d44e858a850d7e1f2451532f.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 132, - 93, - 450, - 146.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 132, - 146.66666666666666, - 450, - 200.33333333333331 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 132, - 200.33333333333331, - 450, - 253.99999999999997 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - }, - { - "type": "image", - "bbox": [ - 89, - 532, - 220, - 692 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 89, - 532, - 220, - 692 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 89, - 532, - 220, - 692 - ], - "spans": [ - { - "bbox": [ - 89, - 532, - 220, - 692 - ], - "score": 0.365, - "type": "image", - "image_path": "ce27ad9bc78f9bc1162d578b67e29e78a971663103a5283f2c87a0d03181ff33.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 89, - 532, - 220, - 692 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 14 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 559, - 68, - 573, - 77 - ], - "spans": [ - { - "bbox": [ - 559, - 68, - 573, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 59, - 816, - 80, - 825 - ], - "spans": [ - { - "bbox": [ - 59, - 816, - 80, - 825 - ], - "score": 0.9871993064880371, - "content": "3 2", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 446, - 81, - 463 - ], - "lines": [ - { - "bbox": [ - 50, - 449, - 77, - 461 - ], - "spans": [ - { - "bbox": [ - 50, - 449, - 63, - 461 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - }, - { - "bbox": [ - 65, - 449, - 77, - 461 - ], - "score": 1.0, - "content": "3", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "32 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 46, - 65, - 81, - 82 - ], - "lines": [] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 44, - 67, - 497, - 82 - ], - "lines": [ - { - "bbox": [ - 46, - 65, - 499, - 86 - ], - "spans": [ - { - "bbox": [ - 46, - 65, - 499, - 86 - ], - "score": 1.0, - "content": " 2 2 A heavy uniform trapdoor is hinged to the floor. It is held open by a rope as shown. ", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_71", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 46, - 65, - 499, - 86 - ] - }, - { - "type": "image", - "bbox": [ - 132, - 93, - 450, - 254 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 132, - 93, - 450, - 254 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 132, - 93, - 450, - 254 - ], - "spans": [ - { - "bbox": [ - 132, - 93, - 450, - 254 - ], - "score": 0.962, - "type": "image", - "image_path": "10fe5965c77c0bb40c20f2cd2f8b631e93193e67d44e858a850d7e1f2451532f.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 132, - 93, - 450, - 146.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 132, - 146.66666666666666, - 450, - 200.33333333333331 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 132, - 200.33333333333331, - 450, - 253.99999999999997 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2, - "page_num": "page_71", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 92, - 268, - 533, - 295 - ], - "lines": [ - { - "bbox": [ - 91, - 269, - 497, - 283 - ], - "spans": [ - { - "bbox": [ - 91, - 269, - 497, - 283 - ], - "score": 1.0, - "content": "Which arrow shows the direction of the reaction force of the hinge on the trapdoor?", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 490, - 282, - 535, - 297 - ], - "spans": [ - { - "bbox": [ - 490, - 282, - 535, - 297 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5, - "page_num": "page_71", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 269, - 535, - 297 - ] - }, - { - "type": "text", - "bbox": [ - 89, - 312, - 161, - 416 - ], - "lines": [ - { - "bbox": [ - 91, - 317, - 101, - 328 - ], - "spans": [ - { - "bbox": [ - 91, - 317, - 101, - 328 - ], - "score": 1.0, - "content": "A", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 91, - 344, - 101, - 357 - ], - "spans": [ - { - "bbox": [ - 91, - 344, - 101, - 357 - ], - "score": 1.0, - "content": "B", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 90, - 372, - 103, - 386 - ], - "spans": [ - { - "bbox": [ - 90, - 372, - 103, - 386 - ], - "score": 1.0, - "content": "C ", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 90, - 401, - 103, - 414 - ], - "spans": [ - { - "bbox": [ - 90, - 401, - 103, - 414 - ], - "score": 1.0, - "content": "D ", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 7.5, - "page_num": "page_71", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 90, - 317, - 103, - 414 - ] - }, - { - "type": "list", - "bbox": [ - 91, - 449, - 391, - 478 - ], - "lines": [ - { - "bbox": [ - 91, - 451, - 279, - 463 - ], - "spans": [ - { - "bbox": [ - 91, - 451, - 269, - 463 - ], - "score": 1.0, - "content": "A sphere of mass m falls with speed", - "type": "text" - }, - { - "bbox": [ - 270, - 453, - 277, - 461 - ], - "score": 0.57, - "content": "\\nu", - "type": "inline_equation", - "height": 8, - "width": 7 - }, - { - "bbox": [ - 277, - 451, - 279, - 463 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 10, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 465, - 390, - 477 - ], - "spans": [ - { - "bbox": [ - 91, - 465, - 265, - 477 - ], - "score": 1.0, - "content": "The resistive force on the sphere is", - "type": "text" - }, - { - "bbox": [ - 265, - 465, - 278, - 476 - ], - "score": 0.78, - "content": "k\\nu", - "type": "inline_equation", - "height": 11, - "width": 13 - }, - { - "bbox": [ - 278, - 465, - 314, - 477 - ], - "score": 1.0, - "content": ", where", - "type": "text" - }, - { - "bbox": [ - 315, - 465, - 323, - 475 - ], - "score": 0.79, - "content": "k", - "type": "inline_equation", - "height": 10, - "width": 8 - }, - { - "bbox": [ - 323, - 465, - 390, - 477 - ], - "score": 1.0, - "content": " is a constant.", - "type": "text" - } - ], - "index": 11, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 10.5, - "page_num": "page_71", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 451, - 390, - 477 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 490, - 298, - 504 - ], - "lines": [ - { - "bbox": [ - 91, - 490, - 296, - 503 - ], - "spans": [ - { - "bbox": [ - 91, - 490, - 296, - 503 - ], - "score": 1.0, - "content": "What is the terminal speed of the sphere?", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_71", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 490, - 296, - 503 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 503, - 535, - 517 - ], - "lines": [ - { - "bbox": [ - 491, - 503, - 536, - 517 - ], - "spans": [ - { - "bbox": [ - 491, - 503, - 536, - 517 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_71", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 503, - 536, - 517 - ] - }, - { - "type": "image", - "bbox": [ - 89, - 532, - 220, - 692 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 89, - 532, - 220, - 692 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 89, - 532, - 220, - 692 - ], - "spans": [ - { - "bbox": [ - 89, - 532, - 220, - 692 - ], - "score": 0.365, - "type": "image", - "image_path": "ce27ad9bc78f9bc1162d578b67e29e78a971663103a5283f2c87a0d03181ff33.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 89, - 532, - 220, - 692 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 14, - "page_num": "page_71", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 90, - 68, - 505, - 108 - ], - "lines": [ - { - "bbox": [ - 92, - 69, - 368, - 81 - ], - "spans": [ - { - "bbox": [ - 92, - 69, - 368, - 81 - ], - "score": 1.0, - "content": "A trolley moves down a slope with constant acceleration.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 92, - 82, - 504, - 94 - ], - "spans": [ - { - "bbox": [ - 92, - 82, - 504, - 94 - ], - "score": 1.0, - "content": "The mass of the trolley is doubled and the trolley moves down the same slope again.", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 91, - 95, - 287, - 107 - ], - "spans": [ - { - "bbox": [ - 91, - 95, - 287, - 107 - ], - "score": 1.0, - "content": "Air resistance and friction are negligible.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 91, - 120, - 178, - 134 - ], - "lines": [ - { - "bbox": [ - 92, - 122, - 177, - 132 - ], - "spans": [ - { - "bbox": [ - 92, - 122, - 177, - 132 - ], - "score": 1.0, - "content": "Which is correct?", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 90, - 165, - 335, - 267 - ], - "lines": [ - { - "bbox": [ - 91, - 167, - 286, - 180 - ], - "spans": [ - { - "bbox": [ - 91, - 167, - 286, - 180 - ], - "score": 1.0, - "content": "A The accelerating force is unchanged.", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 91, - 195, - 326, - 209 - ], - "spans": [ - { - "bbox": [ - 91, - 195, - 265, - 209 - ], - "score": 1.0, - "content": "B The accelerating force is halved.", - "type": "text" - }, - { - "bbox": [ - 314, - 200, - 326, - 205 - ], - "score": 0.7, - "content": "\\subset", - "type": "inline_equation", - "height": 5, - "width": 12 - } - ], - "index": 5 - }, - { - "bbox": [ - 91, - 224, - 326, - 237 - ], - "spans": [ - { - "bbox": [ - 91, - 224, - 260, - 237 - ], - "score": 1.0, - "content": "C The acceleration is unchanged.", - "type": "text" - }, - { - "bbox": [ - 314, - 228, - 326, - 233 - ], - "score": 0.45, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 5, - "width": 12 - } - ], - "index": 6 - }, - { - "bbox": [ - 91, - 253, - 326, - 264 - ], - "spans": [ - { - "bbox": [ - 91, - 253, - 237, - 264 - ], - "score": 1.0, - "content": "D The acceleration is halved.", - "type": "text" - }, - { - "bbox": [ - 314, - 256, - 326, - 262 - ], - "score": 0.4, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 6, - "width": 12 - } - ], - "index": 7 - } - ], - "index": 5.5 - }, - { - "type": "text", - "bbox": [ - 90, - 299, - 508, - 342 - ], - "lines": [ - { - "bbox": [ - 92, - 301, - 508, - 315 - ], - "spans": [ - { - "bbox": [ - 92, - 302, - 170, - 314 - ], - "score": 1.0, - "content": "A variable force", - "type": "text" - }, - { - "bbox": [ - 170, - 302, - 180, - 313 - ], - "score": 0.78, - "content": "F", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 181, - 302, - 308, - 314 - ], - "score": 1.0, - "content": "acts on an object of mass", - "type": "text" - }, - { - "bbox": [ - 309, - 301, - 340, - 315 - ], - "score": 0.73, - "content": "2.0\\mathrm{kg}", - "type": "inline_equation", - "height": 14, - "width": 31 - }, - { - "bbox": [ - 341, - 302, - 483, - 314 - ], - "score": 1.0, - "content": ". The object is at rest at time ", - "type": "text" - }, - { - "bbox": [ - 483, - 302, - 508, - 313 - ], - "score": 0.88, - "content": "t=0", - "type": "inline_equation", - "height": 11, - "width": 25 - } - ], - "index": 8 - }, - { - "bbox": [ - 91, - 329, - 296, - 342 - ], - "spans": [ - { - "bbox": [ - 91, - 329, - 253, - 342 - ], - "score": 1.0, - "content": "The graph shows the variation of", - "type": "text" - }, - { - "bbox": [ - 253, - 329, - 263, - 340 - ], - "score": 0.77, - "content": "F", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 264, - 329, - 286, - 342 - ], - "score": 1.0, - "content": " with", - "type": "text" - }, - { - "bbox": [ - 286, - 330, - 292, - 340 - ], - "score": 0.3, - "content": "t", - "type": "inline_equation", - "height": 10, - "width": 6 - }, - { - "bbox": [ - 292, - 329, - 296, - 342 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8.5 - }, - { - "type": "image", - "bbox": [ - 171, - 353, - 411, - 496 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 171, - 353, - 411, - 496 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 171, - 353, - 411, - 496 - ], - "spans": [ - { - "bbox": [ - 171, - 353, - 411, - 496 - ], - "score": 0.966, - "type": "image", - "image_path": "040afa95244ad6af8e31e279611140b49dcc0790869ebbca95353736ef6ccd6b.jpg" - } - ] - } - ], - "index": 11, - "virtual_lines": [ - { - "bbox": [ - 171, - 353, - 411, - 400.6666666666667 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 171, - 400.6666666666667, - 411, - 448.33333333333337 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 171, - 448.33333333333337, - 411, - 496.00000000000006 - ], - "spans": [], - "index": 12 - } - ] - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 90, - 511, - 323, - 525 - ], - "lines": [ - { - "bbox": [ - 92, - 511, - 320, - 524 - ], - "spans": [ - { - "bbox": [ - 92, - 512, - 274, - 524 - ], - "score": 1.0, - "content": "What is the speed of the object when", - "type": "text" - }, - { - "bbox": [ - 274, - 511, - 320, - 524 - ], - "score": 0.78, - "content": "t=1.0\\mathrm{s}?", - "type": "inline_equation", - "height": 13, - "width": 46 - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "text", - "bbox": [ - 490, - 524, - 535, - 539 - ], - "lines": [ - { - "bbox": [ - 491, - 525, - 536, - 539 - ], - "spans": [ - { - "bbox": [ - 491, - 525, - 536, - 539 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 89, - 555, - 219, - 659 - ], - "lines": [ - { - "bbox": [ - 90, - 557, - 156, - 572 - ], - "spans": [ - { - "bbox": [ - 90, - 559, - 104, - 571 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 105, - 557, - 156, - 572 - ], - "score": 0.34, - "content": "3.75\\mathrm{m~s}^{-1}", - "type": "inline_equation", - "height": 15, - "width": 51 - } - ], - "index": 15 - }, - { - "bbox": [ - 91, - 587, - 156, - 599 - ], - "spans": [ - { - "bbox": [ - 91, - 587, - 156, - 599 - ], - "score": 1.0, - "content": "B 5.00 m s−1", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 90, - 615, - 209, - 627 - ], - "spans": [ - { - "bbox": [ - 90, - 615, - 157, - 627 - ], - "score": 1.0, - "content": "C 7.50 m s−1", - "type": "text" - }, - { - "bbox": [ - 197, - 620, - 209, - 624 - ], - "score": 0.46, - "content": "\\subset", - "type": "inline_equation", - "height": 4, - "width": 12 - } - ], - "index": 17 - }, - { - "bbox": [ - 90, - 644, - 209, - 656 - ], - "spans": [ - { - "bbox": [ - 90, - 644, - 157, - 656 - ], - "score": 1.0, - "content": "D 15.0 m s−1", - "type": "text" - }, - { - "bbox": [ - 197, - 648, - 209, - 653 - ], - "score": 0.71, - "content": "\\subset", - "type": "inline_equation", - "height": 5, - "width": 12 - } - ], - "index": 18 - } - ], - "index": 16.5 - } - ], - "layout_bboxes": [], - "page_idx": 72, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 171, - 353, - 411, - 496 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 171, - 353, - 411, - 496 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 171, - 353, - 411, - 496 - ], - "spans": [ - { - "bbox": [ - 171, - 353, - 411, - 496 - ], - "score": 0.966, - "type": "image", - "image_path": "040afa95244ad6af8e31e279611140b49dcc0790869ebbca95353736ef6ccd6b.jpg" - } - ] - } - ], - "index": 11, - "virtual_lines": [ - { - "bbox": [ - 171, - 353, - 411, - 400.6666666666667 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 171, - 400.6666666666667, - 411, - 448.33333333333337 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 171, - 448.33333333333337, - 411, - 496.00000000000006 - ], - "spans": [], - "index": 12 - } - ] - } - ], - "index": 11 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 77 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 559, - 69, - 573, - 78 - ], - "spans": [ - { - "bbox": [ - 559, - 69, - 573, - 78 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 784 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 535, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 535, - 783 - ], - "score": 1.0, - "content": "Turn over ►", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 58, - 814, - 81, - 826 - ], - "spans": [ - { - "bbox": [ - 58, - 814, - 81, - 826 - ], - "score": 0.8413017392158508, - "content": "3\"3", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 46, - 65, - 81, - 82 - ], - "lines": [ - { - "bbox": [ - 50, - 68, - 77, - 80 - ], - "spans": [ - { - "bbox": [ - 50, - 68, - 64, - 80 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - }, - { - "bbox": [ - 65, - 69, - 77, - 79 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 40 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "33 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 46, - 297, - 81, - 314 - ], - "lines": [ - { - "bbox": [ - 49, - 299, - 77, - 313 - ], - "spans": [ - { - "bbox": [ - 49, - 299, - 77, - 313 - ], - "score": 1.0, - "content": "2 5", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 490, - 133, - 535, - 147 - ], - "lines": [ - { - "bbox": [ - 491, - 133, - 536, - 148 - ], - "spans": [ - { - "bbox": [ - 491, - 133, - 536, - 148 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "list", - "bbox": [ - 90, - 68, - 505, - 108 - ], - "lines": [ - { - "bbox": [ - 92, - 69, - 368, - 81 - ], - "spans": [ - { - "bbox": [ - 92, - 69, - 368, - 81 - ], - "score": 1.0, - "content": "A trolley moves down a slope with constant acceleration.", - "type": "text" - } - ], - "index": 0, - "is_list_end_line": true - }, - { - "bbox": [ - 92, - 82, - 504, - 94 - ], - "spans": [ - { - "bbox": [ - 92, - 82, - 504, - 94 - ], - "score": 1.0, - "content": "The mass of the trolley is doubled and the trolley moves down the same slope again.", - "type": "text" - } - ], - "index": 1, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 95, - 287, - 107 - ], - "spans": [ - { - "bbox": [ - 91, - 95, - 287, - 107 - ], - "score": 1.0, - "content": "Air resistance and friction are negligible.", - "type": "text" - } - ], - "index": 2, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 1, - "page_num": "page_72", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 69, - 504, - 107 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 120, - 178, - 134 - ], - "lines": [ - { - "bbox": [ - 92, - 122, - 177, - 132 - ], - "spans": [ - { - "bbox": [ - 92, - 122, - 177, - 132 - ], - "score": 1.0, - "content": "Which is correct?", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_72", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 122, - 177, - 132 - ] - }, - { - "type": "list", - "bbox": [ - 90, - 165, - 335, - 267 - ], - "lines": [ - { - "bbox": [ - 91, - 167, - 286, - 180 - ], - "spans": [ - { - "bbox": [ - 91, - 167, - 286, - 180 - ], - "score": 1.0, - "content": "A The accelerating force is unchanged.", - "type": "text" - } - ], - "index": 4, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 195, - 326, - 209 - ], - "spans": [ - { - "bbox": [ - 91, - 195, - 265, - 209 - ], - "score": 1.0, - "content": "B The accelerating force is halved.", - "type": "text" - }, - { - "bbox": [ - 314, - 200, - 326, - 205 - ], - "score": 0.7, - "content": "\\subset", - "type": "inline_equation", - "height": 5, - "width": 12 - } - ], - "index": 5, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 224, - 326, - 237 - ], - "spans": [ - { - "bbox": [ - 91, - 224, - 260, - 237 - ], - "score": 1.0, - "content": "C The acceleration is unchanged.", - "type": "text" - }, - { - "bbox": [ - 314, - 228, - 326, - 233 - ], - "score": 0.45, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 5, - "width": 12 - } - ], - "index": 6, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 253, - 326, - 264 - ], - "spans": [ - { - "bbox": [ - 91, - 253, - 237, - 264 - ], - "score": 1.0, - "content": "D The acceleration is halved.", - "type": "text" - }, - { - "bbox": [ - 314, - 256, - 326, - 262 - ], - "score": 0.4, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 6, - "width": 12 - } - ], - "index": 7, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 5.5, - "page_num": "page_72", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 167, - 326, - 264 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 299, - 508, - 342 - ], - "lines": [ - { - "bbox": [ - 92, - 301, - 508, - 315 - ], - "spans": [ - { - "bbox": [ - 92, - 302, - 170, - 314 - ], - "score": 1.0, - "content": "A variable force", - "type": "text" - }, - { - "bbox": [ - 170, - 302, - 180, - 313 - ], - "score": 0.78, - "content": "F", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 181, - 302, - 308, - 314 - ], - "score": 1.0, - "content": "acts on an object of mass", - "type": "text" - }, - { - "bbox": [ - 309, - 301, - 340, - 315 - ], - "score": 0.73, - "content": "2.0\\mathrm{kg}", - "type": "inline_equation", - "height": 14, - "width": 31 - }, - { - "bbox": [ - 341, - 302, - 483, - 314 - ], - "score": 1.0, - "content": ". The object is at rest at time ", - "type": "text" - }, - { - "bbox": [ - 483, - 302, - 508, - 313 - ], - "score": 0.88, - "content": "t=0", - "type": "inline_equation", - "height": 11, - "width": 25 - } - ], - "index": 8 - }, - { - "bbox": [ - 91, - 329, - 296, - 342 - ], - "spans": [ - { - "bbox": [ - 91, - 329, - 253, - 342 - ], - "score": 1.0, - "content": "The graph shows the variation of", - "type": "text" - }, - { - "bbox": [ - 253, - 329, - 263, - 340 - ], - "score": 0.77, - "content": "F", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 264, - 329, - 286, - 342 - ], - "score": 1.0, - "content": " with", - "type": "text" - }, - { - "bbox": [ - 286, - 330, - 292, - 340 - ], - "score": 0.3, - "content": "t", - "type": "inline_equation", - "height": 10, - "width": 6 - }, - { - "bbox": [ - 292, - 329, - 296, - 342 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8.5, - "page_num": "page_72", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 301, - 508, - 342 - ] - }, - { - "type": "image", - "bbox": [ - 171, - 353, - 411, - 496 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 171, - 353, - 411, - 496 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 171, - 353, - 411, - 496 - ], - "spans": [ - { - "bbox": [ - 171, - 353, - 411, - 496 - ], - "score": 0.966, - "type": "image", - "image_path": "040afa95244ad6af8e31e279611140b49dcc0790869ebbca95353736ef6ccd6b.jpg" - } - ] - } - ], - "index": 11, - "virtual_lines": [ - { - "bbox": [ - 171, - 353, - 411, - 400.6666666666667 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 171, - 400.6666666666667, - 411, - 448.33333333333337 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 171, - 448.33333333333337, - 411, - 496.00000000000006 - ], - "spans": [], - "index": 12 - } - ] - } - ], - "index": 11, - "page_num": "page_72", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 511, - 323, - 525 - ], - "lines": [ - { - "bbox": [ - 92, - 511, - 320, - 524 - ], - "spans": [ - { - "bbox": [ - 92, - 512, - 274, - 524 - ], - "score": 1.0, - "content": "What is the speed of the object when", - "type": "text" - }, - { - "bbox": [ - 274, - 511, - 320, - 524 - ], - "score": 0.78, - "content": "t=1.0\\mathrm{s}?", - "type": "inline_equation", - "height": 13, - "width": 46 - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_72", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 511, - 320, - 524 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 524, - 535, - 539 - ], - "lines": [ - { - "bbox": [ - 491, - 525, - 536, - 539 - ], - "spans": [ - { - "bbox": [ - 491, - 525, - 536, - 539 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_72", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 525, - 536, - 539 - ] - }, - { - "type": "list", - "bbox": [ - 89, - 555, - 219, - 659 - ], - "lines": [ - { - "bbox": [ - 90, - 557, - 156, - 572 - ], - "spans": [ - { - "bbox": [ - 90, - 559, - 104, - 571 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 105, - 557, - 156, - 572 - ], - "score": 0.34, - "content": "3.75\\mathrm{m~s}^{-1}", - "type": "inline_equation", - "height": 15, - "width": 51 - } - ], - "index": 15, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 587, - 156, - 599 - ], - "spans": [ - { - "bbox": [ - 91, - 587, - 156, - 599 - ], - "score": 1.0, - "content": "B 5.00 m s−1", - "type": "text" - } - ], - "index": 16, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 90, - 615, - 209, - 627 - ], - "spans": [ - { - "bbox": [ - 90, - 615, - 157, - 627 - ], - "score": 1.0, - "content": "C 7.50 m s−1", - "type": "text" - }, - { - "bbox": [ - 197, - 620, - 209, - 624 - ], - "score": 0.46, - "content": "\\subset", - "type": "inline_equation", - "height": 4, - "width": 12 - } - ], - "index": 17, - "is_list_start_line": true - }, - { - "bbox": [ - 90, - 644, - 209, - 656 - ], - "spans": [ - { - "bbox": [ - 90, - 644, - 157, - 656 - ], - "score": 1.0, - "content": "D 15.0 m s−1", - "type": "text" - }, - { - "bbox": [ - 197, - 648, - 209, - 653 - ], - "score": 0.71, - "content": "\\subset", - "type": "inline_equation", - "height": 5, - "width": 12 - } - ], - "index": 18 - } - ], - "index": 16.5, - "page_num": "page_72", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 90, - 557, - 209, - 656 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 60, - 67, - 474, - 82 - ], - "lines": [ - { - "bbox": [ - 91, - 67, - 477, - 83 - ], - "spans": [ - { - "bbox": [ - 91, - 67, - 477, - 83 - ], - "score": 1.0, - "content": "A heavy cable is attached to a fixed support and carries a load at its lower end.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "image", - "bbox": [ - 153, - 92, - 429, - 262 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 153, - 92, - 429, - 262 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 153, - 92, - 429, - 262 - ], - "spans": [ - { - "bbox": [ - 153, - 92, - 429, - 262 - ], - "score": 0.925, - "type": "image", - "image_path": "e366da6f2631cbd47c9a3f6ea6a2b0f5532229422527e30c29f0d43e3e42de0f.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 153, - 92, - 429, - 148.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 153, - 148.66666666666666, - 429, - 205.33333333333331 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 153, - 205.33333333333331, - 429, - 262.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 91, - 276, - 371, - 303 - ], - "lines": [ - { - "bbox": [ - 91, - 277, - 290, - 290 - ], - "spans": [ - { - "bbox": [ - 91, - 277, - 290, - 290 - ], - "score": 1.0, - "content": "The weight of the cable is not negligible.", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 91, - 290, - 370, - 303 - ], - "spans": [ - { - "bbox": [ - 91, - 290, - 370, - 303 - ], - "score": 1.0, - "content": "The cable has constant cross-sectional area and density.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5 - }, - { - "type": "text", - "bbox": [ - 90, - 316, - 423, - 343 - ], - "lines": [ - { - "bbox": [ - 91, - 316, - 423, - 330 - ], - "spans": [ - { - "bbox": [ - 91, - 316, - 332, - 330 - ], - "score": 1.0, - "content": "Which graph shows the variation of tensile stress", - "type": "text" - }, - { - "bbox": [ - 332, - 318, - 341, - 328 - ], - "score": 0.75, - "content": "\\sigma", - "type": "inline_equation", - "height": 10, - "width": 9 - }, - { - "bbox": [ - 341, - 316, - 423, - 330 - ], - "score": 1.0, - "content": " in the cable with", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 92, - 330, - 206, - 341 - ], - "spans": [ - { - "bbox": [ - 92, - 330, - 135, - 341 - ], - "score": 1.0, - "content": "distance", - "type": "text" - }, - { - "bbox": [ - 135, - 330, - 143, - 341 - ], - "score": 0.64, - "content": "d", - "type": "inline_equation", - "height": 11, - "width": 8 - }, - { - "bbox": [ - 144, - 330, - 168, - 341 - ], - "score": 1.0, - "content": " from", - "type": "text" - }, - { - "bbox": [ - 169, - 330, - 178, - 341 - ], - "score": 0.31, - "content": "\\mathbf{J}", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 178, - 330, - 206, - 341 - ], - "score": 1.0, - "content": " to K?", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6.5 - }, - { - "type": "text", - "bbox": [ - 490, - 343, - 535, - 357 - ], - "lines": [ - { - "bbox": [ - 491, - 342, - 536, - 357 - ], - "spans": [ - { - "bbox": [ - 491, - 342, - 536, - 357 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "image", - "bbox": [ - 111, - 355, - 470, - 638 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 111, - 355, - 470, - 638 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 111, - 355, - 470, - 638 - ], - "spans": [ - { - "bbox": [ - 111, - 355, - 470, - 638 - ], - "score": 0.921, - "type": "image", - "image_path": "729c39e8c747e3dd41e75544994ef349cf590f24847c0667699f7ccb2b495e34.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 111, - 355, - 470, - 449.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 111, - 449.3333333333333, - 470, - 543.6666666666666 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 111, - 543.6666666666666, - 470, - 638.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 89, - 653, - 161, - 757 - ], - "lines": [ - { - "bbox": [ - 91, - 657, - 152, - 668 - ], - "spans": [ - { - "bbox": [ - 91, - 657, - 101, - 668 - ], - "score": 1.0, - "content": "A", - "type": "text" - }, - { - "bbox": [ - 140, - 660, - 152, - 665 - ], - "score": 0.51, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 5, - "width": 12 - } - ], - "index": 12 - }, - { - "bbox": [ - 91, - 685, - 152, - 697 - ], - "spans": [ - { - "bbox": [ - 91, - 685, - 101, - 697 - ], - "score": 1.0, - "content": "B", - "type": "text" - }, - { - "bbox": [ - 141, - 689, - 152, - 694 - ], - "score": 0.49, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 5, - "width": 11 - } - ], - "index": 13 - }, - { - "bbox": [ - 90, - 713, - 103, - 726 - ], - "spans": [ - { - "bbox": [ - 90, - 713, - 103, - 726 - ], - "score": 1.0, - "content": "C ", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 90, - 741, - 103, - 754 - ], - "spans": [ - { - "bbox": [ - 90, - 741, - 103, - 754 - ], - "score": 1.0, - "content": "D ", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 13.5 - } - ], - "layout_bboxes": [], - "page_idx": 73, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 153, - 92, - 429, - 262 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 153, - 92, - 429, - 262 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 153, - 92, - 429, - 262 - ], - "spans": [ - { - "bbox": [ - 153, - 92, - 429, - 262 - ], - "score": 0.925, - "type": "image", - "image_path": "e366da6f2631cbd47c9a3f6ea6a2b0f5532229422527e30c29f0d43e3e42de0f.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 153, - 92, - 429, - 148.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 153, - 148.66666666666666, - 429, - 205.33333333333331 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 153, - 205.33333333333331, - 429, - 262.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - }, - { - "type": "image", - "bbox": [ - 111, - 355, - 470, - 638 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 111, - 355, - 470, - 638 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 111, - 355, - 470, - 638 - ], - "spans": [ - { - "bbox": [ - 111, - 355, - 470, - 638 - ], - "score": 0.921, - "type": "image", - "image_path": "729c39e8c747e3dd41e75544994ef349cf590f24847c0667699f7ccb2b495e34.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 111, - 355, - 470, - 449.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 111, - 449.3333333333333, - 470, - 543.6666666666666 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 111, - 543.6666666666666, - 470, - 638.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 559, - 68, - 573, - 77 - ], - "spans": [ - { - "bbox": [ - 559, - 68, - 573, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 59, - 815, - 80, - 825 - ], - "spans": [ - { - "bbox": [ - 59, - 815, - 80, - 825 - ], - "score": 0.9512836933135986, - "content": "3 4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 295, - 39 - ], - "lines": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "34 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 46, - 65, - 81, - 82 - ], - "lines": [ - { - "bbox": [ - 50, - 68, - 77, - 80 - ], - "spans": [ - { - "bbox": [ - 50, - 68, - 63, - 80 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - }, - { - "bbox": [ - 65, - 69, - 77, - 80 - ], - "score": 1.0, - "content": "6", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 60, - 67, - 474, - 82 - ], - "lines": [ - { - "bbox": [ - 91, - 67, - 477, - 83 - ], - "spans": [ - { - "bbox": [ - 91, - 67, - 477, - 83 - ], - "score": 1.0, - "content": "A heavy cable is attached to a fixed support and carries a load at its lower end.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_73", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 67, - 477, - 83 - ] - }, - { - "type": "image", - "bbox": [ - 153, - 92, - 429, - 262 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 153, - 92, - 429, - 262 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 153, - 92, - 429, - 262 - ], - "spans": [ - { - "bbox": [ - 153, - 92, - 429, - 262 - ], - "score": 0.925, - "type": "image", - "image_path": "e366da6f2631cbd47c9a3f6ea6a2b0f5532229422527e30c29f0d43e3e42de0f.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 153, - 92, - 429, - 148.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 153, - 148.66666666666666, - 429, - 205.33333333333331 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 153, - 205.33333333333331, - 429, - 262.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2, - "page_num": "page_73", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 91, - 276, - 371, - 303 - ], - "lines": [ - { - "bbox": [ - 91, - 277, - 290, - 290 - ], - "spans": [ - { - "bbox": [ - 91, - 277, - 290, - 290 - ], - "score": 1.0, - "content": "The weight of the cable is not negligible.", - "type": "text" - } - ], - "index": 4, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 290, - 370, - 303 - ], - "spans": [ - { - "bbox": [ - 91, - 290, - 370, - 303 - ], - "score": 1.0, - "content": "The cable has constant cross-sectional area and density.", - "type": "text" - } - ], - "index": 5, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 4.5, - "page_num": "page_73", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 277, - 370, - 303 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 316, - 423, - 343 - ], - "lines": [ - { - "bbox": [ - 91, - 316, - 423, - 330 - ], - "spans": [ - { - "bbox": [ - 91, - 316, - 332, - 330 - ], - "score": 1.0, - "content": "Which graph shows the variation of tensile stress", - "type": "text" - }, - { - "bbox": [ - 332, - 318, - 341, - 328 - ], - "score": 0.75, - "content": "\\sigma", - "type": "inline_equation", - "height": 10, - "width": 9 - }, - { - "bbox": [ - 341, - 316, - 423, - 330 - ], - "score": 1.0, - "content": " in the cable with", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 92, - 330, - 206, - 341 - ], - "spans": [ - { - "bbox": [ - 92, - 330, - 135, - 341 - ], - "score": 1.0, - "content": "distance", - "type": "text" - }, - { - "bbox": [ - 135, - 330, - 143, - 341 - ], - "score": 0.64, - "content": "d", - "type": "inline_equation", - "height": 11, - "width": 8 - }, - { - "bbox": [ - 144, - 330, - 168, - 341 - ], - "score": 1.0, - "content": " from", - "type": "text" - }, - { - "bbox": [ - 169, - 330, - 178, - 341 - ], - "score": 0.31, - "content": "\\mathbf{J}", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 178, - 330, - 206, - 341 - ], - "score": 1.0, - "content": " to K?", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6.5, - "page_num": "page_73", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 316, - 423, - 341 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 343, - 535, - 357 - ], - "lines": [ - { - "bbox": [ - 491, - 342, - 536, - 357 - ], - "spans": [ - { - "bbox": [ - 491, - 342, - 536, - 357 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_73", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 342, - 536, - 357 - ] - }, - { - "type": "image", - "bbox": [ - 111, - 355, - 470, - 638 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 111, - 355, - 470, - 638 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 111, - 355, - 470, - 638 - ], - "spans": [ - { - "bbox": [ - 111, - 355, - 470, - 638 - ], - "score": 0.921, - "type": "image", - "image_path": "729c39e8c747e3dd41e75544994ef349cf590f24847c0667699f7ccb2b495e34.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 111, - 355, - 470, - 449.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 111, - 449.3333333333333, - 470, - 543.6666666666666 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 111, - 543.6666666666666, - 470, - 638.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10, - "page_num": "page_73", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 89, - 653, - 161, - 757 - ], - "lines": [ - { - "bbox": [ - 91, - 657, - 152, - 668 - ], - "spans": [ - { - "bbox": [ - 91, - 657, - 101, - 668 - ], - "score": 1.0, - "content": "A", - "type": "text" - }, - { - "bbox": [ - 140, - 660, - 152, - 665 - ], - "score": 0.51, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 5, - "width": 12 - } - ], - "index": 12 - }, - { - "bbox": [ - 91, - 685, - 152, - 697 - ], - "spans": [ - { - "bbox": [ - 91, - 685, - 101, - 697 - ], - "score": 1.0, - "content": "B", - "type": "text" - }, - { - "bbox": [ - 141, - 689, - 152, - 694 - ], - "score": 0.49, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 5, - "width": 11 - } - ], - "index": 13 - }, - { - "bbox": [ - 90, - 713, - 103, - 726 - ], - "spans": [ - { - "bbox": [ - 90, - 713, - 103, - 726 - ], - "score": 1.0, - "content": "C ", - "type": "text" - } - ], - "index": 14, - "is_list_end_line": true - }, - { - "bbox": [ - 90, - 741, - 103, - 754 - ], - "spans": [ - { - "bbox": [ - 90, - 741, - 103, - 754 - ], - "score": 1.0, - "content": "D ", - "type": "text" - } - ], - "index": 15, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 13.5, - "page_num": "page_73", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 90, - 657, - 152, - 754 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 89, - 68, - 521, - 94 - ], - "lines": [ - { - "bbox": [ - 91, - 69, - 520, - 81 - ], - "spans": [ - { - "bbox": [ - 91, - 69, - 520, - 81 - ], - "score": 1.0, - "content": "A box with four terminals is connected to a cell and two ammeters. The top left terminal", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 89, - 80, - 116, - 95 - ], - "spans": [ - { - "bbox": [ - 89, - 80, - 116, - 95 - ], - "score": 1.0, - "content": "is X. ", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "image", - "bbox": [ - 109, - 118, - 473, - 236 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 109, - 118, - 473, - 236 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 109, - 118, - 473, - 236 - ], - "spans": [ - { - "bbox": [ - 109, - 118, - 473, - 236 - ], - "score": 0.964, - "type": "image", - "image_path": "7de2e3cf5be681ce1c6209fa2ac0dab26d2b5540940b08364ba4b046637b71e0.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 109, - 118, - 473, - 157.33333333333334 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 109, - 157.33333333333334, - 473, - 196.66666666666669 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 109, - 196.66666666666669, - 473, - 236.00000000000003 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 92, - 250, - 527, - 277 - ], - "lines": [ - { - "bbox": [ - 92, - 251, - 526, - 264 - ], - "spans": [ - { - "bbox": [ - 92, - 251, - 526, - 264 - ], - "score": 1.0, - "content": "Each of the boxes A to D is connected into the circuit in turn. All the resistors have equal", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 91, - 265, - 147, - 277 - ], - "spans": [ - { - "bbox": [ - 91, - 265, - 147, - 277 - ], - "score": 1.0, - "content": "resistance.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5.5 - }, - { - "type": "text", - "bbox": [ - 91, - 289, - 360, - 304 - ], - "lines": [ - { - "bbox": [ - 91, - 290, - 359, - 303 - ], - "spans": [ - { - "bbox": [ - 91, - 290, - 359, - 303 - ], - "score": 1.0, - "content": "Which box gives the same reading on both ammeters?", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 491, - 303, - 535, - 317 - ], - "lines": [ - { - "bbox": [ - 491, - 303, - 536, - 317 - ], - "spans": [ - { - "bbox": [ - 491, - 303, - 536, - 317 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "image", - "bbox": [ - 109, - 327, - 473, - 637 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 109, - 327, - 473, - 637 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 109, - 327, - 473, - 637 - ], - "spans": [ - { - "bbox": [ - 109, - 327, - 473, - 637 - ], - "score": 0.968, - "type": "image", - "image_path": "77bb2d37d708972bbc45658589f16c12cbd14ec8a061d940c224506ec4964f00.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 109, - 327, - 473, - 430.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 109, - 430.3333333333333, - 473, - 533.6666666666666 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 109, - 533.6666666666666, - 473, - 637.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 89, - 654, - 161, - 759 - ], - "lines": [ - { - "bbox": [ - 91, - 659, - 101, - 671 - ], - "spans": [ - { - "bbox": [ - 91, - 659, - 101, - 671 - ], - "score": 1.0, - "content": "A", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 91, - 687, - 102, - 699 - ], - "spans": [ - { - "bbox": [ - 91, - 687, - 102, - 699 - ], - "score": 1.0, - "content": "B", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 90, - 715, - 102, - 728 - ], - "spans": [ - { - "bbox": [ - 90, - 715, - 102, - 728 - ], - "score": 1.0, - "content": "C", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 90, - 744, - 102, - 756 - ], - "spans": [ - { - "bbox": [ - 90, - 744, - 102, - 756 - ], - "score": 1.0, - "content": "D", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 13.5 - } - ], - "layout_bboxes": [], - "page_idx": 74, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 109, - 118, - 473, - 236 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 109, - 118, - 473, - 236 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 109, - 118, - 473, - 236 - ], - "spans": [ - { - "bbox": [ - 109, - 118, - 473, - 236 - ], - "score": 0.964, - "type": "image", - "image_path": "7de2e3cf5be681ce1c6209fa2ac0dab26d2b5540940b08364ba4b046637b71e0.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 109, - 118, - 473, - 157.33333333333334 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 109, - 157.33333333333334, - 473, - 196.66666666666669 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 109, - 196.66666666666669, - 473, - 236.00000000000003 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3 - }, - { - "type": "image", - "bbox": [ - 109, - 327, - 473, - 637 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 109, - 327, - 473, - 637 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 109, - 327, - 473, - 637 - ], - "spans": [ - { - "bbox": [ - 109, - 327, - 473, - 637 - ], - "score": 0.968, - "type": "image", - "image_path": "77bb2d37d708972bbc45658589f16c12cbd14ec8a061d940c224506ec4964f00.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 109, - 327, - 473, - 430.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 109, - 430.3333333333333, - 473, - 533.6666666666666 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 109, - 533.6666666666666, - 473, - 637.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 77 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 574, - 78 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 574, - 78 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 474, - 771, - 539, - 783 - ], - "lines": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "spans": [ - { - "bbox": [ - 474, - 772, - 530, - 783 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "35 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 59, - 816, - 79, - 825 - ], - "spans": [ - { - "bbox": [ - 59, - 816, - 79, - 825 - ], - "score": 0.9526785016059875, - "content": "3 5", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 46, - 65, - 81, - 82 - ], - "lines": [ - { - "bbox": [ - 49, - 67, - 78, - 81 - ], - "spans": [ - { - "bbox": [ - 49, - 67, - 78, - 81 - ], - "score": 1.0, - "content": "2 7 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 89, - 68, - 521, - 94 - ], - "lines": [ - { - "bbox": [ - 91, - 69, - 520, - 81 - ], - "spans": [ - { - "bbox": [ - 91, - 69, - 520, - 81 - ], - "score": 1.0, - "content": "A box with four terminals is connected to a cell and two ammeters. The top left terminal", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 89, - 80, - 116, - 95 - ], - "spans": [ - { - "bbox": [ - 89, - 80, - 116, - 95 - ], - "score": 1.0, - "content": "is X. ", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_74", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 89, - 69, - 520, - 95 - ] - }, - { - "type": "image", - "bbox": [ - 109, - 118, - 473, - 236 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 109, - 118, - 473, - 236 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 109, - 118, - 473, - 236 - ], - "spans": [ - { - "bbox": [ - 109, - 118, - 473, - 236 - ], - "score": 0.964, - "type": "image", - "image_path": "7de2e3cf5be681ce1c6209fa2ac0dab26d2b5540940b08364ba4b046637b71e0.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 109, - 118, - 473, - 157.33333333333334 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 109, - 157.33333333333334, - 473, - 196.66666666666669 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 109, - 196.66666666666669, - 473, - 236.00000000000003 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3, - "page_num": "page_74", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 92, - 250, - 527, - 277 - ], - "lines": [ - { - "bbox": [ - 92, - 251, - 526, - 264 - ], - "spans": [ - { - "bbox": [ - 92, - 251, - 526, - 264 - ], - "score": 1.0, - "content": "Each of the boxes A to D is connected into the circuit in turn. All the resistors have equal", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 91, - 265, - 147, - 277 - ], - "spans": [ - { - "bbox": [ - 91, - 265, - 147, - 277 - ], - "score": 1.0, - "content": "resistance.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5.5, - "page_num": "page_74", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 251, - 526, - 277 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 289, - 360, - 304 - ], - "lines": [ - { - "bbox": [ - 91, - 290, - 359, - 303 - ], - "spans": [ - { - "bbox": [ - 91, - 290, - 359, - 303 - ], - "score": 1.0, - "content": "Which box gives the same reading on both ammeters?", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_74", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 290, - 359, - 303 - ] - }, - { - "type": "text", - "bbox": [ - 491, - 303, - 535, - 317 - ], - "lines": [ - { - "bbox": [ - 491, - 303, - 536, - 317 - ], - "spans": [ - { - "bbox": [ - 491, - 303, - 536, - 317 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_74", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 303, - 536, - 317 - ] - }, - { - "type": "image", - "bbox": [ - 109, - 327, - 473, - 637 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 109, - 327, - 473, - 637 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 109, - 327, - 473, - 637 - ], - "spans": [ - { - "bbox": [ - 109, - 327, - 473, - 637 - ], - "score": 0.968, - "type": "image", - "image_path": "77bb2d37d708972bbc45658589f16c12cbd14ec8a061d940c224506ec4964f00.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 109, - 327, - 473, - 430.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 109, - 430.3333333333333, - 473, - 533.6666666666666 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 109, - 533.6666666666666, - 473, - 637.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10, - "page_num": "page_74", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 89, - 654, - 161, - 759 - ], - "lines": [ - { - "bbox": [ - 91, - 659, - 101, - 671 - ], - "spans": [ - { - "bbox": [ - 91, - 659, - 101, - 671 - ], - "score": 1.0, - "content": "A", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 91, - 687, - 102, - 699 - ], - "spans": [ - { - "bbox": [ - 91, - 687, - 102, - 699 - ], - "score": 1.0, - "content": "B", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 90, - 715, - 102, - 728 - ], - "spans": [ - { - "bbox": [ - 90, - 715, - 102, - 728 - ], - "score": 1.0, - "content": "C", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 90, - 744, - 102, - 756 - ], - "spans": [ - { - "bbox": [ - 90, - 744, - 102, - 756 - ], - "score": 1.0, - "content": "D", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 13.5, - "page_num": "page_74", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 90, - 659, - 102, - 756 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 76, - 68, - 464, - 82 - ], - "lines": [ - { - "bbox": [ - 83, - 68, - 464, - 82 - ], - "spans": [ - { - "bbox": [ - 83, - 68, - 464, - 82 - ], - "score": 1.0, - "content": "Two circular discs made of card rotate at constant speed on a common axle.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "image", - "bbox": [ - 121, - 93, - 460, - 219 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 121, - 93, - 460, - 219 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 121, - 93, - 460, - 219 - ], - "spans": [ - { - "bbox": [ - 121, - 93, - 460, - 219 - ], - "score": 0.967, - "type": "image", - "image_path": "bc8d0e365da0d6b89e9a913a27af5bc0fb2ac2f61fe1b32890bf32c33e2c6ed3.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 121, - 93, - 460, - 135.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 121, - 135.0, - 460, - 177.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 121, - 177.0, - 460, - 219.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 92, - 233, - 227, - 247 - ], - "lines": [ - { - "bbox": [ - 92, - 233, - 226, - 246 - ], - "spans": [ - { - "bbox": [ - 92, - 234, - 159, - 246 - ], - "score": 1.0, - "content": "The discs are", - "type": "text" - }, - { - "bbox": [ - 160, - 233, - 196, - 246 - ], - "score": 0.37, - "content": "2.00\\mathrm{m}", - "type": "inline_equation", - "height": 13, - "width": 36 - }, - { - "bbox": [ - 196, - 234, - 226, - 246 - ], - "score": 1.0, - "content": " apart.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 91, - 259, - 485, - 301 - ], - "lines": [ - { - "bbox": [ - 91, - 259, - 484, - 273 - ], - "spans": [ - { - "bbox": [ - 91, - 259, - 484, - 273 - ], - "score": 1.0, - "content": "An air-gun pellet is fired parallel to the axle. The pellet makes holes in the discs.", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 91, - 273, - 307, - 287 - ], - "spans": [ - { - "bbox": [ - 91, - 273, - 285, - 287 - ], - "score": 1.0, - "content": "The holes are separated by an angle of", - "type": "text" - }, - { - "bbox": [ - 286, - 274, - 304, - 286 - ], - "score": 0.87, - "content": "45^{\\circ}", - "type": "inline_equation", - "height": 12, - "width": 18 - }, - { - "bbox": [ - 304, - 273, - 307, - 287 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 91, - 286, - 359, - 300 - ], - "spans": [ - { - "bbox": [ - 91, - 287, - 308, - 300 - ], - "score": 1.0, - "content": "The speed of the pellet between the discs is", - "type": "text" - }, - { - "bbox": [ - 309, - 286, - 356, - 299 - ], - "score": 0.88, - "content": "300\\mathrm{m~s}^{-1}", - "type": "inline_equation", - "height": 13, - "width": 47 - }, - { - "bbox": [ - 357, - 287, - 359, - 300 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 91, - 313, - 404, - 327 - ], - "lines": [ - { - "bbox": [ - 91, - 314, - 403, - 326 - ], - "spans": [ - { - "bbox": [ - 91, - 314, - 403, - 326 - ], - "score": 1.0, - "content": "How many revolutions does each disc complete in one second?", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "image", - "bbox": [ - 90, - 357, - 220, - 460 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 90, - 357, - 220, - 460 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 90, - 357, - 220, - 460 - ], - "spans": [ - { - "bbox": [ - 90, - 357, - 220, - 460 - ], - "score": 0.217, - "type": "image", - "image_path": "d655065f0021e9cd6476e5101e273f7dc2194a85535176d4136ea238995f0165.jpg" - } - ] - } - ], - "index": 9.5, - "virtual_lines": [ - { - "bbox": [ - 90, - 357, - 220, - 408.5 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 90, - 408.5, - 220, - 460.0 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 9.5 - }, - { - "type": "text", - "bbox": [ - 86, - 493, - 529, - 548 - ], - "lines": [ - { - "bbox": [ - 90, - 494, - 528, - 508 - ], - "spans": [ - { - "bbox": [ - 90, - 494, - 355, - 508 - ], - "score": 1.0, - "content": "A resistor dissipates 100 W when connected across a", - "type": "text" - }, - { - "bbox": [ - 356, - 494, - 381, - 507 - ], - "score": 0.25, - "content": "25\\mathrm{~V~}", - "type": "inline_equation", - "height": 13, - "width": 25 - }, - { - "bbox": [ - 382, - 494, - 528, - 508 - ], - "score": 1.0, - "content": " supply with negligible internal", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 91, - 509, - 145, - 521 - ], - "spans": [ - { - "bbox": [ - 91, - 509, - 145, - 521 - ], - "score": 1.0, - "content": "resistance.", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 91, - 521, - 497, - 536 - ], - "spans": [ - { - "bbox": [ - 91, - 521, - 247, - 536 - ], - "score": 1.0, - "content": "The supply output is reduced to", - "type": "text" - }, - { - "bbox": [ - 247, - 521, - 273, - 534 - ], - "score": 0.62, - "content": "20\\mathrm{V}", - "type": "inline_equation", - "height": 13, - "width": 26 - }, - { - "bbox": [ - 273, - 521, - 497, - 536 - ], - "score": 1.0, - "content": " and the resistor is replaced so that the power ", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 91, - 535, - 211, - 548 - ], - "spans": [ - { - "bbox": [ - 91, - 536, - 174, - 548 - ], - "score": 1.0, - "content": "dissipated is still ", - "type": "text" - }, - { - "bbox": [ - 174, - 535, - 208, - 548 - ], - "score": 0.32, - "content": "100\\mathrm{~W~}", - "type": "inline_equation", - "height": 13, - "width": 34 - }, - { - "bbox": [ - 208, - 536, - 211, - 548 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 12.5 - }, - { - "type": "text", - "bbox": [ - 91, - 561, - 326, - 575 - ], - "lines": [ - { - "bbox": [ - 91, - 561, - 325, - 575 - ], - "spans": [ - { - "bbox": [ - 91, - 561, - 325, - 575 - ], - "score": 1.0, - "content": "What is the percentage decrease in resistance?", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "text", - "bbox": [ - 88, - 605, - 180, - 709 - ], - "lines": [ - { - "bbox": [ - 90, - 607, - 121, - 622 - ], - "spans": [ - { - "bbox": [ - 90, - 607, - 121, - 622 - ], - "score": 1.0, - "content": "A 20 ", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 89, - 635, - 121, - 650 - ], - "spans": [ - { - "bbox": [ - 89, - 635, - 121, - 650 - ], - "score": 1.0, - "content": "B 36 ", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 91, - 664, - 121, - 678 - ], - "spans": [ - { - "bbox": [ - 91, - 664, - 121, - 678 - ], - "score": 1.0, - "content": "C 64 ", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 91, - 693, - 121, - 706 - ], - "spans": [ - { - "bbox": [ - 91, - 693, - 121, - 706 - ], - "score": 1.0, - "content": "D 80 ", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 17.5 - } - ], - "layout_bboxes": [], - "page_idx": 75, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 121, - 93, - 460, - 219 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 121, - 93, - 460, - 219 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 121, - 93, - 460, - 219 - ], - "spans": [ - { - "bbox": [ - 121, - 93, - 460, - 219 - ], - "score": 0.967, - "type": "image", - "image_path": "bc8d0e365da0d6b89e9a913a27af5bc0fb2ac2f61fe1b32890bf32c33e2c6ed3.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 121, - 93, - 460, - 135.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 121, - 135.0, - 460, - 177.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 121, - 177.0, - 460, - 219.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - }, - { - "type": "image", - "bbox": [ - 90, - 357, - 220, - 460 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 90, - 357, - 220, - 460 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 90, - 357, - 220, - 460 - ], - "spans": [ - { - "bbox": [ - 90, - 357, - 220, - 460 - ], - "score": 0.217, - "type": "image", - "image_path": "d655065f0021e9cd6476e5101e273f7dc2194a85535176d4136ea238995f0165.jpg" - } - ] - } - ], - "index": 9.5, - "virtual_lines": [ - { - "bbox": [ - 90, - 357, - 220, - 408.5 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 90, - 408.5, - 220, - 460.0 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 9.5 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 559, - 68, - 573, - 77 - ], - "spans": [ - { - "bbox": [ - 559, - 68, - 573, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 59, - 815, - 80, - 825 - ], - "spans": [ - { - "bbox": [ - 59, - 815, - 80, - 825 - ], - "score": 0.9593929648399353, - "content": "3 6", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 491, - 81, - 507 - ], - "lines": [ - { - "bbox": [ - 50, - 493, - 76, - 505 - ], - "spans": [ - { - "bbox": [ - 50, - 493, - 63, - 505 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - }, - { - "bbox": [ - 65, - 494, - 76, - 505 - ], - "score": 1.0, - "content": "9", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 40 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 297, - 41 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 297, - 41 - ], - "score": 1.0, - "content": "36 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 46, - 65, - 81, - 82 - ], - "lines": [ - { - "bbox": [ - 49, - 67, - 76, - 81 - ], - "spans": [ - { - "bbox": [ - 49, - 67, - 76, - 81 - ], - "score": 1.0, - "content": "2 8", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 490, - 575, - 535, - 588 - ], - "lines": [ - { - "bbox": [ - 491, - 575, - 536, - 588 - ], - "spans": [ - { - "bbox": [ - 491, - 575, - 536, - 588 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 490, - 326, - 535, - 340 - ], - "lines": [ - { - "bbox": [ - 491, - 326, - 536, - 341 - ], - "spans": [ - { - "bbox": [ - 491, - 326, - 536, - 341 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 76, - 68, - 464, - 82 - ], - "lines": [ - { - "bbox": [ - 83, - 68, - 464, - 82 - ], - "spans": [ - { - "bbox": [ - 83, - 68, - 464, - 82 - ], - "score": 1.0, - "content": "Two circular discs made of card rotate at constant speed on a common axle.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_75", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 83, - 68, - 464, - 82 - ] - }, - { - "type": "image", - "bbox": [ - 121, - 93, - 460, - 219 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 121, - 93, - 460, - 219 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 121, - 93, - 460, - 219 - ], - "spans": [ - { - "bbox": [ - 121, - 93, - 460, - 219 - ], - "score": 0.967, - "type": "image", - "image_path": "bc8d0e365da0d6b89e9a913a27af5bc0fb2ac2f61fe1b32890bf32c33e2c6ed3.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 121, - 93, - 460, - 135.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 121, - 135.0, - 460, - 177.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 121, - 177.0, - 460, - 219.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2, - "page_num": "page_75", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 92, - 233, - 227, - 247 - ], - "lines": [ - { - "bbox": [ - 92, - 233, - 226, - 246 - ], - "spans": [ - { - "bbox": [ - 92, - 234, - 159, - 246 - ], - "score": 1.0, - "content": "The discs are", - "type": "text" - }, - { - "bbox": [ - 160, - 233, - 196, - 246 - ], - "score": 0.37, - "content": "2.00\\mathrm{m}", - "type": "inline_equation", - "height": 13, - "width": 36 - }, - { - "bbox": [ - 196, - 234, - 226, - 246 - ], - "score": 1.0, - "content": " apart.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_75", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 233, - 226, - 246 - ] - }, - { - "type": "list", - "bbox": [ - 91, - 259, - 485, - 301 - ], - "lines": [ - { - "bbox": [ - 91, - 259, - 484, - 273 - ], - "spans": [ - { - "bbox": [ - 91, - 259, - 484, - 273 - ], - "score": 1.0, - "content": "An air-gun pellet is fired parallel to the axle. The pellet makes holes in the discs.", - "type": "text" - } - ], - "index": 5, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 273, - 307, - 287 - ], - "spans": [ - { - "bbox": [ - 91, - 273, - 285, - 287 - ], - "score": 1.0, - "content": "The holes are separated by an angle of", - "type": "text" - }, - { - "bbox": [ - 286, - 274, - 304, - 286 - ], - "score": 0.87, - "content": "45^{\\circ}", - "type": "inline_equation", - "height": 12, - "width": 18 - }, - { - "bbox": [ - 304, - 273, - 307, - 287 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 6, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 286, - 359, - 300 - ], - "spans": [ - { - "bbox": [ - 91, - 287, - 308, - 300 - ], - "score": 1.0, - "content": "The speed of the pellet between the discs is", - "type": "text" - }, - { - "bbox": [ - 309, - 286, - 356, - 299 - ], - "score": 0.88, - "content": "300\\mathrm{m~s}^{-1}", - "type": "inline_equation", - "height": 13, - "width": 47 - }, - { - "bbox": [ - 357, - 287, - 359, - 300 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 7, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 6, - "page_num": "page_75", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 259, - 484, - 300 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 313, - 404, - 327 - ], - "lines": [ - { - "bbox": [ - 91, - 314, - 403, - 326 - ], - "spans": [ - { - "bbox": [ - 91, - 314, - 403, - 326 - ], - "score": 1.0, - "content": "How many revolutions does each disc complete in one second?", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_75", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 314, - 403, - 326 - ] - }, - { - "type": "image", - "bbox": [ - 90, - 357, - 220, - 460 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 90, - 357, - 220, - 460 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 90, - 357, - 220, - 460 - ], - "spans": [ - { - "bbox": [ - 90, - 357, - 220, - 460 - ], - "score": 0.217, - "type": "image", - "image_path": "d655065f0021e9cd6476e5101e273f7dc2194a85535176d4136ea238995f0165.jpg" - } - ] - } - ], - "index": 9.5, - "virtual_lines": [ - { - "bbox": [ - 90, - 357, - 220, - 408.5 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 90, - 408.5, - 220, - 460.0 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 9.5, - "page_num": "page_75", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 86, - 493, - 529, - 548 - ], - "lines": [ - { - "bbox": [ - 90, - 494, - 528, - 508 - ], - "spans": [ - { - "bbox": [ - 90, - 494, - 355, - 508 - ], - "score": 1.0, - "content": "A resistor dissipates 100 W when connected across a", - "type": "text" - }, - { - "bbox": [ - 356, - 494, - 381, - 507 - ], - "score": 0.25, - "content": "25\\mathrm{~V~}", - "type": "inline_equation", - "height": 13, - "width": 25 - }, - { - "bbox": [ - 382, - 494, - 528, - 508 - ], - "score": 1.0, - "content": " supply with negligible internal", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 91, - 509, - 145, - 521 - ], - "spans": [ - { - "bbox": [ - 91, - 509, - 145, - 521 - ], - "score": 1.0, - "content": "resistance.", - "type": "text" - } - ], - "index": 12, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 521, - 497, - 536 - ], - "spans": [ - { - "bbox": [ - 91, - 521, - 247, - 536 - ], - "score": 1.0, - "content": "The supply output is reduced to", - "type": "text" - }, - { - "bbox": [ - 247, - 521, - 273, - 534 - ], - "score": 0.62, - "content": "20\\mathrm{V}", - "type": "inline_equation", - "height": 13, - "width": 26 - }, - { - "bbox": [ - 273, - 521, - 497, - 536 - ], - "score": 1.0, - "content": " and the resistor is replaced so that the power ", - "type": "text" - } - ], - "index": 13, - "is_list_start_line": true - }, - { - "bbox": [ - 91, - 535, - 211, - 548 - ], - "spans": [ - { - "bbox": [ - 91, - 536, - 174, - 548 - ], - "score": 1.0, - "content": "dissipated is still ", - "type": "text" - }, - { - "bbox": [ - 174, - 535, - 208, - 548 - ], - "score": 0.32, - "content": "100\\mathrm{~W~}", - "type": "inline_equation", - "height": 13, - "width": 34 - }, - { - "bbox": [ - 208, - 536, - 211, - 548 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 14, - "is_list_end_line": true - } - ], - "index": 12.5, - "page_num": "page_75", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 90, - 494, - 528, - 548 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 561, - 326, - 575 - ], - "lines": [ - { - "bbox": [ - 91, - 561, - 325, - 575 - ], - "spans": [ - { - "bbox": [ - 91, - 561, - 325, - 575 - ], - "score": 1.0, - "content": "What is the percentage decrease in resistance?", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_75", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 561, - 325, - 575 - ] - }, - { - "type": "index", - "bbox": [ - 88, - 605, - 180, - 709 - ], - "lines": [ - { - "bbox": [ - 90, - 607, - 121, - 622 - ], - "spans": [ - { - "bbox": [ - 90, - 607, - 121, - 622 - ], - "score": 1.0, - "content": "A 20 ", - "type": "text" - } - ], - "index": 16, - "is_list_start_line": true - }, - { - "bbox": [ - 89, - 635, - 121, - 650 - ], - "spans": [ - { - "bbox": [ - 89, - 635, - 121, - 650 - ], - "score": 1.0, - "content": "B 36 ", - "type": "text" - } - ], - "index": 17, - "is_list_start_line": true - }, - { - "bbox": [ - 91, - 664, - 121, - 678 - ], - "spans": [ - { - "bbox": [ - 91, - 664, - 121, - 678 - ], - "score": 1.0, - "content": "C 64 ", - "type": "text" - } - ], - "index": 18, - "is_list_start_line": true - }, - { - "bbox": [ - 91, - 693, - 121, - 706 - ], - "spans": [ - { - "bbox": [ - 91, - 693, - 121, - 706 - ], - "score": 1.0, - "content": "D 80 ", - "type": "text" - } - ], - "index": 19, - "is_list_start_line": true - } - ], - "index": 17.5, - "page_num": "page_75", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 89, - 607, - 121, - 706 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 85, - 68, - 450, - 83 - ], - "lines": [ - { - "bbox": [ - 91, - 69, - 449, - 82 - ], - "spans": [ - { - "bbox": [ - 91, - 69, - 438, - 82 - ], - "score": 1.0, - "content": "When an aircraft turns in a horizontal circular path, it banks at an angle", - "type": "text" - }, - { - "bbox": [ - 439, - 69, - 447, - 81 - ], - "score": 0.45, - "content": "\\theta", - "type": "inline_equation", - "height": 12, - "width": 8 - }, - { - "bbox": [ - 447, - 69, - 449, - 82 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "image", - "bbox": [ - 187, - 91, - 393, - 175 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 187, - 91, - 393, - 175 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 187, - 91, - 393, - 175 - ], - "spans": [ - { - "bbox": [ - 187, - 91, - 393, - 175 - ], - "score": 0.962, - "type": "image", - "image_path": "bbccf30d69340d2d9dbdd455609e40c4ecd1620e7955b5bac7dd60fc68f59cc6.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 187, - 91, - 393, - 104 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 187, - 104, - 393, - 117 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 187, - 117, - 393, - 130 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 187, - 130, - 393, - 143 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 187, - 143, - 393, - 156 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 187, - 156, - 393, - 169 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 187, - 169, - 393, - 182 - ], - "spans": [], - "index": 7 - } - ] - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 91, - 187, - 516, - 215 - ], - "lines": [ - { - "bbox": [ - 91, - 188, - 513, - 201 - ], - "spans": [ - { - "bbox": [ - 91, - 188, - 358, - 201 - ], - "score": 1.0, - "content": "The aircraft has mass m and travels at constant speed", - "type": "text" - }, - { - "bbox": [ - 358, - 190, - 366, - 200 - ], - "score": 0.64, - "content": "\\nu", - "type": "inline_equation", - "height": 10, - "width": 8 - }, - { - "bbox": [ - 367, - 188, - 513, - 201 - ], - "score": 1.0, - "content": "in a horizontal circular path of", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 91, - 202, - 296, - 215 - ], - "spans": [ - { - "bbox": [ - 91, - 202, - 123, - 215 - ], - "score": 1.0, - "content": "radius", - "type": "text" - }, - { - "bbox": [ - 124, - 204, - 131, - 213 - ], - "score": 0.53, - "content": "r", - "type": "inline_equation", - "height": 9, - "width": 7 - }, - { - "bbox": [ - 131, - 202, - 285, - 215 - ], - "score": 1.0, - "content": ". The lift force acts at the angle", - "type": "text" - }, - { - "bbox": [ - 286, - 202, - 294, - 214 - ], - "score": 0.49, - "content": "\\theta", - "type": "inline_equation", - "height": 12, - "width": 8 - }, - { - "bbox": [ - 294, - 202, - 296, - 215 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8.5 - }, - { - "type": "text", - "bbox": [ - 91, - 228, - 164, - 242 - ], - "lines": [ - { - "bbox": [ - 92, - 228, - 163, - 241 - ], - "spans": [ - { - "bbox": [ - 92, - 230, - 149, - 241 - ], - "score": 1.0, - "content": "What is tan", - "type": "text" - }, - { - "bbox": [ - 149, - 228, - 163, - 240 - ], - "score": 0.49, - "content": "\\theta?", - "type": "inline_equation", - "height": 12, - "width": 14 - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 490, - 242, - 536, - 256 - ], - "lines": [ - { - "bbox": [ - 491, - 242, - 536, - 256 - ], - "spans": [ - { - "bbox": [ - 491, - 242, - 536, - 256 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "image", - "bbox": [ - 89, - 267, - 220, - 439 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 89, - 267, - 220, - 439 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 89, - 267, - 220, - 437 - ], - "spans": [ - { - "bbox": [ - 89, - 267, - 220, - 437 - ], - "score": 0.526, - "type": "image", - "image_path": "25be9a776968767016ad4f01c16137f63cdcf38d4ecae80ac5eb845529219d00.jpg" - } - ] - } - ], - "index": 12, - "virtual_lines": [ - { - "bbox": [ - 89, - 267, - 220, - 439 - ], - "spans": [], - "index": 12 - } - ] - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 91, - 461, - 526, - 489 - ], - "lines": [ - { - "bbox": [ - 91, - 463, - 525, - 475 - ], - "spans": [ - { - "bbox": [ - 91, - 463, - 525, - 475 - ], - "score": 1.0, - "content": "A mass, attached to two springs, oscillates horizontally between P and Q. The motion of ", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 91, - 475, - 243, - 488 - ], - "spans": [ - { - "bbox": [ - 91, - 475, - 243, - 488 - ], - "score": 1.0, - "content": "the system is simple harmonic.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 13.5 - }, - { - "type": "image", - "bbox": [ - 211, - 496, - 370, - 568 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 211, - 496, - 370, - 568 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 211, - 496, - 370, - 568 - ], - "spans": [ - { - "bbox": [ - 211, - 496, - 370, - 568 - ], - "score": 0.958, - "type": "image", - "image_path": "fe11f5d4d779ab6f8e11b6b0be250f73f795ee54148741172a3b19c5d2078ee4.jpg" - } - ] - } - ], - "index": 17.5, - "virtual_lines": [ - { - "bbox": [ - 211, - 496, - 370, - 509 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 211, - 509, - 370, - 522 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 211, - 522, - 370, - 535 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 211, - 535, - 370, - 548 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 211, - 548, - 370, - 561 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 211, - 561, - 370, - 574 - ], - "spans": [], - "index": 20 - } - ] - } - ], - "index": 17.5 - }, - { - "type": "text", - "bbox": [ - 89, - 581, - 472, - 596 - ], - "lines": [ - { - "bbox": [ - 92, - 582, - 471, - 595 - ], - "spans": [ - { - "bbox": [ - 92, - 582, - 471, - 595 - ], - "score": 1.0, - "content": "Which quantity has its magnitude at a minimum value when the mass is at Q?", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 21 - }, - { - "type": "text", - "bbox": [ - 491, - 595, - 535, - 608 - ], - "lines": [ - { - "bbox": [ - 491, - 593, - 536, - 609 - ], - "spans": [ - { - "bbox": [ - 491, - 593, - 536, - 609 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 22 - }, - { - "type": "text", - "bbox": [ - 90, - 623, - 371, - 726 - ], - "lines": [ - { - "bbox": [ - 92, - 626, - 245, - 637 - ], - "spans": [ - { - "bbox": [ - 92, - 626, - 245, - 637 - ], - "score": 1.0, - "content": "A the acceleration of the mass", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 91, - 654, - 254, - 666 - ], - "spans": [ - { - "bbox": [ - 91, - 654, - 254, - 666 - ], - "score": 1.0, - "content": "B the kinetic energy of the mass", - "type": "text" - } - ], - "index": 24 - }, - { - "bbox": [ - 91, - 683, - 363, - 695 - ], - "spans": [ - { - "bbox": [ - 91, - 683, - 337, - 695 - ], - "score": 1.0, - "content": "C the potential energy of the mass–spring system", - "type": "text" - }, - { - "bbox": [ - 350, - 683, - 363, - 692 - ], - "score": 0.25, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 9, - "width": 13 - } - ], - "index": 25 - }, - { - "bbox": [ - 91, - 710, - 327, - 723 - ], - "spans": [ - { - "bbox": [ - 91, - 710, - 327, - 723 - ], - "score": 1.0, - "content": "D the resultant force of the springs on the mass", - "type": "text" - } - ], - "index": 26 - } - ], - "index": 24.5 - } - ], - "layout_bboxes": [], - "page_idx": 76, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 187, - 91, - 393, - 175 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 187, - 91, - 393, - 175 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 187, - 91, - 393, - 175 - ], - "spans": [ - { - "bbox": [ - 187, - 91, - 393, - 175 - ], - "score": 0.962, - "type": "image", - "image_path": "bbccf30d69340d2d9dbdd455609e40c4ecd1620e7955b5bac7dd60fc68f59cc6.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 187, - 91, - 393, - 104 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 187, - 104, - 393, - 117 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 187, - 117, - 393, - 130 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 187, - 130, - 393, - 143 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 187, - 143, - 393, - 156 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 187, - 156, - 393, - 169 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 187, - 169, - 393, - 182 - ], - "spans": [], - "index": 7 - } - ] - } - ], - "index": 4 - }, - { - "type": "image", - "bbox": [ - 89, - 267, - 220, - 439 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 89, - 267, - 220, - 439 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 89, - 267, - 220, - 437 - ], - "spans": [ - { - "bbox": [ - 89, - 267, - 220, - 437 - ], - "score": 0.526, - "type": "image", - "image_path": "25be9a776968767016ad4f01c16137f63cdcf38d4ecae80ac5eb845529219d00.jpg" - } - ] - } - ], - "index": 12, - "virtual_lines": [ - { - "bbox": [ - 89, - 267, - 220, - 439 - ], - "spans": [], - "index": 12 - } - ] - } - ], - "index": 12 - }, - { - "type": "image", - "bbox": [ - 211, - 496, - 370, - 568 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 211, - 496, - 370, - 568 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 211, - 496, - 370, - 568 - ], - "spans": [ - { - "bbox": [ - 211, - 496, - 370, - 568 - ], - "score": 0.958, - "type": "image", - "image_path": "fe11f5d4d779ab6f8e11b6b0be250f73f795ee54148741172a3b19c5d2078ee4.jpg" - } - ] - } - ], - "index": 17.5, - "virtual_lines": [ - { - "bbox": [ - 211, - 496, - 370, - 509 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 211, - 509, - 370, - 522 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 211, - 522, - 370, - 535 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 211, - 535, - 370, - 548 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 211, - 548, - 370, - 561 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 211, - 561, - 370, - 574 - ], - "spans": [], - "index": 20 - } - ] - } - ], - "index": 17.5 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 546, - 51, - 586, - 76 - ], - "lines": [ - { - "bbox": [ - 547, - 52, - 585, - 60 - ], - "spans": [ - { - "bbox": [ - 547, - 52, - 585, - 60 - ], - "score": 1.0, - "content": "Do not write", - "type": "text" - } - ] - }, - { - "bbox": [ - 548, - 60, - 585, - 69 - ], - "spans": [ - { - "bbox": [ - 548, - 60, - 585, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 559, - 68, - 574, - 77 - ], - "spans": [ - { - "bbox": [ - 559, - 68, - 574, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 543, - 682, - 576, - 725 - ], - "lines": [ - { - "bbox": [ - 552, - 706, - 567, - 718 - ], - "spans": [ - { - "bbox": [ - 552, - 706, - 567, - 718 - ], - "score": 1.0, - "content": "25 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 458, - 82, - 476 - ], - "lines": [ - { - "bbox": [ - 50, - 461, - 76, - 474 - ], - "spans": [ - { - "bbox": [ - 50, - 461, - 62, - 474 - ], - "score": 1.0, - "content": "3 ", - "type": "text" - }, - { - "bbox": [ - 65, - 462, - 76, - 473 - ], - "score": 1.0, - "content": "1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 59, - 815, - 79, - 825 - ], - "spans": [ - { - "bbox": [ - 59, - 815, - 79, - 825 - ], - "score": 0.9416079521179199, - "content": "3 7", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 295, - 39 - ], - "lines": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "37 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 46, - 65, - 81, - 82 - ], - "lines": [ - { - "bbox": [ - 51, - 68, - 77, - 80 - ], - "spans": [ - { - "bbox": [ - 51, - 69, - 61, - 79 - ], - "score": 1.0, - "content": "3 ", - "type": "text" - }, - { - "bbox": [ - 67, - 68, - 77, - 80 - ], - "score": 1.0, - "content": "0", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 230, - 746, - 348, - 759 - ], - "lines": [ - { - "bbox": [ - 230, - 747, - 347, - 758 - ], - "spans": [ - { - "bbox": [ - 230, - 747, - 347, - 758 - ], - "score": 1.0, - "content": "END OF QUESTIONS", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 85, - 68, - 450, - 83 - ], - "lines": [ - { - "bbox": [ - 91, - 69, - 449, - 82 - ], - "spans": [ - { - "bbox": [ - 91, - 69, - 438, - 82 - ], - "score": 1.0, - "content": "When an aircraft turns in a horizontal circular path, it banks at an angle", - "type": "text" - }, - { - "bbox": [ - 439, - 69, - 447, - 81 - ], - "score": 0.45, - "content": "\\theta", - "type": "inline_equation", - "height": 12, - "width": 8 - }, - { - "bbox": [ - 447, - 69, - 449, - 82 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_76", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 69, - 449, - 82 - ] - }, - { - "type": "image", - "bbox": [ - 187, - 91, - 393, - 175 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 187, - 91, - 393, - 175 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 187, - 91, - 393, - 175 - ], - "spans": [ - { - "bbox": [ - 187, - 91, - 393, - 175 - ], - "score": 0.962, - "type": "image", - "image_path": "bbccf30d69340d2d9dbdd455609e40c4ecd1620e7955b5bac7dd60fc68f59cc6.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 187, - 91, - 393, - 104 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 187, - 104, - 393, - 117 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 187, - 117, - 393, - 130 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 187, - 130, - 393, - 143 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 187, - 143, - 393, - 156 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 187, - 156, - 393, - 169 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 187, - 169, - 393, - 182 - ], - "spans": [], - "index": 7 - } - ] - } - ], - "index": 4, - "page_num": "page_76", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 187, - 516, - 215 - ], - "lines": [ - { - "bbox": [ - 91, - 188, - 513, - 201 - ], - "spans": [ - { - "bbox": [ - 91, - 188, - 358, - 201 - ], - "score": 1.0, - "content": "The aircraft has mass m and travels at constant speed", - "type": "text" - }, - { - "bbox": [ - 358, - 190, - 366, - 200 - ], - "score": 0.64, - "content": "\\nu", - "type": "inline_equation", - "height": 10, - "width": 8 - }, - { - "bbox": [ - 367, - 188, - 513, - 201 - ], - "score": 1.0, - "content": "in a horizontal circular path of", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 91, - 202, - 296, - 215 - ], - "spans": [ - { - "bbox": [ - 91, - 202, - 123, - 215 - ], - "score": 1.0, - "content": "radius", - "type": "text" - }, - { - "bbox": [ - 124, - 204, - 131, - 213 - ], - "score": 0.53, - "content": "r", - "type": "inline_equation", - "height": 9, - "width": 7 - }, - { - "bbox": [ - 131, - 202, - 285, - 215 - ], - "score": 1.0, - "content": ". The lift force acts at the angle", - "type": "text" - }, - { - "bbox": [ - 286, - 202, - 294, - 214 - ], - "score": 0.49, - "content": "\\theta", - "type": "inline_equation", - "height": 12, - "width": 8 - }, - { - "bbox": [ - 294, - 202, - 296, - 215 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8.5, - "page_num": "page_76", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 188, - 513, - 215 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 228, - 164, - 242 - ], - "lines": [ - { - "bbox": [ - 92, - 228, - 163, - 241 - ], - "spans": [ - { - "bbox": [ - 92, - 230, - 149, - 241 - ], - "score": 1.0, - "content": "What is tan", - "type": "text" - }, - { - "bbox": [ - 149, - 228, - 163, - 240 - ], - "score": 0.49, - "content": "\\theta?", - "type": "inline_equation", - "height": 12, - "width": 14 - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_76", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 228, - 163, - 241 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 242, - 536, - 256 - ], - "lines": [ - { - "bbox": [ - 491, - 242, - 536, - 256 - ], - "spans": [ - { - "bbox": [ - 491, - 242, - 536, - 256 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_76", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 242, - 536, - 256 - ] - }, - { - "type": "image", - "bbox": [ - 89, - 267, - 220, - 439 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 89, - 267, - 220, - 439 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 89, - 267, - 220, - 437 - ], - "spans": [ - { - "bbox": [ - 89, - 267, - 220, - 437 - ], - "score": 0.526, - "type": "image", - "image_path": "25be9a776968767016ad4f01c16137f63cdcf38d4ecae80ac5eb845529219d00.jpg" - } - ] - } - ], - "index": 12, - "virtual_lines": [ - { - "bbox": [ - 89, - 267, - 220, - 439 - ], - "spans": [], - "index": 12 - } - ] - } - ], - "index": 12, - "page_num": "page_76", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 461, - 526, - 489 - ], - "lines": [ - { - "bbox": [ - 91, - 463, - 525, - 475 - ], - "spans": [ - { - "bbox": [ - 91, - 463, - 525, - 475 - ], - "score": 1.0, - "content": "A mass, attached to two springs, oscillates horizontally between P and Q. The motion of ", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 91, - 475, - 243, - 488 - ], - "spans": [ - { - "bbox": [ - 91, - 475, - 243, - 488 - ], - "score": 1.0, - "content": "the system is simple harmonic.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 13.5, - "page_num": "page_76", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 463, - 525, - 488 - ] - }, - { - "type": "image", - "bbox": [ - 211, - 496, - 370, - 568 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 211, - 496, - 370, - 568 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 211, - 496, - 370, - 568 - ], - "spans": [ - { - "bbox": [ - 211, - 496, - 370, - 568 - ], - "score": 0.958, - "type": "image", - "image_path": "fe11f5d4d779ab6f8e11b6b0be250f73f795ee54148741172a3b19c5d2078ee4.jpg" - } - ] - } - ], - "index": 17.5, - "virtual_lines": [ - { - "bbox": [ - 211, - 496, - 370, - 509 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 211, - 509, - 370, - 522 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 211, - 522, - 370, - 535 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 211, - 535, - 370, - 548 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 211, - 548, - 370, - 561 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 211, - 561, - 370, - 574 - ], - "spans": [], - "index": 20 - } - ] - } - ], - "index": 17.5, - "page_num": "page_76", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 89, - 581, - 472, - 596 - ], - "lines": [ - { - "bbox": [ - 92, - 582, - 471, - 595 - ], - "spans": [ - { - "bbox": [ - 92, - 582, - 471, - 595 - ], - "score": 1.0, - "content": "Which quantity has its magnitude at a minimum value when the mass is at Q?", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 21, - "page_num": "page_76", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 92, - 582, - 471, - 595 - ] - }, - { - "type": "text", - "bbox": [ - 491, - 595, - 535, - 608 - ], - "lines": [ - { - "bbox": [ - 491, - 593, - 536, - 609 - ], - "spans": [ - { - "bbox": [ - 491, - 593, - 536, - 609 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 22, - "page_num": "page_76", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 593, - 536, - 609 - ] - }, - { - "type": "list", - "bbox": [ - 90, - 623, - 371, - 726 - ], - "lines": [ - { - "bbox": [ - 92, - 626, - 245, - 637 - ], - "spans": [ - { - "bbox": [ - 92, - 626, - 245, - 637 - ], - "score": 1.0, - "content": "A the acceleration of the mass", - "type": "text" - } - ], - "index": 23, - "is_list_start_line": true - }, - { - "bbox": [ - 91, - 654, - 254, - 666 - ], - "spans": [ - { - "bbox": [ - 91, - 654, - 254, - 666 - ], - "score": 1.0, - "content": "B the kinetic energy of the mass", - "type": "text" - } - ], - "index": 24, - "is_list_start_line": true - }, - { - "bbox": [ - 91, - 683, - 363, - 695 - ], - "spans": [ - { - "bbox": [ - 91, - 683, - 337, - 695 - ], - "score": 1.0, - "content": "C the potential energy of the mass–spring system", - "type": "text" - }, - { - "bbox": [ - 350, - 683, - 363, - 692 - ], - "score": 0.25, - "content": "\\Longleftrightarrow", - "type": "inline_equation", - "height": 9, - "width": 13 - } - ], - "index": 25, - "is_list_start_line": true - }, - { - "bbox": [ - 91, - 710, - 327, - 723 - ], - "spans": [ - { - "bbox": [ - 91, - 710, - 327, - 723 - ], - "score": 1.0, - "content": "D the resultant force of the springs on the mass", - "type": "text" - } - ], - "index": 26, - "is_list_start_line": true - } - ], - "index": 24.5, - "page_num": "page_76", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 91, - 626, - 363, - 723 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "image", - "bbox": [ - 37, - 53, - 540, - 768 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 37, - 53, - 540, - 768 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 37, - 53, - 540, - 768 - ], - "spans": [ - { - "bbox": [ - 37, - 53, - 540, - 768 - ], - "score": 0.567, - "type": "image", - "image_path": "a6c32bff5558f984a0bc4cf5af43bafcb87dc23974036a0fcd9f1d3a87e17b17.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 37, - 53, - 540, - 291.33333333333337 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 37, - 291.33333333333337, - 540, - 529.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 37, - 529.6666666666667, - 540, - 768.0000000000001 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 77, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 37, - 53, - 540, - 768 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 37, - 53, - 540, - 768 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 37, - 53, - 540, - 768 - ], - "spans": [ - { - "bbox": [ - 37, - 53, - 540, - 768 - ], - "score": 0.567, - "type": "image", - "image_path": "a6c32bff5558f984a0bc4cf5af43bafcb87dc23974036a0fcd9f1d3a87e17b17.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 37, - 53, - 540, - 291.33333333333337 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 37, - 291.33333333333337, - 540, - 529.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 37, - 529.6666666666667, - 540, - 768.0000000000001 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 58, - 814, - 81, - 826 - ], - "spans": [ - { - "bbox": [ - 58, - 814, - 81, - 826 - ], - "score": 0.8122406601905823, - "content": "3 8", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 295, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 41 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 41 - ], - "score": 1.0, - "content": "38 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "spans": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 77 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "spans": [ - { - "bbox": [ - 547, - 61, - 584, - 68 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 558, - 68, - 573, - 77 - ], - "spans": [ - { - "bbox": [ - 558, - 68, - 573, - 77 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "image", - "bbox": [ - 37, - 53, - 540, - 768 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 37, - 53, - 540, - 768 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 37, - 53, - 540, - 768 - ], - "spans": [ - { - "bbox": [ - 37, - 53, - 540, - 768 - ], - "score": 0.567, - "type": "image", - "image_path": "a6c32bff5558f984a0bc4cf5af43bafcb87dc23974036a0fcd9f1d3a87e17b17.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 37, - 53, - 540, - 291.33333333333337 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 37, - 291.33333333333337, - 540, - 529.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 37, - 529.6666666666667, - 540, - 768.0000000000001 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_77", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 47, - 64, - 528, - 744 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 64, - 528, - 744 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 47, - 64, - 528, - 744 - ], - "spans": [ - { - "bbox": [ - 47, - 64, - 528, - 744 - ], - "score": 0.951, - "html": "
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
", - "type": "table", - "image_path": "35277b008e97a716f70e45aa32c220c4fc4a7e18a874470641ae3d94bc27e26e.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 47, - 64, - 528, - 290.66666666666663 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 47, - 290.66666666666663, - 528, - 517.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 47, - 517.3333333333333, - 528, - 743.9999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 78, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 47, - 64, - 528, - 744 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 64, - 528, - 744 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 47, - 64, - 528, - 744 - ], - "spans": [ - { - "bbox": [ - 47, - 64, - 528, - 744 - ], - "score": 0.951, - "html": "
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
", - "type": "table", - "image_path": "35277b008e97a716f70e45aa32c220c4fc4a7e18a874470641ae3d94bc27e26e.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 47, - 64, - 528, - 290.66666666666663 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 47, - 290.66666666666663, - 528, - 517.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 47, - 517.3333333333333, - 528, - 743.9999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 42, - 786, - 100, - 825 - ], - "lines": [ - { - "bbox": [ - 60, - 816, - 79, - 824 - ], - "spans": [ - { - "bbox": [ - 60, - 816, - 67, - 824 - ], - "score": 0.9999574422836304, - "content": "3", - "type": "text" - }, - { - "bbox": [ - 69, - 816, - 79, - 824 - ], - "score": 0.9875374436378479, - "content": "9", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 295, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "39 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 77 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 559, - 69, - 573, - 78 - ], - "spans": [ - { - "bbox": [ - 559, - 69, - 573, - 78 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "spans": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 47, - 64, - 528, - 744 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 64, - 528, - 744 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 47, - 64, - 528, - 744 - ], - "spans": [ - { - "bbox": [ - 47, - 64, - 528, - 744 - ], - "score": 0.951, - "html": "
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
", - "type": "table", - "image_path": "35277b008e97a716f70e45aa32c220c4fc4a7e18a874470641ae3d94bc27e26e.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 47, - 64, - 528, - 290.66666666666663 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 47, - 290.66666666666663, - 528, - 517.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 47, - 517.3333333333333, - 528, - 743.9999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_78", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 49, - 62, - 528, - 758 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 49, - 62, - 528, - 758 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 49, - 62, - 528, - 758 - ], - "spans": [ - { - "bbox": [ - 49, - 62, - 528, - 758 - ], - "score": 0.947, - "html": "
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
Copyrightinformation
For confidentiality purposes, allacknowledgements of third-party copyright material are published in a separate booklet.This booklet is published aftereach live examinationseries and is availableforfree download fromwww.aqa.org.uk.
Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the
", - "type": "table", - "image_path": "9a755c2b6a0b1e7642ed5ca1052bde3de04138f8a4b4425cfd20f765a966efa0.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 49, - 62, - 528, - 294.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 49, - 294.0, - 528, - 526.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 49, - 526.0, - 528, - 758.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 79, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 49, - 62, - 528, - 758 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 49, - 62, - 528, - 758 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 49, - 62, - 528, - 758 - ], - "spans": [ - { - "bbox": [ - 49, - 62, - 528, - 758 - ], - "score": 0.947, - "html": "
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
Copyrightinformation
For confidentiality purposes, allacknowledgements of third-party copyright material are published in a separate booklet.This booklet is published aftereach live examinationseries and is availableforfree download fromwww.aqa.org.uk.
Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the
", - "type": "table", - "image_path": "9a755c2b6a0b1e7642ed5ca1052bde3de04138f8a4b4425cfd20f765a966efa0.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 49, - 62, - 528, - 294.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 49, - 294.0, - 528, - 526.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 49, - 526.0, - 528, - 758.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 374, - 762, - 541, - 801 - ], - "lines": [ - { - "bbox": [ - 390, - 790, - 496, - 800 - ], - "spans": [ - { - "bbox": [ - 390, - 790, - 496, - 800 - ], - "score": 0.9836291074752808, - "content": "236A7408", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 42, - 787, - 100, - 824 - ], - "lines": [ - { - "bbox": [ - 60, - 816, - 80, - 824 - ], - "spans": [ - { - "bbox": [ - 60, - 817, - 67, - 823 - ], - "score": 0.994239091873169, - "content": "4", - "type": "text" - }, - { - "bbox": [ - 68, - 816, - 80, - 824 - ], - "score": 0.9763086438179016, - "content": "0", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 546, - 52, - 585, - 76 - ], - "lines": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "spans": [ - { - "bbox": [ - 546, - 52, - 585, - 61 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "spans": [ - { - "bbox": [ - 548, - 61, - 584, - 69 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 559, - 68, - 573, - 77 - ], - "spans": [ - { - "bbox": [ - 559, - 68, - 573, - 77 - ], - "score": 1.0, - "content": "box", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 479, - 815, - 539, - 824 - ], - "lines": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "spans": [ - { - "bbox": [ - 480, - 816, - 539, - 824 - ], - "score": 1.0, - "content": "IB/M/Jun23/7408/1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "40", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "spans": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 49, - 62, - 528, - 758 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 49, - 62, - 528, - 758 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 49, - 62, - 528, - 758 - ], - "spans": [ - { - "bbox": [ - 49, - 62, - 528, - 758 - ], - "score": 0.947, - "html": "
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
Copyrightinformation
For confidentiality purposes, allacknowledgements of third-party copyright material are published in a separate booklet.This booklet is published aftereach live examinationseries and is availableforfree download fromwww.aqa.org.uk.
Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the
", - "type": "table", - "image_path": "9a755c2b6a0b1e7642ed5ca1052bde3de04138f8a4b4425cfd20f765a966efa0.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 49, - 62, - 528, - 294.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 49, - 294.0, - 528, - 526.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 49, - 526.0, - 528, - 758.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_79", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 39, - 25, - 173, - 75 - ], - "lines": [ - { - "bbox": [ - 40, - 33, - 167, - 73 - ], - "spans": [ - { - "bbox": [ - 40, - 33, - 167, - 73 - ], - "score": 0.921249270439148, - "content": "AQA-", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 38, - 158, - 149, - 286 - ], - "lines": [ - { - "bbox": [ - 41, - 163, - 146, - 186 - ], - "spans": [ - { - "bbox": [ - 41, - 163, - 146, - 186 - ], - "score": 1.0, - "content": "A-LEVEL", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 42, - 199, - 145, - 221 - ], - "spans": [ - { - "bbox": [ - 42, - 199, - 145, - 221 - ], - "score": 1.0, - "content": "PHYSICS", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 41, - 231, - 128, - 258 - ], - "spans": [ - { - "bbox": [ - 41, - 231, - 128, - 258 - ], - "score": 1.0, - "content": "7408/1", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 39, - 268, - 96, - 285 - ], - "spans": [ - { - "bbox": [ - 39, - 268, - 96, - 285 - ], - "score": 1.0, - "content": "Paper 1", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 2.5 - }, - { - "type": "title", - "bbox": [ - 40, - 298, - 123, - 313 - ], - "lines": [ - { - "bbox": [ - 41, - 299, - 122, - 312 - ], - "spans": [ - { - "bbox": [ - 41, - 299, - 122, - 312 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 40, - 323, - 107, - 340 - ], - "lines": [ - { - "bbox": [ - 40, - 325, - 105, - 338 - ], - "spans": [ - { - "bbox": [ - 40, - 325, - 105, - 338 - ], - "score": 1.0, - "content": "June 2019", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 39, - 353, - 129, - 367 - ], - "lines": [ - { - "bbox": [ - 41, - 355, - 128, - 366 - ], - "spans": [ - { - "bbox": [ - 41, - 355, - 128, - 366 - ], - "score": 1.0, - "content": "Version: 1.0 Final", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 42, - 767, - 154, - 782 - ], - "lines": [ - { - "bbox": [ - 42, - 768, - 154, - 781 - ], - "spans": [ - { - "bbox": [ - 42, - 768, - 154, - 781 - ], - "score": 1.0, - "content": "*jun1974081/MS*", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - } - ], - "layout_bboxes": [], - "page_idx": 80, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 570, - 1, - 594, - 14 - ], - "lines": [ - { - "bbox": [ - 569, - 1, - 596, - 15 - ], - "spans": [ - { - "bbox": [ - 569, - 1, - 596, - 15 - ], - "score": 0.999117910861969, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 39, - 25, - 173, - 75 - ], - "lines": [ - { - "bbox": [ - 40, - 33, - 167, - 73 - ], - "spans": [ - { - "bbox": [ - 40, - 33, - 167, - 73 - ], - "score": 0.921249270439148, - "content": "AQA-", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_80", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 33, - 167, - 73 - ] - }, - { - "type": "text", - "bbox": [ - 38, - 158, - 149, - 286 - ], - "lines": [ - { - "bbox": [ - 41, - 163, - 146, - 186 - ], - "spans": [ - { - "bbox": [ - 41, - 163, - 146, - 186 - ], - "score": 1.0, - "content": "A-LEVEL", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 42, - 199, - 145, - 221 - ], - "spans": [ - { - "bbox": [ - 42, - 199, - 145, - 221 - ], - "score": 1.0, - "content": "PHYSICS", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 41, - 231, - 128, - 258 - ], - "spans": [ - { - "bbox": [ - 41, - 231, - 128, - 258 - ], - "score": 1.0, - "content": "7408/1", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 39, - 268, - 96, - 285 - ], - "spans": [ - { - "bbox": [ - 39, - 268, - 96, - 285 - ], - "score": 1.0, - "content": "Paper 1", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 2.5, - "page_num": "page_80", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 39, - 163, - 146, - 285 - ] - }, - { - "type": "title", - "bbox": [ - 40, - 298, - 123, - 313 - ], - "lines": [ - { - "bbox": [ - 41, - 299, - 122, - 312 - ], - "spans": [ - { - "bbox": [ - 41, - 299, - 122, - 312 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_80", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 40, - 323, - 107, - 340 - ], - "lines": [ - { - "bbox": [ - 40, - 325, - 105, - 338 - ], - "spans": [ - { - "bbox": [ - 40, - 325, - 105, - 338 - ], - "score": 1.0, - "content": "June 2019", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_80", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 325, - 105, - 338 - ] - }, - { - "type": "text", - "bbox": [ - 39, - 353, - 129, - 367 - ], - "lines": [ - { - "bbox": [ - 41, - 355, - 128, - 366 - ], - "spans": [ - { - "bbox": [ - 41, - 355, - 128, - 366 - ], - "score": 1.0, - "content": "Version: 1.0 Final", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 42, - 768, - 154, - 781 - ], - "spans": [ - { - "bbox": [ - 42, - 768, - 154, - 781 - ], - "score": 1.0, - "content": "*jun1974081/MS*", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7, - "page_num": "page_80", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 355, - 128, - 366 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 767, - 154, - 782 - ], - "lines": [], - "index": 8, - "page_num": "page_80", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 768, - 154, - 781 - ], - "lines_deleted": true - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 42, - 84, - 545, - 201 - ], - "lines": [ - { - "bbox": [ - 41, - 85, - 546, - 98 - ], - "spans": [ - { - "bbox": [ - 41, - 85, - 546, - 98 - ], - "score": 1.0, - "content": "Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 42, - 99, - 535, - 111 - ], - "spans": [ - { - "bbox": [ - 42, - 99, - 535, - 111 - ], - "score": 1.0, - "content": "questions, by a panel of subject teachers. This mark scheme includes any amendments made at the ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 42, - 112, - 547, - 123 - ], - "spans": [ - { - "bbox": [ - 42, - 112, - 547, - 123 - ], - "score": 1.0, - "content": "standardisation events which all associates participate in and is the scheme which was used by them in ", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 41, - 125, - 523, - 137 - ], - "spans": [ - { - "bbox": [ - 41, - 125, - 523, - 137 - ], - "score": 1.0, - "content": "this examination. The standardisation process ensures that the mark scheme covers the students’ ", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 40, - 137, - 533, - 151 - ], - "spans": [ - { - "bbox": [ - 40, - 137, - 533, - 151 - ], - "score": 1.0, - "content": "responses to questions and that every associate understands and applies it in the same correct way.", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 41, - 150, - 537, - 163 - ], - "spans": [ - { - "bbox": [ - 41, - 150, - 537, - 163 - ], - "score": 1.0, - "content": "As preparation for standardisation each associate analyses a number of students’ scripts. Alternative ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 40, - 163, - 508, - 176 - ], - "spans": [ - { - "bbox": [ - 40, - 163, - 508, - 176 - ], - "score": 1.0, - "content": "answers not already covered by the mark scheme are discussed and legislated for. If, after the ", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 41, - 176, - 536, - 190 - ], - "spans": [ - { - "bbox": [ - 41, - 176, - 536, - 190 - ], - "score": 1.0, - "content": "standardisation process, associates encounter unusual answers which have not been raised they are ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 41, - 189, - 309, - 203 - ], - "spans": [ - { - "bbox": [ - 41, - 189, - 309, - 203 - ], - "score": 1.0, - "content": "required to refer these to the Lead Assessment Writer. ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 42, - 214, - 541, - 280 - ], - "lines": [ - { - "bbox": [ - 42, - 216, - 535, - 227 - ], - "spans": [ - { - "bbox": [ - 42, - 216, - 535, - 227 - ], - "score": 1.0, - "content": "It must be stressed that a mark scheme is a working document, in many cases further developed and", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 42, - 229, - 524, - 241 - ], - "spans": [ - { - "bbox": [ - 42, - 229, - 524, - 241 - ], - "score": 1.0, - "content": "expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 41, - 242, - 514, - 255 - ], - "spans": [ - { - "bbox": [ - 41, - 242, - 514, - 255 - ], - "score": 1.0, - "content": "schemes on the basis of one year’s document should be avoided; whilst the guiding principles of ", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 41, - 255, - 541, - 267 - ], - "spans": [ - { - "bbox": [ - 41, - 255, - 541, - 267 - ], - "score": 1.0, - "content": "assessment remain constant, details will change, depending on the content of a particular examination", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 40, - 269, - 75, - 280 - ], - "spans": [ - { - "bbox": [ - 40, - 269, - 75, - 280 - ], - "score": 1.0, - "content": "paper.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 42, - 305, - 361, - 318 - ], - "lines": [ - { - "bbox": [ - 41, - 306, - 361, - 319 - ], - "spans": [ - { - "bbox": [ - 41, - 306, - 361, - 319 - ], - "score": 1.0, - "content": "Further copies of this mark scheme are available from aqa.org.uk", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "title", - "bbox": [ - 42, - 736, - 121, - 745 - ], - "lines": [ - { - "bbox": [ - 41, - 736, - 123, - 746 - ], - "spans": [ - { - "bbox": [ - 41, - 736, - 123, - 746 - ], - "score": 1.0, - "content": "Copyright information ", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "text", - "bbox": [ - 42, - 751, - 552, - 768 - ], - "lines": [ - { - "bbox": [ - 41, - 750, - 550, - 759 - ], - "spans": [ - { - "bbox": [ - 41, - 750, - 550, - 759 - ], - "score": 1.0, - "content": "For confidentiality purposes acknowledgements of third-party material are published in a separate booklet which is available for free download from www.aqa.org.uk", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 41, - 759, - 143, - 768 - ], - "spans": [ - { - "bbox": [ - 41, - 759, - 143, - 768 - ], - "score": 1.0, - "content": "after the live examination series.", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 16.5 - }, - { - "type": "text", - "bbox": [ - 42, - 775, - 230, - 784 - ], - "lines": [ - { - "bbox": [ - 42, - 775, - 230, - 784 - ], - "spans": [ - { - "bbox": [ - 42, - 775, - 73, - 784 - ], - "score": 1.0, - "content": "Copyright", - "type": "text" - }, - { - "bbox": [ - 73, - 775, - 80, - 782 - ], - "score": 0.61, - "content": "\\circledcirc", - "type": "inline_equation", - "height": 7, - "width": 7 - }, - { - "bbox": [ - 80, - 775, - 230, - 784 - ], - "score": 1.0, - "content": " 2019 AQA and its licensors. All rights reserved.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18 - } - ], - "layout_bboxes": [], - "page_idx": 81, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 248, - 35, - 553, - 48 - ], - "lines": [ - { - "bbox": [ - 249, - 36, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 249, - 36, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2019", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 594, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 596, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 596, - 14 - ], - "score": 0.9988580346107483, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 797, - 47, - 805 - ], - "lines": [ - { - "bbox": [ - 40, - 796, - 49, - 807 - ], - "spans": [ - { - "bbox": [ - 40, - 796, - 49, - 807 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 11, - "width": 9 - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 42, - 84, - 545, - 201 - ], - "lines": [ - { - "bbox": [ - 41, - 85, - 546, - 98 - ], - "spans": [ - { - "bbox": [ - 41, - 85, - 546, - 98 - ], - "score": 1.0, - "content": "Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 42, - 99, - 535, - 111 - ], - "spans": [ - { - "bbox": [ - 42, - 99, - 535, - 111 - ], - "score": 1.0, - "content": "questions, by a panel of subject teachers. This mark scheme includes any amendments made at the ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 42, - 112, - 547, - 123 - ], - "spans": [ - { - "bbox": [ - 42, - 112, - 547, - 123 - ], - "score": 1.0, - "content": "standardisation events which all associates participate in and is the scheme which was used by them in ", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 41, - 125, - 523, - 137 - ], - "spans": [ - { - "bbox": [ - 41, - 125, - 523, - 137 - ], - "score": 1.0, - "content": "this examination. The standardisation process ensures that the mark scheme covers the students’ ", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 40, - 137, - 533, - 151 - ], - "spans": [ - { - "bbox": [ - 40, - 137, - 533, - 151 - ], - "score": 1.0, - "content": "responses to questions and that every associate understands and applies it in the same correct way.", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 41, - 150, - 537, - 163 - ], - "spans": [ - { - "bbox": [ - 41, - 150, - 537, - 163 - ], - "score": 1.0, - "content": "As preparation for standardisation each associate analyses a number of students’ scripts. Alternative ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 40, - 163, - 508, - 176 - ], - "spans": [ - { - "bbox": [ - 40, - 163, - 508, - 176 - ], - "score": 1.0, - "content": "answers not already covered by the mark scheme are discussed and legislated for. If, after the ", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 41, - 176, - 536, - 190 - ], - "spans": [ - { - "bbox": [ - 41, - 176, - 536, - 190 - ], - "score": 1.0, - "content": "standardisation process, associates encounter unusual answers which have not been raised they are ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 41, - 189, - 309, - 203 - ], - "spans": [ - { - "bbox": [ - 41, - 189, - 309, - 203 - ], - "score": 1.0, - "content": "required to refer these to the Lead Assessment Writer. ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 4, - "page_num": "page_81", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 85, - 547, - 203 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 214, - 541, - 280 - ], - "lines": [ - { - "bbox": [ - 42, - 216, - 535, - 227 - ], - "spans": [ - { - "bbox": [ - 42, - 216, - 535, - 227 - ], - "score": 1.0, - "content": "It must be stressed that a mark scheme is a working document, in many cases further developed and", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 42, - 229, - 524, - 241 - ], - "spans": [ - { - "bbox": [ - 42, - 229, - 524, - 241 - ], - "score": 1.0, - "content": "expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 41, - 242, - 514, - 255 - ], - "spans": [ - { - "bbox": [ - 41, - 242, - 514, - 255 - ], - "score": 1.0, - "content": "schemes on the basis of one year’s document should be avoided; whilst the guiding principles of ", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 41, - 255, - 541, - 267 - ], - "spans": [ - { - "bbox": [ - 41, - 255, - 541, - 267 - ], - "score": 1.0, - "content": "assessment remain constant, details will change, depending on the content of a particular examination", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 40, - 269, - 75, - 280 - ], - "spans": [ - { - "bbox": [ - 40, - 269, - 75, - 280 - ], - "score": 1.0, - "content": "paper.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 11, - "page_num": "page_81", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 216, - 541, - 280 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 305, - 361, - 318 - ], - "lines": [ - { - "bbox": [ - 41, - 306, - 361, - 319 - ], - "spans": [ - { - "bbox": [ - 41, - 306, - 361, - 319 - ], - "score": 1.0, - "content": "Further copies of this mark scheme are available from aqa.org.uk", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_81", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 306, - 361, - 319 - ] - }, - { - "type": "title", - "bbox": [ - 42, - 736, - 121, - 745 - ], - "lines": [ - { - "bbox": [ - 41, - 736, - 123, - 746 - ], - "spans": [ - { - "bbox": [ - 41, - 736, - 123, - 746 - ], - "score": 1.0, - "content": "Copyright information ", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_81", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 751, - 552, - 768 - ], - "lines": [ - { - "bbox": [ - 41, - 750, - 550, - 759 - ], - "spans": [ - { - "bbox": [ - 41, - 750, - 550, - 759 - ], - "score": 1.0, - "content": "For confidentiality purposes acknowledgements of third-party material are published in a separate booklet which is available for free download from www.aqa.org.uk", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 41, - 759, - 143, - 768 - ], - "spans": [ - { - "bbox": [ - 41, - 759, - 143, - 768 - ], - "score": 1.0, - "content": "after the live examination series.", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 16.5, - "page_num": "page_81", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 750, - 550, - 768 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 775, - 230, - 784 - ], - "lines": [ - { - "bbox": [ - 42, - 775, - 230, - 784 - ], - "spans": [ - { - "bbox": [ - 42, - 775, - 73, - 784 - ], - "score": 1.0, - "content": "Copyright", - "type": "text" - }, - { - "bbox": [ - 73, - 775, - 80, - 782 - ], - "score": 0.61, - "content": "\\circledcirc", - "type": "inline_equation", - "height": 7, - "width": 7 - }, - { - "bbox": [ - 80, - 775, - 230, - 784 - ], - "score": 1.0, - "content": " 2019 AQA and its licensors. All rights reserved.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18, - "page_num": "page_81", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 775, - 230, - 784 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 42, - 97, - 325, - 116 - ], - "lines": [ - { - "bbox": [ - 41, - 98, - 324, - 116 - ], - "spans": [ - { - "bbox": [ - 41, - 98, - 324, - 116 - ], - "score": 1.0, - "content": "Level of response marking instructions", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 40, - 129, - 525, - 155 - ], - "lines": [ - { - "bbox": [ - 42, - 131, - 521, - 141 - ], - "spans": [ - { - "bbox": [ - 42, - 131, - 521, - 141 - ], - "score": 1.0, - "content": "Level of response mark schemes are broken down into levels, each of which has a descriptor. The", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 42, - 143, - 525, - 155 - ], - "spans": [ - { - "bbox": [ - 42, - 143, - 525, - 155 - ], - "score": 1.0, - "content": "descriptor for the level shows the average performance for the level. There are marks in each level.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5 - }, - { - "type": "text", - "bbox": [ - 40, - 168, - 538, - 194 - ], - "lines": [ - { - "bbox": [ - 41, - 169, - 537, - 183 - ], - "spans": [ - { - "bbox": [ - 41, - 169, - 537, - 183 - ], - "score": 1.0, - "content": "Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 41, - 182, - 509, - 195 - ], - "spans": [ - { - "bbox": [ - 41, - 182, - 509, - 195 - ], - "score": 1.0, - "content": "instructed) to show the qualities that are being looked for. You can then apply the mark scheme.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5 - }, - { - "type": "title", - "bbox": [ - 42, - 205, - 192, - 221 - ], - "lines": [ - { - "bbox": [ - 42, - 207, - 192, - 221 - ], - "spans": [ - { - "bbox": [ - 42, - 207, - 192, - 221 - ], - "score": 1.0, - "content": "Step 1 Determine a level", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 42, - 234, - 549, - 312 - ], - "lines": [ - { - "bbox": [ - 42, - 235, - 548, - 246 - ], - "spans": [ - { - "bbox": [ - 42, - 235, - 548, - 246 - ], - "score": 1.0, - "content": "Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 41, - 247, - 548, - 261 - ], - "spans": [ - { - "bbox": [ - 41, - 247, - 548, - 261 - ], - "score": 1.0, - "content": "descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 41, - 260, - 531, - 274 - ], - "spans": [ - { - "bbox": [ - 41, - 260, - 531, - 274 - ], - "score": 1.0, - "content": "the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it ", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 42, - 275, - 536, - 286 - ], - "spans": [ - { - "bbox": [ - 42, - 275, - 536, - 286 - ], - "score": 1.0, - "content": "meets this level, and so on, until you have a match between the level descriptor and the answer. With", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 41, - 287, - 534, - 300 - ], - "spans": [ - { - "bbox": [ - 41, - 287, - 534, - 300 - ], - "score": 1.0, - "content": "practice and familiarity you will find that for better answers you will be able to quickly skip through the", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 40, - 299, - 203, - 313 - ], - "spans": [ - { - "bbox": [ - 40, - 299, - 203, - 313 - ], - "score": 1.0, - "content": "lower levels of the mark scheme.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 8.5 - }, - { - "type": "text", - "bbox": [ - 41, - 325, - 552, - 403 - ], - "lines": [ - { - "bbox": [ - 42, - 326, - 546, - 339 - ], - "spans": [ - { - "bbox": [ - 42, - 326, - 546, - 339 - ], - "score": 1.0, - "content": "When assigning a level you should look at the overall quality of the answer and not look to pick holes in ", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 41, - 339, - 542, - 352 - ], - "spans": [ - { - "bbox": [ - 41, - 339, - 542, - 352 - ], - "score": 1.0, - "content": "small and specific parts of the answer where the student has not performed quite as well as the rest. If ", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 41, - 352, - 526, - 365 - ], - "spans": [ - { - "bbox": [ - 41, - 352, - 526, - 365 - ], - "score": 1.0, - "content": "the answer covers different aspects of different levels of the mark scheme you should use a best fit ", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 40, - 365, - 553, - 377 - ], - "spans": [ - { - "bbox": [ - 40, - 365, - 553, - 377 - ], - "score": 1.0, - "content": "approach for defining the level and then use the variability of the response to help decide the mark within ", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 42, - 379, - 538, - 390 - ], - "spans": [ - { - "bbox": [ - 42, - 379, - 538, - 390 - ], - "score": 1.0, - "content": "the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 41, - 391, - 508, - 404 - ], - "spans": [ - { - "bbox": [ - 41, - 391, - 508, - 404 - ], - "score": 1.0, - "content": "placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 14.5 - }, - { - "type": "title", - "bbox": [ - 43, - 414, - 195, - 430 - ], - "lines": [ - { - "bbox": [ - 42, - 416, - 196, - 430 - ], - "spans": [ - { - "bbox": [ - 42, - 416, - 196, - 430 - ], - "score": 1.0, - "content": "Step 2 Determine a mark", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18 - }, - { - "type": "text", - "bbox": [ - 42, - 443, - 550, - 521 - ], - "lines": [ - { - "bbox": [ - 42, - 444, - 530, - 457 - ], - "spans": [ - { - "bbox": [ - 42, - 444, - 530, - 457 - ], - "score": 1.0, - "content": "Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 42, - 458, - 546, - 469 - ], - "spans": [ - { - "bbox": [ - 42, - 458, - 546, - 469 - ], - "score": 1.0, - "content": "marks can help with this. The exemplar materials used during standardisation will help. There will be an", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 42, - 471, - 534, - 482 - ], - "spans": [ - { - "bbox": [ - 42, - 471, - 534, - 482 - ], - "score": 1.0, - "content": "answer in the standardising materials which will correspond with each level of the mark scheme. This", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 42, - 484, - 540, - 495 - ], - "spans": [ - { - "bbox": [ - 42, - 484, - 540, - 495 - ], - "score": 1.0, - "content": "answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 42, - 497, - 551, - 508 - ], - "spans": [ - { - "bbox": [ - 42, - 497, - 551, - 508 - ], - "score": 1.0, - "content": "with the example to determine if it is the same standard, better or worse than the example. You can then ", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 41, - 510, - 504, - 521 - ], - "spans": [ - { - "bbox": [ - 41, - 510, - 504, - 521 - ], - "score": 1.0, - "content": "use this to allocate a mark for the answer based on the Lead Examiner’s mark on the example.", - "type": "text" - } - ], - "index": 24 - } - ], - "index": 21.5 - }, - { - "type": "text", - "bbox": [ - 39, - 534, - 549, - 560 - ], - "lines": [ - { - "bbox": [ - 41, - 534, - 548, - 549 - ], - "spans": [ - { - "bbox": [ - 41, - 534, - 548, - 549 - ], - "score": 1.0, - "content": "You may well need to read back through the answer as you apply the mark scheme to clarify points and ", - "type": "text" - } - ], - "index": 25 - }, - { - "bbox": [ - 42, - 549, - 331, - 561 - ], - "spans": [ - { - "bbox": [ - 42, - 549, - 331, - 561 - ], - "score": 1.0, - "content": "assure yourself that the level and the mark are appropriate.", - "type": "text" - } - ], - "index": 26 - } - ], - "index": 25.5 - }, - { - "type": "text", - "bbox": [ - 42, - 573, - 525, - 612 - ], - "lines": [ - { - "bbox": [ - 42, - 574, - 523, - 587 - ], - "spans": [ - { - "bbox": [ - 42, - 574, - 523, - 587 - ], - "score": 1.0, - "content": "Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be ", - "type": "text" - } - ], - "index": 27 - }, - { - "bbox": [ - 41, - 587, - 511, - 600 - ], - "spans": [ - { - "bbox": [ - 41, - 587, - 511, - 600 - ], - "score": 1.0, - "content": "exhaustive and you must credit other valid points. Students do not have to cover all of the points", - "type": "text" - } - ], - "index": 28 - }, - { - "bbox": [ - 40, - 600, - 442, - 613 - ], - "spans": [ - { - "bbox": [ - 40, - 600, - 442, - 613 - ], - "score": 1.0, - "content": "mentioned in the Indicative content to reach the highest level of the mark scheme.", - "type": "text" - } - ], - "index": 29 - } - ], - "index": 28 - }, - { - "type": "text", - "bbox": [ - 41, - 625, - 486, - 638 - ], - "lines": [ - { - "bbox": [ - 42, - 627, - 485, - 638 - ], - "spans": [ - { - "bbox": [ - 42, - 627, - 485, - 638 - ], - "score": 1.0, - "content": "An answer which contains nothing of relevance to the question must be awarded no marks.", - "type": "text" - } - ], - "index": 30 - } - ], - "index": 30 - } - ], - "layout_bboxes": [], - "page_idx": 82, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 248, - 35, - 554, - 48 - ], - "lines": [ - { - "bbox": [ - 249, - 36, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 249, - 36, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2019", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 594, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 596, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 596, - 14 - ], - "score": 0.9988580346107483, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 547, - 797, - 554, - 805 - ], - "lines": [ - { - "bbox": [ - 546, - 796, - 556, - 807 - ], - "spans": [ - { - "bbox": [ - 546, - 796, - 556, - 807 - ], - "score": 1.0, - "content": "3 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 42, - 97, - 325, - 116 - ], - "lines": [ - { - "bbox": [ - 41, - 98, - 324, - 116 - ], - "spans": [ - { - "bbox": [ - 41, - 98, - 324, - 116 - ], - "score": 1.0, - "content": "Level of response marking instructions", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_82", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 40, - 129, - 525, - 155 - ], - "lines": [ - { - "bbox": [ - 42, - 131, - 521, - 141 - ], - "spans": [ - { - "bbox": [ - 42, - 131, - 521, - 141 - ], - "score": 1.0, - "content": "Level of response mark schemes are broken down into levels, each of which has a descriptor. The", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 42, - 143, - 525, - 155 - ], - "spans": [ - { - "bbox": [ - 42, - 143, - 525, - 155 - ], - "score": 1.0, - "content": "descriptor for the level shows the average performance for the level. There are marks in each level.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5, - "page_num": "page_82", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 131, - 525, - 155 - ] - }, - { - "type": "text", - "bbox": [ - 40, - 168, - 538, - 194 - ], - "lines": [ - { - "bbox": [ - 41, - 169, - 537, - 183 - ], - "spans": [ - { - "bbox": [ - 41, - 169, - 537, - 183 - ], - "score": 1.0, - "content": "Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 41, - 182, - 509, - 195 - ], - "spans": [ - { - "bbox": [ - 41, - 182, - 509, - 195 - ], - "score": 1.0, - "content": "instructed) to show the qualities that are being looked for. You can then apply the mark scheme.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5, - "page_num": "page_82", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 169, - 537, - 195 - ] - }, - { - "type": "title", - "bbox": [ - 42, - 205, - 192, - 221 - ], - "lines": [ - { - "bbox": [ - 42, - 207, - 192, - 221 - ], - "spans": [ - { - "bbox": [ - 42, - 207, - 192, - 221 - ], - "score": 1.0, - "content": "Step 1 Determine a level", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_82", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 234, - 549, - 312 - ], - "lines": [ - { - "bbox": [ - 42, - 235, - 548, - 246 - ], - "spans": [ - { - "bbox": [ - 42, - 235, - 548, - 246 - ], - "score": 1.0, - "content": "Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 41, - 247, - 548, - 261 - ], - "spans": [ - { - "bbox": [ - 41, - 247, - 548, - 261 - ], - "score": 1.0, - "content": "descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 41, - 260, - 531, - 274 - ], - "spans": [ - { - "bbox": [ - 41, - 260, - 531, - 274 - ], - "score": 1.0, - "content": "the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it ", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 42, - 275, - 536, - 286 - ], - "spans": [ - { - "bbox": [ - 42, - 275, - 536, - 286 - ], - "score": 1.0, - "content": "meets this level, and so on, until you have a match between the level descriptor and the answer. With", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 41, - 287, - 534, - 300 - ], - "spans": [ - { - "bbox": [ - 41, - 287, - 534, - 300 - ], - "score": 1.0, - "content": "practice and familiarity you will find that for better answers you will be able to quickly skip through the", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 40, - 299, - 203, - 313 - ], - "spans": [ - { - "bbox": [ - 40, - 299, - 203, - 313 - ], - "score": 1.0, - "content": "lower levels of the mark scheme.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 8.5, - "page_num": "page_82", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 235, - 548, - 313 - ] - }, - { - "type": "text", - "bbox": [ - 41, - 325, - 552, - 403 - ], - "lines": [ - { - "bbox": [ - 42, - 326, - 546, - 339 - ], - "spans": [ - { - "bbox": [ - 42, - 326, - 546, - 339 - ], - "score": 1.0, - "content": "When assigning a level you should look at the overall quality of the answer and not look to pick holes in ", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 41, - 339, - 542, - 352 - ], - "spans": [ - { - "bbox": [ - 41, - 339, - 542, - 352 - ], - "score": 1.0, - "content": "small and specific parts of the answer where the student has not performed quite as well as the rest. If ", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 41, - 352, - 526, - 365 - ], - "spans": [ - { - "bbox": [ - 41, - 352, - 526, - 365 - ], - "score": 1.0, - "content": "the answer covers different aspects of different levels of the mark scheme you should use a best fit ", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 40, - 365, - 553, - 377 - ], - "spans": [ - { - "bbox": [ - 40, - 365, - 553, - 377 - ], - "score": 1.0, - "content": "approach for defining the level and then use the variability of the response to help decide the mark within ", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 42, - 379, - 538, - 390 - ], - "spans": [ - { - "bbox": [ - 42, - 379, - 538, - 390 - ], - "score": 1.0, - "content": "the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 41, - 391, - 508, - 404 - ], - "spans": [ - { - "bbox": [ - 41, - 391, - 508, - 404 - ], - "score": 1.0, - "content": "placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 14.5, - "page_num": "page_82", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 326, - 553, - 404 - ] - }, - { - "type": "title", - "bbox": [ - 43, - 414, - 195, - 430 - ], - "lines": [ - { - "bbox": [ - 42, - 416, - 196, - 430 - ], - "spans": [ - { - "bbox": [ - 42, - 416, - 196, - 430 - ], - "score": 1.0, - "content": "Step 2 Determine a mark", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18, - "page_num": "page_82", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 443, - 550, - 521 - ], - "lines": [ - { - "bbox": [ - 42, - 444, - 530, - 457 - ], - "spans": [ - { - "bbox": [ - 42, - 444, - 530, - 457 - ], - "score": 1.0, - "content": "Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 42, - 458, - 546, - 469 - ], - "spans": [ - { - "bbox": [ - 42, - 458, - 546, - 469 - ], - "score": 1.0, - "content": "marks can help with this. The exemplar materials used during standardisation will help. There will be an", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 42, - 471, - 534, - 482 - ], - "spans": [ - { - "bbox": [ - 42, - 471, - 534, - 482 - ], - "score": 1.0, - "content": "answer in the standardising materials which will correspond with each level of the mark scheme. This", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 42, - 484, - 540, - 495 - ], - "spans": [ - { - "bbox": [ - 42, - 484, - 540, - 495 - ], - "score": 1.0, - "content": "answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 42, - 497, - 551, - 508 - ], - "spans": [ - { - "bbox": [ - 42, - 497, - 551, - 508 - ], - "score": 1.0, - "content": "with the example to determine if it is the same standard, better or worse than the example. You can then ", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 41, - 510, - 504, - 521 - ], - "spans": [ - { - "bbox": [ - 41, - 510, - 504, - 521 - ], - "score": 1.0, - "content": "use this to allocate a mark for the answer based on the Lead Examiner’s mark on the example.", - "type": "text" - } - ], - "index": 24 - } - ], - "index": 21.5, - "page_num": "page_82", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 444, - 551, - 521 - ] - }, - { - "type": "text", - "bbox": [ - 39, - 534, - 549, - 560 - ], - "lines": [ - { - "bbox": [ - 41, - 534, - 548, - 549 - ], - "spans": [ - { - "bbox": [ - 41, - 534, - 548, - 549 - ], - "score": 1.0, - "content": "You may well need to read back through the answer as you apply the mark scheme to clarify points and ", - "type": "text" - } - ], - "index": 25 - }, - { - "bbox": [ - 42, - 549, - 331, - 561 - ], - "spans": [ - { - "bbox": [ - 42, - 549, - 331, - 561 - ], - "score": 1.0, - "content": "assure yourself that the level and the mark are appropriate.", - "type": "text" - } - ], - "index": 26 - } - ], - "index": 25.5, - "page_num": "page_82", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 534, - 548, - 561 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 573, - 525, - 612 - ], - "lines": [ - { - "bbox": [ - 42, - 574, - 523, - 587 - ], - "spans": [ - { - "bbox": [ - 42, - 574, - 523, - 587 - ], - "score": 1.0, - "content": "Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be ", - "type": "text" - } - ], - "index": 27 - }, - { - "bbox": [ - 41, - 587, - 511, - 600 - ], - "spans": [ - { - "bbox": [ - 41, - 587, - 511, - 600 - ], - "score": 1.0, - "content": "exhaustive and you must credit other valid points. Students do not have to cover all of the points", - "type": "text" - } - ], - "index": 28 - }, - { - "bbox": [ - 40, - 600, - 442, - 613 - ], - "spans": [ - { - "bbox": [ - 40, - 600, - 442, - 613 - ], - "score": 1.0, - "content": "mentioned in the Indicative content to reach the highest level of the mark scheme.", - "type": "text" - } - ], - "index": 29 - } - ], - "index": 28, - "page_num": "page_82", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 574, - 523, - 613 - ] - }, - { - "type": "text", - "bbox": [ - 41, - 625, - 486, - 638 - ], - "lines": [ - { - "bbox": [ - 42, - 627, - 485, - 638 - ], - "spans": [ - { - "bbox": [ - 42, - 627, - 485, - 638 - ], - "score": 1.0, - "content": "An answer which contains nothing of relevance to the question must be awarded no marks.", - "type": "text" - } - ], - "index": 30 - } - ], - "index": 30, - "page_num": "page_82", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 627, - 485, - 638 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 34, - 86, - 782, - 117 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 86, - 782, - 117 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 34, - 86, - 782, - 117 - ], - "spans": [ - { - "bbox": [ - 34, - 86, - 782, - 117 - ], - "score": 0.585, - "html": "
QuestionAnswersAdditional Comments/GuidelinesMark
", - "type": "table", - "image_path": "1a76007d35ceadc62f9b5fe7d5c550771686055401a31605aee3a7c86d75fb79.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 34, - 86, - 782, - 96.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 34, - 96.33333333333333, - 782, - 106.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 34, - 106.66666666666666, - 782, - 116.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 25, - 122, - 785, - 485 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 25, - 122, - 785, - 485 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 36, - 122, - 776, - 478 - ], - "spans": [ - { - "bbox": [ - 36, - 122, - 776, - 478 - ], - "score": 0.624, - "html": "
01.1lodine-131 has 6 more neutrons (than iodine-125) Condone iodine-131 has 78 neutrons and iodine-125 has 72 neutrons. Condone “6 fewer/less neutrons than iodine-131\" Do not credit nucleons. Suggestion of difference in number of protons loses the mark.
01.2131 (nucleons) If more than one number is given, the nucleon number must be explicit. Accept reverse arguments.1
01.3The tellurium has 1 more neutron (than iodine-125) v The tellurium has 1 fewer proton (than iodine-125) Accept telluriumhas73neutrons Accepttelluriumhas52protons Condone “\"proton number\". Condone \"number of neutrons/protons have increased/decreasedbyone\" Treat any nuclear reactions as neutral. Discussion of electrons in nucleus scores max 1. Accept answer in terms of quarks (one more down and one fewer up). Ignore references to nucleons/mass number.2
", - "type": "table", - "image_path": "03974bf815a435dc925ed8df555fa4a19a0fd550eb08f60e67699123bbe56446.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 25, - 122, - 785, - 243.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 25, - 243.0, - 785, - 364.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 25, - 364.0, - 785, - 485.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "layout_bboxes": [], - "page_idx": 83, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 34, - 86, - 782, - 117 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 86, - 782, - 117 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 34, - 86, - 782, - 117 - ], - "spans": [ - { - "bbox": [ - 34, - 86, - 782, - 117 - ], - "score": 0.585, - "html": "
QuestionAnswersAdditional Comments/GuidelinesMark
", - "type": "table", - "image_path": "1a76007d35ceadc62f9b5fe7d5c550771686055401a31605aee3a7c86d75fb79.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 34, - 86, - 782, - 96.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 34, - 96.33333333333333, - 782, - 106.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 34, - 106.66666666666666, - 782, - 116.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 25, - 122, - 785, - 485 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 25, - 122, - 785, - 485 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 36, - 122, - 776, - 478 - ], - "spans": [ - { - "bbox": [ - 36, - 122, - 776, - 478 - ], - "score": 0.624, - "html": "
01.1lodine-131 has 6 more neutrons (than iodine-125) Condone iodine-131 has 78 neutrons and iodine-125 has 72 neutrons. Condone “6 fewer/less neutrons than iodine-131\" Do not credit nucleons. Suggestion of difference in number of protons loses the mark.
01.2131 (nucleons) If more than one number is given, the nucleon number must be explicit. Accept reverse arguments.1
01.3The tellurium has 1 more neutron (than iodine-125) v The tellurium has 1 fewer proton (than iodine-125) Accept telluriumhas73neutrons Accepttelluriumhas52protons Condone “\"proton number\". Condone \"number of neutrons/protons have increased/decreasedbyone\" Treat any nuclear reactions as neutral. Discussion of electrons in nucleus scores max 1. Accept answer in terms of quarks (one more down and one fewer up). Ignore references to nucleons/mass number.2
", - "type": "table", - "image_path": "03974bf815a435dc925ed8df555fa4a19a0fd550eb08f60e67699123bbe56446.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 25, - 122, - 785, - 243.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 25, - 243.0, - 785, - 364.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 25, - 364.0, - 785, - 485.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 816, - 1, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 0.9983596801757812, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 55, - 550, - 62, - 559 - ], - "lines": [ - { - "bbox": [ - 55, - 552, - 62, - 559 - ], - "spans": [ - { - "bbox": [ - 55, - 552, - 62, - 559 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 451, - 34, - 758, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 756, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 756, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2019", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 34, - 86, - 782, - 117 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 86, - 782, - 117 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 34, - 86, - 782, - 117 - ], - "spans": [ - { - "bbox": [ - 34, - 86, - 782, - 117 - ], - "score": 0.585, - "html": "
QuestionAnswersAdditional Comments/GuidelinesMark
", - "type": "table", - "image_path": "1a76007d35ceadc62f9b5fe7d5c550771686055401a31605aee3a7c86d75fb79.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 34, - 86, - 782, - 96.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 34, - 96.33333333333333, - 782, - 106.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 34, - 106.66666666666666, - 782, - 116.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_83", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 25, - 122, - 785, - 485 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 25, - 122, - 785, - 485 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 36, - 122, - 776, - 478 - ], - "spans": [ - { - "bbox": [ - 36, - 122, - 776, - 478 - ], - "score": 0.624, - "html": "
01.1lodine-131 has 6 more neutrons (than iodine-125) Condone iodine-131 has 78 neutrons and iodine-125 has 72 neutrons. Condone “6 fewer/less neutrons than iodine-131\" Do not credit nucleons. Suggestion of difference in number of protons loses the mark.
01.2131 (nucleons) If more than one number is given, the nucleon number must be explicit. Accept reverse arguments.1
01.3The tellurium has 1 more neutron (than iodine-125) v The tellurium has 1 fewer proton (than iodine-125) Accept telluriumhas73neutrons Accepttelluriumhas52protons Condone “\"proton number\". Condone \"number of neutrons/protons have increased/decreasedbyone\" Treat any nuclear reactions as neutral. Discussion of electrons in nucleus scores max 1. Accept answer in terms of quarks (one more down and one fewer up). Ignore references to nucleons/mass number.2
", - "type": "table", - "image_path": "03974bf815a435dc925ed8df555fa4a19a0fd550eb08f60e67699123bbe56446.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 25, - 122, - 785, - 243.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 25, - 243.0, - 785, - 364.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 25, - 364.0, - 785, - 485.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_83", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 19, - 82, - 805, - 552 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 19, - 82, - 805, - 552 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 19, - 82, - 805, - 552 - ], - "spans": [ - { - "bbox": [ - 19, - 82, - 805, - 552 - ], - "score": 0.93, - "html": "
AAny 3.
beta-decay: (electron and) anti-neutrino released; (internal conversion: only electron released);Treat each difference, as delimited by the answer book, as a single independent mark.
CB (both statements required for mark) internalconversion:allelectronsreleasedwillhavesimilar/discrete energies/momenta beta-decay: electrons will have a range of energies/momenta vContradictionwithin a difference cancels the mark for that difference (on list basis). For a contradiction between separate differences treat the incorrect differenceasneutral.
01.4(internal conversion: no change in constituents of nucleus/element does not change)Allow: F (both statements required for mark)
beta-decay: neutron converted to proton(allow in terms of quarks)/element changes (to one with (one) more p, different Z, different proton number/different atomic number)) Internal conversion: may be accompanied by X-ray photon Beta-decay: may be accompanied by gamma photonv3
D (internal conversion: orbital electron lost)Allow“shells\"for“orbitals\".
beta-decay: electron comes from nucleus / no change in orbital electrons v
Do not award separate marks for force and
E (both statements required for mark) internal conversion: mediated by electromagnetic force / virtualexchangeparticle Condone \"W boson\" or \"W particle\" but not W+ and
photons
W
beta-decay: mediated by weak interaction / W √
Total
7
", - "type": "table", - "image_path": "285ea99a385fc0fdb208790189bcc391d914a2c51484de6c2a72e2de4d7d8bbe.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 19, - 82, - 805, - 238.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 19, - 238.66666666666666, - 805, - 395.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 19, - 395.3333333333333, - 805, - 552.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 84, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 19, - 82, - 805, - 552 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 19, - 82, - 805, - 552 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 19, - 82, - 805, - 552 - ], - "spans": [ - { - "bbox": [ - 19, - 82, - 805, - 552 - ], - "score": 0.93, - "html": "
AAny 3.
beta-decay: (electron and) anti-neutrino released; (internal conversion: only electron released);Treat each difference, as delimited by the answer book, as a single independent mark.
CB (both statements required for mark) internalconversion:allelectronsreleasedwillhavesimilar/discrete energies/momenta beta-decay: electrons will have a range of energies/momenta vContradictionwithin a difference cancels the mark for that difference (on list basis). For a contradiction between separate differences treat the incorrect differenceasneutral.
01.4(internal conversion: no change in constituents of nucleus/element does not change)Allow: F (both statements required for mark)
beta-decay: neutron converted to proton(allow in terms of quarks)/element changes (to one with (one) more p, different Z, different proton number/different atomic number)) Internal conversion: may be accompanied by X-ray photon Beta-decay: may be accompanied by gamma photonv3
D (internal conversion: orbital electron lost)Allow“shells\"for“orbitals\".
beta-decay: electron comes from nucleus / no change in orbital electrons v
Do not award separate marks for force and
E (both statements required for mark) internal conversion: mediated by electromagnetic force / virtualexchangeparticle Condone \"W boson\" or \"W particle\" but not W+ and
photons
W
beta-decay: mediated by weak interaction / W √
Total
7
", - "type": "table", - "image_path": "285ea99a385fc0fdb208790189bcc391d914a2c51484de6c2a72e2de4d7d8bbe.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 19, - 82, - 805, - 238.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 19, - 238.66666666666666, - 805, - 395.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 19, - 395.3333333333333, - 805, - 552.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 451, - 35, - 758, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 757, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 757, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2019", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 0.9983596801757812, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 750, - 550, - 758, - 560 - ], - "lines": [ - { - "bbox": [ - 751, - 551, - 758, - 560 - ], - "spans": [ - { - "bbox": [ - 751, - 551, - 758, - 560 - ], - "score": 1.0, - "content": "5", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 19, - 82, - 805, - 552 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 19, - 82, - 805, - 552 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 19, - 82, - 805, - 552 - ], - "spans": [ - { - "bbox": [ - 19, - 82, - 805, - 552 - ], - "score": 0.93, - "html": "
AAny 3.
beta-decay: (electron and) anti-neutrino released; (internal conversion: only electron released);Treat each difference, as delimited by the answer book, as a single independent mark.
CB (both statements required for mark) internalconversion:allelectronsreleasedwillhavesimilar/discrete energies/momenta beta-decay: electrons will have a range of energies/momenta vContradictionwithin a difference cancels the mark for that difference (on list basis). For a contradiction between separate differences treat the incorrect differenceasneutral.
01.4(internal conversion: no change in constituents of nucleus/element does not change)Allow: F (both statements required for mark)
beta-decay: neutron converted to proton(allow in terms of quarks)/element changes (to one with (one) more p, different Z, different proton number/different atomic number)) Internal conversion: may be accompanied by X-ray photon Beta-decay: may be accompanied by gamma photonv3
D (internal conversion: orbital electron lost)Allow“shells\"for“orbitals\".
beta-decay: electron comes from nucleus / no change in orbital electrons v
Do not award separate marks for force and
E (both statements required for mark) internal conversion: mediated by electromagnetic force / virtualexchangeparticle Condone \"W boson\" or \"W particle\" but not W+ and
photons
W
beta-decay: mediated by weak interaction / W √
Total
7
", - "type": "table", - "image_path": "285ea99a385fc0fdb208790189bcc391d914a2c51484de6c2a72e2de4d7d8bbe.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 19, - 82, - 805, - 238.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 19, - 238.66666666666666, - 805, - 395.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 19, - 395.3333333333333, - 805, - 552.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_84", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 451, - 34, - 758, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 757, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 757, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2019", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table", - "bbox": [ - 28, - 74, - 783, - 105 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 74, - 783, - 105 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 74, - 783, - 105 - ], - "spans": [ - { - "bbox": [ - 28, - 74, - 783, - 105 - ], - "score": 0.753, - "html": "
QuestionAnswersAdditional Comments/GuidelinesMark
", - "type": "table", - "image_path": "bb4a44ec32468bf6bfe2956723b1c201975431db8ecb7e124e72245c08efbeee.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 28, - 74, - 783, - 84.33333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 84.33333333333333, - 783, - 94.66666666666666 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 28, - 94.66666666666666, - 783, - 104.99999999999999 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - }, - { - "type": "table", - "bbox": [ - 32, - 112, - 785, - 172 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 112, - 785, - 172 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 32, - 112, - 785, - 172 - ], - "spans": [ - { - "bbox": [ - 32, - 112, - 785, - 172 - ], - "score": 0.501, - "html": "
Ray enters (prism) along normal v 02.1Allow normal explained eg at right angles to surface Accept “angle of incidence is O\".
", - "type": "table", - "image_path": "076d48c6524c4b495f3149e65690a763cbe5364506f36211399320ce211394bd.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 32, - 112, - 785, - 132.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 32, - 132.0, - 785, - 152.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 32, - 152.0, - 785, - 172.0 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5 - }, - { - "type": "table", - "bbox": [ - 27, - 155, - 783, - 532 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 27, - 155, - 783, - 532 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 28, - 155, - 782, - 532 - ], - "spans": [ - { - "bbox": [ - 28, - 155, - 782, - 532 - ], - "score": 0.956, - "html": "
Treat each point independently. Prism material/it has/they have same refractive index / optical density as windscreen vCondone'it has'or‘they have'or just'same’
Allow\"no change of speed between prism and windscreen\" Allow \"made from same material\"
02.2 Prism fitted to windscreen without gaps vDo not allow“same refractive index between them\" Treat“monochromatic\"asneutral Allow\"contact between prism and windscreen is clean\" etc. Allow \"touching the windscreen\"2
Condone suggestion that any bonding material has same refractive index (as prism and windscreen). Do not accept 'no boundary'
(1) = (990) =() = 02.3 each boundary) The first mark is for the calculation. The second is for the discussion but is contingent on obtaining a value for C.2
", - "type": "table", - "image_path": "f62ef80ef0cd64aeb2c80e953290f8f0223d598402ff9a63a319b98d167c0ced.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 27, - 155, - 783, - 280.6666666666667 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 27, - 280.6666666666667, - 783, - 406.33333333333337 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 27, - 406.33333333333337, - 783, - 532.0 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 8 - } - ], - "layout_bboxes": [], - "page_idx": 85, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 28, - 74, - 783, - 105 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 74, - 783, - 105 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 74, - 783, - 105 - ], - "spans": [ - { - "bbox": [ - 28, - 74, - 783, - 105 - ], - "score": 0.753, - "html": "
QuestionAnswersAdditional Comments/GuidelinesMark
", - "type": "table", - "image_path": "bb4a44ec32468bf6bfe2956723b1c201975431db8ecb7e124e72245c08efbeee.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 28, - 74, - 783, - 84.33333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 84.33333333333333, - 783, - 94.66666666666666 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 28, - 94.66666666666666, - 783, - 104.99999999999999 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - }, - { - "type": "table", - "bbox": [ - 32, - 112, - 785, - 172 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 112, - 785, - 172 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 32, - 112, - 785, - 172 - ], - "spans": [ - { - "bbox": [ - 32, - 112, - 785, - 172 - ], - "score": 0.501, - "html": "
Ray enters (prism) along normal v 02.1Allow normal explained eg at right angles to surface Accept “angle of incidence is O\".
", - "type": "table", - "image_path": "076d48c6524c4b495f3149e65690a763cbe5364506f36211399320ce211394bd.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 32, - 112, - 785, - 132.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 32, - 132.0, - 785, - 152.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 32, - 152.0, - 785, - 172.0 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5 - }, - { - "type": "table", - "bbox": [ - 27, - 155, - 783, - 532 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 27, - 155, - 783, - 532 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 28, - 155, - 782, - 532 - ], - "spans": [ - { - "bbox": [ - 28, - 155, - 782, - 532 - ], - "score": 0.956, - "html": "
Treat each point independently. Prism material/it has/they have same refractive index / optical density as windscreen vCondone'it has'or‘they have'or just'same’
Allow\"no change of speed between prism and windscreen\" Allow \"made from same material\"
02.2 Prism fitted to windscreen without gaps vDo not allow“same refractive index between them\" Treat“monochromatic\"asneutral Allow\"contact between prism and windscreen is clean\" etc. Allow \"touching the windscreen\"2
Condone suggestion that any bonding material has same refractive index (as prism and windscreen). Do not accept 'no boundary'
(1) = (990) =() = 02.3 each boundary) The first mark is for the calculation. The second is for the discussion but is contingent on obtaining a value for C.2
", - "type": "table", - "image_path": "f62ef80ef0cd64aeb2c80e953290f8f0223d598402ff9a63a319b98d167c0ced.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 27, - 155, - 783, - 280.6666666666667 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 27, - 280.6666666666667, - 783, - 406.33333333333337 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 27, - 406.33333333333337, - 783, - 532.0 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 8 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 0.9983596801757812, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 54, - 550, - 62, - 560 - ], - "lines": [ - { - "bbox": [ - 55, - 551, - 62, - 561 - ], - "spans": [ - { - "bbox": [ - 55, - 551, - 62, - 561 - ], - "score": 1.0, - "content": "6", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 451, - 34, - 758, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 757, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 757, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2019", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_85", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 28, - 74, - 783, - 105 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 74, - 783, - 105 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 74, - 783, - 105 - ], - "spans": [ - { - "bbox": [ - 28, - 74, - 783, - 105 - ], - "score": 0.753, - "html": "
QuestionAnswersAdditional Comments/GuidelinesMark
", - "type": "table", - "image_path": "bb4a44ec32468bf6bfe2956723b1c201975431db8ecb7e124e72245c08efbeee.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 28, - 74, - 783, - 84.33333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 84.33333333333333, - 783, - 94.66666666666666 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 28, - 94.66666666666666, - 783, - 104.99999999999999 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2, - "page_num": "page_85", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 32, - 112, - 785, - 172 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 112, - 785, - 172 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 32, - 112, - 785, - 172 - ], - "spans": [ - { - "bbox": [ - 32, - 112, - 785, - 172 - ], - "score": 0.501, - "html": "
Ray enters (prism) along normal v 02.1Allow normal explained eg at right angles to surface Accept “angle of incidence is O\".
", - "type": "table", - "image_path": "076d48c6524c4b495f3149e65690a763cbe5364506f36211399320ce211394bd.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 32, - 112, - 785, - 132.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 32, - 132.0, - 785, - 152.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 32, - 152.0, - 785, - 172.0 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5, - "page_num": "page_85", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 27, - 155, - 783, - 532 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 27, - 155, - 783, - 532 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 28, - 155, - 782, - 532 - ], - "spans": [ - { - "bbox": [ - 28, - 155, - 782, - 532 - ], - "score": 0.956, - "html": "
Treat each point independently. Prism material/it has/they have same refractive index / optical density as windscreen vCondone'it has'or‘they have'or just'same’
Allow\"no change of speed between prism and windscreen\" Allow \"made from same material\"
02.2 Prism fitted to windscreen without gaps vDo not allow“same refractive index between them\" Treat“monochromatic\"asneutral Allow\"contact between prism and windscreen is clean\" etc. Allow \"touching the windscreen\"2
Condone suggestion that any bonding material has same refractive index (as prism and windscreen). Do not accept 'no boundary'
(1) = (990) =() = 02.3 each boundary) The first mark is for the calculation. The second is for the discussion but is contingent on obtaining a value for C.2
", - "type": "table", - "image_path": "f62ef80ef0cd64aeb2c80e953290f8f0223d598402ff9a63a319b98d167c0ced.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 27, - 155, - 783, - 280.6666666666667 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 27, - 280.6666666666667, - 783, - 406.33333333333337 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 27, - 406.33333333333337, - 783, - 532.0 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 8, - "page_num": "page_85", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 32, - 49, - 779, - 130 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 49, - 779, - 130 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 32, - 49, - 779, - 130 - ], - "spans": [ - { - "bbox": [ - 32, - 49, - 779, - 130 - ], - "score": 0.857, - "html": "
Accept clear reference to angle at point A in place
of45°statement. Do not allow “angle of incidence> critical angle\" on
", - "type": "table", - "image_path": "9fae45d647e784e5001583976e9fe0553222143bf458f5f259334254b8796545.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 32, - 49, - 779, - 76.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 32, - 76.0, - 779, - 103.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 32, - 103.0, - 779, - 130.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 27, - 81, - 787, - 534 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 27, - 81, - 787, - 534 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 31, - 81, - 781, - 534 - ], - "spans": [ - { - "bbox": [ - 31, - 81, - 781, - 534 - ], - "score": 0.956, - "html": "
Do not allow “angle of incidence> critical angle\" on its own.
02.4Calculation of critical angle at glass-water boundary (61.0°) OR Calculation of possible n from glass to water (0.707) or absolute n for glass (1.88) OR Calculation of angle of refraction in water (53.9°) 2
So total internal reflection no longer takes place OR some light escapes/refracts (into water) / less light reflects v (Less light stays within windscreen so less light detected at sensor)Do not allow suggestion that TiR occurs at critical angle/when angle of incidence=critical angle. Do not allow \"ray/all the light escapes/refracts\" or \"no light reflects\" or \"less TiR\". Do not condone “total internal refraction/diffraction'
02.5Statement of effect of change in n on the path direction v (Sensible reference to the variation of a few per cent) leads to the idea that change is unlikely to be significant vEg for MP1 Light may change direction inside windscreen Light may change direction at a windscreen boundary Eg for MP2 Variation too small to deviate significantly withinwindscreen-internaleffect VariationtoosmalltoaffecttiratAwithoutMax 2
", - "type": "table", - "image_path": "64f8cb3315bededcdf8a0b3e86b02009d1573729329341fe0c5934a972f723da.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 27, - 81, - 787, - 232.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 27, - 232.0, - 787, - 383.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 27, - 383.0, - 787, - 534.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "layout_bboxes": [], - "page_idx": 86, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 32, - 49, - 779, - 130 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 49, - 779, - 130 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 32, - 49, - 779, - 130 - ], - "spans": [ - { - "bbox": [ - 32, - 49, - 779, - 130 - ], - "score": 0.857, - "html": "
Accept clear reference to angle at point A in place
of45°statement. Do not allow “angle of incidence> critical angle\" on
", - "type": "table", - "image_path": "9fae45d647e784e5001583976e9fe0553222143bf458f5f259334254b8796545.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 32, - 49, - 779, - 76.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 32, - 76.0, - 779, - 103.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 32, - 103.0, - 779, - 130.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 27, - 81, - 787, - 534 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 27, - 81, - 787, - 534 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 31, - 81, - 781, - 534 - ], - "spans": [ - { - "bbox": [ - 31, - 81, - 781, - 534 - ], - "score": 0.956, - "html": "
Do not allow “angle of incidence> critical angle\" on its own.
02.4Calculation of critical angle at glass-water boundary (61.0°) OR Calculation of possible n from glass to water (0.707) or absolute n for glass (1.88) OR Calculation of angle of refraction in water (53.9°) 2
So total internal reflection no longer takes place OR some light escapes/refracts (into water) / less light reflects v (Less light stays within windscreen so less light detected at sensor)Do not allow suggestion that TiR occurs at critical angle/when angle of incidence=critical angle. Do not allow \"ray/all the light escapes/refracts\" or \"no light reflects\" or \"less TiR\". Do not condone “total internal refraction/diffraction'
02.5Statement of effect of change in n on the path direction v (Sensible reference to the variation of a few per cent) leads to the idea that change is unlikely to be significant vEg for MP1 Light may change direction inside windscreen Light may change direction at a windscreen boundary Eg for MP2 Variation too small to deviate significantly withinwindscreen-internaleffect VariationtoosmalltoaffecttiratAwithoutMax 2
", - "type": "table", - "image_path": "64f8cb3315bededcdf8a0b3e86b02009d1573729329341fe0c5934a972f723da.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 27, - 81, - 787, - 232.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 27, - 232.0, - 787, - 383.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 27, - 383.0, - 787, - 534.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 0.9983596801757812, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 750, - 550, - 758, - 559 - ], - "lines": [ - { - "bbox": [ - 750, - 550, - 759, - 561 - ], - "spans": [ - { - "bbox": [ - 750, - 550, - 759, - 561 - ], - "score": 1.0, - "content": "7 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 452, - 34, - 758, - 48 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 757, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 757, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2019", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 32, - 49, - 779, - 130 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 49, - 779, - 130 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 32, - 49, - 779, - 130 - ], - "spans": [ - { - "bbox": [ - 32, - 49, - 779, - 130 - ], - "score": 0.857, - "html": "
Accept clear reference to angle at point A in place
of45°statement. Do not allow “angle of incidence> critical angle\" on
", - "type": "table", - "image_path": "9fae45d647e784e5001583976e9fe0553222143bf458f5f259334254b8796545.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 32, - 49, - 779, - 76.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 32, - 76.0, - 779, - 103.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 32, - 103.0, - 779, - 130.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_86", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 27, - 81, - 787, - 534 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 27, - 81, - 787, - 534 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 31, - 81, - 781, - 534 - ], - "spans": [ - { - "bbox": [ - 31, - 81, - 781, - 534 - ], - "score": 0.956, - "html": "
Do not allow “angle of incidence> critical angle\" on its own.
02.4Calculation of critical angle at glass-water boundary (61.0°) OR Calculation of possible n from glass to water (0.707) or absolute n for glass (1.88) OR Calculation of angle of refraction in water (53.9°) 2
So total internal reflection no longer takes place OR some light escapes/refracts (into water) / less light reflects v (Less light stays within windscreen so less light detected at sensor)Do not allow suggestion that TiR occurs at critical angle/when angle of incidence=critical angle. Do not allow \"ray/all the light escapes/refracts\" or \"no light reflects\" or \"less TiR\". Do not condone “total internal refraction/diffraction'
02.5Statement of effect of change in n on the path direction v (Sensible reference to the variation of a few per cent) leads to the idea that change is unlikely to be significant vEg for MP1 Light may change direction inside windscreen Light may change direction at a windscreen boundary Eg for MP2 Variation too small to deviate significantly withinwindscreen-internaleffect VariationtoosmalltoaffecttiratAwithoutMax 2
", - "type": "table", - "image_path": "64f8cb3315bededcdf8a0b3e86b02009d1573729329341fe0c5934a972f723da.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 27, - 81, - 787, - 232.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 27, - 232.0, - 787, - 383.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 27, - 383.0, - 787, - 534.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_86", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 14, - 48, - 789, - 161 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 14, - 48, - 789, - 161 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 14, - 48, - 789, - 161 - ], - "spans": [ - { - "bbox": [ - 14, - 48, - 789, - 161 - ], - "score": 0.968, - "html": "
droplet-boundaryeffect Variationtoosmalltosignificantlyaffect transmissionatAwithdroplet-boundary effect Allow discussions that may cause a difference, eg
thereisasummativeeffectfrommultiplereflections etc
", - "type": "table", - "image_path": "1c853eb0f948c092c1f236c3d258df7ac9348343756865072b9c7bb4a46acd19.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 14, - 48, - 789, - 85.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 14, - 85.66666666666666, - 789, - 123.33333333333331 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 14, - 123.33333333333331, - 789, - 160.99999999999997 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 87, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 14, - 48, - 789, - 161 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 14, - 48, - 789, - 161 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 14, - 48, - 789, - 161 - ], - "spans": [ - { - "bbox": [ - 14, - 48, - 789, - 161 - ], - "score": 0.968, - "html": "
droplet-boundaryeffect Variationtoosmalltosignificantlyaffect transmissionatAwithdroplet-boundary effect Allow discussions that may cause a difference, eg
thereisasummativeeffectfrommultiplereflections etc
", - "type": "table", - "image_path": "1c853eb0f948c092c1f236c3d258df7ac9348343756865072b9c7bb4a46acd19.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 14, - 48, - 789, - 85.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 14, - 85.66666666666666, - 789, - 123.33333333333331 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 14, - 123.33333333333331, - 789, - 160.99999999999997 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 0.9983596801757812, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 55, - 551, - 61, - 559 - ], - "lines": [ - { - "bbox": [ - 55, - 551, - 62, - 561 - ], - "spans": [ - { - "bbox": [ - 55, - 551, - 62, - 561 - ], - "score": 1.0, - "content": "8", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 452, - 34, - 758, - 48 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 757, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 757, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2019", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 14, - 48, - 789, - 161 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 14, - 48, - 789, - 161 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 14, - 48, - 789, - 161 - ], - "spans": [ - { - "bbox": [ - 14, - 48, - 789, - 161 - ], - "score": 0.968, - "html": "
droplet-boundaryeffect Variationtoosmalltosignificantlyaffect transmissionatAwithdroplet-boundary effect Allow discussions that may cause a difference, eg
thereisasummativeeffectfrommultiplereflections etc
", - "type": "table", - "image_path": "1c853eb0f948c092c1f236c3d258df7ac9348343756865072b9c7bb4a46acd19.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 14, - 48, - 789, - 85.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 14, - 85.66666666666666, - 789, - 123.33333333333331 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 14, - 123.33333333333331, - 789, - 160.99999999999997 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_87", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 30, - 87, - 782, - 417 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 30, - 87, - 782, - 417 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 30, - 87, - 782, - 417 - ], - "spans": [ - { - "bbox": [ - 30, - 87, - 782, - 417 - ], - "score": 0.97, - "html": "
More sensitive because... more likely to encounter/detectwater dropORwill encountermore water drops bigger decrease in light intensity, so more sensitive to rain v 02.6Allow any 2 comments taken from list . Theremust beasense of whether the comment relatestoanimprovementordecreasein sensitivity.Max 2
Treat as list; mark 1 and 2 independently. Allowideaoflargerarea
Do not allow a response that discusses travel time of ray.
Total11
", - "type": "table", - "image_path": "e86a5d0d48a73c866a4f8ff407cd0a4b8b736f5809168e8da027b7be585f8f3d.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 30, - 87, - 782, - 197.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 30, - 197.0, - 782, - 307.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 30, - 307.0, - 782, - 417.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 88, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 30, - 87, - 782, - 417 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 30, - 87, - 782, - 417 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 30, - 87, - 782, - 417 - ], - "spans": [ - { - "bbox": [ - 30, - 87, - 782, - 417 - ], - "score": 0.97, - "html": "
More sensitive because... more likely to encounter/detectwater dropORwill encountermore water drops bigger decrease in light intensity, so more sensitive to rain v 02.6Allow any 2 comments taken from list . Theremust beasense of whether the comment relatestoanimprovementordecreasein sensitivity.Max 2
Treat as list; mark 1 and 2 independently. Allowideaoflargerarea
Do not allow a response that discusses travel time of ray.
Total11
", - "type": "table", - "image_path": "e86a5d0d48a73c866a4f8ff407cd0a4b8b736f5809168e8da027b7be585f8f3d.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 30, - 87, - 782, - 197.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 30, - 197.0, - 782, - 307.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 30, - 307.0, - 782, - 417.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 0.9983596801757812, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 750, - 550, - 758, - 559 - ], - "lines": [ - { - "bbox": [ - 751, - 551, - 758, - 561 - ], - "spans": [ - { - "bbox": [ - 751, - 551, - 758, - 561 - ], - "score": 1.0, - "content": "9", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 451, - 34, - 758, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 756, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 756, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2019", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 30, - 87, - 782, - 417 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 30, - 87, - 782, - 417 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 30, - 87, - 782, - 417 - ], - "spans": [ - { - "bbox": [ - 30, - 87, - 782, - 417 - ], - "score": 0.97, - "html": "
More sensitive because... more likely to encounter/detectwater dropORwill encountermore water drops bigger decrease in light intensity, so more sensitive to rain v 02.6Allow any 2 comments taken from list . Theremust beasense of whether the comment relatestoanimprovementordecreasein sensitivity.Max 2
Treat as list; mark 1 and 2 independently. Allowideaoflargerarea
Do not allow a response that discusses travel time of ray.
Total11
", - "type": "table", - "image_path": "e86a5d0d48a73c866a4f8ff407cd0a4b8b736f5809168e8da027b7be585f8f3d.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 30, - 87, - 782, - 197.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 30, - 197.0, - 782, - 307.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 30, - 307.0, - 782, - 417.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_88", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 29, - 86, - 782, - 117 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 29, - 86, - 782, - 117 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 29, - 86, - 782, - 117 - ], - "spans": [ - { - "bbox": [ - 29, - 86, - 782, - 117 - ], - "score": 0.91, - "html": "
QuestionAnswersAdditional Comments/GuidelinesMark
", - "type": "table", - "image_path": "8ab2a3e935386e6d30aea0945cf82f23be9ef81d7cba4a42b60f3aac1508e0c6.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 29, - 86, - 782, - 96.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 29, - 96.33333333333333, - 782, - 106.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 29, - 106.66666666666666, - 782, - 116.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 26, - 122, - 788, - 540 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 122, - 788, - 540 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 29, - 122, - 784, - 535 - ], - "spans": [ - { - "bbox": [ - 29, - 122, - 784, - 535 - ], - "score": 0.788, - "html": "
03.1Central maximum with lower intensity maxima (either side) Central maximum is twice as wide/wider than other maxima vMP1 is for comparison of intensity. Condone references to brightness/dimness. MP2 is for comparison of width Award credit for a drawn answer eg on Fig 3. Suggestion that pattern due towhite light = max 1 Reference to Young's slit or equation = max 1 If only a single maximum is referred to MP2=0 but2
03.2MP1 can score for description of intensity variation. Wider (central) maxima (maximum) 'The pattern is wider/more spread out' gets 1 mark if no other marks given. Not \"larger pattern\". Condone \"larger\" distances between maxima. (Subsequent) maxima further apart v Condone 'maxima more spaced out' Reference to Young's slit or equation = max 1
03.3d= 1 × 10-3/500(= 2 × 10-6) (sin θ= n2/d = 6.5 × 10-7 /2 × 10-6 = 0.33)lgnorecommentsrelated tochange inwavelength AllowPOT error for d for MP1 May be seen in diffraction grating equation.2
", - "type": "table", - "image_path": "57010858c5feefedbe145aac2f533cc8def1151b67ca5408bff90ff2905cd741.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 26, - 122, - 788, - 261.33333333333337 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 26, - 261.33333333333337, - 788, - 400.66666666666674 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 26, - 400.66666666666674, - 788, - 540.0000000000001 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "layout_bboxes": [], - "page_idx": 89, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 29, - 86, - 782, - 117 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 29, - 86, - 782, - 117 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 29, - 86, - 782, - 117 - ], - "spans": [ - { - "bbox": [ - 29, - 86, - 782, - 117 - ], - "score": 0.91, - "html": "
QuestionAnswersAdditional Comments/GuidelinesMark
", - "type": "table", - "image_path": "8ab2a3e935386e6d30aea0945cf82f23be9ef81d7cba4a42b60f3aac1508e0c6.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 29, - 86, - 782, - 96.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 29, - 96.33333333333333, - 782, - 106.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 29, - 106.66666666666666, - 782, - 116.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 26, - 122, - 788, - 540 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 122, - 788, - 540 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 29, - 122, - 784, - 535 - ], - "spans": [ - { - "bbox": [ - 29, - 122, - 784, - 535 - ], - "score": 0.788, - "html": "
03.1Central maximum with lower intensity maxima (either side) Central maximum is twice as wide/wider than other maxima vMP1 is for comparison of intensity. Condone references to brightness/dimness. MP2 is for comparison of width Award credit for a drawn answer eg on Fig 3. Suggestion that pattern due towhite light = max 1 Reference to Young's slit or equation = max 1 If only a single maximum is referred to MP2=0 but2
03.2MP1 can score for description of intensity variation. Wider (central) maxima (maximum) 'The pattern is wider/more spread out' gets 1 mark if no other marks given. Not \"larger pattern\". Condone \"larger\" distances between maxima. (Subsequent) maxima further apart v Condone 'maxima more spaced out' Reference to Young's slit or equation = max 1
03.3d= 1 × 10-3/500(= 2 × 10-6) (sin θ= n2/d = 6.5 × 10-7 /2 × 10-6 = 0.33)lgnorecommentsrelated tochange inwavelength AllowPOT error for d for MP1 May be seen in diffraction grating equation.2
", - "type": "table", - "image_path": "57010858c5feefedbe145aac2f533cc8def1151b67ca5408bff90ff2905cd741.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 26, - 122, - 788, - 261.33333333333337 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 26, - 261.33333333333337, - 788, - 400.66666666666674 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 26, - 400.66666666666674, - 788, - 540.0000000000001 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 816, - 1, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 0.9983596801757812, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 451, - 34, - 758, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 757, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 757, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2019", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 56, - 550, - 66, - 560 - ], - "lines": [ - { - "bbox": [ - 54, - 550, - 67, - 562 - ], - "spans": [ - { - "bbox": [ - 54, - 550, - 67, - 562 - ], - "score": 1.0, - "content": "10 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 29, - 86, - 782, - 117 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 29, - 86, - 782, - 117 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 29, - 86, - 782, - 117 - ], - "spans": [ - { - "bbox": [ - 29, - 86, - 782, - 117 - ], - "score": 0.91, - "html": "
QuestionAnswersAdditional Comments/GuidelinesMark
", - "type": "table", - "image_path": "8ab2a3e935386e6d30aea0945cf82f23be9ef81d7cba4a42b60f3aac1508e0c6.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 29, - 86, - 782, - 96.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 29, - 96.33333333333333, - 782, - 106.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 29, - 106.66666666666666, - 782, - 116.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_89", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 26, - 122, - 788, - 540 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 122, - 788, - 540 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 29, - 122, - 784, - 535 - ], - "spans": [ - { - "bbox": [ - 29, - 122, - 784, - 535 - ], - "score": 0.788, - "html": "
03.1Central maximum with lower intensity maxima (either side) Central maximum is twice as wide/wider than other maxima vMP1 is for comparison of intensity. Condone references to brightness/dimness. MP2 is for comparison of width Award credit for a drawn answer eg on Fig 3. Suggestion that pattern due towhite light = max 1 Reference to Young's slit or equation = max 1 If only a single maximum is referred to MP2=0 but2
03.2MP1 can score for description of intensity variation. Wider (central) maxima (maximum) 'The pattern is wider/more spread out' gets 1 mark if no other marks given. Not \"larger pattern\". Condone \"larger\" distances between maxima. (Subsequent) maxima further apart v Condone 'maxima more spaced out' Reference to Young's slit or equation = max 1
03.3d= 1 × 10-3/500(= 2 × 10-6) (sin θ= n2/d = 6.5 × 10-7 /2 × 10-6 = 0.33)lgnorecommentsrelated tochange inwavelength AllowPOT error for d for MP1 May be seen in diffraction grating equation.2
", - "type": "table", - "image_path": "57010858c5feefedbe145aac2f533cc8def1151b67ca5408bff90ff2905cd741.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 26, - 122, - 788, - 261.33333333333337 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 26, - 261.33333333333337, - 788, - 400.66666666666674 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 26, - 400.66666666666674, - 788, - 540.0000000000001 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_89", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 32, - 49, - 778, - 104 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 49, - 778, - 104 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 32, - 49, - 778, - 104 - ], - "spans": [ - { - "bbox": [ - 32, - 49, - 778, - 104 - ], - "score": 0.927, - "html": "
0=19%√Allow max 1 for use of grating constant rather than
dto give 7.45 x 10-11 o if no other credit available.
", - "type": "table", - "image_path": "72554c83e4bb64df58485ca58b591daaf060f41a66b505242bff8fca4409e020.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 32, - 49, - 778, - 67.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 32, - 67.33333333333333, - 778, - 85.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 32, - 85.66666666666666, - 778, - 103.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 27, - 110, - 782, - 279 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 27, - 110, - 782, - 279 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 27, - 110, - 782, - 279 - ], - "spans": [ - { - "bbox": [ - 27, - 110, - 782, - 279 - ], - "score": 0.927, - "html": "
Any two from: V vGivecreditforanswershownindiagram
03.4(Range of wavelengths results in):Evidenceforthesemarksmaybeseenin calculations
Central maximumunchanged inwidthTreatintensityvariationasneutral.Max2
Broader maxima/range of angles for each maximum/order Gradually getting broader/more spread out for greater order maxima
(.06
", - "type": "table", - "image_path": "7932cffa7a49f04e2988d89d80a3d2fc280d5463d09c6a1e7ec17ebe339da8ce.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 27, - 110, - 782, - 166.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 27, - 166.33333333333334, - 782, - 222.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 27, - 222.66666666666669, - 782, - 279.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 75, - 271, - 780, - 295 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 75, - 271, - 780, - 295 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 75, - 271, - 780, - 295 - ], - "spans": [ - { - "bbox": [ - 75, - 271, - 780, - 295 - ], - "score": 0.125, - "html": "
8
", - "type": "table", - "image_path": "44027576eae4f37b85f7768971a883dfef91070832f41d721ccd24adf861379f.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 75, - 271, - 780, - 279.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 75, - 279.0, - 780, - 287.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 75, - 287.0, - 780, - 295.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - } - ], - "layout_bboxes": [], - "page_idx": 90, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 32, - 49, - 778, - 104 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 49, - 778, - 104 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 32, - 49, - 778, - 104 - ], - "spans": [ - { - "bbox": [ - 32, - 49, - 778, - 104 - ], - "score": 0.927, - "html": "
0=19%√Allow max 1 for use of grating constant rather than
dto give 7.45 x 10-11 o if no other credit available.
", - "type": "table", - "image_path": "72554c83e4bb64df58485ca58b591daaf060f41a66b505242bff8fca4409e020.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 32, - 49, - 778, - 67.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 32, - 67.33333333333333, - 778, - 85.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 32, - 85.66666666666666, - 778, - 103.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 27, - 110, - 782, - 279 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 27, - 110, - 782, - 279 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 27, - 110, - 782, - 279 - ], - "spans": [ - { - "bbox": [ - 27, - 110, - 782, - 279 - ], - "score": 0.927, - "html": "
Any two from: V vGivecreditforanswershownindiagram
03.4(Range of wavelengths results in):Evidenceforthesemarksmaybeseenin calculations
Central maximumunchanged inwidthTreatintensityvariationasneutral.Max2
Broader maxima/range of angles for each maximum/order Gradually getting broader/more spread out for greater order maxima
(.06
", - "type": "table", - "image_path": "7932cffa7a49f04e2988d89d80a3d2fc280d5463d09c6a1e7ec17ebe339da8ce.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 27, - 110, - 782, - 166.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 27, - 166.33333333333334, - 782, - 222.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 27, - 222.66666666666669, - 782, - 279.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 75, - 271, - 780, - 295 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 75, - 271, - 780, - 295 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 75, - 271, - 780, - 295 - ], - "spans": [ - { - "bbox": [ - 75, - 271, - 780, - 295 - ], - "score": 0.125, - "html": "
8
", - "type": "table", - "image_path": "44027576eae4f37b85f7768971a883dfef91070832f41d721ccd24adf861379f.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 75, - 271, - 780, - 279.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 75, - 279.0, - 780, - 287.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 75, - 287.0, - 780, - 295.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 747, - 550, - 757, - 559 - ], - "lines": [ - { - "bbox": [ - 746, - 550, - 758, - 561 - ], - "spans": [ - { - "bbox": [ - 746, - 550, - 758, - 561 - ], - "score": 1.0, - "content": "11", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 1, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 0.9983596801757812, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 452, - 34, - 758, - 48 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 756, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 756, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2019", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 32, - 49, - 778, - 104 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 49, - 778, - 104 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 32, - 49, - 778, - 104 - ], - "spans": [ - { - "bbox": [ - 32, - 49, - 778, - 104 - ], - "score": 0.927, - "html": "
0=19%√Allow max 1 for use of grating constant rather than
dto give 7.45 x 10-11 o if no other credit available.
", - "type": "table", - "image_path": "72554c83e4bb64df58485ca58b591daaf060f41a66b505242bff8fca4409e020.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 32, - 49, - 778, - 67.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 32, - 67.33333333333333, - 778, - 85.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 32, - 85.66666666666666, - 778, - 103.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_90", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 27, - 110, - 782, - 279 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 27, - 110, - 782, - 279 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 27, - 110, - 782, - 279 - ], - "spans": [ - { - "bbox": [ - 27, - 110, - 782, - 279 - ], - "score": 0.927, - "html": "
Any two from: V vGivecreditforanswershownindiagram
03.4(Range of wavelengths results in):Evidenceforthesemarksmaybeseenin calculations
Central maximumunchanged inwidthTreatintensityvariationasneutral.Max2
Broader maxima/range of angles for each maximum/order Gradually getting broader/more spread out for greater order maxima
(.06
", - "type": "table", - "image_path": "7932cffa7a49f04e2988d89d80a3d2fc280d5463d09c6a1e7ec17ebe339da8ce.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 27, - 110, - 782, - 166.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 27, - 166.33333333333334, - 782, - 222.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 27, - 222.66666666666669, - 782, - 279.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_90", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 75, - 271, - 780, - 295 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 75, - 271, - 780, - 295 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 75, - 271, - 780, - 295 - ], - "spans": [ - { - "bbox": [ - 75, - 271, - 780, - 295 - ], - "score": 0.125, - "html": "
8
", - "type": "table", - "image_path": "44027576eae4f37b85f7768971a883dfef91070832f41d721ccd24adf861379f.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 75, - 271, - 780, - 279.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 75, - 279.0, - 780, - 287.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 75, - 287.0, - 780, - 295.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_90", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 26, - 86, - 784, - 117 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 86, - 784, - 117 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 26, - 86, - 784, - 117 - ], - "spans": [ - { - "bbox": [ - 26, - 86, - 784, - 117 - ], - "score": 0.55, - "html": "
Question AnswersAdditionalComments/GuidelinesMark
", - "type": "table", - "image_path": "f42e2684308c219d576a6bc28bb221f6c0287f99639e84d19e7aced8afcc6395.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 26, - 86, - 784, - 96.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 26, - 96.33333333333333, - 784, - 106.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 26, - 106.66666666666666, - 784, - 116.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 26, - 104, - 790, - 530 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 104, - 790, - 530 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 26, - 104, - 785, - 528 - ], - "spans": [ - { - "bbox": [ - 26, - 104, - 785, - 528 - ], - "score": 0.925, - "html": "
04.1The centre of mass of the beam and box is at the pivot v Idea that moments balance / sum of the moments is zero at this position v OR The anticlockwise moment (of weight of the beam) = clockwise moment (of weight of the box) Links pivot position to a consideration of moments v max 1Accept one route or the other, do not accept points from both. Allow max 1 for \"the pivot is to the right of the centre (of mass) of the beam\" pivot' on its own does not get the first mark 2 Award 2 for 1.25 x weight of beam = 1.5 x weight of empty box Confusion of moments with eg work done/forces =
04.2Clockwise moment = 610 x 9.81 × 1.5 (= 8976 N m) Anticlockwise moment = 250 × 4 + T sin 50 × 4.0 (N m)v Use of clockwise = anticlockwisev Use of T sin 50° seen / relates vertical component to tensionv T(= 1994/sin 50° )= 2600 (N)vCredit any evidence towork out a moment with one mark Condone cos 50 in MP2. Allow ecf for clockwise moment 5 Allow ecf for anticlockwise moment Use of g = 10 N kg-1 gives 2990 N Omission of 4.0 m (g = 9.8) gives 10410 N. Use of c0s 50 (g = 9.8) gives 3100 N
", - "type": "table", - "image_path": "4957170dd7d8e85d9d623469a895fe7f7038724ff9703ced08b3e24a1d0ea693.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 26, - 104, - 790, - 246.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 26, - 246.0, - 790, - 388.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 26, - 388.0, - 790, - 530.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "layout_bboxes": [], - "page_idx": 91, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 26, - 86, - 784, - 117 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 86, - 784, - 117 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 26, - 86, - 784, - 117 - ], - "spans": [ - { - "bbox": [ - 26, - 86, - 784, - 117 - ], - "score": 0.55, - "html": "
Question AnswersAdditionalComments/GuidelinesMark
", - "type": "table", - "image_path": "f42e2684308c219d576a6bc28bb221f6c0287f99639e84d19e7aced8afcc6395.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 26, - 86, - 784, - 96.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 26, - 96.33333333333333, - 784, - 106.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 26, - 106.66666666666666, - 784, - 116.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 26, - 104, - 790, - 530 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 104, - 790, - 530 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 26, - 104, - 785, - 528 - ], - "spans": [ - { - "bbox": [ - 26, - 104, - 785, - 528 - ], - "score": 0.925, - "html": "
04.1The centre of mass of the beam and box is at the pivot v Idea that moments balance / sum of the moments is zero at this position v OR The anticlockwise moment (of weight of the beam) = clockwise moment (of weight of the box) Links pivot position to a consideration of moments v max 1Accept one route or the other, do not accept points from both. Allow max 1 for \"the pivot is to the right of the centre (of mass) of the beam\" pivot' on its own does not get the first mark 2 Award 2 for 1.25 x weight of beam = 1.5 x weight of empty box Confusion of moments with eg work done/forces =
04.2Clockwise moment = 610 x 9.81 × 1.5 (= 8976 N m) Anticlockwise moment = 250 × 4 + T sin 50 × 4.0 (N m)v Use of clockwise = anticlockwisev Use of T sin 50° seen / relates vertical component to tensionv T(= 1994/sin 50° )= 2600 (N)vCredit any evidence towork out a moment with one mark Condone cos 50 in MP2. Allow ecf for clockwise moment 5 Allow ecf for anticlockwise moment Use of g = 10 N kg-1 gives 2990 N Omission of 4.0 m (g = 9.8) gives 10410 N. Use of c0s 50 (g = 9.8) gives 3100 N
", - "type": "table", - "image_path": "4957170dd7d8e85d9d623469a895fe7f7038724ff9703ced08b3e24a1d0ea693.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 26, - 104, - 790, - 246.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 26, - 246.0, - 790, - 388.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 26, - 388.0, - 790, - 530.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 816, - 1, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 0.9983596801757812, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 56, - 550, - 66, - 560 - ], - "lines": [ - { - "bbox": [ - 54, - 550, - 67, - 561 - ], - "spans": [ - { - "bbox": [ - 54, - 550, - 67, - 561 - ], - "score": 1.0, - "content": "12 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 451, - 34, - 758, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 757, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 757, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2019", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 26, - 86, - 784, - 117 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 86, - 784, - 117 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 26, - 86, - 784, - 117 - ], - "spans": [ - { - "bbox": [ - 26, - 86, - 784, - 117 - ], - "score": 0.55, - "html": "
Question AnswersAdditionalComments/GuidelinesMark
", - "type": "table", - "image_path": "f42e2684308c219d576a6bc28bb221f6c0287f99639e84d19e7aced8afcc6395.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 26, - 86, - 784, - 96.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 26, - 96.33333333333333, - 784, - 106.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 26, - 106.66666666666666, - 784, - 116.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_91", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 26, - 104, - 790, - 530 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 104, - 790, - 530 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 26, - 104, - 785, - 528 - ], - "spans": [ - { - "bbox": [ - 26, - 104, - 785, - 528 - ], - "score": 0.925, - "html": "
04.1The centre of mass of the beam and box is at the pivot v Idea that moments balance / sum of the moments is zero at this position v OR The anticlockwise moment (of weight of the beam) = clockwise moment (of weight of the box) Links pivot position to a consideration of moments v max 1Accept one route or the other, do not accept points from both. Allow max 1 for \"the pivot is to the right of the centre (of mass) of the beam\" pivot' on its own does not get the first mark 2 Award 2 for 1.25 x weight of beam = 1.5 x weight of empty box Confusion of moments with eg work done/forces =
04.2Clockwise moment = 610 x 9.81 × 1.5 (= 8976 N m) Anticlockwise moment = 250 × 4 + T sin 50 × 4.0 (N m)v Use of clockwise = anticlockwisev Use of T sin 50° seen / relates vertical component to tensionv T(= 1994/sin 50° )= 2600 (N)vCredit any evidence towork out a moment with one mark Condone cos 50 in MP2. Allow ecf for clockwise moment 5 Allow ecf for anticlockwise moment Use of g = 10 N kg-1 gives 2990 N Omission of 4.0 m (g = 9.8) gives 10410 N. Use of c0s 50 (g = 9.8) gives 3100 N
", - "type": "table", - "image_path": "4957170dd7d8e85d9d623469a895fe7f7038724ff9703ced08b3e24a1d0ea693.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 26, - 104, - 790, - 246.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 26, - 246.0, - 790, - 388.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 26, - 388.0, - 790, - 530.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_91", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 32, - 49, - 784, - 132 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 49, - 784, - 132 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 32, - 49, - 784, - 132 - ], - "spans": [ - { - "bbox": [ - 32, - 49, - 784, - 132 - ], - "score": 0.973, - "html": "
Allow max 4 for use of g = 10 N kg-1.
", - "type": "table", - "image_path": "7e571968d5b47a250b9205ed1e293ffcdf63568799f1e21ca2f27009eb14d5ca.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 32, - 49, - 784, - 76.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 32, - 76.66666666666667, - 784, - 104.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 32, - 104.33333333333334, - 784, - 132.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 92, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 32, - 49, - 784, - 132 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 49, - 784, - 132 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 32, - 49, - 784, - 132 - ], - "spans": [ - { - "bbox": [ - 32, - 49, - 784, - 132 - ], - "score": 0.973, - "html": "
Allow max 4 for use of g = 10 N kg-1.
", - "type": "table", - "image_path": "7e571968d5b47a250b9205ed1e293ffcdf63568799f1e21ca2f27009eb14d5ca.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 32, - 49, - 784, - 76.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 32, - 76.66666666666667, - 784, - 104.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 32, - 104.33333333333334, - 784, - 132.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 747, - 551, - 757, - 559 - ], - "lines": [ - { - "bbox": [ - 746, - 550, - 759, - 561 - ], - "spans": [ - { - "bbox": [ - 746, - 550, - 759, - 561 - ], - "score": 1.0, - "content": "13 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 1, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 0.9983596801757812, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 451, - 34, - 758, - 48 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 757, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 757, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2019", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 32, - 49, - 784, - 132 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 49, - 784, - 132 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 32, - 49, - 784, - 132 - ], - "spans": [ - { - "bbox": [ - 32, - 49, - 784, - 132 - ], - "score": 0.973, - "html": "
Allow max 4 for use of g = 10 N kg-1.
", - "type": "table", - "image_path": "7e571968d5b47a250b9205ed1e293ffcdf63568799f1e21ca2f27009eb14d5ca.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 32, - 49, - 784, - 76.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 32, - 76.66666666666667, - 784, - 104.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 32, - 104.33333333333334, - 784, - 132.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_92", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 8, - 48, - 788, - 166 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 8, - 48, - 788, - 166 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 8, - 48, - 788, - 166 - ], - "spans": [ - { - "bbox": [ - 8, - 48, - 788, - 166 - ], - "score": 0.964, - "html": "
04.37.5 = 12 g t (t = 1.2 s)
2
(calculatedistance)AllowecffromincorrecttforMP2
s (= ut = 18 × 1.2) = 22 (m)v
", - "type": "table", - "image_path": "6a4b9d47500081c17a5f4aa349c166cf8b97c29d1a922c4d9312674bafe79cd2.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 8, - 48, - 788, - 87.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 8, - 87.33333333333334, - 788, - 126.66666666666669 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 8, - 126.66666666666669, - 788, - 166.00000000000003 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 93, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 8, - 48, - 788, - 166 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 8, - 48, - 788, - 166 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 8, - 48, - 788, - 166 - ], - "spans": [ - { - "bbox": [ - 8, - 48, - 788, - 166 - ], - "score": 0.964, - "html": "
04.37.5 = 12 g t (t = 1.2 s)
2
(calculatedistance)AllowecffromincorrecttforMP2
s (= ut = 18 × 1.2) = 22 (m)v
", - "type": "table", - "image_path": "6a4b9d47500081c17a5f4aa349c166cf8b97c29d1a922c4d9312674bafe79cd2.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 8, - 48, - 788, - 87.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 8, - 87.33333333333334, - 788, - 126.66666666666669 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 8, - 126.66666666666669, - 788, - 166.00000000000003 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 56, - 550, - 66, - 559 - ], - "lines": [ - { - "bbox": [ - 55, - 550, - 68, - 561 - ], - "spans": [ - { - "bbox": [ - 55, - 550, - 68, - 561 - ], - "score": 1.0, - "content": "14 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 1, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 0.9983596801757812, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 451, - 34, - 758, - 48 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 757, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 757, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2019", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 8, - 48, - 788, - 166 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 8, - 48, - 788, - 166 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 8, - 48, - 788, - 166 - ], - "spans": [ - { - "bbox": [ - 8, - 48, - 788, - 166 - ], - "score": 0.964, - "html": "
04.37.5 = 12 g t (t = 1.2 s)
2
(calculatedistance)AllowecffromincorrecttforMP2
s (= ut = 18 × 1.2) = 22 (m)v
", - "type": "table", - "image_path": "6a4b9d47500081c17a5f4aa349c166cf8b97c29d1a922c4d9312674bafe79cd2.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 8, - 48, - 788, - 87.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 8, - 87.33333333333334, - 788, - 126.66666666666669 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 8, - 126.66666666666669, - 788, - 166.00000000000003 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_93", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 26, - 49, - 782, - 403 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 49, - 782, - 403 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 26, - 49, - 782, - 403 - ], - "spans": [ - { - "bbox": [ - 26, - 49, - 782, - 403 - ], - "score": 0.976, - "html": "
04.4(Range will be greater:) component of velocity upwards v rock will spend longer in the air v greater tv therefore_the range is greater v OR (Range will be smaller) Counterweight will fall less far before projectile released v Less energy transferred to rock v Initial speed of rock less/horizontal velocity reduced v therefore_the range is smaller OR (balanced arguments)Candidates can argue from both lists to reach a balanced view suggesting that there is no change. Full credit can be obtained from 2 deductions from one list V√+ consistent conclusionv 1 deduction from each list √√+ consistent conclusion v Do not allow an unsupported conclusion. Max3 Conclusion must be consistent with correct statements. Treat incorrect statements as neutral. Do not reward arguments based on a longer time of flight.
Totaltherefore the range is unchanged / answer is indeterminatev12
", - "type": "table", - "image_path": "c14d497240075e93ac06a29be98fc0899a5792c064a9ea58e94028ce7dc66ae9.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 26, - 49, - 782, - 167.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 26, - 167.0, - 782, - 285.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 26, - 285.0, - 782, - 403.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 94, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 26, - 49, - 782, - 403 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 49, - 782, - 403 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 26, - 49, - 782, - 403 - ], - "spans": [ - { - "bbox": [ - 26, - 49, - 782, - 403 - ], - "score": 0.976, - "html": "
04.4(Range will be greater:) component of velocity upwards v rock will spend longer in the air v greater tv therefore_the range is greater v OR (Range will be smaller) Counterweight will fall less far before projectile released v Less energy transferred to rock v Initial speed of rock less/horizontal velocity reduced v therefore_the range is smaller OR (balanced arguments)Candidates can argue from both lists to reach a balanced view suggesting that there is no change. Full credit can be obtained from 2 deductions from one list V√+ consistent conclusionv 1 deduction from each list √√+ consistent conclusion v Do not allow an unsupported conclusion. Max3 Conclusion must be consistent with correct statements. Treat incorrect statements as neutral. Do not reward arguments based on a longer time of flight.
Totaltherefore the range is unchanged / answer is indeterminatev12
", - "type": "table", - "image_path": "c14d497240075e93ac06a29be98fc0899a5792c064a9ea58e94028ce7dc66ae9.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 26, - 49, - 782, - 167.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 26, - 167.0, - 782, - 285.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 26, - 285.0, - 782, - 403.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 747, - 550, - 757, - 559 - ], - "lines": [ - { - "bbox": [ - 746, - 550, - 759, - 561 - ], - "spans": [ - { - "bbox": [ - 746, - 550, - 759, - 561 - ], - "score": 1.0, - "content": "15 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 0.9983596801757812, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 452, - 34, - 758, - 48 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 757, - 46 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 757, - 46 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2019", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 26, - 49, - 782, - 403 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 49, - 782, - 403 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 26, - 49, - 782, - 403 - ], - "spans": [ - { - "bbox": [ - 26, - 49, - 782, - 403 - ], - "score": 0.976, - "html": "
04.4(Range will be greater:) component of velocity upwards v rock will spend longer in the air v greater tv therefore_the range is greater v OR (Range will be smaller) Counterweight will fall less far before projectile released v Less energy transferred to rock v Initial speed of rock less/horizontal velocity reduced v therefore_the range is smaller OR (balanced arguments)Candidates can argue from both lists to reach a balanced view suggesting that there is no change. Full credit can be obtained from 2 deductions from one list V√+ consistent conclusionv 1 deduction from each list √√+ consistent conclusion v Do not allow an unsupported conclusion. Max3 Conclusion must be consistent with correct statements. Treat incorrect statements as neutral. Do not reward arguments based on a longer time of flight.
Totaltherefore the range is unchanged / answer is indeterminatev12
", - "type": "table", - "image_path": "c14d497240075e93ac06a29be98fc0899a5792c064a9ea58e94028ce7dc66ae9.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 26, - 49, - 782, - 167.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 26, - 167.0, - 782, - 285.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 26, - 285.0, - 782, - 403.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_94", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 28, - 87, - 783, - 117 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 87, - 783, - 117 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 87, - 783, - 117 - ], - "spans": [ - { - "bbox": [ - 28, - 87, - 783, - 117 - ], - "score": 0.92, - "html": "
Question AnswersAdditional Comments/GuidelinesMark
", - "type": "table", - "image_path": "9f5c4788d9d209a71fa73ef44d11f46fd04d5d18ecc842776eff007f3d872474.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 28, - 87, - 783, - 97.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 28, - 97.0, - 783, - 107.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 107.0, - 783, - 117.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 28, - 125, - 780, - 246 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 125, - 780, - 246 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 28, - 125, - 780, - 246 - ], - "spans": [ - { - "bbox": [ - 28, - 125, - 780, - 246 - ], - "score": 0.555, - "html": "
05.1Conversion of 110 km h-1 to 31 m sAllowecfforincorrectorfailure tocarryoutspeed 2
= 1 x 1.5 × 103 x their conversion2 with a consistent answerv (= 7(.2) × 105)conversion Expectanswer tobecalculatedcorrectlyandto2+ sf.
", - "type": "table", - "image_path": "4889a3dab6a2f6e10f0d871914de4a8d036b9518f24a1cb18c2c25781f154f8a.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 28, - 125, - 780, - 165.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 28, - 165.33333333333334, - 780, - 205.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 28, - 205.66666666666669, - 780, - 246.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 26, - 251, - 780, - 406 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 251, - 780, - 406 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 26, - 251, - 780, - 406 - ], - "spans": [ - { - "bbox": [ - 26, - 251, - 780, - 406 - ], - "score": 0.674, - "html": "
05.2Component of velocity = 31 × cos (20) ORAllowecfforspeedfrom05.1
evidence of using momentum = mass x velocity (eg 1.5 x 10? x a velocity) vAccept 4.65 x 104 kg m s-1 for max 2 3
= 4.4 × 104 √ For unit only accept kg m s-1 OR NsvUse of 30.6 m s-1 gives 43 kN s
", - "type": "table", - "image_path": "2a13e7b1db89920fcedabd407eedd68924eb6bb7204104d9e92acceffbe5516b.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 26, - 251, - 780, - 302.6666666666667 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 26, - 302.6666666666667, - 780, - 354.33333333333337 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 26, - 354.33333333333337, - 780, - 406.00000000000006 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 20, - 399, - 778, - 520 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 20, - 399, - 778, - 520 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 20, - 399, - 778, - 520 - ], - "spans": [ - { - "bbox": [ - 20, - 399, - 778, - 520 - ], - "score": 0.793, - "html": "
05.3(KE before collision = 700 kJ)Allow ecf for speed from 05.13
Speed (parallel to barrier) after (= 31 × cos 20) = 28.7 m sUse of KE = p²/2m can gain full credit. Allowecfformomentumin05.2
KE after( = %2 × 1.5 × 103 × 28.72 ) = 618 kJ v Change = 700 - 618 (= 82 kJ)Final answer depends on extent towhich candidate hasrounded in earlierparts.Allow correctly
", - "type": "table", - "image_path": "cfceffade000f19fcb620af61b574c898b3cdff3bc4a7879171c91093d4f11ac.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 20, - 399, - 778, - 439.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 20, - 439.3333333333333, - 778, - 479.66666666666663 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 20, - 479.66666666666663, - 778, - 520.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - } - ], - "layout_bboxes": [], - "page_idx": 95, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 28, - 87, - 783, - 117 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 87, - 783, - 117 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 87, - 783, - 117 - ], - "spans": [ - { - "bbox": [ - 28, - 87, - 783, - 117 - ], - "score": 0.92, - "html": "
Question AnswersAdditional Comments/GuidelinesMark
", - "type": "table", - "image_path": "9f5c4788d9d209a71fa73ef44d11f46fd04d5d18ecc842776eff007f3d872474.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 28, - 87, - 783, - 97.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 28, - 97.0, - 783, - 107.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 107.0, - 783, - 117.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 28, - 125, - 780, - 246 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 125, - 780, - 246 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 28, - 125, - 780, - 246 - ], - "spans": [ - { - "bbox": [ - 28, - 125, - 780, - 246 - ], - "score": 0.555, - "html": "
05.1Conversion of 110 km h-1 to 31 m sAllowecfforincorrectorfailure tocarryoutspeed 2
= 1 x 1.5 × 103 x their conversion2 with a consistent answerv (= 7(.2) × 105)conversion Expectanswer tobecalculatedcorrectlyandto2+ sf.
", - "type": "table", - "image_path": "4889a3dab6a2f6e10f0d871914de4a8d036b9518f24a1cb18c2c25781f154f8a.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 28, - 125, - 780, - 165.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 28, - 165.33333333333334, - 780, - 205.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 28, - 205.66666666666669, - 780, - 246.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 26, - 251, - 780, - 406 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 251, - 780, - 406 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 26, - 251, - 780, - 406 - ], - "spans": [ - { - "bbox": [ - 26, - 251, - 780, - 406 - ], - "score": 0.674, - "html": "
05.2Component of velocity = 31 × cos (20) ORAllowecfforspeedfrom05.1
evidence of using momentum = mass x velocity (eg 1.5 x 10? x a velocity) vAccept 4.65 x 104 kg m s-1 for max 2 3
= 4.4 × 104 √ For unit only accept kg m s-1 OR NsvUse of 30.6 m s-1 gives 43 kN s
", - "type": "table", - "image_path": "2a13e7b1db89920fcedabd407eedd68924eb6bb7204104d9e92acceffbe5516b.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 26, - 251, - 780, - 302.6666666666667 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 26, - 302.6666666666667, - 780, - 354.33333333333337 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 26, - 354.33333333333337, - 780, - 406.00000000000006 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 20, - 399, - 778, - 520 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 20, - 399, - 778, - 520 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 20, - 399, - 778, - 520 - ], - "spans": [ - { - "bbox": [ - 20, - 399, - 778, - 520 - ], - "score": 0.793, - "html": "
05.3(KE before collision = 700 kJ)Allow ecf for speed from 05.13
Speed (parallel to barrier) after (= 31 × cos 20) = 28.7 m sUse of KE = p²/2m can gain full credit. Allowecfformomentumin05.2
KE after( = %2 × 1.5 × 103 × 28.72 ) = 618 kJ v Change = 700 - 618 (= 82 kJ)Final answer depends on extent towhich candidate hasrounded in earlierparts.Allow correctly
", - "type": "table", - "image_path": "cfceffade000f19fcb620af61b574c898b3cdff3bc4a7879171c91093d4f11ac.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 20, - 399, - 778, - 439.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 20, - 439.3333333333333, - 778, - 479.66666666666663 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 20, - 479.66666666666663, - 778, - 520.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 816, - 1, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 0.9983596801757812, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 451, - 34, - 758, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 757, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 757, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2019", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 56, - 550, - 66, - 560 - ], - "lines": [ - { - "bbox": [ - 54, - 550, - 68, - 562 - ], - "spans": [ - { - "bbox": [ - 54, - 550, - 68, - 562 - ], - "score": 1.0, - "content": "16 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 28, - 87, - 783, - 117 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 87, - 783, - 117 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 87, - 783, - 117 - ], - "spans": [ - { - "bbox": [ - 28, - 87, - 783, - 117 - ], - "score": 0.92, - "html": "
Question AnswersAdditional Comments/GuidelinesMark
", - "type": "table", - "image_path": "9f5c4788d9d209a71fa73ef44d11f46fd04d5d18ecc842776eff007f3d872474.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 28, - 87, - 783, - 97.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 28, - 97.0, - 783, - 107.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 107.0, - 783, - 117.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_95", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 28, - 125, - 780, - 246 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 125, - 780, - 246 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 28, - 125, - 780, - 246 - ], - "spans": [ - { - "bbox": [ - 28, - 125, - 780, - 246 - ], - "score": 0.555, - "html": "
05.1Conversion of 110 km h-1 to 31 m sAllowecfforincorrectorfailure tocarryoutspeed 2
= 1 x 1.5 × 103 x their conversion2 with a consistent answerv (= 7(.2) × 105)conversion Expectanswer tobecalculatedcorrectlyandto2+ sf.
", - "type": "table", - "image_path": "4889a3dab6a2f6e10f0d871914de4a8d036b9518f24a1cb18c2c25781f154f8a.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 28, - 125, - 780, - 165.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 28, - 165.33333333333334, - 780, - 205.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 28, - 205.66666666666669, - 780, - 246.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_95", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 26, - 251, - 780, - 406 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 251, - 780, - 406 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 26, - 251, - 780, - 406 - ], - "spans": [ - { - "bbox": [ - 26, - 251, - 780, - 406 - ], - "score": 0.674, - "html": "
05.2Component of velocity = 31 × cos (20) ORAllowecfforspeedfrom05.1
evidence of using momentum = mass x velocity (eg 1.5 x 10? x a velocity) vAccept 4.65 x 104 kg m s-1 for max 2 3
= 4.4 × 104 √ For unit only accept kg m s-1 OR NsvUse of 30.6 m s-1 gives 43 kN s
", - "type": "table", - "image_path": "2a13e7b1db89920fcedabd407eedd68924eb6bb7204104d9e92acceffbe5516b.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 26, - 251, - 780, - 302.6666666666667 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 26, - 302.6666666666667, - 780, - 354.33333333333337 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 26, - 354.33333333333337, - 780, - 406.00000000000006 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_95", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 20, - 399, - 778, - 520 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 20, - 399, - 778, - 520 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 20, - 399, - 778, - 520 - ], - "spans": [ - { - "bbox": [ - 20, - 399, - 778, - 520 - ], - "score": 0.793, - "html": "
05.3(KE before collision = 700 kJ)Allow ecf for speed from 05.13
Speed (parallel to barrier) after (= 31 × cos 20) = 28.7 m sUse of KE = p²/2m can gain full credit. Allowecfformomentumin05.2
KE after( = %2 × 1.5 × 103 × 28.72 ) = 618 kJ v Change = 700 - 618 (= 82 kJ)Final answer depends on extent towhich candidate hasrounded in earlierparts.Allow correctly
", - "type": "table", - "image_path": "cfceffade000f19fcb620af61b574c898b3cdff3bc4a7879171c91093d4f11ac.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 20, - 399, - 778, - 439.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 20, - 439.3333333333333, - 778, - 479.66666666666663 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 20, - 479.66666666666663, - 778, - 520.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10, - "page_num": "page_95", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 28, - 49, - 784, - 171 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 49, - 784, - 171 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 49, - 784, - 171 - ], - "spans": [ - { - "bbox": [ - 28, - 49, - 784, - 171 - ], - "score": 0.975, - "html": "
Speed (perpendicular to barrier) after = 31 × sin 20 (= 10.5 m s Loss of KE (= %2 × 1.5 × 103 × 10.52 ) = 82 kJ Justification that total KE = KE due to speed parallel to barrier + KE due tospeedperpendicular tobarrier√Inthisquestion, do not insist on final answer to 2+ Sf.
", - "type": "table", - "image_path": "57809694c69edfb88b0dc622314d3e346a19c9f3ffe5e6691bfc64acc61f4abc.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 28, - 49, - 784, - 89.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 28, - 89.66666666666666, - 784, - 130.33333333333331 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 130.33333333333331, - 784, - 170.99999999999997 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 96, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 28, - 49, - 784, - 171 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 49, - 784, - 171 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 49, - 784, - 171 - ], - "spans": [ - { - "bbox": [ - 28, - 49, - 784, - 171 - ], - "score": 0.975, - "html": "
Speed (perpendicular to barrier) after = 31 × sin 20 (= 10.5 m s Loss of KE (= %2 × 1.5 × 103 × 10.52 ) = 82 kJ Justification that total KE = KE due to speed parallel to barrier + KE due tospeedperpendicular tobarrier√Inthisquestion, do not insist on final answer to 2+ Sf.
", - "type": "table", - "image_path": "57809694c69edfb88b0dc622314d3e346a19c9f3ffe5e6691bfc64acc61f4abc.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 28, - 49, - 784, - 89.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 28, - 89.66666666666666, - 784, - 130.33333333333331 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 130.33333333333331, - 784, - 170.99999999999997 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 748, - 550, - 757, - 559 - ], - "lines": [ - { - "bbox": [ - 745, - 550, - 759, - 562 - ], - "spans": [ - { - "bbox": [ - 745, - 550, - 759, - 562 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 12, - "width": 14 - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 0.9983596801757812, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 452, - 34, - 758, - 48 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 757, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 757, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2019", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 28, - 49, - 784, - 171 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 49, - 784, - 171 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 49, - 784, - 171 - ], - "spans": [ - { - "bbox": [ - 28, - 49, - 784, - 171 - ], - "score": 0.975, - "html": "
Speed (perpendicular to barrier) after = 31 × sin 20 (= 10.5 m s Loss of KE (= %2 × 1.5 × 103 × 10.52 ) = 82 kJ Justification that total KE = KE due to speed parallel to barrier + KE due tospeedperpendicular tobarrier√Inthisquestion, do not insist on final answer to 2+ Sf.
", - "type": "table", - "image_path": "57809694c69edfb88b0dc622314d3e346a19c9f3ffe5e6691bfc64acc61f4abc.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 28, - 49, - 784, - 89.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 28, - 89.66666666666666, - 784, - 130.33333333333331 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 130.33333333333331, - 784, - 170.99999999999997 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_96", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 11, - 79, - 784, - 521 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 11, - 79, - 784, - 521 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 11, - 79, - 784, - 521 - ], - "spans": [ - { - "bbox": [ - 11, - 79, - 784, - 521 - ], - "score": 0.957, - "html": "
05.4Evidence of work done = force × distance Eg Force = 82 000 / 1.5 0R their value for 05.3÷1.5v Allow 80 kJ for energy = 5.5 × 104 Nv This is less than braking force - so yes. v OR energy approach 90 kJ v
work done by barrier = 60 kN x 1.5 mv
which is > Ek of vehicle, so yes v OR impulse argument
evaluate time taken to stop, 0.26 s v3 Generalschemeforalternativesandreverse arguments is:
impulse value leading to distance or forcev ·conclusion consistent with correct method of calculation vfirst step calculation subsequent calculation(s) leading to
comparativevalue.Allow ecf for error in first step.
conclusion consistent with correct method of calculation
OR use of F=ma and suvat : F= ma leading to a = (-)40 m s-2√
suvat leads to 1.37 mvAlternative suvat method:
uses suvat to get a = 36.5 m s-2
which is <1.5 m, s0 yes vuses F=ma
which is <60 kN, s0 yes
", - "type": "table", - "image_path": "256852c584e2056c2eff91c7a65dffe0078628b99e159e8a9ec5882ff139d37d.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 11, - 79, - 784, - 226.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 11, - 226.33333333333334, - 784, - 373.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 11, - 373.6666666666667, - 784, - 521.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 97, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 11, - 79, - 784, - 521 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 11, - 79, - 784, - 521 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 11, - 79, - 784, - 521 - ], - "spans": [ - { - "bbox": [ - 11, - 79, - 784, - 521 - ], - "score": 0.957, - "html": "
05.4Evidence of work done = force × distance Eg Force = 82 000 / 1.5 0R their value for 05.3÷1.5v Allow 80 kJ for energy = 5.5 × 104 Nv This is less than braking force - so yes. v OR energy approach 90 kJ v
work done by barrier = 60 kN x 1.5 mv
which is > Ek of vehicle, so yes v OR impulse argument
evaluate time taken to stop, 0.26 s v3 Generalschemeforalternativesandreverse arguments is:
impulse value leading to distance or forcev ·conclusion consistent with correct method of calculation vfirst step calculation subsequent calculation(s) leading to
comparativevalue.Allow ecf for error in first step.
conclusion consistent with correct method of calculation
OR use of F=ma and suvat : F= ma leading to a = (-)40 m s-2√
suvat leads to 1.37 mvAlternative suvat method:
uses suvat to get a = 36.5 m s-2
which is <1.5 m, s0 yes vuses F=ma
which is <60 kN, s0 yes
", - "type": "table", - "image_path": "256852c584e2056c2eff91c7a65dffe0078628b99e159e8a9ec5882ff139d37d.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 11, - 79, - 784, - 226.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 11, - 226.33333333333334, - 784, - 373.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 11, - 373.6666666666667, - 784, - 521.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 451, - 34, - 758, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 756, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 756, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2019", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 0.9983596801757812, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 56, - 550, - 66, - 560 - ], - "lines": [ - { - "bbox": [ - 54, - 549, - 68, - 562 - ], - "spans": [ - { - "bbox": [ - 54, - 549, - 68, - 562 - ], - "score": 1.0, - "content": "18 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 11, - 79, - 784, - 521 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 11, - 79, - 784, - 521 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 11, - 79, - 784, - 521 - ], - "spans": [ - { - "bbox": [ - 11, - 79, - 784, - 521 - ], - "score": 0.957, - "html": "
05.4Evidence of work done = force × distance Eg Force = 82 000 / 1.5 0R their value for 05.3÷1.5v Allow 80 kJ for energy = 5.5 × 104 Nv This is less than braking force - so yes. v OR energy approach 90 kJ v
work done by barrier = 60 kN x 1.5 mv
which is > Ek of vehicle, so yes v OR impulse argument
evaluate time taken to stop, 0.26 s v3 Generalschemeforalternativesandreverse arguments is:
impulse value leading to distance or forcev ·conclusion consistent with correct method of calculation vfirst step calculation subsequent calculation(s) leading to
comparativevalue.Allow ecf for error in first step.
conclusion consistent with correct method of calculation
OR use of F=ma and suvat : F= ma leading to a = (-)40 m s-2√
suvat leads to 1.37 mvAlternative suvat method:
uses suvat to get a = 36.5 m s-2
which is <1.5 m, s0 yes vuses F=ma
which is <60 kN, s0 yes
", - "type": "table", - "image_path": "256852c584e2056c2eff91c7a65dffe0078628b99e159e8a9ec5882ff139d37d.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 11, - 79, - 784, - 226.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 11, - 226.33333333333334, - 784, - 373.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 11, - 373.6666666666667, - 784, - 521.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_97", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 27, - 48, - 784, - 264 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 27, - 48, - 784, - 264 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 27, - 48, - 784, - 264 - ], - "spans": [ - { - "bbox": [ - 27, - 48, - 784, - 264 - ], - "score": 0.971, - "html": "
(Steel barrier is better because)
05.5Increasetimeofcontactasmaterialdeforms Reference to impulse (= change in momentum = Ft) implies smaller force (on dummy) OR Increasing stopping distance as material deforms v Reference to work done (= Fs) implies smaller force (on dummy) vAllow correct discussionleading to concretebarrier is worse. Alternativesecondmarkforeither alternativecan beawardedforcorrectreferencetoF=ma2
Total13
", - "type": "table", - "image_path": "f365891b67658e2e41a1822c3521de6a60fa56e3a543a8c2e131533cc9ea09ab.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 27, - 48, - 784, - 120.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 27, - 120.0, - 784, - 192.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 27, - 192.0, - 784, - 264.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 98, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 27, - 48, - 784, - 264 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 27, - 48, - 784, - 264 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 27, - 48, - 784, - 264 - ], - "spans": [ - { - "bbox": [ - 27, - 48, - 784, - 264 - ], - "score": 0.971, - "html": "
(Steel barrier is better because)
05.5Increasetimeofcontactasmaterialdeforms Reference to impulse (= change in momentum = Ft) implies smaller force (on dummy) OR Increasing stopping distance as material deforms v Reference to work done (= Fs) implies smaller force (on dummy) vAllow correct discussionleading to concretebarrier is worse. Alternativesecondmarkforeither alternativecan beawardedforcorrectreferencetoF=ma2
Total13
", - "type": "table", - "image_path": "f365891b67658e2e41a1822c3521de6a60fa56e3a543a8c2e131533cc9ea09ab.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 27, - 48, - 784, - 120.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 27, - 120.0, - 784, - 192.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 27, - 192.0, - 784, - 264.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 747, - 550, - 757, - 559 - ], - "lines": [ - { - "bbox": [ - 746, - 550, - 759, - 561 - ], - "spans": [ - { - "bbox": [ - 746, - 550, - 759, - 561 - ], - "score": 1.0, - "content": "19 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 0.9983596801757812, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 451, - 34, - 758, - 48 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 757, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 757, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2019", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 27, - 48, - 784, - 264 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 27, - 48, - 784, - 264 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 27, - 48, - 784, - 264 - ], - "spans": [ - { - "bbox": [ - 27, - 48, - 784, - 264 - ], - "score": 0.971, - "html": "
(Steel barrier is better because)
05.5Increasetimeofcontactasmaterialdeforms Reference to impulse (= change in momentum = Ft) implies smaller force (on dummy) OR Increasing stopping distance as material deforms v Reference to work done (= Fs) implies smaller force (on dummy) vAllow correct discussionleading to concretebarrier is worse. Alternativesecondmarkforeither alternativecan beawardedforcorrectreferencetoF=ma2
Total13
", - "type": "table", - "image_path": "f365891b67658e2e41a1822c3521de6a60fa56e3a543a8c2e131533cc9ea09ab.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 27, - 48, - 784, - 120.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 27, - 120.0, - 784, - 192.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 27, - 192.0, - 784, - 264.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_98", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 30, - 87, - 783, - 118 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 30, - 87, - 783, - 118 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 30, - 87, - 783, - 118 - ], - "spans": [ - { - "bbox": [ - 30, - 87, - 783, - 118 - ], - "score": 0.855, - "html": "
QuestionAnswersAdditional Comments/GuidelinesMark
", - "type": "table", - "image_path": "7e78c7f03121ab049b0dd847d1cb6d246afedbb8c6293263922bd41925b0c72a.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 30, - 87, - 783, - 97.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 30, - 97.33333333333333, - 783, - 107.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 30, - 107.66666666666666, - 783, - 117.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 32, - 125, - 781, - 157 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 125, - 781, - 157 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 32, - 125, - 781, - 157 - ], - "spans": [ - { - "bbox": [ - 32, - 125, - 781, - 157 - ], - "score": 0.751, - "html": "
1.5 (ms) 06.11
", - "type": "table", - "image_path": "b318a9043f925407ef9112a29e0c326eee0fa519213dc3d7fd78bac2f6da184f.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 32, - 125, - 781, - 135.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 32, - 135.66666666666666, - 781, - 146.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 32, - 146.33333333333331, - 781, - 156.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 29, - 165, - 783, - 292 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 29, - 165, - 783, - 292 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 29, - 165, - 783, - 292 - ], - "spans": [ - { - "bbox": [ - 29, - 165, - 783, - 292 - ], - "score": 0.865, - "html": "
06.2A = 4.2 (mm) read from graph T = 2.0 (ms) read from graph Condone power of ten error in A and/or T but not in final answer. Evidence for T might be seen in equation, as 5003
(f). (amax = 4.2 × 10-3 × (2 × π /(2 × 10-3)2
4.1(5) × 104 (m s-²) (Do not allow 4.2)Only allowed ecf for max 2 is use of 4.1 mm for A, giving 4.0 x 104 (m s-2)
", - "type": "table", - "image_path": "c7488800dca40982482ca4de387b97282e026520496a19c2a27cbe6047f8048b.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 29, - 165, - 783, - 207.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 29, - 207.33333333333334, - 783, - 249.66666666666669 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 29, - 249.66666666666669, - 783, - 292.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 28, - 299, - 782, - 385 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 299, - 782, - 385 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 28, - 299, - 782, - 384 - ], - "spans": [ - { - "bbox": [ - 28, - 299, - 782, - 384 - ], - "score": 0.166, - "html": "
06.3longitudinal (they) oscillate along direction of energy transferBoth required for 1 mark Condone“vibrate”for oscillate. Condone‘travel'fortransfer
Total5
", - "type": "table", - "image_path": "03cc19547f04886912985e4757085cd1f2a26a7501426da9fe03276a3675f826.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 28, - 299, - 782, - 327.6666666666667 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 28, - 327.6666666666667, - 782, - 356.33333333333337 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 28, - 356.33333333333337, - 782, - 385.00000000000006 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - } - ], - "layout_bboxes": [], - "page_idx": 99, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 30, - 87, - 783, - 118 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 30, - 87, - 783, - 118 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 30, - 87, - 783, - 118 - ], - "spans": [ - { - "bbox": [ - 30, - 87, - 783, - 118 - ], - "score": 0.855, - "html": "
QuestionAnswersAdditional Comments/GuidelinesMark
", - "type": "table", - "image_path": "7e78c7f03121ab049b0dd847d1cb6d246afedbb8c6293263922bd41925b0c72a.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 30, - 87, - 783, - 97.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 30, - 97.33333333333333, - 783, - 107.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 30, - 107.66666666666666, - 783, - 117.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 32, - 125, - 781, - 157 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 125, - 781, - 157 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 32, - 125, - 781, - 157 - ], - "spans": [ - { - "bbox": [ - 32, - 125, - 781, - 157 - ], - "score": 0.751, - "html": "
1.5 (ms) 06.11
", - "type": "table", - "image_path": "b318a9043f925407ef9112a29e0c326eee0fa519213dc3d7fd78bac2f6da184f.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 32, - 125, - 781, - 135.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 32, - 135.66666666666666, - 781, - 146.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 32, - 146.33333333333331, - 781, - 156.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 29, - 165, - 783, - 292 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 29, - 165, - 783, - 292 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 29, - 165, - 783, - 292 - ], - "spans": [ - { - "bbox": [ - 29, - 165, - 783, - 292 - ], - "score": 0.865, - "html": "
06.2A = 4.2 (mm) read from graph T = 2.0 (ms) read from graph Condone power of ten error in A and/or T but not in final answer. Evidence for T might be seen in equation, as 5003
(f). (amax = 4.2 × 10-3 × (2 × π /(2 × 10-3)2
4.1(5) × 104 (m s-²) (Do not allow 4.2)Only allowed ecf for max 2 is use of 4.1 mm for A, giving 4.0 x 104 (m s-2)
", - "type": "table", - "image_path": "c7488800dca40982482ca4de387b97282e026520496a19c2a27cbe6047f8048b.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 29, - 165, - 783, - 207.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 29, - 207.33333333333334, - 783, - 249.66666666666669 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 29, - 249.66666666666669, - 783, - 292.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 28, - 299, - 782, - 385 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 299, - 782, - 385 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 28, - 299, - 782, - 384 - ], - "spans": [ - { - "bbox": [ - 28, - 299, - 782, - 384 - ], - "score": 0.166, - "html": "
06.3longitudinal (they) oscillate along direction of energy transferBoth required for 1 mark Condone“vibrate”for oscillate. Condone‘travel'fortransfer
Total5
", - "type": "table", - "image_path": "03cc19547f04886912985e4757085cd1f2a26a7501426da9fe03276a3675f826.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 28, - 299, - 782, - 327.6666666666667 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 28, - 327.6666666666667, - 782, - 356.33333333333337 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 28, - 356.33333333333337, - 782, - 385.00000000000006 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 55, - 550, - 66, - 559 - ], - "lines": [ - { - "bbox": [ - 54, - 550, - 68, - 561 - ], - "spans": [ - { - "bbox": [ - 54, - 550, - 68, - 561 - ], - "score": 1.0, - "content": "20 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 1, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 0.9983596801757812, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 451, - 34, - 758, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 756, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 756, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2019", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 30, - 87, - 783, - 118 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 30, - 87, - 783, - 118 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 30, - 87, - 783, - 118 - ], - "spans": [ - { - "bbox": [ - 30, - 87, - 783, - 118 - ], - "score": 0.855, - "html": "
QuestionAnswersAdditional Comments/GuidelinesMark
", - "type": "table", - "image_path": "7e78c7f03121ab049b0dd847d1cb6d246afedbb8c6293263922bd41925b0c72a.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 30, - 87, - 783, - 97.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 30, - 97.33333333333333, - 783, - 107.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 30, - 107.66666666666666, - 783, - 117.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_99", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 32, - 125, - 781, - 157 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 125, - 781, - 157 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 32, - 125, - 781, - 157 - ], - "spans": [ - { - "bbox": [ - 32, - 125, - 781, - 157 - ], - "score": 0.751, - "html": "
1.5 (ms) 06.11
", - "type": "table", - "image_path": "b318a9043f925407ef9112a29e0c326eee0fa519213dc3d7fd78bac2f6da184f.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 32, - 125, - 781, - 135.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 32, - 135.66666666666666, - 781, - 146.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 32, - 146.33333333333331, - 781, - 156.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_99", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 29, - 165, - 783, - 292 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 29, - 165, - 783, - 292 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 29, - 165, - 783, - 292 - ], - "spans": [ - { - "bbox": [ - 29, - 165, - 783, - 292 - ], - "score": 0.865, - "html": "
06.2A = 4.2 (mm) read from graph T = 2.0 (ms) read from graph Condone power of ten error in A and/or T but not in final answer. Evidence for T might be seen in equation, as 5003
(f). (amax = 4.2 × 10-3 × (2 × π /(2 × 10-3)2
4.1(5) × 104 (m s-²) (Do not allow 4.2)Only allowed ecf for max 2 is use of 4.1 mm for A, giving 4.0 x 104 (m s-2)
", - "type": "table", - "image_path": "c7488800dca40982482ca4de387b97282e026520496a19c2a27cbe6047f8048b.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 29, - 165, - 783, - 207.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 29, - 207.33333333333334, - 783, - 249.66666666666669 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 29, - 249.66666666666669, - 783, - 292.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_99", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 28, - 299, - 782, - 385 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 299, - 782, - 385 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 28, - 299, - 782, - 384 - ], - "spans": [ - { - "bbox": [ - 28, - 299, - 782, - 384 - ], - "score": 0.166, - "html": "
06.3longitudinal (they) oscillate along direction of energy transferBoth required for 1 mark Condone“vibrate”for oscillate. Condone‘travel'fortransfer
Total5
", - "type": "table", - "image_path": "03cc19547f04886912985e4757085cd1f2a26a7501426da9fe03276a3675f826.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 28, - 299, - 782, - 327.6666666666667 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 28, - 327.6666666666667, - 782, - 356.33333333333337 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 28, - 356.33333333333337, - 782, - 385.00000000000006 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10, - "page_num": "page_99", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 34, - 86, - 780, - 117 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 86, - 780, - 117 - ], - "group_id": 0, - "lines": [], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 34, - 86, - 780, - 96.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 34, - 96.33333333333333, - 780, - 106.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 34, - 106.66666666666666, - 780, - 116.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 25, - 96, - 783, - 520 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 25, - 96, - 783, - 520 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 25, - 96, - 781, - 520 - ], - "spans": [ - { - "bbox": [ - 25, - 96, - 781, - 520 - ], - "score": 0.863, - "html": "
QuestionAnswersAdditionalComments/GuidelinesMark
07.1Mention of increase in lost volts/ pd across internal resistance (in cell)v (because) current has increased OR internal resistance is a larger proportion of total resistance OR ratio of internal: external resistance is larger vAccept reverse arguments Do not accept terminal pd has decreased Treat comments about resistance of lamp as neutral2
07.2Lost volts reduced (current remains the same, V2 > V1) OR Effective internal resistance is a smaller proportion of total resistance / ratio of internal: external resistance is smaller v (because) two cells in parallel behave as a single cell (with the same emf) but with half the internal resistance / reduced internal resistancev Alternative: Current through each cell is less than cell on its own v Decreased current through cell decreases lost volts / pd dropped across internal resistance v2
", - "type": "table", - "image_path": "79cfcf82952ab2f62289c52dd4b0980c5108e8ae16540dd6543c3b8e64d73cec.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 25, - 96, - 783, - 237.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 25, - 237.33333333333334, - 783, - 378.6666666666667 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 25, - 378.6666666666667, - 783, - 520.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "layout_bboxes": [], - "page_idx": 100, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 34, - 86, - 780, - 117 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 86, - 780, - 117 - ], - "group_id": 0, - "lines": [], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 34, - 86, - 780, - 96.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 34, - 96.33333333333333, - 780, - 106.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 34, - 106.66666666666666, - 780, - 116.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 25, - 96, - 783, - 520 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 25, - 96, - 783, - 520 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 25, - 96, - 781, - 520 - ], - "spans": [ - { - "bbox": [ - 25, - 96, - 781, - 520 - ], - "score": 0.863, - "html": "
QuestionAnswersAdditionalComments/GuidelinesMark
07.1Mention of increase in lost volts/ pd across internal resistance (in cell)v (because) current has increased OR internal resistance is a larger proportion of total resistance OR ratio of internal: external resistance is larger vAccept reverse arguments Do not accept terminal pd has decreased Treat comments about resistance of lamp as neutral2
07.2Lost volts reduced (current remains the same, V2 > V1) OR Effective internal resistance is a smaller proportion of total resistance / ratio of internal: external resistance is smaller v (because) two cells in parallel behave as a single cell (with the same emf) but with half the internal resistance / reduced internal resistancev Alternative: Current through each cell is less than cell on its own v Decreased current through cell decreases lost volts / pd dropped across internal resistance v2
", - "type": "table", - "image_path": "79cfcf82952ab2f62289c52dd4b0980c5108e8ae16540dd6543c3b8e64d73cec.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 25, - 96, - 783, - 237.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 25, - 237.33333333333334, - 783, - 378.6666666666667 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 25, - 378.6666666666667, - 783, - 520.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 0.9983596801757812, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 746, - 550, - 757, - 559 - ], - "lines": [ - { - "bbox": [ - 745, - 550, - 759, - 562 - ], - "spans": [ - { - "bbox": [ - 745, - 550, - 759, - 562 - ], - "score": 1.0, - "content": "21 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 451, - 35, - 758, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 757, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 757, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2019", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 34, - 86, - 780, - 117 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 86, - 780, - 117 - ], - "group_id": 0, - "lines": [], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 34, - 86, - 780, - 96.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 34, - 96.33333333333333, - 780, - 106.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 34, - 106.66666666666666, - 780, - 116.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_100", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 25, - 96, - 783, - 520 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 25, - 96, - 783, - 520 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 25, - 96, - 781, - 520 - ], - "spans": [ - { - "bbox": [ - 25, - 96, - 781, - 520 - ], - "score": 0.863, - "html": "
QuestionAnswersAdditionalComments/GuidelinesMark
07.1Mention of increase in lost volts/ pd across internal resistance (in cell)v (because) current has increased OR internal resistance is a larger proportion of total resistance OR ratio of internal: external resistance is larger vAccept reverse arguments Do not accept terminal pd has decreased Treat comments about resistance of lamp as neutral2
07.2Lost volts reduced (current remains the same, V2 > V1) OR Effective internal resistance is a smaller proportion of total resistance / ratio of internal: external resistance is smaller v (because) two cells in parallel behave as a single cell (with the same emf) but with half the internal resistance / reduced internal resistancev Alternative: Current through each cell is less than cell on its own v Decreased current through cell decreases lost volts / pd dropped across internal resistance v2
", - "type": "table", - "image_path": "79cfcf82952ab2f62289c52dd4b0980c5108e8ae16540dd6543c3b8e64d73cec.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 25, - 96, - 783, - 237.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 25, - 237.33333333333334, - 783, - 378.6666666666667 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 25, - 378.6666666666667, - 783, - 520.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_100", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 13, - 49, - 788, - 235 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 13, - 49, - 788, - 235 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 13, - 49, - 788, - 235 - ], - "spans": [ - { - "bbox": [ - 13, - 49, - 788, - 235 - ], - "score": 0.938, - "html": "
Total4
", - "type": "table", - "image_path": "1feed3eaa59b84f4643a2da1f5f31e2ccf8380b85d6071c56858bd008a51732c.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 13, - 49, - 788, - 111.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 13, - 111.0, - 788, - 173.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 13, - 173.0, - 788, - 235.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 49, - 479, - 534, - 523 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 49, - 479, - 534, - 523 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 49, - 479, - 534, - 523 - ], - "spans": [ - { - "bbox": [ - 49, - 479, - 534, - 523 - ], - "score": 0.895, - "html": "
Keys to Objective Test Questions (each correct answer is worth 1 mark)
8 9 10 11 12 13 14 15 16 17 18 19
", - "type": "table", - "image_path": "bc512113d46ff76cc39ec209875d6b17ae02a05dd71e713b096295ae7e731951.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 49, - 479, - 534, - 493.6666666666667 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 49, - 493.6666666666667, - 534, - 508.33333333333337 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 49, - 508.33333333333337, - 534, - 523.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "layout_bboxes": [], - "page_idx": 101, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 13, - 49, - 788, - 235 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 13, - 49, - 788, - 235 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 13, - 49, - 788, - 235 - ], - "spans": [ - { - "bbox": [ - 13, - 49, - 788, - 235 - ], - "score": 0.938, - "html": "
Total4
", - "type": "table", - "image_path": "1feed3eaa59b84f4643a2da1f5f31e2ccf8380b85d6071c56858bd008a51732c.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 13, - 49, - 788, - 111.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 13, - 111.0, - 788, - 173.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 13, - 173.0, - 788, - 235.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 49, - 479, - 534, - 523 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 49, - 479, - 534, - 523 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 49, - 479, - 534, - 523 - ], - "spans": [ - { - "bbox": [ - 49, - 479, - 534, - 523 - ], - "score": 0.895, - "html": "
Keys to Objective Test Questions (each correct answer is worth 1 mark)
8 9 10 11 12 13 14 15 16 17 18 19
", - "type": "table", - "image_path": "bc512113d46ff76cc39ec209875d6b17ae02a05dd71e713b096295ae7e731951.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 49, - 479, - 534, - 493.6666666666667 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 49, - 493.6666666666667, - 534, - 508.33333333333337 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 49, - 508.33333333333337, - 534, - 523.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 816, - 1, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 0.9983596801757812, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 55, - 550, - 66, - 560 - ], - "lines": [ - { - "bbox": [ - 54, - 550, - 68, - 562 - ], - "spans": [ - { - "bbox": [ - 54, - 550, - 68, - 562 - ], - "score": 1.0, - "content": "22 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 451, - 34, - 758, - 48 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 756, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 756, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2019", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 13, - 49, - 788, - 235 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 13, - 49, - 788, - 235 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 13, - 49, - 788, - 235 - ], - "spans": [ - { - "bbox": [ - 13, - 49, - 788, - 235 - ], - "score": 0.938, - "html": "
Total4
", - "type": "table", - "image_path": "1feed3eaa59b84f4643a2da1f5f31e2ccf8380b85d6071c56858bd008a51732c.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 13, - 49, - 788, - 111.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 13, - 111.0, - 788, - 173.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 13, - 173.0, - 788, - 235.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_101", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 49, - 479, - 534, - 523 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 49, - 479, - 534, - 523 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 49, - 479, - 534, - 523 - ], - "spans": [ - { - "bbox": [ - 49, - 479, - 534, - 523 - ], - "score": 0.895, - "html": "
Keys to Objective Test Questions (each correct answer is worth 1 mark)
8 9 10 11 12 13 14 15 16 17 18 19
", - "type": "table", - "image_path": "bc512113d46ff76cc39ec209875d6b17ae02a05dd71e713b096295ae7e731951.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 49, - 479, - 534, - 493.6666666666667 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 49, - 493.6666666666667, - 534, - 508.33333333333337 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 49, - 508.33333333333337, - 534, - 523.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_101", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 43, - 51, - 595, - 157 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 43, - 51, - 595, - 157 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 43, - 51, - 595, - 157 - ], - "spans": [ - { - "bbox": [ - 43, - 51, - 595, - 157 - ], - "score": 0.952, - "html": "
ADCCCABDDBCC
20212223242526272829303132
DBDDBBACCDCAD
", - "type": "table", - "image_path": "f50cbe3f2421601529a6bba898b42799a4b1bfec30161fc5a381cd8098f81689.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 43, - 51, - 595, - 86.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 43, - 86.33333333333334, - 595, - 121.66666666666669 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 43, - 121.66666666666669, - 595, - 157.00000000000003 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 102, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 43, - 51, - 595, - 157 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 43, - 51, - 595, - 157 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 43, - 51, - 595, - 157 - ], - "spans": [ - { - "bbox": [ - 43, - 51, - 595, - 157 - ], - "score": 0.952, - "html": "
ADCCCABDDBCC
20212223242526272829303132
DBDDBBACCDCAD
", - "type": "table", - "image_path": "f50cbe3f2421601529a6bba898b42799a4b1bfec30161fc5a381cd8098f81689.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 43, - 51, - 595, - 86.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 43, - 86.33333333333334, - 595, - 121.66666666666669 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 43, - 121.66666666666669, - 595, - 157.00000000000003 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 746, - 550, - 757, - 559 - ], - "lines": [ - { - "bbox": [ - 746, - 550, - 759, - 561 - ], - "spans": [ - { - "bbox": [ - 746, - 550, - 759, - 561 - ], - "score": 1.0, - "content": "23 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 1, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 0.9983596801757812, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 450, - 34, - 758, - 48 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 756, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 756, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2019", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 43, - 51, - 595, - 157 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 43, - 51, - 595, - 157 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 43, - 51, - 595, - 157 - ], - "spans": [ - { - "bbox": [ - 43, - 51, - 595, - 157 - ], - "score": 0.952, - "html": "
ADCCCABDDBCC
20212223242526272829303132
DBDDBBACCDCAD
", - "type": "table", - "image_path": "f50cbe3f2421601529a6bba898b42799a4b1bfec30161fc5a381cd8098f81689.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 43, - 51, - 595, - 86.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 43, - 86.33333333333334, - 595, - 121.66666666666669 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 43, - 121.66666666666669, - 595, - 157.00000000000003 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_102", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 39, - 25, - 173, - 75 - ], - "lines": [ - { - "bbox": [ - 40, - 36, - 143, - 73 - ], - "spans": [ - { - "bbox": [ - 40, - 36, - 143, - 73 - ], - "score": 0.998431384563446, - "content": "AQA", - "type": "text" - } - ] - } - ], - "index": 0.5, - "virtual_lines": [ - { - "bbox": [ - 39, - 25, - 173, - 50.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 39, - 50.0, - 173, - 75.0 - ], - "spans": [], - "index": 1 - } - ] - }, - { - "type": "text", - "bbox": [ - 44, - 159, - 155, - 286 - ], - "lines": [ - { - "bbox": [ - 46, - 163, - 131, - 186 - ], - "spans": [ - { - "bbox": [ - 46, - 163, - 131, - 186 - ], - "score": 1.0, - "content": "A-level", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 47, - 199, - 151, - 221 - ], - "spans": [ - { - "bbox": [ - 47, - 199, - 151, - 221 - ], - "score": 1.0, - "content": "PHYSICS", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 47, - 232, - 134, - 258 - ], - "spans": [ - { - "bbox": [ - 47, - 232, - 134, - 258 - ], - "score": 1.0, - "content": "7408/1", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 45, - 268, - 101, - 285 - ], - "spans": [ - { - "bbox": [ - 45, - 268, - 101, - 285 - ], - "score": 1.0, - "content": "Paper 1", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 3.5 - }, - { - "type": "title", - "bbox": [ - 45, - 298, - 129, - 313 - ], - "lines": [ - { - "bbox": [ - 46, - 299, - 128, - 312 - ], - "spans": [ - { - "bbox": [ - 46, - 299, - 128, - 312 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 46, - 323, - 112, - 340 - ], - "lines": [ - { - "bbox": [ - 46, - 325, - 110, - 338 - ], - "spans": [ - { - "bbox": [ - 46, - 325, - 110, - 338 - ], - "score": 1.0, - "content": "June 2023", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 45, - 353, - 134, - 367 - ], - "lines": [ - { - "bbox": [ - 46, - 355, - 133, - 366 - ], - "spans": [ - { - "bbox": [ - 46, - 355, - 133, - 366 - ], - "score": 1.0, - "content": "Version: 1.0 Final", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - } - ], - "layout_bboxes": [], - "page_idx": 103, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 45, - 739, - 253, - 779 - ], - "lines": [ - { - "bbox": [ - 61, - 768, - 232, - 778 - ], - "spans": [ - { - "bbox": [ - 61, - 768, - 232, - 778 - ], - "score": 0.9341715574264526, - "content": "236A7408/1/MS", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 39, - 25, - 173, - 75 - ], - "lines": [ - { - "bbox": [ - 40, - 36, - 143, - 73 - ], - "spans": [ - { - "bbox": [ - 40, - 36, - 143, - 73 - ], - "score": 0.998431384563446, - "content": "AQA", - "type": "text" - } - ] - } - ], - "index": 0.5, - "virtual_lines": [ - { - "bbox": [ - 39, - 25, - 173, - 50.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 39, - 50.0, - 173, - 75.0 - ], - "spans": [], - "index": 1 - } - ], - "page_num": "page_103", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 44, - 159, - 155, - 286 - ], - "lines": [ - { - "bbox": [ - 46, - 163, - 131, - 186 - ], - "spans": [ - { - "bbox": [ - 46, - 163, - 131, - 186 - ], - "score": 1.0, - "content": "A-level", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 47, - 199, - 151, - 221 - ], - "spans": [ - { - "bbox": [ - 47, - 199, - 151, - 221 - ], - "score": 1.0, - "content": "PHYSICS", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 47, - 232, - 134, - 258 - ], - "spans": [ - { - "bbox": [ - 47, - 232, - 134, - 258 - ], - "score": 1.0, - "content": "7408/1", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 45, - 268, - 101, - 285 - ], - "spans": [ - { - "bbox": [ - 45, - 268, - 101, - 285 - ], - "score": 1.0, - "content": "Paper 1", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 3.5, - "page_num": "page_103", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 45, - 163, - 151, - 285 - ] - }, - { - "type": "title", - "bbox": [ - 45, - 298, - 129, - 313 - ], - "lines": [ - { - "bbox": [ - 46, - 299, - 128, - 312 - ], - "spans": [ - { - "bbox": [ - 46, - 299, - 128, - 312 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_103", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 46, - 323, - 112, - 340 - ], - "lines": [ - { - "bbox": [ - 46, - 325, - 110, - 338 - ], - "spans": [ - { - "bbox": [ - 46, - 325, - 110, - 338 - ], - "score": 1.0, - "content": "June 2023", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_103", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 46, - 325, - 110, - 338 - ] - }, - { - "type": "text", - "bbox": [ - 45, - 353, - 134, - 367 - ], - "lines": [ - { - "bbox": [ - 46, - 355, - 133, - 366 - ], - "spans": [ - { - "bbox": [ - 46, - 355, - 133, - 366 - ], - "score": 1.0, - "content": "Version: 1.0 Final", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_103", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 46, - 355, - 133, - 366 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 42, - 84, - 545, - 201 - ], - "lines": [ - { - "bbox": [ - 41, - 85, - 546, - 98 - ], - "spans": [ - { - "bbox": [ - 41, - 85, - 546, - 98 - ], - "score": 1.0, - "content": "Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 41, - 99, - 535, - 111 - ], - "spans": [ - { - "bbox": [ - 41, - 99, - 535, - 111 - ], - "score": 1.0, - "content": "questions, by a panel of subject teachers. This mark scheme includes any amendments made at the ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 41, - 112, - 546, - 124 - ], - "spans": [ - { - "bbox": [ - 41, - 112, - 546, - 124 - ], - "score": 1.0, - "content": "standardisation events which all associates participate in and is the scheme which was used by them in", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 41, - 125, - 522, - 137 - ], - "spans": [ - { - "bbox": [ - 41, - 125, - 522, - 137 - ], - "score": 1.0, - "content": "this examination. The standardisation process ensures that the mark scheme covers the students’", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 40, - 137, - 533, - 151 - ], - "spans": [ - { - "bbox": [ - 40, - 137, - 533, - 151 - ], - "score": 1.0, - "content": "responses to questions and that every associate understands and applies it in the same correct way.", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 41, - 151, - 536, - 163 - ], - "spans": [ - { - "bbox": [ - 41, - 151, - 536, - 163 - ], - "score": 1.0, - "content": "As preparation for standardisation each associate analyses a number of students’ scripts. Alternative", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 41, - 164, - 506, - 176 - ], - "spans": [ - { - "bbox": [ - 41, - 164, - 506, - 176 - ], - "score": 1.0, - "content": "answers not already covered by the mark scheme are discussed and legislated for. If, after the", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 41, - 176, - 535, - 190 - ], - "spans": [ - { - "bbox": [ - 41, - 176, - 535, - 190 - ], - "score": 1.0, - "content": "standardisation process, associates encounter unusual answers which have not been raised they are", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 41, - 190, - 263, - 202 - ], - "spans": [ - { - "bbox": [ - 41, - 190, - 263, - 202 - ], - "score": 1.0, - "content": "required to refer these to the Lead Examiner. ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 42, - 214, - 541, - 280 - ], - "lines": [ - { - "bbox": [ - 41, - 215, - 535, - 227 - ], - "spans": [ - { - "bbox": [ - 41, - 215, - 535, - 227 - ], - "score": 1.0, - "content": "It must be stressed that a mark scheme is a working document, in many cases further developed and", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 41, - 228, - 525, - 242 - ], - "spans": [ - { - "bbox": [ - 41, - 228, - 525, - 242 - ], - "score": 1.0, - "content": "expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 41, - 242, - 513, - 255 - ], - "spans": [ - { - "bbox": [ - 41, - 242, - 513, - 255 - ], - "score": 1.0, - "content": "schemes on the basis of one year’s document should be avoided; whilst the guiding principles of ", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 40, - 254, - 542, - 267 - ], - "spans": [ - { - "bbox": [ - 40, - 254, - 542, - 267 - ], - "score": 1.0, - "content": "assessment remain constant, details will change, depending on the content of a particular examination ", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 39, - 268, - 75, - 280 - ], - "spans": [ - { - "bbox": [ - 39, - 268, - 75, - 280 - ], - "score": 1.0, - "content": "paper.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 42, - 305, - 361, - 318 - ], - "lines": [ - { - "bbox": [ - 41, - 306, - 361, - 319 - ], - "spans": [ - { - "bbox": [ - 41, - 306, - 361, - 319 - ], - "score": 1.0, - "content": "Further copies of this mark scheme are available from aqa.org.uk", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "title", - "bbox": [ - 47, - 728, - 127, - 737 - ], - "lines": [ - { - "bbox": [ - 47, - 728, - 127, - 738 - ], - "spans": [ - { - "bbox": [ - 47, - 728, - 127, - 738 - ], - "score": 1.0, - "content": "Copyright information", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "text", - "bbox": [ - 46, - 742, - 539, - 768 - ], - "lines": [ - { - "bbox": [ - 47, - 742, - 531, - 752 - ], - "spans": [ - { - "bbox": [ - 47, - 742, - 531, - 752 - ], - "score": 1.0, - "content": "AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own ", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 46, - 750, - 538, - 760 - ], - "spans": [ - { - "bbox": [ - 46, - 750, - 538, - 760 - ], - "score": 1.0, - "content": "internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third ", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 46, - 759, - 184, - 768 - ], - "spans": [ - { - "bbox": [ - 46, - 759, - 184, - 768 - ], - "score": 1.0, - "content": "party even for internal use within the centre.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 17 - }, - { - "type": "text", - "bbox": [ - 47, - 775, - 235, - 784 - ], - "lines": [ - { - "bbox": [ - 47, - 775, - 235, - 784 - ], - "spans": [ - { - "bbox": [ - 47, - 775, - 78, - 784 - ], - "score": 1.0, - "content": "Copyright", - "type": "text" - }, - { - "bbox": [ - 78, - 775, - 85, - 782 - ], - "score": 0.67, - "content": "\\circledcirc", - "type": "inline_equation", - "height": 7, - "width": 7 - }, - { - "bbox": [ - 86, - 775, - 235, - 784 - ], - "score": 1.0, - "content": "2023 AQA and its licensors. All rights reserved.", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 19 - } - ], - "layout_bboxes": [], - "page_idx": 104, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 248, - 35, - 553, - 48 - ], - "lines": [ - { - "bbox": [ - 248, - 35, - 553, - 48 - ], - "spans": [ - { - "bbox": [ - 248, - 35, - 553, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2023", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 2, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 797, - 47, - 805 - ], - "lines": [ - { - "bbox": [ - 40, - 796, - 49, - 807 - ], - "spans": [ - { - "bbox": [ - 40, - 796, - 49, - 807 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 11, - "width": 9 - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 42, - 84, - 545, - 201 - ], - "lines": [ - { - "bbox": [ - 41, - 85, - 546, - 98 - ], - "spans": [ - { - "bbox": [ - 41, - 85, - 546, - 98 - ], - "score": 1.0, - "content": "Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 41, - 99, - 535, - 111 - ], - "spans": [ - { - "bbox": [ - 41, - 99, - 535, - 111 - ], - "score": 1.0, - "content": "questions, by a panel of subject teachers. This mark scheme includes any amendments made at the ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 41, - 112, - 546, - 124 - ], - "spans": [ - { - "bbox": [ - 41, - 112, - 546, - 124 - ], - "score": 1.0, - "content": "standardisation events which all associates participate in and is the scheme which was used by them in", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 41, - 125, - 522, - 137 - ], - "spans": [ - { - "bbox": [ - 41, - 125, - 522, - 137 - ], - "score": 1.0, - "content": "this examination. The standardisation process ensures that the mark scheme covers the students’", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 40, - 137, - 533, - 151 - ], - "spans": [ - { - "bbox": [ - 40, - 137, - 533, - 151 - ], - "score": 1.0, - "content": "responses to questions and that every associate understands and applies it in the same correct way.", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 41, - 151, - 536, - 163 - ], - "spans": [ - { - "bbox": [ - 41, - 151, - 536, - 163 - ], - "score": 1.0, - "content": "As preparation for standardisation each associate analyses a number of students’ scripts. Alternative", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 41, - 164, - 506, - 176 - ], - "spans": [ - { - "bbox": [ - 41, - 164, - 506, - 176 - ], - "score": 1.0, - "content": "answers not already covered by the mark scheme are discussed and legislated for. If, after the", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 41, - 176, - 535, - 190 - ], - "spans": [ - { - "bbox": [ - 41, - 176, - 535, - 190 - ], - "score": 1.0, - "content": "standardisation process, associates encounter unusual answers which have not been raised they are", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 41, - 190, - 263, - 202 - ], - "spans": [ - { - "bbox": [ - 41, - 190, - 263, - 202 - ], - "score": 1.0, - "content": "required to refer these to the Lead Examiner. ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 4, - "page_num": "page_104", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 85, - 546, - 202 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 214, - 541, - 280 - ], - "lines": [ - { - "bbox": [ - 41, - 215, - 535, - 227 - ], - "spans": [ - { - "bbox": [ - 41, - 215, - 535, - 227 - ], - "score": 1.0, - "content": "It must be stressed that a mark scheme is a working document, in many cases further developed and", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 41, - 228, - 525, - 242 - ], - "spans": [ - { - "bbox": [ - 41, - 228, - 525, - 242 - ], - "score": 1.0, - "content": "expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 41, - 242, - 513, - 255 - ], - "spans": [ - { - "bbox": [ - 41, - 242, - 513, - 255 - ], - "score": 1.0, - "content": "schemes on the basis of one year’s document should be avoided; whilst the guiding principles of ", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 40, - 254, - 542, - 267 - ], - "spans": [ - { - "bbox": [ - 40, - 254, - 542, - 267 - ], - "score": 1.0, - "content": "assessment remain constant, details will change, depending on the content of a particular examination ", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 39, - 268, - 75, - 280 - ], - "spans": [ - { - "bbox": [ - 39, - 268, - 75, - 280 - ], - "score": 1.0, - "content": "paper.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 11, - "page_num": "page_104", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 39, - 215, - 542, - 280 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 305, - 361, - 318 - ], - "lines": [ - { - "bbox": [ - 41, - 306, - 361, - 319 - ], - "spans": [ - { - "bbox": [ - 41, - 306, - 361, - 319 - ], - "score": 1.0, - "content": "Further copies of this mark scheme are available from aqa.org.uk", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_104", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 306, - 361, - 319 - ] - }, - { - "type": "title", - "bbox": [ - 47, - 728, - 127, - 737 - ], - "lines": [ - { - "bbox": [ - 47, - 728, - 127, - 738 - ], - "spans": [ - { - "bbox": [ - 47, - 728, - 127, - 738 - ], - "score": 1.0, - "content": "Copyright information", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_104", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 46, - 742, - 539, - 768 - ], - "lines": [ - { - "bbox": [ - 47, - 742, - 531, - 752 - ], - "spans": [ - { - "bbox": [ - 47, - 742, - 531, - 752 - ], - "score": 1.0, - "content": "AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own ", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 46, - 750, - 538, - 760 - ], - "spans": [ - { - "bbox": [ - 46, - 750, - 538, - 760 - ], - "score": 1.0, - "content": "internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third ", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 46, - 759, - 184, - 768 - ], - "spans": [ - { - "bbox": [ - 46, - 759, - 184, - 768 - ], - "score": 1.0, - "content": "party even for internal use within the centre.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 17, - "page_num": "page_104", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 46, - 742, - 538, - 768 - ] - }, - { - "type": "text", - "bbox": [ - 47, - 775, - 235, - 784 - ], - "lines": [ - { - "bbox": [ - 47, - 775, - 235, - 784 - ], - "spans": [ - { - "bbox": [ - 47, - 775, - 78, - 784 - ], - "score": 1.0, - "content": "Copyright", - "type": "text" - }, - { - "bbox": [ - 78, - 775, - 85, - 782 - ], - "score": 0.67, - "content": "\\circledcirc", - "type": "inline_equation", - "height": 7, - "width": 7 - }, - { - "bbox": [ - 86, - 775, - 235, - 784 - ], - "score": 1.0, - "content": "2023 AQA and its licensors. All rights reserved.", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 19, - "page_num": "page_104", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 47, - 775, - 235, - 784 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 41, - 86, - 379, - 105 - ], - "lines": [ - { - "bbox": [ - 42, - 88, - 378, - 104 - ], - "spans": [ - { - "bbox": [ - 42, - 88, - 378, - 104 - ], - "score": 1.0, - "content": "Physics - Mark scheme instructions to examiners", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "title", - "bbox": [ - 42, - 125, - 107, - 141 - ], - "lines": [ - { - "bbox": [ - 41, - 127, - 107, - 141 - ], - "spans": [ - { - "bbox": [ - 41, - 127, - 107, - 141 - ], - "score": 1.0, - "content": "1. General", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 41, - 158, - 256, - 171 - ], - "lines": [ - { - "bbox": [ - 42, - 159, - 256, - 170 - ], - "spans": [ - { - "bbox": [ - 42, - 159, - 256, - 170 - ], - "score": 1.0, - "content": "The mark scheme for each question shows:", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 42, - 184, - 549, - 262 - ], - "lines": [ - { - "bbox": [ - 42, - 186, - 289, - 197 - ], - "spans": [ - { - "bbox": [ - 42, - 186, - 289, - 197 - ], - "score": 1.0, - "content": "• the marks available for each part of the question", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 41, - 198, - 253, - 211 - ], - "spans": [ - { - "bbox": [ - 41, - 198, - 253, - 211 - ], - "score": 1.0, - "content": "• the total marks available for the question ", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 41, - 212, - 298, - 225 - ], - "spans": [ - { - "bbox": [ - 41, - 212, - 298, - 225 - ], - "score": 1.0, - "content": "• the typical answer or answers which are expected", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 47, - 225, - 517, - 238 - ], - "spans": [ - { - "bbox": [ - 47, - 225, - 517, - 238 - ], - "score": 1.0, - "content": " extra information to help the Examiner make his or her judgement and help to delineate what is ", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 53, - 239, - 549, - 250 - ], - "spans": [ - { - "bbox": [ - 53, - 239, - 549, - 250 - ], - "score": 1.0, - "content": "acceptable or not worthy of credit or, in discursive answers, to give an overview of the area in which a ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 52, - 251, - 212, - 262 - ], - "spans": [ - { - "bbox": [ - 52, - 251, - 212, - 262 - ], - "score": 1.0, - "content": "mark or marks may be awarded.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 5.5 - }, - { - "type": "text", - "bbox": [ - 39, - 275, - 541, - 300 - ], - "lines": [ - { - "bbox": [ - 41, - 275, - 544, - 289 - ], - "spans": [ - { - "bbox": [ - 41, - 275, - 544, - 289 - ], - "score": 1.0, - "content": "The extra information is aligned to the appropriate answer in the left-hand part of the mark scheme and", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 42, - 289, - 311, - 301 - ], - "spans": [ - { - "bbox": [ - 42, - 289, - 311, - 301 - ], - "score": 1.0, - "content": "should only be applied to that item in the mark scheme.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9.5 - }, - { - "type": "text", - "bbox": [ - 41, - 313, - 544, - 351 - ], - "lines": [ - { - "bbox": [ - 42, - 314, - 527, - 325 - ], - "spans": [ - { - "bbox": [ - 42, - 314, - 527, - 325 - ], - "score": 1.0, - "content": "At the beginning of a part of a question a reminder may be given, for example: where consequential", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 41, - 327, - 542, - 339 - ], - "spans": [ - { - "bbox": [ - 41, - 327, - 542, - 339 - ], - "score": 1.0, - "content": "marking needs to be considered in a calculation; or the answer may be on the diagram or at a different ", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 40, - 339, - 135, - 352 - ], - "spans": [ - { - "bbox": [ - 40, - 339, - 135, - 352 - ], - "score": 1.0, - "content": "place on the script.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 42, - 363, - 543, - 402 - ], - "lines": [ - { - "bbox": [ - 41, - 364, - 541, - 377 - ], - "spans": [ - { - "bbox": [ - 41, - 364, - 541, - 377 - ], - "score": 1.0, - "content": "In general the right-hand side of the mark scheme is there to provide those extra details which confuse", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 41, - 377, - 529, - 390 - ], - "spans": [ - { - "bbox": [ - 41, - 377, - 529, - 390 - ], - "score": 1.0, - "content": "the main part of the mark scheme yet may be helpful in ensuring that marking is straightforward and ", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 41, - 390, - 96, - 403 - ], - "spans": [ - { - "bbox": [ - 41, - 390, - 96, - 403 - ], - "score": 1.0, - "content": "consistent.", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 15 - }, - { - "type": "title", - "bbox": [ - 41, - 415, - 138, - 431 - ], - "lines": [ - { - "bbox": [ - 42, - 415, - 138, - 431 - ], - "spans": [ - { - "bbox": [ - 42, - 415, - 138, - 431 - ], - "score": 1.0, - "content": "2. Emboldening", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 17 - }, - { - "type": "text", - "bbox": [ - 54, - 447, - 544, - 512 - ], - "lines": [ - { - "bbox": [ - 55, - 448, - 538, - 460 - ], - "spans": [ - { - "bbox": [ - 55, - 448, - 73, - 460 - ], - "score": 1.0, - "content": "2.1", - "type": "text" - }, - { - "bbox": [ - 83, - 448, - 538, - 460 - ], - "score": 1.0, - "content": "In a list of acceptable answers where more than one mark is available ‘any two from’ is used,", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 83, - 461, - 541, - 474 - ], - "spans": [ - { - "bbox": [ - 83, - 461, - 541, - 474 - ], - "score": 1.0, - "content": "with the number of marks emboldened. Each of the following bullet points is a potential mark.", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 54, - 472, - 529, - 486 - ], - "spans": [ - { - "bbox": [ - 54, - 472, - 529, - 486 - ], - "score": 1.0, - "content": "2.2 A bold and is used to indicate that both parts of the answer are required to award the mark.", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 55, - 486, - 543, - 498 - ], - "spans": [ - { - "bbox": [ - 55, - 486, - 543, - 498 - ], - "score": 1.0, - "content": "2.3 Alternative answers acceptable for a mark are indicated by the use of or. Different terms in the", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 83, - 500, - 409, - 511 - ], - "spans": [ - { - "bbox": [ - 83, - 500, - 409, - 511 - ], - "score": 1.0, - "content": "mark scheme are shown by a / ; eg allow smooth / free movement.", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 20 - }, - { - "type": "title", - "bbox": [ - 42, - 524, - 153, - 541 - ], - "lines": [ - { - "bbox": [ - 42, - 526, - 152, - 540 - ], - "spans": [ - { - "bbox": [ - 42, - 526, - 152, - 540 - ], - "score": 1.0, - "content": "3. Marking points", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 23 - }, - { - "type": "title", - "bbox": [ - 42, - 558, - 170, - 574 - ], - "lines": [ - { - "bbox": [ - 40, - 558, - 170, - 574 - ], - "spans": [ - { - "bbox": [ - 40, - 558, - 64, - 574 - ], - "score": 1.0, - "content": "3.1 ", - "type": "text" - }, - { - "bbox": [ - 77, - 560, - 170, - 574 - ], - "score": 1.0, - "content": "Marking of lists", - "type": "text" - } - ], - "index": 24 - } - ], - "index": 24 - }, - { - "type": "text", - "bbox": [ - 40, - 587, - 542, - 613 - ], - "lines": [ - { - "bbox": [ - 41, - 587, - 541, - 601 - ], - "spans": [ - { - "bbox": [ - 41, - 587, - 541, - 601 - ], - "score": 1.0, - "content": "This applies to questions requiring a set number of responses, but for which candidates have provided", - "type": "text" - } - ], - "index": 25 - }, - { - "bbox": [ - 41, - 600, - 542, - 614 - ], - "spans": [ - { - "bbox": [ - 41, - 600, - 455, - 614 - ], - "score": 1.0, - "content": "extra responses. The general principle to be followed in such a situation is that ‘right", - "type": "text" - }, - { - "bbox": [ - 455, - 602, - 465, - 611 - ], - "score": 0.75, - "content": "+", - "type": "inline_equation", - "height": 9, - "width": 10 - }, - { - "bbox": [ - 465, - 600, - 497, - 614 - ], - "score": 1.0, - "content": " wrong", - "type": "text" - }, - { - "bbox": [ - 497, - 602, - 508, - 611 - ], - "score": 0.78, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 11 - }, - { - "bbox": [ - 508, - 600, - 542, - 614 - ], - "score": 1.0, - "content": "wrong’.", - "type": "text" - } - ], - "index": 26 - } - ], - "index": 25.5 - }, - { - "type": "text", - "bbox": [ - 42, - 624, - 537, - 651 - ], - "lines": [ - { - "bbox": [ - 42, - 625, - 535, - 638 - ], - "spans": [ - { - "bbox": [ - 42, - 625, - 535, - 638 - ], - "score": 1.0, - "content": "Each error / contradiction negates each correct response. So, if the number of errors / contradictions ", - "type": "text" - } - ], - "index": 27 - }, - { - "bbox": [ - 41, - 638, - 497, - 650 - ], - "spans": [ - { - "bbox": [ - 41, - 638, - 497, - 650 - ], - "score": 1.0, - "content": "equals or exceeds the number of marks available for the question, no marks can be awarded.", - "type": "text" - } - ], - "index": 28 - } - ], - "index": 27.5 - }, - { - "type": "text", - "bbox": [ - 39, - 663, - 538, - 688 - ], - "lines": [ - { - "bbox": [ - 41, - 663, - 536, - 677 - ], - "spans": [ - { - "bbox": [ - 41, - 663, - 536, - 677 - ], - "score": 1.0, - "content": "However, responses considered to be neutral (often prefaced by ‘Ignore’ in the mark scheme) are not", - "type": "text" - } - ], - "index": 29 - }, - { - "bbox": [ - 40, - 677, - 92, - 688 - ], - "spans": [ - { - "bbox": [ - 40, - 677, - 92, - 688 - ], - "score": 1.0, - "content": "penalised.", - "type": "text" - } - ], - "index": 30 - } - ], - "index": 29.5 - }, - { - "type": "title", - "bbox": [ - 42, - 702, - 286, - 718 - ], - "lines": [ - { - "bbox": [ - 40, - 701, - 286, - 719 - ], - "spans": [ - { - "bbox": [ - 40, - 701, - 64, - 719 - ], - "score": 1.0, - "content": "3.2 ", - "type": "text" - }, - { - "bbox": [ - 77, - 704, - 286, - 717 - ], - "score": 1.0, - "content": "Marking procedure for calculations", - "type": "text" - } - ], - "index": 31 - } - ], - "index": 31 - }, - { - "type": "text", - "bbox": [ - 42, - 731, - 547, - 782 - ], - "lines": [ - { - "bbox": [ - 42, - 732, - 514, - 744 - ], - "spans": [ - { - "bbox": [ - 42, - 732, - 514, - 744 - ], - "score": 1.0, - "content": "Full marks can usually be given for a correct numerical answer without working shown unless the", - "type": "text" - } - ], - "index": 32 - }, - { - "bbox": [ - 40, - 744, - 528, - 757 - ], - "spans": [ - { - "bbox": [ - 40, - 744, - 528, - 757 - ], - "score": 1.0, - "content": "question states ‘Show your working’. However, if a correct numerical answer can be evaluated from ", - "type": "text" - } - ], - "index": 33 - }, - { - "bbox": [ - 41, - 758, - 548, - 770 - ], - "spans": [ - { - "bbox": [ - 41, - 758, - 548, - 770 - ], - "score": 1.0, - "content": "incorrect physics then working will be required. The mark scheme will indicate both this and the credit (if", - "type": "text" - } - ], - "index": 34 - }, - { - "bbox": [ - 42, - 770, - 294, - 782 - ], - "spans": [ - { - "bbox": [ - 42, - 770, - 294, - 782 - ], - "score": 1.0, - "content": "any) that can be allowed for the incorrect approach.", - "type": "text" - } - ], - "index": 35 - } - ], - "index": 33.5 - } - ], - "layout_bboxes": [], - "page_idx": 105, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 247, - 35, - 553, - 48 - ], - "lines": [ - { - "bbox": [ - 248, - 35, - 553, - 48 - ], - "spans": [ - { - "bbox": [ - 248, - 35, - 553, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2023", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "spans": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 547, - 797, - 553, - 805 - ], - "lines": [ - { - "bbox": [ - 546, - 796, - 555, - 807 - ], - "spans": [ - { - "bbox": [ - 546, - 796, - 555, - 807 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 11, - "width": 9 - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 41, - 86, - 379, - 105 - ], - "lines": [ - { - "bbox": [ - 42, - 88, - 378, - 104 - ], - "spans": [ - { - "bbox": [ - 42, - 88, - 378, - 104 - ], - "score": 1.0, - "content": "Physics - Mark scheme instructions to examiners", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_105", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 42, - 125, - 107, - 141 - ], - "lines": [ - { - "bbox": [ - 41, - 127, - 107, - 141 - ], - "spans": [ - { - "bbox": [ - 41, - 127, - 107, - 141 - ], - "score": 1.0, - "content": "1. General", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_105", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 41, - 158, - 256, - 171 - ], - "lines": [ - { - "bbox": [ - 42, - 159, - 256, - 170 - ], - "spans": [ - { - "bbox": [ - 42, - 159, - 256, - 170 - ], - "score": 1.0, - "content": "The mark scheme for each question shows:", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_105", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 159, - 256, - 170 - ] - }, - { - "type": "list", - "bbox": [ - 42, - 184, - 549, - 262 - ], - "lines": [ - { - "bbox": [ - 42, - 186, - 289, - 197 - ], - "spans": [ - { - "bbox": [ - 42, - 186, - 289, - 197 - ], - "score": 1.0, - "content": "• the marks available for each part of the question", - "type": "text" - } - ], - "index": 3, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 41, - 198, - 253, - 211 - ], - "spans": [ - { - "bbox": [ - 41, - 198, - 253, - 211 - ], - "score": 1.0, - "content": "• the total marks available for the question ", - "type": "text" - } - ], - "index": 4, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 41, - 212, - 298, - 225 - ], - "spans": [ - { - "bbox": [ - 41, - 212, - 298, - 225 - ], - "score": 1.0, - "content": "• the typical answer or answers which are expected", - "type": "text" - } - ], - "index": 5, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 47, - 225, - 517, - 238 - ], - "spans": [ - { - "bbox": [ - 47, - 225, - 517, - 238 - ], - "score": 1.0, - "content": " extra information to help the Examiner make his or her judgement and help to delineate what is ", - "type": "text" - } - ], - "index": 6, - "is_list_end_line": true - }, - { - "bbox": [ - 53, - 239, - 549, - 250 - ], - "spans": [ - { - "bbox": [ - 53, - 239, - 549, - 250 - ], - "score": 1.0, - "content": "acceptable or not worthy of credit or, in discursive answers, to give an overview of the area in which a ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 52, - 251, - 212, - 262 - ], - "spans": [ - { - "bbox": [ - 52, - 251, - 212, - 262 - ], - "score": 1.0, - "content": "mark or marks may be awarded.", - "type": "text" - } - ], - "index": 8, - "is_list_end_line": true - } - ], - "index": 5.5, - "page_num": "page_105", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 186, - 549, - 262 - ] - }, - { - "type": "text", - "bbox": [ - 39, - 275, - 541, - 300 - ], - "lines": [ - { - "bbox": [ - 41, - 275, - 544, - 289 - ], - "spans": [ - { - "bbox": [ - 41, - 275, - 544, - 289 - ], - "score": 1.0, - "content": "The extra information is aligned to the appropriate answer in the left-hand part of the mark scheme and", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 42, - 289, - 311, - 301 - ], - "spans": [ - { - "bbox": [ - 42, - 289, - 311, - 301 - ], - "score": 1.0, - "content": "should only be applied to that item in the mark scheme.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9.5, - "page_num": "page_105", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 275, - 544, - 301 - ] - }, - { - "type": "text", - "bbox": [ - 41, - 313, - 544, - 351 - ], - "lines": [ - { - "bbox": [ - 42, - 314, - 527, - 325 - ], - "spans": [ - { - "bbox": [ - 42, - 314, - 527, - 325 - ], - "score": 1.0, - "content": "At the beginning of a part of a question a reminder may be given, for example: where consequential", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 41, - 327, - 542, - 339 - ], - "spans": [ - { - "bbox": [ - 41, - 327, - 542, - 339 - ], - "score": 1.0, - "content": "marking needs to be considered in a calculation; or the answer may be on the diagram or at a different ", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 40, - 339, - 135, - 352 - ], - "spans": [ - { - "bbox": [ - 40, - 339, - 135, - 352 - ], - "score": 1.0, - "content": "place on the script.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 12, - "page_num": "page_105", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 314, - 542, - 352 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 363, - 543, - 402 - ], - "lines": [ - { - "bbox": [ - 41, - 364, - 541, - 377 - ], - "spans": [ - { - "bbox": [ - 41, - 364, - 541, - 377 - ], - "score": 1.0, - "content": "In general the right-hand side of the mark scheme is there to provide those extra details which confuse", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 41, - 377, - 529, - 390 - ], - "spans": [ - { - "bbox": [ - 41, - 377, - 529, - 390 - ], - "score": 1.0, - "content": "the main part of the mark scheme yet may be helpful in ensuring that marking is straightforward and ", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 41, - 390, - 96, - 403 - ], - "spans": [ - { - "bbox": [ - 41, - 390, - 96, - 403 - ], - "score": 1.0, - "content": "consistent.", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 15, - "page_num": "page_105", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 364, - 541, - 403 - ] - }, - { - "type": "title", - "bbox": [ - 41, - 415, - 138, - 431 - ], - "lines": [ - { - "bbox": [ - 42, - 415, - 138, - 431 - ], - "spans": [ - { - "bbox": [ - 42, - 415, - 138, - 431 - ], - "score": 1.0, - "content": "2. Emboldening", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 17, - "page_num": "page_105", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 54, - 447, - 544, - 512 - ], - "lines": [ - { - "bbox": [ - 55, - 448, - 538, - 460 - ], - "spans": [ - { - "bbox": [ - 55, - 448, - 73, - 460 - ], - "score": 1.0, - "content": "2.1", - "type": "text" - }, - { - "bbox": [ - 83, - 448, - 538, - 460 - ], - "score": 1.0, - "content": "In a list of acceptable answers where more than one mark is available ‘any two from’ is used,", - "type": "text" - } - ], - "index": 18, - "is_list_start_line": true - }, - { - "bbox": [ - 83, - 461, - 541, - 474 - ], - "spans": [ - { - "bbox": [ - 83, - 461, - 541, - 474 - ], - "score": 1.0, - "content": "with the number of marks emboldened. Each of the following bullet points is a potential mark.", - "type": "text" - } - ], - "index": 19, - "is_list_end_line": true - }, - { - "bbox": [ - 54, - 472, - 529, - 486 - ], - "spans": [ - { - "bbox": [ - 54, - 472, - 529, - 486 - ], - "score": 1.0, - "content": "2.2 A bold and is used to indicate that both parts of the answer are required to award the mark.", - "type": "text" - } - ], - "index": 20, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 55, - 486, - 543, - 498 - ], - "spans": [ - { - "bbox": [ - 55, - 486, - 543, - 498 - ], - "score": 1.0, - "content": "2.3 Alternative answers acceptable for a mark are indicated by the use of or. Different terms in the", - "type": "text" - } - ], - "index": 21, - "is_list_start_line": true - }, - { - "bbox": [ - 83, - 500, - 409, - 511 - ], - "spans": [ - { - "bbox": [ - 83, - 500, - 409, - 511 - ], - "score": 1.0, - "content": "mark scheme are shown by a / ; eg allow smooth / free movement.", - "type": "text" - } - ], - "index": 22, - "is_list_end_line": true - } - ], - "index": 20, - "page_num": "page_105", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 54, - 448, - 543, - 511 - ] - }, - { - "type": "title", - "bbox": [ - 42, - 524, - 153, - 541 - ], - "lines": [ - { - "bbox": [ - 42, - 526, - 152, - 540 - ], - "spans": [ - { - "bbox": [ - 42, - 526, - 152, - 540 - ], - "score": 1.0, - "content": "3. Marking points", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 23, - "page_num": "page_105", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 42, - 558, - 170, - 574 - ], - "lines": [ - { - "bbox": [ - 40, - 558, - 170, - 574 - ], - "spans": [ - { - "bbox": [ - 40, - 558, - 64, - 574 - ], - "score": 1.0, - "content": "3.1 ", - "type": "text" - }, - { - "bbox": [ - 77, - 560, - 170, - 574 - ], - "score": 1.0, - "content": "Marking of lists", - "type": "text" - } - ], - "index": 24 - } - ], - "index": 24, - "page_num": "page_105", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 40, - 587, - 542, - 613 - ], - "lines": [ - { - "bbox": [ - 41, - 587, - 541, - 601 - ], - "spans": [ - { - "bbox": [ - 41, - 587, - 541, - 601 - ], - "score": 1.0, - "content": "This applies to questions requiring a set number of responses, but for which candidates have provided", - "type": "text" - } - ], - "index": 25 - }, - { - "bbox": [ - 41, - 600, - 542, - 614 - ], - "spans": [ - { - "bbox": [ - 41, - 600, - 455, - 614 - ], - "score": 1.0, - "content": "extra responses. The general principle to be followed in such a situation is that ‘right", - "type": "text" - }, - { - "bbox": [ - 455, - 602, - 465, - 611 - ], - "score": 0.75, - "content": "+", - "type": "inline_equation", - "height": 9, - "width": 10 - }, - { - "bbox": [ - 465, - 600, - 497, - 614 - ], - "score": 1.0, - "content": " wrong", - "type": "text" - }, - { - "bbox": [ - 497, - 602, - 508, - 611 - ], - "score": 0.78, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 11 - }, - { - "bbox": [ - 508, - 600, - 542, - 614 - ], - "score": 1.0, - "content": "wrong’.", - "type": "text" - } - ], - "index": 26 - } - ], - "index": 25.5, - "page_num": "page_105", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 587, - 542, - 614 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 624, - 537, - 651 - ], - "lines": [ - { - "bbox": [ - 42, - 625, - 535, - 638 - ], - "spans": [ - { - "bbox": [ - 42, - 625, - 535, - 638 - ], - "score": 1.0, - "content": "Each error / contradiction negates each correct response. So, if the number of errors / contradictions ", - "type": "text" - } - ], - "index": 27 - }, - { - "bbox": [ - 41, - 638, - 497, - 650 - ], - "spans": [ - { - "bbox": [ - 41, - 638, - 497, - 650 - ], - "score": 1.0, - "content": "equals or exceeds the number of marks available for the question, no marks can be awarded.", - "type": "text" - } - ], - "index": 28 - } - ], - "index": 27.5, - "page_num": "page_105", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 625, - 535, - 650 - ] - }, - { - "type": "text", - "bbox": [ - 39, - 663, - 538, - 688 - ], - "lines": [ - { - "bbox": [ - 41, - 663, - 536, - 677 - ], - "spans": [ - { - "bbox": [ - 41, - 663, - 536, - 677 - ], - "score": 1.0, - "content": "However, responses considered to be neutral (often prefaced by ‘Ignore’ in the mark scheme) are not", - "type": "text" - } - ], - "index": 29 - }, - { - "bbox": [ - 40, - 677, - 92, - 688 - ], - "spans": [ - { - "bbox": [ - 40, - 677, - 92, - 688 - ], - "score": 1.0, - "content": "penalised.", - "type": "text" - } - ], - "index": 30 - } - ], - "index": 29.5, - "page_num": "page_105", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 663, - 536, - 688 - ] - }, - { - "type": "title", - "bbox": [ - 42, - 702, - 286, - 718 - ], - "lines": [ - { - "bbox": [ - 40, - 701, - 286, - 719 - ], - "spans": [ - { - "bbox": [ - 40, - 701, - 64, - 719 - ], - "score": 1.0, - "content": "3.2 ", - "type": "text" - }, - { - "bbox": [ - 77, - 704, - 286, - 717 - ], - "score": 1.0, - "content": "Marking procedure for calculations", - "type": "text" - } - ], - "index": 31 - } - ], - "index": 31, - "page_num": "page_105", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 731, - 547, - 782 - ], - "lines": [ - { - "bbox": [ - 42, - 732, - 514, - 744 - ], - "spans": [ - { - "bbox": [ - 42, - 732, - 514, - 744 - ], - "score": 1.0, - "content": "Full marks can usually be given for a correct numerical answer without working shown unless the", - "type": "text" - } - ], - "index": 32 - }, - { - "bbox": [ - 40, - 744, - 528, - 757 - ], - "spans": [ - { - "bbox": [ - 40, - 744, - 528, - 757 - ], - "score": 1.0, - "content": "question states ‘Show your working’. However, if a correct numerical answer can be evaluated from ", - "type": "text" - } - ], - "index": 33 - }, - { - "bbox": [ - 41, - 758, - 548, - 770 - ], - "spans": [ - { - "bbox": [ - 41, - 758, - 548, - 770 - ], - "score": 1.0, - "content": "incorrect physics then working will be required. The mark scheme will indicate both this and the credit (if", - "type": "text" - } - ], - "index": 34 - }, - { - "bbox": [ - 42, - 770, - 294, - 782 - ], - "spans": [ - { - "bbox": [ - 42, - 770, - 294, - 782 - ], - "score": 1.0, - "content": "any) that can be allowed for the incorrect approach.", - "type": "text" - } - ], - "index": 35 - } - ], - "index": 33.5, - "page_num": "page_105", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 732, - 548, - 782 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 40, - 84, - 540, - 110 - ], - "lines": [ - { - "bbox": [ - 41, - 86, - 542, - 98 - ], - "spans": [ - { - "bbox": [ - 41, - 86, - 542, - 98 - ], - "score": 1.0, - "content": "However, if the answer is incorrect, mark(s) can usually be gained by correct substitution / working and", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 41, - 97, - 462, - 111 - ], - "spans": [ - { - "bbox": [ - 41, - 97, - 462, - 111 - ], - "score": 1.0, - "content": "this is shown in the ‘extra information’ column or by each stage of a longer calculation.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 42, - 122, - 527, - 160 - ], - "lines": [ - { - "bbox": [ - 42, - 124, - 521, - 135 - ], - "spans": [ - { - "bbox": [ - 42, - 124, - 521, - 135 - ], - "score": 1.0, - "content": "A calculation must be followed through to answer in decimal form. An answer in surd form is never", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 41, - 136, - 526, - 149 - ], - "spans": [ - { - "bbox": [ - 41, - 136, - 526, - 149 - ], - "score": 1.0, - "content": "acceptable for the final (evaluation) mark in a calculation and will therefore generally be denied one ", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 40, - 148, - 71, - 161 - ], - "spans": [ - { - "bbox": [ - 40, - 148, - 71, - 161 - ], - "score": 1.0, - "content": "mark.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3 - }, - { - "type": "title", - "bbox": [ - 42, - 174, - 194, - 190 - ], - "lines": [ - { - "bbox": [ - 40, - 173, - 193, - 191 - ], - "spans": [ - { - "bbox": [ - 40, - 173, - 64, - 191 - ], - "score": 1.0, - "content": "3.3 ", - "type": "text" - }, - { - "bbox": [ - 77, - 176, - 193, - 189 - ], - "score": 1.0, - "content": "Interpretation of ‘it’", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 40, - 206, - 517, - 233 - ], - "lines": [ - { - "bbox": [ - 42, - 208, - 514, - 220 - ], - "spans": [ - { - "bbox": [ - 42, - 208, - 514, - 220 - ], - "score": 1.0, - "content": "Answers using the word ‘it’ should be given credit only if it is clear that the ‘it’ refers to the correct", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 40, - 219, - 82, - 234 - ], - "spans": [ - { - "bbox": [ - 40, - 219, - 82, - 234 - ], - "score": 1.0, - "content": "subject. ", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6.5 - }, - { - "type": "text", - "bbox": [ - 43, - 246, - 486, - 262 - ], - "lines": [ - { - "bbox": [ - 41, - 245, - 487, - 262 - ], - "spans": [ - { - "bbox": [ - 41, - 245, - 64, - 262 - ], - "score": 1.0, - "content": "3.4 ", - "type": "text" - }, - { - "bbox": [ - 77, - 246, - 487, - 262 - ], - "score": 1.0, - "content": "Errors carried forward, consequential marking and arithmetic errors", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 41, - 274, - 534, - 300 - ], - "lines": [ - { - "bbox": [ - 42, - 276, - 535, - 287 - ], - "spans": [ - { - "bbox": [ - 42, - 276, - 535, - 287 - ], - "score": 1.0, - "content": "Allowances for errors carried forward are likely to be restricted to calculation questions and should be", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 42, - 289, - 363, - 301 - ], - "spans": [ - { - "bbox": [ - 42, - 289, - 363, - 301 - ], - "score": 1.0, - "content": "shown by the abbreviation ECF or conseq in the marking scheme.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9.5 - }, - { - "type": "text", - "bbox": [ - 42, - 313, - 529, - 351 - ], - "lines": [ - { - "bbox": [ - 40, - 312, - 528, - 327 - ], - "spans": [ - { - "bbox": [ - 40, - 312, - 528, - 327 - ], - "score": 1.0, - "content": "An arithmetic error should be penalised for one mark only unless otherwise amplified in the marking ", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 42, - 327, - 509, - 338 - ], - "spans": [ - { - "bbox": [ - 42, - 327, - 509, - 338 - ], - "score": 1.0, - "content": "scheme. Arithmetic errors may arise from a slip in a calculation or from an incorrect transfer of a", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 40, - 339, - 267, - 352 - ], - "spans": [ - { - "bbox": [ - 40, - 339, - 267, - 352 - ], - "score": 1.0, - "content": "numerical value from data given in a question.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 12 - }, - { - "type": "title", - "bbox": [ - 42, - 365, - 180, - 381 - ], - "lines": [ - { - "bbox": [ - 41, - 365, - 178, - 381 - ], - "spans": [ - { - "bbox": [ - 41, - 365, - 63, - 380 - ], - "score": 1.0, - "content": "3.5", - "type": "text" - }, - { - "bbox": [ - 76, - 366, - 178, - 381 - ], - "score": 1.0, - "content": "Phonetic spelling", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 40, - 396, - 528, - 422 - ], - "lines": [ - { - "bbox": [ - 42, - 398, - 525, - 410 - ], - "spans": [ - { - "bbox": [ - 42, - 398, - 525, - 410 - ], - "score": 1.0, - "content": "The phonetic spelling of correct scientific terminology should be credited (eg fizix) unless there is a", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 41, - 411, - 394, - 423 - ], - "spans": [ - { - "bbox": [ - 41, - 411, - 394, - 423 - ], - "score": 1.0, - "content": "possible confusion (eg defraction/refraction) with another technical term.", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 15.5 - }, - { - "type": "title", - "bbox": [ - 42, - 435, - 130, - 452 - ], - "lines": [ - { - "bbox": [ - 40, - 436, - 130, - 452 - ], - "spans": [ - { - "bbox": [ - 40, - 436, - 64, - 451 - ], - "score": 1.0, - "content": "3.6 ", - "type": "text" - }, - { - "bbox": [ - 76, - 437, - 130, - 452 - ], - "score": 1.0, - "content": "Brackets", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 17 - }, - { - "type": "text", - "bbox": [ - 39, - 469, - 549, - 495 - ], - "lines": [ - { - "bbox": [ - 41, - 470, - 552, - 483 - ], - "spans": [ - { - "bbox": [ - 41, - 470, - 552, - 483 - ], - "score": 1.0, - "content": "(…..) are used to indicate information which is not essential for the mark to be awarded but is included to", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 41, - 484, - 334, - 496 - ], - "spans": [ - { - "bbox": [ - 41, - 484, - 334, - 496 - ], - "score": 1.0, - "content": "help the examiner identify the sense of the answer required.", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 18.5 - }, - { - "type": "title", - "bbox": [ - 41, - 508, - 283, - 525 - ], - "lines": [ - { - "bbox": [ - 40, - 509, - 283, - 524 - ], - "spans": [ - { - "bbox": [ - 40, - 509, - 66, - 524 - ], - "score": 1.0, - "content": "3.7 ", - "type": "text" - }, - { - "bbox": [ - 76, - 510, - 283, - 523 - ], - "score": 1.0, - "content": "Ignore / Insufficient / Do not allow", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 20 - }, - { - "type": "text", - "bbox": [ - 40, - 542, - 540, - 568 - ], - "lines": [ - { - "bbox": [ - 42, - 543, - 542, - 556 - ], - "spans": [ - { - "bbox": [ - 42, - 543, - 542, - 556 - ], - "score": 1.0, - "content": "‘Ignore’ or ‘insufficient’ is used when the information given is irrelevant to the question or not enough to", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 41, - 556, - 460, - 570 - ], - "spans": [ - { - "bbox": [ - 41, - 556, - 460, - 570 - ], - "score": 1.0, - "content": "gain the marking point. Any further correct amplification could gain the marking point. ", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 21.5 - }, - { - "type": "text", - "bbox": [ - 41, - 580, - 524, - 606 - ], - "lines": [ - { - "bbox": [ - 43, - 581, - 524, - 593 - ], - "spans": [ - { - "bbox": [ - 43, - 581, - 524, - 593 - ], - "score": 1.0, - "content": "‘Do not allow’ means that this is a wrong answer which, even if the correct answer is given, will still", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 41, - 594, - 215, - 606 - ], - "spans": [ - { - "bbox": [ - 41, - 594, - 215, - 606 - ], - "score": 1.0, - "content": "mean that the mark is not awarded.", - "type": "text" - } - ], - "index": 24 - } - ], - "index": 23.5 - }, - { - "type": "title", - "bbox": [ - 41, - 619, - 238, - 636 - ], - "lines": [ - { - "bbox": [ - 41, - 620, - 237, - 635 - ], - "spans": [ - { - "bbox": [ - 41, - 620, - 64, - 635 - ], - "score": 1.0, - "content": "3.8 ", - "type": "text" - }, - { - "bbox": [ - 76, - 621, - 237, - 635 - ], - "score": 1.0, - "content": "Significant figure penalties", - "type": "text" - } - ], - "index": 25 - } - ], - "index": 25 - }, - { - "type": "text", - "bbox": [ - 42, - 652, - 549, - 730 - ], - "lines": [ - { - "bbox": [ - 41, - 653, - 523, - 667 - ], - "spans": [ - { - "bbox": [ - 41, - 653, - 523, - 667 - ], - "score": 1.0, - "content": "Answers to questions in the practical sections (7407/2 – Section A and 7408/3A) should display an ", - "type": "text" - } - ], - "index": 26 - }, - { - "bbox": [ - 40, - 666, - 549, - 680 - ], - "spans": [ - { - "bbox": [ - 40, - 666, - 549, - 680 - ], - "score": 1.0, - "content": "appropriate number of significant figures. For non-practical sections, an A-level paper may contain up to ", - "type": "text" - } - ], - "index": 27 - }, - { - "bbox": [ - 41, - 680, - 549, - 692 - ], - "spans": [ - { - "bbox": [ - 41, - 680, - 549, - 692 - ], - "score": 1.0, - "content": "2 marks (1 mark for AS) that are contingent on the candidate quoting the final answer in a calculation to", - "type": "text" - } - ], - "index": 28 - }, - { - "bbox": [ - 41, - 692, - 537, - 705 - ], - "spans": [ - { - "bbox": [ - 41, - 692, - 537, - 705 - ], - "score": 1.0, - "content": "a specified number of significant figures (sf). This will generally be assessed to be the number of sf of ", - "type": "text" - } - ], - "index": 29 - }, - { - "bbox": [ - 41, - 704, - 542, - 717 - ], - "spans": [ - { - "bbox": [ - 41, - 704, - 542, - 717 - ], - "score": 1.0, - "content": "the datum with the least number of sf from which the answer is determined. The mark scheme will give", - "type": "text" - } - ], - "index": 30 - }, - { - "bbox": [ - 41, - 717, - 489, - 730 - ], - "spans": [ - { - "bbox": [ - 41, - 717, - 489, - 730 - ], - "score": 1.0, - "content": "the range of sf that are acceptable but this will normally be the sf of the datum (or this sf -1).", - "type": "text" - } - ], - "index": 31 - } - ], - "index": 28.5 - }, - { - "type": "text", - "bbox": [ - 42, - 741, - 548, - 780 - ], - "lines": [ - { - "bbox": [ - 42, - 743, - 543, - 754 - ], - "spans": [ - { - "bbox": [ - 42, - 743, - 543, - 754 - ], - "score": 1.0, - "content": "An answer in surd form cannot gain the sf mark. An incorrect calculation following some working can", - "type": "text" - } - ], - "index": 32 - }, - { - "bbox": [ - 41, - 755, - 547, - 767 - ], - "spans": [ - { - "bbox": [ - 41, - 755, - 547, - 767 - ], - "score": 1.0, - "content": "gain the sf mark. For a question beginning with the command word ‘Show that…’, the answer should be", - "type": "text" - } - ], - "index": 33 - }, - { - "bbox": [ - 41, - 768, - 531, - 780 - ], - "spans": [ - { - "bbox": [ - 41, - 768, - 531, - 780 - ], - "score": 1.0, - "content": "quoted to one more sf than the sf quoted in the question eg ‘Show that X is equal to about 2.1 cm’ –", - "type": "text" - } - ], - "index": 34 - } - ], - "index": 33 - } - ], - "layout_bboxes": [], - "page_idx": 106, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 247, - 35, - 553, - 48 - ], - "lines": [ - { - "bbox": [ - 248, - 35, - 553, - 48 - ], - "spans": [ - { - "bbox": [ - 248, - 35, - 553, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2023", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 2, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 797, - 47, - 804 - ], - "lines": [ - { - "bbox": [ - 41, - 798, - 48, - 806 - ], - "spans": [ - { - "bbox": [ - 41, - 798, - 48, - 806 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 40, - 84, - 540, - 110 - ], - "lines": [ - { - "bbox": [ - 41, - 86, - 542, - 98 - ], - "spans": [ - { - "bbox": [ - 41, - 86, - 542, - 98 - ], - "score": 1.0, - "content": "However, if the answer is incorrect, mark(s) can usually be gained by correct substitution / working and", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 41, - 97, - 462, - 111 - ], - "spans": [ - { - "bbox": [ - 41, - 97, - 462, - 111 - ], - "score": 1.0, - "content": "this is shown in the ‘extra information’ column or by each stage of a longer calculation.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_106", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 86, - 542, - 111 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 122, - 527, - 160 - ], - "lines": [ - { - "bbox": [ - 42, - 124, - 521, - 135 - ], - "spans": [ - { - "bbox": [ - 42, - 124, - 521, - 135 - ], - "score": 1.0, - "content": "A calculation must be followed through to answer in decimal form. An answer in surd form is never", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 41, - 136, - 526, - 149 - ], - "spans": [ - { - "bbox": [ - 41, - 136, - 526, - 149 - ], - "score": 1.0, - "content": "acceptable for the final (evaluation) mark in a calculation and will therefore generally be denied one ", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 40, - 148, - 71, - 161 - ], - "spans": [ - { - "bbox": [ - 40, - 148, - 71, - 161 - ], - "score": 1.0, - "content": "mark.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3, - "page_num": "page_106", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 124, - 526, - 161 - ] - }, - { - "type": "title", - "bbox": [ - 42, - 174, - 194, - 190 - ], - "lines": [ - { - "bbox": [ - 40, - 173, - 193, - 191 - ], - "spans": [ - { - "bbox": [ - 40, - 173, - 64, - 191 - ], - "score": 1.0, - "content": "3.3 ", - "type": "text" - }, - { - "bbox": [ - 77, - 176, - 193, - 189 - ], - "score": 1.0, - "content": "Interpretation of ‘it’", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_106", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 40, - 206, - 517, - 233 - ], - "lines": [ - { - "bbox": [ - 42, - 208, - 514, - 220 - ], - "spans": [ - { - "bbox": [ - 42, - 208, - 514, - 220 - ], - "score": 1.0, - "content": "Answers using the word ‘it’ should be given credit only if it is clear that the ‘it’ refers to the correct", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 40, - 219, - 82, - 234 - ], - "spans": [ - { - "bbox": [ - 40, - 219, - 82, - 234 - ], - "score": 1.0, - "content": "subject. ", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6.5, - "page_num": "page_106", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 208, - 514, - 234 - ] - }, - { - "type": "text", - "bbox": [ - 43, - 246, - 486, - 262 - ], - "lines": [ - { - "bbox": [ - 41, - 245, - 487, - 262 - ], - "spans": [ - { - "bbox": [ - 41, - 245, - 64, - 262 - ], - "score": 1.0, - "content": "3.4 ", - "type": "text" - }, - { - "bbox": [ - 77, - 246, - 487, - 262 - ], - "score": 1.0, - "content": "Errors carried forward, consequential marking and arithmetic errors", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_106", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 245, - 487, - 262 - ] - }, - { - "type": "text", - "bbox": [ - 41, - 274, - 534, - 300 - ], - "lines": [ - { - "bbox": [ - 42, - 276, - 535, - 287 - ], - "spans": [ - { - "bbox": [ - 42, - 276, - 535, - 287 - ], - "score": 1.0, - "content": "Allowances for errors carried forward are likely to be restricted to calculation questions and should be", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 42, - 289, - 363, - 301 - ], - "spans": [ - { - "bbox": [ - 42, - 289, - 363, - 301 - ], - "score": 1.0, - "content": "shown by the abbreviation ECF or conseq in the marking scheme.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9.5, - "page_num": "page_106", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 276, - 535, - 301 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 313, - 529, - 351 - ], - "lines": [ - { - "bbox": [ - 40, - 312, - 528, - 327 - ], - "spans": [ - { - "bbox": [ - 40, - 312, - 528, - 327 - ], - "score": 1.0, - "content": "An arithmetic error should be penalised for one mark only unless otherwise amplified in the marking ", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 42, - 327, - 509, - 338 - ], - "spans": [ - { - "bbox": [ - 42, - 327, - 509, - 338 - ], - "score": 1.0, - "content": "scheme. Arithmetic errors may arise from a slip in a calculation or from an incorrect transfer of a", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 40, - 339, - 267, - 352 - ], - "spans": [ - { - "bbox": [ - 40, - 339, - 267, - 352 - ], - "score": 1.0, - "content": "numerical value from data given in a question.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 12, - "page_num": "page_106", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 312, - 528, - 352 - ] - }, - { - "type": "title", - "bbox": [ - 42, - 365, - 180, - 381 - ], - "lines": [ - { - "bbox": [ - 41, - 365, - 178, - 381 - ], - "spans": [ - { - "bbox": [ - 41, - 365, - 63, - 380 - ], - "score": 1.0, - "content": "3.5", - "type": "text" - }, - { - "bbox": [ - 76, - 366, - 178, - 381 - ], - "score": 1.0, - "content": "Phonetic spelling", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_106", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 40, - 396, - 528, - 422 - ], - "lines": [ - { - "bbox": [ - 42, - 398, - 525, - 410 - ], - "spans": [ - { - "bbox": [ - 42, - 398, - 525, - 410 - ], - "score": 1.0, - "content": "The phonetic spelling of correct scientific terminology should be credited (eg fizix) unless there is a", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 41, - 411, - 394, - 423 - ], - "spans": [ - { - "bbox": [ - 41, - 411, - 394, - 423 - ], - "score": 1.0, - "content": "possible confusion (eg defraction/refraction) with another technical term.", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 15.5, - "page_num": "page_106", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 398, - 525, - 423 - ] - }, - { - "type": "title", - "bbox": [ - 42, - 435, - 130, - 452 - ], - "lines": [ - { - "bbox": [ - 40, - 436, - 130, - 452 - ], - "spans": [ - { - "bbox": [ - 40, - 436, - 64, - 451 - ], - "score": 1.0, - "content": "3.6 ", - "type": "text" - }, - { - "bbox": [ - 76, - 437, - 130, - 452 - ], - "score": 1.0, - "content": "Brackets", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 17, - "page_num": "page_106", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 39, - 469, - 549, - 495 - ], - "lines": [ - { - "bbox": [ - 41, - 470, - 552, - 483 - ], - "spans": [ - { - "bbox": [ - 41, - 470, - 552, - 483 - ], - "score": 1.0, - "content": "(…..) are used to indicate information which is not essential for the mark to be awarded but is included to", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 41, - 484, - 334, - 496 - ], - "spans": [ - { - "bbox": [ - 41, - 484, - 334, - 496 - ], - "score": 1.0, - "content": "help the examiner identify the sense of the answer required.", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 18.5, - "page_num": "page_106", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 470, - 552, - 496 - ] - }, - { - "type": "title", - "bbox": [ - 41, - 508, - 283, - 525 - ], - "lines": [ - { - "bbox": [ - 40, - 509, - 283, - 524 - ], - "spans": [ - { - "bbox": [ - 40, - 509, - 66, - 524 - ], - "score": 1.0, - "content": "3.7 ", - "type": "text" - }, - { - "bbox": [ - 76, - 510, - 283, - 523 - ], - "score": 1.0, - "content": "Ignore / Insufficient / Do not allow", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 20, - "page_num": "page_106", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 40, - 542, - 540, - 568 - ], - "lines": [ - { - "bbox": [ - 42, - 543, - 542, - 556 - ], - "spans": [ - { - "bbox": [ - 42, - 543, - 542, - 556 - ], - "score": 1.0, - "content": "‘Ignore’ or ‘insufficient’ is used when the information given is irrelevant to the question or not enough to", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 41, - 556, - 460, - 570 - ], - "spans": [ - { - "bbox": [ - 41, - 556, - 460, - 570 - ], - "score": 1.0, - "content": "gain the marking point. Any further correct amplification could gain the marking point. ", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 21.5, - "page_num": "page_106", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 543, - 542, - 570 - ] - }, - { - "type": "text", - "bbox": [ - 41, - 580, - 524, - 606 - ], - "lines": [ - { - "bbox": [ - 43, - 581, - 524, - 593 - ], - "spans": [ - { - "bbox": [ - 43, - 581, - 524, - 593 - ], - "score": 1.0, - "content": "‘Do not allow’ means that this is a wrong answer which, even if the correct answer is given, will still", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 41, - 594, - 215, - 606 - ], - "spans": [ - { - "bbox": [ - 41, - 594, - 215, - 606 - ], - "score": 1.0, - "content": "mean that the mark is not awarded.", - "type": "text" - } - ], - "index": 24 - } - ], - "index": 23.5, - "page_num": "page_106", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 581, - 524, - 606 - ] - }, - { - "type": "title", - "bbox": [ - 41, - 619, - 238, - 636 - ], - "lines": [ - { - "bbox": [ - 41, - 620, - 237, - 635 - ], - "spans": [ - { - "bbox": [ - 41, - 620, - 64, - 635 - ], - "score": 1.0, - "content": "3.8 ", - "type": "text" - }, - { - "bbox": [ - 76, - 621, - 237, - 635 - ], - "score": 1.0, - "content": "Significant figure penalties", - "type": "text" - } - ], - "index": 25 - } - ], - "index": 25, - "page_num": "page_106", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 652, - 549, - 730 - ], - "lines": [ - { - "bbox": [ - 41, - 653, - 523, - 667 - ], - "spans": [ - { - "bbox": [ - 41, - 653, - 523, - 667 - ], - "score": 1.0, - "content": "Answers to questions in the practical sections (7407/2 – Section A and 7408/3A) should display an ", - "type": "text" - } - ], - "index": 26 - }, - { - "bbox": [ - 40, - 666, - 549, - 680 - ], - "spans": [ - { - "bbox": [ - 40, - 666, - 549, - 680 - ], - "score": 1.0, - "content": "appropriate number of significant figures. For non-practical sections, an A-level paper may contain up to ", - "type": "text" - } - ], - "index": 27 - }, - { - "bbox": [ - 41, - 680, - 549, - 692 - ], - "spans": [ - { - "bbox": [ - 41, - 680, - 549, - 692 - ], - "score": 1.0, - "content": "2 marks (1 mark for AS) that are contingent on the candidate quoting the final answer in a calculation to", - "type": "text" - } - ], - "index": 28 - }, - { - "bbox": [ - 41, - 692, - 537, - 705 - ], - "spans": [ - { - "bbox": [ - 41, - 692, - 537, - 705 - ], - "score": 1.0, - "content": "a specified number of significant figures (sf). This will generally be assessed to be the number of sf of ", - "type": "text" - } - ], - "index": 29 - }, - { - "bbox": [ - 41, - 704, - 542, - 717 - ], - "spans": [ - { - "bbox": [ - 41, - 704, - 542, - 717 - ], - "score": 1.0, - "content": "the datum with the least number of sf from which the answer is determined. The mark scheme will give", - "type": "text" - } - ], - "index": 30 - }, - { - "bbox": [ - 41, - 717, - 489, - 730 - ], - "spans": [ - { - "bbox": [ - 41, - 717, - 489, - 730 - ], - "score": 1.0, - "content": "the range of sf that are acceptable but this will normally be the sf of the datum (or this sf -1).", - "type": "text" - } - ], - "index": 31 - } - ], - "index": 28.5, - "page_num": "page_106", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 653, - 549, - 730 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 741, - 548, - 780 - ], - "lines": [ - { - "bbox": [ - 42, - 743, - 543, - 754 - ], - "spans": [ - { - "bbox": [ - 42, - 743, - 543, - 754 - ], - "score": 1.0, - "content": "An answer in surd form cannot gain the sf mark. An incorrect calculation following some working can", - "type": "text" - } - ], - "index": 32 - }, - { - "bbox": [ - 41, - 755, - 547, - 767 - ], - "spans": [ - { - "bbox": [ - 41, - 755, - 547, - 767 - ], - "score": 1.0, - "content": "gain the sf mark. For a question beginning with the command word ‘Show that…’, the answer should be", - "type": "text" - } - ], - "index": 33 - }, - { - "bbox": [ - 41, - 768, - 531, - 780 - ], - "spans": [ - { - "bbox": [ - 41, - 768, - 531, - 780 - ], - "score": 1.0, - "content": "quoted to one more sf than the sf quoted in the question eg ‘Show that X is equal to about 2.1 cm’ –", - "type": "text" - } - ], - "index": 34 - } - ], - "index": 33, - "page_num": "page_106", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 743, - 547, - 780 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 42, - 84, - 551, - 123 - ], - "lines": [ - { - "bbox": [ - 42, - 86, - 548, - 97 - ], - "spans": [ - { - "bbox": [ - 42, - 86, - 548, - 97 - ], - "score": 1.0, - "content": "answer should be quoted to 3 sf. An answer to 1 sf will not normally be acceptable, unless the answer is", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 41, - 98, - 509, - 111 - ], - "spans": [ - { - "bbox": [ - 41, - 98, - 509, - 111 - ], - "score": 1.0, - "content": "an integer eg a number of objects. In non-practical sections, the need for a consideration will be ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 40, - 110, - 552, - 124 - ], - "spans": [ - { - "bbox": [ - 40, - 110, - 552, - 124 - ], - "score": 1.0, - "content": "indicated in the question by the use of ‘Give your answer to an appropriate number of significant figures’.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1 - }, - { - "type": "title", - "bbox": [ - 42, - 136, - 160, - 152 - ], - "lines": [ - { - "bbox": [ - 41, - 136, - 161, - 152 - ], - "spans": [ - { - "bbox": [ - 41, - 136, - 63, - 152 - ], - "score": 1.0, - "content": "3.9", - "type": "text" - }, - { - "bbox": [ - 77, - 137, - 161, - 152 - ], - "score": 1.0, - "content": "Unit penalties", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 42, - 168, - 551, - 245 - ], - "lines": [ - { - "bbox": [ - 41, - 168, - 552, - 183 - ], - "spans": [ - { - "bbox": [ - 41, - 168, - 552, - 183 - ], - "score": 1.0, - "content": "An A-level paper may contain up to 2 marks (1 mark for AS) that are contingent on the candidate quoting", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 41, - 182, - 542, - 195 - ], - "spans": [ - { - "bbox": [ - 41, - 182, - 542, - 195 - ], - "score": 1.0, - "content": "the correct unit for the answer to a calculation. The need for a unit to be quoted will be indicated in the", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 42, - 194, - 538, - 207 - ], - "spans": [ - { - "bbox": [ - 42, - 194, - 538, - 207 - ], - "score": 1.0, - "content": "question by the use of ‘State an appropriate SI unit for your answer’. Unit answers will be expected to", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 41, - 208, - 541, - 220 - ], - "spans": [ - { - "bbox": [ - 41, - 208, - 541, - 220 - ], - "score": 1.0, - "content": "appear in the most commonly agreed form for the calculation concerned; strings of fundamental (base)", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 41, - 220, - 531, - 233 - ], - "spans": [ - { - "bbox": [ - 41, - 220, - 273, - 233 - ], - "score": 1.0, - "content": "units would not. For example, 1 tesla and 1 Wb", - "type": "text" - }, - { - "bbox": [ - 273, - 220, - 292, - 231 - ], - "score": 0.79, - "content": "\\mathsf{m}^{-2}", - "type": "inline_equation", - "height": 11, - "width": 19 - }, - { - "bbox": [ - 293, - 220, - 531, - 233 - ], - "score": 1.0, - "content": " would both be acceptable units for magnetic flux", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 41, - 232, - 224, - 245 - ], - "spans": [ - { - "bbox": [ - 41, - 232, - 98, - 245 - ], - "score": 1.0, - "content": "density but ", - "type": "text" - }, - { - "bbox": [ - 98, - 232, - 170, - 245 - ], - "score": 0.88, - "content": "1~\\mathsf{k g}~\\mathsf{m}^{2}\\mathsf{s}^{-2}\\mathsf{A}^{-1}", - "type": "inline_equation", - "height": 13, - "width": 72 - }, - { - "bbox": [ - 170, - 232, - 224, - 245 - ], - "score": 1.0, - "content": " would not.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 6.5 - }, - { - "type": "title", - "bbox": [ - 42, - 259, - 310, - 274 - ], - "lines": [ - { - "bbox": [ - 42, - 259, - 310, - 274 - ], - "spans": [ - { - "bbox": [ - 42, - 259, - 310, - 274 - ], - "score": 1.0, - "content": "3.10 Level of response marking instructions", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 42, - 287, - 554, - 313 - ], - "lines": [ - { - "bbox": [ - 41, - 288, - 552, - 300 - ], - "spans": [ - { - "bbox": [ - 41, - 288, - 552, - 300 - ], - "score": 1.0, - "content": "Level of response mark schemes are broken down into three levels, each of which has a descriptor. The", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 41, - 301, - 549, - 313 - ], - "spans": [ - { - "bbox": [ - 41, - 301, - 549, - 313 - ], - "score": 1.0, - "content": "descriptor for the level shows the average performance for the level. There are two marks in each level.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11.5 - }, - { - "type": "text", - "bbox": [ - 40, - 325, - 541, - 351 - ], - "lines": [ - { - "bbox": [ - 41, - 325, - 537, - 339 - ], - "spans": [ - { - "bbox": [ - 41, - 325, - 537, - 339 - ], - "score": 1.0, - "content": "Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 41, - 339, - 512, - 352 - ], - "spans": [ - { - "bbox": [ - 41, - 339, - 512, - 352 - ], - "score": 1.0, - "content": "instructed) to show the qualities that are being looked for. You can then apply the mark scheme.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 13.5 - }, - { - "type": "title", - "bbox": [ - 42, - 365, - 159, - 380 - ], - "lines": [ - { - "bbox": [ - 42, - 367, - 158, - 380 - ], - "spans": [ - { - "bbox": [ - 42, - 367, - 158, - 380 - ], - "score": 1.0, - "content": "Determining a level", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "text", - "bbox": [ - 42, - 396, - 550, - 473 - ], - "lines": [ - { - "bbox": [ - 42, - 398, - 548, - 409 - ], - "spans": [ - { - "bbox": [ - 42, - 398, - 548, - 409 - ], - "score": 1.0, - "content": "Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 41, - 410, - 550, - 423 - ], - "spans": [ - { - "bbox": [ - 41, - 410, - 550, - 423 - ], - "score": 1.0, - "content": "descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 40, - 422, - 534, - 436 - ], - "spans": [ - { - "bbox": [ - 40, - 422, - 534, - 436 - ], - "score": 1.0, - "content": "the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it ", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 41, - 436, - 539, - 447 - ], - "spans": [ - { - "bbox": [ - 41, - 436, - 539, - 447 - ], - "score": 1.0, - "content": "meets this level, and so on, until you have a match between the level descriptor and the answer. With", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 41, - 449, - 534, - 461 - ], - "spans": [ - { - "bbox": [ - 41, - 449, - 534, - 461 - ], - "score": 1.0, - "content": "practice and familiarity you will find that for better answers you will be able to quickly skip through the", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 40, - 460, - 203, - 474 - ], - "spans": [ - { - "bbox": [ - 40, - 460, - 203, - 474 - ], - "score": 1.0, - "content": "lower levels of the mark scheme.", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 18.5 - }, - { - "type": "text", - "bbox": [ - 42, - 485, - 552, - 561 - ], - "lines": [ - { - "bbox": [ - 41, - 485, - 545, - 498 - ], - "spans": [ - { - "bbox": [ - 41, - 485, - 545, - 498 - ], - "score": 1.0, - "content": "When assigning a level you should look at the overall quality of the answer and not look to pick holes in", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 41, - 499, - 545, - 512 - ], - "spans": [ - { - "bbox": [ - 41, - 499, - 545, - 512 - ], - "score": 1.0, - "content": "small and specific parts of the answer where the student has not performed quite as well as the rest. If ", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 42, - 512, - 525, - 524 - ], - "spans": [ - { - "bbox": [ - 42, - 512, - 525, - 524 - ], - "score": 1.0, - "content": "the answer covers different aspects of different levels of the mark scheme you should use a best fit ", - "type": "text" - } - ], - "index": 24 - }, - { - "bbox": [ - 41, - 524, - 553, - 537 - ], - "spans": [ - { - "bbox": [ - 41, - 524, - 553, - 537 - ], - "score": 1.0, - "content": "approach for defining the level and then use the variability of the response to help decide the mark within ", - "type": "text" - } - ], - "index": 25 - }, - { - "bbox": [ - 41, - 537, - 538, - 550 - ], - "spans": [ - { - "bbox": [ - 41, - 537, - 538, - 550 - ], - "score": 1.0, - "content": "the level. ie if the response is predominantly level 2 with a small amount of level 3 material it would be", - "type": "text" - } - ], - "index": 26 - }, - { - "bbox": [ - 40, - 549, - 126, - 561 - ], - "spans": [ - { - "bbox": [ - 40, - 549, - 126, - 561 - ], - "score": 1.0, - "content": "placed in level 2.", - "type": "text" - } - ], - "index": 27 - } - ], - "index": 24.5 - }, - { - "type": "text", - "bbox": [ - 42, - 573, - 547, - 650 - ], - "lines": [ - { - "bbox": [ - 42, - 574, - 528, - 586 - ], - "spans": [ - { - "bbox": [ - 42, - 574, - 528, - 586 - ], - "score": 1.0, - "content": "The exemplar materials used during standardisation will help you to determine the appropriate level.", - "type": "text" - } - ], - "index": 28 - }, - { - "bbox": [ - 41, - 586, - 547, - 600 - ], - "spans": [ - { - "bbox": [ - 41, - 586, - 547, - 600 - ], - "score": 1.0, - "content": "There will be an answer in the standardising materials which will correspond with each level of the mark", - "type": "text" - } - ], - "index": 29 - }, - { - "bbox": [ - 42, - 601, - 529, - 612 - ], - "spans": [ - { - "bbox": [ - 42, - 601, - 529, - 612 - ], - "score": 1.0, - "content": "scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the", - "type": "text" - } - ], - "index": 30 - }, - { - "bbox": [ - 42, - 613, - 520, - 624 - ], - "spans": [ - { - "bbox": [ - 42, - 613, - 520, - 624 - ], - "score": 1.0, - "content": "student’s answer with the example to determine if it is the same standard, better or worse than the", - "type": "text" - } - ], - "index": 31 - }, - { - "bbox": [ - 42, - 625, - 543, - 638 - ], - "spans": [ - { - "bbox": [ - 42, - 625, - 543, - 638 - ], - "score": 1.0, - "content": "example. You can then use this to allocate a mark for the answer based on the Lead Examiner’s mark ", - "type": "text" - } - ], - "index": 32 - }, - { - "bbox": [ - 41, - 638, - 121, - 651 - ], - "spans": [ - { - "bbox": [ - 41, - 638, - 121, - 651 - ], - "score": 1.0, - "content": "on the example.", - "type": "text" - } - ], - "index": 33 - } - ], - "index": 30.5 - }, - { - "type": "text", - "bbox": [ - 40, - 662, - 549, - 688 - ], - "lines": [ - { - "bbox": [ - 42, - 662, - 548, - 677 - ], - "spans": [ - { - "bbox": [ - 42, - 662, - 548, - 677 - ], - "score": 1.0, - "content": "You may well need to read back through the answer as you apply the mark scheme to clarify points and ", - "type": "text" - } - ], - "index": 34 - }, - { - "bbox": [ - 42, - 677, - 330, - 689 - ], - "spans": [ - { - "bbox": [ - 42, - 677, - 330, - 689 - ], - "score": 1.0, - "content": "assure yourself that the level and the mark are appropriate.", - "type": "text" - } - ], - "index": 35 - } - ], - "index": 34.5 - }, - { - "type": "text", - "bbox": [ - 42, - 700, - 525, - 739 - ], - "lines": [ - { - "bbox": [ - 42, - 702, - 522, - 713 - ], - "spans": [ - { - "bbox": [ - 42, - 702, - 522, - 713 - ], - "score": 1.0, - "content": "Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be", - "type": "text" - } - ], - "index": 36 - }, - { - "bbox": [ - 41, - 714, - 511, - 727 - ], - "spans": [ - { - "bbox": [ - 41, - 714, - 511, - 727 - ], - "score": 1.0, - "content": "exhaustive and you must credit other valid points. Students do not have to cover all of the points", - "type": "text" - } - ], - "index": 37 - }, - { - "bbox": [ - 41, - 727, - 441, - 739 - ], - "spans": [ - { - "bbox": [ - 41, - 727, - 441, - 739 - ], - "score": 1.0, - "content": "mentioned in the indicative content to reach the highest level of the mark scheme.", - "type": "text" - } - ], - "index": 38 - } - ], - "index": 37 - }, - { - "type": "text", - "bbox": [ - 40, - 751, - 486, - 764 - ], - "lines": [ - { - "bbox": [ - 42, - 752, - 485, - 764 - ], - "spans": [ - { - "bbox": [ - 42, - 752, - 485, - 764 - ], - "score": 1.0, - "content": "An answer which contains nothing of relevance to the question must be awarded no marks.", - "type": "text" - } - ], - "index": 39 - } - ], - "index": 39 - } - ], - "layout_bboxes": [], - "page_idx": 107, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 247, - 35, - 553, - 48 - ], - "lines": [ - { - "bbox": [ - 249, - 37, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 249, - 37, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2023", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 2, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 547, - 797, - 553, - 805 - ], - "lines": [ - { - "bbox": [ - 547, - 797, - 554, - 807 - ], - "spans": [ - { - "bbox": [ - 547, - 797, - 554, - 807 - ], - "score": 1.0, - "content": "5 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 42, - 84, - 551, - 123 - ], - "lines": [ - { - "bbox": [ - 42, - 86, - 548, - 97 - ], - "spans": [ - { - "bbox": [ - 42, - 86, - 548, - 97 - ], - "score": 1.0, - "content": "answer should be quoted to 3 sf. An answer to 1 sf will not normally be acceptable, unless the answer is", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 41, - 98, - 509, - 111 - ], - "spans": [ - { - "bbox": [ - 41, - 98, - 509, - 111 - ], - "score": 1.0, - "content": "an integer eg a number of objects. In non-practical sections, the need for a consideration will be ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 40, - 110, - 552, - 124 - ], - "spans": [ - { - "bbox": [ - 40, - 110, - 552, - 124 - ], - "score": 1.0, - "content": "indicated in the question by the use of ‘Give your answer to an appropriate number of significant figures’.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1, - "page_num": "page_107", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 86, - 552, - 124 - ] - }, - { - "type": "title", - "bbox": [ - 42, - 136, - 160, - 152 - ], - "lines": [ - { - "bbox": [ - 41, - 136, - 161, - 152 - ], - "spans": [ - { - "bbox": [ - 41, - 136, - 63, - 152 - ], - "score": 1.0, - "content": "3.9", - "type": "text" - }, - { - "bbox": [ - 77, - 137, - 161, - 152 - ], - "score": 1.0, - "content": "Unit penalties", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_107", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 168, - 551, - 245 - ], - "lines": [ - { - "bbox": [ - 41, - 168, - 552, - 183 - ], - "spans": [ - { - "bbox": [ - 41, - 168, - 552, - 183 - ], - "score": 1.0, - "content": "An A-level paper may contain up to 2 marks (1 mark for AS) that are contingent on the candidate quoting", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 41, - 182, - 542, - 195 - ], - "spans": [ - { - "bbox": [ - 41, - 182, - 542, - 195 - ], - "score": 1.0, - "content": "the correct unit for the answer to a calculation. The need for a unit to be quoted will be indicated in the", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 42, - 194, - 538, - 207 - ], - "spans": [ - { - "bbox": [ - 42, - 194, - 538, - 207 - ], - "score": 1.0, - "content": "question by the use of ‘State an appropriate SI unit for your answer’. Unit answers will be expected to", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 41, - 208, - 541, - 220 - ], - "spans": [ - { - "bbox": [ - 41, - 208, - 541, - 220 - ], - "score": 1.0, - "content": "appear in the most commonly agreed form for the calculation concerned; strings of fundamental (base)", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 41, - 220, - 531, - 233 - ], - "spans": [ - { - "bbox": [ - 41, - 220, - 273, - 233 - ], - "score": 1.0, - "content": "units would not. For example, 1 tesla and 1 Wb", - "type": "text" - }, - { - "bbox": [ - 273, - 220, - 292, - 231 - ], - "score": 0.79, - "content": "\\mathsf{m}^{-2}", - "type": "inline_equation", - "height": 11, - "width": 19 - }, - { - "bbox": [ - 293, - 220, - 531, - 233 - ], - "score": 1.0, - "content": " would both be acceptable units for magnetic flux", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 41, - 232, - 224, - 245 - ], - "spans": [ - { - "bbox": [ - 41, - 232, - 98, - 245 - ], - "score": 1.0, - "content": "density but ", - "type": "text" - }, - { - "bbox": [ - 98, - 232, - 170, - 245 - ], - "score": 0.88, - "content": "1~\\mathsf{k g}~\\mathsf{m}^{2}\\mathsf{s}^{-2}\\mathsf{A}^{-1}", - "type": "inline_equation", - "height": 13, - "width": 72 - }, - { - "bbox": [ - 170, - 232, - 224, - 245 - ], - "score": 1.0, - "content": " would not.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 6.5, - "page_num": "page_107", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 168, - 552, - 245 - ] - }, - { - "type": "title", - "bbox": [ - 42, - 259, - 310, - 274 - ], - "lines": [ - { - "bbox": [ - 42, - 259, - 310, - 274 - ], - "spans": [ - { - "bbox": [ - 42, - 259, - 310, - 274 - ], - "score": 1.0, - "content": "3.10 Level of response marking instructions", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_107", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 287, - 554, - 313 - ], - "lines": [ - { - "bbox": [ - 41, - 288, - 552, - 300 - ], - "spans": [ - { - "bbox": [ - 41, - 288, - 552, - 300 - ], - "score": 1.0, - "content": "Level of response mark schemes are broken down into three levels, each of which has a descriptor. The", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 41, - 301, - 549, - 313 - ], - "spans": [ - { - "bbox": [ - 41, - 301, - 549, - 313 - ], - "score": 1.0, - "content": "descriptor for the level shows the average performance for the level. There are two marks in each level.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11.5, - "page_num": "page_107", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 288, - 552, - 313 - ] - }, - { - "type": "text", - "bbox": [ - 40, - 325, - 541, - 351 - ], - "lines": [ - { - "bbox": [ - 41, - 325, - 537, - 339 - ], - "spans": [ - { - "bbox": [ - 41, - 325, - 537, - 339 - ], - "score": 1.0, - "content": "Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 41, - 339, - 512, - 352 - ], - "spans": [ - { - "bbox": [ - 41, - 339, - 512, - 352 - ], - "score": 1.0, - "content": "instructed) to show the qualities that are being looked for. You can then apply the mark scheme.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 13.5, - "page_num": "page_107", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 325, - 537, - 352 - ] - }, - { - "type": "title", - "bbox": [ - 42, - 365, - 159, - 380 - ], - "lines": [ - { - "bbox": [ - 42, - 367, - 158, - 380 - ], - "spans": [ - { - "bbox": [ - 42, - 367, - 158, - 380 - ], - "score": 1.0, - "content": "Determining a level", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_107", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 396, - 550, - 473 - ], - "lines": [ - { - "bbox": [ - 42, - 398, - 548, - 409 - ], - "spans": [ - { - "bbox": [ - 42, - 398, - 548, - 409 - ], - "score": 1.0, - "content": "Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 41, - 410, - 550, - 423 - ], - "spans": [ - { - "bbox": [ - 41, - 410, - 550, - 423 - ], - "score": 1.0, - "content": "descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 40, - 422, - 534, - 436 - ], - "spans": [ - { - "bbox": [ - 40, - 422, - 534, - 436 - ], - "score": 1.0, - "content": "the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it ", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 41, - 436, - 539, - 447 - ], - "spans": [ - { - "bbox": [ - 41, - 436, - 539, - 447 - ], - "score": 1.0, - "content": "meets this level, and so on, until you have a match between the level descriptor and the answer. With", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 41, - 449, - 534, - 461 - ], - "spans": [ - { - "bbox": [ - 41, - 449, - 534, - 461 - ], - "score": 1.0, - "content": "practice and familiarity you will find that for better answers you will be able to quickly skip through the", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 40, - 460, - 203, - 474 - ], - "spans": [ - { - "bbox": [ - 40, - 460, - 203, - 474 - ], - "score": 1.0, - "content": "lower levels of the mark scheme.", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 18.5, - "page_num": "page_107", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 398, - 550, - 474 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 485, - 552, - 561 - ], - "lines": [ - { - "bbox": [ - 41, - 485, - 545, - 498 - ], - "spans": [ - { - "bbox": [ - 41, - 485, - 545, - 498 - ], - "score": 1.0, - "content": "When assigning a level you should look at the overall quality of the answer and not look to pick holes in", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 41, - 499, - 545, - 512 - ], - "spans": [ - { - "bbox": [ - 41, - 499, - 545, - 512 - ], - "score": 1.0, - "content": "small and specific parts of the answer where the student has not performed quite as well as the rest. If ", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 42, - 512, - 525, - 524 - ], - "spans": [ - { - "bbox": [ - 42, - 512, - 525, - 524 - ], - "score": 1.0, - "content": "the answer covers different aspects of different levels of the mark scheme you should use a best fit ", - "type": "text" - } - ], - "index": 24 - }, - { - "bbox": [ - 41, - 524, - 553, - 537 - ], - "spans": [ - { - "bbox": [ - 41, - 524, - 553, - 537 - ], - "score": 1.0, - "content": "approach for defining the level and then use the variability of the response to help decide the mark within ", - "type": "text" - } - ], - "index": 25 - }, - { - "bbox": [ - 41, - 537, - 538, - 550 - ], - "spans": [ - { - "bbox": [ - 41, - 537, - 538, - 550 - ], - "score": 1.0, - "content": "the level. ie if the response is predominantly level 2 with a small amount of level 3 material it would be", - "type": "text" - } - ], - "index": 26 - }, - { - "bbox": [ - 40, - 549, - 126, - 561 - ], - "spans": [ - { - "bbox": [ - 40, - 549, - 126, - 561 - ], - "score": 1.0, - "content": "placed in level 2.", - "type": "text" - } - ], - "index": 27 - } - ], - "index": 24.5, - "page_num": "page_107", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 485, - 553, - 561 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 573, - 547, - 650 - ], - "lines": [ - { - "bbox": [ - 42, - 574, - 528, - 586 - ], - "spans": [ - { - "bbox": [ - 42, - 574, - 528, - 586 - ], - "score": 1.0, - "content": "The exemplar materials used during standardisation will help you to determine the appropriate level.", - "type": "text" - } - ], - "index": 28 - }, - { - "bbox": [ - 41, - 586, - 547, - 600 - ], - "spans": [ - { - "bbox": [ - 41, - 586, - 547, - 600 - ], - "score": 1.0, - "content": "There will be an answer in the standardising materials which will correspond with each level of the mark", - "type": "text" - } - ], - "index": 29 - }, - { - "bbox": [ - 42, - 601, - 529, - 612 - ], - "spans": [ - { - "bbox": [ - 42, - 601, - 529, - 612 - ], - "score": 1.0, - "content": "scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the", - "type": "text" - } - ], - "index": 30 - }, - { - "bbox": [ - 42, - 613, - 520, - 624 - ], - "spans": [ - { - "bbox": [ - 42, - 613, - 520, - 624 - ], - "score": 1.0, - "content": "student’s answer with the example to determine if it is the same standard, better or worse than the", - "type": "text" - } - ], - "index": 31 - }, - { - "bbox": [ - 42, - 625, - 543, - 638 - ], - "spans": [ - { - "bbox": [ - 42, - 625, - 543, - 638 - ], - "score": 1.0, - "content": "example. You can then use this to allocate a mark for the answer based on the Lead Examiner’s mark ", - "type": "text" - } - ], - "index": 32 - }, - { - "bbox": [ - 41, - 638, - 121, - 651 - ], - "spans": [ - { - "bbox": [ - 41, - 638, - 121, - 651 - ], - "score": 1.0, - "content": "on the example.", - "type": "text" - } - ], - "index": 33 - } - ], - "index": 30.5, - "page_num": "page_107", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 574, - 547, - 651 - ] - }, - { - "type": "text", - "bbox": [ - 40, - 662, - 549, - 688 - ], - "lines": [ - { - "bbox": [ - 42, - 662, - 548, - 677 - ], - "spans": [ - { - "bbox": [ - 42, - 662, - 548, - 677 - ], - "score": 1.0, - "content": "You may well need to read back through the answer as you apply the mark scheme to clarify points and ", - "type": "text" - } - ], - "index": 34 - }, - { - "bbox": [ - 42, - 677, - 330, - 689 - ], - "spans": [ - { - "bbox": [ - 42, - 677, - 330, - 689 - ], - "score": 1.0, - "content": "assure yourself that the level and the mark are appropriate.", - "type": "text" - } - ], - "index": 35 - } - ], - "index": 34.5, - "page_num": "page_107", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 662, - 548, - 689 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 700, - 525, - 739 - ], - "lines": [ - { - "bbox": [ - 42, - 702, - 522, - 713 - ], - "spans": [ - { - "bbox": [ - 42, - 702, - 522, - 713 - ], - "score": 1.0, - "content": "Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be", - "type": "text" - } - ], - "index": 36 - }, - { - "bbox": [ - 41, - 714, - 511, - 727 - ], - "spans": [ - { - "bbox": [ - 41, - 714, - 511, - 727 - ], - "score": 1.0, - "content": "exhaustive and you must credit other valid points. Students do not have to cover all of the points", - "type": "text" - } - ], - "index": 37 - }, - { - "bbox": [ - 41, - 727, - 441, - 739 - ], - "spans": [ - { - "bbox": [ - 41, - 727, - 441, - 739 - ], - "score": 1.0, - "content": "mentioned in the indicative content to reach the highest level of the mark scheme.", - "type": "text" - } - ], - "index": 38 - } - ], - "index": 37, - "page_num": "page_107", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 702, - 522, - 739 - ] - }, - { - "type": "text", - "bbox": [ - 40, - 751, - 486, - 764 - ], - "lines": [ - { - "bbox": [ - 42, - 752, - 485, - 764 - ], - "spans": [ - { - "bbox": [ - 42, - 752, - 485, - 764 - ], - "score": 1.0, - "content": "An answer which contains nothing of relevance to the question must be awarded no marks.", - "type": "text" - } - ], - "index": 39 - } - ], - "index": 39, - "page_num": "page_107", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 752, - 485, - 764 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 38, - 86, - 759, - 158 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 38, - 86, - 759, - 158 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 38, - 86, - 759, - 158 - ], - "spans": [ - { - "bbox": [ - 38, - 86, - 759, - 158 - ], - "score": 0.956, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.1uds vDo not accept D for d. Penalise extra particles1AO3
", - "type": "table", - "image_path": "ea941352209dfc8fb34f02adb6174c4e07d425b1dc854f780547d7568ea9ed10.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 38, - 86, - 759, - 110.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 38, - 110.0, - 759, - 134.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 38, - 134.0, - 759, - 158.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 31, - 183, - 761, - 399 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 31, - 183, - 761, - 399 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 31, - 183, - 761, - 399 - ], - "spans": [ - { - "bbox": [ - 31, - 183, - 761, - 399 - ], - "score": 0.948, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.2weak(interaction / force)v strangeness changes (in this decay) (from -1 to 0 and strangeness can only change in a weak interaction)MP2:2AO1
Reject negative arguments (eg 'strangeness is conserved in a strong interaction')
Reject the idea that strangeness always changes in a weak interaction. General statement ofstrangeness
conservationintheweakinteractiononits own is insufficient.
Accept “strangeness is not conserved (in this
decay)\".
Condone “strangeness is lost\".
", - "type": "table", - "image_path": "7796a57ddb358aad82fc155ec2252104c0937ec33523372402bb3fc77bdb843e.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 31, - 183, - 761, - 255.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 31, - 255.0, - 761, - 327.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 31, - 327.0, - 761, - 399.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "layout_bboxes": [], - "page_idx": 108, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 38, - 86, - 759, - 158 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 38, - 86, - 759, - 158 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 38, - 86, - 759, - 158 - ], - "spans": [ - { - "bbox": [ - 38, - 86, - 759, - 158 - ], - "score": 0.956, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.1uds vDo not accept D for d. Penalise extra particles1AO3
", - "type": "table", - "image_path": "ea941352209dfc8fb34f02adb6174c4e07d425b1dc854f780547d7568ea9ed10.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 38, - 86, - 759, - 110.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 38, - 110.0, - 759, - 134.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 38, - 134.0, - 759, - 158.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 31, - 183, - 761, - 399 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 31, - 183, - 761, - 399 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 31, - 183, - 761, - 399 - ], - "spans": [ - { - "bbox": [ - 31, - 183, - 761, - 399 - ], - "score": 0.948, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.2weak(interaction / force)v strangeness changes (in this decay) (from -1 to 0 and strangeness can only change in a weak interaction)MP2:2AO1
Reject negative arguments (eg 'strangeness is conserved in a strong interaction')
Reject the idea that strangeness always changes in a weak interaction. General statement ofstrangeness
conservationintheweakinteractiononits own is insufficient.
Accept “strangeness is not conserved (in this
decay)\".
Condone “strangeness is lost\".
", - "type": "table", - "image_path": "7796a57ddb358aad82fc155ec2252104c0937ec33523372402bb3fc77bdb843e.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 31, - 183, - 761, - 255.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 31, - 255.0, - 761, - 327.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 31, - 327.0, - 761, - 399.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 451, - 35, - 757, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 756, - 48 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 756, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2023", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 55, - 550, - 62, - 559 - ], - "lines": [ - { - "bbox": [ - 55, - 551, - 62, - 561 - ], - "spans": [ - { - "bbox": [ - 55, - 551, - 62, - 561 - ], - "score": 1.0, - "content": "6", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 38, - 86, - 759, - 158 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 38, - 86, - 759, - 158 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 38, - 86, - 759, - 158 - ], - "spans": [ - { - "bbox": [ - 38, - 86, - 759, - 158 - ], - "score": 0.956, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.1uds vDo not accept D for d. Penalise extra particles1AO3
", - "type": "table", - "image_path": "ea941352209dfc8fb34f02adb6174c4e07d425b1dc854f780547d7568ea9ed10.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 38, - 86, - 759, - 110.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 38, - 110.0, - 759, - 134.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 38, - 134.0, - 759, - 158.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_108", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 31, - 183, - 761, - 399 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 31, - 183, - 761, - 399 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 31, - 183, - 761, - 399 - ], - "spans": [ - { - "bbox": [ - 31, - 183, - 761, - 399 - ], - "score": 0.948, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.2weak(interaction / force)v strangeness changes (in this decay) (from -1 to 0 and strangeness can only change in a weak interaction)MP2:2AO1
Reject negative arguments (eg 'strangeness is conserved in a strong interaction')
Reject the idea that strangeness always changes in a weak interaction. General statement ofstrangeness
conservationintheweakinteractiononits own is insufficient.
Accept “strangeness is not conserved (in this
decay)\".
Condone “strangeness is lost\".
", - "type": "table", - "image_path": "7796a57ddb358aad82fc155ec2252104c0937ec33523372402bb3fc77bdb843e.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 31, - 183, - 761, - 255.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 31, - 255.0, - 761, - 327.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 31, - 327.0, - 761, - 399.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_108", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 37, - 73, - 759, - 199 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 37, - 73, - 759, - 199 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 37, - 73, - 759, - 199 - ], - "spans": [ - { - "bbox": [ - 37, - 73, - 759, - 199 - ], - "score": 0.896, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.3anti-neutronvAcceptn1AO1
Reject ambiguous answers unless supported byotherevidence.
Do not accept answer solely in terms of quarks
", - "type": "table", - "image_path": "2e7aed1ffeda4c5270c22bf7b6fae3ba913ddbc0567d4f722649ba2b97e8e912.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 37, - 73, - 759, - 115.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 37, - 115.0, - 759, - 157.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 37, - 157.0, - 759, - 199.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 38, - 222, - 759, - 331 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 38, - 222, - 759, - 331 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 38, - 222, - 759, - 331 - ], - "spans": [ - { - "bbox": [ - 38, - 222, - 759, - 331 - ], - "score": 0.912, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.41.1(1) × 103 (MeV) Rejectincorrectlyroundedanswers. Accept: 1100 MeV (2sf) / 1110 MeV (3sf) / 1115MeV (4sf)etc Calculatorvalue:1114.66875MeV1AO1
", - "type": "table", - "image_path": "d2bdea75a6aea5e3a5ea6c8f7827484366b6aebdea44d4e22117dd2e745b46fd.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 38, - 222, - 759, - 258.3333333333333 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 38, - 258.3333333333333, - 759, - 294.66666666666663 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 38, - 294.66666666666663, - 759, - 330.99999999999994 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "layout_bboxes": [], - "page_idx": 109, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 37, - 73, - 759, - 199 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 37, - 73, - 759, - 199 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 37, - 73, - 759, - 199 - ], - "spans": [ - { - "bbox": [ - 37, - 73, - 759, - 199 - ], - "score": 0.896, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.3anti-neutronvAcceptn1AO1
Reject ambiguous answers unless supported byotherevidence.
Do not accept answer solely in terms of quarks
", - "type": "table", - "image_path": "2e7aed1ffeda4c5270c22bf7b6fae3ba913ddbc0567d4f722649ba2b97e8e912.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 37, - 73, - 759, - 115.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 37, - 115.0, - 759, - 157.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 37, - 157.0, - 759, - 199.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 38, - 222, - 759, - 331 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 38, - 222, - 759, - 331 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 38, - 222, - 759, - 331 - ], - "spans": [ - { - "bbox": [ - 38, - 222, - 759, - 331 - ], - "score": 0.912, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.41.1(1) × 103 (MeV) Rejectincorrectlyroundedanswers. Accept: 1100 MeV (2sf) / 1110 MeV (3sf) / 1115MeV (4sf)etc Calculatorvalue:1114.66875MeV1AO1
", - "type": "table", - "image_path": "d2bdea75a6aea5e3a5ea6c8f7827484366b6aebdea44d4e22117dd2e745b46fd.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 38, - 222, - 759, - 258.3333333333333 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 38, - 258.3333333333333, - 759, - 294.66666666666663 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 38, - 294.66666666666663, - 759, - 330.99999999999994 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 750, - 550, - 758, - 559 - ], - "lines": [ - { - "bbox": [ - 750, - 550, - 759, - 561 - ], - "spans": [ - { - "bbox": [ - 750, - 550, - 759, - 561 - ], - "score": 1.0, - "content": "7 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 451, - 34, - 757, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 756, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 756, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2023", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 37, - 73, - 759, - 199 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 37, - 73, - 759, - 199 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 37, - 73, - 759, - 199 - ], - "spans": [ - { - "bbox": [ - 37, - 73, - 759, - 199 - ], - "score": 0.896, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.3anti-neutronvAcceptn1AO1
Reject ambiguous answers unless supported byotherevidence.
Do not accept answer solely in terms of quarks
", - "type": "table", - "image_path": "2e7aed1ffeda4c5270c22bf7b6fae3ba913ddbc0567d4f722649ba2b97e8e912.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 37, - 73, - 759, - 115.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 37, - 115.0, - 759, - 157.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 37, - 157.0, - 759, - 199.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_109", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 38, - 222, - 759, - 331 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 38, - 222, - 759, - 331 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 38, - 222, - 759, - 331 - ], - "spans": [ - { - "bbox": [ - 38, - 222, - 759, - 331 - ], - "score": 0.912, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.41.1(1) × 103 (MeV) Rejectincorrectlyroundedanswers. Accept: 1100 MeV (2sf) / 1110 MeV (3sf) / 1115MeV (4sf)etc Calculatorvalue:1114.66875MeV1AO1
", - "type": "table", - "image_path": "d2bdea75a6aea5e3a5ea6c8f7827484366b6aebdea44d4e22117dd2e745b46fd.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 38, - 222, - 759, - 258.3333333333333 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 38, - 258.3333333333333, - 759, - 294.66666666666663 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 38, - 294.66666666666663, - 759, - 330.99999999999994 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_109", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 26, - 110, - 768, - 372 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 110, - 768, - 372 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 26, - 110, - 768, - 372 - ], - "spans": [ - { - "bbox": [ - 26, - 110, - 768, - 372 - ], - "score": 0.965, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.5Any one from v (teams must be large and international) because: research is expensive / requires funding from many countries both scientists and engineers are required (because the machines used for research are complex/large pieces of civil engineering) research is multi-faceted / multi-disciplinary (becauseTreat idea of peer review as neutral (this argues for independent teams). Do not accept idea that it 'avoids bias' or 'reproducibility'.1AO1
", - "type": "table", - "image_path": "8d378e83d46f3bdcc0e5022b4183358f9a5b9ff9f6064fedbc07fddf9b26881d.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 26, - 110, - 768, - 197.33333333333331 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 26, - 197.33333333333331, - 768, - 284.66666666666663 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 26, - 284.66666666666663, - 768, - 371.99999999999994 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 110, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 26, - 110, - 768, - 372 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 110, - 768, - 372 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 26, - 110, - 768, - 372 - ], - "spans": [ - { - "bbox": [ - 26, - 110, - 768, - 372 - ], - "score": 0.965, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.5Any one from v (teams must be large and international) because: research is expensive / requires funding from many countries both scientists and engineers are required (because the machines used for research are complex/large pieces of civil engineering) research is multi-faceted / multi-disciplinary (becauseTreat idea of peer review as neutral (this argues for independent teams). Do not accept idea that it 'avoids bias' or 'reproducibility'.1AO1
", - "type": "table", - "image_path": "8d378e83d46f3bdcc0e5022b4183358f9a5b9ff9f6064fedbc07fddf9b26881d.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 26, - 110, - 768, - 197.33333333333331 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 26, - 197.33333333333331, - 768, - 284.66666666666663 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 26, - 284.66666666666663, - 768, - 371.99999999999994 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 451, - 35, - 758, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 756, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 756, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2023", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 55, - 550, - 62, - 559 - ], - "lines": [ - { - "bbox": [ - 55, - 551, - 62, - 561 - ], - "spans": [ - { - "bbox": [ - 55, - 551, - 62, - 561 - ], - "score": 1.0, - "content": "8", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 26, - 110, - 768, - 372 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 110, - 768, - 372 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 26, - 110, - 768, - 372 - ], - "spans": [ - { - "bbox": [ - 26, - 110, - 768, - 372 - ], - "score": 0.965, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.5Any one from v (teams must be large and international) because: research is expensive / requires funding from many countries both scientists and engineers are required (because the machines used for research are complex/large pieces of civil engineering) research is multi-faceted / multi-disciplinary (becauseTreat idea of peer review as neutral (this argues for independent teams). Do not accept idea that it 'avoids bias' or 'reproducibility'.1AO1
", - "type": "table", - "image_path": "8d378e83d46f3bdcc0e5022b4183358f9a5b9ff9f6064fedbc07fddf9b26881d.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 26, - 110, - 768, - 197.33333333333331 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 26, - 197.33333333333331, - 768, - 284.66666666666663 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 26, - 284.66666666666663, - 768, - 371.99999999999994 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_110", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 35, - 86, - 761, - 282 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 86, - 761, - 282 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 35, - 86, - 761, - 282 - ], - "spans": [ - { - "bbox": [ - 35, - 86, - 761, - 282 - ], - "score": 0.969, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
02.1Conversion of 1230 km h-1 to m s-1 ORExpect to see 342 m s-1 (341.7)2AO1
Calculates time for 343 m s-1 run ORExpect to see 4.69 sAO2
Calculates total time (using total distance, 3.22 km, and speed record)Expect to see 9.42 s
OR Calculates unknown speed vExpect to see 340.3 m s-1
Answer that rounds to 4.73 (s) Do not accept 2sf for final answer.
", - "type": "table", - "image_path": "66fb7eb20250427d055fa86658fa9f9db690d252c872b7cd5474b92db6f81f30.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 35, - 86, - 761, - 151.33333333333331 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 35, - 151.33333333333331, - 761, - 216.66666666666663 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 35, - 216.66666666666663, - 761, - 281.99999999999994 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 33, - 306, - 758, - 429 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 33, - 306, - 758, - 429 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 36, - 307, - 758, - 429 - ], - "spans": [ - { - "bbox": [ - 36, - 307, - 758, - 429 - ], - "score": 0.588, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
02.2speed from graph: 450 m s Use of their speed and KE equation to give consistentAccept 445 - 455 m s-12AO3 AO2
", - "type": "table", - "image_path": "1a198c59f492e483e31727e683f4cf85d19ea817ff7c03f86f7f10676481dd1d.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 33, - 306, - 758, - 347.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 33, - 347.0, - 758, - 388.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 33, - 388.0, - 758, - 429.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "layout_bboxes": [], - "page_idx": 111, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 35, - 86, - 761, - 282 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 86, - 761, - 282 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 35, - 86, - 761, - 282 - ], - "spans": [ - { - "bbox": [ - 35, - 86, - 761, - 282 - ], - "score": 0.969, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
02.1Conversion of 1230 km h-1 to m s-1 ORExpect to see 342 m s-1 (341.7)2AO1
Calculates time for 343 m s-1 run ORExpect to see 4.69 sAO2
Calculates total time (using total distance, 3.22 km, and speed record)Expect to see 9.42 s
OR Calculates unknown speed vExpect to see 340.3 m s-1
Answer that rounds to 4.73 (s) Do not accept 2sf for final answer.
", - "type": "table", - "image_path": "66fb7eb20250427d055fa86658fa9f9db690d252c872b7cd5474b92db6f81f30.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 35, - 86, - 761, - 151.33333333333331 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 35, - 151.33333333333331, - 761, - 216.66666666666663 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 35, - 216.66666666666663, - 761, - 281.99999999999994 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 33, - 306, - 758, - 429 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 33, - 306, - 758, - 429 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 36, - 307, - 758, - 429 - ], - "spans": [ - { - "bbox": [ - 36, - 307, - 758, - 429 - ], - "score": 0.588, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
02.2speed from graph: 450 m s Use of their speed and KE equation to give consistentAccept 445 - 455 m s-12AO3 AO2
", - "type": "table", - "image_path": "1a198c59f492e483e31727e683f4cf85d19ea817ff7c03f86f7f10676481dd1d.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 33, - 306, - 758, - 347.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 33, - 347.0, - 758, - 388.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 33, - 388.0, - 758, - 429.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 451, - 35, - 757, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 756, - 48 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 756, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2023", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 750, - 550, - 758, - 560 - ], - "lines": [ - { - "bbox": [ - 750, - 551, - 758, - 561 - ], - "spans": [ - { - "bbox": [ - 750, - 551, - 758, - 561 - ], - "score": 1.0, - "content": "9 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 35, - 86, - 761, - 282 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 86, - 761, - 282 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 35, - 86, - 761, - 282 - ], - "spans": [ - { - "bbox": [ - 35, - 86, - 761, - 282 - ], - "score": 0.969, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
02.1Conversion of 1230 km h-1 to m s-1 ORExpect to see 342 m s-1 (341.7)2AO1
Calculates time for 343 m s-1 run ORExpect to see 4.69 sAO2
Calculates total time (using total distance, 3.22 km, and speed record)Expect to see 9.42 s
OR Calculates unknown speed vExpect to see 340.3 m s-1
Answer that rounds to 4.73 (s) Do not accept 2sf for final answer.
", - "type": "table", - "image_path": "66fb7eb20250427d055fa86658fa9f9db690d252c872b7cd5474b92db6f81f30.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 35, - 86, - 761, - 151.33333333333331 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 35, - 151.33333333333331, - 761, - 216.66666666666663 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 35, - 216.66666666666663, - 761, - 281.99999999999994 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_111", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 33, - 306, - 758, - 429 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 33, - 306, - 758, - 429 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 36, - 307, - 758, - 429 - ], - "spans": [ - { - "bbox": [ - 36, - 307, - 758, - 429 - ], - "score": 0.588, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
02.2speed from graph: 450 m s Use of their speed and KE equation to give consistentAccept 445 - 455 m s-12AO3 AO2
", - "type": "table", - "image_path": "1a198c59f492e483e31727e683f4cf85d19ea817ff7c03f86f7f10676481dd1d.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 33, - 306, - 758, - 347.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 33, - 347.0, - 758, - 388.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 33, - 388.0, - 758, - 429.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_111", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 26, - 85, - 766, - 361 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 85, - 766, - 361 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 26, - 85, - 766, - 361 - ], - "spans": [ - { - "bbox": [ - 26, - 85, - 766, - 361 - ], - "score": 0.97, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
02.3MAX three from: VvvExpect to see 450 m s-1 for their speed4 AO1 AO22× A03
Evidence for gradient may be on figure
AllowECFfrom02.2
Use of graph to determine gradient 450 5600
= 0.080(4)
Uses (their) speed and (their) gradient to give accelerationExpect to see 450 x 0.08
Use of F = m × (their a) to give resultant force Use of P = (their F)x (their speed)= 36(.2) m s-2
Expect to see 2.35 x 105 N
Final answer between 16% and 17%vExpect to see 450 x 2.35 x 105 = 106 MWReject power that is calculated assuming a
", - "type": "table", - "image_path": "f119cd93d6a348c643cac5ab18443d68d27d6b1caba0bd2121adc5fe84c76623.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 26, - 85, - 766, - 177.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 26, - 177.0, - 766, - 269.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 26, - 269.0, - 766, - 361.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 112, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 26, - 85, - 766, - 361 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 85, - 766, - 361 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 26, - 85, - 766, - 361 - ], - "spans": [ - { - "bbox": [ - 26, - 85, - 766, - 361 - ], - "score": 0.97, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
02.3MAX three from: VvvExpect to see 450 m s-1 for their speed4 AO1 AO22× A03
Evidence for gradient may be on figure
AllowECFfrom02.2
Use of graph to determine gradient 450 5600
= 0.080(4)
Uses (their) speed and (their) gradient to give accelerationExpect to see 450 x 0.08
Use of F = m × (their a) to give resultant force Use of P = (their F)x (their speed)= 36(.2) m s-2
Expect to see 2.35 x 105 N
Final answer between 16% and 17%vExpect to see 450 x 2.35 x 105 = 106 MWReject power that is calculated assuming a
", - "type": "table", - "image_path": "f119cd93d6a348c643cac5ab18443d68d27d6b1caba0bd2121adc5fe84c76623.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 26, - 85, - 766, - 177.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 26, - 177.0, - 766, - 269.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 26, - 269.0, - 766, - 361.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 56, - 550, - 66, - 559 - ], - "lines": [ - { - "bbox": [ - 54, - 550, - 68, - 562 - ], - "spans": [ - { - "bbox": [ - 54, - 550, - 68, - 562 - ], - "score": 1.0, - "content": "10 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 451, - 35, - 757, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 756, - 48 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 756, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2023", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 26, - 85, - 766, - 361 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 85, - 766, - 361 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 26, - 85, - 766, - 361 - ], - "spans": [ - { - "bbox": [ - 26, - 85, - 766, - 361 - ], - "score": 0.97, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
02.3MAX three from: VvvExpect to see 450 m s-1 for their speed4 AO1 AO22× A03
Evidence for gradient may be on figure
AllowECFfrom02.2
Use of graph to determine gradient 450 5600
= 0.080(4)
Uses (their) speed and (their) gradient to give accelerationExpect to see 450 x 0.08
Use of F = m × (their a) to give resultant force Use of P = (their F)x (their speed)= 36(.2) m s-2
Expect to see 2.35 x 105 N
Final answer between 16% and 17%vExpect to see 450 x 2.35 x 105 = 106 MWReject power that is calculated assuming a
", - "type": "table", - "image_path": "f119cd93d6a348c643cac5ab18443d68d27d6b1caba0bd2121adc5fe84c76623.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 26, - 85, - 766, - 177.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 26, - 177.0, - 766, - 269.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 26, - 269.0, - 766, - 361.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_112", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 28, - 99, - 764, - 375 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 99, - 764, - 375 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 99, - 764, - 375 - ], - "spans": [ - { - "bbox": [ - 28, - 99, - 764, - 375 - ], - "score": 0.972, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
02.4Identifies distance decelerating ANDallow 7000 m to 7600 m2AO3
max velocity = (470 ±5) m s-1 Uses suvat equation(s)allow answer consistent with their distance that rounds to 15 or 16
to get a = (-) 15 m s-2 which is less than 3g (so yes). vgive full credit to calculations that show that an acceleration of 3g would stop the car in a (much) shorter distance, with a statement that
this means that the actual acceleration must be (much) less than 3g. For MP2 allow calculation of gradientx average speed to give
Totalα = (-) 15 m s-2 which is less than 3g (so yes)10
", - "type": "table", - "image_path": "94790d517992ad0e0c91e57138375104209a4bec48ce7c00b1ff28cb9b42f523.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 28, - 99, - 764, - 191.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 28, - 191.0, - 764, - 283.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 283.0, - 764, - 375.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 113, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 28, - 99, - 764, - 375 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 99, - 764, - 375 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 99, - 764, - 375 - ], - "spans": [ - { - "bbox": [ - 28, - 99, - 764, - 375 - ], - "score": 0.972, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
02.4Identifies distance decelerating ANDallow 7000 m to 7600 m2AO3
max velocity = (470 ±5) m s-1 Uses suvat equation(s)allow answer consistent with their distance that rounds to 15 or 16
to get a = (-) 15 m s-2 which is less than 3g (so yes). vgive full credit to calculations that show that an acceleration of 3g would stop the car in a (much) shorter distance, with a statement that
this means that the actual acceleration must be (much) less than 3g. For MP2 allow calculation of gradientx average speed to give
Totalα = (-) 15 m s-2 which is less than 3g (so yes)10
", - "type": "table", - "image_path": "94790d517992ad0e0c91e57138375104209a4bec48ce7c00b1ff28cb9b42f523.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 28, - 99, - 764, - 191.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 28, - 191.0, - 764, - 283.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 283.0, - 764, - 375.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 451, - 35, - 758, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 756, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 756, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2023", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 747, - 550, - 757, - 559 - ], - "lines": [ - { - "bbox": [ - 745, - 550, - 759, - 561 - ], - "spans": [ - { - "bbox": [ - 745, - 550, - 759, - 561 - ], - "score": 1.0, - "content": "11 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 28, - 99, - 764, - 375 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 99, - 764, - 375 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 99, - 764, - 375 - ], - "spans": [ - { - "bbox": [ - 28, - 99, - 764, - 375 - ], - "score": 0.972, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
02.4Identifies distance decelerating ANDallow 7000 m to 7600 m2AO3
max velocity = (470 ±5) m s-1 Uses suvat equation(s)allow answer consistent with their distance that rounds to 15 or 16
to get a = (-) 15 m s-2 which is less than 3g (so yes). vgive full credit to calculations that show that an acceleration of 3g would stop the car in a (much) shorter distance, with a statement that
this means that the actual acceleration must be (much) less than 3g. For MP2 allow calculation of gradientx average speed to give
Totalα = (-) 15 m s-2 which is less than 3g (so yes)10
", - "type": "table", - "image_path": "94790d517992ad0e0c91e57138375104209a4bec48ce7c00b1ff28cb9b42f523.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 28, - 99, - 764, - 191.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 28, - 191.0, - 764, - 283.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 283.0, - 764, - 375.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_113", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 32, - 85, - 766, - 360 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 85, - 766, - 360 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 32, - 85, - 766, - 360 - ], - "spans": [ - { - "bbox": [ - 32, - 85, - 766, - 360 - ], - "score": 0.971, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
03.1(1 C of) the charge gains ε J on passing through cellIf no other mark awarded, allow one mark for definition of emf in terms of energy transfer.2AO1
OR energy transferred (by 1 C) in R1 is V1 (J)accept: 'dissipated'
OR energy transferred (by 1 C) in R2 is V2 (J)accept “lost volts' for Ir but reject 'voltage across r
ORaccept 'work done' for 'energy transferred'
energy transferred (by 1 C) in r is Ir (J)
(for conservation of energy)Alternative for MP2 = V1 + V2 + Ir
ε = IR1 + IR2 + Ir vprovided that MP1 is awarded.
", - "type": "table", - "image_path": "1e3f511c7a7f5581cb9d4f48dc5dafb24055de4d8b52de72437ebaecebdcec19.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 32, - 85, - 766, - 176.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 32, - 176.66666666666669, - 766, - 268.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 32, - 268.33333333333337, - 766, - 360.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 114, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 32, - 85, - 766, - 360 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 85, - 766, - 360 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 32, - 85, - 766, - 360 - ], - "spans": [ - { - "bbox": [ - 32, - 85, - 766, - 360 - ], - "score": 0.971, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
03.1(1 C of) the charge gains ε J on passing through cellIf no other mark awarded, allow one mark for definition of emf in terms of energy transfer.2AO1
OR energy transferred (by 1 C) in R1 is V1 (J)accept: 'dissipated'
OR energy transferred (by 1 C) in R2 is V2 (J)accept “lost volts' for Ir but reject 'voltage across r
ORaccept 'work done' for 'energy transferred'
energy transferred (by 1 C) in r is Ir (J)
(for conservation of energy)Alternative for MP2 = V1 + V2 + Ir
ε = IR1 + IR2 + Ir vprovided that MP1 is awarded.
", - "type": "table", - "image_path": "1e3f511c7a7f5581cb9d4f48dc5dafb24055de4d8b52de72437ebaecebdcec19.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 32, - 85, - 766, - 176.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 32, - 176.66666666666669, - 766, - 268.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 32, - 268.33333333333337, - 766, - 360.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 56, - 550, - 66, - 559 - ], - "lines": [ - { - "bbox": [ - 55, - 550, - 67, - 561 - ], - "spans": [ - { - "bbox": [ - 55, - 550, - 67, - 561 - ], - "score": 1.0, - "content": "12 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 451, - 35, - 757, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 756, - 48 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 756, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2023", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 32, - 85, - 766, - 360 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 85, - 766, - 360 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 32, - 85, - 766, - 360 - ], - "spans": [ - { - "bbox": [ - 32, - 85, - 766, - 360 - ], - "score": 0.971, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
03.1(1 C of) the charge gains ε J on passing through cellIf no other mark awarded, allow one mark for definition of emf in terms of energy transfer.2AO1
OR energy transferred (by 1 C) in R1 is V1 (J)accept: 'dissipated'
OR energy transferred (by 1 C) in R2 is V2 (J)accept “lost volts' for Ir but reject 'voltage across r
ORaccept 'work done' for 'energy transferred'
energy transferred (by 1 C) in r is Ir (J)
(for conservation of energy)Alternative for MP2 = V1 + V2 + Ir
ε = IR1 + IR2 + Ir vprovided that MP1 is awarded.
", - "type": "table", - "image_path": "1e3f511c7a7f5581cb9d4f48dc5dafb24055de4d8b52de72437ebaecebdcec19.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 32, - 85, - 766, - 176.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 32, - 176.66666666666669, - 766, - 268.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 32, - 268.33333333333337, - 766, - 360.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_114", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 35, - 72, - 769, - 377 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 72, - 769, - 377 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 35, - 72, - 769, - 377 - ], - "spans": [ - { - "bbox": [ - 35, - 72, - 769, - 377 - ], - "score": 0.978, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
03.2Equates emf to Ir + 2.89 in some formv 1If no other mark awarded, award one mark for use of emf value in MP2. Allow in MP1 (their current/A) x125Q for 2.89 V3AO2 × 3
Calculates I from 2.89÷125 (=0.02312 A) 2Allow alternative routes for V1 and 2. E.g. \"Lost volts'= 0.11 V √ 1 Applies potential-divider equation e.g. 0.11÷2.89 = r÷125 √2 OR 3÷(125 + r) = 2.89÷125√ 1V 2
", - "type": "table", - "image_path": "881777c94b13121046e04e5c5e6770844f443df2efd1d9c914317729b0656a8a.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 35, - 72, - 769, - 173.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 35, - 173.66666666666669, - 769, - 275.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 35, - 275.33333333333337, - 769, - 377.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 115, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 35, - 72, - 769, - 377 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 72, - 769, - 377 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 35, - 72, - 769, - 377 - ], - "spans": [ - { - "bbox": [ - 35, - 72, - 769, - 377 - ], - "score": 0.978, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
03.2Equates emf to Ir + 2.89 in some formv 1If no other mark awarded, award one mark for use of emf value in MP2. Allow in MP1 (their current/A) x125Q for 2.89 V3AO2 × 3
Calculates I from 2.89÷125 (=0.02312 A) 2Allow alternative routes for V1 and 2. E.g. \"Lost volts'= 0.11 V √ 1 Applies potential-divider equation e.g. 0.11÷2.89 = r÷125 √2 OR 3÷(125 + r) = 2.89÷125√ 1V 2
", - "type": "table", - "image_path": "881777c94b13121046e04e5c5e6770844f443df2efd1d9c914317729b0656a8a.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 35, - 72, - 769, - 173.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 35, - 173.66666666666669, - 769, - 275.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 35, - 275.33333333333337, - 769, - 377.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 451, - 35, - 757, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 35, - 757, - 48 - ], - "spans": [ - { - "bbox": [ - 453, - 35, - 757, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2023", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 747, - 550, - 758, - 560 - ], - "lines": [ - { - "bbox": [ - 745, - 550, - 759, - 561 - ], - "spans": [ - { - "bbox": [ - 745, - 550, - 759, - 561 - ], - "score": 1.0, - "content": "13 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 35, - 72, - 769, - 377 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 72, - 769, - 377 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 35, - 72, - 769, - 377 - ], - "spans": [ - { - "bbox": [ - 35, - 72, - 769, - 377 - ], - "score": 0.978, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
03.2Equates emf to Ir + 2.89 in some formv 1If no other mark awarded, award one mark for use of emf value in MP2. Allow in MP1 (their current/A) x125Q for 2.89 V3AO2 × 3
Calculates I from 2.89÷125 (=0.02312 A) 2Allow alternative routes for V1 and 2. E.g. \"Lost volts'= 0.11 V √ 1 Applies potential-divider equation e.g. 0.11÷2.89 = r÷125 √2 OR 3÷(125 + r) = 2.89÷125√ 1V 2
", - "type": "table", - "image_path": "881777c94b13121046e04e5c5e6770844f443df2efd1d9c914317729b0656a8a.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 35, - 72, - 769, - 173.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 35, - 173.66666666666669, - 769, - 275.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 35, - 275.33333333333337, - 769, - 377.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_115", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 34, - 87, - 771, - 415 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 87, - 771, - 415 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 34, - 87, - 771, - 415 - ], - "spans": [ - { - "bbox": [ - 34, - 87, - 771, - 415 - ], - "score": 0.977, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
03.3(Resistance splits 25 Q and 104.8 Q) Applies potential divider formula eg V 25 3.00 129.8 V = 0.58 (V) ~ If no other mark awarded, allow one mark forAccept other routes for MP1 e.g. using V = IR, with 25 Ω and their current, for example from I = 0.023 A (from Q03.2) emf 3 total resistance 125+r I =terminal pd 125 OR using V = 3 2.89 with an identification of 2.89 V 5 as the terminal pd.2AO2x 2
", - "type": "table", - "image_path": "93d00ab9d656d2ceeb8bd8778e8b2dec96657bb77c36069aa296048f386ceae9.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 34, - 87, - 771, - 196.33333333333331 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 34, - 196.33333333333331, - 771, - 305.66666666666663 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 34, - 305.66666666666663, - 771, - 414.99999999999994 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 116, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 34, - 87, - 771, - 415 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 87, - 771, - 415 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 34, - 87, - 771, - 415 - ], - "spans": [ - { - "bbox": [ - 34, - 87, - 771, - 415 - ], - "score": 0.977, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
03.3(Resistance splits 25 Q and 104.8 Q) Applies potential divider formula eg V 25 3.00 129.8 V = 0.58 (V) ~ If no other mark awarded, allow one mark forAccept other routes for MP1 e.g. using V = IR, with 25 Ω and their current, for example from I = 0.023 A (from Q03.2) emf 3 total resistance 125+r I =terminal pd 125 OR using V = 3 2.89 with an identification of 2.89 V 5 as the terminal pd.2AO2x 2
", - "type": "table", - "image_path": "93d00ab9d656d2ceeb8bd8778e8b2dec96657bb77c36069aa296048f386ceae9.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 34, - 87, - 771, - 196.33333333333331 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 34, - 196.33333333333331, - 771, - 305.66666666666663 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 34, - 305.66666666666663, - 771, - 414.99999999999994 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 56, - 550, - 66, - 559 - ], - "lines": [ - { - "bbox": [ - 54, - 550, - 68, - 561 - ], - "spans": [ - { - "bbox": [ - 54, - 550, - 68, - 561 - ], - "score": 1.0, - "content": "14 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 451, - 35, - 757, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 756, - 48 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 756, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2023", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 34, - 87, - 771, - 415 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 87, - 771, - 415 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 34, - 87, - 771, - 415 - ], - "spans": [ - { - "bbox": [ - 34, - 87, - 771, - 415 - ], - "score": 0.977, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
03.3(Resistance splits 25 Q and 104.8 Q) Applies potential divider formula eg V 25 3.00 129.8 V = 0.58 (V) ~ If no other mark awarded, allow one mark forAccept other routes for MP1 e.g. using V = IR, with 25 Ω and their current, for example from I = 0.023 A (from Q03.2) emf 3 total resistance 125+r I =terminal pd 125 OR using V = 3 2.89 with an identification of 2.89 V 5 as the terminal pd.2AO2x 2
", - "type": "table", - "image_path": "93d00ab9d656d2ceeb8bd8778e8b2dec96657bb77c36069aa296048f386ceae9.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 34, - 87, - 771, - 196.33333333333331 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 34, - 196.33333333333331, - 771, - 305.66666666666663 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 34, - 305.66666666666663, - 771, - 414.99999999999994 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_116", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 21, - 96, - 775, - 482 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 21, - 96, - 775, - 482 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 29, - 96, - 775, - 482 - ], - "spans": [ - { - "bbox": [ - 29, - 96, - 775, - 482 - ], - "score": 0.968, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
03.4Any four from: Straight line O V A to P 1v Less steep non-zero gradient from P to Q 2V Short steep increase at Q 3V Q to R about same non-zero gradient as P to Q 4v Horizontal line from R to B at 3.0 V 5v3.0 V pd/ V 0 A P Q RB position of C For 3V allow range no greater than width of \"Q\" label on horizontal axis. If graph sketched from 3 V (at A) to 0V (at B) award max 2 (based on 2Y and 4~). If a single diagonal straight line from O V (at A) to B, award iV only. If a single diagonal straight line from O V (at A) to R and then horizontal to B, award only 1V and 5v if scored (ie max 2).Max 4AO3 × 4
", - "type": "table", - "image_path": "2396ac8c3de9241742820b5d3fc3cbe857f3787866ed51b69bf1581d59a196ab.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 21, - 96, - 775, - 224.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 21, - 224.66666666666666, - 775, - 353.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 21, - 353.3333333333333, - 775, - 482.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 117, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 21, - 96, - 775, - 482 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 21, - 96, - 775, - 482 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 29, - 96, - 775, - 482 - ], - "spans": [ - { - "bbox": [ - 29, - 96, - 775, - 482 - ], - "score": 0.968, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
03.4Any four from: Straight line O V A to P 1v Less steep non-zero gradient from P to Q 2V Short steep increase at Q 3V Q to R about same non-zero gradient as P to Q 4v Horizontal line from R to B at 3.0 V 5v3.0 V pd/ V 0 A P Q RB position of C For 3V allow range no greater than width of \"Q\" label on horizontal axis. If graph sketched from 3 V (at A) to 0V (at B) award max 2 (based on 2Y and 4~). If a single diagonal straight line from O V (at A) to B, award iV only. If a single diagonal straight line from O V (at A) to R and then horizontal to B, award only 1V and 5v if scored (ie max 2).Max 4AO3 × 4
", - "type": "table", - "image_path": "2396ac8c3de9241742820b5d3fc3cbe857f3787866ed51b69bf1581d59a196ab.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 21, - 96, - 775, - 224.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 21, - 224.66666666666666, - 775, - 353.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 21, - 353.3333333333333, - 775, - 482.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 451, - 35, - 758, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 756, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 756, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2023", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 843, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 843, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 747, - 550, - 758, - 560 - ], - "lines": [ - { - "bbox": [ - 745, - 550, - 759, - 561 - ], - "spans": [ - { - "bbox": [ - 745, - 550, - 759, - 561 - ], - "score": 1.0, - "content": "15 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 21, - 96, - 775, - 482 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 21, - 96, - 775, - 482 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 29, - 96, - 775, - 482 - ], - "spans": [ - { - "bbox": [ - 29, - 96, - 775, - 482 - ], - "score": 0.968, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
03.4Any four from: Straight line O V A to P 1v Less steep non-zero gradient from P to Q 2V Short steep increase at Q 3V Q to R about same non-zero gradient as P to Q 4v Horizontal line from R to B at 3.0 V 5v3.0 V pd/ V 0 A P Q RB position of C For 3V allow range no greater than width of \"Q\" label on horizontal axis. If graph sketched from 3 V (at A) to 0V (at B) award max 2 (based on 2Y and 4~). If a single diagonal straight line from O V (at A) to B, award iV only. If a single diagonal straight line from O V (at A) to R and then horizontal to B, award only 1V and 5v if scored (ie max 2).Max 4AO3 × 4
", - "type": "table", - "image_path": "2396ac8c3de9241742820b5d3fc3cbe857f3787866ed51b69bf1581d59a196ab.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 21, - 96, - 775, - 224.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 21, - 224.66666666666666, - 775, - 353.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 21, - 353.3333333333333, - 775, - 482.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_117", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 37, - 86, - 759, - 178 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 37, - 86, - 759, - 178 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 37, - 86, - 759, - 178 - ], - "spans": [ - { - "bbox": [ - 37, - 86, - 759, - 178 - ], - "score": 0.957, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
04.1Uses 1 sinc= m to get 1.51 vMustseerelevantworktoawardthemark. Minimum3sfmustbeseen1AO1
", - "type": "table", - "image_path": "b71095a5eb9eb4adb51c5bc4ebb0466e117291f9ec36320882640bdf5569b838.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 37, - 86, - 759, - 116.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 37, - 116.66666666666667, - 759, - 147.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 37, - 147.33333333333334, - 759, - 178.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 28, - 200, - 761, - 421 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 200, - 761, - 421 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 30, - 200, - 761, - 421 - ], - "spans": [ - { - "bbox": [ - 30, - 200, - 761, - 421 - ], - "score": 0.144, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
04.2(Each) angle of incidence is 45° (at 2nd and 3rd surfaces) AND2AO1 AO2
total internalreflectionoccurs/whichisgreater thanthe critical angle. v
Angle of incidence as ray leaves block is 0°
OR The ray leaves along the normal (and so the ray emerges
parallel to the incident ray). v
", - "type": "table", - "image_path": "ef2f92872bc37f4bb50504962ce3c88d856e222176a0a41be7b7f5002afa0af0.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 28, - 200, - 761, - 273.6666666666667 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 28, - 273.6666666666667, - 761, - 347.33333333333337 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 28, - 347.33333333333337, - 761, - 421.00000000000006 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "layout_bboxes": [], - "page_idx": 118, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 37, - 86, - 759, - 178 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 37, - 86, - 759, - 178 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 37, - 86, - 759, - 178 - ], - "spans": [ - { - "bbox": [ - 37, - 86, - 759, - 178 - ], - "score": 0.957, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
04.1Uses 1 sinc= m to get 1.51 vMustseerelevantworktoawardthemark. Minimum3sfmustbeseen1AO1
", - "type": "table", - "image_path": "b71095a5eb9eb4adb51c5bc4ebb0466e117291f9ec36320882640bdf5569b838.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 37, - 86, - 759, - 116.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 37, - 116.66666666666667, - 759, - 147.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 37, - 147.33333333333334, - 759, - 178.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 28, - 200, - 761, - 421 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 200, - 761, - 421 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 30, - 200, - 761, - 421 - ], - "spans": [ - { - "bbox": [ - 30, - 200, - 761, - 421 - ], - "score": 0.144, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
04.2(Each) angle of incidence is 45° (at 2nd and 3rd surfaces) AND2AO1 AO2
total internalreflectionoccurs/whichisgreater thanthe critical angle. v
Angle of incidence as ray leaves block is 0°
OR The ray leaves along the normal (and so the ray emerges
parallel to the incident ray). v
", - "type": "table", - "image_path": "ef2f92872bc37f4bb50504962ce3c88d856e222176a0a41be7b7f5002afa0af0.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 28, - 200, - 761, - 273.6666666666667 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 28, - 273.6666666666667, - 761, - 347.33333333333337 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 28, - 347.33333333333337, - 761, - 421.00000000000006 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 56, - 550, - 66, - 559 - ], - "lines": [ - { - "bbox": [ - 53, - 550, - 68, - 562 - ], - "spans": [ - { - "bbox": [ - 53, - 550, - 68, - 562 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 12, - "width": 15 - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 451, - 35, - 757, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 756, - 48 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 756, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2023", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 37, - 86, - 759, - 178 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 37, - 86, - 759, - 178 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 37, - 86, - 759, - 178 - ], - "spans": [ - { - "bbox": [ - 37, - 86, - 759, - 178 - ], - "score": 0.957, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
04.1Uses 1 sinc= m to get 1.51 vMustseerelevantworktoawardthemark. Minimum3sfmustbeseen1AO1
", - "type": "table", - "image_path": "b71095a5eb9eb4adb51c5bc4ebb0466e117291f9ec36320882640bdf5569b838.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 37, - 86, - 759, - 116.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 37, - 116.66666666666667, - 759, - 147.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 37, - 147.33333333333334, - 759, - 178.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_118", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 28, - 200, - 761, - 421 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 200, - 761, - 421 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 30, - 200, - 761, - 421 - ], - "spans": [ - { - "bbox": [ - 30, - 200, - 761, - 421 - ], - "score": 0.144, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
04.2(Each) angle of incidence is 45° (at 2nd and 3rd surfaces) AND2AO1 AO2
total internalreflectionoccurs/whichisgreater thanthe critical angle. v
Angle of incidence as ray leaves block is 0°
OR The ray leaves along the normal (and so the ray emerges
parallel to the incident ray). v
", - "type": "table", - "image_path": "ef2f92872bc37f4bb50504962ce3c88d856e222176a0a41be7b7f5002afa0af0.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 28, - 200, - 761, - 273.6666666666667 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 28, - 273.6666666666667, - 761, - 347.33333333333337 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 28, - 347.33333333333337, - 761, - 421.00000000000006 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_118", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 32, - 71, - 761, - 305 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 71, - 761, - 305 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 32, - 71, - 761, - 305 - ], - "spans": [ - { - "bbox": [ - 32, - 71, - 761, - 305 - ], - "score": 0.958, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
04.3Only (totally internally) reflected ray seen at 2nd reflecting boundary Reflected ray parallel to first refracted ray (by eye)vFor MP2:3AO2
acceptablerange forray
isthelargestangleof incidence forwntcn allof thelightleavesthroughthe
", - "type": "table", - "image_path": "cb088436b75cb40297766854775680e265adb0b45826096d02941a1fc6bd325a.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 32, - 71, - 761, - 149.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 32, - 149.0, - 761, - 227.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 32, - 227.0, - 761, - 305.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 119, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 32, - 71, - 761, - 305 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 71, - 761, - 305 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 32, - 71, - 761, - 305 - ], - "spans": [ - { - "bbox": [ - 32, - 71, - 761, - 305 - ], - "score": 0.958, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
04.3Only (totally internally) reflected ray seen at 2nd reflecting boundary Reflected ray parallel to first refracted ray (by eye)vFor MP2:3AO2
acceptablerange forray
isthelargestangleof incidence forwntcn allof thelightleavesthroughthe
", - "type": "table", - "image_path": "cb088436b75cb40297766854775680e265adb0b45826096d02941a1fc6bd325a.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 32, - 71, - 761, - 149.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 32, - 149.0, - 761, - 227.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 32, - 227.0, - 761, - 305.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 747, - 550, - 757, - 559 - ], - "lines": [ - { - "bbox": [ - 745, - 549, - 759, - 562 - ], - "spans": [ - { - "bbox": [ - 745, - 549, - 759, - 562 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 13, - "width": 14 - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 451, - 35, - 757, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 756, - 48 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 756, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2023", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 32, - 71, - 761, - 305 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 71, - 761, - 305 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 32, - 71, - 761, - 305 - ], - "spans": [ - { - "bbox": [ - 32, - 71, - 761, - 305 - ], - "score": 0.958, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
04.3Only (totally internally) reflected ray seen at 2nd reflecting boundary Reflected ray parallel to first refracted ray (by eye)vFor MP2:3AO2
acceptablerange forray
isthelargestangleof incidence forwntcn allof thelightleavesthroughthe
", - "type": "table", - "image_path": "cb088436b75cb40297766854775680e265adb0b45826096d02941a1fc6bd325a.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 32, - 71, - 761, - 149.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 32, - 149.0, - 761, - 227.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 32, - 227.0, - 761, - 305.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_119", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 34, - 85, - 767, - 363 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 85, - 767, - 363 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 34, - 85, - 767, - 363 - ], - "spans": [ - { - "bbox": [ - 34, - 85, - 767, - 363 - ], - "score": 0.977, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
04.4Angle of incidence at 2nd reflecting boundary = 41.5° √MP1 is an identification of angle at 2nd reflecting boundary4AO1
Angle of reflection at 1st reflecting boundary = 48.5° MP2 is (90°- their angle at 2nd reflecting boundary)
Angle of refraction at entry = (90° - 45° - 41.5°) = 3.5° MP3 is (45° - their angle at 2nd reflecting boundary)
Use of n = 1.5 and Snell's law to give 5.3° to at least 2 sf vAccept answer that rounds to 5.30
The identification of their angles can be inferred from their working or diagram. Simply writing 90° - 41.5° = 48.5° does not get a mark on its own.
", - "type": "table", - "image_path": "eb1c0c6439c29b068b6eaabbd9df21f4eb3b2b3a7c9883f2bb8bdf78fecd191c.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 34, - 85, - 767, - 177.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 34, - 177.66666666666669, - 767, - 270.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 34, - 270.33333333333337, - 767, - 363.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 120, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 34, - 85, - 767, - 363 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 85, - 767, - 363 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 34, - 85, - 767, - 363 - ], - "spans": [ - { - "bbox": [ - 34, - 85, - 767, - 363 - ], - "score": 0.977, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
04.4Angle of incidence at 2nd reflecting boundary = 41.5° √MP1 is an identification of angle at 2nd reflecting boundary4AO1
Angle of reflection at 1st reflecting boundary = 48.5° MP2 is (90°- their angle at 2nd reflecting boundary)
Angle of refraction at entry = (90° - 45° - 41.5°) = 3.5° MP3 is (45° - their angle at 2nd reflecting boundary)
Use of n = 1.5 and Snell's law to give 5.3° to at least 2 sf vAccept answer that rounds to 5.30
The identification of their angles can be inferred from their working or diagram. Simply writing 90° - 41.5° = 48.5° does not get a mark on its own.
", - "type": "table", - "image_path": "eb1c0c6439c29b068b6eaabbd9df21f4eb3b2b3a7c9883f2bb8bdf78fecd191c.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 34, - 85, - 767, - 177.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 34, - 177.66666666666669, - 767, - 270.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 34, - 270.33333333333337, - 767, - 363.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 56, - 550, - 66, - 559 - ], - "lines": [ - { - "bbox": [ - 55, - 549, - 68, - 562 - ], - "spans": [ - { - "bbox": [ - 55, - 549, - 68, - 562 - ], - "score": 1.0, - "content": "18 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 451, - 35, - 757, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 756, - 48 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 756, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2023", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 34, - 85, - 767, - 363 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 85, - 767, - 363 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 34, - 85, - 767, - 363 - ], - "spans": [ - { - "bbox": [ - 34, - 85, - 767, - 363 - ], - "score": 0.977, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
04.4Angle of incidence at 2nd reflecting boundary = 41.5° √MP1 is an identification of angle at 2nd reflecting boundary4AO1
Angle of reflection at 1st reflecting boundary = 48.5° MP2 is (90°- their angle at 2nd reflecting boundary)
Angle of refraction at entry = (90° - 45° - 41.5°) = 3.5° MP3 is (45° - their angle at 2nd reflecting boundary)
Use of n = 1.5 and Snell's law to give 5.3° to at least 2 sf vAccept answer that rounds to 5.30
The identification of their angles can be inferred from their working or diagram. Simply writing 90° - 41.5° = 48.5° does not get a mark on its own.
", - "type": "table", - "image_path": "eb1c0c6439c29b068b6eaabbd9df21f4eb3b2b3a7c9883f2bb8bdf78fecd191c.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 34, - 85, - 767, - 177.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 34, - 177.66666666666669, - 767, - 270.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 34, - 270.33333333333337, - 767, - 363.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_120", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 28, - 72, - 766, - 359 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 72, - 766, - 359 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 72, - 766, - 359 - ], - "spans": [ - { - "bbox": [ - 28, - 72, - 766, - 359 - ], - "score": 0.971, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
04.5Using 60° prism (Fig 9) does not work because: light would not leave the prism at the original angle v · idea that light will escape from second reflection v A smaller n (Fig 10) does not work because: ·larger critical angle v which would reduce the value of θ√Suggestion that the design would work limits the mark to Max 1 for that design.4AO3
AlternativeforMP2
Light would no longer be totally internally reflected at second reflection OR
angle of incidence at second reflection is now less than the critical angle
14
", - "type": "table", - "image_path": "0fc5d650d9231f8340c2cc739a4ff09f17e43942249c59faa5925bec273f3514.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 28, - 72, - 766, - 167.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 28, - 167.66666666666669, - 766, - 263.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 263.33333333333337, - 766, - 359.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 121, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 28, - 72, - 766, - 359 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 72, - 766, - 359 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 72, - 766, - 359 - ], - "spans": [ - { - "bbox": [ - 28, - 72, - 766, - 359 - ], - "score": 0.971, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
04.5Using 60° prism (Fig 9) does not work because: light would not leave the prism at the original angle v · idea that light will escape from second reflection v A smaller n (Fig 10) does not work because: ·larger critical angle v which would reduce the value of θ√Suggestion that the design would work limits the mark to Max 1 for that design.4AO3
AlternativeforMP2
Light would no longer be totally internally reflected at second reflection OR
angle of incidence at second reflection is now less than the critical angle
14
", - "type": "table", - "image_path": "0fc5d650d9231f8340c2cc739a4ff09f17e43942249c59faa5925bec273f3514.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 28, - 72, - 766, - 167.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 28, - 167.66666666666669, - 766, - 263.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 263.33333333333337, - 766, - 359.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 747, - 550, - 758, - 559 - ], - "lines": [ - { - "bbox": [ - 745, - 550, - 759, - 562 - ], - "spans": [ - { - "bbox": [ - 745, - 550, - 759, - 562 - ], - "score": 1.0, - "content": "19 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 451, - 35, - 757, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 756, - 48 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 756, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2023", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 28, - 72, - 766, - 359 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 72, - 766, - 359 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 72, - 766, - 359 - ], - "spans": [ - { - "bbox": [ - 28, - 72, - 766, - 359 - ], - "score": 0.971, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
04.5Using 60° prism (Fig 9) does not work because: light would not leave the prism at the original angle v · idea that light will escape from second reflection v A smaller n (Fig 10) does not work because: ·larger critical angle v which would reduce the value of θ√Suggestion that the design would work limits the mark to Max 1 for that design.4AO3
AlternativeforMP2
Light would no longer be totally internally reflected at second reflection OR
angle of incidence at second reflection is now less than the critical angle
14
", - "type": "table", - "image_path": "0fc5d650d9231f8340c2cc739a4ff09f17e43942249c59faa5925bec273f3514.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 28, - 72, - 766, - 167.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 28, - 167.66666666666669, - 766, - 263.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 263.33333333333337, - 766, - 359.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_121", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 36, - 85, - 763, - 300 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 85, - 763, - 300 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 36, - 85, - 763, - 300 - ], - "spans": [ - { - "bbox": [ - 36, - 85, - 763, - 300 - ], - "score": 0.975, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
05.1Evidence of appropriate use of Figure 11 e.g. 105 × 106 ÷7.5 × 10-4Some evidence that Figure 11 is used: calculationbased on a point on linebetween1AO1
75 MPa and 125 MPa OR calculation from point on straight line
extended
OR Use of triangle from more than half of the
linear section.
leading to an answer in the range 1.38 to 1.42 x 10l1 Pa
Allow 2 sf answer 1.4 x 10ll (Pa).
", - "type": "table", - "image_path": "d1edca35517d08df20cb2242d138d7406e55681993e8dcbdbd673c28869f7b91.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 36, - 85, - 763, - 156.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 36, - 156.66666666666669, - 763, - 228.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 36, - 228.33333333333337, - 763, - 300.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 32, - 323, - 762, - 530 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 323, - 762, - 530 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 32, - 323, - 762, - 530 - ], - "spans": [ - { - "bbox": [ - 32, - 323, - 762, - 530 - ], - "score": 0.962, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
05.2Idea that wire undergoes only (very) small (increase in) strain beyond the linear section before fracture vReject idea that there is no increase in strain. Condone 'extension' or '(plastic) deformation' for 'strain'. Condone 'shortly after' for “beyond”1AO1 x 1
", - "type": "table", - "image_path": "94f41ab6880e4ec606cdb00f81ad78569db03647b17fe0fb419eb733862ed667.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 32, - 323, - 762, - 392.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 32, - 392.0, - 762, - 461.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 32, - 461.0, - 762, - 530.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "layout_bboxes": [], - "page_idx": 122, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 36, - 85, - 763, - 300 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 85, - 763, - 300 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 36, - 85, - 763, - 300 - ], - "spans": [ - { - "bbox": [ - 36, - 85, - 763, - 300 - ], - "score": 0.975, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
05.1Evidence of appropriate use of Figure 11 e.g. 105 × 106 ÷7.5 × 10-4Some evidence that Figure 11 is used: calculationbased on a point on linebetween1AO1
75 MPa and 125 MPa OR calculation from point on straight line
extended
OR Use of triangle from more than half of the
linear section.
leading to an answer in the range 1.38 to 1.42 x 10l1 Pa
Allow 2 sf answer 1.4 x 10ll (Pa).
", - "type": "table", - "image_path": "d1edca35517d08df20cb2242d138d7406e55681993e8dcbdbd673c28869f7b91.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 36, - 85, - 763, - 156.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 36, - 156.66666666666669, - 763, - 228.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 36, - 228.33333333333337, - 763, - 300.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 32, - 323, - 762, - 530 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 323, - 762, - 530 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 32, - 323, - 762, - 530 - ], - "spans": [ - { - "bbox": [ - 32, - 323, - 762, - 530 - ], - "score": 0.962, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
05.2Idea that wire undergoes only (very) small (increase in) strain beyond the linear section before fracture vReject idea that there is no increase in strain. Condone 'extension' or '(plastic) deformation' for 'strain'. Condone 'shortly after' for “beyond”1AO1 x 1
", - "type": "table", - "image_path": "94f41ab6880e4ec606cdb00f81ad78569db03647b17fe0fb419eb733862ed667.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 32, - 323, - 762, - 392.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 32, - 392.0, - 762, - 461.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 32, - 461.0, - 762, - 530.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 55, - 550, - 66, - 560 - ], - "lines": [ - { - "bbox": [ - 54, - 550, - 68, - 561 - ], - "spans": [ - { - "bbox": [ - 54, - 550, - 68, - 561 - ], - "score": 1.0, - "content": "20 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 451, - 35, - 757, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 756, - 48 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 756, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2023", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 843, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 843, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 36, - 85, - 763, - 300 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 85, - 763, - 300 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 36, - 85, - 763, - 300 - ], - "spans": [ - { - "bbox": [ - 36, - 85, - 763, - 300 - ], - "score": 0.975, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
05.1Evidence of appropriate use of Figure 11 e.g. 105 × 106 ÷7.5 × 10-4Some evidence that Figure 11 is used: calculationbased on a point on linebetween1AO1
75 MPa and 125 MPa OR calculation from point on straight line
extended
OR Use of triangle from more than half of the
linear section.
leading to an answer in the range 1.38 to 1.42 x 10l1 Pa
Allow 2 sf answer 1.4 x 10ll (Pa).
", - "type": "table", - "image_path": "d1edca35517d08df20cb2242d138d7406e55681993e8dcbdbd673c28869f7b91.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 36, - 85, - 763, - 156.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 36, - 156.66666666666669, - 763, - 228.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 36, - 228.33333333333337, - 763, - 300.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_122", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 32, - 323, - 762, - 530 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 323, - 762, - 530 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 32, - 323, - 762, - 530 - ], - "spans": [ - { - "bbox": [ - 32, - 323, - 762, - 530 - ], - "score": 0.962, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
05.2Idea that wire undergoes only (very) small (increase in) strain beyond the linear section before fracture vReject idea that there is no increase in strain. Condone 'extension' or '(plastic) deformation' for 'strain'. Condone 'shortly after' for “beyond”1AO1 x 1
", - "type": "table", - "image_path": "94f41ab6880e4ec606cdb00f81ad78569db03647b17fe0fb419eb733862ed667.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 32, - 323, - 762, - 392.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 32, - 392.0, - 762, - 461.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 32, - 461.0, - 762, - 530.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_122", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 30, - 98, - 763, - 344 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 30, - 98, - 763, - 344 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 30, - 98, - 763, - 344 - ], - "spans": [ - { - "bbox": [ - 30, - 98, - 763, - 344 - ], - "score": 0.97, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
05.3Evidence of determination of total load or load on one wireTotal load = (4.4 + 16.0) × 9.8(1) = 200(.1) N Allow 'g' for 9.8(1)3AO1x1 AO2x 2
(halves load) Use of E =(their F)x L A×△LExpect to see F =100 N and A = 5.03 x 10-7 m2. Condone use of d in calculation of cross-sectional area A in MP2. Or separate calculations using o = F÷A, E = o÷strain, strain = △L÷L CondonePOT error in MP2.
", - "type": "table", - "image_path": "5291319c9aa668f9d5157b04ff252b73daaa5a76817cde7d58fa120db83b9a35.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 30, - 98, - 763, - 180.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 30, - 180.0, - 763, - 262.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 30, - 262.0, - 763, - 344.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 123, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 30, - 98, - 763, - 344 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 30, - 98, - 763, - 344 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 30, - 98, - 763, - 344 - ], - "spans": [ - { - "bbox": [ - 30, - 98, - 763, - 344 - ], - "score": 0.97, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
05.3Evidence of determination of total load or load on one wireTotal load = (4.4 + 16.0) × 9.8(1) = 200(.1) N Allow 'g' for 9.8(1)3AO1x1 AO2x 2
(halves load) Use of E =(their F)x L A×△LExpect to see F =100 N and A = 5.03 x 10-7 m2. Condone use of d in calculation of cross-sectional area A in MP2. Or separate calculations using o = F÷A, E = o÷strain, strain = △L÷L CondonePOT error in MP2.
", - "type": "table", - "image_path": "5291319c9aa668f9d5157b04ff252b73daaa5a76817cde7d58fa120db83b9a35.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 30, - 98, - 763, - 180.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 30, - 180.0, - 763, - 262.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 30, - 262.0, - 763, - 344.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 746, - 550, - 756, - 559 - ], - "lines": [ - { - "bbox": [ - 745, - 550, - 758, - 561 - ], - "spans": [ - { - "bbox": [ - 745, - 550, - 758, - 561 - ], - "score": 1.0, - "content": "21 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 451, - 35, - 758, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 756, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 756, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2023", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 30, - 98, - 763, - 344 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 30, - 98, - 763, - 344 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 30, - 98, - 763, - 344 - ], - "spans": [ - { - "bbox": [ - 30, - 98, - 763, - 344 - ], - "score": 0.97, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
05.3Evidence of determination of total load or load on one wireTotal load = (4.4 + 16.0) × 9.8(1) = 200(.1) N Allow 'g' for 9.8(1)3AO1x1 AO2x 2
(halves load) Use of E =(their F)x L A×△LExpect to see F =100 N and A = 5.03 x 10-7 m2. Condone use of d in calculation of cross-sectional area A in MP2. Or separate calculations using o = F÷A, E = o÷strain, strain = △L÷L CondonePOT error in MP2.
", - "type": "table", - "image_path": "5291319c9aa668f9d5157b04ff252b73daaa5a76817cde7d58fa120db83b9a35.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 30, - 98, - 763, - 180.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 30, - 180.0, - 763, - 262.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 30, - 262.0, - 763, - 344.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_123", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 37, - 63, - 772, - 483 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 37, - 63, - 772, - 483 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 37, - 63, - 772, - 483 - ], - "spans": [ - { - "bbox": [ - 37, - 63, - 772, - 483 - ], - "score": 0.979, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
05.4Evidence of extension/strain in each wire is the same 1v Substitutes data leading to Fa = 1.33 Fs 2V Calculates Fs or Fa 3v Evidence of an attempt at a moment equation 4vL ={FL÷AE} steel ={FL÷AE} aluminium {F÷d²E} steel ={F÷d²E} aluminium 1v F F 0.8² × 210 1.62 × 70 Fa = 1.33 Fs OR Fs = 0.752 Fa 2v 1.33 Fs + Fs = 200 N Fs = 86 N, Fa = 114 N 3v Attempt to takemoments about A or B or other suitable point, expect to see 16.0gx = 228 - 4.4g ~4 Note that an answer of 1.14 m comes from not taking into account the weight of the5AO3x 5
TotalDistance = 1.18 m V5beam Award max 4 for this approach. ECF forMP2 andMP3inMP410
", - "type": "table", - "image_path": "10b783dde63ecc34a873d5c620e5c98444adb0bcbdb086a96bfa6e611dff2a7a.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 37, - 63, - 772, - 203.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 37, - 203.0, - 772, - 343.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 37, - 343.0, - 772, - 483.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 124, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 37, - 63, - 772, - 483 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 37, - 63, - 772, - 483 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 37, - 63, - 772, - 483 - ], - "spans": [ - { - "bbox": [ - 37, - 63, - 772, - 483 - ], - "score": 0.979, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
05.4Evidence of extension/strain in each wire is the same 1v Substitutes data leading to Fa = 1.33 Fs 2V Calculates Fs or Fa 3v Evidence of an attempt at a moment equation 4vL ={FL÷AE} steel ={FL÷AE} aluminium {F÷d²E} steel ={F÷d²E} aluminium 1v F F 0.8² × 210 1.62 × 70 Fa = 1.33 Fs OR Fs = 0.752 Fa 2v 1.33 Fs + Fs = 200 N Fs = 86 N, Fa = 114 N 3v Attempt to takemoments about A or B or other suitable point, expect to see 16.0gx = 228 - 4.4g ~4 Note that an answer of 1.14 m comes from not taking into account the weight of the5AO3x 5
TotalDistance = 1.18 m V5beam Award max 4 for this approach. ECF forMP2 andMP3inMP410
", - "type": "table", - "image_path": "10b783dde63ecc34a873d5c620e5c98444adb0bcbdb086a96bfa6e611dff2a7a.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 37, - 63, - 772, - 203.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 37, - 203.0, - 772, - 343.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 37, - 343.0, - 772, - 483.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 55, - 550, - 66, - 559 - ], - "lines": [ - { - "bbox": [ - 54, - 550, - 68, - 561 - ], - "spans": [ - { - "bbox": [ - 54, - 550, - 68, - 561 - ], - "score": 1.0, - "content": "22 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 843, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 843, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 451, - 35, - 757, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 756, - 48 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 756, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2023", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 37, - 63, - 772, - 483 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 37, - 63, - 772, - 483 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 37, - 63, - 772, - 483 - ], - "spans": [ - { - "bbox": [ - 37, - 63, - 772, - 483 - ], - "score": 0.979, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
05.4Evidence of extension/strain in each wire is the same 1v Substitutes data leading to Fa = 1.33 Fs 2V Calculates Fs or Fa 3v Evidence of an attempt at a moment equation 4vL ={FL÷AE} steel ={FL÷AE} aluminium {F÷d²E} steel ={F÷d²E} aluminium 1v F F 0.8² × 210 1.62 × 70 Fa = 1.33 Fs OR Fs = 0.752 Fa 2v 1.33 Fs + Fs = 200 N Fs = 86 N, Fa = 114 N 3v Attempt to takemoments about A or B or other suitable point, expect to see 16.0gx = 228 - 4.4g ~4 Note that an answer of 1.14 m comes from not taking into account the weight of the5AO3x 5
TotalDistance = 1.18 m V5beam Award max 4 for this approach. ECF forMP2 andMP3inMP410
", - "type": "table", - "image_path": "10b783dde63ecc34a873d5c620e5c98444adb0bcbdb086a96bfa6e611dff2a7a.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 37, - 63, - 772, - 203.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 37, - 203.0, - 772, - 343.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 37, - 343.0, - 772, - 483.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_124", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 33, - 86, - 761, - 332 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 33, - 86, - 761, - 332 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 33, - 86, - 761, - 332 - ], - "spans": [ - { - "bbox": [ - 33, - 86, - 761, - 332 - ], - "score": 0.968, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
06.1Equates resultant force to ma and shows a proportional to y, as Apmg are all constantvIn MP1: Condone upthrust/buoyancy force for2AO1x 1 AO2x 1
resultant force
F = ma = -Apyg
Apyg =D
m Condone missing minus signs in MP1.
oscillation v(hence SHM)In MP2:
Minus sign included and explained: (restoring) force/acceleration directed to centre of
Minus because force/acceleration is in
opposite direction to y OWTTE
", - "type": "table", - "image_path": "70afa8dbed080b21609b2c4745737ac382034279ea95a75b1b272d809f7ae91c.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 33, - 86, - 761, - 168.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 33, - 168.0, - 761, - 250.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 33, - 250.0, - 761, - 332.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 26, - 343, - 760, - 496 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 343, - 760, - 496 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 33, - 343, - 759, - 496 - ], - "spans": [ - { - "bbox": [ - 33, - 343, - 759, - 496 - ], - "score": 0.713, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
06.2g (T=2π/∞)S0∞= (= 10.74 rad s-1AlternativeforMP1: calculates time (0.58(5) s) AND then uses ① from this time2AO1 x 1 AO2×1
(amax = - c²ymax 1
0.58 (m s-2) from some correct workingMP2forcorrectcalculationofacceleration.
", - "type": "table", - "image_path": "5c6187fefe7e4eebe84b832c33069bd27cdac86291768f32c85d4d31ffb6630a.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 26, - 343, - 760, - 394.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 26, - 394.0, - 760, - 445.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 26, - 445.0, - 760, - 496.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "layout_bboxes": [], - "page_idx": 125, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 33, - 86, - 761, - 332 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 33, - 86, - 761, - 332 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 33, - 86, - 761, - 332 - ], - "spans": [ - { - "bbox": [ - 33, - 86, - 761, - 332 - ], - "score": 0.968, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
06.1Equates resultant force to ma and shows a proportional to y, as Apmg are all constantvIn MP1: Condone upthrust/buoyancy force for2AO1x 1 AO2x 1
resultant force
F = ma = -Apyg
Apyg =D
m Condone missing minus signs in MP1.
oscillation v(hence SHM)In MP2:
Minus sign included and explained: (restoring) force/acceleration directed to centre of
Minus because force/acceleration is in
opposite direction to y OWTTE
", - "type": "table", - "image_path": "70afa8dbed080b21609b2c4745737ac382034279ea95a75b1b272d809f7ae91c.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 33, - 86, - 761, - 168.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 33, - 168.0, - 761, - 250.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 33, - 250.0, - 761, - 332.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 26, - 343, - 760, - 496 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 343, - 760, - 496 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 33, - 343, - 759, - 496 - ], - "spans": [ - { - "bbox": [ - 33, - 343, - 759, - 496 - ], - "score": 0.713, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
06.2g (T=2π/∞)S0∞= (= 10.74 rad s-1AlternativeforMP1: calculates time (0.58(5) s) AND then uses ① from this time2AO1 x 1 AO2×1
(amax = - c²ymax 1
0.58 (m s-2) from some correct workingMP2forcorrectcalculationofacceleration.
", - "type": "table", - "image_path": "5c6187fefe7e4eebe84b832c33069bd27cdac86291768f32c85d4d31ffb6630a.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 26, - 343, - 760, - 394.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 26, - 394.0, - 760, - 445.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 26, - 445.0, - 760, - 496.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 746, - 550, - 758, - 560 - ], - "lines": [ - { - "bbox": [ - 745, - 550, - 759, - 561 - ], - "spans": [ - { - "bbox": [ - 745, - 550, - 759, - 561 - ], - "score": 1.0, - "content": "23 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 451, - 35, - 757, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 756, - 48 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 756, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2023", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 843, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 843, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 33, - 86, - 761, - 332 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 33, - 86, - 761, - 332 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 33, - 86, - 761, - 332 - ], - "spans": [ - { - "bbox": [ - 33, - 86, - 761, - 332 - ], - "score": 0.968, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
06.1Equates resultant force to ma and shows a proportional to y, as Apmg are all constantvIn MP1: Condone upthrust/buoyancy force for2AO1x 1 AO2x 1
resultant force
F = ma = -Apyg
Apyg =D
m Condone missing minus signs in MP1.
oscillation v(hence SHM)In MP2:
Minus sign included and explained: (restoring) force/acceleration directed to centre of
Minus because force/acceleration is in
opposite direction to y OWTTE
", - "type": "table", - "image_path": "70afa8dbed080b21609b2c4745737ac382034279ea95a75b1b272d809f7ae91c.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 33, - 86, - 761, - 168.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 33, - 168.0, - 761, - 250.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 33, - 250.0, - 761, - 332.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_125", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 26, - 343, - 760, - 496 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 343, - 760, - 496 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 33, - 343, - 759, - 496 - ], - "spans": [ - { - "bbox": [ - 33, - 343, - 759, - 496 - ], - "score": 0.713, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
06.2g (T=2π/∞)S0∞= (= 10.74 rad s-1AlternativeforMP1: calculates time (0.58(5) s) AND then uses ① from this time2AO1 x 1 AO2×1
(amax = - c²ymax 1
0.58 (m s-2) from some correct workingMP2forcorrectcalculationofacceleration.
", - "type": "table", - "image_path": "5c6187fefe7e4eebe84b832c33069bd27cdac86291768f32c85d4d31ffb6630a.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 26, - 343, - 760, - 394.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 26, - 394.0, - 760, - 445.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 26, - 445.0, - 760, - 496.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_125", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 31, - 73, - 760, - 209 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 31, - 73, - 760, - 209 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 31, - 73, - 760, - 209 - ], - "spans": [ - { - "bbox": [ - 31, - 73, - 760, - 209 - ], - "score": 0.974, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
06.3Idea that (at resonance) frequency of forced vibrations equals natural/resonant frequency 1vAcceptfullylabelledgraphofamplitudevs driving frequency with resonance frequency clearly labelled1V and an amplitude peak. 2v2AO1×2
Idea that amplitude (of vibrations/oscillations) is at a maximum2vCondone 'wave frequency' for 'driving frequency' Ignorereferencesto phase
", - "type": "table", - "image_path": "ac7b554d8ed73367994abb552352a73d0017c5b3f34a69133c24f3fe96130e0c.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 31, - 73, - 760, - 118.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 31, - 118.33333333333334, - 760, - 163.66666666666669 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 31, - 163.66666666666669, - 760, - 209.00000000000003 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 126, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 31, - 73, - 760, - 209 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 31, - 73, - 760, - 209 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 31, - 73, - 760, - 209 - ], - "spans": [ - { - "bbox": [ - 31, - 73, - 760, - 209 - ], - "score": 0.974, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
06.3Idea that (at resonance) frequency of forced vibrations equals natural/resonant frequency 1vAcceptfullylabelledgraphofamplitudevs driving frequency with resonance frequency clearly labelled1V and an amplitude peak. 2v2AO1×2
Idea that amplitude (of vibrations/oscillations) is at a maximum2vCondone 'wave frequency' for 'driving frequency' Ignorereferencesto phase
", - "type": "table", - "image_path": "ac7b554d8ed73367994abb552352a73d0017c5b3f34a69133c24f3fe96130e0c.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 31, - 73, - 760, - 118.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 31, - 118.33333333333334, - 760, - 163.66666666666669 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 31, - 163.66666666666669, - 760, - 209.00000000000003 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 55, - 550, - 66, - 559 - ], - "lines": [ - { - "bbox": [ - 54, - 550, - 68, - 561 - ], - "spans": [ - { - "bbox": [ - 54, - 550, - 68, - 561 - ], - "score": 1.0, - "content": "24 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 451, - 35, - 757, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 35, - 756, - 48 - ], - "spans": [ - { - "bbox": [ - 453, - 35, - 756, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2023", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 31, - 73, - 760, - 209 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 31, - 73, - 760, - 209 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 31, - 73, - 760, - 209 - ], - "spans": [ - { - "bbox": [ - 31, - 73, - 760, - 209 - ], - "score": 0.974, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
06.3Idea that (at resonance) frequency of forced vibrations equals natural/resonant frequency 1vAcceptfullylabelledgraphofamplitudevs driving frequency with resonance frequency clearly labelled1V and an amplitude peak. 2v2AO1×2
Idea that amplitude (of vibrations/oscillations) is at a maximum2vCondone 'wave frequency' for 'driving frequency' Ignorereferencesto phase
", - "type": "table", - "image_path": "ac7b554d8ed73367994abb552352a73d0017c5b3f34a69133c24f3fe96130e0c.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 31, - 73, - 760, - 118.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 31, - 118.33333333333334, - 760, - 163.66666666666669 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 31, - 163.66666666666669, - 760, - 209.00000000000003 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_126", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 21, - 69, - 774, - 505 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 21, - 69, - 774, - 505 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 32, - 69, - 774, - 505 - ], - "spans": [ - { - "bbox": [ - 32, - 69, - 774, - 505 - ], - "score": 0.975, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
06.4stopped: wave frequency (= )= 0.12 Hz 1v1Vis for calculation of (driving) frequency when stopped. Condone reference to \"frequency of waves'.3AO3x 3
moving: when ship continues at 8 m s-1, forcing frequency will be further from resonant frequency 2vevidence can come from the substitution. Reject simple “0.12 (Hz)\" 2V is for a relevant comment about the moving situation OR calculation of forcing frequency with the ship moving (giving 0.05 Hz) For 2V accept incorrect calculation from adding speeds provided comment that this frequency is further from resonant frequency. 3V is for statement of why moving is the
eg for stopped option wave/forcing frequency very close to natural frequency, (so amplitude of oscillations will be high)Allow answer for 3v that mentions that damping will be highly likely, so amplitudes may not reach high enough values to prevent
OR for moving option resonance does not occur 3voperation
", - "type": "table", - "image_path": "f79e89205bf4b010f43ecee9d8710a2fb5472a81aa95475b8bc8d5c72132746f.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 21, - 69, - 774, - 214.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 21, - 214.33333333333334, - 774, - 359.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 21, - 359.6666666666667, - 774, - 505.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 127, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 21, - 69, - 774, - 505 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 21, - 69, - 774, - 505 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 32, - 69, - 774, - 505 - ], - "spans": [ - { - "bbox": [ - 32, - 69, - 774, - 505 - ], - "score": 0.975, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
06.4stopped: wave frequency (= )= 0.12 Hz 1v1Vis for calculation of (driving) frequency when stopped. Condone reference to \"frequency of waves'.3AO3x 3
moving: when ship continues at 8 m s-1, forcing frequency will be further from resonant frequency 2vevidence can come from the substitution. Reject simple “0.12 (Hz)\" 2V is for a relevant comment about the moving situation OR calculation of forcing frequency with the ship moving (giving 0.05 Hz) For 2V accept incorrect calculation from adding speeds provided comment that this frequency is further from resonant frequency. 3V is for statement of why moving is the
eg for stopped option wave/forcing frequency very close to natural frequency, (so amplitude of oscillations will be high)Allow answer for 3v that mentions that damping will be highly likely, so amplitudes may not reach high enough values to prevent
OR for moving option resonance does not occur 3voperation
", - "type": "table", - "image_path": "f79e89205bf4b010f43ecee9d8710a2fb5472a81aa95475b8bc8d5c72132746f.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 21, - 69, - 774, - 214.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 21, - 214.33333333333334, - 774, - 359.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 21, - 359.6666666666667, - 774, - 505.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 746, - 550, - 758, - 560 - ], - "lines": [ - { - "bbox": [ - 745, - 550, - 759, - 561 - ], - "spans": [ - { - "bbox": [ - 745, - 550, - 759, - 561 - ], - "score": 1.0, - "content": "25 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 843, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 843, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 451, - 35, - 757, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 756, - 48 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 756, - 48 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2023", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 21, - 69, - 774, - 505 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 21, - 69, - 774, - 505 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 32, - 69, - 774, - 505 - ], - "spans": [ - { - "bbox": [ - 32, - 69, - 774, - 505 - ], - "score": 0.975, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
06.4stopped: wave frequency (= )= 0.12 Hz 1v1Vis for calculation of (driving) frequency when stopped. Condone reference to \"frequency of waves'.3AO3x 3
moving: when ship continues at 8 m s-1, forcing frequency will be further from resonant frequency 2vevidence can come from the substitution. Reject simple “0.12 (Hz)\" 2V is for a relevant comment about the moving situation OR calculation of forcing frequency with the ship moving (giving 0.05 Hz) For 2V accept incorrect calculation from adding speeds provided comment that this frequency is further from resonant frequency. 3V is for statement of why moving is the
eg for stopped option wave/forcing frequency very close to natural frequency, (so amplitude of oscillations will be high)Allow answer for 3v that mentions that damping will be highly likely, so amplitudes may not reach high enough values to prevent
OR for moving option resonance does not occur 3voperation
", - "type": "table", - "image_path": "f79e89205bf4b010f43ecee9d8710a2fb5472a81aa95475b8bc8d5c72132746f.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 21, - 69, - 774, - 214.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 21, - 214.33333333333334, - 774, - 359.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 21, - 359.6666666666667, - 774, - 505.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_127", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 53, - 82, - 604, - 530 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 53, - 82, - 604, - 530 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 53, - 82, - 604, - 530 - ], - "spans": [ - { - "bbox": [ - 53, - 82, - 604, - 530 - ], - "score": 0.98, - "html": "
QuestionKeyAnswer
07A10 μm s-1 100 s
08B4 m s-1
09B8 7
10DThey decay into electrons.
11Bdown quark up quark β
12C2.8 × 10 m s-1
13Adecreasing the kinetic energy of the electrons
14C1.2 0.17
15BThey have a constant phase relationship.
16A0.22s 0.662
17Cdecreases increases
18C45 m
19Dforce mass x displacement
20Cdisplacement and momentum
21BA current in it causes no heating effect.
22BB
", - "type": "table", - "image_path": "7d292096dc2b9770c5ab39a7ea14716702ba3560a704e80245a258c41c252850.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 53, - 82, - 604, - 231.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 53, - 231.33333333333334, - 604, - 380.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 53, - 380.6666666666667, - 604, - 530.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 128, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 53, - 82, - 604, - 530 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 53, - 82, - 604, - 530 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 53, - 82, - 604, - 530 - ], - "spans": [ - { - "bbox": [ - 53, - 82, - 604, - 530 - ], - "score": 0.98, - "html": "
QuestionKeyAnswer
07A10 μm s-1 100 s
08B4 m s-1
09B8 7
10DThey decay into electrons.
11Bdown quark up quark β
12C2.8 × 10 m s-1
13Adecreasing the kinetic energy of the electrons
14C1.2 0.17
15BThey have a constant phase relationship.
16A0.22s 0.662
17Cdecreases increases
18C45 m
19Dforce mass x displacement
20Cdisplacement and momentum
21BA current in it causes no heating effect.
22BB
", - "type": "table", - "image_path": "7d292096dc2b9770c5ab39a7ea14716702ba3560a704e80245a258c41c252850.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 53, - 82, - 604, - 231.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 53, - 231.33333333333334, - 604, - 380.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 53, - 380.6666666666667, - 604, - 530.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 451, - 35, - 757, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 37, - 756, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 37, - 756, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2023", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 55, - 550, - 66, - 560 - ], - "lines": [ - { - "bbox": [ - 55, - 551, - 67, - 561 - ], - "spans": [ - { - "bbox": [ - 55, - 551, - 67, - 561 - ], - "score": 1.0, - "content": "26 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 843, - 15 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 843, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 53, - 82, - 604, - 530 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 53, - 82, - 604, - 530 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 53, - 82, - 604, - 530 - ], - "spans": [ - { - "bbox": [ - 53, - 82, - 604, - 530 - ], - "score": 0.98, - "html": "
QuestionKeyAnswer
07A10 μm s-1 100 s
08B4 m s-1
09B8 7
10DThey decay into electrons.
11Bdown quark up quark β
12C2.8 × 10 m s-1
13Adecreasing the kinetic energy of the electrons
14C1.2 0.17
15BThey have a constant phase relationship.
16A0.22s 0.662
17Cdecreases increases
18C45 m
19Dforce mass x displacement
20Cdisplacement and momentum
21BA current in it causes no heating effect.
22BB
", - "type": "table", - "image_path": "7d292096dc2b9770c5ab39a7ea14716702ba3560a704e80245a258c41c252850.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 53, - 82, - 604, - 231.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 53, - 231.33333333333334, - 604, - 380.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 53, - 380.6666666666667, - 604, - 530.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_128", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 53, - 83, - 605, - 486 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 53, - 83, - 605, - 486 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 53, - 83, - 605, - 486 - ], - "spans": [ - { - "bbox": [ - 53, - 83, - 605, - 486 - ], - "score": 0.975, - "html": "
23Amg k
24CThe acceleration is unchanged.
25C7.50 m s-1
26D0 p 一 K
27DX
28A19
", - "type": "table", - "image_path": "cf5467f872c2bddddacfcd544a1f0381470d9024b7ca5d9c34baa062b2f25012.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 53, - 83, - 605, - 217.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 53, - 217.33333333333334, - 605, - 351.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 53, - 351.6666666666667, - 605, - 486.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 129, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 53, - 83, - 605, - 486 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 53, - 83, - 605, - 486 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 53, - 83, - 605, - 486 - ], - "spans": [ - { - "bbox": [ - 53, - 83, - 605, - 486 - ], - "score": 0.975, - "html": "
23Amg k
24CThe acceleration is unchanged.
25C7.50 m s-1
26D0 p 一 K
27DX
28A19
", - "type": "table", - "image_path": "cf5467f872c2bddddacfcd544a1f0381470d9024b7ca5d9c34baa062b2f25012.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 53, - 83, - 605, - 217.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 53, - 217.33333333333334, - 605, - 351.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 53, - 351.6666666666667, - 605, - 486.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 746, - 550, - 757, - 559 - ], - "lines": [ - { - "bbox": [ - 745, - 550, - 759, - 561 - ], - "spans": [ - { - "bbox": [ - 745, - 550, - 759, - 561 - ], - "score": 1.0, - "content": "27 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 451, - 35, - 757, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 37, - 756, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 37, - 756, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2023", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 53, - 83, - 605, - 486 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 53, - 83, - 605, - 486 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 53, - 83, - 605, - 486 - ], - "spans": [ - { - "bbox": [ - 53, - 83, - 605, - 486 - ], - "score": 0.975, - "html": "
23Amg k
24CThe acceleration is unchanged.
25C7.50 m s-1
26D0 p 一 K
27DX
28A19
", - "type": "table", - "image_path": "cf5467f872c2bddddacfcd544a1f0381470d9024b7ca5d9c34baa062b2f25012.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 53, - 83, - 605, - 217.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 53, - 217.33333333333334, - 605, - 351.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 53, - 351.6666666666667, - 605, - 486.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_129", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 54, - 100, - 604, - 205 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 54, - 100, - 604, - 205 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 54, - 100, - 604, - 205 - ], - "spans": [ - { - "bbox": [ - 54, - 100, - 604, - 205 - ], - "score": 0.975, - "html": "
29B36
30D2y— rg
31Bthe kinetic energy of the mass
", - "type": "table", - "image_path": "3bbf541743e7972a6731ac1d17bba4846c037a92f254a4fa4a876f9420ce1769.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 54, - 100, - 604, - 135.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 54, - 135.0, - 604, - 170.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 54, - 170.0, - 604, - 205.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 130, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 54, - 100, - 604, - 205 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 54, - 100, - 604, - 205 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 54, - 100, - 604, - 205 - ], - "spans": [ - { - "bbox": [ - 54, - 100, - 604, - 205 - ], - "score": 0.975, - "html": "
29B36
30D2y— rg
31Bthe kinetic energy of the mass
", - "type": "table", - "image_path": "3bbf541743e7972a6731ac1d17bba4846c037a92f254a4fa4a876f9420ce1769.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 54, - 100, - 604, - 135.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 54, - 135.0, - 604, - 170.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 54, - 170.0, - 604, - 205.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 451, - 35, - 758, - 49 - ], - "lines": [ - { - "bbox": [ - 453, - 36, - 756, - 47 - ], - "spans": [ - { - "bbox": [ - 453, - 36, - 756, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – A-LEVEL PHYSICS – 7408/1 – JUNE 2023", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 1, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 843, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 843, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 55, - 550, - 66, - 559 - ], - "lines": [ - { - "bbox": [ - 55, - 551, - 67, - 561 - ], - "spans": [ - { - "bbox": [ - 55, - 551, - 67, - 561 - ], - "score": 1.0, - "content": "28 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 54, - 100, - 604, - 205 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 54, - 100, - 604, - 205 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 54, - 100, - 604, - 205 - ], - "spans": [ - { - "bbox": [ - 54, - 100, - 604, - 205 - ], - "score": 0.975, - "html": "
29B36
30D2y— rg
31Bthe kinetic energy of the mass
", - "type": "table", - "image_path": "3bbf541743e7972a6731ac1d17bba4846c037a92f254a4fa4a876f9420ce1769.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 54, - 100, - 604, - 135.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 54, - 135.0, - 604, - 170.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 54, - 170.0, - 604, - 205.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_130", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - } - ], - "_parse_type": "txt", - "_version_name": "1.1.0", - "lang": "en" -} \ No newline at end of file diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/7408_1_June_2019_1739552566_model.json b/pdf_output/7408_1_June_2019_1739552566/auto/7408_1_June_2019_1739552566_model.json deleted file mode 100644 index fc920ab5b9d3dc42c7516ed20ce07cc0852b4054..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/7408_1_June_2019_1739552566_model.json +++ /dev/null @@ -1,76568 +0,0 @@ -[ - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 107, - 1496, - 1181, - 1496, - 1181, - 1863, - 107, - 1863 - ], - "score": 0.975 - }, - { - "category_id": 1, - "poly": [ - 108, - 1938, - 1028, - 1938, - 1028, - 2087, - 108, - 2087 - ], - "score": 0.969 - }, - { - "category_id": 5, - "poly": [ - 1231, - 1240, - 1513, - 1240, - 1513, - 1799, - 1231, - 1799 - ], - "score": 0.968, - "html": "
For Examiner's Use
QuestionMark
1
2
3
4
5
6
7
8-32
TOTAL
" - }, - { - "category_id": 1, - "poly": [ - 107, - 1310, - 550, - 1310, - 550, - 1417, - 107, - 1417 - ], - "score": 0.952 - }, - { - "category_id": 0, - "poly": [ - 108, - 1899, - 295, - 1899, - 295, - 1934, - 108, - 1934 - ], - "score": 0.923 - }, - { - "category_id": 0, - "poly": [ - 108, - 1456, - 302, - 1456, - 302, - 1490, - 108, - 1490 - ], - "score": 0.918 - }, - { - "category_id": 0, - "poly": [ - 109, - 1233, - 258, - 1233, - 258, - 1267, - 109, - 1267 - ], - "score": 0.898 - }, - { - "category_id": 1, - "poly": [ - 108, - 1272, - 515, - 1272, - 515, - 1307, - 108, - 1307 - ], - "score": 0.893 - }, - { - "category_id": 2, - "poly": [ - 877, - 2273, - 1008, - 2273, - 1008, - 2298, - 877, - 2298 - ], - "score": 0.879 - }, - { - "category_id": 1, - "poly": [ - 113, - 996, - 264, - 996, - 264, - 1045, - 113, - 1045 - ], - "score": 0.87 - }, - { - "category_id": 1, - "poly": [ - 157, - 320, - 653, - 320, - 653, - 359, - 157, - 359 - ], - "score": 0.857 - }, - { - "category_id": 2, - "poly": [ - 112, - 2187, - 651, - 2187, - 651, - 2294, - 112, - 2294 - ], - "score": 0.85 - }, - { - "category_id": 2, - "poly": [ - 1338, - 2241, - 1514, - 2241, - 1514, - 2298, - 1338, - 2298 - ], - "score": 0.845 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1653, - 4, - 1653, - 38, - 1582, - 38 - ], - "score": 0.821 - }, - { - "category_id": 0, - "poly": [ - 109, - 1145, - 502, - 1145, - 502, - 1195, - 109, - 1195 - ], - "score": 0.819 - }, - { - "category_id": 0, - "poly": [ - 703, - 1148, - 886, - 1148, - 886, - 1193, - 703, - 1193 - ], - "score": 0.763 - }, - { - "category_id": 0, - "poly": [ - 111, - 795, - 412, - 795, - 412, - 967, - 111, - 967 - ], - "score": 0.725 - }, - { - "category_id": 1, - "poly": [ - 153, - 388, - 784, - 388, - 784, - 476, - 153, - 476 - ], - "score": 0.668 - }, - { - "category_id": 2, - "poly": [ - 107, - 121, - 472, - 121, - 472, - 256, - 107, - 256 - ], - "score": 0.64 - }, - { - "category_id": 6, - "poly": [ - 1089, - 1147, - 1490, - 1147, - 1490, - 1194, - 1089, - 1194 - ], - "score": 0.347 - }, - { - "category_id": 1, - "poly": [ - 151, - 528, - 1473, - 528, - 1473, - 751, - 151, - 751 - ], - "score": 0.322 - }, - { - "category_id": 0, - "poly": [ - 107, - 121, - 472, - 121, - 472, - 256, - 107, - 256 - ], - "score": 0.298 - }, - { - "category_id": 1, - "poly": [ - 1089, - 1147, - 1490, - 1147, - 1490, - 1194, - 1089, - 1194 - ], - "score": 0.297 - }, - { - "category_id": 0, - "poly": [ - 1089, - 1147, - 1490, - 1147, - 1490, - 1194, - 1089, - 1194 - ], - "score": 0.275 - }, - { - "category_id": 1, - "poly": [ - 136, - 530, - 1470, - 530, - 1470, - 577, - 136, - 577 - ], - "score": 0.246 - }, - { - "category_id": 5, - "poly": [ - 1149, - 391, - 1466, - 391, - 1466, - 474, - 1149, - 474 - ], - "score": 0.176 - }, - { - "category_id": 1, - "poly": [ - 863, - 425, - 1122, - 425, - 1122, - 460, - 863, - 460 - ], - "score": 0.149 - }, - { - "category_id": 1, - "poly": [ - 703, - 1148, - 886, - 1148, - 886, - 1193, - 703, - 1193 - ], - "score": 0.149 - }, - { - "category_id": 3, - "poly": [ - 153, - 388, - 784, - 388, - 784, - 476, - 153, - 476 - ], - "score": 0.115 - }, - { - "category_id": 15, - "poly": [ - 110.0, - 1493.0, - 639.0, - 1493.0, - 639.0, - 1531.0, - 110.0, - 1531.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 1532.0, - 664.0, - 1532.0, - 664.0, - 1569.0, - 113.0, - 1569.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 1569.0, - 436.0, - 1569.0, - 436.0, - 1607.0, - 115.0, - 1607.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 121.0, - 1608.0, - 1072.0, - 1608.0, - 1072.0, - 1642.0, - 121.0, - 1642.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 1643.0, - 863.0, - 1643.0, - 863.0, - 1680.0, - 138.0, - 1680.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 1682.0, - 1178.0, - 1682.0, - 1178.0, - 1716.0, - 134.0, - 1716.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 137.0, - 1716.0, - 974.0, - 1716.0, - 974.0, - 1754.0, - 137.0, - 1754.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1751.0, - 1121.0, - 1751.0, - 1121.0, - 1791.0, - 117.0, - 1791.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 1791.0, - 332.0, - 1791.0, - 332.0, - 1823.0, - 139.0, - 1823.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 1825.0, - 447.0, - 1825.0, - 447.0, - 1863.0, - 113.0, - 1863.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 1937.0, - 783.0, - 1937.0, - 783.0, - 1973.0, - 114.0, - 1973.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 1974.0, - 683.0, - 1974.0, - 683.0, - 2014.0, - 118.0, - 2014.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 2012.0, - 1026.0, - 2012.0, - 1026.0, - 2049.0, - 115.0, - 2049.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 2053.0, - 940.0, - 2053.0, - 940.0, - 2084.0, - 112.0, - 2084.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 110.0, - 1311.0, - 405.0, - 1311.0, - 405.0, - 1340.0, - 110.0, - 1340.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 111.0, - 1348.0, - 426.0, - 1348.0, - 426.0, - 1379.0, - 111.0, - 1379.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 1385.0, - 547.0, - 1385.0, - 547.0, - 1415.0, - 120.0, - 1415.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 109.0, - 1900.0, - 295.0, - 1900.0, - 295.0, - 1933.0, - 109.0, - 1933.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 108.0, - 1456.0, - 302.0, - 1456.0, - 302.0, - 1490.0, - 108.0, - 1490.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 109.0, - 1232.0, - 257.0, - 1232.0, - 257.0, - 1269.0, - 109.0, - 1269.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 109.0, - 1272.0, - 517.0, - 1272.0, - 517.0, - 1306.0, - 109.0, - 1306.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 879.0, - 2276.0, - 1009.0, - 2276.0, - 1009.0, - 2297.0, - 879.0, - 2297.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 111.0, - 997.0, - 267.0, - 997.0, - 267.0, - 1046.0, - 111.0, - 1046.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 156.0, - 321.0, - 651.0, - 321.0, - 651.0, - 358.0, - 156.0, - 358.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 159.0, - 2263.0, - 593.0, - 2263.0, - 593.0, - 2293.0, - 159.0, - 2293.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1335.0, - 2242.0, - 1514.0, - 2242.0, - 1514.0, - 2296.0, - 1335.0, - 2296.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 5.0, - 1657.0, - 5.0, - 1657.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 108.0, - 1152.0, - 497.0, - 1152.0, - 497.0, - 1191.0, - 108.0, - 1191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 705.0, - 1148.0, - 888.0, - 1148.0, - 888.0, - 1196.0, - 705.0, - 1196.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 799.0, - 350.0, - 799.0, - 350.0, - 865.0, - 113.0, - 865.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 898.0, - 405.0, - 898.0, - 405.0, - 959.0, - 117.0, - 959.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 158.0, - 427.0, - 364.0, - 427.0, - 364.0, - 458.0, - 158.0, - 458.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 108.0, - 150.0, - 380.0, - 150.0, - 380.0, - 252.0, - 108.0, - 252.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 389.0, - 130.0, - 464.0, - 130.0, - 464.0, - 217.0, - 389.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1092.0, - 1151.0, - 1486.0, - 1151.0, - 1486.0, - 1189.0, - 1092.0, - 1189.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 152.0, - 532.0, - 288.0, - 532.0, - 288.0, - 573.0, - 152.0, - 573.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 154.0, - 606.0, - 335.0, - 606.0, - 335.0, - 644.0, - 154.0, - 644.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 153.0, - 677.0, - 436.0, - 677.0, - 436.0, - 718.0, - 153.0, - 718.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 108.0, - 150.0, - 380.0, - 150.0, - 380.0, - 252.0, - 108.0, - 252.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 389.0, - 130.0, - 464.0, - 130.0, - 464.0, - 217.0, - 389.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1092.0, - 1151.0, - 1486.0, - 1151.0, - 1486.0, - 1189.0, - 1092.0, - 1189.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1092.0, - 1151.0, - 1486.0, - 1151.0, - 1486.0, - 1189.0, - 1092.0, - 1189.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 154.0, - 533.0, - 286.0, - 533.0, - 286.0, - 574.0, - 154.0, - 574.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 867.0, - 428.0, - 1119.0, - 428.0, - 1119.0, - 457.0, - 867.0, - 457.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 705.0, - 1148.0, - 888.0, - 1148.0, - 888.0, - 1196.0, - 705.0, - 1196.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 0, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1512, - 146, - 1620, - 146, - 1620, - 213, - 1512, - 213 - ], - "score": 0.93 - }, - { - "category_id": 0, - "poly": [ - 729, - 179, - 879, - 179, - 879, - 218, - 729, - 218 - ], - "score": 0.902 - }, - { - "category_id": 2, - "poly": [ - 127, - 771, - 294, - 771, - 294, - 820, - 127, - 820 - ], - "score": 0.901 - }, - { - "category_id": 1, - "poly": [ - 311, - 449, - 1415, - 449, - 1415, - 522, - 311, - 522 - ], - "score": 0.897 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2293, - 118, - 2293 - ], - "score": 0.895 - }, - { - "category_id": 2, - "poly": [ - 126, - 1080, - 294, - 1080, - 294, - 1132, - 126, - 1132 - ], - "score": 0.894 - }, - { - "category_id": 1, - "poly": [ - 557, - 251, - 1048, - 251, - 1048, - 292, - 557, - 292 - ], - "score": 0.891 - }, - { - "category_id": 2, - "poly": [ - 1330, - 2265, - 1496, - 2265, - 1496, - 2290, - 1330, - 2290 - ], - "score": 0.886 - }, - { - "category_id": 2, - "poly": [ - 126, - 352, - 293, - 352, - 293, - 403, - 126, - 403 - ], - "score": 0.878 - }, - { - "category_id": 1, - "poly": [ - 316, - 354, - 886, - 354, - 886, - 420, - 316, - 420 - ], - "score": 0.871 - }, - { - "category_id": 1, - "poly": [ - 310, - 1176, - 1485, - 1176, - 1485, - 1252, - 310, - 1252 - ], - "score": 0.87 - }, - { - "category_id": 2, - "poly": [ - 1581, - 2, - 1653, - 2, - 1653, - 39, - 1581, - 39 - ], - "score": 0.822 - }, - { - "category_id": 1, - "poly": [ - 313, - 769, - 1221, - 769, - 1221, - 909, - 313, - 909 - ], - "score": 0.813 - }, - { - "category_id": 1, - "poly": [ - 1360, - 904, - 1486, - 904, - 1486, - 943, - 1360, - 943 - ], - "score": 0.812 - }, - { - "category_id": 1, - "poly": [ - 1344, - 1249, - 1486, - 1249, - 1486, - 1287, - 1344, - 1287 - ], - "score": 0.806 - }, - { - "category_id": 1, - "poly": [ - 315, - 1083, - 1260, - 1083, - 1260, - 1149, - 315, - 1149 - ], - "score": 0.802 - }, - { - "category_id": 2, - "poly": [ - 790, - 80, - 814, - 80, - 814, - 111, - 790, - 111 - ], - "score": 0.793 - }, - { - "category_id": 2, - "poly": [ - 1360, - 522, - 1486, - 522, - 1486, - 561, - 1360, - 561 - ], - "score": 0.646 - }, - { - "category_id": 1, - "poly": [ - 313, - 527, - 1492, - 527, - 1492, - 707, - 313, - 707 - ], - "score": 0.581 - }, - { - "category_id": 1, - "poly": [ - 313, - 1256, - 1490, - 1256, - 1490, - 1578, - 313, - 1578 - ], - "score": 0.482 - }, - { - "category_id": 1, - "poly": [ - 1360, - 522, - 1486, - 522, - 1486, - 561, - 1360, - 561 - ], - "score": 0.28 - }, - { - "category_id": 1, - "poly": [ - 316, - 867, - 959, - 867, - 959, - 908, - 316, - 908 - ], - "score": 0.1 - }, - { - "category_id": 13, - "poly": [ - 744, - 787, - 795, - 787, - 795, - 824, - 744, - 824 - ], - "score": 0.87, - "latex": "(\\upbeta^{-})" - }, - { - "category_id": 13, - "poly": [ - 312, - 1080, - 407, - 1080, - 407, - 1151, - 312, - 1151 - ], - "score": 0.55, - "latex": "\\mathsf{A}_{53}^{125}\\mathrm{~I~}" - }, - { - "category_id": 13, - "poly": [ - 685, - 353, - 887, - 353, - 887, - 424, - 685, - 424 - ], - "score": 0.5, - "latex": "_{53}^{125}{\\mathrm{Iand}}_{53}^{131}{\\mathrm{I}}." - }, - { - "category_id": 13, - "poly": [ - 312, - 770, - 399, - 770, - 399, - 840, - 312, - 840 - ], - "score": 0.45, - "latex": "\\textsf{A}_{53}^{131}" - }, - { - "category_id": 15, - "poly": [ - 1513.0, - 147.0, - 1620.0, - 147.0, - 1620.0, - 170.0, - 1513.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1516.0, - 170.0, - 1618.0, - 170.0, - 1618.0, - 193.0, - 1516.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1545.0, - 190.0, - 1589.0, - 190.0, - 1589.0, - 216.0, - 1545.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 732.0, - 182.0, - 878.0, - 182.0, - 878.0, - 217.0, - 732.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 775.0, - 286.0, - 775.0, - 286.0, - 818.0, - 134.0, - 818.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 320.0, - 453.0, - 1411.0, - 453.0, - 1411.0, - 487.0, - 320.0, - 487.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 487.0, - 413.0, - 487.0, - 413.0, - 523.0, - 316.0, - 523.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2267.0, - 223.0, - 2267.0, - 223.0, - 2294.0, - 166.0, - 2294.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 1086.0, - 284.0, - 1086.0, - 284.0, - 1126.0, - 135.0, - 1126.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 560.0, - 254.0, - 1048.0, - 254.0, - 1048.0, - 289.0, - 560.0, - 289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 358.0, - 284.0, - 358.0, - 284.0, - 398.0, - 138.0, - 398.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 684.0, - 358.0, - 684.0, - 358.0, - 684.0, - 384.0, - 684.0, - 384.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 370.0, - 681.0, - 370.0, - 681.0, - 405.0, - 319.0, - 405.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 321.0, - 1182.0, - 1482.0, - 1182.0, - 1482.0, - 1213.0, - 321.0, - 1213.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 1217.0, - 620.0, - 1217.0, - 620.0, - 1251.0, - 317.0, - 1251.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 320.0, - 872.0, - 958.0, - 872.0, - 958.0, - 902.0, - 320.0, - 902.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 307.0, - 769.0, - 1226.0, - 769.0, - 1226.0, - 835.5, - 307.0, - 835.5 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 900.0, - 1488.0, - 900.0, - 1488.0, - 945.0, - 1362.0, - 945.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 1247.0, - 1488.0, - 1247.0, - 1488.0, - 1289.0, - 1345.0, - 1289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 408.0, - 1088.0, - 1256.0, - 1088.0, - 1256.0, - 1138.0, - 408.0, - 1138.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 788.0, - 77.0, - 818.0, - 77.0, - 818.0, - 119.0, - 788.0, - 119.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 518.0, - 1488.0, - 518.0, - 1488.0, - 563.0, - 1362.0, - 563.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 522.0, - 1490.0, - 522.0, - 1490.0, - 563.0, - 1362.0, - 563.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1344.0, - 1248.0, - 1492.0, - 1248.0, - 1492.0, - 1290.0, - 1344.0, - 1290.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 518.0, - 1488.0, - 518.0, - 1488.0, - 563.0, - 1362.0, - 563.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 321.0, - 872.0, - 960.0, - 872.0, - 960.0, - 903.0, - 321.0, - 903.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 1, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 316, - 190, - 1473, - 190, - 1473, - 333, - 316, - 333 - ], - "score": 0.969 - }, - { - "category_id": 1, - "poly": [ - 314, - 365, - 1467, - 365, - 1467, - 438, - 314, - 438 - ], - "score": 0.933 - }, - { - "category_id": 2, - "poly": [ - 1517, - 146, - 1624, - 146, - 1624, - 212, - 1517, - 212 - ], - "score": 0.928 - }, - { - "category_id": 2, - "poly": [ - 1509, - 1075, - 1602, - 1075, - 1602, - 1191, - 1509, - 1191 - ], - "score": 0.906 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 278, - 2187, - 278, - 2292, - 119, - 2292 - ], - "score": 0.904 - }, - { - "category_id": 2, - "poly": [ - 125, - 181, - 294, - 181, - 294, - 232, - 125, - 232 - ], - "score": 0.899 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2144, - 1496, - 2144, - 1496, - 2177, - 1317, - 2177 - ], - "score": 0.898 - }, - { - "category_id": 2, - "poly": [ - 1332, - 2266, - 1496, - 2266, - 1496, - 2289, - 1332, - 2289 - ], - "score": 0.873 - }, - { - "category_id": 1, - "poly": [ - 574, - 1330, - 1032, - 1330, - 1032, - 1367, - 574, - 1367 - ], - "score": 0.822 - }, - { - "category_id": 2, - "poly": [ - 1582, - 2, - 1653, - 2, - 1653, - 39, - 1582, - 39 - ], - "score": 0.82 - }, - { - "category_id": 1, - "poly": [ - 1345, - 512, - 1485, - 512, - 1485, - 548, - 1345, - 548 - ], - "score": 0.817 - }, - { - "category_id": 2, - "poly": [ - 792, - 83, - 813, - 83, - 813, - 111, - 792, - 111 - ], - "score": 0.786 - }, - { - "category_id": 1, - "poly": [ - 319, - 472, - 1342, - 472, - 1342, - 512, - 319, - 512 - ], - "score": 0.759 - }, - { - "category_id": 1, - "poly": [ - 297, - 575, - 1488, - 575, - 1488, - 1196, - 297, - 1196 - ], - "score": 0.634 - }, - { - "category_id": 1, - "poly": [ - 295, - 576, - 1487, - 576, - 1487, - 1186, - 295, - 1186 - ], - "score": 0.555 - }, - { - "category_id": 1, - "poly": [ - 301, - 1009, - 1485, - 1009, - 1485, - 1193, - 301, - 1193 - ], - "score": 0.215 - }, - { - "category_id": 1, - "poly": [ - 299, - 794, - 1485, - 794, - 1485, - 980, - 299, - 980 - ], - "score": 0.214 - }, - { - "category_id": 1, - "poly": [ - 303, - 577, - 1485, - 577, - 1485, - 766, - 303, - 766 - ], - "score": 0.203 - }, - { - "category_id": 1, - "poly": [ - 293, - 1012, - 1484, - 1012, - 1484, - 1051, - 293, - 1051 - ], - "score": 0.193 - }, - { - "category_id": 1, - "poly": [ - 312, - 472, - 1345, - 472, - 1345, - 550, - 312, - 550 - ], - "score": 0.113 - }, - { - "category_id": 13, - "poly": [ - 1191, - 475, - 1243, - 475, - 1243, - 512, - 1191, - 512 - ], - "score": 0.81, - "latex": "(\\upbeta^{-})" - }, - { - "category_id": 15, - "poly": [ - 320.0, - 194.0, - 1471.0, - 194.0, - 1471.0, - 226.0, - 320.0, - 226.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 229.0, - 1473.0, - 229.0, - 1473.0, - 261.0, - 316.0, - 261.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 265.0, - 1471.0, - 265.0, - 1471.0, - 297.0, - 318.0, - 297.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 301.0, - 656.0, - 301.0, - 656.0, - 332.0, - 317.0, - 332.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 366.0, - 1461.0, - 366.0, - 1461.0, - 403.0, - 318.0, - 403.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 404.0, - 588.0, - 404.0, - 588.0, - 438.0, - 316.0, - 438.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 146.0, - 1625.0, - 146.0, - 1625.0, - 172.0, - 1517.0, - 172.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1621.0, - 170.0, - 1621.0, - 192.0, - 1520.0, - 192.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1551.0, - 191.0, - 1591.0, - 191.0, - 1591.0, - 214.0, - 1551.0, - 214.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1547.0, - 1149.0, - 1564.0, - 1149.0, - 1564.0, - 1167.0, - 1547.0, - 1167.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 162.0, - 2263.0, - 227.0, - 2263.0, - 227.0, - 2295.0, - 162.0, - 2295.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 190.0, - 246.0, - 190.0, - 246.0, - 223.0, - 139.0, - 223.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 247.0, - 193.0, - 279.0, - 193.0, - 279.0, - 221.0, - 247.0, - 221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1318.0, - 2146.0, - 1472.0, - 2146.0, - 1472.0, - 2176.0, - 1318.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1334.0, - 2268.0, - 1499.0, - 2268.0, - 1499.0, - 2289.0, - 1334.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 577.0, - 1332.0, - 1030.0, - 1332.0, - 1030.0, - 1365.0, - 577.0, - 1365.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 509.0, - 1488.0, - 509.0, - 1488.0, - 549.0, - 1346.0, - 549.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 789.0, - 79.0, - 818.0, - 79.0, - 818.0, - 116.0, - 789.0, - 116.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 473.0, - 1190.0, - 473.0, - 1190.0, - 512.0, - 318.0, - 512.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1244.0, - 473.0, - 1339.0, - 473.0, - 1339.0, - 512.0, - 1244.0, - 512.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 306.0, - 587.0, - 328.0, - 587.0, - 328.0, - 611.0, - 306.0, - 611.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 798.0, - 329.0, - 798.0, - 329.0, - 830.0, - 303.0, - 830.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 1011.0, - 329.0, - 1011.0, - 329.0, - 1045.0, - 303.0, - 1045.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 306.0, - 586.0, - 326.0, - 586.0, - 326.0, - 613.0, - 306.0, - 613.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 796.0, - 330.0, - 796.0, - 330.0, - 832.0, - 304.0, - 832.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 1013.0, - 330.0, - 1013.0, - 330.0, - 1043.0, - 304.0, - 1043.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 1012.0, - 330.0, - 1012.0, - 330.0, - 1043.0, - 303.0, - 1043.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 796.0, - 332.0, - 796.0, - 332.0, - 832.0, - 303.0, - 832.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 306.0, - 589.0, - 328.0, - 589.0, - 328.0, - 610.0, - 306.0, - 610.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 301.0, - 1008.0, - 332.0, - 1008.0, - 332.0, - 1050.0, - 301.0, - 1050.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 474.0, - 1190.0, - 474.0, - 1190.0, - 512.0, - 318.0, - 512.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1244.0, - 474.0, - 1340.0, - 474.0, - 1340.0, - 512.0, - 1244.0, - 512.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 2, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 314, - 897, - 1484, - 897, - 1484, - 1007, - 314, - 1007 - ], - "score": 0.972 - }, - { - "category_id": 3, - "poly": [ - 275, - 386, - 1341, - 386, - 1341, - 831, - 275, - 831 - ], - "score": 0.968 - }, - { - "category_id": 1, - "poly": [ - 314, - 190, - 1429, - 190, - 1429, - 265, - 314, - 265 - ], - "score": 0.946 - }, - { - "category_id": 2, - "poly": [ - 1516, - 145, - 1624, - 145, - 1624, - 212, - 1516, - 212 - ], - "score": 0.933 - }, - { - "category_id": 1, - "poly": [ - 309, - 1411, - 1476, - 1411, - 1476, - 1486, - 309, - 1486 - ], - "score": 0.924 - }, - { - "category_id": 1, - "poly": [ - 313, - 1081, - 1456, - 1081, - 1456, - 1154, - 313, - 1154 - ], - "score": 0.905 - }, - { - "category_id": 2, - "poly": [ - 126, - 1072, - 294, - 1072, - 294, - 1123, - 126, - 1123 - ], - "score": 0.903 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 279, - 2187, - 279, - 2291, - 119, - 2291 - ], - "score": 0.895 - }, - { - "category_id": 2, - "poly": [ - 125, - 181, - 228, - 181, - 228, - 231, - 125, - 231 - ], - "score": 0.895 - }, - { - "category_id": 2, - "poly": [ - 126, - 1403, - 294, - 1403, - 294, - 1454, - 126, - 1454 - ], - "score": 0.89 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2289, - 1331, - 2289 - ], - "score": 0.887 - }, - { - "category_id": 1, - "poly": [ - 1345, - 1485, - 1486, - 1485, - 1486, - 1522, - 1345, - 1522 - ], - "score": 0.842 - }, - { - "category_id": 2, - "poly": [ - 1582, - 2, - 1653, - 2, - 1653, - 39, - 1582, - 39 - ], - "score": 0.828 - }, - { - "category_id": 1, - "poly": [ - 1362, - 1156, - 1485, - 1156, - 1485, - 1193, - 1362, - 1193 - ], - "score": 0.813 - }, - { - "category_id": 2, - "poly": [ - 792, - 83, - 813, - 83, - 813, - 109, - 792, - 109 - ], - "score": 0.788 - }, - { - "category_id": 4, - "poly": [ - 743, - 309, - 868, - 309, - 868, - 348, - 743, - 348 - ], - "score": 0.772 - }, - { - "category_id": 1, - "poly": [ - 313, - 1161, - 1487, - 1161, - 1487, - 1339, - 313, - 1339 - ], - "score": 0.483 - }, - { - "category_id": 1, - "poly": [ - 313, - 1551, - 1490, - 1551, - 1490, - 1811, - 313, - 1811 - ], - "score": 0.428 - }, - { - "category_id": 1, - "poly": [ - 314, - 1554, - 1488, - 1554, - 1488, - 1667, - 314, - 1667 - ], - "score": 0.285 - }, - { - "category_id": 1, - "poly": [ - 295, - 1694, - 1489, - 1694, - 1489, - 1740, - 295, - 1740 - ], - "score": 0.119 - }, - { - "category_id": 0, - "poly": [ - 743, - 309, - 868, - 309, - 868, - 348, - 743, - 348 - ], - "score": 0.119 - }, - { - "category_id": 2, - "poly": [ - 1362, - 1156, - 1485, - 1156, - 1485, - 1193, - 1362, - 1193 - ], - "score": 0.115 - }, - { - "category_id": 15, - "poly": [ - 320.0, - 902.0, - 1451.0, - 902.0, - 1451.0, - 935.0, - 320.0, - 935.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 938.0, - 1484.0, - 938.0, - 1484.0, - 970.0, - 318.0, - 970.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 973.0, - 1075.0, - 973.0, - 1075.0, - 1006.0, - 317.0, - 1006.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 192.0, - 1428.0, - 192.0, - 1428.0, - 228.0, - 317.0, - 228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 230.0, - 1394.0, - 230.0, - 1394.0, - 264.0, - 317.0, - 264.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 146.0, - 1624.0, - 146.0, - 1624.0, - 169.0, - 1517.0, - 169.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 169.0, - 1621.0, - 169.0, - 1621.0, - 193.0, - 1520.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1550.0, - 188.0, - 1593.0, - 188.0, - 1593.0, - 218.0, - 1550.0, - 218.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 1416.0, - 1475.0, - 1416.0, - 1475.0, - 1450.0, - 317.0, - 1450.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 313.0, - 1450.0, - 1075.0, - 1450.0, - 1075.0, - 1485.0, - 313.0, - 1485.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 1085.0, - 1450.0, - 1085.0, - 1450.0, - 1119.0, - 319.0, - 1119.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1122.0, - 462.0, - 1122.0, - 462.0, - 1157.0, - 316.0, - 1157.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 1077.0, - 285.0, - 1077.0, - 285.0, - 1120.0, - 134.0, - 1120.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 163.0, - 2265.0, - 224.0, - 2265.0, - 224.0, - 2294.0, - 163.0, - 2294.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 189.0, - 179.0, - 189.0, - 179.0, - 224.0, - 139.0, - 224.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 181.0, - 190.0, - 216.0, - 190.0, - 216.0, - 223.0, - 181.0, - 223.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 1408.0, - 286.0, - 1408.0, - 286.0, - 1451.0, - 134.0, - 1451.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1332.0, - 2265.0, - 1499.0, - 2265.0, - 1499.0, - 2292.0, - 1332.0, - 2292.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1347.0, - 1485.0, - 1488.0, - 1485.0, - 1488.0, - 1523.0, - 1347.0, - 1523.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1361.0, - 1152.0, - 1488.0, - 1152.0, - 1488.0, - 1196.0, - 1361.0, - 1196.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 791.0, - 81.0, - 817.0, - 81.0, - 817.0, - 114.0, - 791.0, - 114.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 745.0, - 312.0, - 870.0, - 312.0, - 870.0, - 348.0, - 745.0, - 348.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1360.0, - 1156.0, - 1491.0, - 1156.0, - 1491.0, - 1197.0, - 1360.0, - 1197.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1556.0, - 341.0, - 1556.0, - 341.0, - 1590.0, - 318.0, - 1590.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1699.0, - 343.0, - 1699.0, - 343.0, - 1733.0, - 318.0, - 1733.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 1556.0, - 342.0, - 1556.0, - 342.0, - 1591.0, - 317.0, - 1591.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 314.0, - 1696.0, - 345.0, - 1696.0, - 345.0, - 1741.0, - 314.0, - 1741.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 745.0, - 312.0, - 870.0, - 312.0, - 870.0, - 348.0, - 745.0, - 348.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1361.0, - 1152.0, - 1488.0, - 1152.0, - 1488.0, - 1196.0, - 1361.0, - 1196.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 3, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1517, - 146, - 1624, - 146, - 1624, - 213, - 1517, - 213 - ], - "score": 0.927 - }, - { - "category_id": 1, - "poly": [ - 315, - 260, - 1456, - 260, - 1456, - 335, - 315, - 335 - ], - "score": 0.919 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 278, - 2187, - 278, - 2292, - 119, - 2292 - ], - "score": 0.892 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2144, - 1496, - 2144, - 1496, - 2177, - 1317, - 2177 - ], - "score": 0.886 - }, - { - "category_id": 2, - "poly": [ - 1332, - 2266, - 1496, - 2266, - 1496, - 2289, - 1332, - 2289 - ], - "score": 0.869 - }, - { - "category_id": 2, - "poly": [ - 126, - 181, - 294, - 181, - 294, - 232, - 126, - 232 - ], - "score": 0.849 - }, - { - "category_id": 2, - "poly": [ - 1582, - 2, - 1653, - 2, - 1653, - 39, - 1582, - 39 - ], - "score": 0.818 - }, - { - "category_id": 1, - "poly": [ - 1344, - 334, - 1486, - 334, - 1486, - 372, - 1344, - 372 - ], - "score": 0.8 - }, - { - "category_id": 1, - "poly": [ - 521, - 1135, - 1088, - 1135, - 1088, - 1174, - 521, - 1174 - ], - "score": 0.798 - }, - { - "category_id": 2, - "poly": [ - 791, - 82, - 814, - 82, - 814, - 111, - 791, - 111 - ], - "score": 0.795 - }, - { - "category_id": 1, - "poly": [ - 317, - 190, - 1019, - 190, - 1019, - 229, - 317, - 229 - ], - "score": 0.769 - }, - { - "category_id": 0, - "poly": [ - 317, - 190, - 1019, - 190, - 1019, - 229, - 317, - 229 - ], - "score": 0.122 - }, - { - "category_id": 15, - "poly": [ - 1518.0, - 147.0, - 1623.0, - 147.0, - 1623.0, - 170.0, - 1518.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1621.0, - 170.0, - 1621.0, - 193.0, - 1520.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1550.0, - 190.0, - 1592.0, - 190.0, - 1592.0, - 216.0, - 1550.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 321.0, - 265.0, - 1452.0, - 265.0, - 1452.0, - 299.0, - 321.0, - 299.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 300.0, - 968.0, - 300.0, - 968.0, - 339.0, - 318.0, - 339.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 164.0, - 2264.0, - 225.0, - 2264.0, - 225.0, - 2294.0, - 164.0, - 2294.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1318.0, - 2146.0, - 1472.0, - 2146.0, - 1472.0, - 2176.0, - 1318.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1334.0, - 2268.0, - 1499.0, - 2268.0, - 1499.0, - 2289.0, - 1334.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 187.0, - 284.0, - 187.0, - 284.0, - 227.0, - 135.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 332.0, - 1488.0, - 332.0, - 1488.0, - 374.0, - 1345.0, - 374.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 521.0, - 1136.0, - 1086.0, - 1136.0, - 1086.0, - 1174.0, - 521.0, - 1174.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 789.0, - 78.0, - 818.0, - 78.0, - 818.0, - 118.0, - 789.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 192.0, - 1015.0, - 192.0, - 1015.0, - 228.0, - 318.0, - 228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 192.0, - 1015.0, - 192.0, - 1015.0, - 228.0, - 318.0, - 228.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 4, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 281, - 341, - 1337, - 341, - 1337, - 796, - 281, - 796 - ], - "score": 0.964 - }, - { - "category_id": 1, - "poly": [ - 314, - 902, - 1481, - 902, - 1481, - 974, - 314, - 974 - ], - "score": 0.937 - }, - { - "category_id": 2, - "poly": [ - 1516, - 145, - 1624, - 145, - 1624, - 213, - 1516, - 213 - ], - "score": 0.933 - }, - { - "category_id": 1, - "poly": [ - 308, - 190, - 1465, - 190, - 1465, - 262, - 308, - 262 - ], - "score": 0.924 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 278, - 2187, - 278, - 2292, - 119, - 2292 - ], - "score": 0.923 - }, - { - "category_id": 1, - "poly": [ - 316, - 1009, - 967, - 1009, - 967, - 1048, - 316, - 1048 - ], - "score": 0.92 - }, - { - "category_id": 2, - "poly": [ - 126, - 181, - 294, - 181, - 294, - 232, - 126, - 232 - ], - "score": 0.901 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2289, - 1331, - 2289 - ], - "score": 0.891 - }, - { - "category_id": 2, - "poly": [ - 1582, - 3, - 1653, - 3, - 1653, - 39, - 1582, - 39 - ], - "score": 0.828 - }, - { - "category_id": 2, - "poly": [ - 791, - 83, - 813, - 83, - 813, - 111, - 791, - 111 - ], - "score": 0.822 - }, - { - "category_id": 4, - "poly": [ - 744, - 268, - 871, - 268, - 871, - 306, - 744, - 306 - ], - "score": 0.779 - }, - { - "category_id": 1, - "poly": [ - 1344, - 1043, - 1486, - 1043, - 1486, - 1082, - 1344, - 1082 - ], - "score": 0.741 - }, - { - "category_id": 4, - "poly": [ - 319, - 830, - 807, - 830, - 807, - 868, - 319, - 868 - ], - "score": 0.682 - }, - { - "category_id": 1, - "poly": [ - 319, - 830, - 807, - 830, - 807, - 868, - 319, - 868 - ], - "score": 0.238 - }, - { - "category_id": 0, - "poly": [ - 744, - 268, - 871, - 268, - 871, - 306, - 744, - 306 - ], - "score": 0.115 - }, - { - "category_id": 15, - "poly": [ - 319.0, - 904.0, - 1483.0, - 904.0, - 1483.0, - 942.0, - 319.0, - 942.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 941.0, - 489.0, - 941.0, - 489.0, - 974.0, - 316.0, - 974.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1516.0, - 144.0, - 1624.0, - 144.0, - 1624.0, - 171.0, - 1516.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1519.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 191.0, - 1519.0, - 191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 189.0, - 1593.0, - 189.0, - 1593.0, - 216.0, - 1549.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 190.0, - 1469.0, - 190.0, - 1469.0, - 229.0, - 317.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 224.0, - 482.0, - 224.0, - 482.0, - 267.0, - 315.0, - 267.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 164.0, - 2265.0, - 225.0, - 2265.0, - 225.0, - 2294.0, - 164.0, - 2294.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 1012.0, - 964.0, - 1012.0, - 964.0, - 1046.0, - 319.0, - 1046.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 187.0, - 285.0, - 187.0, - 285.0, - 227.0, - 135.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1332.0, - 2265.0, - 1499.0, - 2265.0, - 1499.0, - 2292.0, - 1332.0, - 2292.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 5.0, - 1658.0, - 5.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 791.0, - 80.0, - 816.0, - 80.0, - 816.0, - 115.0, - 791.0, - 115.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 744.0, - 267.0, - 873.0, - 267.0, - 873.0, - 309.0, - 744.0, - 309.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1044.0, - 1487.0, - 1044.0, - 1487.0, - 1082.0, - 1346.0, - 1082.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 834.0, - 802.0, - 834.0, - 802.0, - 864.0, - 319.0, - 864.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 834.0, - 802.0, - 834.0, - 802.0, - 864.0, - 319.0, - 864.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 744.0, - 267.0, - 873.0, - 267.0, - 873.0, - 309.0, - 744.0, - 309.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 5, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 314, - 1161, - 1472, - 1161, - 1472, - 1237, - 314, - 1237 - ], - "score": 0.936 - }, - { - "category_id": 1, - "poly": [ - 317, - 1054, - 1432, - 1054, - 1432, - 1131, - 317, - 1131 - ], - "score": 0.936 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1624, - 146, - 1624, - 213, - 1516, - 213 - ], - "score": 0.931 - }, - { - "category_id": 2, - "poly": [ - 125, - 1047, - 294, - 1047, - 294, - 1097, - 125, - 1097 - ], - "score": 0.918 - }, - { - "category_id": 1, - "poly": [ - 315, - 190, - 1438, - 190, - 1438, - 265, - 315, - 265 - ], - "score": 0.913 - }, - { - "category_id": 1, - "poly": [ - 316, - 296, - 1408, - 296, - 1408, - 370, - 316, - 370 - ], - "score": 0.912 - }, - { - "category_id": 2, - "poly": [ - 1509, - 1737, - 1601, - 1737, - 1601, - 1854, - 1509, - 1854 - ], - "score": 0.905 - }, - { - "category_id": 2, - "poly": [ - 126, - 182, - 293, - 182, - 293, - 232, - 126, - 232 - ], - "score": 0.897 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2144, - 1496, - 2144, - 1496, - 2177, - 1317, - 2177 - ], - "score": 0.891 - }, - { - "category_id": 2, - "poly": [ - 1332, - 2265, - 1496, - 2265, - 1496, - 2290, - 1332, - 2290 - ], - "score": 0.881 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 279, - 2187, - 279, - 2291, - 119, - 2291 - ], - "score": 0.871 - }, - { - "category_id": 2, - "poly": [ - 1581, - 2, - 1653, - 2, - 1653, - 39, - 1581, - 39 - ], - "score": 0.826 - }, - { - "category_id": 1, - "poly": [ - 1345, - 1235, - 1486, - 1235, - 1486, - 1272, - 1345, - 1272 - ], - "score": 0.814 - }, - { - "category_id": 2, - "poly": [ - 792, - 82, - 813, - 82, - 813, - 109, - 792, - 109 - ], - "score": 0.762 - }, - { - "category_id": 1, - "poly": [ - 1344, - 370, - 1486, - 370, - 1486, - 407, - 1344, - 407 - ], - "score": 0.653 - }, - { - "category_id": 1, - "poly": [ - 311, - 372, - 1490, - 372, - 1490, - 985, - 311, - 985 - ], - "score": 0.642 - }, - { - "category_id": 1, - "poly": [ - 308, - 1301, - 1491, - 1301, - 1491, - 1851, - 308, - 1851 - ], - "score": 0.434 - }, - { - "category_id": 1, - "poly": [ - 314, - 1303, - 1488, - 1303, - 1488, - 1562, - 314, - 1562 - ], - "score": 0.343 - }, - { - "category_id": 2, - "poly": [ - 1344, - 370, - 1486, - 370, - 1486, - 407, - 1344, - 407 - ], - "score": 0.267 - }, - { - "category_id": 1, - "poly": [ - 314, - 1588, - 1489, - 1588, - 1489, - 1848, - 314, - 1848 - ], - "score": 0.237 - }, - { - "category_id": 15, - "poly": [ - 315.0, - 1162.0, - 1470.0, - 1162.0, - 1470.0, - 1203.0, - 315.0, - 1203.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 1202.0, - 737.0, - 1202.0, - 737.0, - 1236.0, - 315.0, - 1236.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1057.0, - 1421.0, - 1057.0, - 1421.0, - 1095.0, - 316.0, - 1095.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1098.0, - 1317.0, - 1098.0, - 1317.0, - 1128.0, - 318.0, - 1128.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1624.0, - 147.0, - 1624.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 193.0, - 1520.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 190.0, - 1593.0, - 190.0, - 1593.0, - 216.0, - 1549.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 137.0, - 1053.0, - 227.0, - 1053.0, - 227.0, - 1092.0, - 137.0, - 1092.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1059.0, - 277.0, - 1059.0, - 277.0, - 1085.0, - 253.0, - 1085.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 191.0, - 1433.0, - 191.0, - 1433.0, - 230.0, - 319.0, - 230.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 229.0, - 619.0, - 229.0, - 619.0, - 267.0, - 317.0, - 267.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 299.0, - 1405.0, - 299.0, - 1405.0, - 336.0, - 318.0, - 336.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 313.0, - 333.0, - 403.0, - 333.0, - 403.0, - 372.0, - 313.0, - 372.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1534.0, - 1803.0, - 1576.0, - 1803.0, - 1576.0, - 1836.0, - 1534.0, - 1836.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 188.0, - 279.0, - 188.0, - 279.0, - 227.0, - 139.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1318.0, - 2146.0, - 1472.0, - 2146.0, - 1472.0, - 2176.0, - 1318.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1499.0, - 2268.0, - 1499.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 167.0, - 2268.0, - 189.0, - 2268.0, - 189.0, - 2290.0, - 167.0, - 2290.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 2271.0, - 218.0, - 2271.0, - 218.0, - 2287.0, - 199.0, - 2287.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1347.0, - 1235.0, - 1488.0, - 1235.0, - 1488.0, - 1273.0, - 1347.0, - 1273.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 788.0, - 79.0, - 819.0, - 79.0, - 819.0, - 116.0, - 788.0, - 116.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 370.0, - 1487.0, - 370.0, - 1487.0, - 408.0, - 1346.0, - 408.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1344.0, - 369.0, - 1492.0, - 369.0, - 1492.0, - 411.0, - 1344.0, - 411.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1311.0, - 338.0, - 1311.0, - 338.0, - 1338.0, - 318.0, - 1338.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1595.0, - 340.0, - 1595.0, - 340.0, - 1623.0, - 318.0, - 1623.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 1308.0, - 342.0, - 1308.0, - 342.0, - 1340.0, - 317.0, - 1340.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 370.0, - 1487.0, - 370.0, - 1487.0, - 408.0, - 1346.0, - 408.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 1593.0, - 342.0, - 1593.0, - 342.0, - 1625.0, - 317.0, - 1625.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 6, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 313, - 190, - 1472, - 190, - 1472, - 300, - 313, - 300 - ], - "score": 0.935 - }, - { - "category_id": 2, - "poly": [ - 1516, - 145, - 1624, - 145, - 1624, - 213, - 1516, - 213 - ], - "score": 0.933 - }, - { - "category_id": 2, - "poly": [ - 126, - 957, - 294, - 957, - 294, - 1006, - 126, - 1006 - ], - "score": 0.913 - }, - { - "category_id": 2, - "poly": [ - 118, - 2186, - 279, - 2186, - 279, - 2292, - 118, - 2292 - ], - "score": 0.912 - }, - { - "category_id": 2, - "poly": [ - 126, - 181, - 229, - 181, - 229, - 230, - 126, - 230 - ], - "score": 0.905 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2290, - 1331, - 2290 - ], - "score": 0.888 - }, - { - "category_id": 2, - "poly": [ - 126, - 1535, - 294, - 1535, - 294, - 1585, - 126, - 1585 - ], - "score": 0.885 - }, - { - "category_id": 2, - "poly": [ - 1581, - 2, - 1653, - 2, - 1653, - 39, - 1581, - 39 - ], - "score": 0.832 - }, - { - "category_id": 3, - "poly": [ - 306, - 420, - 1314, - 420, - 1314, - 897, - 306, - 897 - ], - "score": 0.831 - }, - { - "category_id": 2, - "poly": [ - 791, - 83, - 814, - 83, - 814, - 111, - 791, - 111 - ], - "score": 0.811 - }, - { - "category_id": 4, - "poly": [ - 743, - 345, - 871, - 345, - 871, - 384, - 743, - 384 - ], - "score": 0.809 - }, - { - "category_id": 1, - "poly": [ - 314, - 965, - 936, - 965, - 936, - 1006, - 314, - 1006 - ], - "score": 0.757 - }, - { - "category_id": 1, - "poly": [ - 238, - 1541, - 1127, - 1541, - 1127, - 1657, - 238, - 1657 - ], - "score": 0.718 - }, - { - "category_id": 1, - "poly": [ - 1344, - 1653, - 1487, - 1653, - 1487, - 1691, - 1344, - 1691 - ], - "score": 0.68 - }, - { - "category_id": 1, - "poly": [ - 312, - 1011, - 1491, - 1011, - 1491, - 1475, - 312, - 1475 - ], - "score": 0.582 - }, - { - "category_id": 1, - "poly": [ - 1344, - 1003, - 1486, - 1003, - 1486, - 1041, - 1344, - 1041 - ], - "score": 0.427 - }, - { - "category_id": 0, - "poly": [ - 1344, - 1003, - 1486, - 1003, - 1486, - 1041, - 1344, - 1041 - ], - "score": 0.4 - }, - { - "category_id": 3, - "poly": [ - 306, - 425, - 776, - 425, - 776, - 893, - 306, - 893 - ], - "score": 0.285 - }, - { - "category_id": 3, - "poly": [ - 312, - 1011, - 1491, - 1011, - 1491, - 1475, - 312, - 1475 - ], - "score": 0.206 - }, - { - "category_id": 0, - "poly": [ - 1344, - 1653, - 1487, - 1653, - 1487, - 1691, - 1344, - 1691 - ], - "score": 0.198 - }, - { - "category_id": 1, - "poly": [ - 149, - 1538, - 1134, - 1538, - 1134, - 1658, - 149, - 1658 - ], - "score": 0.184 - }, - { - "category_id": 1, - "poly": [ - 312, - 1663, - 1492, - 1663, - 1492, - 1981, - 312, - 1981 - ], - "score": 0.183 - }, - { - "category_id": 1, - "poly": [ - 312, - 1737, - 1490, - 1737, - 1490, - 1982, - 312, - 1982 - ], - "score": 0.147 - }, - { - "category_id": 1, - "poly": [ - 320, - 1543, - 897, - 1543, - 897, - 1583, - 320, - 1583 - ], - "score": 0.109 - }, - { - "category_id": 1, - "poly": [ - 284, - 1664, - 1491, - 1664, - 1491, - 2126, - 284, - 2126 - ], - "score": 0.106 - }, - { - "category_id": 15, - "poly": [ - 318.0, - 192.0, - 1472.0, - 192.0, - 1472.0, - 229.0, - 318.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 232.0, - 1426.0, - 232.0, - 1426.0, - 265.0, - 318.0, - 265.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 263.0, - 558.0, - 263.0, - 558.0, - 300.0, - 316.0, - 300.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1516.0, - 144.0, - 1624.0, - 144.0, - 1624.0, - 171.0, - 1516.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1519.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 191.0, - 1519.0, - 191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 189.0, - 1593.0, - 189.0, - 1593.0, - 216.0, - 1549.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 962.0, - 283.0, - 962.0, - 283.0, - 1002.0, - 135.0, - 1002.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 163.0, - 2263.0, - 227.0, - 2263.0, - 227.0, - 2295.0, - 163.0, - 2295.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 187.0, - 216.0, - 187.0, - 216.0, - 224.0, - 138.0, - 224.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 1540.0, - 284.0, - 1540.0, - 284.0, - 1582.0, - 139.0, - 1582.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 790.0, - 81.0, - 817.0, - 81.0, - 817.0, - 115.0, - 790.0, - 115.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 745.0, - 348.0, - 871.0, - 348.0, - 871.0, - 384.0, - 745.0, - 384.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 968.0, - 935.0, - 968.0, - 935.0, - 1003.0, - 319.0, - 1003.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 249.0, - 1544.0, - 292.0, - 1544.0, - 292.0, - 1577.0, - 249.0, - 1577.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 305.0, - 1544.0, - 899.0, - 1544.0, - 899.0, - 1583.0, - 305.0, - 1583.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 1618.0, - 1128.0, - 1618.0, - 1128.0, - 1655.0, - 319.0, - 1655.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1651.0, - 1489.0, - 1651.0, - 1489.0, - 1693.0, - 1346.0, - 1693.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 1004.0, - 1490.0, - 1004.0, - 1490.0, - 1044.0, - 1345.0, - 1044.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 1001.0, - 1488.0, - 1001.0, - 1488.0, - 1043.0, - 1345.0, - 1043.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 1001.0, - 1488.0, - 1001.0, - 1488.0, - 1043.0, - 1345.0, - 1043.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1651.0, - 1489.0, - 1651.0, - 1489.0, - 1693.0, - 1346.0, - 1693.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 148.0, - 1545.0, - 178.0, - 1545.0, - 178.0, - 1574.0, - 148.0, - 1574.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 185.0, - 1544.0, - 220.0, - 1544.0, - 220.0, - 1577.0, - 185.0, - 1577.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 247.0, - 1544.0, - 280.0, - 1544.0, - 280.0, - 1577.0, - 247.0, - 1577.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1544.0, - 900.0, - 1544.0, - 900.0, - 1582.0, - 316.0, - 1582.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 1616.0, - 1130.0, - 1616.0, - 1130.0, - 1655.0, - 317.0, - 1655.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1656.0, - 1490.0, - 1656.0, - 1490.0, - 1694.0, - 1346.0, - 1694.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1545.0, - 900.0, - 1545.0, - 900.0, - 1582.0, - 318.0, - 1582.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 1657.0, - 1491.0, - 1657.0, - 1491.0, - 1692.0, - 1345.0, - 1692.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 7, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 315, - 188, - 1441, - 188, - 1441, - 301, - 315, - 301 - ], - "score": 0.963 - }, - { - "category_id": 3, - "poly": [ - 305, - 383, - 1230, - 383, - 1230, - 974, - 305, - 974 - ], - "score": 0.944 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1624, - 146, - 1624, - 213, - 1516, - 213 - ], - "score": 0.93 - }, - { - "category_id": 2, - "poly": [ - 125, - 180, - 293, - 180, - 293, - 231, - 125, - 231 - ], - "score": 0.904 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 278, - 2187, - 278, - 2291, - 119, - 2291 - ], - "score": 0.896 - }, - { - "category_id": 1, - "poly": [ - 320, - 1048, - 888, - 1048, - 888, - 1086, - 320, - 1086 - ], - "score": 0.884 - }, - { - "category_id": 2, - "poly": [ - 1332, - 2265, - 1496, - 2265, - 1496, - 2290, - 1332, - 2290 - ], - "score": 0.88 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2143, - 1496, - 2143, - 1496, - 2178, - 1317, - 2178 - ], - "score": 0.874 - }, - { - "category_id": 1, - "poly": [ - 317, - 1125, - 1402, - 1125, - 1402, - 1164, - 317, - 1164 - ], - "score": 0.854 - }, - { - "category_id": 2, - "poly": [ - 1582, - 2, - 1653, - 2, - 1653, - 39, - 1582, - 39 - ], - "score": 0.822 - }, - { - "category_id": 2, - "poly": [ - 791, - 83, - 813, - 83, - 813, - 111, - 791, - 111 - ], - "score": 0.802 - }, - { - "category_id": 4, - "poly": [ - 704, - 338, - 832, - 338, - 832, - 377, - 704, - 377 - ], - "score": 0.782 - }, - { - "category_id": 1, - "poly": [ - 1345, - 1163, - 1486, - 1163, - 1486, - 1199, - 1345, - 1199 - ], - "score": 0.572 - }, - { - "category_id": 1, - "poly": [ - 521, - 1940, - 1088, - 1940, - 1088, - 1980, - 521, - 1980 - ], - "score": 0.52 - }, - { - "category_id": 1, - "poly": [ - 313, - 932, - 496, - 932, - 496, - 968, - 313, - 968 - ], - "score": 0.483 - }, - { - "category_id": 2, - "poly": [ - 874, - 1795, - 1468, - 1795, - 1468, - 1839, - 874, - 1839 - ], - "score": 0.468 - }, - { - "category_id": 0, - "poly": [ - 521, - 1940, - 1088, - 1940, - 1088, - 1980, - 521, - 1980 - ], - "score": 0.277 - }, - { - "category_id": 1, - "poly": [ - 874, - 1795, - 1468, - 1795, - 1468, - 1839, - 874, - 1839 - ], - "score": 0.25 - }, - { - "category_id": 2, - "poly": [ - 1345, - 1163, - 1486, - 1163, - 1486, - 1199, - 1345, - 1199 - ], - "score": 0.138 - }, - { - "category_id": 13, - "poly": [ - 588, - 1128, - 613, - 1128, - 613, - 1159, - 588, - 1159 - ], - "score": 0.71, - "latex": "\\theta" - }, - { - "category_id": 13, - "poly": [ - 774, - 1049, - 879, - 1049, - 879, - 1084, - 774, - 1084 - ], - "score": 0.55, - "latex": "650\\mathrm{nm}" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 191.0, - 1439.0, - 191.0, - 1439.0, - 229.0, - 317.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 230.0, - 1357.0, - 230.0, - 1357.0, - 267.0, - 319.0, - 267.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 320.0, - 267.0, - 776.0, - 267.0, - 776.0, - 300.0, - 320.0, - 300.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1624.0, - 147.0, - 1624.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 193.0, - 1520.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 190.0, - 1593.0, - 190.0, - 1593.0, - 216.0, - 1549.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 186.0, - 284.0, - 186.0, - 284.0, - 226.0, - 135.0, - 226.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 164.0, - 2265.0, - 225.0, - 2265.0, - 225.0, - 2293.0, - 164.0, - 2293.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1050.0, - 773.0, - 1050.0, - 773.0, - 1085.0, - 318.0, - 1085.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 880.0, - 1050.0, - 886.0, - 1050.0, - 886.0, - 1085.0, - 880.0, - 1085.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1499.0, - 2268.0, - 1499.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1318.0, - 2146.0, - 1472.0, - 2146.0, - 1472.0, - 2176.0, - 1318.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1127.0, - 587.0, - 1127.0, - 587.0, - 1162.0, - 316.0, - 1162.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 614.0, - 1127.0, - 1401.0, - 1127.0, - 1401.0, - 1162.0, - 614.0, - 1162.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 791.0, - 81.0, - 816.0, - 81.0, - 816.0, - 115.0, - 791.0, - 115.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 706.0, - 341.0, - 832.0, - 341.0, - 832.0, - 377.0, - 706.0, - 377.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1160.0, - 1488.0, - 1160.0, - 1488.0, - 1200.0, - 1346.0, - 1200.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 521.0, - 1940.0, - 1086.0, - 1940.0, - 1086.0, - 1979.0, - 521.0, - 1979.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 935.0, - 494.0, - 935.0, - 494.0, - 966.0, - 317.0, - 966.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 877.0, - 1792.0, - 928.0, - 1792.0, - 928.0, - 1828.0, - 877.0, - 1828.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1349.0, - 1797.0, - 1467.0, - 1797.0, - 1467.0, - 1833.0, - 1349.0, - 1833.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 521.0, - 1940.0, - 1086.0, - 1940.0, - 1086.0, - 1979.0, - 521.0, - 1979.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 877.0, - 1792.0, - 928.0, - 1792.0, - 928.0, - 1828.0, - 877.0, - 1828.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1349.0, - 1797.0, - 1467.0, - 1797.0, - 1467.0, - 1833.0, - 1349.0, - 1833.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1160.0, - 1488.0, - 1160.0, - 1488.0, - 1200.0, - 1346.0, - 1200.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 8, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1516, - 145, - 1624, - 145, - 1624, - 213, - 1516, - 213 - ], - "score": 0.929 - }, - { - "category_id": 2, - "poly": [ - 1511, - 1289, - 1602, - 1289, - 1602, - 1406, - 1511, - 1406 - ], - "score": 0.908 - }, - { - "category_id": 1, - "poly": [ - 314, - 190, - 1397, - 190, - 1397, - 265, - 314, - 265 - ], - "score": 0.898 - }, - { - "category_id": 2, - "poly": [ - 125, - 180, - 294, - 180, - 294, - 231, - 125, - 231 - ], - "score": 0.882 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 278, - 2187, - 278, - 2291, - 119, - 2291 - ], - "score": 0.878 - }, - { - "category_id": 1, - "poly": [ - 314, - 299, - 1085, - 299, - 1085, - 339, - 314, - 339 - ], - "score": 0.874 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2266, - 1496, - 2266, - 1496, - 2289, - 1331, - 2289 - ], - "score": 0.87 - }, - { - "category_id": 2, - "poly": [ - 787, - 82, - 822, - 82, - 822, - 111, - 787, - 111 - ], - "score": 0.851 - }, - { - "category_id": 2, - "poly": [ - 1581, - 2, - 1653, - 2, - 1653, - 39, - 1581, - 39 - ], - "score": 0.817 - }, - { - "category_id": 1, - "poly": [ - 1344, - 336, - 1486, - 336, - 1486, - 375, - 1344, - 375 - ], - "score": 0.59 - }, - { - "category_id": 2, - "poly": [ - 1344, - 336, - 1486, - 336, - 1486, - 375, - 1344, - 375 - ], - "score": 0.365 - }, - { - "category_id": 5, - "poly": [ - 307, - 388, - 1490, - 388, - 1490, - 1404, - 307, - 1404 - ], - "score": 0.137 - }, - { - "category_id": 13, - "poly": [ - 1252, - 192, - 1359, - 192, - 1359, - 228, - 1252, - 228 - ], - "score": 0.46, - "latex": "600\\mathrm{nm}" - }, - { - "category_id": 13, - "poly": [ - 316, - 230, - 422, - 230, - 422, - 265, - 316, - 265 - ], - "score": 0.26, - "latex": "700\\mathrm{nm}" - }, - { - "category_id": 15, - "poly": [ - 1516.0, - 144.0, - 1624.0, - 144.0, - 1624.0, - 171.0, - 1516.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1519.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 191.0, - 1519.0, - 191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 189.0, - 1593.0, - 189.0, - 1593.0, - 216.0, - 1549.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1548.0, - 1360.0, - 1566.0, - 1360.0, - 1566.0, - 1383.0, - 1548.0, - 1383.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 195.0, - 1251.0, - 195.0, - 1251.0, - 229.0, - 319.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1360.0, - 195.0, - 1393.0, - 195.0, - 1393.0, - 229.0, - 1360.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 423.0, - 227.0, - 433.0, - 227.0, - 433.0, - 267.0, - 423.0, - 267.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 189.0, - 245.0, - 189.0, - 245.0, - 222.0, - 138.0, - 222.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 248.0, - 192.0, - 279.0, - 192.0, - 279.0, - 220.0, - 248.0, - 220.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 2271.0, - 181.0, - 2271.0, - 181.0, - 2287.0, - 170.0, - 2287.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 194.0, - 2267.0, - 224.0, - 2267.0, - 224.0, - 2292.0, - 194.0, - 2292.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 304.0, - 1083.0, - 304.0, - 1083.0, - 338.0, - 319.0, - 338.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 828.0, - 78.0, - 828.0, - 118.0, - 780.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 337.0, - 1487.0, - 337.0, - 1487.0, - 375.0, - 1346.0, - 375.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 337.0, - 1487.0, - 337.0, - 1487.0, - 375.0, - 1346.0, - 375.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 9, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 280, - 352, - 1318, - 352, - 1318, - 805, - 280, - 805 - ], - "score": 0.965 - }, - { - "category_id": 1, - "poly": [ - 314, - 1100, - 1461, - 1100, - 1461, - 1174, - 314, - 1174 - ], - "score": 0.941 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1624, - 146, - 1624, - 213, - 1516, - 213 - ], - "score": 0.932 - }, - { - "category_id": 2, - "poly": [ - 126, - 1090, - 294, - 1090, - 294, - 1141, - 126, - 1141 - ], - "score": 0.915 - }, - { - "category_id": 1, - "poly": [ - 309, - 190, - 1289, - 190, - 1289, - 230, - 309, - 230 - ], - "score": 0.908 - }, - { - "category_id": 2, - "poly": [ - 126, - 181, - 229, - 181, - 229, - 230, - 126, - 230 - ], - "score": 0.898 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 278, - 2187, - 278, - 2291, - 119, - 2291 - ], - "score": 0.897 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2144, - 1496, - 2144, - 1496, - 2177, - 1317, - 2177 - ], - "score": 0.893 - }, - { - "category_id": 2, - "poly": [ - 1332, - 2265, - 1496, - 2265, - 1496, - 2289, - 1332, - 2289 - ], - "score": 0.885 - }, - { - "category_id": 1, - "poly": [ - 316, - 1210, - 930, - 1210, - 930, - 1248, - 316, - 1248 - ], - "score": 0.878 - }, - { - "category_id": 2, - "poly": [ - 786, - 83, - 818, - 83, - 818, - 110, - 786, - 110 - ], - "score": 0.847 - }, - { - "category_id": 2, - "poly": [ - 1582, - 3, - 1653, - 3, - 1653, - 38, - 1582, - 38 - ], - "score": 0.827 - }, - { - "category_id": 1, - "poly": [ - 1345, - 1246, - 1485, - 1246, - 1485, - 1283, - 1345, - 1283 - ], - "score": 0.816 - }, - { - "category_id": 4, - "poly": [ - 743, - 274, - 871, - 274, - 871, - 312, - 743, - 312 - ], - "score": 0.737 - }, - { - "category_id": 1, - "poly": [ - 315, - 882, - 1461, - 882, - 1461, - 1026, - 315, - 1026 - ], - "score": 0.567 - }, - { - "category_id": 1, - "poly": [ - 315, - 883, - 1451, - 883, - 1451, - 990, - 315, - 990 - ], - "score": 0.54 - }, - { - "category_id": 1, - "poly": [ - 320, - 991, - 1139, - 991, - 1139, - 1027, - 320, - 1027 - ], - "score": 0.497 - }, - { - "category_id": 1, - "poly": [ - 521, - 2031, - 1087, - 2031, - 1087, - 2069, - 521, - 2069 - ], - "score": 0.485 - }, - { - "category_id": 0, - "poly": [ - 521, - 2031, - 1087, - 2031, - 1087, - 2069, - 521, - 2069 - ], - "score": 0.355 - }, - { - "category_id": 1, - "poly": [ - 311, - 1282, - 1490, - 1282, - 1490, - 1933, - 311, - 1933 - ], - "score": 0.19 - }, - { - "category_id": 0, - "poly": [ - 743, - 274, - 871, - 274, - 871, - 312, - 743, - 312 - ], - "score": 0.168 - }, - { - "category_id": 2, - "poly": [ - 1345, - 1246, - 1485, - 1246, - 1485, - 1283, - 1345, - 1283 - ], - "score": 0.135 - }, - { - "category_id": 5, - "poly": [ - 311, - 1282, - 1490, - 1282, - 1490, - 1933, - 311, - 1933 - ], - "score": 0.11 - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1100.0, - 1460.0, - 1100.0, - 1460.0, - 1141.0, - 316.0, - 1141.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1137.0, - 1046.0, - 1137.0, - 1046.0, - 1175.0, - 316.0, - 1175.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1624.0, - 147.0, - 1624.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 193.0, - 1520.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 190.0, - 1593.0, - 190.0, - 1593.0, - 216.0, - 1549.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 1100.0, - 176.0, - 1100.0, - 176.0, - 1132.0, - 140.0, - 1132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 186.0, - 1099.0, - 279.0, - 1099.0, - 279.0, - 1132.0, - 186.0, - 1132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 192.0, - 1286.0, - 192.0, - 1286.0, - 229.0, - 316.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 142.0, - 191.0, - 178.0, - 191.0, - 178.0, - 221.0, - 142.0, - 221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 183.0, - 192.0, - 215.0, - 192.0, - 215.0, - 220.0, - 183.0, - 220.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 2275.0, - 180.0, - 2275.0, - 180.0, - 2284.0, - 172.0, - 2284.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 2269.0, - 220.0, - 2269.0, - 220.0, - 2289.0, - 197.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1318.0, - 2146.0, - 1472.0, - 2146.0, - 1472.0, - 2176.0, - 1318.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1332.0, - 2266.0, - 1499.0, - 2266.0, - 1499.0, - 2291.0, - 1332.0, - 2291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1212.0, - 927.0, - 1212.0, - 927.0, - 1248.0, - 318.0, - 1248.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 826.0, - 78.0, - 826.0, - 117.0, - 780.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 5.0, - 1658.0, - 5.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1243.0, - 1488.0, - 1243.0, - 1488.0, - 1285.0, - 1346.0, - 1285.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 745.0, - 277.0, - 870.0, - 277.0, - 870.0, - 312.0, - 745.0, - 312.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 884.0, - 1438.0, - 884.0, - 1438.0, - 922.0, - 317.0, - 922.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 920.0, - 1458.0, - 920.0, - 1458.0, - 958.0, - 316.0, - 958.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 955.0, - 989.0, - 955.0, - 989.0, - 992.0, - 316.0, - 992.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 314.0, - 990.0, - 1137.0, - 990.0, - 1137.0, - 1026.0, - 314.0, - 1026.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 887.0, - 1437.0, - 887.0, - 1437.0, - 920.0, - 319.0, - 920.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 920.0, - 1457.0, - 920.0, - 1457.0, - 959.0, - 317.0, - 959.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 955.0, - 989.0, - 955.0, - 989.0, - 992.0, - 317.0, - 992.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 990.0, - 1135.0, - 990.0, - 1135.0, - 1025.0, - 318.0, - 1025.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 521.0, - 2032.0, - 1086.0, - 2032.0, - 1086.0, - 2068.0, - 521.0, - 2068.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 521.0, - 2032.0, - 1086.0, - 2032.0, - 1086.0, - 2068.0, - 521.0, - 2068.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 745.0, - 277.0, - 870.0, - 277.0, - 870.0, - 312.0, - 745.0, - 312.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1243.0, - 1488.0, - 1243.0, - 1488.0, - 1285.0, - 1346.0, - 1285.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 10, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 320, - 1556, - 1291, - 1556, - 1291, - 2095, - 320, - 2095 - ], - "score": 0.969 - }, - { - "category_id": 1, - "poly": [ - 314, - 1243, - 1478, - 1243, - 1478, - 1356, - 314, - 1356 - ], - "score": 0.964 - }, - { - "category_id": 2, - "poly": [ - 1517, - 145, - 1624, - 145, - 1624, - 213, - 1517, - 213 - ], - "score": 0.928 - }, - { - "category_id": 1, - "poly": [ - 319, - 1391, - 1205, - 1391, - 1205, - 1430, - 319, - 1430 - ], - "score": 0.92 - }, - { - "category_id": 2, - "poly": [ - 126, - 1235, - 293, - 1235, - 293, - 1284, - 126, - 1284 - ], - "score": 0.903 - }, - { - "category_id": 1, - "poly": [ - 317, - 304, - 767, - 304, - 767, - 341, - 317, - 341 - ], - "score": 0.897 - }, - { - "category_id": 1, - "poly": [ - 312, - 191, - 1475, - 191, - 1475, - 265, - 312, - 265 - ], - "score": 0.893 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2289, - 1331, - 2289 - ], - "score": 0.883 - }, - { - "category_id": 2, - "poly": [ - 126, - 180, - 293, - 180, - 293, - 231, - 126, - 231 - ], - "score": 0.876 - }, - { - "category_id": 2, - "poly": [ - 786, - 82, - 822, - 82, - 822, - 110, - 786, - 110 - ], - "score": 0.849 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 279, - 2187, - 279, - 2292, - 119, - 2292 - ], - "score": 0.839 - }, - { - "category_id": 2, - "poly": [ - 1582, - 2, - 1653, - 2, - 1653, - 38, - 1582, - 38 - ], - "score": 0.825 - }, - { - "category_id": 1, - "poly": [ - 1344, - 340, - 1486, - 340, - 1486, - 378, - 1344, - 378 - ], - "score": 0.765 - }, - { - "category_id": 2, - "poly": [ - 1432, - 1135, - 1460, - 1135, - 1460, - 1162, - 1432, - 1162 - ], - "score": 0.711 - }, - { - "category_id": 4, - "poly": [ - 743, - 1476, - 871, - 1476, - 871, - 1515, - 743, - 1515 - ], - "score": 0.666 - }, - { - "category_id": 2, - "poly": [ - 869, - 1131, - 1463, - 1131, - 1463, - 1171, - 869, - 1171 - ], - "score": 0.325 - }, - { - "category_id": 0, - "poly": [ - 743, - 1476, - 871, - 1476, - 871, - 1515, - 743, - 1515 - ], - "score": 0.173 - }, - { - "category_id": 2, - "poly": [ - 1344, - 340, - 1486, - 340, - 1486, - 378, - 1344, - 378 - ], - "score": 0.103 - }, - { - "category_id": 13, - "poly": [ - 462, - 1314, - 575, - 1314, - 575, - 1352, - 462, - 1352 - ], - "score": 0.89, - "latex": "18\\mathrm{m~s}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 1040, - 192, - 1137, - 192, - 1137, - 231, - 1040, - 231 - ], - "score": 0.82, - "latex": "610\\mathrm{kg}" - }, - { - "category_id": 13, - "poly": [ - 978, - 1140, - 1007, - 1140, - 1007, - 1164, - 978, - 1164 - ], - "score": 0.58, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 849, - 1393, - 932, - 1393, - 932, - 1427, - 849, - 1427 - ], - "score": 0.57, - "latex": "7.5\\mathrm{m}" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 1245.0, - 1478.0, - 1245.0, - 1478.0, - 1284.0, - 315.0, - 1284.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 1285.0, - 1473.0, - 1285.0, - 1473.0, - 1318.0, - 317.0, - 1318.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 1319.0, - 461.0, - 1319.0, - 461.0, - 1357.0, - 315.0, - 1357.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 576.0, - 1319.0, - 889.0, - 1319.0, - 889.0, - 1357.0, - 576.0, - 1357.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1518.0, - 145.0, - 1624.0, - 145.0, - 1624.0, - 170.0, - 1518.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1621.0, - 170.0, - 1621.0, - 193.0, - 1520.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1550.0, - 189.0, - 1593.0, - 189.0, - 1593.0, - 216.0, - 1550.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1392.0, - 848.0, - 1392.0, - 848.0, - 1430.0, - 316.0, - 1430.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 933.0, - 1392.0, - 1204.0, - 1392.0, - 1204.0, - 1430.0, - 933.0, - 1430.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 1244.0, - 181.0, - 1244.0, - 181.0, - 1276.0, - 139.0, - 1276.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 183.0, - 1243.0, - 279.0, - 1243.0, - 279.0, - 1276.0, - 183.0, - 1276.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 306.0, - 764.0, - 306.0, - 764.0, - 340.0, - 319.0, - 340.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 193.0, - 1039.0, - 193.0, - 1039.0, - 229.0, - 316.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1138.0, - 193.0, - 1478.0, - 193.0, - 1478.0, - 229.0, - 1138.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 314.0, - 228.0, - 415.0, - 228.0, - 415.0, - 268.0, - 314.0, - 268.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1332.0, - 2265.0, - 1499.0, - 2265.0, - 1499.0, - 2292.0, - 1332.0, - 2292.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 190.0, - 176.0, - 190.0, - 176.0, - 222.0, - 141.0, - 222.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 189.0, - 191.0, - 221.0, - 191.0, - 221.0, - 220.0, - 189.0, - 220.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 247.0, - 191.0, - 278.0, - 191.0, - 278.0, - 221.0, - 247.0, - 221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 79.0, - 827.0, - 79.0, - 827.0, - 118.0, - 780.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 169.0, - 2270.0, - 187.0, - 2270.0, - 187.0, - 2289.0, - 169.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 188.0, - 2266.0, - 223.0, - 2266.0, - 223.0, - 2294.0, - 188.0, - 2294.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1578.0, - 3.0, - 1659.0, - 3.0, - 1659.0, - 42.0, - 1578.0, - 42.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 338.0, - 1488.0, - 338.0, - 1488.0, - 380.0, - 1345.0, - 380.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1428.0, - 1131.0, - 1467.0, - 1131.0, - 1467.0, - 1169.0, - 1428.0, - 1169.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 745.0, - 1479.0, - 871.0, - 1479.0, - 871.0, - 1515.0, - 745.0, - 1515.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 873.0, - 1133.0, - 977.0, - 1133.0, - 977.0, - 1169.0, - 873.0, - 1169.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1429.0, - 1131.0, - 1465.0, - 1131.0, - 1465.0, - 1167.0, - 1429.0, - 1167.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 745.0, - 1479.0, - 871.0, - 1479.0, - 871.0, - 1515.0, - 745.0, - 1515.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 338.0, - 1488.0, - 338.0, - 1488.0, - 380.0, - 1345.0, - 380.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 11, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 314, - 1047, - 1397, - 1047, - 1397, - 1157, - 314, - 1157 - ], - "score": 0.954 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1624, - 146, - 1624, - 213, - 1516, - 213 - ], - "score": 0.932 - }, - { - "category_id": 1, - "poly": [ - 313, - 183, - 1402, - 183, - 1402, - 256, - 313, - 256 - ], - "score": 0.918 - }, - { - "category_id": 2, - "poly": [ - 1510, - 1727, - 1600, - 1727, - 1600, - 1843, - 1510, - 1843 - ], - "score": 0.916 - }, - { - "category_id": 2, - "poly": [ - 126, - 1038, - 294, - 1038, - 294, - 1088, - 126, - 1088 - ], - "score": 0.904 - }, - { - "category_id": 1, - "poly": [ - 316, - 291, - 606, - 291, - 606, - 362, - 316, - 362 - ], - "score": 0.898 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2144, - 1496, - 2144, - 1496, - 2177, - 1317, - 2177 - ], - "score": 0.881 - }, - { - "category_id": 2, - "poly": [ - 1332, - 2266, - 1496, - 2266, - 1496, - 2289, - 1332, - 2289 - ], - "score": 0.873 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 278, - 2187, - 278, - 2291, - 119, - 2291 - ], - "score": 0.851 - }, - { - "category_id": 2, - "poly": [ - 787, - 83, - 822, - 83, - 822, - 111, - 787, - 111 - ], - "score": 0.844 - }, - { - "category_id": 2, - "poly": [ - 1582, - 2, - 1653, - 2, - 1653, - 39, - 1582, - 39 - ], - "score": 0.82 - }, - { - "category_id": 1, - "poly": [ - 320, - 1190, - 1174, - 1190, - 1174, - 1229, - 320, - 1229 - ], - "score": 0.763 - }, - { - "category_id": 1, - "poly": [ - 1345, - 1228, - 1485, - 1228, - 1485, - 1265, - 1345, - 1265 - ], - "score": 0.705 - }, - { - "category_id": 2, - "poly": [ - 1345, - 361, - 1486, - 361, - 1486, - 398, - 1345, - 398 - ], - "score": 0.636 - }, - { - "category_id": 2, - "poly": [ - 1431, - 938, - 1462, - 938, - 1462, - 962, - 1431, - 962 - ], - "score": 0.61 - }, - { - "category_id": 2, - "poly": [ - 895, - 938, - 1003, - 938, - 1003, - 967, - 895, - 967 - ], - "score": 0.46 - }, - { - "category_id": 1, - "poly": [ - 312, - 1233, - 1490, - 1233, - 1490, - 1840, - 312, - 1840 - ], - "score": 0.294 - }, - { - "category_id": 1, - "poly": [ - 1345, - 361, - 1486, - 361, - 1486, - 398, - 1345, - 398 - ], - "score": 0.277 - }, - { - "category_id": 2, - "poly": [ - 1345, - 1228, - 1485, - 1228, - 1485, - 1265, - 1345, - 1265 - ], - "score": 0.231 - }, - { - "category_id": 2, - "poly": [ - 891, - 936, - 1464, - 936, - 1464, - 973, - 891, - 973 - ], - "score": 0.203 - }, - { - "category_id": 13, - "poly": [ - 978, - 939, - 1007, - 939, - 1007, - 964, - 978, - 964 - ], - "score": 0.37, - "latex": "=" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 1051.0, - 1389.0, - 1051.0, - 1389.0, - 1085.0, - 317.0, - 1085.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 1089.0, - 1394.0, - 1089.0, - 1394.0, - 1122.0, - 317.0, - 1122.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 314.0, - 1120.0, - 485.0, - 1120.0, - 485.0, - 1161.0, - 314.0, - 1161.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1624.0, - 147.0, - 1624.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 193.0, - 1520.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 190.0, - 1593.0, - 190.0, - 1593.0, - 216.0, - 1549.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 320.0, - 187.0, - 1398.0, - 187.0, - 1398.0, - 221.0, - 320.0, - 221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 222.0, - 965.0, - 222.0, - 965.0, - 257.0, - 316.0, - 257.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1534.0, - 1793.0, - 1577.0, - 1793.0, - 1577.0, - 1825.0, - 1534.0, - 1825.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 142.0, - 1049.0, - 173.0, - 1049.0, - 173.0, - 1078.0, - 142.0, - 1078.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 191.0, - 1051.0, - 217.0, - 1051.0, - 217.0, - 1076.0, - 191.0, - 1076.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 1052.0, - 277.0, - 1052.0, - 277.0, - 1076.0, - 251.0, - 1076.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 291.0, - 594.0, - 291.0, - 594.0, - 328.0, - 318.0, - 328.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 329.0, - 605.0, - 329.0, - 605.0, - 362.0, - 319.0, - 362.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1318.0, - 2146.0, - 1472.0, - 2146.0, - 1472.0, - 2176.0, - 1318.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1334.0, - 2268.0, - 1499.0, - 2268.0, - 1499.0, - 2289.0, - 1334.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 169.0, - 2271.0, - 181.0, - 2271.0, - 181.0, - 2287.0, - 169.0, - 2287.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 2267.0, - 224.0, - 2267.0, - 224.0, - 2291.0, - 196.0, - 2291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 78.0, - 828.0, - 78.0, - 828.0, - 117.0, - 779.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 1192.0, - 1171.0, - 1192.0, - 1171.0, - 1228.0, - 319.0, - 1228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1347.0, - 1228.0, - 1488.0, - 1228.0, - 1488.0, - 1266.0, - 1347.0, - 1266.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1347.0, - 360.0, - 1488.0, - 360.0, - 1488.0, - 399.0, - 1347.0, - 399.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1428.0, - 937.0, - 1467.0, - 937.0, - 1467.0, - 968.0, - 1428.0, - 968.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 894.0, - 938.0, - 977.0, - 938.0, - 977.0, - 969.0, - 894.0, - 969.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1344.0, - 1226.0, - 1491.0, - 1226.0, - 1491.0, - 1267.0, - 1344.0, - 1267.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1347.0, - 360.0, - 1488.0, - 360.0, - 1488.0, - 399.0, - 1347.0, - 399.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1347.0, - 1228.0, - 1488.0, - 1228.0, - 1488.0, - 1266.0, - 1347.0, - 1266.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 894.0, - 936.0, - 977.0, - 936.0, - 977.0, - 971.0, - 894.0, - 971.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1430.0, - 937.0, - 1464.0, - 937.0, - 1464.0, - 965.0, - 1430.0, - 965.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 12, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 315, - 190, - 1447, - 190, - 1447, - 300, - 315, - 300 - ], - "score": 0.966 - }, - { - "category_id": 3, - "poly": [ - 333, - 1107, - 1283, - 1107, - 1283, - 1368, - 333, - 1368 - ], - "score": 0.945 - }, - { - "category_id": 1, - "poly": [ - 316, - 334, - 1471, - 334, - 1471, - 409, - 316, - 409 - ], - "score": 0.944 - }, - { - "category_id": 2, - "poly": [ - 1517, - 145, - 1623, - 145, - 1623, - 213, - 1517, - 213 - ], - "score": 0.934 - }, - { - "category_id": 1, - "poly": [ - 317, - 450, - 1165, - 450, - 1165, - 490, - 317, - 490 - ], - "score": 0.904 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2266, - 1496, - 2266, - 1496, - 2289, - 1331, - 2289 - ], - "score": 0.878 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 279, - 2187, - 279, - 2291, - 119, - 2291 - ], - "score": 0.875 - }, - { - "category_id": 2, - "poly": [ - 125, - 181, - 230, - 181, - 230, - 231, - 125, - 231 - ], - "score": 0.864 - }, - { - "category_id": 2, - "poly": [ - 126, - 441, - 294, - 441, - 294, - 490, - 126, - 490 - ], - "score": 0.854 - }, - { - "category_id": 2, - "poly": [ - 786, - 83, - 821, - 83, - 821, - 109, - 786, - 109 - ], - "score": 0.839 - }, - { - "category_id": 1, - "poly": [ - 259, - 963, - 1441, - 963, - 1441, - 1004, - 259, - 1004 - ], - "score": 0.834 - }, - { - "category_id": 2, - "poly": [ - 126, - 955, - 293, - 955, - 293, - 1004, - 126, - 1004 - ], - "score": 0.832 - }, - { - "category_id": 2, - "poly": [ - 1582, - 2, - 1653, - 2, - 1653, - 39, - 1582, - 39 - ], - "score": 0.828 - }, - { - "category_id": 2, - "poly": [ - 1345, - 491, - 1485, - 491, - 1485, - 528, - 1345, - 528 - ], - "score": 0.614 - }, - { - "category_id": 2, - "poly": [ - 1345, - 1543, - 1486, - 1543, - 1486, - 1581, - 1345, - 1581 - ], - "score": 0.588 - }, - { - "category_id": 4, - "poly": [ - 743, - 1039, - 870, - 1039, - 870, - 1076, - 743, - 1076 - ], - "score": 0.578 - }, - { - "category_id": 1, - "poly": [ - 317, - 1436, - 1338, - 1436, - 1338, - 1507, - 317, - 1507 - ], - "score": 0.559 - }, - { - "category_id": 1, - "poly": [ - 316, - 1436, - 1335, - 1436, - 1335, - 1545, - 316, - 1545 - ], - "score": 0.501 - }, - { - "category_id": 1, - "poly": [ - 320, - 1510, - 872, - 1510, - 872, - 1544, - 320, - 1544 - ], - "score": 0.493 - }, - { - "category_id": 1, - "poly": [ - 650, - 2073, - 1489, - 2073, - 1489, - 2110, - 650, - 2110 - ], - "score": 0.473 - }, - { - "category_id": 1, - "poly": [ - 1345, - 491, - 1485, - 491, - 1485, - 528, - 1345, - 528 - ], - "score": 0.356 - }, - { - "category_id": 1, - "poly": [ - 1345, - 1543, - 1486, - 1543, - 1486, - 1581, - 1345, - 1581 - ], - "score": 0.326 - }, - { - "category_id": 2, - "poly": [ - 650, - 2073, - 1489, - 2073, - 1489, - 2110, - 650, - 2110 - ], - "score": 0.312 - }, - { - "category_id": 0, - "poly": [ - 743, - 1039, - 870, - 1039, - 870, - 1076, - 743, - 1076 - ], - "score": 0.242 - }, - { - "category_id": 13, - "poly": [ - 841, - 368, - 1007, - 368, - 1007, - 410, - 841, - 410 - ], - "score": 0.92, - "latex": "1.5\\times10^{3}\\mathrm{kg}" - }, - { - "category_id": 13, - "poly": [ - 1310, - 368, - 1460, - 368, - 1460, - 407, - 1310, - 407 - ], - "score": 0.88, - "latex": "110\\mathrm{kmh^{-1}}" - }, - { - "category_id": 13, - "poly": [ - 1074, - 967, - 1125, - 967, - 1125, - 1000, - 1074, - 1000 - ], - "score": 0.86, - "latex": "20^{\\circ}" - }, - { - "category_id": 13, - "poly": [ - 1063, - 452, - 1155, - 452, - 1155, - 487, - 1063, - 487 - ], - "score": 0.8, - "latex": "700\\mathrm{kJ}" - }, - { - "category_id": 13, - "poly": [ - 815, - 2077, - 845, - 2077, - 845, - 2102, - 815, - 2102 - ], - "score": 0.66, - "latex": "=" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 191.0, - 1412.0, - 191.0, - 1412.0, - 229.0, - 318.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 232.0, - 1443.0, - 232.0, - 1443.0, - 261.0, - 318.0, - 261.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 267.0, - 1094.0, - 267.0, - 1094.0, - 300.0, - 319.0, - 300.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 337.0, - 1467.0, - 337.0, - 1467.0, - 372.0, - 318.0, - 372.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 313.0, - 372.0, - 840.0, - 372.0, - 840.0, - 410.0, - 313.0, - 410.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1008.0, - 372.0, - 1309.0, - 372.0, - 1309.0, - 410.0, - 1008.0, - 410.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1461.0, - 372.0, - 1469.0, - 372.0, - 1469.0, - 410.0, - 1461.0, - 410.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 144.0, - 1625.0, - 144.0, - 1625.0, - 171.0, - 1517.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1519.0, - 170.0, - 1621.0, - 170.0, - 1621.0, - 191.0, - 1519.0, - 191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1550.0, - 189.0, - 1593.0, - 189.0, - 1593.0, - 216.0, - 1550.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 454.0, - 1062.0, - 454.0, - 1062.0, - 488.0, - 318.0, - 488.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1156.0, - 454.0, - 1165.0, - 454.0, - 1165.0, - 488.0, - 1156.0, - 488.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 201.0, - 2270.0, - 219.0, - 2270.0, - 219.0, - 2287.0, - 201.0, - 2287.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 190.0, - 179.0, - 190.0, - 179.0, - 222.0, - 141.0, - 222.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 183.0, - 192.0, - 215.0, - 192.0, - 215.0, - 221.0, - 183.0, - 221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 183.0, - 448.0, - 278.0, - 448.0, - 278.0, - 484.0, - 183.0, - 484.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 448.0, - 187.0, - 448.0, - 187.0, - 481.0, - 133.0, - 481.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 79.0, - 829.0, - 79.0, - 829.0, - 117.0, - 779.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 969.0, - 284.0, - 969.0, - 284.0, - 994.0, - 258.0, - 994.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 963.0, - 1073.0, - 963.0, - 1073.0, - 1006.0, - 303.0, - 1006.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1126.0, - 963.0, - 1439.0, - 963.0, - 1439.0, - 1006.0, - 1126.0, - 1006.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 959.0, - 286.0, - 959.0, - 286.0, - 1002.0, - 133.0, - 1002.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 488.0, - 1488.0, - 488.0, - 1488.0, - 530.0, - 1346.0, - 530.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1541.0, - 1488.0, - 1541.0, - 1488.0, - 1583.0, - 1346.0, - 1583.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 743.0, - 1038.0, - 873.0, - 1038.0, - 873.0, - 1079.0, - 743.0, - 1079.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1439.0, - 1334.0, - 1439.0, - 1334.0, - 1473.0, - 318.0, - 1473.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1477.0, - 780.0, - 1477.0, - 780.0, - 1507.0, - 318.0, - 1507.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 1439.0, - 1334.0, - 1439.0, - 1334.0, - 1473.0, - 317.0, - 1473.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1476.0, - 781.0, - 1476.0, - 781.0, - 1507.0, - 318.0, - 1507.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1509.0, - 877.0, - 1509.0, - 877.0, - 1545.0, - 316.0, - 1545.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 1510.0, - 876.0, - 1510.0, - 876.0, - 1543.0, - 319.0, - 1543.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 659.0, - 2077.0, - 814.0, - 2077.0, - 814.0, - 2103.0, - 659.0, - 2103.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1257.0, - 2070.0, - 1319.0, - 2070.0, - 1319.0, - 2108.0, - 1257.0, - 2108.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 488.0, - 1488.0, - 488.0, - 1488.0, - 530.0, - 1346.0, - 530.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1541.0, - 1488.0, - 1541.0, - 1488.0, - 1583.0, - 1346.0, - 1583.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 659.0, - 2077.0, - 814.0, - 2077.0, - 814.0, - 2103.0, - 659.0, - 2103.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1257.0, - 2070.0, - 1319.0, - 2070.0, - 1319.0, - 2108.0, - 1257.0, - 2108.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 743.0, - 1038.0, - 873.0, - 1038.0, - 873.0, - 1079.0, - 743.0, - 1079.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 13, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1517, - 146, - 1624, - 146, - 1624, - 213, - 1517, - 213 - ], - "score": 0.931 - }, - { - "category_id": 1, - "poly": [ - 315, - 1139, - 1260, - 1139, - 1260, - 1213, - 315, - 1213 - ], - "score": 0.924 - }, - { - "category_id": 1, - "poly": [ - 315, - 1247, - 1022, - 1247, - 1022, - 1285, - 315, - 1285 - ], - "score": 0.901 - }, - { - "category_id": 1, - "poly": [ - 312, - 1027, - 1467, - 1027, - 1467, - 1103, - 312, - 1103 - ], - "score": 0.896 - }, - { - "category_id": 1, - "poly": [ - 318, - 298, - 1166, - 298, - 1166, - 338, - 318, - 338 - ], - "score": 0.879 - }, - { - "category_id": 1, - "poly": [ - 312, - 191, - 1468, - 191, - 1468, - 265, - 312, - 265 - ], - "score": 0.877 - }, - { - "category_id": 2, - "poly": [ - 126, - 1020, - 293, - 1020, - 293, - 1069, - 126, - 1069 - ], - "score": 0.875 - }, - { - "category_id": 2, - "poly": [ - 1332, - 2265, - 1496, - 2265, - 1496, - 2290, - 1332, - 2290 - ], - "score": 0.874 - }, - { - "category_id": 2, - "poly": [ - 126, - 181, - 294, - 181, - 294, - 232, - 126, - 232 - ], - "score": 0.86 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 278, - 2187, - 278, - 2291, - 119, - 2291 - ], - "score": 0.853 - }, - { - "category_id": 2, - "poly": [ - 786, - 82, - 822, - 82, - 822, - 111, - 786, - 111 - ], - "score": 0.843 - }, - { - "category_id": 2, - "poly": [ - 1582, - 2, - 1653, - 2, - 1653, - 38, - 1582, - 38 - ], - "score": 0.823 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2143, - 1495, - 2143, - 1495, - 2178, - 1317, - 2178 - ], - "score": 0.773 - }, - { - "category_id": 2, - "poly": [ - 1345, - 1282, - 1485, - 1282, - 1485, - 1320, - 1345, - 1320 - ], - "score": 0.714 - }, - { - "category_id": 2, - "poly": [ - 528, - 2079, - 1093, - 2079, - 1093, - 2115, - 528, - 2115 - ], - "score": 0.435 - }, - { - "category_id": 2, - "poly": [ - 1344, - 337, - 1486, - 337, - 1486, - 375, - 1344, - 375 - ], - "score": 0.318 - }, - { - "category_id": 1, - "poly": [ - 1344, - 337, - 1486, - 337, - 1486, - 375, - 1344, - 375 - ], - "score": 0.29 - }, - { - "category_id": 1, - "poly": [ - 1345, - 1282, - 1485, - 1282, - 1485, - 1320, - 1345, - 1320 - ], - "score": 0.26 - }, - { - "category_id": 0, - "poly": [ - 528, - 2079, - 1093, - 2079, - 1093, - 2115, - 528, - 2115 - ], - "score": 0.164 - }, - { - "category_id": 1, - "poly": [ - 528, - 2079, - 1093, - 2079, - 1093, - 2115, - 528, - 2115 - ], - "score": 0.131 - }, - { - "category_id": 1, - "poly": [ - 1344, - 337, - 1486, - 337, - 1486, - 375, - 1344, - 375 - ], - "score": 0.11 - }, - { - "category_id": 13, - "poly": [ - 1080, - 300, - 1155, - 300, - 1155, - 335, - 1080, - 335 - ], - "score": 0.7, - "latex": "80\\mathrm{kJ}" - }, - { - "category_id": 13, - "poly": [ - 885, - 1140, - 974, - 1140, - 974, - 1175, - 885, - 1175 - ], - "score": 0.68, - "latex": "60\\mathrm{kN}" - }, - { - "category_id": 13, - "poly": [ - 908, - 1067, - 989, - 1067, - 989, - 1101, - 908, - 1101 - ], - "score": 0.49, - "latex": "1.5\\mathrm{m}" - }, - { - "category_id": 15, - "poly": [ - 1518.0, - 147.0, - 1623.0, - 147.0, - 1623.0, - 170.0, - 1518.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1621.0, - 170.0, - 1621.0, - 193.0, - 1520.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1550.0, - 190.0, - 1592.0, - 190.0, - 1592.0, - 216.0, - 1550.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 1140.0, - 884.0, - 1140.0, - 884.0, - 1179.0, - 315.0, - 1179.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 975.0, - 1140.0, - 1259.0, - 1140.0, - 1259.0, - 1179.0, - 975.0, - 1179.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 1179.0, - 495.0, - 1179.0, - 495.0, - 1216.0, - 315.0, - 1216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1248.0, - 1020.0, - 1248.0, - 1020.0, - 1284.0, - 318.0, - 1284.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1028.0, - 1456.0, - 1028.0, - 1456.0, - 1068.0, - 316.0, - 1068.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 314.0, - 1065.0, - 907.0, - 1065.0, - 907.0, - 1106.0, - 314.0, - 1106.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 990.0, - 1065.0, - 1415.0, - 1065.0, - 1415.0, - 1106.0, - 990.0, - 1106.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 302.0, - 1079.0, - 302.0, - 1079.0, - 336.0, - 318.0, - 336.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1156.0, - 302.0, - 1166.0, - 302.0, - 1166.0, - 336.0, - 1156.0, - 336.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 320.0, - 195.0, - 1468.0, - 195.0, - 1468.0, - 229.0, - 320.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 231.0, - 874.0, - 231.0, - 874.0, - 263.0, - 317.0, - 263.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 1028.0, - 181.0, - 1028.0, - 181.0, - 1060.0, - 139.0, - 1060.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 182.0, - 1027.0, - 278.0, - 1027.0, - 278.0, - 1062.0, - 182.0, - 1062.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1499.0, - 2268.0, - 1499.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 189.0, - 279.0, - 189.0, - 279.0, - 224.0, - 138.0, - 224.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 2274.0, - 180.0, - 2274.0, - 180.0, - 2285.0, - 171.0, - 2285.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 2267.0, - 223.0, - 2267.0, - 223.0, - 2291.0, - 196.0, - 2291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 827.0, - 78.0, - 827.0, - 118.0, - 780.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1578.0, - 3.0, - 1659.0, - 3.0, - 1659.0, - 42.0, - 1578.0, - 42.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1318.0, - 2146.0, - 1473.0, - 2146.0, - 1473.0, - 2176.0, - 1318.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1280.0, - 1488.0, - 1280.0, - 1488.0, - 1322.0, - 1346.0, - 1322.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 529.0, - 2079.0, - 1094.0, - 2079.0, - 1094.0, - 2115.0, - 529.0, - 2115.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 335.0, - 1488.0, - 335.0, - 1488.0, - 377.0, - 1345.0, - 377.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 335.0, - 1488.0, - 335.0, - 1488.0, - 377.0, - 1345.0, - 377.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1280.0, - 1488.0, - 1280.0, - 1488.0, - 1322.0, - 1346.0, - 1322.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 529.0, - 2079.0, - 1094.0, - 2079.0, - 1094.0, - 2115.0, - 529.0, - 2115.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 529.0, - 2079.0, - 1094.0, - 2079.0, - 1094.0, - 2115.0, - 529.0, - 2115.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 335.0, - 1488.0, - 335.0, - 1488.0, - 377.0, - 1345.0, - 377.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 14, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1516, - 145, - 1624, - 145, - 1624, - 213, - 1516, - 213 - ], - "score": 0.926 - }, - { - "category_id": 1, - "poly": [ - 317, - 295, - 1378, - 295, - 1378, - 367, - 317, - 367 - ], - "score": 0.916 - }, - { - "category_id": 1, - "poly": [ - 315, - 190, - 1325, - 190, - 1325, - 263, - 315, - 263 - ], - "score": 0.907 - }, - { - "category_id": 2, - "poly": [ - 1513, - 724, - 1603, - 724, - 1603, - 840, - 1513, - 840 - ], - "score": 0.9 - }, - { - "category_id": 2, - "poly": [ - 126, - 181, - 293, - 181, - 293, - 232, - 126, - 232 - ], - "score": 0.895 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 278, - 2187, - 278, - 2291, - 119, - 2291 - ], - "score": 0.888 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2266, - 1496, - 2266, - 1496, - 2289, - 1331, - 2289 - ], - "score": 0.873 - }, - { - "category_id": 2, - "poly": [ - 786, - 83, - 822, - 83, - 822, - 111, - 786, - 111 - ], - "score": 0.849 - }, - { - "category_id": 2, - "poly": [ - 1581, - 2, - 1653, - 2, - 1653, - 39, - 1581, - 39 - ], - "score": 0.821 - }, - { - "category_id": 1, - "poly": [ - 1345, - 368, - 1486, - 368, - 1486, - 405, - 1345, - 405 - ], - "score": 0.677 - }, - { - "category_id": 1, - "poly": [ - 313, - 376, - 1491, - 376, - 1491, - 839, - 313, - 839 - ], - "score": 0.284 - }, - { - "category_id": 1, - "poly": [ - 312, - 379, - 1491, - 379, - 1491, - 838, - 312, - 838 - ], - "score": 0.203 - }, - { - "category_id": 2, - "poly": [ - 1345, - 368, - 1486, - 368, - 1486, - 405, - 1345, - 405 - ], - "score": 0.175 - }, - { - "category_id": 15, - "poly": [ - 1516.0, - 144.0, - 1624.0, - 144.0, - 1624.0, - 171.0, - 1516.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1519.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 191.0, - 1519.0, - 191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 189.0, - 1593.0, - 189.0, - 1593.0, - 216.0, - 1549.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 295.0, - 1372.0, - 295.0, - 1372.0, - 334.0, - 317.0, - 334.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 314.0, - 334.0, - 381.0, - 334.0, - 381.0, - 370.0, - 314.0, - 370.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 192.0, - 1329.0, - 192.0, - 1329.0, - 227.0, - 317.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 226.0, - 1088.0, - 226.0, - 1088.0, - 261.0, - 316.0, - 261.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1537.0, - 791.0, - 1581.0, - 791.0, - 1581.0, - 822.0, - 1537.0, - 822.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 189.0, - 279.0, - 189.0, - 279.0, - 224.0, - 139.0, - 224.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 201.0, - 2269.0, - 221.0, - 2269.0, - 221.0, - 2291.0, - 201.0, - 2291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 827.0, - 78.0, - 827.0, - 117.0, - 780.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1347.0, - 367.0, - 1488.0, - 367.0, - 1488.0, - 406.0, - 1347.0, - 406.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 366.0, - 1491.0, - 366.0, - 1491.0, - 409.0, - 1345.0, - 409.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 372.0, - 1490.0, - 372.0, - 1490.0, - 407.0, - 1345.0, - 407.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1347.0, - 367.0, - 1488.0, - 367.0, - 1488.0, - 406.0, - 1347.0, - 406.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 15, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 200, - 384, - 1418, - 384, - 1418, - 1203, - 200, - 1203 - ], - "score": 0.97 - }, - { - "category_id": 1, - "poly": [ - 314, - 189, - 1469, - 189, - 1469, - 301, - 314, - 301 - ], - "score": 0.94 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1624, - 146, - 1624, - 212, - 1516, - 212 - ], - "score": 0.932 - }, - { - "category_id": 2, - "poly": [ - 126, - 181, - 230, - 181, - 230, - 230, - 126, - 230 - ], - "score": 0.905 - }, - { - "category_id": 2, - "poly": [ - 126, - 1271, - 293, - 1271, - 293, - 1320, - 126, - 1320 - ], - "score": 0.904 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2290, - 1331, - 2290 - ], - "score": 0.891 - }, - { - "category_id": 2, - "poly": [ - 786, - 82, - 821, - 82, - 821, - 110, - 786, - 110 - ], - "score": 0.849 - }, - { - "category_id": 2, - "poly": [ - 126, - 1526, - 294, - 1526, - 294, - 1574, - 126, - 1574 - ], - "score": 0.841 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 279, - 2187, - 279, - 2291, - 119, - 2291 - ], - "score": 0.841 - }, - { - "category_id": 2, - "poly": [ - 1582, - 2, - 1653, - 2, - 1653, - 38, - 1582, - 38 - ], - "score": 0.831 - }, - { - "category_id": 1, - "poly": [ - 909, - 1418, - 1471, - 1418, - 1471, - 1464, - 909, - 1464 - ], - "score": 0.801 - }, - { - "category_id": 1, - "poly": [ - 313, - 1279, - 1433, - 1279, - 1433, - 1319, - 313, - 1319 - ], - "score": 0.797 - }, - { - "category_id": 4, - "poly": [ - 744, - 340, - 871, - 340, - 871, - 377, - 744, - 377 - ], - "score": 0.735 - }, - { - "category_id": 1, - "poly": [ - 314, - 1530, - 886, - 1530, - 886, - 1574, - 314, - 1574 - ], - "score": 0.707 - }, - { - "category_id": 1, - "poly": [ - 803, - 1995, - 1486, - 1995, - 1486, - 2040, - 803, - 2040 - ], - "score": 0.629 - }, - { - "category_id": 1, - "poly": [ - 1362, - 1319, - 1486, - 1319, - 1486, - 1355, - 1362, - 1355 - ], - "score": 0.561 - }, - { - "category_id": 1, - "poly": [ - 1343, - 1571, - 1486, - 1571, - 1486, - 1610, - 1343, - 1610 - ], - "score": 0.543 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2143, - 1494, - 2143, - 1494, - 2178, - 1317, - 2178 - ], - "score": 0.515 - }, - { - "category_id": 1, - "poly": [ - 522, - 2073, - 1088, - 2073, - 1088, - 2111, - 522, - 2111 - ], - "score": 0.267 - }, - { - "category_id": 0, - "poly": [ - 1362, - 1319, - 1486, - 1319, - 1486, - 1355, - 1362, - 1355 - ], - "score": 0.192 - }, - { - "category_id": 0, - "poly": [ - 1317, - 2143, - 1494, - 2143, - 1494, - 2178, - 1317, - 2178 - ], - "score": 0.169 - }, - { - "category_id": 0, - "poly": [ - 744, - 340, - 871, - 340, - 871, - 377, - 744, - 377 - ], - "score": 0.102 - }, - { - "category_id": 0, - "poly": [ - 1343, - 1571, - 1486, - 1571, - 1486, - 1610, - 1343, - 1610 - ], - "score": 0.1 - }, - { - "category_id": 13, - "poly": [ - 978, - 2006, - 1006, - 2006, - 1006, - 2030, - 978, - 2030 - ], - "score": 0.63, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 1227, - 229, - 1254, - 229, - 1254, - 260, - 1227, - 260 - ], - "score": 0.39, - "latex": "\\mathsf{P}" - }, - { - "category_id": 13, - "poly": [ - 1064, - 232, - 1081, - 232, - 1081, - 260, - 1064, - 260 - ], - "score": 0.33, - "latex": "t" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 192.0, - 1161.0, - 192.0, - 1161.0, - 228.0, - 318.0, - 228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 230.0, - 1063.0, - 230.0, - 1063.0, - 264.0, - 319.0, - 264.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1082.0, - 230.0, - 1226.0, - 230.0, - 1226.0, - 264.0, - 1082.0, - 264.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1255.0, - 230.0, - 1467.0, - 230.0, - 1467.0, - 264.0, - 1255.0, - 264.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 265.0, - 1060.0, - 265.0, - 1060.0, - 299.0, - 316.0, - 299.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1516.0, - 146.0, - 1624.0, - 146.0, - 1624.0, - 172.0, - 1516.0, - 172.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 194.0, - 1520.0, - 194.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1550.0, - 191.0, - 1593.0, - 191.0, - 1593.0, - 215.0, - 1550.0, - 215.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 143.0, - 192.0, - 168.0, - 192.0, - 168.0, - 219.0, - 143.0, - 219.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 190.0, - 192.0, - 213.0, - 192.0, - 213.0, - 219.0, - 190.0, - 219.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 1281.0, - 174.0, - 1281.0, - 174.0, - 1312.0, - 141.0, - 1312.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 189.0, - 1282.0, - 218.0, - 1282.0, - 218.0, - 1310.0, - 189.0, - 1310.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 249.0, - 1284.0, - 275.0, - 1284.0, - 275.0, - 1308.0, - 249.0, - 1308.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 781.0, - 80.0, - 827.0, - 80.0, - 827.0, - 116.0, - 781.0, - 116.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 142.0, - 1536.0, - 173.0, - 1536.0, - 173.0, - 1565.0, - 142.0, - 1565.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 188.0, - 1538.0, - 212.0, - 1538.0, - 212.0, - 1563.0, - 188.0, - 1563.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1537.0, - 277.0, - 1537.0, - 277.0, - 1564.0, - 252.0, - 1564.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1578.0, - 3.0, - 1659.0, - 3.0, - 1659.0, - 42.0, - 1578.0, - 42.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 913.0, - 1420.0, - 1006.0, - 1420.0, - 1006.0, - 1454.0, - 913.0, - 1454.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1422.0, - 1425.0, - 1471.0, - 1425.0, - 1471.0, - 1451.0, - 1422.0, - 1451.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1280.0, - 1425.0, - 1280.0, - 1425.0, - 1319.0, - 318.0, - 1319.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 744.0, - 339.0, - 873.0, - 339.0, - 873.0, - 380.0, - 744.0, - 380.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 1537.0, - 883.0, - 1537.0, - 883.0, - 1569.0, - 319.0, - 1569.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 808.0, - 1998.0, - 977.0, - 1998.0, - 977.0, - 2033.0, - 808.0, - 2033.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1409.0, - 1996.0, - 1482.0, - 1996.0, - 1482.0, - 2030.0, - 1409.0, - 2030.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 1318.0, - 1487.0, - 1318.0, - 1487.0, - 1356.0, - 1362.0, - 1356.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1570.0, - 1489.0, - 1570.0, - 1489.0, - 1611.0, - 1346.0, - 1611.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1318.0, - 2146.0, - 1473.0, - 2146.0, - 1473.0, - 2176.0, - 1318.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 521.0, - 2074.0, - 1087.0, - 2074.0, - 1087.0, - 2110.0, - 521.0, - 2110.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 1318.0, - 1487.0, - 1318.0, - 1487.0, - 1356.0, - 1362.0, - 1356.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1318.0, - 2146.0, - 1473.0, - 2146.0, - 1473.0, - 2176.0, - 1318.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 744.0, - 339.0, - 873.0, - 339.0, - 873.0, - 380.0, - 744.0, - 380.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1570.0, - 1489.0, - 1570.0, - 1489.0, - 1611.0, - 1346.0, - 1611.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 16, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 310, - 303, - 1461, - 303, - 1461, - 377, - 310, - 377 - ], - "score": 0.92 - }, - { - "category_id": 2, - "poly": [ - 1516, - 145, - 1624, - 145, - 1624, - 213, - 1516, - 213 - ], - "score": 0.911 - }, - { - "category_id": 1, - "poly": [ - 312, - 190, - 1471, - 190, - 1471, - 263, - 312, - 263 - ], - "score": 0.905 - }, - { - "category_id": 2, - "poly": [ - 1509, - 587, - 1600, - 587, - 1600, - 703, - 1509, - 703 - ], - "score": 0.904 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 278, - 2187, - 278, - 2291, - 119, - 2291 - ], - "score": 0.893 - }, - { - "category_id": 2, - "poly": [ - 126, - 180, - 293, - 180, - 293, - 231, - 126, - 231 - ], - "score": 0.884 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2266, - 1496, - 2266, - 1496, - 2289, - 1331, - 2289 - ], - "score": 0.876 - }, - { - "category_id": 2, - "poly": [ - 786, - 82, - 822, - 82, - 822, - 111, - 786, - 111 - ], - "score": 0.847 - }, - { - "category_id": 2, - "poly": [ - 1581, - 2, - 1653, - 2, - 1653, - 39, - 1581, - 39 - ], - "score": 0.825 - }, - { - "category_id": 1, - "poly": [ - 1362, - 378, - 1485, - 378, - 1485, - 415, - 1362, - 415 - ], - "score": 0.533 - }, - { - "category_id": 2, - "poly": [ - 1362, - 378, - 1485, - 378, - 1485, - 415, - 1362, - 415 - ], - "score": 0.442 - }, - { - "category_id": 1, - "poly": [ - 312, - 384, - 1489, - 384, - 1489, - 705, - 312, - 705 - ], - "score": 0.415 - }, - { - "category_id": 15, - "poly": [ - 317.0, - 305.0, - 1454.0, - 305.0, - 1454.0, - 343.0, - 317.0, - 343.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 341.0, - 438.0, - 341.0, - 438.0, - 380.0, - 315.0, - 380.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1516.0, - 144.0, - 1624.0, - 144.0, - 1624.0, - 171.0, - 1516.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1519.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 191.0, - 1519.0, - 191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 189.0, - 1593.0, - 189.0, - 1593.0, - 216.0, - 1549.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 190.0, - 1474.0, - 190.0, - 1474.0, - 229.0, - 316.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 229.0, - 450.0, - 229.0, - 450.0, - 264.0, - 316.0, - 264.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1544.0, - 656.0, - 1567.0, - 656.0, - 1567.0, - 684.0, - 1544.0, - 684.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 169.0, - 2271.0, - 181.0, - 2271.0, - 181.0, - 2287.0, - 169.0, - 2287.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 2266.0, - 224.0, - 2266.0, - 224.0, - 2292.0, - 196.0, - 2292.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 190.0, - 176.0, - 190.0, - 176.0, - 222.0, - 141.0, - 222.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 189.0, - 192.0, - 218.0, - 192.0, - 218.0, - 220.0, - 189.0, - 220.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 248.0, - 191.0, - 278.0, - 191.0, - 278.0, - 221.0, - 248.0, - 221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 827.0, - 78.0, - 827.0, - 118.0, - 780.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1361.0, - 374.0, - 1488.0, - 374.0, - 1488.0, - 418.0, - 1361.0, - 418.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1361.0, - 374.0, - 1488.0, - 374.0, - 1488.0, - 418.0, - 1361.0, - 418.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1361.0, - 376.0, - 1491.0, - 376.0, - 1491.0, - 420.0, - 1361.0, - 420.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 17, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 314, - 190, - 1443, - 190, - 1443, - 301, - 314, - 301 - ], - "score": 0.97 - }, - { - "category_id": 1, - "poly": [ - 315, - 1447, - 1482, - 1447, - 1482, - 1561, - 315, - 1561 - ], - "score": 0.965 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1624, - 146, - 1624, - 213, - 1516, - 213 - ], - "score": 0.934 - }, - { - "category_id": 1, - "poly": [ - 312, - 832, - 1428, - 832, - 1428, - 906, - 312, - 906 - ], - "score": 0.914 - }, - { - "category_id": 2, - "poly": [ - 1514, - 1989, - 1606, - 1989, - 1606, - 2105, - 1514, - 2105 - ], - "score": 0.913 - }, - { - "category_id": 2, - "poly": [ - 126, - 1437, - 294, - 1437, - 294, - 1488, - 126, - 1488 - ], - "score": 0.905 - }, - { - "category_id": 2, - "poly": [ - 126, - 823, - 294, - 823, - 294, - 873, - 126, - 873 - ], - "score": 0.897 - }, - { - "category_id": 2, - "poly": [ - 126, - 181, - 230, - 181, - 230, - 231, - 126, - 231 - ], - "score": 0.896 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2143, - 1496, - 2143, - 1496, - 2177, - 1317, - 2177 - ], - "score": 0.887 - }, - { - "category_id": 2, - "poly": [ - 1332, - 2265, - 1496, - 2265, - 1496, - 2290, - 1332, - 2290 - ], - "score": 0.881 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 279, - 2187, - 279, - 2291, - 119, - 2291 - ], - "score": 0.873 - }, - { - "category_id": 3, - "poly": [ - 614, - 420, - 998, - 420, - 998, - 759, - 614, - 759 - ], - "score": 0.868 - }, - { - "category_id": 2, - "poly": [ - 787, - 82, - 822, - 82, - 822, - 111, - 787, - 111 - ], - "score": 0.854 - }, - { - "category_id": 2, - "poly": [ - 1582, - 2, - 1653, - 2, - 1653, - 39, - 1582, - 39 - ], - "score": 0.831 - }, - { - "category_id": 1, - "poly": [ - 317, - 1596, - 775, - 1596, - 775, - 1636, - 317, - 1636 - ], - "score": 0.791 - }, - { - "category_id": 1, - "poly": [ - 1345, - 1635, - 1485, - 1635, - 1485, - 1672, - 1345, - 1672 - ], - "score": 0.789 - }, - { - "category_id": 1, - "poly": [ - 1345, - 905, - 1486, - 905, - 1486, - 943, - 1345, - 943 - ], - "score": 0.732 - }, - { - "category_id": 4, - "poly": [ - 744, - 345, - 871, - 345, - 871, - 384, - 744, - 384 - ], - "score": 0.671 - }, - { - "category_id": 2, - "poly": [ - 1345, - 905, - 1486, - 905, - 1486, - 943, - 1345, - 943 - ], - "score": 0.207 - }, - { - "category_id": 0, - "poly": [ - 744, - 345, - 871, - 345, - 871, - 384, - 744, - 384 - ], - "score": 0.198 - }, - { - "category_id": 1, - "poly": [ - 313, - 1697, - 1491, - 1697, - 1491, - 2108, - 313, - 2108 - ], - "score": 0.154 - }, - { - "category_id": 1, - "poly": [ - 313, - 951, - 1490, - 951, - 1490, - 1378, - 313, - 1378 - ], - "score": 0.153 - }, - { - "category_id": 2, - "poly": [ - 1345, - 1635, - 1485, - 1635, - 1485, - 1672, - 1345, - 1672 - ], - "score": 0.143 - }, - { - "category_id": 1, - "poly": [ - 313, - 1632, - 1491, - 1632, - 1491, - 2115, - 313, - 2115 - ], - "score": 0.114 - }, - { - "category_id": 13, - "poly": [ - 784, - 1525, - 820, - 1525, - 820, - 1560, - 784, - 1560 - ], - "score": 0.87, - "latex": "V_{2}" - }, - { - "category_id": 13, - "poly": [ - 732, - 1598, - 767, - 1598, - 767, - 1633, - 732, - 1633 - ], - "score": 0.87, - "latex": "V_{1}" - }, - { - "category_id": 13, - "poly": [ - 488, - 1599, - 524, - 1599, - 524, - 1633, - 488, - 1633 - ], - "score": 0.86, - "latex": "V_{2}" - }, - { - "category_id": 13, - "poly": [ - 1400, - 1450, - 1437, - 1450, - 1437, - 1485, - 1400, - 1485 - ], - "score": 0.85, - "latex": "V_{1}" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 193.0, - 1432.0, - 193.0, - 1432.0, - 230.0, - 318.0, - 230.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 231.0, - 1441.0, - 231.0, - 1441.0, - 264.0, - 318.0, - 264.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 265.0, - 799.0, - 265.0, - 799.0, - 301.0, - 318.0, - 301.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1450.0, - 1399.0, - 1450.0, - 1399.0, - 1485.0, - 316.0, - 1485.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1438.0, - 1450.0, - 1478.0, - 1450.0, - 1478.0, - 1485.0, - 1438.0, - 1485.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1492.0, - 1441.0, - 1492.0, - 1441.0, - 1521.0, - 318.0, - 1521.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1527.0, - 783.0, - 1527.0, - 783.0, - 1560.0, - 318.0, - 1560.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 821.0, - 1527.0, - 1170.0, - 1527.0, - 1170.0, - 1560.0, - 821.0, - 1560.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1624.0, - 147.0, - 1624.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 193.0, - 1520.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 190.0, - 1593.0, - 190.0, - 1593.0, - 216.0, - 1549.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 834.0, - 1424.0, - 834.0, - 1424.0, - 873.0, - 316.0, - 873.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 874.0, - 460.0, - 874.0, - 460.0, - 906.0, - 316.0, - 906.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 132.0, - 1439.0, - 288.0, - 1439.0, - 288.0, - 1487.0, - 132.0, - 1487.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 826.0, - 284.0, - 826.0, - 284.0, - 870.0, - 133.0, - 870.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 184.0, - 222.0, - 184.0, - 222.0, - 227.0, - 135.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1317.0, - 2145.0, - 1473.0, - 2145.0, - 1473.0, - 2176.0, - 1317.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1499.0, - 2268.0, - 1499.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 208.0, - 2273.0, - 216.0, - 2273.0, - 216.0, - 2285.0, - 208.0, - 2285.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 78.0, - 828.0, - 78.0, - 828.0, - 118.0, - 779.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 1598.0, - 487.0, - 1598.0, - 487.0, - 1635.0, - 317.0, - 1635.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 525.0, - 1598.0, - 731.0, - 1598.0, - 731.0, - 1635.0, - 525.0, - 1635.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 768.0, - 1598.0, - 775.0, - 1598.0, - 775.0, - 1635.0, - 768.0, - 1635.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1632.0, - 1488.0, - 1632.0, - 1488.0, - 1674.0, - 1346.0, - 1674.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 903.0, - 1488.0, - 903.0, - 1488.0, - 945.0, - 1346.0, - 945.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 744.0, - 345.0, - 872.0, - 345.0, - 872.0, - 386.0, - 744.0, - 386.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 903.0, - 1488.0, - 903.0, - 1488.0, - 945.0, - 1346.0, - 945.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 744.0, - 345.0, - 872.0, - 345.0, - 872.0, - 386.0, - 744.0, - 386.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1632.0, - 1488.0, - 1632.0, - 1488.0, - 1674.0, - 1346.0, - 1674.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 1635.0, - 1490.0, - 1635.0, - 1490.0, - 1673.0, - 1345.0, - 1673.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 18, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 514, - 975, - 1095, - 975, - 1095, - 1528, - 514, - 1528 - ], - "score": 0.959 - }, - { - "category_id": 2, - "poly": [ - 1516, - 145, - 1624, - 145, - 1624, - 213, - 1516, - 213 - ], - "score": 0.929 - }, - { - "category_id": 1, - "poly": [ - 128, - 769, - 1408, - 769, - 1408, - 844, - 128, - 844 - ], - "score": 0.916 - }, - { - "category_id": 1, - "poly": [ - 255, - 1566, - 797, - 1566, - 797, - 1605, - 255, - 1605 - ], - "score": 0.909 - }, - { - "category_id": 1, - "poly": [ - 254, - 934, - 1057, - 934, - 1057, - 973, - 254, - 973 - ], - "score": 0.905 - }, - { - "category_id": 0, - "poly": [ - 729, - 181, - 878, - 181, - 878, - 218, - 729, - 218 - ], - "score": 0.898 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 279, - 2187, - 279, - 2293, - 119, - 2293 - ], - "score": 0.888 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2290, - 1331, - 2290 - ], - "score": 0.887 - }, - { - "category_id": 2, - "poly": [ - 783, - 81, - 822, - 81, - 822, - 112, - 783, - 112 - ], - "score": 0.869 - }, - { - "category_id": 1, - "poly": [ - 504, - 326, - 1100, - 326, - 1100, - 363, - 504, - 363 - ], - "score": 0.845 - }, - { - "category_id": 2, - "poly": [ - 127, - 927, - 227, - 927, - 227, - 972, - 127, - 972 - ], - "score": 0.842 - }, - { - "category_id": 1, - "poly": [ - 1363, - 1604, - 1488, - 1604, - 1488, - 1642, - 1363, - 1642 - ], - "score": 0.838 - }, - { - "category_id": 2, - "poly": [ - 1581, - 3, - 1653, - 3, - 1653, - 39, - 1581, - 39 - ], - "score": 0.836 - }, - { - "category_id": 5, - "poly": [ - 725, - 568, - 962, - 568, - 962, - 611, - 725, - 611 - ], - "score": 0.808, - "html": "
" - }, - { - "category_id": 1, - "poly": [ - 126, - 503, - 1205, - 503, - 1205, - 539, - 126, - 539 - ], - "score": 0.614 - }, - { - "category_id": 5, - "poly": [ - 252, - 1672, - 780, - 1672, - 780, - 2079, - 252, - 2079 - ], - "score": 0.608, - "html": "
XY
AW+Ve
BW+Ve
CW-Ve
DW-Ve
" - }, - { - "category_id": 3, - "poly": [ - 1297, - 600, - 1364, - 600, - 1364, - 650, - 1297, - 650 - ], - "score": 0.561 - }, - { - "category_id": 1, - "poly": [ - 312, - 253, - 1289, - 253, - 1289, - 293, - 312, - 293 - ], - "score": 0.557 - }, - { - "category_id": 1, - "poly": [ - 139, - 464, - 695, - 464, - 695, - 501, - 139, - 501 - ], - "score": 0.557 - }, - { - "category_id": 3, - "poly": [ - 261, - 685, - 339, - 685, - 339, - 745, - 261, - 745 - ], - "score": 0.535 - }, - { - "category_id": 1, - "poly": [ - 310, - 253, - 1289, - 253, - 1289, - 293, - 310, - 293 - ], - "score": 0.514 - }, - { - "category_id": 1, - "poly": [ - 132, - 576, - 324, - 576, - 324, - 604, - 132, - 604 - ], - "score": 0.497 - }, - { - "category_id": 1, - "poly": [ - 132, - 687, - 231, - 687, - 231, - 717, - 132, - 717 - ], - "score": 0.443 - }, - { - "category_id": 3, - "poly": [ - 252, - 1672, - 780, - 1672, - 780, - 2079, - 252, - 2079 - ], - "score": 0.435 - }, - { - "category_id": 1, - "poly": [ - 134, - 615, - 1415, - 615, - 1415, - 685, - 134, - 685 - ], - "score": 0.415 - }, - { - "category_id": 1, - "poly": [ - 507, - 576, - 696, - 576, - 696, - 605, - 507, - 605 - ], - "score": 0.392 - }, - { - "category_id": 1, - "poly": [ - 129, - 465, - 1213, - 465, - 1213, - 540, - 129, - 540 - ], - "score": 0.235 - }, - { - "category_id": 1, - "poly": [ - 128, - 615, - 1482, - 615, - 1482, - 735, - 128, - 735 - ], - "score": 0.208 - }, - { - "category_id": 3, - "poly": [ - 129, - 386, - 1497, - 386, - 1497, - 455, - 129, - 455 - ], - "score": 0.204 - }, - { - "category_id": 1, - "poly": [ - 140, - 615, - 1412, - 615, - 1412, - 685, - 140, - 685 - ], - "score": 0.196 - }, - { - "category_id": 2, - "poly": [ - 355, - 569, - 412, - 569, - 412, - 610, - 355, - 610 - ], - "score": 0.188 - }, - { - "category_id": 2, - "poly": [ - 261, - 685, - 339, - 685, - 339, - 745, - 261, - 745 - ], - "score": 0.183 - }, - { - "category_id": 3, - "poly": [ - 355, - 569, - 412, - 569, - 412, - 610, - 355, - 610 - ], - "score": 0.163 - }, - { - "category_id": 1, - "poly": [ - 132, - 576, - 323, - 576, - 323, - 604, - 132, - 604 - ], - "score": 0.116 - }, - { - "category_id": 3, - "poly": [ - 801, - 1771, - 880, - 1771, - 880, - 2063, - 801, - 2063 - ], - "score": 0.101 - }, - { - "category_id": 13, - "poly": [ - 648, - 1960, - 689, - 1960, - 689, - 1984, - 648, - 1984 - ], - "score": 0.85, - "latex": "\\nu_{\\mathrm{\\scriptsize~e~}}" - }, - { - "category_id": 13, - "poly": [ - 598, - 936, - 650, - 936, - 650, - 973, - 598, - 973 - ], - "score": 0.85, - "latex": "(\\beta^{+})" - }, - { - "category_id": 13, - "poly": [ - 824, - 1953, - 856, - 1953, - 856, - 1967, - 824, - 1967 - ], - "score": 0.82, - "latex": "\\smile" - }, - { - "category_id": 13, - "poly": [ - 647, - 1875, - 681, - 1875, - 681, - 1901, - 647, - 1901 - ], - "score": 0.82, - "latex": "\\nu_{\\mathrm{e}}" - }, - { - "category_id": 13, - "poly": [ - 647, - 2035, - 681, - 2035, - 681, - 2062, - 647, - 2062 - ], - "score": 0.82, - "latex": "\\nu_{\\mathrm{e}}" - }, - { - "category_id": 13, - "poly": [ - 824, - 2033, - 856, - 2033, - 856, - 2047, - 824, - 2047 - ], - "score": 0.8, - "latex": "\\subset" - }, - { - "category_id": 13, - "poly": [ - 824, - 1873, - 856, - 1873, - 856, - 1886, - 824, - 1886 - ], - "score": 0.79, - "latex": "\\smile" - }, - { - "category_id": 13, - "poly": [ - 646, - 1792, - 692, - 1792, - 692, - 1825, - 646, - 1825 - ], - "score": 0.55, - "latex": "\\nu_{\\mathrm{~e~}}" - }, - { - "category_id": 13, - "poly": [ - 824, - 1792, - 856, - 1792, - 856, - 1806, - 824, - 1806 - ], - "score": 0.38, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 799, - 579, - 829, - 579, - 829, - 603, - 799, - 603 - ], - "score": 0.33, - "latex": "\\textcircled{6}" - }, - { - "category_id": 13, - "poly": [ - 422, - 1942, - 472, - 1942, - 472, - 1972, - 422, - 1972 - ], - "score": 0.27, - "latex": "\\mathbf{W}^{-}" - }, - { - "category_id": 15, - "poly": [ - 1516.0, - 144.0, - 1624.0, - 144.0, - 1624.0, - 171.0, - 1516.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1519.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 191.0, - 1519.0, - 191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 189.0, - 1593.0, - 189.0, - 1593.0, - 216.0, - 1549.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 770.0, - 1409.0, - 770.0, - 1409.0, - 808.0, - 133.0, - 808.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 131.0, - 806.0, - 748.0, - 806.0, - 748.0, - 843.0, - 131.0, - 843.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 1567.0, - 796.0, - 1567.0, - 796.0, - 1604.0, - 256.0, - 1604.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 936.0, - 597.0, - 936.0, - 597.0, - 973.0, - 256.0, - 973.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 651.0, - 936.0, - 1053.0, - 936.0, - 1053.0, - 973.0, - 651.0, - 973.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 732.0, - 183.0, - 877.0, - 183.0, - 877.0, - 218.0, - 732.0, - 218.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 2272.0, - 182.0, - 2272.0, - 182.0, - 2288.0, - 170.0, - 2288.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 2269.0, - 222.0, - 2269.0, - 222.0, - 2290.0, - 198.0, - 2290.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 827.0, - 78.0, - 827.0, - 118.0, - 780.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 506.0, - 327.0, - 1103.0, - 327.0, - 1103.0, - 363.0, - 506.0, - 363.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 142.0, - 934.0, - 169.0, - 934.0, - 169.0, - 965.0, - 142.0, - 965.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 187.0, - 935.0, - 215.0, - 935.0, - 215.0, - 966.0, - 187.0, - 966.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1364.0, - 1605.0, - 1490.0, - 1605.0, - 1490.0, - 1643.0, - 1364.0, - 1643.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1578.0, - 3.0, - 1659.0, - 3.0, - 1659.0, - 42.0, - 1578.0, - 42.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 132.0, - 504.0, - 1207.0, - 504.0, - 1207.0, - 539.0, - 132.0, - 539.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 257.0, - 1290.0, - 257.0, - 1290.0, - 291.0, - 318.0, - 291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 463.0, - 696.0, - 463.0, - 696.0, - 503.0, - 134.0, - 503.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 257.0, - 1290.0, - 257.0, - 1290.0, - 291.0, - 318.0, - 291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 582.0, - 321.0, - 582.0, - 321.0, - 601.0, - 135.0, - 601.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 131.0, - 683.0, - 235.0, - 683.0, - 235.0, - 720.0, - 131.0, - 720.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 132.0, - 611.0, - 1328.0, - 611.0, - 1328.0, - 650.0, - 132.0, - 650.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 651.0, - 1416.0, - 651.0, - 1416.0, - 685.0, - 134.0, - 685.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 511.0, - 580.0, - 694.0, - 580.0, - 694.0, - 603.0, - 511.0, - 603.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 130.0, - 463.0, - 694.0, - 463.0, - 694.0, - 504.0, - 130.0, - 504.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 130.0, - 501.0, - 1205.0, - 501.0, - 1205.0, - 541.0, - 130.0, - 541.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 615.0, - 1323.0, - 615.0, - 1323.0, - 649.0, - 133.0, - 649.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 650.0, - 1481.0, - 650.0, - 1481.0, - 685.0, - 133.0, - 685.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 131.0, - 687.0, - 234.0, - 687.0, - 234.0, - 719.0, - 131.0, - 719.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 137.0, - 613.0, - 1332.0, - 613.0, - 1332.0, - 650.0, - 137.0, - 650.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 650.0, - 1415.0, - 650.0, - 1415.0, - 683.0, - 140.0, - 683.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 582.0, - 321.0, - 582.0, - 321.0, - 601.0, - 136.0, - 601.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 19, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 250, - 1760, - 564, - 1760, - 564, - 2046, - 250, - 2046 - ], - "score": 0.953 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1624, - 146, - 1624, - 213, - 1516, - 213 - ], - "score": 0.931 - }, - { - "category_id": 1, - "poly": [ - 250, - 870, - 1450, - 870, - 1450, - 952, - 250, - 952 - ], - "score": 0.92 - }, - { - "category_id": 1, - "poly": [ - 246, - 189, - 1390, - 189, - 1390, - 265, - 246, - 265 - ], - "score": 0.907 - }, - { - "category_id": 2, - "poly": [ - 127, - 867, - 228, - 867, - 228, - 914, - 127, - 914 - ], - "score": 0.899 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2264, - 1496, - 2264, - 1496, - 2290, - 1331, - 2290 - ], - "score": 0.893 - }, - { - "category_id": 1, - "poly": [ - 251, - 1559, - 1138, - 1559, - 1138, - 1680, - 251, - 1680 - ], - "score": 0.887 - }, - { - "category_id": 2, - "poly": [ - 126, - 181, - 227, - 181, - 227, - 230, - 126, - 230 - ], - "score": 0.883 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2292, - 118, - 2292 - ], - "score": 0.883 - }, - { - "category_id": 1, - "poly": [ - 255, - 999, - 639, - 999, - 639, - 1037, - 255, - 1037 - ], - "score": 0.874 - }, - { - "category_id": 1, - "poly": [ - 255, - 310, - 640, - 310, - 640, - 349, - 255, - 349 - ], - "score": 0.873 - }, - { - "category_id": 2, - "poly": [ - 127, - 1556, - 227, - 1556, - 227, - 1604, - 127, - 1604 - ], - "score": 0.863 - }, - { - "category_id": 2, - "poly": [ - 782, - 81, - 818, - 81, - 818, - 111, - 782, - 111 - ], - "score": 0.855 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2143, - 1495, - 2143, - 1495, - 2178, - 1317, - 2178 - ], - "score": 0.842 - }, - { - "category_id": 2, - "poly": [ - 1581, - 2, - 1653, - 2, - 1653, - 39, - 1581, - 39 - ], - "score": 0.836 - }, - { - "category_id": 1, - "poly": [ - 1363, - 1036, - 1488, - 1036, - 1488, - 1074, - 1363, - 1074 - ], - "score": 0.792 - }, - { - "category_id": 1, - "poly": [ - 250, - 1128, - 1142, - 1128, - 1142, - 1481, - 250, - 1481 - ], - "score": 0.781 - }, - { - "category_id": 3, - "poly": [ - 1226, - 1758, - 1305, - 1758, - 1305, - 2047, - 1226, - 2047 - ], - "score": 0.732 - }, - { - "category_id": 1, - "poly": [ - 251, - 436, - 1202, - 436, - 1202, - 792, - 251, - 792 - ], - "score": 0.715 - }, - { - "category_id": 1, - "poly": [ - 1364, - 1676, - 1488, - 1676, - 1488, - 1712, - 1364, - 1712 - ], - "score": 0.642 - }, - { - "category_id": 1, - "poly": [ - 1363, - 346, - 1488, - 346, - 1488, - 384, - 1363, - 384 - ], - "score": 0.618 - }, - { - "category_id": 3, - "poly": [ - 248, - 1122, - 1307, - 1122, - 1307, - 1481, - 248, - 1481 - ], - "score": 0.252 - }, - { - "category_id": 3, - "poly": [ - 1226, - 1119, - 1305, - 1119, - 1305, - 1454, - 1226, - 1454 - ], - "score": 0.184 - }, - { - "category_id": 3, - "poly": [ - 248, - 1124, - 1294, - 1124, - 1294, - 1482, - 248, - 1482 - ], - "score": 0.166 - }, - { - "category_id": 1, - "poly": [ - 256, - 1639, - 778, - 1639, - 778, - 1679, - 256, - 1679 - ], - "score": 0.155 - }, - { - "category_id": 2, - "poly": [ - 1230, - 1405, - 1297, - 1405, - 1297, - 1450, - 1230, - 1450 - ], - "score": 0.148 - }, - { - "category_id": 2, - "poly": [ - 1363, - 346, - 1488, - 346, - 1488, - 384, - 1363, - 384 - ], - "score": 0.132 - }, - { - "category_id": 1, - "poly": [ - 253, - 1560, - 1140, - 1560, - 1140, - 1606, - 253, - 1606 - ], - "score": 0.116 - }, - { - "category_id": 4, - "poly": [ - 1364, - 1676, - 1488, - 1676, - 1488, - 1712, - 1364, - 1712 - ], - "score": 0.109 - }, - { - "category_id": 13, - "poly": [ - 368, - 912, - 537, - 912, - 537, - 950, - 368, - 950 - ], - "score": 0.91, - "latex": "4.6\\times10^{-19}\\mathrm{~J}" - }, - { - "category_id": 13, - "poly": [ - 506, - 871, - 690, - 871, - 690, - 911, - 506, - 911 - ], - "score": 0.91, - "latex": "2.0\\times10^{15}\\mathrm{Hz}" - }, - { - "category_id": 13, - "poly": [ - 945, - 1560, - 1128, - 1560, - 1128, - 1602, - 945, - 1602 - ], - "score": 0.9, - "latex": "1.5\\times10^{15}\\mathrm{Hz}" - }, - { - "category_id": 13, - "poly": [ - 293, - 1439, - 454, - 1439, - 454, - 1478, - 293, - 1478 - ], - "score": 0.89, - "latex": "18\\times10^{-19}\\mathrm{~J}" - }, - { - "category_id": 13, - "poly": [ - 293, - 1338, - 461, - 1338, - 461, - 1379, - 293, - 1379 - ], - "score": 0.87, - "latex": "8.7\\times10^{-19}\\mathrm{~J}" - }, - { - "category_id": 13, - "poly": [ - 292, - 1237, - 462, - 1237, - 462, - 1278, - 292, - 1278 - ], - "score": 0.86, - "latex": "3.1\\times10^{-19}\\mathrm{~J}" - }, - { - "category_id": 13, - "poly": [ - 1248, - 1423, - 1280, - 1423, - 1280, - 1437, - 1248, - 1437 - ], - "score": 0.4, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 292, - 1761, - 561, - 1761, - 561, - 1808, - 292, - 1808 - ], - "score": 0.38, - "latex": "3.3\\times10^{-41}\\mathrm{kgms^{-1}}" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1763.0, - 291.0, - 1763.0, - 291.0, - 1804.0, - 254.0, - 1804.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1840.0, - 559.0, - 1840.0, - 559.0, - 1886.0, - 252.0, - 1886.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1919.0, - 557.0, - 1919.0, - 557.0, - 1963.0, - 253.0, - 1963.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 2001.0, - 562.0, - 2001.0, - 562.0, - 2043.0, - 251.0, - 2043.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1624.0, - 147.0, - 1624.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 193.0, - 1520.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 190.0, - 1593.0, - 190.0, - 1593.0, - 216.0, - 1549.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 870.0, - 505.0, - 870.0, - 505.0, - 917.0, - 253.0, - 917.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 691.0, - 870.0, - 1449.0, - 870.0, - 1449.0, - 917.0, - 691.0, - 917.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 913.0, - 367.0, - 913.0, - 367.0, - 949.0, - 253.0, - 949.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 538.0, - 913.0, - 548.0, - 913.0, - 548.0, - 949.0, - 538.0, - 949.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 191.0, - 1391.0, - 191.0, - 1391.0, - 228.0, - 256.0, - 228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 229.0, - 433.0, - 229.0, - 433.0, - 265.0, - 254.0, - 265.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 873.0, - 214.0, - 873.0, - 214.0, - 908.0, - 139.0, - 908.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1332.0, - 2266.0, - 1498.0, - 2266.0, - 1498.0, - 2291.0, - 1332.0, - 2291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1567.0, - 944.0, - 1567.0, - 944.0, - 1602.0, - 254.0, - 1602.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1129.0, - 1567.0, - 1132.0, - 1567.0, - 1132.0, - 1602.0, - 1129.0, - 1602.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1642.0, - 778.0, - 1642.0, - 778.0, - 1676.0, - 255.0, - 1676.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 142.0, - 191.0, - 172.0, - 191.0, - 172.0, - 220.0, - 142.0, - 220.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 187.0, - 192.0, - 212.0, - 192.0, - 212.0, - 219.0, - 187.0, - 219.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 169.0, - 2269.0, - 186.0, - 2269.0, - 186.0, - 2289.0, - 169.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 2269.0, - 220.0, - 2269.0, - 220.0, - 2290.0, - 195.0, - 2290.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 1003.0, - 636.0, - 1003.0, - 636.0, - 1033.0, - 257.0, - 1033.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 312.0, - 635.0, - 312.0, - 635.0, - 345.0, - 257.0, - 345.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 1562.0, - 212.0, - 1562.0, - 212.0, - 1598.0, - 138.0, - 1598.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 79.0, - 827.0, - 79.0, - 827.0, - 118.0, - 779.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1318.0, - 2146.0, - 1473.0, - 2146.0, - 1473.0, - 2176.0, - 1318.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1364.0, - 1037.0, - 1490.0, - 1037.0, - 1490.0, - 1075.0, - 1364.0, - 1075.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 1132.0, - 732.0, - 1132.0, - 732.0, - 1163.0, - 258.0, - 1163.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1204.0, - 1142.0, - 1204.0, - 1142.0, - 1242.0, - 255.0, - 1242.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 290.0, - 1232.0, - 291.0, - 1232.0, - 291.0, - 1278.0, - 290.0, - 1278.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 463.0, - 1232.0, - 475.0, - 1232.0, - 475.0, - 1278.0, - 463.0, - 1278.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1305.0, - 1142.0, - 1305.0, - 1142.0, - 1342.0, - 254.0, - 1342.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 291.0, - 1336.0, - 292.0, - 1336.0, - 292.0, - 1378.0, - 291.0, - 1378.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 462.0, - 1336.0, - 474.0, - 1336.0, - 474.0, - 1378.0, - 462.0, - 1378.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1408.0, - 1141.0, - 1408.0, - 1141.0, - 1442.0, - 255.0, - 1442.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 291.0, - 1435.0, - 292.0, - 1435.0, - 292.0, - 1480.0, - 291.0, - 1480.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 455.0, - 1435.0, - 468.0, - 1435.0, - 468.0, - 1480.0, - 455.0, - 1480.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 441.0, - 1120.0, - 441.0, - 1120.0, - 476.0, - 256.0, - 476.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 514.0, - 1163.0, - 514.0, - 1163.0, - 556.0, - 254.0, - 556.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 290.0, - 552.0, - 375.0, - 552.0, - 375.0, - 588.0, - 290.0, - 588.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 619.0, - 1135.0, - 619.0, - 1135.0, - 650.0, - 257.0, - 650.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 294.0, - 657.0, - 476.0, - 657.0, - 476.0, - 686.0, - 294.0, - 686.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 718.0, - 1132.0, - 718.0, - 1132.0, - 754.0, - 254.0, - 754.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 294.0, - 756.0, - 418.0, - 756.0, - 418.0, - 788.0, - 294.0, - 788.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1364.0, - 1674.0, - 1491.0, - 1674.0, - 1491.0, - 1715.0, - 1364.0, - 1715.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1364.0, - 347.0, - 1490.0, - 347.0, - 1490.0, - 385.0, - 1364.0, - 385.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 1641.0, - 776.0, - 1641.0, - 776.0, - 1674.0, - 256.0, - 1674.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1364.0, - 347.0, - 1490.0, - 347.0, - 1490.0, - 385.0, - 1364.0, - 385.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1566.0, - 944.0, - 1566.0, - 944.0, - 1602.0, - 253.0, - 1602.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1129.0, - 1566.0, - 1134.0, - 1566.0, - 1134.0, - 1602.0, - 1129.0, - 1602.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1364.0, - 1674.0, - 1491.0, - 1674.0, - 1491.0, - 1715.0, - 1364.0, - 1715.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 20, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 252, - 317, - 775, - 317, - 775, - 597, - 252, - 597 - ], - "score": 0.97 - }, - { - "category_id": 3, - "poly": [ - 379, - 838, - 1236, - 838, - 1236, - 1300, - 379, - 1300 - ], - "score": 0.969 - }, - { - "category_id": 1, - "poly": [ - 252, - 687, - 1306, - 687, - 1306, - 803, - 252, - 803 - ], - "score": 0.963 - }, - { - "category_id": 2, - "poly": [ - 1516, - 145, - 1624, - 145, - 1624, - 213, - 1516, - 213 - ], - "score": 0.928 - }, - { - "category_id": 1, - "poly": [ - 249, - 1467, - 388, - 1467, - 388, - 1743, - 249, - 1743 - ], - "score": 0.923 - }, - { - "category_id": 1, - "poly": [ - 253, - 1336, - 972, - 1336, - 972, - 1376, - 253, - 1376 - ], - "score": 0.91 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2293, - 118, - 2293 - ], - "score": 0.896 - }, - { - "category_id": 1, - "poly": [ - 253, - 187, - 863, - 187, - 863, - 230, - 253, - 230 - ], - "score": 0.891 - }, - { - "category_id": 2, - "poly": [ - 128, - 681, - 227, - 681, - 227, - 729, - 128, - 729 - ], - "score": 0.887 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2290, - 1331, - 2290 - ], - "score": 0.887 - }, - { - "category_id": 2, - "poly": [ - 783, - 81, - 823, - 81, - 823, - 112, - 783, - 112 - ], - "score": 0.868 - }, - { - "category_id": 2, - "poly": [ - 1581, - 2, - 1653, - 2, - 1653, - 39, - 1581, - 39 - ], - "score": 0.832 - }, - { - "category_id": 2, - "poly": [ - 127, - 181, - 227, - 181, - 227, - 230, - 127, - 230 - ], - "score": 0.788 - }, - { - "category_id": 2, - "poly": [ - 1363, - 228, - 1487, - 228, - 1487, - 264, - 1363, - 264 - ], - "score": 0.774 - }, - { - "category_id": 3, - "poly": [ - 1226, - 1461, - 1305, - 1461, - 1305, - 1747, - 1226, - 1747 - ], - "score": 0.714 - }, - { - "category_id": 1, - "poly": [ - 1364, - 1377, - 1488, - 1377, - 1488, - 1414, - 1364, - 1414 - ], - "score": 0.661 - }, - { - "category_id": 3, - "poly": [ - 1225, - 310, - 1303, - 310, - 1303, - 601, - 1225, - 601 - ], - "score": 0.622 - }, - { - "category_id": 3, - "poly": [ - 1226, - 311, - 1304, - 311, - 1304, - 600, - 1226, - 600 - ], - "score": 0.218 - }, - { - "category_id": 1, - "poly": [ - 1363, - 228, - 1487, - 228, - 1487, - 264, - 1363, - 264 - ], - "score": 0.12 - }, - { - "category_id": 13, - "poly": [ - 482, - 728, - 550, - 728, - 550, - 761, - 482, - 761 - ], - "score": 0.89, - "latex": "t=0" - }, - { - "category_id": 13, - "poly": [ - 1249, - 1719, - 1281, - 1719, - 1281, - 1732, - 1249, - 1732 - ], - "score": 0.66, - "latex": "\\subset" - }, - { - "category_id": 13, - "poly": [ - 657, - 557, - 719, - 557, - 719, - 590, - 657, - 590 - ], - "score": 0.56, - "latex": "\\mathrm{N}\\mathrm{m}" - }, - { - "category_id": 13, - "poly": [ - 863, - 1339, - 930, - 1339, - 930, - 1372, - 863, - 1372 - ], - "score": 0.43, - "latex": "t=8" - }, - { - "category_id": 13, - "poly": [ - 753, - 1339, - 780, - 1339, - 780, - 1371, - 753, - 1371 - ], - "score": 0.32, - "latex": "\\mathsf{\\textbf{P}}" - }, - { - "category_id": 13, - "poly": [ - 612, - 728, - 639, - 728, - 639, - 760, - 612, - 760 - ], - "score": 0.29, - "latex": "\\mathsf{\\textbf{P}}" - }, - { - "category_id": 13, - "poly": [ - 254, - 728, - 285, - 728, - 285, - 761, - 254, - 761 - ], - "score": 0.29, - "latex": "\\pmb{\\Omega}" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 321.0, - 748.0, - 321.0, - 748.0, - 355.0, - 255.0, - 355.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 401.0, - 735.0, - 401.0, - 735.0, - 433.0, - 256.0, - 433.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 480.0, - 772.0, - 480.0, - 772.0, - 512.0, - 256.0, - 512.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 559.0, - 656.0, - 559.0, - 656.0, - 590.0, - 255.0, - 590.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 720.0, - 559.0, - 727.0, - 559.0, - 727.0, - 590.0, - 720.0, - 590.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 691.0, - 1304.0, - 691.0, - 1304.0, - 725.0, - 256.0, - 725.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 286.0, - 728.0, - 481.0, - 728.0, - 481.0, - 763.0, - 286.0, - 763.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 551.0, - 728.0, - 611.0, - 728.0, - 611.0, - 763.0, - 551.0, - 763.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 640.0, - 728.0, - 979.0, - 728.0, - 979.0, - 763.0, - 640.0, - 763.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 767.0, - 986.0, - 767.0, - 986.0, - 802.0, - 256.0, - 802.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1516.0, - 144.0, - 1624.0, - 144.0, - 1624.0, - 171.0, - 1516.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1519.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 191.0, - 1519.0, - 191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 189.0, - 1593.0, - 189.0, - 1593.0, - 216.0, - 1549.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1467.0, - 369.0, - 1467.0, - 369.0, - 1505.0, - 252.0, - 1505.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 1545.0, - 371.0, - 1545.0, - 371.0, - 1586.0, - 251.0, - 1586.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1626.0, - 386.0, - 1626.0, - 386.0, - 1664.0, - 252.0, - 1664.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1704.0, - 386.0, - 1704.0, - 386.0, - 1741.0, - 252.0, - 1741.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 1341.0, - 752.0, - 1341.0, - 752.0, - 1371.0, - 257.0, - 1371.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 781.0, - 1341.0, - 862.0, - 1341.0, - 862.0, - 1371.0, - 781.0, - 1371.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 931.0, - 1341.0, - 968.0, - 1341.0, - 968.0, - 1371.0, - 931.0, - 1371.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 2268.0, - 223.0, - 2268.0, - 223.0, - 2294.0, - 196.0, - 2294.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 175.0, - 2272.5, - 176.0, - 2272.5, - 176.0, - 2286.5, - 175.0, - 2286.5 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 194.0, - 859.0, - 194.0, - 859.0, - 225.0, - 257.0, - 225.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 137.0, - 687.0, - 215.0, - 687.0, - 215.0, - 723.0, - 137.0, - 723.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 78.0, - 828.0, - 78.0, - 828.0, - 120.0, - 779.0, - 120.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 185.0, - 220.0, - 185.0, - 220.0, - 227.0, - 136.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 226.0, - 1491.0, - 226.0, - 1491.0, - 267.0, - 1363.0, - 267.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 1374.0, - 1489.0, - 1374.0, - 1489.0, - 1416.0, - 1363.0, - 1416.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 226.0, - 1491.0, - 226.0, - 1491.0, - 267.0, - 1363.0, - 267.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 21, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 695, - 331, - 1049, - 331, - 1049, - 998, - 695, - 998 - ], - "score": 0.958 - }, - { - "category_id": 1, - "poly": [ - 250, - 1776, - 542, - 1776, - 542, - 2057, - 250, - 2057 - ], - "score": 0.95 - }, - { - "category_id": 1, - "poly": [ - 253, - 190, - 1342, - 190, - 1342, - 306, - 253, - 306 - ], - "score": 0.949 - }, - { - "category_id": 1, - "poly": [ - 250, - 1159, - 423, - 1159, - 423, - 1441, - 250, - 1441 - ], - "score": 0.941 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1624, - 146, - 1624, - 213, - 1516, - 213 - ], - "score": 0.933 - }, - { - "category_id": 1, - "poly": [ - 249, - 1534, - 1331, - 1534, - 1331, - 1613, - 249, - 1613 - ], - "score": 0.923 - }, - { - "category_id": 2, - "poly": [ - 127, - 1527, - 227, - 1527, - 227, - 1574, - 127, - 1574 - ], - "score": 0.902 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2264, - 1496, - 2264, - 1496, - 2290, - 1331, - 2290 - ], - "score": 0.895 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2293, - 118, - 2293 - ], - "score": 0.881 - }, - { - "category_id": 2, - "poly": [ - 126, - 181, - 227, - 181, - 227, - 230, - 126, - 230 - ], - "score": 0.88 - }, - { - "category_id": 2, - "poly": [ - 783, - 82, - 822, - 82, - 822, - 111, - 783, - 111 - ], - "score": 0.863 - }, - { - "category_id": 2, - "poly": [ - 1581, - 2, - 1653, - 2, - 1653, - 39, - 1581, - 39 - ], - "score": 0.839 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2143, - 1495, - 2143, - 1495, - 2178, - 1317, - 2178 - ], - "score": 0.815 - }, - { - "category_id": 1, - "poly": [ - 255, - 1648, - 730, - 1648, - 730, - 1686, - 255, - 1686 - ], - "score": 0.802 - }, - { - "category_id": 1, - "poly": [ - 254, - 1033, - 1487, - 1033, - 1487, - 1103, - 254, - 1103 - ], - "score": 0.788 - }, - { - "category_id": 3, - "poly": [ - 1225, - 1156, - 1303, - 1156, - 1303, - 1445, - 1225, - 1445 - ], - "score": 0.722 - }, - { - "category_id": 1, - "poly": [ - 1363, - 1687, - 1488, - 1687, - 1488, - 1723, - 1363, - 1723 - ], - "score": 0.62 - }, - { - "category_id": 3, - "poly": [ - 1225, - 1770, - 1303, - 1770, - 1303, - 2059, - 1225, - 2059 - ], - "score": 0.606 - }, - { - "category_id": 3, - "poly": [ - 1226, - 1771, - 1304, - 1771, - 1304, - 2059, - 1226, - 2059 - ], - "score": 0.308 - }, - { - "category_id": 1, - "poly": [ - 263, - 271, - 1002, - 271, - 1002, - 305, - 263, - 305 - ], - "score": 0.161 - }, - { - "category_id": 3, - "poly": [ - 1226, - 1157, - 1304, - 1157, - 1304, - 1445, - 1226, - 1445 - ], - "score": 0.128 - }, - { - "category_id": 4, - "poly": [ - 1363, - 1687, - 1488, - 1687, - 1488, - 1723, - 1363, - 1723 - ], - "score": 0.113 - }, - { - "category_id": 13, - "poly": [ - 782, - 1035, - 889, - 1035, - 889, - 1074, - 782, - 1074 - ], - "score": 0.77, - "latex": "0.20\\mathrm{kg}" - }, - { - "category_id": 13, - "poly": [ - 704, - 1577, - 732, - 1577, - 732, - 1608, - 704, - 1608 - ], - "score": 0.75, - "latex": "F" - }, - { - "category_id": 13, - "poly": [ - 293, - 1780, - 458, - 1780, - 458, - 1814, - 293, - 1814 - ], - "score": 0.74, - "latex": "T=M a+F" - }, - { - "category_id": 13, - "poly": [ - 305, - 231, - 411, - 231, - 411, - 268, - 305, - 268 - ], - "score": 0.74, - "latex": "0.20\\mathrm{kg}" - }, - { - "category_id": 13, - "poly": [ - 894, - 192, - 1000, - 192, - 1000, - 231, - 894, - 231 - ], - "score": 0.71, - "latex": "0.10\\mathrm{kg}" - }, - { - "category_id": 13, - "poly": [ - 294, - 1937, - 538, - 1937, - 538, - 1976, - 294, - 1976 - ], - "score": 0.67, - "latex": "{\\cal T}={\\cal M}\\left(g+a\\right)-{\\cal F}" - }, - { - "category_id": 13, - "poly": [ - 254, - 191, - 388, - 191, - 388, - 230, - 254, - 230 - ], - "score": 0.67, - "latex": "\\mathbb{A}0.20\\mathrm{kg}" - }, - { - "category_id": 13, - "poly": [ - 523, - 1651, - 549, - 1651, - 549, - 1682, - 523, - 1682 - ], - "score": 0.66, - "latex": "T" - }, - { - "category_id": 13, - "poly": [ - 293, - 1859, - 456, - 1859, - 456, - 1893, - 293, - 1893 - ], - "score": 0.61, - "latex": "T=M a-F" - }, - { - "category_id": 13, - "poly": [ - 437, - 1538, - 472, - 1538, - 472, - 1570, - 437, - 1570 - ], - "score": 0.53, - "latex": "M" - }, - { - "category_id": 13, - "poly": [ - 294, - 2015, - 536, - 2015, - 536, - 2055, - 294, - 2055 - ], - "score": 0.46, - "latex": "T=M\\left(g-a\\right)-F" - }, - { - "category_id": 13, - "poly": [ - 292, - 1159, - 420, - 1159, - 420, - 1204, - 292, - 1204 - ], - "score": 0.42, - "latex": "3.3\\mathrm{m~s}^{-2}" - }, - { - "category_id": 13, - "poly": [ - 783, - 752, - 886, - 752, - 886, - 793, - 783, - 793 - ], - "score": 0.42, - "latex": "0.20\\mathrm{kg}" - }, - { - "category_id": 13, - "poly": [ - 436, - 1583, - 457, - 1583, - 457, - 1608, - 436, - 1608 - ], - "score": 0.37, - "latex": "a" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 1784.0, - 292.0, - 1784.0, - 292.0, - 1812.0, - 257.0, - 1812.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 1861.0, - 292.0, - 1861.0, - 292.0, - 1893.0, - 256.0, - 1893.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 457.0, - 1861.0, - 457.0, - 1861.0, - 457.0, - 1893.0, - 457.0, - 1893.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1939.0, - 293.0, - 1939.0, - 293.0, - 1974.0, - 255.0, - 1974.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 539.0, - 1939.0, - 539.0, - 1939.0, - 539.0, - 1974.0, - 539.0, - 1974.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 2016.0, - 293.0, - 2016.0, - 293.0, - 2056.0, - 253.0, - 2056.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 537.0, - 2016.0, - 538.0, - 2016.0, - 538.0, - 2056.0, - 537.0, - 2056.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 389.0, - 195.0, - 893.0, - 195.0, - 893.0, - 229.0, - 389.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1001.0, - 195.0, - 1339.0, - 195.0, - 1339.0, - 229.0, - 1001.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 230.0, - 304.0, - 230.0, - 304.0, - 270.0, - 255.0, - 270.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 412.0, - 230.0, - 954.0, - 230.0, - 954.0, - 270.0, - 412.0, - 270.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 270.0, - 998.0, - 270.0, - 998.0, - 307.0, - 255.0, - 307.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 1166.0, - 291.0, - 1166.0, - 291.0, - 1200.0, - 256.0, - 1200.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 248.0, - 1240.0, - 424.0, - 1240.0, - 424.0, - 1282.0, - 248.0, - 1282.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 250.0, - 1400.0, - 421.0, - 1400.0, - 421.0, - 1437.0, - 250.0, - 1437.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 248.25, - 1315.0, - 425.25, - 1315.0, - 425.25, - 1364.0, - 248.25, - 1364.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1624.0, - 147.0, - 1624.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 193.0, - 1520.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 190.0, - 1593.0, - 190.0, - 1593.0, - 216.0, - 1549.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1537.0, - 436.0, - 1537.0, - 436.0, - 1572.0, - 254.0, - 1572.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 473.0, - 1537.0, - 1329.0, - 1537.0, - 1329.0, - 1572.0, - 473.0, - 1572.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 1578.0, - 435.0, - 1578.0, - 435.0, - 1609.0, - 257.0, - 1609.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 458.0, - 1578.0, - 703.0, - 1578.0, - 703.0, - 1609.0, - 458.0, - 1609.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 733.0, - 1578.0, - 937.0, - 1578.0, - 937.0, - 1609.0, - 733.0, - 1609.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 1532.0, - 220.0, - 1532.0, - 220.0, - 1571.0, - 136.0, - 1571.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1332.0, - 2266.0, - 1498.0, - 2266.0, - 1498.0, - 2291.0, - 1332.0, - 2291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 168.0, - 2270.0, - 187.0, - 2270.0, - 187.0, - 2290.0, - 168.0, - 2290.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 2269.0, - 223.0, - 2269.0, - 223.0, - 2290.0, - 197.0, - 2290.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 189.0, - 214.0, - 189.0, - 214.0, - 223.0, - 138.0, - 223.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 77.0, - 827.0, - 77.0, - 827.0, - 118.0, - 779.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1318.0, - 2146.0, - 1473.0, - 2146.0, - 1473.0, - 2176.0, - 1318.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 1652.0, - 522.0, - 1652.0, - 522.0, - 1682.0, - 258.0, - 1682.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 550.0, - 1652.0, - 727.0, - 1652.0, - 727.0, - 1682.0, - 550.0, - 1682.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 1037.0, - 781.0, - 1037.0, - 781.0, - 1071.0, - 257.0, - 1071.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 890.0, - 1037.0, - 1456.0, - 1037.0, - 1456.0, - 1071.0, - 890.0, - 1071.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1361.0, - 1072.0, - 1494.0, - 1072.0, - 1494.0, - 1111.0, - 1361.0, - 1111.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 1685.0, - 1491.0, - 1685.0, - 1491.0, - 1726.0, - 1363.0, - 1726.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 271.0, - 997.0, - 271.0, - 997.0, - 304.0, - 261.0, - 304.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 1685.0, - 1491.0, - 1685.0, - 1491.0, - 1726.0, - 1363.0, - 1726.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 22, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 254, - 761, - 1337, - 761, - 1337, - 873, - 254, - 873 - ], - "score": 0.961 - }, - { - "category_id": 1, - "poly": [ - 250, - 1534, - 969, - 1534, - 969, - 1813, - 250, - 1813 - ], - "score": 0.959 - }, - { - "category_id": 1, - "poly": [ - 250, - 391, - 699, - 391, - 699, - 668, - 250, - 668 - ], - "score": 0.952 - }, - { - "category_id": 2, - "poly": [ - 1516, - 145, - 1624, - 145, - 1624, - 213, - 1516, - 213 - ], - "score": 0.926 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2292, - 118, - 2292 - ], - "score": 0.899 - }, - { - "category_id": 1, - "poly": [ - 252, - 1404, - 1005, - 1404, - 1005, - 1445, - 252, - 1445 - ], - "score": 0.895 - }, - { - "category_id": 2, - "poly": [ - 127, - 753, - 227, - 753, - 227, - 801, - 127, - 801 - ], - "score": 0.893 - }, - { - "category_id": 2, - "poly": [ - 1330, - 2265, - 1496, - 2265, - 1496, - 2290, - 1330, - 2290 - ], - "score": 0.893 - }, - { - "category_id": 2, - "poly": [ - 127, - 1397, - 227, - 1397, - 227, - 1444, - 127, - 1444 - ], - "score": 0.873 - }, - { - "category_id": 2, - "poly": [ - 783, - 81, - 822, - 81, - 822, - 111, - 783, - 111 - ], - "score": 0.864 - }, - { - "category_id": 2, - "poly": [ - 127, - 181, - 227, - 181, - 227, - 230, - 127, - 230 - ], - "score": 0.861 - }, - { - "category_id": 1, - "poly": [ - 252, - 905, - 1464, - 905, - 1464, - 946, - 252, - 946 - ], - "score": 0.843 - }, - { - "category_id": 2, - "poly": [ - 1581, - 2, - 1653, - 2, - 1653, - 39, - 1581, - 39 - ], - "score": 0.832 - }, - { - "category_id": 1, - "poly": [ - 250, - 1033, - 1079, - 1033, - 1079, - 1313, - 250, - 1313 - ], - "score": 0.808 - }, - { - "category_id": 3, - "poly": [ - 1227, - 1525, - 1304, - 1525, - 1304, - 1814, - 1227, - 1814 - ], - "score": 0.753 - }, - { - "category_id": 3, - "poly": [ - 1226, - 383, - 1304, - 383, - 1304, - 672, - 1226, - 672 - ], - "score": 0.719 - }, - { - "category_id": 3, - "poly": [ - 1226, - 1026, - 1304, - 1026, - 1304, - 1315, - 1226, - 1315 - ], - "score": 0.646 - }, - { - "category_id": 1, - "poly": [ - 1363, - 299, - 1488, - 299, - 1488, - 337, - 1363, - 337 - ], - "score": 0.602 - }, - { - "category_id": 1, - "poly": [ - 251, - 189, - 940, - 189, - 940, - 229, - 251, - 229 - ], - "score": 0.565 - }, - { - "category_id": 1, - "poly": [ - 254, - 261, - 1060, - 261, - 1060, - 303, - 254, - 303 - ], - "score": 0.527 - }, - { - "category_id": 1, - "poly": [ - 1364, - 1443, - 1488, - 1443, - 1488, - 1479, - 1364, - 1479 - ], - "score": 0.516 - }, - { - "category_id": 1, - "poly": [ - 1364, - 945, - 1487, - 945, - 1487, - 980, - 1364, - 980 - ], - "score": 0.43 - }, - { - "category_id": 3, - "poly": [ - 245, - 1024, - 1312, - 1024, - 1312, - 1316, - 245, - 1316 - ], - "score": 0.367 - }, - { - "category_id": 1, - "poly": [ - 253, - 188, - 1061, - 188, - 1061, - 304, - 253, - 304 - ], - "score": 0.262 - }, - { - "category_id": 4, - "poly": [ - 1364, - 1443, - 1488, - 1443, - 1488, - 1479, - 1364, - 1479 - ], - "score": 0.233 - }, - { - "category_id": 3, - "poly": [ - 1225, - 383, - 1303, - 383, - 1303, - 672, - 1225, - 672 - ], - "score": 0.178 - }, - { - "category_id": 3, - "poly": [ - 1226, - 1525, - 1303, - 1525, - 1303, - 1814, - 1226, - 1814 - ], - "score": 0.166 - }, - { - "category_id": 13, - "poly": [ - 711, - 1685, - 841, - 1685, - 841, - 1732, - 711, - 1732 - ], - "score": 0.86, - "latex": "\\mathrm{kg}\\mathrm{m}^{2}\\mathrm{s}^{-3}" - }, - { - "category_id": 13, - "poly": [ - 710, - 1778, - 735, - 1778, - 735, - 1803, - 710, - 1803 - ], - "score": 0.76, - "latex": "\\times" - }, - { - "category_id": 13, - "poly": [ - 1249, - 1785, - 1281, - 1785, - 1281, - 1798, - 1249, - 1798 - ], - "score": 0.7, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 763.0, - 1332.0, - 763.0, - 1332.0, - 801.0, - 255.0, - 801.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 798.0, - 1080.0, - 798.0, - 1080.0, - 837.0, - 253.0, - 837.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 834.0, - 808.0, - 834.0, - 808.0, - 874.0, - 253.0, - 874.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 1535.0, - 583.0, - 1535.0, - 583.0, - 1572.0, - 256.0, - 1572.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 1616.0, - 551.0, - 1616.0, - 551.0, - 1647.0, - 257.0, - 1647.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 248.0, - 1688.0, - 710.0, - 1688.0, - 710.0, - 1733.0, - 248.0, - 1733.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 842.0, - 1688.0, - 847.0, - 1688.0, - 847.0, - 1733.0, - 842.0, - 1733.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 1774.0, - 709.0, - 1774.0, - 709.0, - 1805.0, - 257.0, - 1805.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 736.0, - 1774.0, - 963.0, - 1774.0, - 963.0, - 1805.0, - 736.0, - 1805.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 392.0, - 496.0, - 392.0, - 496.0, - 431.0, - 255.0, - 431.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 470.0, - 381.0, - 470.0, - 381.0, - 508.0, - 251.0, - 508.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 551.0, - 697.0, - 551.0, - 697.0, - 588.0, - 255.0, - 588.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 630.0, - 397.0, - 630.0, - 397.0, - 668.0, - 252.0, - 668.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1516.0, - 144.0, - 1624.0, - 144.0, - 1624.0, - 171.0, - 1516.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1519.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 191.0, - 1519.0, - 191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 189.0, - 1593.0, - 189.0, - 1593.0, - 216.0, - 1549.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 2273.0, - 180.0, - 2273.0, - 180.0, - 2284.0, - 172.0, - 2284.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 203.0, - 2270.0, - 220.0, - 2270.0, - 220.0, - 2286.0, - 203.0, - 2286.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1406.0, - 1000.0, - 1406.0, - 1000.0, - 1442.0, - 255.0, - 1442.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 758.0, - 219.0, - 758.0, - 219.0, - 796.0, - 135.0, - 796.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 1403.0, - 216.0, - 1403.0, - 216.0, - 1438.0, - 138.0, - 1438.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 781.0, - 80.0, - 826.0, - 80.0, - 826.0, - 116.0, - 781.0, - 116.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 188.0, - 213.0, - 188.0, - 213.0, - 223.0, - 138.0, - 223.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 908.0, - 1452.0, - 908.0, - 1452.0, - 945.0, - 255.0, - 945.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 1039.0, - 525.0, - 1039.0, - 525.0, - 1071.0, - 257.0, - 1071.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1116.0, - 705.0, - 1116.0, - 705.0, - 1150.0, - 255.0, - 1150.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1195.0, - 767.0, - 1195.0, - 767.0, - 1228.0, - 255.0, - 1228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1273.0, - 1076.0, - 1273.0, - 1076.0, - 1307.0, - 255.0, - 1307.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1364.0, - 300.0, - 1490.0, - 300.0, - 1490.0, - 338.0, - 1364.0, - 338.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 193.0, - 938.0, - 193.0, - 938.0, - 229.0, - 255.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 263.0, - 1056.0, - 263.0, - 1056.0, - 300.0, - 256.0, - 300.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1364.0, - 1441.0, - 1491.0, - 1441.0, - 1491.0, - 1482.0, - 1364.0, - 1482.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 940.0, - 1490.0, - 940.0, - 1490.0, - 984.0, - 1363.0, - 984.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 193.0, - 938.0, - 193.0, - 938.0, - 229.0, - 256.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 264.0, - 1056.0, - 264.0, - 1056.0, - 300.0, - 256.0, - 300.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1364.0, - 1441.0, - 1491.0, - 1441.0, - 1491.0, - 1482.0, - 1364.0, - 1482.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 23, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 252, - 907, - 1177, - 907, - 1177, - 1315, - 252, - 1315 - ], - "score": 0.966, - "html": "
Cross-sectional areaLengthYoung modulus of material
AX3LE
B2X7E
CX3L4E
D2X74E
" - }, - { - "category_id": 1, - "poly": [ - 251, - 764, - 1476, - 764, - 1476, - 840, - 251, - 840 - ], - "score": 0.94 - }, - { - "category_id": 1, - "poly": [ - 251, - 389, - 467, - 389, - 467, - 672, - 251, - 672 - ], - "score": 0.933 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1624, - 146, - 1624, - 213, - 1516, - 213 - ], - "score": 0.931 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2292, - 118, - 2292 - ], - "score": 0.902 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2144, - 1496, - 2144, - 1496, - 2177, - 1317, - 2177 - ], - "score": 0.899 - }, - { - "category_id": 2, - "poly": [ - 126, - 758, - 227, - 758, - 227, - 805, - 126, - 805 - ], - "score": 0.894 - }, - { - "category_id": 2, - "poly": [ - 1332, - 2265, - 1496, - 2265, - 1496, - 2290, - 1332, - 2290 - ], - "score": 0.879 - }, - { - "category_id": 1, - "poly": [ - 574, - 1452, - 1034, - 1452, - 1034, - 1491, - 574, - 1491 - ], - "score": 0.867 - }, - { - "category_id": 2, - "poly": [ - 782, - 81, - 823, - 81, - 823, - 112, - 782, - 112 - ], - "score": 0.864 - }, - { - "category_id": 2, - "poly": [ - 127, - 181, - 227, - 181, - 227, - 230, - 127, - 230 - ], - "score": 0.854 - }, - { - "category_id": 1, - "poly": [ - 255, - 265, - 797, - 265, - 797, - 304, - 255, - 304 - ], - "score": 0.842 - }, - { - "category_id": 1, - "poly": [ - 241, - 189, - 1392, - 189, - 1392, - 231, - 241, - 231 - ], - "score": 0.836 - }, - { - "category_id": 2, - "poly": [ - 1581, - 2, - 1653, - 2, - 1653, - 39, - 1581, - 39 - ], - "score": 0.825 - }, - { - "category_id": 1, - "poly": [ - 1363, - 840, - 1487, - 840, - 1487, - 877, - 1363, - 877 - ], - "score": 0.81 - }, - { - "category_id": 3, - "poly": [ - 1226, - 386, - 1305, - 386, - 1305, - 676, - 1226, - 676 - ], - "score": 0.788 - }, - { - "category_id": 1, - "poly": [ - 1362, - 303, - 1488, - 303, - 1488, - 341, - 1362, - 341 - ], - "score": 0.635 - }, - { - "category_id": 3, - "poly": [ - 1211, - 1004, - 1291, - 1004, - 1291, - 1299, - 1211, - 1299 - ], - "score": 0.27 - }, - { - "category_id": 13, - "poly": [ - 1293, - 186, - 1384, - 186, - 1384, - 227, - 1293, - 227 - ], - "score": 0.85, - "latex": "1\\mathrm{mm}^{2}" - }, - { - "category_id": 13, - "poly": [ - 293, - 626, - 344, - 626, - 344, - 668, - 293, - 668 - ], - "score": 0.72, - "latex": "10^{9}" - }, - { - "category_id": 13, - "poly": [ - 747, - 1261, - 772, - 1261, - 772, - 1286, - 747, - 1286 - ], - "score": 0.69, - "latex": "L" - }, - { - "category_id": 13, - "poly": [ - 1001, - 1095, - 1031, - 1095, - 1031, - 1128, - 1001, - 1128 - ], - "score": 0.66, - "latex": "E" - }, - { - "category_id": 13, - "poly": [ - 993, - 1254, - 1038, - 1254, - 1038, - 1287, - 993, - 1287 - ], - "score": 0.66, - "latex": "4E" - }, - { - "category_id": 13, - "poly": [ - 746, - 1097, - 773, - 1097, - 773, - 1127, - 746, - 1127 - ], - "score": 0.63, - "latex": "L" - }, - { - "category_id": 13, - "poly": [ - 1000, - 1014, - 1031, - 1014, - 1031, - 1048, - 1000, - 1048 - ], - "score": 0.62, - "latex": "E" - }, - { - "category_id": 13, - "poly": [ - 407, - 626, - 467, - 626, - 467, - 668, - 407, - 668 - ], - "score": 0.62, - "latex": "10^{12}" - }, - { - "category_id": 13, - "poly": [ - 1236, - 1268, - 1268, - 1268, - 1268, - 1281, - 1236, - 1281 - ], - "score": 0.61, - "latex": "\\smile" - }, - { - "category_id": 13, - "poly": [ - 993, - 1174, - 1039, - 1174, - 1039, - 1207, - 993, - 1207 - ], - "score": 0.6, - "latex": "4E" - }, - { - "category_id": 13, - "poly": [ - 293, - 469, - 344, - 469, - 344, - 511, - 293, - 511 - ], - "score": 0.58, - "latex": "{10}^{3}" - }, - { - "category_id": 13, - "poly": [ - 293, - 547, - 345, - 547, - 345, - 590, - 293, - 590 - ], - "score": 0.58, - "latex": "10^{6}" - }, - { - "category_id": 13, - "poly": [ - 383, - 191, - 455, - 191, - 455, - 227, - 383, - 227 - ], - "score": 0.57, - "latex": "50\\mathrm{N}" - }, - { - "category_id": 13, - "poly": [ - 482, - 1013, - 516, - 1013, - 516, - 1048, - 482, - 1048 - ], - "score": 0.55, - "latex": "X" - }, - { - "category_id": 13, - "poly": [ - 483, - 1174, - 515, - 1174, - 515, - 1207, - 483, - 1207 - ], - "score": 0.54, - "latex": "X" - }, - { - "category_id": 13, - "poly": [ - 407, - 548, - 457, - 548, - 457, - 589, - 407, - 589 - ], - "score": 0.53, - "latex": "{10}^{9}" - }, - { - "category_id": 13, - "poly": [ - 293, - 391, - 344, - 391, - 344, - 432, - 293, - 432 - ], - "score": 0.43, - "latex": "10^{0}" - }, - { - "category_id": 13, - "poly": [ - 407, - 391, - 456, - 391, - 456, - 432, - 407, - 432 - ], - "score": 0.41, - "latex": "10^{3}" - }, - { - "category_id": 13, - "poly": [ - 407, - 469, - 457, - 469, - 457, - 511, - 407, - 511 - ], - "score": 0.4, - "latex": "{10}^{6}" - }, - { - "category_id": 13, - "poly": [ - 474, - 1093, - 522, - 1093, - 522, - 1128, - 474, - 1128 - ], - "score": 0.31, - "latex": "2X" - }, - { - "category_id": 13, - "poly": [ - 739, - 1175, - 781, - 1175, - 781, - 1207, - 739, - 1207 - ], - "score": 0.27, - "latex": "3L" - }, - { - "category_id": 13, - "poly": [ - 737, - 1013, - 782, - 1013, - 782, - 1049, - 737, - 1049 - ], - "score": 0.26, - "latex": "3L" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 769.0, - 1471.0, - 769.0, - 1471.0, - 803.0, - 256.0, - 803.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 807.0, - 811.0, - 807.0, - 811.0, - 838.0, - 256.0, - 838.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 391.0, - 292.0, - 391.0, - 292.0, - 433.0, - 255.0, - 433.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 345.0, - 391.0, - 406.0, - 391.0, - 406.0, - 433.0, - 345.0, - 433.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 469.0, - 292.0, - 469.0, - 292.0, - 512.0, - 251.0, - 512.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 345.0, - 469.0, - 406.0, - 469.0, - 406.0, - 512.0, - 345.0, - 512.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 458.0, - 469.0, - 458.0, - 469.0, - 458.0, - 512.0, - 458.0, - 512.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 551.0, - 292.0, - 551.0, - 292.0, - 587.0, - 254.0, - 587.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 346.0, - 551.0, - 406.0, - 551.0, - 406.0, - 587.0, - 346.0, - 587.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 629.0, - 292.0, - 629.0, - 292.0, - 667.0, - 251.0, - 667.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 345.0, - 629.0, - 406.0, - 629.0, - 406.0, - 667.0, - 345.0, - 667.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 468.0, - 629.0, - 469.0, - 629.0, - 469.0, - 667.0, - 468.0, - 667.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1624.0, - 147.0, - 1624.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 193.0, - 1520.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 190.0, - 1593.0, - 190.0, - 1593.0, - 216.0, - 1549.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 169.0, - 2269.0, - 185.0, - 2269.0, - 185.0, - 2289.0, - 169.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 2269.0, - 221.0, - 2269.0, - 221.0, - 2290.0, - 197.0, - 2290.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1318.0, - 2146.0, - 1472.0, - 2146.0, - 1472.0, - 2176.0, - 1318.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 766.0, - 173.0, - 766.0, - 173.0, - 798.0, - 140.0, - 798.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 185.0, - 768.0, - 214.0, - 768.0, - 214.0, - 797.0, - 185.0, - 797.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1499.0, - 2268.0, - 1499.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 577.0, - 1455.0, - 1031.0, - 1455.0, - 1031.0, - 1488.0, - 577.0, - 1488.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 78.0, - 828.0, - 78.0, - 828.0, - 118.0, - 779.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 187.0, - 219.0, - 187.0, - 219.0, - 225.0, - 136.0, - 225.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 268.0, - 796.0, - 268.0, - 796.0, - 301.0, - 256.0, - 301.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 189.0, - 382.0, - 189.0, - 382.0, - 229.0, - 254.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 456.0, - 189.0, - 1292.0, - 189.0, - 1292.0, - 229.0, - 456.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1385.0, - 189.0, - 1391.0, - 189.0, - 1391.0, - 229.0, - 1385.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 836.0, - 1491.0, - 836.0, - 1491.0, - 880.0, - 1363.0, - 880.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1364.0, - 304.0, - 1490.0, - 304.0, - 1490.0, - 342.0, - 1364.0, - 342.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 24, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 529, - 378, - 1212, - 378, - 1212, - 1215, - 529, - 1215 - ], - "score": 0.965 - }, - { - "category_id": 1, - "poly": [ - 250, - 1413, - 401, - 1413, - 401, - 1693, - 250, - 1693 - ], - "score": 0.94 - }, - { - "category_id": 2, - "poly": [ - 1516, - 145, - 1624, - 145, - 1624, - 213, - 1516, - 213 - ], - "score": 0.933 - }, - { - "category_id": 1, - "poly": [ - 252, - 1287, - 1037, - 1287, - 1037, - 1326, - 252, - 1326 - ], - "score": 0.919 - }, - { - "category_id": 2, - "poly": [ - 118, - 2186, - 279, - 2186, - 279, - 2293, - 118, - 2293 - ], - "score": 0.908 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2290, - 1331, - 2290 - ], - "score": 0.887 - }, - { - "category_id": 2, - "poly": [ - 126, - 181, - 227, - 181, - 227, - 230, - 126, - 230 - ], - "score": 0.878 - }, - { - "category_id": 2, - "poly": [ - 783, - 82, - 822, - 82, - 822, - 111, - 783, - 111 - ], - "score": 0.862 - }, - { - "category_id": 2, - "poly": [ - 1581, - 2, - 1653, - 2, - 1653, - 39, - 1581, - 39 - ], - "score": 0.831 - }, - { - "category_id": 3, - "poly": [ - 1225, - 1407, - 1305, - 1407, - 1305, - 1697, - 1225, - 1697 - ], - "score": 0.712 - }, - { - "category_id": 1, - "poly": [ - 248, - 269, - 1444, - 269, - 1444, - 344, - 248, - 344 - ], - "score": 0.7 - }, - { - "category_id": 1, - "poly": [ - 246, - 191, - 1414, - 191, - 1414, - 266, - 246, - 266 - ], - "score": 0.684 - }, - { - "category_id": 1, - "poly": [ - 1364, - 1324, - 1488, - 1324, - 1488, - 1362, - 1364, - 1362 - ], - "score": 0.644 - }, - { - "category_id": 1, - "poly": [ - 251, - 190, - 1443, - 190, - 1443, - 343, - 251, - 343 - ], - "score": 0.302 - }, - { - "category_id": 4, - "poly": [ - 1364, - 1324, - 1488, - 1324, - 1488, - 1362, - 1364, - 1362 - ], - "score": 0.103 - }, - { - "category_id": 13, - "poly": [ - 254, - 226, - 377, - 226, - 377, - 265, - 254, - 265 - ], - "score": 0.87, - "latex": "0.4\\mathrm{m~s}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 1249, - 1667, - 1281, - 1667, - 1281, - 1681, - 1249, - 1681 - ], - "score": 0.74, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 891, - 270, - 922, - 270, - 922, - 306, - 891, - 306 - ], - "score": 0.63, - "latex": "Q" - }, - { - "category_id": 13, - "poly": [ - 1005, - 193, - 1087, - 193, - 1087, - 227, - 1005, - 227 - ], - "score": 0.6, - "latex": "0.1\\textrm{m}" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1414.0, - 400.0, - 1414.0, - 400.0, - 1456.0, - 254.0, - 1456.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1493.0, - 384.0, - 1493.0, - 384.0, - 1536.0, - 254.0, - 1536.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1572.0, - 384.0, - 1572.0, - 384.0, - 1615.0, - 254.0, - 1615.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1648.0, - 345.0, - 1648.0, - 345.0, - 1697.0, - 252.0, - 1697.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1516.0, - 144.0, - 1624.0, - 144.0, - 1624.0, - 171.0, - 1516.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1519.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 191.0, - 1519.0, - 191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 189.0, - 1593.0, - 189.0, - 1593.0, - 216.0, - 1549.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1287.0, - 1036.0, - 1287.0, - 1036.0, - 1326.0, - 254.0, - 1326.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 2271.0, - 181.0, - 2271.0, - 181.0, - 2288.0, - 170.0, - 2288.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 203.0, - 2271.0, - 220.0, - 2271.0, - 220.0, - 2289.0, - 203.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 189.0, - 212.0, - 189.0, - 212.0, - 223.0, - 139.0, - 223.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 827.0, - 78.0, - 827.0, - 118.0, - 780.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 267.0, - 890.0, - 267.0, - 890.0, - 307.0, - 255.0, - 307.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 923.0, - 267.0, - 1444.0, - 267.0, - 1444.0, - 307.0, - 923.0, - 307.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 309.0, - 656.0, - 309.0, - 656.0, - 343.0, - 255.0, - 343.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 192.0, - 1004.0, - 192.0, - 1004.0, - 229.0, - 254.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1088.0, - 192.0, - 1399.0, - 192.0, - 1399.0, - 229.0, - 1088.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 248.0, - 228.0, - 253.0, - 228.0, - 253.0, - 266.0, - 248.0, - 266.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 378.0, - 228.0, - 383.0, - 228.0, - 383.0, - 266.0, - 378.0, - 266.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1365.0, - 1325.0, - 1490.0, - 1325.0, - 1490.0, - 1363.0, - 1365.0, - 1363.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 193.0, - 1004.0, - 193.0, - 1004.0, - 230.0, - 255.0, - 230.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1088.0, - 193.0, - 1400.0, - 193.0, - 1400.0, - 230.0, - 1088.0, - 230.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 249.0, - 229.0, - 253.0, - 229.0, - 253.0, - 265.0, - 249.0, - 265.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 378.0, - 229.0, - 388.0, - 229.0, - 388.0, - 265.0, - 378.0, - 265.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 269.0, - 890.0, - 269.0, - 890.0, - 306.0, - 255.0, - 306.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 923.0, - 269.0, - 1443.0, - 269.0, - 1443.0, - 306.0, - 923.0, - 306.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 309.0, - 657.0, - 309.0, - 657.0, - 342.0, - 255.0, - 342.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1365.0, - 1325.0, - 1490.0, - 1325.0, - 1490.0, - 1363.0, - 1365.0, - 1363.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 25, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 579, - 260, - 1031, - 260, - 1031, - 590, - 579, - 590 - ], - "score": 0.952 - }, - { - "category_id": 1, - "poly": [ - 251, - 756, - 484, - 756, - 484, - 1035, - 251, - 1035 - ], - "score": 0.95 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1624, - 146, - 1624, - 213, - 1516, - 213 - ], - "score": 0.933 - }, - { - "category_id": 1, - "poly": [ - 253, - 625, - 1230, - 625, - 1230, - 667, - 253, - 667 - ], - "score": 0.922 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2144, - 1496, - 2144, - 1496, - 2177, - 1317, - 2177 - ], - "score": 0.9 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 279, - 2187, - 279, - 2292, - 119, - 2292 - ], - "score": 0.893 - }, - { - "category_id": 1, - "poly": [ - 574, - 1191, - 1033, - 1191, - 1033, - 1229, - 574, - 1229 - ], - "score": 0.879 - }, - { - "category_id": 1, - "poly": [ - 121, - 187, - 1241, - 187, - 1241, - 231, - 121, - 231 - ], - "score": 0.877 - }, - { - "category_id": 2, - "poly": [ - 1332, - 2266, - 1496, - 2266, - 1496, - 2290, - 1332, - 2290 - ], - "score": 0.874 - }, - { - "category_id": 2, - "poly": [ - 783, - 81, - 821, - 81, - 821, - 111, - 783, - 111 - ], - "score": 0.864 - }, - { - "category_id": 2, - "poly": [ - 1581, - 2, - 1653, - 2, - 1653, - 39, - 1581, - 39 - ], - "score": 0.825 - }, - { - "category_id": 2, - "poly": [ - 128, - 182, - 227, - 182, - 227, - 230, - 128, - 230 - ], - "score": 0.711 - }, - { - "category_id": 3, - "poly": [ - 1225, - 748, - 1304, - 748, - 1304, - 1040, - 1225, - 1040 - ], - "score": 0.692 - }, - { - "category_id": 1, - "poly": [ - 1364, - 666, - 1488, - 666, - 1488, - 703, - 1364, - 703 - ], - "score": 0.66 - }, - { - "category_id": 3, - "poly": [ - 1225, - 748, - 1305, - 748, - 1305, - 1039, - 1225, - 1039 - ], - "score": 0.112 - }, - { - "category_id": 4, - "poly": [ - 1364, - 666, - 1488, - 666, - 1488, - 703, - 1364, - 703 - ], - "score": 0.105 - }, - { - "category_id": 13, - "poly": [ - 536, - 627, - 630, - 627, - 630, - 663, - 536, - 663 - ], - "score": 0.69, - "latex": "3.0\\mathrm{eV}" - }, - { - "category_id": 13, - "poly": [ - 1249, - 1008, - 1281, - 1008, - 1281, - 1021, - 1249, - 1021 - ], - "score": 0.64, - "latex": "\\subset" - }, - { - "category_id": 13, - "poly": [ - 955, - 192, - 1033, - 192, - 1033, - 227, - 955, - 227 - ], - "score": 0.47, - "latex": "1.5\\mathrm{V}" - }, - { - "category_id": 13, - "poly": [ - 469, - 193, - 497, - 193, - 497, - 226, - 469, - 226 - ], - "score": 0.34, - "latex": "\\pmb{\\mathrm{x}}" - }, - { - "category_id": 13, - "poly": [ - 558, - 193, - 585, - 193, - 585, - 225, - 558, - 225 - ], - "score": 0.27, - "latex": "\\pmb{\\upgamma}" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 760.0, - 387.0, - 760.0, - 387.0, - 796.0, - 254.0, - 796.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 836.0, - 410.0, - 836.0, - 410.0, - 877.0, - 252.0, - 877.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 918.0, - 409.0, - 918.0, - 409.0, - 950.0, - 254.0, - 950.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 994.0, - 480.0, - 994.0, - 480.0, - 1034.0, - 254.0, - 1034.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1624.0, - 147.0, - 1624.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 193.0, - 1520.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 190.0, - 1593.0, - 190.0, - 1593.0, - 216.0, - 1549.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 629.0, - 535.0, - 629.0, - 535.0, - 664.0, - 257.0, - 664.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 631.0, - 629.0, - 1228.0, - 629.0, - 1228.0, - 664.0, - 631.0, - 664.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1318.0, - 2146.0, - 1472.0, - 2146.0, - 1472.0, - 2176.0, - 1318.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 2272.0, - 182.0, - 2272.0, - 182.0, - 2285.0, - 171.0, - 2285.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 578.0, - 1193.0, - 1030.0, - 1193.0, - 1030.0, - 1226.0, - 578.0, - 1226.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 124.0, - 183.5, - 1247.0, - 183.5, - 1247.0, - 236.5, - 124.0, - 236.5 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1332.0, - 2266.0, - 1499.0, - 2266.0, - 1499.0, - 2291.0, - 1332.0, - 2291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 79.0, - 828.0, - 79.0, - 828.0, - 118.0, - 779.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 186.0, - 220.0, - 186.0, - 220.0, - 227.0, - 134.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 663.0, - 1489.0, - 663.0, - 1489.0, - 705.0, - 1363.0, - 705.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 663.0, - 1489.0, - 663.0, - 1489.0, - 705.0, - 1363.0, - 705.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 26, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 571, - 261, - 1046, - 261, - 1046, - 884, - 571, - 884 - ], - "score": 0.96 - }, - { - "category_id": 1, - "poly": [ - 247, - 1525, - 1429, - 1525, - 1429, - 1602, - 247, - 1602 - ], - "score": 0.947 - }, - { - "category_id": 1, - "poly": [ - 250, - 1763, - 396, - 1763, - 396, - 2040, - 250, - 2040 - ], - "score": 0.937 - }, - { - "category_id": 1, - "poly": [ - 250, - 1044, - 385, - 1044, - 385, - 1318, - 250, - 1318 - ], - "score": 0.935 - }, - { - "category_id": 2, - "poly": [ - 1515, - 145, - 1624, - 145, - 1624, - 213, - 1515, - 213 - ], - "score": 0.931 - }, - { - "category_id": 1, - "poly": [ - 251, - 1413, - 1426, - 1413, - 1426, - 1489, - 251, - 1489 - ], - "score": 0.929 - }, - { - "category_id": 1, - "poly": [ - 252, - 913, - 1064, - 913, - 1064, - 955, - 252, - 955 - ], - "score": 0.915 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2293, - 118, - 2293 - ], - "score": 0.908 - }, - { - "category_id": 2, - "poly": [ - 1330, - 2264, - 1496, - 2264, - 1496, - 2290, - 1330, - 2290 - ], - "score": 0.898 - }, - { - "category_id": 1, - "poly": [ - 256, - 1636, - 707, - 1636, - 707, - 1674, - 256, - 1674 - ], - "score": 0.896 - }, - { - "category_id": 2, - "poly": [ - 126, - 1406, - 227, - 1406, - 227, - 1454, - 126, - 1454 - ], - "score": 0.894 - }, - { - "category_id": 1, - "poly": [ - 248, - 189, - 1143, - 189, - 1143, - 229, - 248, - 229 - ], - "score": 0.887 - }, - { - "category_id": 2, - "poly": [ - 783, - 82, - 823, - 82, - 823, - 112, - 783, - 112 - ], - "score": 0.868 - }, - { - "category_id": 2, - "poly": [ - 1581, - 2, - 1653, - 2, - 1653, - 39, - 1581, - 39 - ], - "score": 0.838 - }, - { - "category_id": 2, - "poly": [ - 128, - 182, - 227, - 182, - 227, - 230, - 128, - 230 - ], - "score": 0.818 - }, - { - "category_id": 3, - "poly": [ - 1225, - 1756, - 1305, - 1756, - 1305, - 2045, - 1225, - 2045 - ], - "score": 0.803 - }, - { - "category_id": 1, - "poly": [ - 1364, - 952, - 1488, - 952, - 1488, - 990, - 1364, - 990 - ], - "score": 0.64 - }, - { - "category_id": 1, - "poly": [ - 1363, - 1672, - 1488, - 1672, - 1488, - 1710, - 1363, - 1710 - ], - "score": 0.634 - }, - { - "category_id": 3, - "poly": [ - 1226, - 1035, - 1304, - 1035, - 1304, - 1325, - 1226, - 1325 - ], - "score": 0.539 - }, - { - "category_id": 3, - "poly": [ - 1225, - 1035, - 1304, - 1035, - 1304, - 1326, - 1225, - 1326 - ], - "score": 0.261 - }, - { - "category_id": 2, - "poly": [ - 1363, - 1672, - 1488, - 1672, - 1488, - 1710, - 1363, - 1710 - ], - "score": 0.195 - }, - { - "category_id": 13, - "poly": [ - 682, - 1416, - 780, - 1416, - 780, - 1451, - 682, - 1451 - ], - "score": 0.78, - "latex": "4.0\\mathrm{k}\\Omega" - }, - { - "category_id": 13, - "poly": [ - 1005, - 516, - 1034, - 516, - 1034, - 542, - 1005, - 542 - ], - "score": 0.63, - "latex": "\\Omega" - }, - { - "category_id": 13, - "poly": [ - 928, - 1415, - 1006, - 1415, - 1006, - 1451, - 928, - 1451 - ], - "score": 0.54, - "latex": "1.0\\:\\mathrm{V}" - }, - { - "category_id": 13, - "poly": [ - 1004, - 719, - 1034, - 719, - 1034, - 752, - 1004, - 752 - ], - "score": 0.49, - "latex": "\\Omega" - }, - { - "category_id": 13, - "poly": [ - 565, - 1527, - 636, - 1527, - 636, - 1562, - 565, - 1562 - ], - "score": 0.47, - "latex": "20\\mathrm{~V~}" - }, - { - "category_id": 13, - "poly": [ - 1249, - 2015, - 1281, - 2015, - 1281, - 2029, - 1249, - 2029 - ], - "score": 0.29, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1528.0, - 564.0, - 1528.0, - 564.0, - 1563.0, - 254.0, - 1563.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 637.0, - 1528.0, - 1427.0, - 1528.0, - 1427.0, - 1563.0, - 637.0, - 1563.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 1568.0, - 1185.0, - 1568.0, - 1185.0, - 1598.0, - 257.0, - 1598.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1766.0, - 384.0, - 1766.0, - 384.0, - 1799.0, - 253.0, - 1799.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 1847.0, - 384.0, - 1847.0, - 384.0, - 1879.0, - 256.0, - 1879.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1924.0, - 393.0, - 1924.0, - 393.0, - 1959.0, - 254.0, - 1959.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 2003.0, - 393.0, - 2003.0, - 393.0, - 2037.0, - 254.0, - 2037.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1046.0, - 369.0, - 1046.0, - 369.0, - 1081.0, - 252.0, - 1081.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1124.0, - 385.0, - 1124.0, - 385.0, - 1162.0, - 252.0, - 1162.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1203.0, - 384.0, - 1203.0, - 384.0, - 1238.0, - 254.0, - 1238.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1283.0, - 383.0, - 1283.0, - 383.0, - 1315.0, - 255.0, - 1315.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 146.0, - 1625.0, - 146.0, - 1625.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1521.0, - 170.0, - 1621.0, - 170.0, - 1621.0, - 193.0, - 1521.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1552.0, - 191.0, - 1592.0, - 191.0, - 1592.0, - 216.0, - 1552.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1418.0, - 681.0, - 1418.0, - 681.0, - 1452.0, - 255.0, - 1452.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 781.0, - 1418.0, - 927.0, - 1418.0, - 927.0, - 1452.0, - 781.0, - 1452.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1007.0, - 1418.0, - 1419.0, - 1418.0, - 1419.0, - 1452.0, - 1007.0, - 1452.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 1457.0, - 347.0, - 1457.0, - 347.0, - 1492.0, - 251.0, - 1492.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 917.0, - 1061.0, - 917.0, - 1061.0, - 951.0, - 256.0, - 951.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 2271.0, - 182.0, - 2271.0, - 182.0, - 2288.0, - 170.0, - 2288.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 201.0, - 2268.0, - 222.0, - 2268.0, - 222.0, - 2290.0, - 201.0, - 2290.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1331.0, - 2266.0, - 1498.0, - 2266.0, - 1498.0, - 2291.0, - 1331.0, - 2291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 1640.0, - 703.0, - 1640.0, - 703.0, - 1670.0, - 257.0, - 1670.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 1415.0, - 170.0, - 1415.0, - 170.0, - 1446.0, - 141.0, - 1446.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 187.0, - 1418.0, - 213.0, - 1418.0, - 213.0, - 1444.0, - 187.0, - 1444.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 190.0, - 1143.0, - 190.0, - 1143.0, - 229.0, - 255.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 78.0, - 828.0, - 78.0, - 828.0, - 117.0, - 779.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 187.0, - 215.0, - 187.0, - 215.0, - 225.0, - 140.0, - 225.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1364.0, - 953.0, - 1490.0, - 953.0, - 1490.0, - 991.0, - 1364.0, - 991.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1364.0, - 1673.0, - 1490.0, - 1673.0, - 1490.0, - 1711.0, - 1364.0, - 1711.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1364.0, - 1673.0, - 1490.0, - 1673.0, - 1490.0, - 1711.0, - 1364.0, - 1711.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 27, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 407, - 436, - 1207, - 436, - 1207, - 607, - 407, - 607 - ], - "score": 0.963 - }, - { - "category_id": 1, - "poly": [ - 249, - 298, - 1419, - 298, - 1419, - 373, - 249, - 373 - ], - "score": 0.941 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1624, - 146, - 1624, - 213, - 1516, - 213 - ], - "score": 0.933 - }, - { - "category_id": 1, - "poly": [ - 253, - 675, - 910, - 675, - 910, - 714, - 253, - 714 - ], - "score": 0.924 - }, - { - "category_id": 1, - "poly": [ - 255, - 190, - 1358, - 190, - 1358, - 264, - 255, - 264 - ], - "score": 0.915 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2144, - 1496, - 2144, - 1496, - 2177, - 1317, - 2177 - ], - "score": 0.897 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 278, - 2187, - 278, - 2292, - 119, - 2292 - ], - "score": 0.896 - }, - { - "category_id": 2, - "poly": [ - 1332, - 2266, - 1496, - 2266, - 1496, - 2289, - 1332, - 2289 - ], - "score": 0.877 - }, - { - "category_id": 2, - "poly": [ - 783, - 82, - 822, - 82, - 822, - 111, - 783, - 111 - ], - "score": 0.865 - }, - { - "category_id": 2, - "poly": [ - 126, - 181, - 228, - 181, - 228, - 230, - 126, - 230 - ], - "score": 0.859 - }, - { - "category_id": 3, - "poly": [ - 253, - 782, - 1354, - 782, - 1354, - 1110, - 253, - 1110 - ], - "score": 0.858 - }, - { - "category_id": 1, - "poly": [ - 574, - 1247, - 1033, - 1247, - 1033, - 1284, - 574, - 1284 - ], - "score": 0.855 - }, - { - "category_id": 2, - "poly": [ - 1582, - 3, - 1653, - 3, - 1653, - 38, - 1582, - 38 - ], - "score": 0.829 - }, - { - "category_id": 1, - "poly": [ - 1363, - 713, - 1488, - 713, - 1488, - 750, - 1363, - 750 - ], - "score": 0.799 - }, - { - "category_id": 5, - "poly": [ - 253, - 782, - 1354, - 782, - 1354, - 1110, - 253, - 1110 - ], - "score": 0.13, - "html": "
Apotential difference across wireresistivity
Bresistivitycurrent
Ccurrentresistance
Dresistancepotential difference across wire
" - }, - { - "category_id": 13, - "poly": [ - 631, - 192, - 662, - 192, - 662, - 225, - 631, - 225 - ], - "score": 0.46, - "latex": "\\pmb{\\Omega}" - }, - { - "category_id": 13, - "poly": [ - 342, - 300, - 373, - 300, - 373, - 333, - 342, - 333 - ], - "score": 0.42, - "latex": "\\pmb{\\Omega}" - }, - { - "category_id": 13, - "poly": [ - 477, - 228, - 504, - 228, - 504, - 260, - 477, - 260 - ], - "score": 0.35, - "latex": "\\mathsf{P}" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 299.0, - 341.0, - 299.0, - 341.0, - 336.0, - 255.0, - 336.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 374.0, - 299.0, - 1416.0, - 299.0, - 1416.0, - 336.0, - 374.0, - 336.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 340.0, - 446.0, - 340.0, - 446.0, - 375.0, - 255.0, - 375.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1624.0, - 147.0, - 1624.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 193.0, - 1520.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 190.0, - 1593.0, - 190.0, - 1593.0, - 216.0, - 1549.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 678.0, - 908.0, - 678.0, - 908.0, - 712.0, - 255.0, - 712.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 193.0, - 630.0, - 193.0, - 630.0, - 227.0, - 258.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 663.0, - 193.0, - 1359.0, - 193.0, - 1359.0, - 227.0, - 663.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 226.0, - 476.0, - 226.0, - 476.0, - 265.0, - 255.0, - 265.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 505.0, - 226.0, - 838.0, - 226.0, - 838.0, - 265.0, - 505.0, - 265.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1318.0, - 2146.0, - 1472.0, - 2146.0, - 1472.0, - 2176.0, - 1318.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 2270.0, - 181.0, - 2270.0, - 181.0, - 2286.0, - 170.0, - 2286.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 201.0, - 2272.0, - 223.0, - 2272.0, - 223.0, - 2284.5, - 201.0, - 2284.5 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1334.0, - 2268.0, - 1499.0, - 2268.0, - 1499.0, - 2289.0, - 1334.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 827.0, - 78.0, - 827.0, - 118.0, - 780.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 186.0, - 219.0, - 186.0, - 219.0, - 225.0, - 136.0, - 225.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 577.0, - 1249.0, - 1030.0, - 1249.0, - 1030.0, - 1282.0, - 577.0, - 1282.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 5.0, - 1658.0, - 5.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 712.0, - 1491.0, - 712.0, - 1491.0, - 754.0, - 1363.0, - 754.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 28, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 251, - 832, - 729, - 832, - 729, - 1110, - 251, - 1110 - ], - "score": 0.966 - }, - { - "category_id": 3, - "poly": [ - 504, - 260, - 1111, - 260, - 1111, - 595, - 504, - 595 - ], - "score": 0.966 - }, - { - "category_id": 1, - "poly": [ - 253, - 1203, - 1288, - 1203, - 1288, - 1282, - 253, - 1282 - ], - "score": 0.935 - }, - { - "category_id": 2, - "poly": [ - 1516, - 145, - 1624, - 145, - 1624, - 213, - 1516, - 213 - ], - "score": 0.931 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2292, - 118, - 2292 - ], - "score": 0.913 - }, - { - "category_id": 1, - "poly": [ - 250, - 1426, - 366, - 1426, - 366, - 1829, - 250, - 1829 - ], - "score": 0.904 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2290, - 1331, - 2290 - ], - "score": 0.89 - }, - { - "category_id": 2, - "poly": [ - 126, - 1196, - 227, - 1196, - 227, - 1243, - 126, - 1243 - ], - "score": 0.888 - }, - { - "category_id": 1, - "poly": [ - 251, - 188, - 1001, - 188, - 1001, - 229, - 251, - 229 - ], - "score": 0.876 - }, - { - "category_id": 2, - "poly": [ - 783, - 82, - 822, - 82, - 822, - 112, - 783, - 112 - ], - "score": 0.87 - }, - { - "category_id": 1, - "poly": [ - 257, - 1316, - 739, - 1316, - 739, - 1355, - 257, - 1355 - ], - "score": 0.846 - }, - { - "category_id": 2, - "poly": [ - 128, - 182, - 227, - 182, - 227, - 230, - 128, - 230 - ], - "score": 0.842 - }, - { - "category_id": 2, - "poly": [ - 1581, - 2, - 1653, - 2, - 1653, - 39, - 1581, - 39 - ], - "score": 0.835 - }, - { - "category_id": 3, - "poly": [ - 1227, - 824, - 1304, - 824, - 1304, - 1115, - 1227, - 1115 - ], - "score": 0.722 - }, - { - "category_id": 1, - "poly": [ - 1364, - 742, - 1488, - 742, - 1488, - 779, - 1364, - 779 - ], - "score": 0.659 - }, - { - "category_id": 1, - "poly": [ - 1364, - 1354, - 1488, - 1354, - 1488, - 1391, - 1364, - 1391 - ], - "score": 0.648 - }, - { - "category_id": 1, - "poly": [ - 255, - 631, - 1434, - 631, - 1434, - 673, - 255, - 673 - ], - "score": 0.614 - }, - { - "category_id": 1, - "poly": [ - 256, - 631, - 1434, - 631, - 1434, - 745, - 256, - 745 - ], - "score": 0.546 - }, - { - "category_id": 3, - "poly": [ - 1225, - 1439, - 1303, - 1439, - 1303, - 1808, - 1225, - 1808 - ], - "score": 0.518 - }, - { - "category_id": 1, - "poly": [ - 254, - 702, - 1235, - 702, - 1235, - 744, - 254, - 744 - ], - "score": 0.517 - }, - { - "category_id": 3, - "poly": [ - 1226, - 1440, - 1304, - 1440, - 1304, - 1808, - 1226, - 1808 - ], - "score": 0.338 - }, - { - "category_id": 3, - "poly": [ - 1226, - 823, - 1303, - 823, - 1303, - 1115, - 1226, - 1115 - ], - "score": 0.218 - }, - { - "category_id": 2, - "poly": [ - 1364, - 742, - 1488, - 742, - 1488, - 779, - 1364, - 779 - ], - "score": 0.211 - }, - { - "category_id": 2, - "poly": [ - 1231, - 1762, - 1298, - 1762, - 1298, - 1806, - 1231, - 1806 - ], - "score": 0.104 - }, - { - "category_id": 13, - "poly": [ - 1249, - 1779, - 1281, - 1779, - 1281, - 1793, - 1249, - 1793 - ], - "score": 0.75, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 1139, - 1207, - 1162, - 1207, - 1162, - 1238, - 1139, - 1238 - ], - "score": 0.65, - "latex": "h" - }, - { - "category_id": 13, - "poly": [ - 1249, - 1675, - 1281, - 1675, - 1281, - 1688, - 1249, - 1688 - ], - "score": 0.62, - "latex": "\\smile" - }, - { - "category_id": 13, - "poly": [ - 1256, - 1245, - 1276, - 1245, - 1276, - 1276, - 1256, - 1276 - ], - "score": 0.55, - "latex": "I." - }, - { - "category_id": 13, - "poly": [ - 1262, - 1211, - 1278, - 1211, - 1278, - 1238, - 1262, - 1238 - ], - "score": 0.51, - "latex": "t" - }, - { - "category_id": 13, - "poly": [ - 850, - 1244, - 878, - 1244, - 878, - 1276, - 850, - 1276 - ], - "score": 0.45, - "latex": "V" - }, - { - "category_id": 14, - "poly": [ - 246, - 1388, - 364, - 1388, - 364, - 1846, - 246, - 1846 - ], - "score": 0.29, - "latex": "\\begin{array}{r l}&{\\textsf{A}\\frac{W h t}{V I}}\\ &{}\\ &{\\textsf{B}\\frac{V I}{W h t}}\\ &{\\textsf{C}\\frac{W h}{V I t}}\\ &{}\\ &{\\textsf{D}\\frac{V I t}{W h}}\\end{array}" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 835.0, - 723.0, - 835.0, - 723.0, - 869.0, - 255.0, - 869.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 915.0, - 709.0, - 915.0, - 709.0, - 948.0, - 256.0, - 948.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 993.0, - 723.0, - 993.0, - 723.0, - 1028.0, - 253.0, - 1028.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 1072.0, - 711.0, - 1072.0, - 711.0, - 1106.0, - 256.0, - 1106.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 1208.0, - 1138.0, - 1208.0, - 1138.0, - 1243.0, - 256.0, - 1243.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1163.0, - 1208.0, - 1261.0, - 1208.0, - 1261.0, - 1243.0, - 1163.0, - 1243.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1279.0, - 1208.0, - 1287.0, - 1208.0, - 1287.0, - 1243.0, - 1279.0, - 1243.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 1247.0, - 849.0, - 1247.0, - 849.0, - 1278.0, - 257.0, - 1278.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 879.0, - 1247.0, - 1255.0, - 1247.0, - 1255.0, - 1278.0, - 879.0, - 1278.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1277.0, - 1247.0, - 1284.0, - 1247.0, - 1284.0, - 1278.0, - 1277.0, - 1278.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1516.0, - 144.0, - 1624.0, - 144.0, - 1624.0, - 171.0, - 1516.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1519.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 191.0, - 1519.0, - 191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 189.0, - 1593.0, - 189.0, - 1593.0, - 216.0, - 1549.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 163.0, - 2263.0, - 227.0, - 2263.0, - 227.0, - 2295.0, - 163.0, - 2295.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 1203.0, - 216.0, - 1203.0, - 216.0, - 1238.0, - 139.0, - 1238.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 193.0, - 1000.0, - 193.0, - 1000.0, - 226.0, - 257.0, - 226.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 827.0, - 78.0, - 827.0, - 117.0, - 780.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 1319.0, - 736.0, - 1319.0, - 736.0, - 1353.0, - 257.0, - 1353.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 189.0, - 171.0, - 189.0, - 171.0, - 223.0, - 139.0, - 223.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 182.0, - 190.0, - 215.0, - 190.0, - 215.0, - 223.0, - 182.0, - 223.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 739.0, - 1489.0, - 739.0, - 1489.0, - 781.0, - 1363.0, - 781.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1364.0, - 1351.0, - 1489.0, - 1351.0, - 1489.0, - 1393.0, - 1364.0, - 1393.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 633.0, - 1431.0, - 633.0, - 1431.0, - 670.0, - 257.0, - 670.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 636.0, - 1432.0, - 636.0, - 1432.0, - 669.0, - 258.0, - 669.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 705.0, - 1227.0, - 705.0, - 1227.0, - 743.0, - 255.0, - 743.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 709.0, - 1224.0, - 709.0, - 1224.0, - 740.0, - 257.0, - 740.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 739.0, - 1489.0, - 739.0, - 1489.0, - 781.0, - 1363.0, - 781.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 29, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1624, - 146, - 1624, - 213, - 1516, - 213 - ], - "score": 0.922 - }, - { - "category_id": 1, - "poly": [ - 252, - 376, - 425, - 376, - 425, - 754, - 252, - 754 - ], - "score": 0.918 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2292, - 118, - 2292 - ], - "score": 0.894 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2144, - 1496, - 2144, - 1496, - 2177, - 1317, - 2177 - ], - "score": 0.894 - }, - { - "category_id": 2, - "poly": [ - 1332, - 2266, - 1496, - 2266, - 1496, - 2290, - 1332, - 2290 - ], - "score": 0.868 - }, - { - "category_id": 1, - "poly": [ - 575, - 911, - 1033, - 911, - 1033, - 949, - 575, - 949 - ], - "score": 0.853 - }, - { - "category_id": 2, - "poly": [ - 782, - 81, - 819, - 81, - 819, - 112, - 782, - 112 - ], - "score": 0.848 - }, - { - "category_id": 2, - "poly": [ - 1581, - 2, - 1653, - 2, - 1653, - 39, - 1581, - 39 - ], - "score": 0.818 - }, - { - "category_id": 1, - "poly": [ - 251, - 186, - 1490, - 186, - 1490, - 306, - 251, - 306 - ], - "score": 0.81 - }, - { - "category_id": 2, - "poly": [ - 127, - 181, - 227, - 181, - 227, - 230, - 127, - 230 - ], - "score": 0.784 - }, - { - "category_id": 1, - "poly": [ - 1363, - 302, - 1488, - 302, - 1488, - 339, - 1363, - 339 - ], - "score": 0.731 - }, - { - "category_id": 3, - "poly": [ - 1225, - 389, - 1306, - 389, - 1306, - 758, - 1225, - 758 - ], - "score": 0.419 - }, - { - "category_id": 13, - "poly": [ - 1249, - 630, - 1281, - 630, - 1281, - 643, - 1249, - 643 - ], - "score": 0.75, - "latex": "\\subset" - }, - { - "category_id": 13, - "poly": [ - 1249, - 728, - 1281, - 728, - 1281, - 741, - 1249, - 741 - ], - "score": 0.59, - "latex": "\\subset" - }, - { - "category_id": 13, - "poly": [ - 899, - 199, - 918, - 199, - 918, - 224, - 899, - 224 - ], - "score": 0.53, - "latex": "r" - }, - { - "category_id": 13, - "poly": [ - 1110, - 199, - 1133, - 199, - 1133, - 225, - 1110, - 225 - ], - "score": 0.46, - "latex": "n" - }, - { - "category_id": 13, - "poly": [ - 295, - 486, - 395, - 486, - 395, - 575, - 295, - 575 - ], - "score": 0.31, - "latex": "\\frac{m n^{2}r^{2}}{4\\pi^{2}}" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1624.0, - 147.0, - 1624.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 193.0, - 1520.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 190.0, - 1593.0, - 190.0, - 1593.0, - 216.0, - 1549.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 342.0, - 378.0, - 388.0, - 378.0, - 388.0, - 402.0, - 342.0, - 402.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 302.0, - 390.0, - 378.0, - 390.0, - 378.0, - 417.0, - 302.0, - 417.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 402.0, - 284.0, - 402.0, - 284.0, - 436.0, - 254.0, - 436.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 512.0, - 285.0, - 512.0, - 285.0, - 546.0, - 254.0, - 546.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 707.0, - 420.0, - 707.0, - 420.0, - 751.0, - 254.0, - 751.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 309.0, - 422.5, - 380.0, - 422.5, - 380.0, - 467.5, - 309.0, - 467.5 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 308.0, - 533.5, - 383.0, - 533.5, - 383.0, - 579.5, - 308.0, - 579.5 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 247.75, - 602.5, - 427.75, - 602.5, - 427.75, - 655.5, - 247.75, - 655.5 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 164.0, - 2264.0, - 224.0, - 2264.0, - 224.0, - 2294.0, - 164.0, - 2294.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1318.0, - 2146.0, - 1472.0, - 2146.0, - 1472.0, - 2176.0, - 1318.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1332.0, - 2266.0, - 1499.0, - 2266.0, - 1499.0, - 2291.0, - 1332.0, - 2291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 576.0, - 913.0, - 1030.0, - 913.0, - 1030.0, - 946.0, - 576.0, - 946.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 78.0, - 826.0, - 78.0, - 826.0, - 118.0, - 779.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 196.0, - 898.0, - 196.0, - 898.0, - 227.0, - 258.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 919.0, - 196.0, - 1109.0, - 196.0, - 1109.0, - 227.0, - 919.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1134.0, - 196.0, - 1486.0, - 196.0, - 1486.0, - 227.0, - 1134.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 265.0, - 802.0, - 265.0, - 802.0, - 304.0, - 254.0, - 304.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 187.0, - 216.0, - 187.0, - 216.0, - 224.0, - 136.0, - 224.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 298.0, - 1491.0, - 298.0, - 1491.0, - 342.0, - 1363.0, - 342.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 30, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 545, - 299, - 1069, - 299, - 1069, - 585, - 545, - 585 - ], - "score": 0.955 - }, - { - "category_id": 1, - "poly": [ - 248, - 1530, - 449, - 1530, - 449, - 1822, - 248, - 1822 - ], - "score": 0.944 - }, - { - "category_id": 2, - "poly": [ - 1516, - 145, - 1624, - 145, - 1624, - 213, - 1516, - 213 - ], - "score": 0.932 - }, - { - "category_id": 1, - "poly": [ - 250, - 190, - 1411, - 190, - 1411, - 267, - 250, - 267 - ], - "score": 0.923 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2293, - 118, - 2293 - ], - "score": 0.903 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2290, - 1331, - 2290 - ], - "score": 0.889 - }, - { - "category_id": 2, - "poly": [ - 783, - 82, - 822, - 82, - 822, - 111, - 783, - 111 - ], - "score": 0.868 - }, - { - "category_id": 2, - "poly": [ - 127, - 181, - 227, - 181, - 227, - 230, - 127, - 230 - ], - "score": 0.838 - }, - { - "category_id": 2, - "poly": [ - 1581, - 2, - 1653, - 2, - 1653, - 39, - 1581, - 39 - ], - "score": 0.833 - }, - { - "category_id": 3, - "poly": [ - 289, - 732, - 1456, - 732, - 1456, - 1485, - 289, - 1485 - ], - "score": 0.829 - }, - { - "category_id": 1, - "poly": [ - 1363, - 663, - 1488, - 663, - 1488, - 701, - 1363, - 701 - ], - "score": 0.799 - }, - { - "category_id": 1, - "poly": [ - 255, - 623, - 1312, - 623, - 1312, - 664, - 255, - 664 - ], - "score": 0.738 - }, - { - "category_id": 3, - "poly": [ - 292, - 1143, - 1455, - 1143, - 1455, - 1488, - 292, - 1488 - ], - "score": 0.236 - }, - { - "category_id": 3, - "poly": [ - 292, - 732, - 1455, - 732, - 1455, - 1076, - 292, - 1076 - ], - "score": 0.201 - }, - { - "category_id": 13, - "poly": [ - 934, - 627, - 973, - 627, - 973, - 661, - 934, - 661 - ], - "score": 0.87, - "latex": "E_{\\mathrm{k}}" - }, - { - "category_id": 13, - "poly": [ - 668, - 944, - 691, - 944, - 691, - 968, - 668, - 968 - ], - "score": 0.85, - "latex": "\\prime" - }, - { - "category_id": 13, - "poly": [ - 1284, - 1357, - 1306, - 1357, - 1306, - 1382, - 1284, - 1382 - ], - "score": 0.84, - "latex": "\\prime" - }, - { - "category_id": 13, - "poly": [ - 301, - 1193, - 339, - 1193, - 339, - 1229, - 301, - 1229 - ], - "score": 0.84, - "latex": "E_{\\mathrm{k}}" - }, - { - "category_id": 13, - "poly": [ - 916, - 1194, - 955, - 1194, - 955, - 1228, - 916, - 1228 - ], - "score": 0.84, - "latex": "E_{\\mathrm{k}}" - }, - { - "category_id": 13, - "poly": [ - 1284, - 943, - 1309, - 943, - 1309, - 969, - 1284, - 969 - ], - "score": 0.77, - "latex": "\\boldsymbol{I}" - }, - { - "category_id": 13, - "poly": [ - 669, - 1357, - 693, - 1357, - 693, - 1384, - 669, - 1384 - ], - "score": 0.76, - "latex": "\\prime" - }, - { - "category_id": 13, - "poly": [ - 915, - 779, - 955, - 779, - 955, - 815, - 915, - 815 - ], - "score": 0.74, - "latex": "E_{\\mathrm{k}}" - }, - { - "category_id": 13, - "poly": [ - 895, - 194, - 918, - 194, - 918, - 225, - 895, - 225 - ], - "score": 0.69, - "latex": "d" - }, - { - "category_id": 13, - "poly": [ - 1048, - 198, - 1065, - 198, - 1065, - 225, - 1048, - 225 - ], - "score": 0.68, - "latex": "t" - }, - { - "category_id": 13, - "poly": [ - 392, - 1791, - 423, - 1791, - 423, - 1804, - 392, - 1804 - ], - "score": 0.56, - "latex": "\\subset" - }, - { - "category_id": 13, - "poly": [ - 392, - 1712, - 424, - 1712, - 424, - 1726, - 392, - 1726 - ], - "score": 0.54, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 392, - 1633, - 424, - 1633, - 424, - 1647, - 392, - 1647 - ], - "score": 0.53, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 811, - 1353, - 828, - 1353, - 828, - 1386, - 811, - 1386 - ], - "score": 0.49, - "latex": "\\prime" - }, - { - "category_id": 13, - "poly": [ - 300, - 778, - 340, - 778, - 340, - 815, - 300, - 815 - ], - "score": 0.46, - "latex": "E_{\\mathrm{k}}" - }, - { - "category_id": 13, - "poly": [ - 1427, - 1353, - 1443, - 1353, - 1443, - 1386, - 1427, - 1386 - ], - "score": 0.39, - "latex": "\\prime" - }, - { - "category_id": 13, - "poly": [ - 809, - 930, - 829, - 930, - 829, - 977, - 809, - 977 - ], - "score": 0.38, - "latex": "\\prime" - }, - { - "category_id": 13, - "poly": [ - 714, - 231, - 739, - 231, - 739, - 263, - 714, - 263 - ], - "score": 0.34, - "latex": "T." - }, - { - "category_id": 13, - "poly": [ - 887, - 393, - 912, - 393, - 912, - 433, - 887, - 433 - ], - "score": 0.27, - "latex": "T" - }, - { - "category_id": 13, - "poly": [ - 935, - 1326, - 953, - 1326, - 953, - 1350, - 935, - 1350 - ], - "score": 0.27, - "latex": "0" - }, - { - "category_id": 13, - "poly": [ - 392, - 1554, - 424, - 1554, - 424, - 1568, - 392, - 1568 - ], - "score": 0.26, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1542.0, - 284.0, - 1542.0, - 284.0, - 1576.0, - 254.0, - 1576.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1622.0, - 284.0, - 1622.0, - 284.0, - 1656.0, - 254.0, - 1656.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1699.0, - 286.0, - 1699.0, - 286.0, - 1735.0, - 252.0, - 1735.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1777.0, - 286.0, - 1777.0, - 286.0, - 1813.0, - 252.0, - 1813.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1516.0, - 144.0, - 1624.0, - 144.0, - 1624.0, - 171.0, - 1516.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1519.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 191.0, - 1519.0, - 191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 189.0, - 1593.0, - 189.0, - 1593.0, - 216.0, - 1549.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 193.0, - 894.0, - 193.0, - 894.0, - 230.0, - 257.0, - 230.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 919.0, - 193.0, - 1047.0, - 193.0, - 1047.0, - 230.0, - 919.0, - 230.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1066.0, - 193.0, - 1408.0, - 193.0, - 1408.0, - 230.0, - 1066.0, - 230.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 233.0, - 713.0, - 233.0, - 713.0, - 267.0, - 256.0, - 267.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 740.0, - 233.0, - 745.0, - 233.0, - 745.0, - 267.0, - 740.0, - 267.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 163.0, - 2261.0, - 226.0, - 2261.0, - 226.0, - 2297.0, - 163.0, - 2297.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 829.0, - 78.0, - 829.0, - 118.0, - 780.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 187.0, - 215.0, - 187.0, - 215.0, - 224.0, - 136.0, - 224.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1364.0, - 664.0, - 1490.0, - 664.0, - 1490.0, - 702.0, - 1364.0, - 702.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 626.0, - 933.0, - 626.0, - 933.0, - 663.0, - 257.0, - 663.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 974.0, - 626.0, - 1311.0, - 626.0, - 1311.0, - 663.0, - 974.0, - 663.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 31, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1624, - 146, - 1624, - 213, - 1516, - 213 - ], - "score": 0.93 - }, - { - "category_id": 1, - "poly": [ - 252, - 189, - 1121, - 189, - 1121, - 266, - 252, - 266 - ], - "score": 0.925 - }, - { - "category_id": 1, - "poly": [ - 122, - 872, - 1485, - 872, - 1485, - 948, - 122, - 948 - ], - "score": 0.923 - }, - { - "category_id": 1, - "poly": [ - 252, - 984, - 830, - 984, - 830, - 1024, - 252, - 1024 - ], - "score": 0.904 - }, - { - "category_id": 1, - "poly": [ - 255, - 371, - 1258, - 371, - 1258, - 411, - 255, - 411 - ], - "score": 0.897 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2144, - 1496, - 2144, - 1496, - 2177, - 1317, - 2177 - ], - "score": 0.894 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 279, - 2187, - 279, - 2292, - 119, - 2292 - ], - "score": 0.894 - }, - { - "category_id": 1, - "poly": [ - 574, - 1621, - 1033, - 1621, - 1033, - 1659, - 574, - 1659 - ], - "score": 0.889 - }, - { - "category_id": 2, - "poly": [ - 126, - 181, - 228, - 181, - 228, - 230, - 126, - 230 - ], - "score": 0.881 - }, - { - "category_id": 1, - "poly": [ - 250, - 1101, - 424, - 1101, - 424, - 1404, - 250, - 1404 - ], - "score": 0.878 - }, - { - "category_id": 1, - "poly": [ - 1363, - 1024, - 1488, - 1024, - 1488, - 1062, - 1363, - 1062 - ], - "score": 0.877 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2290, - 1331, - 2290 - ], - "score": 0.877 - }, - { - "category_id": 1, - "poly": [ - 256, - 300, - 683, - 300, - 683, - 339, - 256, - 339 - ], - "score": 0.875 - }, - { - "category_id": 1, - "poly": [ - 1363, - 410, - 1489, - 410, - 1489, - 449, - 1363, - 449 - ], - "score": 0.874 - }, - { - "category_id": 2, - "poly": [ - 783, - 82, - 822, - 82, - 822, - 112, - 783, - 112 - ], - "score": 0.867 - }, - { - "category_id": 1, - "poly": [ - 251, - 499, - 354, - 499, - 354, - 775, - 251, - 775 - ], - "score": 0.831 - }, - { - "category_id": 2, - "poly": [ - 1581, - 2, - 1653, - 2, - 1653, - 39, - 1581, - 39 - ], - "score": 0.83 - }, - { - "category_id": 2, - "poly": [ - 127, - 863, - 228, - 863, - 228, - 911, - 127, - 911 - ], - "score": 0.803 - }, - { - "category_id": 3, - "poly": [ - 829, - 494, - 911, - 494, - 911, - 783, - 829, - 783 - ], - "score": 0.53 - }, - { - "category_id": 3, - "poly": [ - 830, - 1109, - 910, - 1109, - 910, - 1397, - 830, - 1397 - ], - "score": 0.196 - }, - { - "category_id": 1, - "poly": [ - 243, - 1101, - 913, - 1101, - 913, - 1403, - 243, - 1403 - ], - "score": 0.15 - }, - { - "category_id": 13, - "poly": [ - 855, - 1289, - 887, - 1289, - 887, - 1302, - 855, - 1302 - ], - "score": 0.76, - "latex": "\\smile" - }, - { - "category_id": 13, - "poly": [ - 855, - 1367, - 887, - 1367, - 887, - 1380, - 855, - 1380 - ], - "score": 0.75, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 700, - 988, - 723, - 988, - 723, - 1024, - 700, - 1024 - ], - "score": 0.74, - "latex": "f" - }, - { - "category_id": 13, - "poly": [ - 917, - 876, - 940, - 876, - 940, - 912, - 917, - 912 - ], - "score": 0.65, - "latex": "f" - }, - { - "category_id": 13, - "poly": [ - 855, - 1210, - 887, - 1210, - 887, - 1223, - 855, - 1223 - ], - "score": 0.63, - "latex": "\\smile" - }, - { - "category_id": 13, - "poly": [ - 855, - 674, - 888, - 674, - 888, - 687, - 855, - 687 - ], - "score": 0.52, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 854, - 594, - 888, - 594, - 888, - 609, - 854, - 609 - ], - "score": 0.47, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 855, - 753, - 887, - 753, - 887, - 766, - 855, - 766 - ], - "score": 0.37, - "latex": "\\subset" - }, - { - "category_id": 13, - "poly": [ - 295, - 1355, - 412, - 1355, - 412, - 1401, - 295, - 1401 - ], - "score": 0.36, - "latex": "f\\propto m^{2}" - }, - { - "category_id": 13, - "poly": [ - 295, - 1198, - 422, - 1198, - 422, - 1244, - 295, - 1244 - ], - "score": 0.34, - "latex": "f\\propto m^{-2}" - }, - { - "category_id": 13, - "poly": [ - 1025, - 228, - 1108, - 228, - 1108, - 263, - 1025, - 263 - ], - "score": 0.28, - "latex": "1.98\\mathrm{s}" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1624.0, - 147.0, - 1624.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 193.0, - 1520.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 190.0, - 1593.0, - 190.0, - 1593.0, - 216.0, - 1549.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 194.0, - 1115.0, - 194.0, - 1115.0, - 225.0, - 258.0, - 225.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 232.0, - 1024.0, - 232.0, - 1024.0, - 263.0, - 258.0, - 263.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1109.0, - 232.0, - 1115.0, - 232.0, - 1115.0, - 263.0, - 1109.0, - 263.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 128.0, - 870.0, - 224.0, - 870.0, - 224.0, - 907.0, - 128.0, - 907.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 247.0, - 870.0, - 916.0, - 870.0, - 916.0, - 917.0, - 247.0, - 917.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 941.0, - 870.0, - 1483.0, - 870.0, - 1483.0, - 917.0, - 941.0, - 917.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 916.0, - 325.0, - 916.0, - 325.0, - 950.0, - 252.0, - 950.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 986.0, - 699.0, - 986.0, - 699.0, - 1023.0, - 255.0, - 1023.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 724.0, - 986.0, - 828.0, - 986.0, - 828.0, - 1023.0, - 724.0, - 1023.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 375.0, - 1255.0, - 375.0, - 1255.0, - 407.0, - 256.0, - 407.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1318.0, - 2146.0, - 1472.0, - 2146.0, - 1472.0, - 2176.0, - 1318.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 162.0, - 2263.0, - 227.0, - 2263.0, - 227.0, - 2295.0, - 162.0, - 2295.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 578.0, - 1623.0, - 1030.0, - 1623.0, - 1030.0, - 1656.0, - 578.0, - 1656.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 190.0, - 174.0, - 190.0, - 174.0, - 222.0, - 140.0, - 222.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 183.0, - 192.0, - 214.0, - 192.0, - 214.0, - 220.0, - 183.0, - 220.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 399.0, - 1106.0, - 409.0, - 1106.0, - 409.0, - 1120.0, - 399.0, - 1120.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1126.0, - 415.0, - 1126.0, - 415.0, - 1166.0, - 253.0, - 1166.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 249.0, - 1200.0, - 294.0, - 1200.0, - 294.0, - 1242.0, - 249.0, - 1242.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 423.0, - 1200.0, - 428.0, - 1200.0, - 428.0, - 1242.0, - 423.0, - 1242.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 381.0, - 1259.0, - 402.0, - 1259.0, - 402.0, - 1286.0, - 381.0, - 1286.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1280.0, - 404.0, - 1280.0, - 404.0, - 1324.0, - 252.0, - 1324.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 1357.0, - 294.0, - 1357.0, - 294.0, - 1399.0, - 251.0, - 1399.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 413.0, - 1357.0, - 413.0, - 1357.0, - 413.0, - 1399.0, - 413.0, - 1399.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1364.0, - 1025.0, - 1490.0, - 1025.0, - 1490.0, - 1063.0, - 1364.0, - 1063.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 303.0, - 678.0, - 303.0, - 678.0, - 336.0, - 256.0, - 336.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1364.0, - 410.0, - 1490.0, - 410.0, - 1490.0, - 449.0, - 1364.0, - 449.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 827.0, - 78.0, - 827.0, - 117.0, - 780.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 501.0, - 337.0, - 501.0, - 337.0, - 541.0, - 251.0, - 541.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 581.0, - 337.0, - 581.0, - 337.0, - 618.0, - 252.0, - 618.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 659.0, - 337.0, - 659.0, - 337.0, - 699.0, - 251.0, - 699.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 739.0, - 352.0, - 739.0, - 352.0, - 775.0, - 252.0, - 775.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 871.0, - 172.0, - 871.0, - 172.0, - 905.0, - 140.0, - 905.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 183.0, - 873.0, - 213.0, - 873.0, - 213.0, - 902.0, - 183.0, - 902.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1126.0, - 414.0, - 1126.0, - 414.0, - 1166.0, - 253.0, - 1166.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 249.0, - 1201.0, - 294.0, - 1201.0, - 294.0, - 1241.0, - 249.0, - 1241.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 423.0, - 1201.0, - 426.0, - 1201.0, - 426.0, - 1241.0, - 423.0, - 1241.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 384.0, - 1263.0, - 399.0, - 1263.0, - 399.0, - 1282.0, - 384.0, - 1282.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1283.0, - 403.0, - 1283.0, - 403.0, - 1323.0, - 252.0, - 1323.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1359.0, - 294.0, - 1359.0, - 294.0, - 1400.0, - 252.0, - 1400.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 32, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 465, - 332, - 1144, - 332, - 1144, - 918, - 465, - 918 - ], - "score": 0.965 - }, - { - "category_id": 1, - "poly": [ - 252, - 190, - 1478, - 190, - 1478, - 303, - 252, - 303 - ], - "score": 0.956 - }, - { - "category_id": 2, - "poly": [ - 1517, - 145, - 1623, - 145, - 1623, - 213, - 1517, - 213 - ], - "score": 0.932 - }, - { - "category_id": 1, - "poly": [ - 254, - 1060, - 1468, - 1060, - 1468, - 1136, - 254, - 1136 - ], - "score": 0.924 - }, - { - "category_id": 1, - "poly": [ - 253, - 988, - 1409, - 988, - 1409, - 1027, - 253, - 1027 - ], - "score": 0.907 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 278, - 2187, - 278, - 2291, - 119, - 2291 - ], - "score": 0.897 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2266, - 1496, - 2266, - 1496, - 2289, - 1331, - 2289 - ], - "score": 0.884 - }, - { - "category_id": 2, - "poly": [ - 783, - 82, - 821, - 82, - 821, - 110, - 783, - 110 - ], - "score": 0.858 - }, - { - "category_id": 2, - "poly": [ - 127, - 181, - 226, - 181, - 226, - 230, - 127, - 230 - ], - "score": 0.838 - }, - { - "category_id": 2, - "poly": [ - 1582, - 2, - 1653, - 2, - 1653, - 38, - 1582, - 38 - ], - "score": 0.825 - }, - { - "category_id": 2, - "poly": [ - 1364, - 1136, - 1487, - 1136, - 1487, - 1173, - 1364, - 1173 - ], - "score": 0.806 - }, - { - "category_id": 1, - "poly": [ - 1364, - 1136, - 1487, - 1136, - 1487, - 1173, - 1364, - 1173 - ], - "score": 0.114 - }, - { - "category_id": 13, - "poly": [ - 1243, - 198, - 1267, - 198, - 1267, - 225, - 1243, - 225 - ], - "score": 0.64, - "latex": "a" - }, - { - "category_id": 13, - "poly": [ - 1032, - 1069, - 1053, - 1069, - 1053, - 1094, - 1032, - 1094 - ], - "score": 0.32, - "latex": "a" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 195.0, - 1242.0, - 195.0, - 1242.0, - 228.0, - 256.0, - 228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1268.0, - 195.0, - 1474.0, - 195.0, - 1474.0, - 228.0, - 1268.0, - 228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 229.0, - 1442.0, - 229.0, - 1442.0, - 268.0, - 252.0, - 268.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 263.0, - 404.0, - 263.0, - 404.0, - 308.0, - 251.0, - 308.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 144.0, - 1625.0, - 144.0, - 1625.0, - 171.0, - 1517.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1519.0, - 170.0, - 1621.0, - 170.0, - 1621.0, - 191.0, - 1519.0, - 191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1550.0, - 189.0, - 1593.0, - 189.0, - 1593.0, - 216.0, - 1550.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1061.0, - 1031.0, - 1061.0, - 1031.0, - 1101.0, - 255.0, - 1101.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1054.0, - 1061.0, - 1466.0, - 1061.0, - 1466.0, - 1101.0, - 1054.0, - 1101.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1099.0, - 399.0, - 1099.0, - 399.0, - 1144.0, - 254.0, - 1144.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 989.0, - 1409.0, - 989.0, - 1409.0, - 1029.0, - 255.0, - 1029.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 164.0, - 2265.0, - 225.0, - 2265.0, - 225.0, - 2293.0, - 164.0, - 2293.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 79.0, - 829.0, - 79.0, - 829.0, - 117.0, - 779.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 189.0, - 178.0, - 189.0, - 178.0, - 223.0, - 139.0, - 223.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 180.0, - 190.0, - 218.0, - 190.0, - 218.0, - 224.0, - 180.0, - 224.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1578.0, - 3.0, - 1659.0, - 3.0, - 1659.0, - 42.0, - 1578.0, - 42.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 1132.0, - 1490.0, - 1132.0, - 1490.0, - 1176.0, - 1363.0, - 1176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 1132.0, - 1490.0, - 1132.0, - 1490.0, - 1176.0, - 1363.0, - 1176.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 33, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 118, - 163, - 1487, - 163, - 1487, - 1641, - 118, - 1641 - ], - "score": 0.928 - }, - { - "category_id": 1, - "poly": [ - 248, - 1693, - 449, - 1693, - 449, - 1983, - 248, - 1983 - ], - "score": 0.921 - }, - { - "category_id": 2, - "poly": [ - 118, - 2186, - 279, - 2186, - 279, - 2292, - 118, - 2292 - ], - "score": 0.895 - }, - { - "category_id": 2, - "poly": [ - 1512, - 146, - 1620, - 146, - 1620, - 213, - 1512, - 213 - ], - "score": 0.888 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2290, - 1331, - 2290 - ], - "score": 0.876 - }, - { - "category_id": 2, - "poly": [ - 783, - 81, - 822, - 81, - 822, - 110, - 783, - 110 - ], - "score": 0.855 - }, - { - "category_id": 2, - "poly": [ - 1582, - 3, - 1653, - 3, - 1653, - 38, - 1582, - 38 - ], - "score": 0.821 - }, - { - "category_id": 2, - "poly": [ - 639, - 2029, - 969, - 2029, - 969, - 2068, - 639, - 2068 - ], - "score": 0.413 - }, - { - "category_id": 4, - "poly": [ - 639, - 2029, - 969, - 2029, - 969, - 2068, - 639, - 2068 - ], - "score": 0.129 - }, - { - "category_id": 1, - "poly": [ - 639, - 2029, - 969, - 2029, - 969, - 2068, - 639, - 2068 - ], - "score": 0.108 - }, - { - "category_id": 13, - "poly": [ - 391, - 1874, - 424, - 1874, - 424, - 1888, - 391, - 1888 - ], - "score": 0.34, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 391, - 1795, - 424, - 1795, - 424, - 1809, - 391, - 1809 - ], - "score": 0.32, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1705.0, - 284.0, - 1705.0, - 284.0, - 1737.0, - 254.0, - 1737.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1783.0, - 284.0, - 1783.0, - 284.0, - 1818.0, - 254.0, - 1818.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1861.0, - 286.0, - 1861.0, - 286.0, - 1898.0, - 252.0, - 1898.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1941.0, - 286.0, - 1941.0, - 286.0, - 1976.0, - 252.0, - 1976.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 163.0, - 2263.0, - 226.0, - 2263.0, - 226.0, - 2296.0, - 163.0, - 2296.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1513.0, - 147.0, - 1620.0, - 147.0, - 1620.0, - 170.0, - 1513.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1516.0, - 170.0, - 1618.0, - 170.0, - 1618.0, - 193.0, - 1516.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1545.0, - 190.0, - 1589.0, - 190.0, - 1589.0, - 216.0, - 1545.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 77.0, - 827.0, - 77.0, - 827.0, - 117.0, - 780.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 5.0, - 1658.0, - 5.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 643.0, - 2033.0, - 965.0, - 2033.0, - 965.0, - 2064.0, - 643.0, - 2064.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 643.0, - 2033.0, - 965.0, - 2033.0, - 965.0, - 2064.0, - 643.0, - 2064.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 643.0, - 2033.0, - 965.0, - 2033.0, - 965.0, - 2064.0, - 643.0, - 2064.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 34, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 118, - 2186, - 278, - 2186, - 278, - 2292, - 118, - 2292 - ], - "score": 0.901 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2266, - 1496, - 2266, - 1496, - 2289, - 1331, - 2289 - ], - "score": 0.866 - }, - { - "category_id": 2, - "poly": [ - 784, - 83, - 822, - 83, - 822, - 111, - 784, - 111 - ], - "score": 0.854 - }, - { - "category_id": 2, - "poly": [ - 1516, - 145, - 1624, - 145, - 1624, - 213, - 1516, - 213 - ], - "score": 0.816 - }, - { - "category_id": 2, - "poly": [ - 1582, - 3, - 1653, - 3, - 1653, - 39, - 1582, - 39 - ], - "score": 0.803 - }, - { - "category_id": 3, - "poly": [ - 101, - 152, - 1499, - 152, - 1499, - 2136, - 101, - 2136 - ], - "score": 0.564 - }, - { - "category_id": 1, - "poly": [ - 480, - 182, - 1126, - 182, - 1126, - 223, - 480, - 223 - ], - "score": 0.455 - }, - { - "category_id": 15, - "poly": [ - 162.0, - 2261.0, - 227.0, - 2261.0, - 227.0, - 2296.0, - 162.0, - 2296.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 78.0, - 828.0, - 78.0, - 828.0, - 117.0, - 779.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1516.0, - 144.0, - 1624.0, - 144.0, - 1624.0, - 171.0, - 1516.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1519.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 191.0, - 1519.0, - 191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 189.0, - 1593.0, - 189.0, - 1593.0, - 216.0, - 1549.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 5.0, - 1658.0, - 5.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 483.0, - 185.0, - 1123.0, - 185.0, - 1123.0, - 222.0, - 483.0, - 222.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 35, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 133, - 179, - 1467, - 179, - 1467, - 2068, - 133, - 2068 - ], - "score": 0.953, - "html": "
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
" - }, - { - "category_id": 2, - "poly": [ - 119, - 2186, - 279, - 2186, - 279, - 2292, - 119, - 2292 - ], - "score": 0.916 - }, - { - "category_id": 2, - "poly": [ - 1332, - 2266, - 1496, - 2266, - 1496, - 2289, - 1332, - 2289 - ], - "score": 0.882 - }, - { - "category_id": 2, - "poly": [ - 784, - 82, - 821, - 82, - 821, - 110, - 784, - 110 - ], - "score": 0.853 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1653, - 4, - 1653, - 39, - 1582, - 39 - ], - "score": 0.82 - }, - { - "category_id": 2, - "poly": [ - 1512, - 146, - 1620, - 146, - 1620, - 213, - 1512, - 213 - ], - "score": 0.798 - }, - { - "category_id": 6, - "poly": [ - 1512, - 146, - 1620, - 146, - 1620, - 213, - 1512, - 213 - ], - "score": 0.112 - }, - { - "category_id": 15, - "poly": [ - 165.0, - 2266.0, - 221.0, - 2266.0, - 221.0, - 2292.0, - 165.0, - 2292.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1499.0, - 2268.0, - 1499.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 79.0, - 826.0, - 79.0, - 826.0, - 115.0, - 780.0, - 115.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1578.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1578.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1513.0, - 147.0, - 1620.0, - 147.0, - 1620.0, - 170.0, - 1513.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1516.0, - 170.0, - 1618.0, - 170.0, - 1618.0, - 193.0, - 1516.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1545.0, - 190.0, - 1589.0, - 190.0, - 1589.0, - 216.0, - 1545.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1513.0, - 147.0, - 1620.0, - 147.0, - 1620.0, - 170.0, - 1513.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1516.0, - 170.0, - 1618.0, - 170.0, - 1618.0, - 193.0, - 1516.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1545.0, - 190.0, - 1589.0, - 190.0, - 1589.0, - 216.0, - 1545.0, - 216.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 36, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 133, - 180, - 1467, - 180, - 1467, - 2068, - 133, - 2068 - ], - "score": 0.951, - "html": "
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
" - }, - { - "category_id": 2, - "poly": [ - 119, - 2186, - 278, - 2186, - 278, - 2292, - 119, - 2292 - ], - "score": 0.928 - }, - { - "category_id": 2, - "poly": [ - 1332, - 2266, - 1496, - 2266, - 1496, - 2289, - 1332, - 2289 - ], - "score": 0.881 - }, - { - "category_id": 2, - "poly": [ - 784, - 83, - 822, - 83, - 822, - 111, - 784, - 111 - ], - "score": 0.856 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1653, - 4, - 1653, - 38, - 1582, - 38 - ], - "score": 0.818 - }, - { - "category_id": 2, - "poly": [ - 1516, - 145, - 1624, - 145, - 1624, - 213, - 1516, - 213 - ], - "score": 0.814 - }, - { - "category_id": 15, - "poly": [ - 162.0, - 2263.0, - 227.0, - 2263.0, - 227.0, - 2295.0, - 162.0, - 2295.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1499.0, - 2268.0, - 1499.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 78.0, - 828.0, - 78.0, - 828.0, - 117.0, - 779.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 5.0, - 1657.0, - 5.0, - 1657.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1516.0, - 144.0, - 1624.0, - 144.0, - 1624.0, - 171.0, - 1516.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1519.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 191.0, - 1519.0, - 191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 189.0, - 1593.0, - 189.0, - 1593.0, - 216.0, - 1549.0, - 216.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 37, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 133, - 179, - 1467, - 179, - 1467, - 2067, - 133, - 2067 - ], - "score": 0.952, - "html": "
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
" - }, - { - "category_id": 2, - "poly": [ - 119, - 2186, - 278, - 2186, - 278, - 2292, - 119, - 2292 - ], - "score": 0.925 - }, - { - "category_id": 2, - "poly": [ - 1332, - 2266, - 1496, - 2266, - 1496, - 2289, - 1332, - 2289 - ], - "score": 0.882 - }, - { - "category_id": 2, - "poly": [ - 784, - 83, - 821, - 83, - 821, - 111, - 784, - 111 - ], - "score": 0.856 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1624, - 146, - 1624, - 213, - 1516, - 213 - ], - "score": 0.824 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1653, - 4, - 1653, - 38, - 1582, - 38 - ], - "score": 0.818 - }, - { - "category_id": 15, - "poly": [ - 164.0, - 2264.0, - 225.0, - 2264.0, - 225.0, - 2294.0, - 164.0, - 2294.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1334.0, - 2268.0, - 1499.0, - 2268.0, - 1499.0, - 2289.0, - 1334.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 827.0, - 78.0, - 827.0, - 117.0, - 780.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1624.0, - 147.0, - 1624.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 193.0, - 1520.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 190.0, - 1593.0, - 190.0, - 1593.0, - 216.0, - 1549.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 5.0, - 1657.0, - 5.0, - 1657.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 38, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 137, - 183, - 1466, - 183, - 1466, - 2106, - 137, - 2106 - ], - "score": 0.939, - "html": "
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
Copyrightinformation
For confidentiality purposes, acknowledgements of third-party copyright material are published in a separate booklet rather than including them onthe examinationpaperorsupport materials.Thisbooklet is published after eachexamination series and is availableforfreedownloadfromwww.aqa.org.ukaftertheliveexaminationseries. Permission to reproduce all copyright material hasbeen applied for. In some cases,efforts to contact copyright-holders may have
" - }, - { - "category_id": 2, - "poly": [ - 1035, - 2130, - 1497, - 2130, - 1497, - 2238, - 1035, - 2238 - ], - "score": 0.929 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 278, - 2187, - 278, - 2292, - 119, - 2292 - ], - "score": 0.917 - }, - { - "category_id": 2, - "poly": [ - 1516, - 145, - 1624, - 145, - 1624, - 213, - 1516, - 213 - ], - "score": 0.865 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2266, - 1496, - 2266, - 1496, - 2289, - 1331, - 2289 - ], - "score": 0.856 - }, - { - "category_id": 2, - "poly": [ - 784, - 83, - 822, - 83, - 822, - 110, - 784, - 110 - ], - "score": 0.848 - }, - { - "category_id": 2, - "poly": [ - 1582, - 3, - 1653, - 3, - 1653, - 38, - 1582, - 38 - ], - "score": 0.823 - }, - { - "category_id": 13, - "poly": [ - 383, - 2016, - 403, - 2016, - 403, - 2038, - 383, - 2038 - ], - "score": 0.45, - "latex": "\\circledcirc" - }, - { - "category_id": 15, - "poly": [ - 1087.0, - 2209.0, - 1403.0, - 2209.0, - 1403.0, - 2236.0, - 1087.0, - 2236.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 167.0, - 2267.0, - 224.0, - 2267.0, - 224.0, - 2292.0, - 167.0, - 2292.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1516.0, - 144.0, - 1624.0, - 144.0, - 1624.0, - 171.0, - 1516.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1519.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 191.0, - 1519.0, - 191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 189.0, - 1593.0, - 189.0, - 1593.0, - 216.0, - 1549.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 827.0, - 78.0, - 827.0, - 117.0, - 780.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 5.0, - 1658.0, - 5.0, - 1658.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 39, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 107, - 1529, - 1181, - 1529, - 1181, - 1896, - 107, - 1896 - ], - "score": 0.971 - }, - { - "category_id": 5, - "poly": [ - 1232, - 1249, - 1514, - 1249, - 1514, - 1749, - 1232, - 1749 - ], - "score": 0.968, - "html": "
For Examiner's Use
QuestionMark
1
2
3
4
5
9
7-31
TOTAL
" - }, - { - "category_id": 1, - "poly": [ - 108, - 1961, - 1029, - 1961, - 1029, - 2109, - 108, - 2109 - ], - "score": 0.964 - }, - { - "category_id": 1, - "poly": [ - 107, - 1316, - 545, - 1316, - 545, - 1461, - 107, - 1461 - ], - "score": 0.957 - }, - { - "category_id": 0, - "poly": [ - 109, - 1921, - 296, - 1921, - 296, - 1956, - 109, - 1956 - ], - "score": 0.922 - }, - { - "category_id": 0, - "poly": [ - 108, - 1489, - 303, - 1489, - 303, - 1523, - 108, - 1523 - ], - "score": 0.919 - }, - { - "category_id": 0, - "poly": [ - 109, - 1238, - 258, - 1238, - 258, - 1272, - 109, - 1272 - ], - "score": 0.904 - }, - { - "category_id": 2, - "poly": [ - 877, - 2274, - 1009, - 2274, - 1009, - 2298, - 877, - 2298 - ], - "score": 0.88 - }, - { - "category_id": 1, - "poly": [ - 110, - 1278, - 517, - 1278, - 517, - 1314, - 110, - 1314 - ], - "score": 0.873 - }, - { - "category_id": 2, - "poly": [ - 112, - 2187, - 651, - 2187, - 651, - 2295, - 112, - 2295 - ], - "score": 0.87 - }, - { - "category_id": 1, - "poly": [ - 113, - 996, - 264, - 996, - 264, - 1045, - 113, - 1045 - ], - "score": 0.865 - }, - { - "category_id": 2, - "poly": [ - 1337, - 2241, - 1514, - 2241, - 1514, - 2298, - 1337, - 2298 - ], - "score": 0.844 - }, - { - "category_id": 1, - "poly": [ - 157, - 322, - 653, - 322, - 653, - 361, - 157, - 361 - ], - "score": 0.843 - }, - { - "category_id": 2, - "poly": [ - 1582, - 5, - 1652, - 5, - 1652, - 38, - 1582, - 38 - ], - "score": 0.822 - }, - { - "category_id": 0, - "poly": [ - 110, - 1147, - 563, - 1147, - 563, - 1197, - 110, - 1197 - ], - "score": 0.821 - }, - { - "category_id": 0, - "poly": [ - 111, - 794, - 412, - 794, - 412, - 967, - 111, - 967 - ], - "score": 0.749 - }, - { - "category_id": 0, - "poly": [ - 727, - 1150, - 910, - 1150, - 910, - 1195, - 727, - 1195 - ], - "score": 0.68 - }, - { - "category_id": 2, - "poly": [ - 105, - 121, - 470, - 121, - 470, - 258, - 105, - 258 - ], - "score": 0.65 - }, - { - "category_id": 1, - "poly": [ - 154, - 387, - 783, - 387, - 783, - 474, - 154, - 474 - ], - "score": 0.561 - }, - { - "category_id": 0, - "poly": [ - 1115, - 1149, - 1517, - 1149, - 1517, - 1196, - 1115, - 1196 - ], - "score": 0.393 - }, - { - "category_id": 0, - "poly": [ - 105, - 121, - 470, - 121, - 470, - 258, - 105, - 258 - ], - "score": 0.331 - }, - { - "category_id": 1, - "poly": [ - 133, - 517, - 1471, - 517, - 1471, - 562, - 133, - 562 - ], - "score": 0.307 - }, - { - "category_id": 1, - "poly": [ - 1115, - 1149, - 1517, - 1149, - 1517, - 1196, - 1115, - 1196 - ], - "score": 0.298 - }, - { - "category_id": 1, - "poly": [ - 132, - 662, - 1480, - 662, - 1480, - 743, - 132, - 743 - ], - "score": 0.286 - }, - { - "category_id": 1, - "poly": [ - 150, - 516, - 1473, - 516, - 1473, - 746, - 150, - 746 - ], - "score": 0.272 - }, - { - "category_id": 1, - "poly": [ - 727, - 1150, - 910, - 1150, - 910, - 1195, - 727, - 1195 - ], - "score": 0.223 - }, - { - "category_id": 6, - "poly": [ - 1115, - 1149, - 1517, - 1149, - 1517, - 1196, - 1115, - 1196 - ], - "score": 0.181 - }, - { - "category_id": 1, - "poly": [ - 145, - 590, - 1464, - 590, - 1464, - 632, - 145, - 632 - ], - "score": 0.166 - }, - { - "category_id": 3, - "poly": [ - 154, - 387, - 783, - 387, - 783, - 474, - 154, - 474 - ], - "score": 0.153 - }, - { - "category_id": 1, - "poly": [ - 863, - 423, - 1122, - 423, - 1122, - 459, - 863, - 459 - ], - "score": 0.132 - }, - { - "category_id": 5, - "poly": [ - 1149, - 389, - 1467, - 389, - 1467, - 472, - 1149, - 472 - ], - "score": 0.115 - }, - { - "category_id": 3, - "poly": [ - 160, - 386, - 1479, - 386, - 1479, - 477, - 160, - 477 - ], - "score": 0.108 - }, - { - "category_id": 15, - "poly": [ - 111.0, - 1528.0, - 638.0, - 1528.0, - 638.0, - 1562.0, - 111.0, - 1562.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 1564.0, - 662.0, - 1564.0, - 662.0, - 1601.0, - 113.0, - 1601.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 1603.0, - 436.0, - 1603.0, - 436.0, - 1638.0, - 115.0, - 1638.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 1641.0, - 1071.0, - 1641.0, - 1071.0, - 1675.0, - 119.0, - 1675.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 1676.0, - 863.0, - 1676.0, - 863.0, - 1713.0, - 138.0, - 1713.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 1714.0, - 1178.0, - 1714.0, - 1178.0, - 1748.0, - 133.0, - 1748.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 137.0, - 1749.0, - 974.0, - 1749.0, - 974.0, - 1786.0, - 137.0, - 1786.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 1785.0, - 1121.0, - 1785.0, - 1121.0, - 1822.0, - 113.0, - 1822.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 1824.0, - 330.0, - 1824.0, - 330.0, - 1856.0, - 139.0, - 1856.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 1860.0, - 447.0, - 1860.0, - 447.0, - 1896.0, - 113.0, - 1896.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 1962.0, - 783.0, - 1962.0, - 783.0, - 1993.0, - 120.0, - 1993.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 1997.0, - 681.0, - 1997.0, - 681.0, - 2034.0, - 118.0, - 2034.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 2035.0, - 1027.0, - 2035.0, - 1027.0, - 2072.0, - 118.0, - 2072.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 111.0, - 2073.0, - 939.0, - 2073.0, - 939.0, - 2106.0, - 111.0, - 2106.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 1318.0, - 405.0, - 1318.0, - 405.0, - 1345.0, - 118.0, - 1345.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 122.0, - 1354.0, - 427.0, - 1354.0, - 427.0, - 1384.0, - 122.0, - 1384.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 124.0, - 1392.0, - 542.0, - 1392.0, - 542.0, - 1419.0, - 124.0, - 1419.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 132.0, - 1428.0, - 308.0, - 1428.0, - 308.0, - 1463.0, - 132.0, - 1463.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 108.0, - 1922.0, - 296.0, - 1922.0, - 296.0, - 1955.0, - 108.0, - 1955.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 108.0, - 1489.0, - 303.0, - 1489.0, - 303.0, - 1523.0, - 108.0, - 1523.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 109.0, - 1237.0, - 257.0, - 1237.0, - 257.0, - 1274.0, - 109.0, - 1274.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 878.0, - 2274.0, - 1011.0, - 2274.0, - 1011.0, - 2299.0, - 878.0, - 2299.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 109.0, - 1278.0, - 518.0, - 1278.0, - 518.0, - 1313.0, - 109.0, - 1313.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 159.0, - 2265.0, - 594.0, - 2265.0, - 594.0, - 2292.0, - 159.0, - 2292.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 110.0, - 997.0, - 267.0, - 997.0, - 267.0, - 1046.0, - 110.0, - 1046.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1335.0, - 2243.0, - 1515.0, - 2243.0, - 1515.0, - 2297.0, - 1335.0, - 2297.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 156.0, - 323.0, - 652.0, - 323.0, - 652.0, - 360.0, - 156.0, - 360.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1580.0, - 5.0, - 1656.0, - 5.0, - 1656.0, - 41.0, - 1580.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 110.0, - 1153.0, - 559.0, - 1153.0, - 559.0, - 1195.0, - 110.0, - 1195.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 800.0, - 350.0, - 800.0, - 350.0, - 864.0, - 113.0, - 864.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 898.0, - 405.0, - 898.0, - 405.0, - 958.0, - 118.0, - 958.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 728.0, - 1150.0, - 911.0, - 1150.0, - 911.0, - 1198.0, - 728.0, - 1198.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 92.0, - 127.5, - 487.0, - 127.5, - 487.0, - 263.5, - 92.0, - 263.5 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 158.0, - 427.0, - 363.0, - 427.0, - 363.0, - 455.0, - 158.0, - 455.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1118.0, - 1153.0, - 1512.0, - 1153.0, - 1512.0, - 1191.0, - 1118.0, - 1191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 92.0, - 127.5, - 487.0, - 127.5, - 487.0, - 263.5, - 92.0, - 263.5 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 521.0, - 287.0, - 521.0, - 287.0, - 556.0, - 155.0, - 556.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1118.0, - 1153.0, - 1512.0, - 1153.0, - 1512.0, - 1191.0, - 1118.0, - 1191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 663.0, - 435.0, - 663.0, - 435.0, - 703.0, - 155.0, - 703.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 461.0, - 705.0, - 826.0, - 705.0, - 826.0, - 736.0, - 461.0, - 736.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 154.0, - 517.0, - 286.0, - 517.0, - 286.0, - 559.0, - 154.0, - 559.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 591.0, - 334.0, - 591.0, - 334.0, - 630.0, - 155.0, - 630.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 662.0, - 435.0, - 662.0, - 435.0, - 703.0, - 155.0, - 703.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 457.0, - 700.0, - 828.0, - 700.0, - 828.0, - 740.0, - 457.0, - 740.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 728.0, - 1150.0, - 911.0, - 1150.0, - 911.0, - 1198.0, - 728.0, - 1198.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1118.0, - 1153.0, - 1512.0, - 1153.0, - 1512.0, - 1191.0, - 1118.0, - 1191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 153.0, - 587.0, - 336.0, - 587.0, - 336.0, - 633.0, - 153.0, - 633.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 867.0, - 426.0, - 1120.0, - 426.0, - 1120.0, - 456.0, - 867.0, - 456.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 40, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 312, - 1498, - 1481, - 1498, - 1481, - 1613, - 312, - 1613 - ], - "score": 0.933 - }, - { - "category_id": 2, - "poly": [ - 1512, - 145, - 1620, - 145, - 1620, - 213, - 1512, - 213 - ], - "score": 0.929 - }, - { - "category_id": 2, - "poly": [ - 127, - 1492, - 294, - 1492, - 294, - 1542, - 127, - 1542 - ], - "score": 0.902 - }, - { - "category_id": 8, - "poly": [ - 719, - 514, - 892, - 514, - 892, - 556, - 719, - 556 - ], - "score": 0.897 - }, - { - "category_id": 0, - "poly": [ - 729, - 181, - 878, - 181, - 878, - 219, - 729, - 219 - ], - "score": 0.895 - }, - { - "category_id": 2, - "poly": [ - 127, - 1056, - 295, - 1056, - 295, - 1106, - 127, - 1106 - ], - "score": 0.892 - }, - { - "category_id": 2, - "poly": [ - 128, - 354, - 228, - 354, - 228, - 403, - 128, - 403 - ], - "score": 0.889 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2293, - 118, - 2293 - ], - "score": 0.887 - }, - { - "category_id": 2, - "poly": [ - 127, - 589, - 294, - 589, - 294, - 638, - 127, - 638 - ], - "score": 0.884 - }, - { - "category_id": 2, - "poly": [ - 1330, - 2264, - 1496, - 2264, - 1496, - 2290, - 1330, - 2290 - ], - "score": 0.883 - }, - { - "category_id": 1, - "poly": [ - 313, - 595, - 801, - 595, - 801, - 638, - 313, - 638 - ], - "score": 0.854 - }, - { - "category_id": 1, - "poly": [ - 557, - 253, - 1048, - 253, - 1048, - 294, - 557, - 294 - ], - "score": 0.844 - }, - { - "category_id": 2, - "poly": [ - 1581, - 4, - 1652, - 4, - 1652, - 39, - 1581, - 39 - ], - "score": 0.823 - }, - { - "category_id": 2, - "poly": [ - 790, - 80, - 814, - 80, - 814, - 111, - 790, - 111 - ], - "score": 0.783 - }, - { - "category_id": 1, - "poly": [ - 1360, - 637, - 1487, - 637, - 1487, - 677, - 1360, - 677 - ], - "score": 0.777 - }, - { - "category_id": 1, - "poly": [ - 1360, - 1611, - 1486, - 1611, - 1486, - 1650, - 1360, - 1650 - ], - "score": 0.752 - }, - { - "category_id": 1, - "poly": [ - 312, - 1068, - 1492, - 1068, - 1492, - 1431, - 312, - 1431 - ], - "score": 0.679 - }, - { - "category_id": 1, - "poly": [ - 1344, - 1104, - 1486, - 1104, - 1486, - 1141, - 1344, - 1141 - ], - "score": 0.564 - }, - { - "category_id": 1, - "poly": [ - 315, - 361, - 1234, - 361, - 1234, - 406, - 315, - 406 - ], - "score": 0.547 - }, - { - "category_id": 1, - "poly": [ - 312, - 360, - 1232, - 360, - 1232, - 479, - 312, - 479 - ], - "score": 0.473 - }, - { - "category_id": 1, - "poly": [ - 315, - 437, - 736, - 437, - 736, - 479, - 315, - 479 - ], - "score": 0.404 - }, - { - "category_id": 1, - "poly": [ - 312, - 1063, - 1132, - 1063, - 1132, - 1105, - 312, - 1105 - ], - "score": 0.379 - }, - { - "category_id": 0, - "poly": [ - 1344, - 1104, - 1486, - 1104, - 1486, - 1141, - 1344, - 1141 - ], - "score": 0.304 - }, - { - "category_id": 2, - "poly": [ - 1360, - 1611, - 1486, - 1611, - 1486, - 1650, - 1360, - 1650 - ], - "score": 0.114 - }, - { - "category_id": 13, - "poly": [ - 694, - 363, - 736, - 363, - 736, - 398, - 694, - 398 - ], - "score": 0.89, - "latex": "\\Lambda^{0}" - }, - { - "category_id": 13, - "poly": [ - 661, - 437, - 704, - 437, - 704, - 473, - 661, - 473 - ], - "score": 0.88, - "latex": "{\\Lambda}^{0}" - }, - { - "category_id": 14, - "poly": [ - 718, - 513, - 894, - 513, - 894, - 556, - 718, - 556 - ], - "score": 0.88, - "latex": "\\Lambda^{0}\\to\\pi^{0}+{\\mathfrak n}" - }, - { - "category_id": 13, - "poly": [ - 752, - 598, - 792, - 598, - 792, - 633, - 752, - 633 - ], - "score": 0.86, - "latex": "\\Lambda^{0}" - }, - { - "category_id": 13, - "poly": [ - 1192, - 366, - 1234, - 366, - 1234, - 399, - 1192, - 399 - ], - "score": 0.28, - "latex": "^{-1}" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 1506.0, - 1474.0, - 1506.0, - 1474.0, - 1539.0, - 319.0, - 1539.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 312.0, - 1572.0, - 460.0, - 1572.0, - 460.0, - 1615.0, - 312.0, - 1615.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1513.0, - 146.0, - 1620.0, - 146.0, - 1620.0, - 171.0, - 1513.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1515.0, - 170.0, - 1618.0, - 170.0, - 1618.0, - 191.0, - 1515.0, - 191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1545.0, - 189.0, - 1589.0, - 189.0, - 1589.0, - 216.0, - 1545.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 1496.0, - 281.0, - 1496.0, - 281.0, - 1537.0, - 135.0, - 1537.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 732.0, - 185.0, - 876.0, - 185.0, - 876.0, - 216.0, - 732.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 1059.0, - 286.0, - 1059.0, - 286.0, - 1105.0, - 134.0, - 1105.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 144.0, - 364.0, - 172.0, - 364.0, - 172.0, - 393.0, - 144.0, - 393.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 187.0, - 365.0, - 211.0, - 365.0, - 211.0, - 392.0, - 187.0, - 392.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 165.0, - 2267.0, - 193.0, - 2267.0, - 193.0, - 2291.0, - 165.0, - 2291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 2266.0, - 220.0, - 2266.0, - 220.0, - 2292.0, - 198.0, - 2292.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 592.0, - 282.0, - 592.0, - 282.0, - 635.0, - 136.0, - 635.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1332.0, - 2266.0, - 1498.0, - 2266.0, - 1498.0, - 2291.0, - 1332.0, - 2291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 601.0, - 751.0, - 601.0, - 751.0, - 635.0, - 316.0, - 635.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 793.0, - 601.0, - 799.0, - 601.0, - 799.0, - 635.0, - 793.0, - 635.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 561.0, - 258.0, - 1047.0, - 258.0, - 1047.0, - 289.0, - 561.0, - 289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1578.0, - 2.0, - 1659.0, - 2.0, - 1659.0, - 44.0, - 1578.0, - 44.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 788.0, - 78.0, - 818.0, - 78.0, - 818.0, - 119.0, - 788.0, - 119.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 637.0, - 1487.0, - 637.0, - 1487.0, - 677.0, - 1362.0, - 677.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 1609.0, - 1488.0, - 1609.0, - 1488.0, - 1651.0, - 1362.0, - 1651.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 1067.0, - 1130.0, - 1067.0, - 1130.0, - 1105.0, - 317.0, - 1105.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1343.0, - 1101.0, - 1491.0, - 1101.0, - 1491.0, - 1143.0, - 1343.0, - 1143.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1102.0, - 1488.0, - 1102.0, - 1488.0, - 1143.0, - 1346.0, - 1143.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 367.0, - 693.0, - 367.0, - 693.0, - 402.0, - 317.0, - 402.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 737.0, - 367.0, - 1191.0, - 367.0, - 1191.0, - 402.0, - 737.0, - 402.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 365.0, - 693.0, - 365.0, - 693.0, - 402.0, - 316.0, - 402.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 737.0, - 365.0, - 1191.0, - 365.0, - 1191.0, - 402.0, - 737.0, - 402.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 440.0, - 660.0, - 440.0, - 660.0, - 476.0, - 315.0, - 476.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 705.0, - 440.0, - 734.0, - 440.0, - 734.0, - 476.0, - 705.0, - 476.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 441.0, - 660.0, - 441.0, - 660.0, - 477.0, - 316.0, - 477.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 705.0, - 441.0, - 732.0, - 441.0, - 732.0, - 477.0, - 705.0, - 477.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1066.0, - 1129.0, - 1066.0, - 1129.0, - 1104.0, - 318.0, - 1104.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1102.0, - 1488.0, - 1102.0, - 1488.0, - 1143.0, - 1346.0, - 1143.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 1609.0, - 1488.0, - 1609.0, - 1488.0, - 1651.0, - 1362.0, - 1651.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 41, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1625, - 146, - 1625, - 214, - 1516, - 214 - ], - "score": 0.929 - }, - { - "category_id": 1, - "poly": [ - 313, - 1117, - 1411, - 1117, - 1411, - 1195, - 313, - 1195 - ], - "score": 0.919 - }, - { - "category_id": 2, - "poly": [ - 1510, - 1399, - 1601, - 1399, - 1601, - 1516, - 1510, - 1516 - ], - "score": 0.917 - }, - { - "category_id": 2, - "poly": [ - 127, - 1108, - 293, - 1108, - 293, - 1158, - 127, - 1158 - ], - "score": 0.891 - }, - { - "category_id": 1, - "poly": [ - 311, - 189, - 1333, - 189, - 1333, - 267, - 311, - 267 - ], - "score": 0.888 - }, - { - "category_id": 1, - "poly": [ - 315, - 303, - 914, - 303, - 914, - 345, - 315, - 345 - ], - "score": 0.881 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2144, - 1496, - 2144, - 1496, - 2177, - 1317, - 2177 - ], - "score": 0.878 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 279, - 2187, - 279, - 2292, - 119, - 2292 - ], - "score": 0.876 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2290, - 1331, - 2290 - ], - "score": 0.874 - }, - { - "category_id": 1, - "poly": [ - 573, - 1691, - 1033, - 1691, - 1033, - 1728, - 573, - 1728 - ], - "score": 0.866 - }, - { - "category_id": 2, - "poly": [ - 127, - 180, - 294, - 180, - 294, - 231, - 127, - 231 - ], - "score": 0.863 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 39, - 1582, - 39 - ], - "score": 0.822 - }, - { - "category_id": 2, - "poly": [ - 791, - 82, - 814, - 82, - 814, - 111, - 791, - 111 - ], - "score": 0.795 - }, - { - "category_id": 1, - "poly": [ - 317, - 1229, - 706, - 1229, - 706, - 1267, - 317, - 1267 - ], - "score": 0.742 - }, - { - "category_id": 1, - "poly": [ - 1360, - 342, - 1486, - 342, - 1486, - 381, - 1360, - 381 - ], - "score": 0.698 - }, - { - "category_id": 1, - "poly": [ - 312, - 1271, - 1490, - 1271, - 1490, - 1520, - 312, - 1520 - ], - "score": 0.687 - }, - { - "category_id": 2, - "poly": [ - 1361, - 1266, - 1485, - 1266, - 1485, - 1304, - 1361, - 1304 - ], - "score": 0.474 - }, - { - "category_id": 1, - "poly": [ - 802, - 996, - 1478, - 996, - 1478, - 1042, - 802, - 1042 - ], - "score": 0.422 - }, - { - "category_id": 2, - "poly": [ - 802, - 996, - 1478, - 996, - 1478, - 1042, - 802, - 1042 - ], - "score": 0.378 - }, - { - "category_id": 1, - "poly": [ - 1361, - 1266, - 1485, - 1266, - 1485, - 1304, - 1361, - 1304 - ], - "score": 0.37 - }, - { - "category_id": 2, - "poly": [ - 1360, - 342, - 1486, - 342, - 1486, - 381, - 1360, - 381 - ], - "score": 0.183 - }, - { - "category_id": 13, - "poly": [ - 350, - 229, - 551, - 229, - 551, - 267, - 350, - 267 - ], - "score": 0.9, - "latex": "2.69\\times10^{23}\\mathrm{Hz}" - }, - { - "category_id": 13, - "poly": [ - 597, - 191, - 639, - 191, - 639, - 226, - 597, - 226 - ], - "score": 0.88, - "latex": "\\Lambda^{0}" - }, - { - "category_id": 13, - "poly": [ - 835, - 1118, - 876, - 1118, - 876, - 1153, - 835, - 1153 - ], - "score": 0.88, - "latex": "{\\Lambda}^{0}" - }, - { - "category_id": 13, - "poly": [ - 863, - 303, - 903, - 303, - 903, - 340, - 863, - 340 - ], - "score": 0.87, - "latex": "{\\Lambda}^{0}" - }, - { - "category_id": 13, - "poly": [ - 964, - 1004, - 994, - 1004, - 994, - 1028, - 964, - 1028 - ], - "score": 0.42, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 505, - 306, - 578, - 306, - 578, - 341, - 505, - 341 - ], - "score": 0.3, - "latex": "\\mathrm{_{MeV}}" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 145.0, - 1625.0, - 145.0, - 1625.0, - 172.0, - 1517.0, - 172.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1521.0, - 171.0, - 1621.0, - 171.0, - 1621.0, - 194.0, - 1521.0, - 194.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1552.0, - 192.0, - 1592.0, - 192.0, - 1592.0, - 217.0, - 1552.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 1117.0, - 834.0, - 1117.0, - 834.0, - 1160.0, - 315.0, - 1160.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 877.0, - 1117.0, - 1414.0, - 1117.0, - 1414.0, - 1160.0, - 877.0, - 1160.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 314.0, - 1157.0, - 414.0, - 1157.0, - 414.0, - 1197.0, - 314.0, - 1197.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1545.0, - 1473.0, - 1563.0, - 1473.0, - 1563.0, - 1493.0, - 1545.0, - 1493.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 1113.0, - 284.0, - 1113.0, - 284.0, - 1154.0, - 136.0, - 1154.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 192.0, - 596.0, - 192.0, - 596.0, - 232.0, - 315.0, - 232.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 640.0, - 192.0, - 1332.0, - 192.0, - 1332.0, - 232.0, - 640.0, - 232.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 232.0, - 349.0, - 232.0, - 349.0, - 265.0, - 318.0, - 265.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 552.0, - 232.0, - 559.0, - 232.0, - 559.0, - 265.0, - 552.0, - 265.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 305.0, - 504.0, - 305.0, - 504.0, - 344.0, - 316.0, - 344.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 579.0, - 305.0, - 862.0, - 305.0, - 862.0, - 344.0, - 579.0, - 344.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 904.0, - 305.0, - 911.0, - 305.0, - 911.0, - 344.0, - 904.0, - 344.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1317.0, - 2146.0, - 1473.0, - 2146.0, - 1473.0, - 2176.0, - 1317.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 163.0, - 2265.0, - 225.0, - 2265.0, - 225.0, - 2294.0, - 163.0, - 2294.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 577.0, - 1693.0, - 1030.0, - 1693.0, - 1030.0, - 1726.0, - 577.0, - 1726.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 188.0, - 284.0, - 188.0, - 284.0, - 225.0, - 140.0, - 225.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 789.0, - 78.0, - 818.0, - 78.0, - 818.0, - 116.0, - 789.0, - 116.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1232.0, - 703.0, - 1232.0, - 703.0, - 1266.0, - 318.0, - 1266.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 340.0, - 1488.0, - 340.0, - 1488.0, - 382.0, - 1362.0, - 382.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 1265.0, - 1489.0, - 1265.0, - 1489.0, - 1306.0, - 1363.0, - 1306.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 1266.0, - 1488.0, - 1266.0, - 1488.0, - 1304.0, - 1362.0, - 1304.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 806.0, - 1000.0, - 963.0, - 1000.0, - 963.0, - 1037.0, - 806.0, - 1037.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1401.0, - 998.0, - 1481.0, - 998.0, - 1481.0, - 1032.0, - 1401.0, - 1032.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 806.0, - 1000.0, - 963.0, - 1000.0, - 963.0, - 1037.0, - 806.0, - 1037.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1401.0, - 998.0, - 1481.0, - 998.0, - 1481.0, - 1032.0, - 1401.0, - 1032.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 1266.0, - 1488.0, - 1266.0, - 1488.0, - 1304.0, - 1362.0, - 1304.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 340.0, - 1488.0, - 340.0, - 1488.0, - 382.0, - 1362.0, - 382.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 42, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2291, - 118, - 2291 - ], - "score": 0.884 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2266, - 1496, - 2266, - 1496, - 2289, - 1331, - 2289 - ], - "score": 0.868 - }, - { - "category_id": 2, - "poly": [ - 1582, - 5, - 1652, - 5, - 1652, - 38, - 1582, - 38 - ], - "score": 0.806 - }, - { - "category_id": 2, - "poly": [ - 793, - 84, - 813, - 84, - 813, - 109, - 793, - 109 - ], - "score": 0.769 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1625, - 146, - 1625, - 214, - 1516, - 214 - ], - "score": 0.768 - }, - { - "category_id": 3, - "poly": [ - 103, - 145, - 1501, - 145, - 1501, - 2137, - 103, - 2137 - ], - "score": 0.562 - }, - { - "category_id": 1, - "poly": [ - 480, - 184, - 1129, - 184, - 1129, - 224, - 480, - 224 - ], - "score": 0.428 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1625, - 146, - 1625, - 214, - 1516, - 214 - ], - "score": 0.423 - }, - { - "category_id": 15, - "poly": [ - 168.0, - 2270.0, - 187.0, - 2270.0, - 187.0, - 2290.0, - 168.0, - 2290.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 2269.0, - 221.0, - 2269.0, - 221.0, - 2289.0, - 195.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1580.0, - 5.0, - 1656.0, - 5.0, - 1656.0, - 41.0, - 1580.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 792.0, - 82.0, - 817.0, - 82.0, - 817.0, - 114.0, - 792.0, - 114.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1624.0, - 147.0, - 1624.0, - 171.0, - 1517.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1621.0, - 170.0, - 1621.0, - 191.0, - 1520.0, - 191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1551.0, - 190.0, - 1592.0, - 190.0, - 1592.0, - 216.0, - 1551.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 484.0, - 188.0, - 1122.0, - 188.0, - 1122.0, - 222.0, - 484.0, - 222.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1624.0, - 147.0, - 1624.0, - 171.0, - 1517.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1621.0, - 170.0, - 1621.0, - 191.0, - 1520.0, - 191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1551.0, - 190.0, - 1592.0, - 190.0, - 1592.0, - 216.0, - 1551.0, - 216.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 43, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1517, - 146, - 1624, - 146, - 1624, - 214, - 1517, - 214 - ], - "score": 0.931 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2144, - 1496, - 2144, - 1496, - 2177, - 1317, - 2177 - ], - "score": 0.892 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 278, - 2187, - 278, - 2291, - 119, - 2291 - ], - "score": 0.887 - }, - { - "category_id": 2, - "poly": [ - 127, - 335, - 293, - 335, - 293, - 385, - 127, - 385 - ], - "score": 0.884 - }, - { - "category_id": 1, - "poly": [ - 318, - 422, - 1223, - 422, - 1223, - 460, - 318, - 460 - ], - "score": 0.876 - }, - { - "category_id": 2, - "poly": [ - 127, - 181, - 229, - 181, - 229, - 230, - 127, - 230 - ], - "score": 0.872 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2266, - 1496, - 2266, - 1496, - 2289, - 1331, - 2289 - ], - "score": 0.872 - }, - { - "category_id": 1, - "poly": [ - 317, - 346, - 1082, - 346, - 1082, - 384, - 317, - 384 - ], - "score": 0.842 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 38, - 1582, - 38 - ], - "score": 0.821 - }, - { - "category_id": 2, - "poly": [ - 791, - 82, - 814, - 82, - 814, - 111, - 791, - 111 - ], - "score": 0.784 - }, - { - "category_id": 1, - "poly": [ - 314, - 191, - 1484, - 191, - 1484, - 304, - 314, - 304 - ], - "score": 0.781 - }, - { - "category_id": 1, - "poly": [ - 521, - 1250, - 1087, - 1250, - 1087, - 1288, - 521, - 1288 - ], - "score": 0.645 - }, - { - "category_id": 1, - "poly": [ - 1344, - 460, - 1486, - 460, - 1486, - 497, - 1344, - 497 - ], - "score": 0.603 - }, - { - "category_id": 1, - "poly": [ - 953, - 1006, - 1473, - 1006, - 1473, - 1041, - 953, - 1041 - ], - "score": 0.4 - }, - { - "category_id": 2, - "poly": [ - 1344, - 460, - 1486, - 460, - 1486, - 497, - 1344, - 497 - ], - "score": 0.339 - }, - { - "category_id": 2, - "poly": [ - 953, - 1006, - 1473, - 1006, - 1473, - 1041, - 953, - 1041 - ], - "score": 0.248 - }, - { - "category_id": 0, - "poly": [ - 521, - 1250, - 1087, - 1250, - 1087, - 1288, - 521, - 1288 - ], - "score": 0.223 - }, - { - "category_id": 1, - "poly": [ - 305, - 232, - 1488, - 232, - 1488, - 304, - 305, - 304 - ], - "score": 0.211 - }, - { - "category_id": 13, - "poly": [ - 876, - 190, - 1044, - 190, - 1044, - 228, - 876, - 228 - ], - "score": 0.9, - "latex": "1230\\mathrm{kmh^{-1}}" - }, - { - "category_id": 13, - "poly": [ - 939, - 345, - 1072, - 345, - 1072, - 381, - 939, - 381 - ], - "score": 0.87, - "latex": "343\\mathrm{m~s}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 711, - 267, - 823, - 267, - 823, - 302, - 711, - 302 - ], - "score": 0.64, - "latex": "1.61~\\mathrm{km}" - }, - { - "category_id": 15, - "poly": [ - 1518.0, - 146.0, - 1625.0, - 146.0, - 1625.0, - 171.0, - 1518.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1521.0, - 171.0, - 1622.0, - 171.0, - 1622.0, - 194.0, - 1521.0, - 194.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1550.0, - 190.0, - 1593.0, - 190.0, - 1593.0, - 217.0, - 1550.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1317.0, - 2146.0, - 1473.0, - 2146.0, - 1473.0, - 2176.0, - 1317.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 165.0, - 2267.0, - 193.0, - 2267.0, - 193.0, - 2291.0, - 165.0, - 2291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 2267.0, - 223.0, - 2267.0, - 223.0, - 2292.0, - 196.0, - 2292.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 339.0, - 284.0, - 339.0, - 284.0, - 383.0, - 135.0, - 383.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 426.0, - 1221.0, - 426.0, - 1221.0, - 456.0, - 319.0, - 456.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 186.0, - 221.0, - 186.0, - 221.0, - 227.0, - 138.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 349.0, - 938.0, - 349.0, - 938.0, - 380.0, - 318.0, - 380.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1073.0, - 349.0, - 1076.0, - 349.0, - 1076.0, - 380.0, - 1073.0, - 380.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 3.0, - 1658.0, - 3.0, - 1658.0, - 42.0, - 1579.0, - 42.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 789.0, - 78.0, - 818.0, - 78.0, - 818.0, - 118.0, - 789.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 193.0, - 875.0, - 193.0, - 875.0, - 229.0, - 316.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1045.0, - 193.0, - 1050.0, - 193.0, - 1050.0, - 229.0, - 1045.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 232.0, - 1489.0, - 232.0, - 1489.0, - 269.0, - 316.0, - 269.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 270.0, - 710.0, - 270.0, - 710.0, - 303.0, - 316.0, - 303.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 824.0, - 270.0, - 832.0, - 270.0, - 832.0, - 303.0, - 824.0, - 303.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 521.0, - 1251.0, - 1086.0, - 1251.0, - 1086.0, - 1287.0, - 521.0, - 1287.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 460.0, - 1487.0, - 460.0, - 1487.0, - 498.0, - 1345.0, - 498.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 956.0, - 1005.0, - 1047.0, - 1005.0, - 1047.0, - 1036.0, - 956.0, - 1036.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1458.0, - 1013.0, - 1475.0, - 1013.0, - 1475.0, - 1033.0, - 1458.0, - 1033.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 460.0, - 1487.0, - 460.0, - 1487.0, - 498.0, - 1345.0, - 498.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 956.0, - 1005.0, - 1047.0, - 1005.0, - 1047.0, - 1036.0, - 956.0, - 1036.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1458.0, - 1013.0, - 1475.0, - 1013.0, - 1475.0, - 1033.0, - 1458.0, - 1033.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 521.0, - 1251.0, - 1086.0, - 1251.0, - 1086.0, - 1287.0, - 521.0, - 1287.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 229.0, - 1489.0, - 229.0, - 1489.0, - 268.0, - 315.0, - 268.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 272.0, - 710.0, - 272.0, - 710.0, - 302.0, - 318.0, - 302.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 824.0, - 272.0, - 831.0, - 272.0, - 831.0, - 302.0, - 824.0, - 302.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 44, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 262, - 439, - 1458, - 439, - 1458, - 1223, - 262, - 1223 - ], - "score": 0.961 - }, - { - "category_id": 1, - "poly": [ - 317, - 1261, - 1339, - 1261, - 1339, - 1340, - 317, - 1340 - ], - "score": 0.93 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1624, - 146, - 1624, - 213, - 1516, - 213 - ], - "score": 0.929 - }, - { - "category_id": 1, - "poly": [ - 310, - 262, - 1445, - 262, - 1445, - 336, - 310, - 336 - ], - "score": 0.927 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2292, - 118, - 2292 - ], - "score": 0.913 - }, - { - "category_id": 1, - "poly": [ - 314, - 1373, - 1242, - 1373, - 1242, - 1413, - 314, - 1413 - ], - "score": 0.911 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2290, - 1331, - 2290 - ], - "score": 0.891 - }, - { - "category_id": 2, - "poly": [ - 127, - 181, - 293, - 181, - 293, - 230, - 127, - 230 - ], - "score": 0.878 - }, - { - "category_id": 1, - "poly": [ - 313, - 190, - 1236, - 190, - 1236, - 229, - 313, - 229 - ], - "score": 0.866 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1653, - 4, - 1653, - 39, - 1582, - 39 - ], - "score": 0.828 - }, - { - "category_id": 2, - "poly": [ - 791, - 83, - 813, - 83, - 813, - 111, - 791, - 111 - ], - "score": 0.812 - }, - { - "category_id": 4, - "poly": [ - 744, - 372, - 867, - 372, - 867, - 409, - 744, - 409 - ], - "score": 0.785 - }, - { - "category_id": 1, - "poly": [ - 1344, - 1410, - 1486, - 1410, - 1486, - 1449, - 1344, - 1449 - ], - "score": 0.53 - }, - { - "category_id": 1, - "poly": [ - 820, - 1867, - 1477, - 1867, - 1477, - 1914, - 820, - 1914 - ], - "score": 0.479 - }, - { - "category_id": 2, - "poly": [ - 1344, - 1410, - 1486, - 1410, - 1486, - 1449, - 1344, - 1449 - ], - "score": 0.425 - }, - { - "category_id": 2, - "poly": [ - 820, - 1867, - 1477, - 1867, - 1477, - 1914, - 820, - 1914 - ], - "score": 0.185 - }, - { - "category_id": 0, - "poly": [ - 744, - 372, - 867, - 372, - 867, - 409, - 744, - 409 - ], - "score": 0.104 - }, - { - "category_id": 13, - "poly": [ - 784, - 1298, - 967, - 1298, - 967, - 1339, - 784, - 1339 - ], - "score": 0.91, - "latex": "6.50\\times10^{3}\\mathrm{kg}" - }, - { - "category_id": 13, - "poly": [ - 1034, - 1262, - 1141, - 1262, - 1141, - 1297, - 1034, - 1297 - ], - "score": 0.62, - "latex": "5600\\mathrm{m}" - }, - { - "category_id": 13, - "poly": [ - 1018, - 1874, - 1048, - 1874, - 1048, - 1900, - 1018, - 1900 - ], - "score": 0.49, - "latex": "=" - }, - { - "category_id": 15, - "poly": [ - 320.0, - 1265.0, - 1033.0, - 1265.0, - 1033.0, - 1296.0, - 320.0, - 1296.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1142.0, - 1265.0, - 1335.0, - 1265.0, - 1335.0, - 1296.0, - 1142.0, - 1296.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1301.0, - 783.0, - 1301.0, - 783.0, - 1339.0, - 316.0, - 1339.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 968.0, - 1301.0, - 972.0, - 1301.0, - 972.0, - 1339.0, - 968.0, - 1339.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1625.0, - 147.0, - 1625.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1623.0, - 170.0, - 1623.0, - 193.0, - 1520.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1550.0, - 190.0, - 1593.0, - 190.0, - 1593.0, - 216.0, - 1550.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 264.0, - 1442.0, - 264.0, - 1442.0, - 302.0, - 318.0, - 302.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 304.0, - 463.0, - 304.0, - 463.0, - 340.0, - 317.0, - 340.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 167.0, - 2269.0, - 190.0, - 2269.0, - 190.0, - 2290.0, - 167.0, - 2290.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 192.0, - 2267.0, - 223.0, - 2267.0, - 223.0, - 2292.0, - 192.0, - 2292.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1374.0, - 1241.0, - 1374.0, - 1241.0, - 1409.0, - 316.0, - 1409.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 185.0, - 285.0, - 185.0, - 285.0, - 228.0, - 135.0, - 228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 194.0, - 1237.0, - 194.0, - 1237.0, - 228.0, - 318.0, - 228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1578.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1578.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 791.0, - 80.0, - 816.0, - 80.0, - 816.0, - 115.0, - 791.0, - 115.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 746.0, - 374.0, - 868.0, - 374.0, - 868.0, - 410.0, - 746.0, - 410.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 1411.0, - 1487.0, - 1411.0, - 1487.0, - 1449.0, - 1345.0, - 1449.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 825.0, - 1869.0, - 1017.0, - 1869.0, - 1017.0, - 1907.0, - 825.0, - 1907.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1455.0, - 1871.0, - 1478.0, - 1871.0, - 1478.0, - 1900.0, - 1455.0, - 1900.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 1411.0, - 1487.0, - 1411.0, - 1487.0, - 1449.0, - 1345.0, - 1449.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 825.0, - 1869.0, - 1017.0, - 1869.0, - 1017.0, - 1907.0, - 825.0, - 1907.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1455.0, - 1871.0, - 1478.0, - 1871.0, - 1478.0, - 1900.0, - 1455.0, - 1900.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 746.0, - 374.0, - 868.0, - 374.0, - 868.0, - 410.0, - 746.0, - 410.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 45, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1624, - 146, - 1624, - 214, - 1516, - 214 - ], - "score": 0.929 - }, - { - "category_id": 1, - "poly": [ - 316, - 337, - 1389, - 337, - 1389, - 412, - 316, - 412 - ], - "score": 0.918 - }, - { - "category_id": 1, - "poly": [ - 314, - 447, - 1348, - 447, - 1348, - 521, - 314, - 521 - ], - "score": 0.915 - }, - { - "category_id": 2, - "poly": [ - 1511, - 1917, - 1601, - 1917, - 1601, - 2034, - 1511, - 2034 - ], - "score": 0.915 - }, - { - "category_id": 1, - "poly": [ - 309, - 1468, - 1475, - 1468, - 1475, - 1546, - 309, - 1546 - ], - "score": 0.9 - }, - { - "category_id": 1, - "poly": [ - 313, - 189, - 1218, - 189, - 1218, - 230, - 313, - 230 - ], - "score": 0.895 - }, - { - "category_id": 2, - "poly": [ - 1330, - 2265, - 1496, - 2265, - 1496, - 2290, - 1330, - 2290 - ], - "score": 0.886 - }, - { - "category_id": 2, - "poly": [ - 127, - 1459, - 293, - 1459, - 293, - 1509, - 127, - 1509 - ], - "score": 0.876 - }, - { - "category_id": 1, - "poly": [ - 314, - 1580, - 1101, - 1580, - 1101, - 1621, - 314, - 1621 - ], - "score": 0.868 - }, - { - "category_id": 1, - "poly": [ - 560, - 264, - 1089, - 264, - 1089, - 303, - 560, - 303 - ], - "score": 0.859 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2144, - 1496, - 2144, - 1496, - 2177, - 1317, - 2177 - ], - "score": 0.848 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 279, - 2187, - 279, - 2291, - 119, - 2291 - ], - "score": 0.831 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 39, - 1582, - 39 - ], - "score": 0.823 - }, - { - "category_id": 2, - "poly": [ - 127, - 180, - 293, - 180, - 293, - 231, - 127, - 231 - ], - "score": 0.806 - }, - { - "category_id": 2, - "poly": [ - 792, - 82, - 813, - 82, - 813, - 109, - 792, - 109 - ], - "score": 0.762 - }, - { - "category_id": 2, - "poly": [ - 1344, - 522, - 1486, - 522, - 1486, - 559, - 1344, - 559 - ], - "score": 0.723 - }, - { - "category_id": 1, - "poly": [ - 1344, - 1619, - 1486, - 1619, - 1486, - 1657, - 1344, - 1657 - ], - "score": 0.564 - }, - { - "category_id": 2, - "poly": [ - 636, - 1347, - 1475, - 1347, - 1475, - 1394, - 636, - 1394 - ], - "score": 0.448 - }, - { - "category_id": 2, - "poly": [ - 1344, - 1619, - 1486, - 1619, - 1486, - 1657, - 1344, - 1657 - ], - "score": 0.367 - }, - { - "category_id": 1, - "poly": [ - 636, - 1347, - 1475, - 1347, - 1475, - 1394, - 636, - 1394 - ], - "score": 0.224 - }, - { - "category_id": 1, - "poly": [ - 1344, - 522, - 1486, - 522, - 1486, - 559, - 1344, - 559 - ], - "score": 0.211 - }, - { - "category_id": 2, - "poly": [ - 1443, - 1351, - 1474, - 1351, - 1474, - 1382, - 1443, - 1382 - ], - "score": 0.148 - }, - { - "category_id": 13, - "poly": [ - 732, - 272, - 762, - 272, - 762, - 297, - 732, - 297 - ], - "score": 0.75, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 852, - 269, - 881, - 269, - 881, - 298, - 852, - 298 - ], - "score": 0.66, - "latex": "\\times" - }, - { - "category_id": 13, - "poly": [ - 1003, - 1355, - 1034, - 1355, - 1034, - 1381, - 1003, - 1381 - ], - "score": 0.61, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 1052, - 1584, - 1091, - 1584, - 1091, - 1620, - 1052, - 1620 - ], - "score": 0.43, - "latex": "3g" - }, - { - "category_id": 13, - "poly": [ - 446, - 1508, - 484, - 1508, - 484, - 1545, - 446, - 1545 - ], - "score": 0.37, - "latex": "3g" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 146.0, - 1625.0, - 146.0, - 1625.0, - 171.0, - 1517.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 171.0, - 1622.0, - 171.0, - 1622.0, - 194.0, - 1520.0, - 194.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 190.0, - 1594.0, - 190.0, - 1594.0, - 217.0, - 1549.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 338.0, - 1385.0, - 338.0, - 1385.0, - 376.0, - 316.0, - 376.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 377.0, - 480.0, - 377.0, - 480.0, - 411.0, - 316.0, - 411.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 449.0, - 1346.0, - 449.0, - 1346.0, - 485.0, - 317.0, - 485.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 491.0, - 634.0, - 491.0, - 634.0, - 518.0, - 317.0, - 518.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1535.0, - 1986.0, - 1576.0, - 1986.0, - 1576.0, - 2016.0, - 1535.0, - 2016.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1471.0, - 1472.0, - 1471.0, - 1472.0, - 1506.0, - 318.0, - 1506.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 314.0, - 1504.0, - 445.0, - 1504.0, - 445.0, - 1549.0, - 314.0, - 1549.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 485.0, - 1504.0, - 493.0, - 1504.0, - 493.0, - 1549.0, - 485.0, - 1549.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 194.0, - 1215.0, - 194.0, - 1215.0, - 228.0, - 318.0, - 228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 1464.0, - 244.0, - 1464.0, - 244.0, - 1505.0, - 136.0, - 1505.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 248.0, - 1471.0, - 278.0, - 1471.0, - 278.0, - 1499.0, - 248.0, - 1499.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1583.0, - 1051.0, - 1583.0, - 1051.0, - 1619.0, - 318.0, - 1619.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1092.0, - 1583.0, - 1096.0, - 1583.0, - 1096.0, - 1619.0, - 1092.0, - 1619.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 565.0, - 268.0, - 731.0, - 268.0, - 731.0, - 302.0, - 565.0, - 302.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 763.0, - 268.0, - 851.0, - 268.0, - 851.0, - 302.0, - 763.0, - 302.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 882.0, - 268.0, - 1087.0, - 268.0, - 1087.0, - 302.0, - 882.0, - 302.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1317.0, - 2146.0, - 1473.0, - 2146.0, - 1473.0, - 2176.0, - 1317.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 167.0, - 2269.0, - 188.0, - 2269.0, - 188.0, - 2290.0, - 167.0, - 2290.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 185.0, - 285.0, - 185.0, - 285.0, - 228.0, - 135.0, - 228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 788.0, - 79.0, - 819.0, - 79.0, - 819.0, - 116.0, - 788.0, - 116.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 520.0, - 1488.0, - 520.0, - 1488.0, - 561.0, - 1345.0, - 561.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 1617.0, - 1488.0, - 1617.0, - 1488.0, - 1659.0, - 1345.0, - 1659.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 648.0, - 1356.0, - 1002.0, - 1356.0, - 1002.0, - 1385.0, - 648.0, - 1385.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1445.0, - 1353.0, - 1474.0, - 1353.0, - 1474.0, - 1381.0, - 1445.0, - 1381.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 1617.0, - 1488.0, - 1617.0, - 1488.0, - 1659.0, - 1345.0, - 1659.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 648.0, - 1356.0, - 1002.0, - 1356.0, - 1002.0, - 1385.0, - 648.0, - 1385.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1445.0, - 1353.0, - 1474.0, - 1353.0, - 1474.0, - 1381.0, - 1445.0, - 1381.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 520.0, - 1488.0, - 520.0, - 1488.0, - 561.0, - 1345.0, - 561.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1442.0, - 1350.0, - 1477.0, - 1350.0, - 1477.0, - 1385.0, - 1442.0, - 1385.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 46, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 118, - 2187, - 278, - 2187, - 278, - 2292, - 118, - 2292 - ], - "score": 0.905 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2266, - 1496, - 2266, - 1496, - 2289, - 1331, - 2289 - ], - "score": 0.868 - }, - { - "category_id": 2, - "poly": [ - 1582, - 5, - 1652, - 5, - 1652, - 38, - 1582, - 38 - ], - "score": 0.806 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1625, - 146, - 1625, - 214, - 1516, - 214 - ], - "score": 0.799 - }, - { - "category_id": 2, - "poly": [ - 792, - 83, - 813, - 83, - 813, - 110, - 792, - 110 - ], - "score": 0.795 - }, - { - "category_id": 3, - "poly": [ - 104, - 146, - 1502, - 146, - 1502, - 2136, - 104, - 2136 - ], - "score": 0.576 - }, - { - "category_id": 1, - "poly": [ - 479, - 184, - 1129, - 184, - 1129, - 224, - 479, - 224 - ], - "score": 0.377 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1625, - 146, - 1625, - 214, - 1516, - 214 - ], - "score": 0.268 - }, - { - "category_id": 15, - "poly": [ - 161.0, - 2263.0, - 226.0, - 2263.0, - 226.0, - 2295.0, - 161.0, - 2295.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1580.0, - 5.0, - 1656.0, - 5.0, - 1656.0, - 41.0, - 1580.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1624.0, - 147.0, - 1624.0, - 171.0, - 1517.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1621.0, - 170.0, - 1621.0, - 191.0, - 1520.0, - 191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1551.0, - 190.0, - 1592.0, - 190.0, - 1592.0, - 216.0, - 1551.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 789.0, - 80.0, - 818.0, - 80.0, - 818.0, - 116.0, - 789.0, - 116.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 482.0, - 186.0, - 1123.0, - 186.0, - 1123.0, - 223.0, - 482.0, - 223.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1624.0, - 147.0, - 1624.0, - 171.0, - 1517.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1621.0, - 170.0, - 1621.0, - 191.0, - 1520.0, - 191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1551.0, - 190.0, - 1592.0, - 190.0, - 1592.0, - 216.0, - 1551.0, - 216.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 47, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 517, - 346, - 1095, - 346, - 1095, - 725, - 517, - 725 - ], - "score": 0.967 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1625, - 146, - 1625, - 214, - 1516, - 214 - ], - "score": 0.927 - }, - { - "category_id": 1, - "poly": [ - 316, - 914, - 1404, - 914, - 1404, - 989, - 316, - 989 - ], - "score": 0.927 - }, - { - "category_id": 1, - "poly": [ - 319, - 761, - 709, - 761, - 709, - 799, - 319, - 799 - ], - "score": 0.917 - }, - { - "category_id": 1, - "poly": [ - 319, - 834, - 1285, - 834, - 1285, - 875, - 319, - 875 - ], - "score": 0.914 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 279, - 2187, - 279, - 2291, - 119, - 2291 - ], - "score": 0.913 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2144, - 1496, - 2144, - 1496, - 2177, - 1317, - 2177 - ], - "score": 0.906 - }, - { - "category_id": 1, - "poly": [ - 309, - 191, - 1065, - 191, - 1065, - 231, - 309, - 231 - ], - "score": 0.902 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2289, - 1331, - 2289 - ], - "score": 0.886 - }, - { - "category_id": 1, - "poly": [ - 1345, - 989, - 1486, - 989, - 1486, - 1025, - 1345, - 1025 - ], - "score": 0.883 - }, - { - "category_id": 2, - "poly": [ - 127, - 180, - 293, - 180, - 293, - 230, - 127, - 230 - ], - "score": 0.837 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 39, - 1582, - 39 - ], - "score": 0.824 - }, - { - "category_id": 2, - "poly": [ - 791, - 83, - 813, - 83, - 813, - 111, - 791, - 111 - ], - "score": 0.821 - }, - { - "category_id": 4, - "poly": [ - 739, - 276, - 867, - 276, - 867, - 315, - 739, - 315 - ], - "score": 0.583 - }, - { - "category_id": 1, - "poly": [ - 521, - 1952, - 1087, - 1952, - 1087, - 1990, - 521, - 1990 - ], - "score": 0.557 - }, - { - "category_id": 0, - "poly": [ - 739, - 276, - 867, - 276, - 867, - 315, - 739, - 315 - ], - "score": 0.334 - }, - { - "category_id": 0, - "poly": [ - 521, - 1952, - 1087, - 1952, - 1087, - 1990, - 521, - 1990 - ], - "score": 0.252 - }, - { - "category_id": 1, - "poly": [ - 313, - 1061, - 1490, - 1061, - 1490, - 1603, - 313, - 1603 - ], - "score": 0.219 - }, - { - "category_id": 5, - "poly": [ - 313, - 1061, - 1490, - 1061, - 1490, - 1603, - 313, - 1603 - ], - "score": 0.111 - }, - { - "category_id": 2, - "poly": [ - 521, - 1952, - 1087, - 1952, - 1087, - 1990, - 521, - 1990 - ], - "score": 0.104 - }, - { - "category_id": 13, - "poly": [ - 878, - 837, - 914, - 837, - 914, - 874, - 878, - 874 - ], - "score": 0.87, - "latex": "V_{1}" - }, - { - "category_id": 13, - "poly": [ - 804, - 837, - 843, - 837, - 843, - 874, - 804, - 874 - ], - "score": 0.87, - "latex": "{\\mathrm{R}}_{1}" - }, - { - "category_id": 13, - "poly": [ - 1168, - 837, - 1208, - 837, - 1208, - 874, - 1168, - 874 - ], - "score": 0.87, - "latex": "{\\bf R}_{2}" - }, - { - "category_id": 13, - "poly": [ - 1241, - 837, - 1277, - 837, - 1277, - 875, - 1241, - 875 - ], - "score": 0.85, - "latex": "V_{2}" - }, - { - "category_id": 13, - "poly": [ - 633, - 594, - 674, - 594, - 674, - 626, - 633, - 626 - ], - "score": 0.83, - "latex": "\\mathsf{R}_{1}" - }, - { - "category_id": 13, - "poly": [ - 942, - 594, - 982, - 594, - 982, - 626, - 942, - 626 - ], - "score": 0.82, - "latex": "{\\mathrm{R}}_{2}" - }, - { - "category_id": 13, - "poly": [ - 631, - 678, - 673, - 678, - 673, - 725, - 631, - 725 - ], - "score": 0.78, - "latex": "F_{\\uparrow}^{\\mathrm{{c}}}" - }, - { - "category_id": 13, - "poly": [ - 941, - 681, - 982, - 681, - 982, - 724, - 941, - 724 - ], - "score": 0.67, - "latex": "V_{2}" - }, - { - "category_id": 13, - "poly": [ - 699, - 200, - 718, - 200, - 718, - 226, - 699, - 226 - ], - "score": 0.58, - "latex": "\\varepsilon" - }, - { - "category_id": 13, - "poly": [ - 1037, - 201, - 1055, - 201, - 1055, - 225, - 1037, - 225 - ], - "score": 0.54, - "latex": "r" - }, - { - "category_id": 13, - "poly": [ - 680, - 764, - 699, - 764, - 699, - 794, - 680, - 794 - ], - "score": 0.29, - "latex": "I" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 145.0, - 1625.0, - 145.0, - 1625.0, - 172.0, - 1517.0, - 172.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1521.0, - 171.0, - 1621.0, - 171.0, - 1621.0, - 194.0, - 1521.0, - 194.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1552.0, - 192.0, - 1592.0, - 192.0, - 1592.0, - 217.0, - 1552.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 916.0, - 1230.0, - 916.0, - 1230.0, - 954.0, - 318.0, - 954.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 951.0, - 1402.0, - 951.0, - 1402.0, - 987.0, - 317.0, - 987.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 765.0, - 679.0, - 765.0, - 679.0, - 795.0, - 318.0, - 795.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 700.0, - 765.0, - 706.0, - 765.0, - 706.0, - 795.0, - 700.0, - 795.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 837.0, - 803.0, - 837.0, - 803.0, - 874.0, - 317.0, - 874.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 844.0, - 837.0, - 877.0, - 837.0, - 877.0, - 874.0, - 844.0, - 874.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 915.0, - 837.0, - 1167.0, - 837.0, - 1167.0, - 874.0, - 915.0, - 874.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1209.0, - 837.0, - 1240.0, - 837.0, - 1240.0, - 874.0, - 1209.0, - 874.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1278.0, - 837.0, - 1282.0, - 837.0, - 1282.0, - 874.0, - 1278.0, - 874.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 167.0, - 2269.0, - 189.0, - 2269.0, - 189.0, - 2290.0, - 167.0, - 2290.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 193.0, - 2268.0, - 221.0, - 2268.0, - 221.0, - 2291.0, - 193.0, - 2291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1317.0, - 2146.0, - 1473.0, - 2146.0, - 1473.0, - 2176.0, - 1317.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 197.0, - 698.0, - 197.0, - 698.0, - 227.0, - 318.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 719.0, - 197.0, - 1036.0, - 197.0, - 1036.0, - 227.0, - 719.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1056.0, - 197.0, - 1062.0, - 197.0, - 1062.0, - 227.0, - 1056.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1332.0, - 2266.0, - 1499.0, - 2266.0, - 1499.0, - 2291.0, - 1332.0, - 2291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 986.0, - 1488.0, - 986.0, - 1488.0, - 1026.0, - 1346.0, - 1026.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 191.0, - 178.0, - 191.0, - 178.0, - 222.0, - 141.0, - 222.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 186.0, - 192.0, - 222.0, - 192.0, - 222.0, - 221.0, - 186.0, - 221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 246.0, - 196.0, - 272.0, - 196.0, - 272.0, - 216.0, - 246.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 791.0, - 81.0, - 816.0, - 81.0, - 816.0, - 115.0, - 791.0, - 115.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 741.0, - 279.0, - 867.0, - 279.0, - 867.0, - 315.0, - 741.0, - 315.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 521.0, - 1953.0, - 1086.0, - 1953.0, - 1086.0, - 1989.0, - 521.0, - 1989.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 741.0, - 279.0, - 867.0, - 279.0, - 867.0, - 315.0, - 741.0, - 315.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 521.0, - 1953.0, - 1086.0, - 1953.0, - 1086.0, - 1989.0, - 521.0, - 1989.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 521.0, - 1953.0, - 1086.0, - 1953.0, - 1086.0, - 1989.0, - 521.0, - 1989.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 48, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 519, - 368, - 1092, - 368, - 1092, - 624, - 519, - 624 - ], - "score": 0.958 - }, - { - "category_id": 3, - "poly": [ - 438, - 985, - 1178, - 985, - 1178, - 1363, - 438, - 1363 - ], - "score": 0.958 - }, - { - "category_id": 1, - "poly": [ - 315, - 1405, - 1480, - 1405, - 1480, - 1484, - 315, - 1484 - ], - "score": 0.949 - }, - { - "category_id": 1, - "poly": [ - 310, - 190, - 1333, - 190, - 1333, - 264, - 310, - 264 - ], - "score": 0.937 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1625, - 146, - 1625, - 213, - 1516, - 213 - ], - "score": 0.93 - }, - { - "category_id": 1, - "poly": [ - 314, - 847, - 1354, - 847, - 1354, - 886, - 314, - 886 - ], - "score": 0.913 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 278, - 2187, - 278, - 2291, - 119, - 2291 - ], - "score": 0.913 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2289, - 1331, - 2289 - ], - "score": 0.889 - }, - { - "category_id": 2, - "poly": [ - 787, - 83, - 822, - 83, - 822, - 111, - 787, - 111 - ], - "score": 0.86 - }, - { - "category_id": 1, - "poly": [ - 316, - 741, - 1486, - 741, - 1486, - 813, - 316, - 813 - ], - "score": 0.83 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 38, - 1582, - 38 - ], - "score": 0.829 - }, - { - "category_id": 1, - "poly": [ - 317, - 667, - 1456, - 667, - 1456, - 738, - 317, - 738 - ], - "score": 0.79 - }, - { - "category_id": 4, - "poly": [ - 744, - 299, - 870, - 299, - 870, - 337, - 744, - 337 - ], - "score": 0.744 - }, - { - "category_id": 4, - "poly": [ - 744, - 919, - 870, - 919, - 870, - 958, - 744, - 958 - ], - "score": 0.658 - }, - { - "category_id": 0, - "poly": [ - 744, - 919, - 870, - 919, - 870, - 958, - 744, - 958 - ], - "score": 0.187 - }, - { - "category_id": 0, - "poly": [ - 744, - 299, - 870, - 299, - 870, - 337, - 744, - 337 - ], - "score": 0.151 - }, - { - "category_id": 1, - "poly": [ - 314, - 666, - 1486, - 666, - 1486, - 812, - 314, - 812 - ], - "score": 0.133 - }, - { - "category_id": 13, - "poly": [ - 1118, - 1445, - 1203, - 1445, - 1203, - 1480, - 1118, - 1480 - ], - "score": 0.79, - "latex": "125\\Omega" - }, - { - "category_id": 13, - "poly": [ - 1036, - 1407, - 1132, - 1407, - 1132, - 1442, - 1036, - 1442 - ], - "score": 0.64, - "latex": "3.00\\mathrm{V}" - }, - { - "category_id": 13, - "poly": [ - 1451, - 1415, - 1469, - 1415, - 1469, - 1439, - 1451, - 1439 - ], - "score": 0.5, - "latex": "r" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1407.0, - 1035.0, - 1407.0, - 1035.0, - 1445.0, - 316.0, - 1445.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1133.0, - 1407.0, - 1450.0, - 1407.0, - 1450.0, - 1445.0, - 1133.0, - 1445.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1470.0, - 1407.0, - 1477.0, - 1407.0, - 1477.0, - 1445.0, - 1470.0, - 1445.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 1445.0, - 1117.0, - 1445.0, - 1117.0, - 1484.0, - 315.0, - 1484.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1204.0, - 1445.0, - 1212.0, - 1445.0, - 1212.0, - 1484.0, - 1204.0, - 1484.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 193.0, - 1334.0, - 193.0, - 1334.0, - 228.0, - 317.0, - 228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 230.0, - 531.0, - 230.0, - 531.0, - 265.0, - 316.0, - 265.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1625.0, - 147.0, - 1625.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1521.0, - 170.0, - 1621.0, - 170.0, - 1621.0, - 193.0, - 1521.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1552.0, - 190.0, - 1592.0, - 190.0, - 1592.0, - 216.0, - 1552.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 850.0, - 1354.0, - 850.0, - 1354.0, - 884.0, - 319.0, - 884.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 169.0, - 2271.0, - 181.0, - 2271.0, - 181.0, - 2287.0, - 169.0, - 2287.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 194.0, - 2267.0, - 224.0, - 2267.0, - 224.0, - 2291.0, - 194.0, - 2291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1332.0, - 2266.0, - 1499.0, - 2266.0, - 1499.0, - 2291.0, - 1332.0, - 2291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 828.0, - 78.0, - 828.0, - 118.0, - 780.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 741.0, - 1484.0, - 741.0, - 1484.0, - 777.0, - 316.0, - 777.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 314.0, - 776.0, - 443.0, - 776.0, - 443.0, - 815.0, - 314.0, - 815.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 3.0, - 1658.0, - 3.0, - 1658.0, - 42.0, - 1579.0, - 42.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 670.0, - 1434.0, - 670.0, - 1434.0, - 704.0, - 319.0, - 704.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 707.0, - 517.0, - 707.0, - 517.0, - 740.0, - 317.0, - 740.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 745.0, - 302.0, - 871.0, - 302.0, - 871.0, - 337.0, - 745.0, - 337.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 745.0, - 922.0, - 871.0, - 922.0, - 871.0, - 958.0, - 745.0, - 958.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 745.0, - 922.0, - 871.0, - 922.0, - 871.0, - 958.0, - 745.0, - 958.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 745.0, - 302.0, - 871.0, - 302.0, - 871.0, - 337.0, - 745.0, - 337.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 670.0, - 1434.0, - 670.0, - 1434.0, - 706.0, - 317.0, - 706.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 707.0, - 514.0, - 707.0, - 514.0, - 739.0, - 317.0, - 739.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 742.0, - 1486.0, - 742.0, - 1486.0, - 777.0, - 316.0, - 777.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 313.0, - 776.0, - 443.0, - 776.0, - 443.0, - 813.0, - 313.0, - 813.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 49, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1625, - 146, - 1625, - 214, - 1516, - 214 - ], - "score": 0.923 - }, - { - "category_id": 1, - "poly": [ - 314, - 190, - 1472, - 190, - 1472, - 265, - 314, - 265 - ], - "score": 0.896 - }, - { - "category_id": 1, - "poly": [ - 318, - 302, - 798, - 302, - 798, - 341, - 318, - 341 - ], - "score": 0.887 - }, - { - "category_id": 2, - "poly": [ - 1330, - 2265, - 1496, - 2265, - 1496, - 2290, - 1330, - 2290 - ], - "score": 0.882 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2143, - 1496, - 2143, - 1496, - 2178, - 1317, - 2178 - ], - "score": 0.879 - }, - { - "category_id": 2, - "poly": [ - 127, - 1165, - 293, - 1165, - 293, - 1215, - 127, - 1215 - ], - "score": 0.878 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 279, - 2187, - 279, - 2291, - 119, - 2291 - ], - "score": 0.872 - }, - { - "category_id": 2, - "poly": [ - 126, - 180, - 293, - 180, - 293, - 231, - 126, - 231 - ], - "score": 0.868 - }, - { - "category_id": 2, - "poly": [ - 786, - 82, - 818, - 82, - 818, - 111, - 786, - 111 - ], - "score": 0.828 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 39, - 1582, - 39 - ], - "score": 0.814 - }, - { - "category_id": 1, - "poly": [ - 1343, - 1354, - 1486, - 1354, - 1486, - 1392, - 1343, - 1392 - ], - "score": 0.678 - }, - { - "category_id": 1, - "poly": [ - 757, - 1732, - 1473, - 1732, - 1473, - 1778, - 757, - 1778 - ], - "score": 0.649 - }, - { - "category_id": 1, - "poly": [ - 1343, - 340, - 1486, - 340, - 1486, - 378, - 1343, - 378 - ], - "score": 0.589 - }, - { - "category_id": 1, - "poly": [ - 310, - 1160, - 1481, - 1160, - 1481, - 1286, - 310, - 1286 - ], - "score": 0.534 - }, - { - "category_id": 1, - "poly": [ - 315, - 1317, - 955, - 1317, - 955, - 1357, - 315, - 1357 - ], - "score": 0.505 - }, - { - "category_id": 1, - "poly": [ - 521, - 1915, - 1088, - 1915, - 1088, - 1954, - 521, - 1954 - ], - "score": 0.495 - }, - { - "category_id": 1, - "poly": [ - 310, - 1160, - 1482, - 1160, - 1482, - 1359, - 310, - 1359 - ], - "score": 0.392 - }, - { - "category_id": 0, - "poly": [ - 521, - 1915, - 1088, - 1915, - 1088, - 1954, - 521, - 1954 - ], - "score": 0.366 - }, - { - "category_id": 2, - "poly": [ - 1343, - 340, - 1486, - 340, - 1486, - 378, - 1343, - 378 - ], - "score": 0.333 - }, - { - "category_id": 13, - "poly": [ - 462, - 1160, - 496, - 1160, - 496, - 1240, - 462, - 1240 - ], - "score": 0.78, - "latex": "\\frac{1}{5}" - }, - { - "category_id": 13, - "poly": [ - 971, - 1245, - 1068, - 1245, - 1068, - 1280, - 971, - 1280 - ], - "score": 0.71, - "latex": "25.0\\Omega" - }, - { - "category_id": 13, - "poly": [ - 710, - 303, - 790, - 303, - 790, - 338, - 710, - 338 - ], - "score": 0.62, - "latex": "4.8\\Omega" - }, - { - "category_id": 13, - "poly": [ - 1003, - 1739, - 1034, - 1739, - 1034, - 1765, - 1003, - 1765 - ], - "score": 0.53, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 459, - 310, - 480, - 310, - 480, - 336, - 459, - 336 - ], - "score": 0.53, - "latex": "r" - }, - { - "category_id": 13, - "poly": [ - 684, - 229, - 778, - 229, - 778, - 264, - 684, - 264 - ], - "score": 0.38, - "latex": "2.89\\mathrm{V}" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 145.0, - 1625.0, - 145.0, - 1625.0, - 172.0, - 1517.0, - 172.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1521.0, - 171.0, - 1621.0, - 171.0, - 1621.0, - 194.0, - 1521.0, - 194.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1552.0, - 192.0, - 1592.0, - 192.0, - 1592.0, - 217.0, - 1552.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 193.0, - 1474.0, - 193.0, - 1474.0, - 228.0, - 319.0, - 228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 230.0, - 683.0, - 230.0, - 683.0, - 264.0, - 316.0, - 264.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 230.0, - 789.0, - 230.0, - 789.0, - 264.0, - 779.0, - 264.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 304.0, - 458.0, - 304.0, - 458.0, - 340.0, - 317.0, - 340.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 481.0, - 304.0, - 709.0, - 304.0, - 709.0, - 340.0, - 481.0, - 340.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 791.0, - 304.0, - 796.0, - 304.0, - 796.0, - 340.0, - 791.0, - 340.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1317.0, - 2146.0, - 1472.0, - 2146.0, - 1472.0, - 2176.0, - 1317.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 1170.0, - 284.0, - 1170.0, - 284.0, - 1211.0, - 136.0, - 1211.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 2275.0, - 181.0, - 2275.0, - 181.0, - 2283.0, - 171.0, - 2283.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 209.0, - 2274.0, - 216.0, - 2274.0, - 216.0, - 2284.0, - 209.0, - 2284.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 185.0, - 286.0, - 185.0, - 286.0, - 228.0, - 134.0, - 228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 826.0, - 78.0, - 826.0, - 118.0, - 780.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 1355.0, - 1488.0, - 1355.0, - 1488.0, - 1393.0, - 1345.0, - 1393.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 762.0, - 1735.0, - 1002.0, - 1735.0, - 1002.0, - 1770.0, - 762.0, - 1770.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1447.0, - 1740.0, - 1469.0, - 1740.0, - 1469.0, - 1760.0, - 1447.0, - 1760.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 342.0, - 1488.0, - 342.0, - 1488.0, - 379.0, - 1345.0, - 379.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1182.0, - 461.0, - 1182.0, - 461.0, - 1215.0, - 318.0, - 1215.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 498.0, - 1181.0, - 1479.0, - 1181.0, - 1479.0, - 1217.0, - 498.0, - 1217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1246.0, - 970.0, - 1246.0, - 970.0, - 1279.0, - 316.0, - 1279.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1069.0, - 1246.0, - 1074.0, - 1246.0, - 1074.0, - 1279.0, - 1069.0, - 1279.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1318.0, - 952.0, - 1318.0, - 952.0, - 1356.0, - 318.0, - 1356.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 521.0, - 1916.0, - 1085.0, - 1916.0, - 1085.0, - 1954.0, - 521.0, - 1954.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1183.0, - 461.0, - 1183.0, - 461.0, - 1213.0, - 318.0, - 1213.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 497.0, - 1179.0, - 1478.0, - 1179.0, - 1478.0, - 1217.0, - 497.0, - 1217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 314.0, - 1245.0, - 970.0, - 1245.0, - 970.0, - 1281.0, - 314.0, - 1281.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1069.0, - 1245.0, - 1076.0, - 1245.0, - 1076.0, - 1281.0, - 1069.0, - 1281.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1315.0, - 953.0, - 1315.0, - 953.0, - 1358.0, - 316.0, - 1358.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 521.0, - 1916.0, - 1085.0, - 1916.0, - 1085.0, - 1954.0, - 521.0, - 1954.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 342.0, - 1488.0, - 342.0, - 1488.0, - 379.0, - 1345.0, - 379.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 50, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 316, - 299, - 1434, - 299, - 1434, - 450, - 316, - 450 - ], - "score": 0.967 - }, - { - "category_id": 3, - "poly": [ - 298, - 730, - 1317, - 730, - 1317, - 1004, - 298, - 1004 - ], - "score": 0.96 - }, - { - "category_id": 1, - "poly": [ - 309, - 1064, - 1477, - 1064, - 1477, - 1138, - 309, - 1138 - ], - "score": 0.949 - }, - { - "category_id": 1, - "poly": [ - 315, - 554, - 865, - 554, - 865, - 628, - 315, - 628 - ], - "score": 0.946 - }, - { - "category_id": 3, - "poly": [ - 221, - 1319, - 1270, - 1319, - 1270, - 2120, - 221, - 2120 - ], - "score": 0.932 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1624, - 146, - 1624, - 213, - 1516, - 213 - ], - "score": 0.932 - }, - { - "category_id": 1, - "poly": [ - 316, - 483, - 933, - 483, - 933, - 521, - 316, - 521 - ], - "score": 0.923 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2292, - 118, - 2292 - ], - "score": 0.913 - }, - { - "category_id": 2, - "poly": [ - 127, - 181, - 293, - 181, - 293, - 230, - 127, - 230 - ], - "score": 0.89 - }, - { - "category_id": 2, - "poly": [ - 1506, - 1998, - 1599, - 1998, - 1599, - 2115, - 1506, - 2115 - ], - "score": 0.888 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2289, - 1331, - 2289 - ], - "score": 0.887 - }, - { - "category_id": 1, - "poly": [ - 312, - 190, - 1447, - 190, - 1447, - 264, - 312, - 264 - ], - "score": 0.867 - }, - { - "category_id": 2, - "poly": [ - 787, - 83, - 822, - 83, - 822, - 110, - 787, - 110 - ], - "score": 0.851 - }, - { - "category_id": 4, - "poly": [ - 744, - 1209, - 871, - 1209, - 871, - 1248, - 744, - 1248 - ], - "score": 0.832 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 38, - 1582, - 38 - ], - "score": 0.829 - }, - { - "category_id": 4, - "poly": [ - 744, - 663, - 870, - 663, - 870, - 702, - 744, - 702 - ], - "score": 0.808 - }, - { - "category_id": 1, - "poly": [ - 1344, - 1138, - 1486, - 1138, - 1486, - 1176, - 1344, - 1176 - ], - "score": 0.693 - }, - { - "category_id": 3, - "poly": [ - 195, - 1316, - 1268, - 1316, - 1268, - 2121, - 195, - 2121 - ], - "score": 0.451 - }, - { - "category_id": 13, - "poly": [ - 421, - 555, - 501, - 555, - 501, - 590, - 421, - 590 - ], - "score": 0.6, - "latex": "3.0\\mathrm{V}" - }, - { - "category_id": 13, - "poly": [ - 314, - 346, - 337, - 346, - 337, - 369, - 314, - 369 - ], - "score": 0.26, - "latex": "\\bullet" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 303.0, - 1382.0, - 303.0, - 1382.0, - 335.0, - 317.0, - 335.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 338.0, - 339.0, - 1432.0, - 339.0, - 1432.0, - 376.0, - 338.0, - 376.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 342.0, - 373.0, - 428.0, - 373.0, - 428.0, - 412.0, - 342.0, - 412.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 314.0, - 410.0, - 1304.0, - 410.0, - 1304.0, - 449.0, - 314.0, - 449.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 320.0, - 1068.0, - 1475.0, - 1068.0, - 1475.0, - 1102.0, - 320.0, - 1102.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1106.0, - 687.0, - 1106.0, - 687.0, - 1136.0, - 318.0, - 1136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 557.0, - 420.0, - 557.0, - 420.0, - 591.0, - 319.0, - 591.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 502.0, - 557.0, - 865.0, - 557.0, - 865.0, - 591.0, - 502.0, - 591.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 594.0, - 646.0, - 594.0, - 646.0, - 625.0, - 319.0, - 625.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1625.0, - 147.0, - 1625.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1623.0, - 170.0, - 1623.0, - 193.0, - 1520.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1550.0, - 190.0, - 1593.0, - 190.0, - 1593.0, - 216.0, - 1550.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 485.0, - 929.0, - 485.0, - 929.0, - 519.0, - 319.0, - 519.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 2275.0, - 180.0, - 2275.0, - 180.0, - 2285.0, - 171.0, - 2285.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 2267.0, - 223.0, - 2267.0, - 223.0, - 2293.0, - 196.0, - 2293.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 190.0, - 225.0, - 190.0, - 225.0, - 223.0, - 139.0, - 223.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 249.0, - 194.0, - 277.0, - 194.0, - 277.0, - 219.0, - 249.0, - 219.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1533.0, - 2067.0, - 1573.0, - 2067.0, - 1573.0, - 2097.0, - 1533.0, - 2097.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1332.0, - 2266.0, - 1499.0, - 2266.0, - 1499.0, - 2291.0, - 1332.0, - 2291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 193.0, - 1447.0, - 193.0, - 1447.0, - 227.0, - 319.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 230.0, - 810.0, - 230.0, - 810.0, - 264.0, - 316.0, - 264.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 79.0, - 828.0, - 79.0, - 828.0, - 118.0, - 779.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 746.0, - 1212.0, - 870.0, - 1212.0, - 870.0, - 1248.0, - 746.0, - 1248.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 3.0, - 1658.0, - 3.0, - 1658.0, - 42.0, - 1579.0, - 42.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 745.0, - 666.0, - 871.0, - 666.0, - 871.0, - 702.0, - 745.0, - 702.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 1136.0, - 1488.0, - 1136.0, - 1488.0, - 1178.0, - 1345.0, - 1178.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 51, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 450, - 472, - 1164, - 472, - 1164, - 960, - 450, - 960 - ], - "score": 0.966 - }, - { - "category_id": 1, - "poly": [ - 308, - 298, - 1380, - 298, - 1380, - 374, - 308, - 374 - ], - "score": 0.941 - }, - { - "category_id": 1, - "poly": [ - 315, - 190, - 1443, - 190, - 1443, - 265, - 315, - 265 - ], - "score": 0.941 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1624, - 146, - 1624, - 214, - 1516, - 214 - ], - "score": 0.935 - }, - { - "category_id": 1, - "poly": [ - 315, - 995, - 946, - 995, - 946, - 1035, - 315, - 1035 - ], - "score": 0.912 - }, - { - "category_id": 2, - "poly": [ - 127, - 1065, - 293, - 1065, - 293, - 1115, - 127, - 1115 - ], - "score": 0.908 - }, - { - "category_id": 2, - "poly": [ - 126, - 181, - 229, - 181, - 229, - 230, - 126, - 230 - ], - "score": 0.9 - }, - { - "category_id": 2, - "poly": [ - 127, - 1454, - 294, - 1454, - 294, - 1503, - 127, - 1503 - ], - "score": 0.9 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2143, - 1496, - 2143, - 1496, - 2178, - 1317, - 2178 - ], - "score": 0.899 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2291, - 118, - 2291 - ], - "score": 0.896 - }, - { - "category_id": 2, - "poly": [ - 1330, - 2265, - 1496, - 2265, - 1496, - 2290, - 1330, - 2290 - ], - "score": 0.894 - }, - { - "category_id": 2, - "poly": [ - 786, - 83, - 822, - 83, - 822, - 111, - 786, - 111 - ], - "score": 0.852 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 39, - 1582, - 39 - ], - "score": 0.829 - }, - { - "category_id": 1, - "poly": [ - 313, - 1462, - 1080, - 1462, - 1080, - 1503, - 313, - 1503 - ], - "score": 0.813 - }, - { - "category_id": 1, - "poly": [ - 309, - 1076, - 1474, - 1076, - 1474, - 1154, - 309, - 1154 - ], - "score": 0.709 - }, - { - "category_id": 4, - "poly": [ - 743, - 407, - 870, - 407, - 870, - 446, - 743, - 446 - ], - "score": 0.665 - }, - { - "category_id": 1, - "poly": [ - 520, - 1997, - 1087, - 1997, - 1087, - 2037, - 520, - 2037 - ], - "score": 0.613 - }, - { - "category_id": 0, - "poly": [ - 1344, - 1500, - 1486, - 1500, - 1486, - 1538, - 1344, - 1538 - ], - "score": 0.558 - }, - { - "category_id": 1, - "poly": [ - 312, - 1512, - 1492, - 1512, - 1492, - 1898, - 312, - 1898 - ], - "score": 0.423 - }, - { - "category_id": 1, - "poly": [ - 1344, - 1500, - 1486, - 1500, - 1486, - 1538, - 1344, - 1538 - ], - "score": 0.302 - }, - { - "category_id": 0, - "poly": [ - 520, - 1997, - 1087, - 1997, - 1087, - 2037, - 520, - 2037 - ], - "score": 0.263 - }, - { - "category_id": 0, - "poly": [ - 743, - 407, - 870, - 407, - 870, - 446, - 743, - 446 - ], - "score": 0.176 - }, - { - "category_id": 1, - "poly": [ - 315, - 1076, - 1444, - 1076, - 1444, - 1116, - 315, - 1116 - ], - "score": 0.132 - }, - { - "category_id": 13, - "poly": [ - 860, - 997, - 937, - 997, - 937, - 1032, - 860, - 1032 - ], - "score": 0.81, - "latex": "41.5^{\\circ}" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 299.0, - 1379.0, - 299.0, - 1379.0, - 340.0, - 317.0, - 340.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 337.0, - 704.0, - 337.0, - 704.0, - 375.0, - 317.0, - 375.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 192.0, - 1438.0, - 192.0, - 1438.0, - 229.0, - 317.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 229.0, - 934.0, - 229.0, - 934.0, - 264.0, - 316.0, - 264.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 146.0, - 1625.0, - 146.0, - 1625.0, - 171.0, - 1517.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 171.0, - 1622.0, - 171.0, - 1622.0, - 194.0, - 1520.0, - 194.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 190.0, - 1594.0, - 190.0, - 1594.0, - 217.0, - 1549.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 997.0, - 859.0, - 997.0, - 859.0, - 1034.0, - 317.0, - 1034.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 938.0, - 997.0, - 944.0, - 997.0, - 944.0, - 1034.0, - 938.0, - 1034.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 1070.0, - 283.0, - 1070.0, - 283.0, - 1111.0, - 139.0, - 1111.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 142.0, - 192.0, - 179.0, - 192.0, - 179.0, - 222.0, - 142.0, - 222.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 183.0, - 192.0, - 215.0, - 192.0, - 215.0, - 221.0, - 183.0, - 221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 1456.0, - 287.0, - 1456.0, - 287.0, - 1503.0, - 134.0, - 1503.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1317.0, - 2146.0, - 1472.0, - 2146.0, - 1472.0, - 2176.0, - 1317.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 169.0, - 2271.0, - 181.0, - 2271.0, - 181.0, - 2287.0, - 169.0, - 2287.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 2267.0, - 224.0, - 2267.0, - 224.0, - 2291.0, - 196.0, - 2291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 827.0, - 78.0, - 827.0, - 117.0, - 780.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1465.0, - 1078.0, - 1465.0, - 1078.0, - 1503.0, - 318.0, - 1503.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1077.0, - 1382.0, - 1077.0, - 1382.0, - 1112.0, - 318.0, - 1112.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1357.0, - 1114.0, - 1479.0, - 1114.0, - 1479.0, - 1151.0, - 1357.0, - 1151.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 746.0, - 410.0, - 870.0, - 410.0, - 870.0, - 446.0, - 746.0, - 446.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 521.0, - 1998.0, - 1085.0, - 1998.0, - 1085.0, - 2036.0, - 521.0, - 2036.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 1498.0, - 1488.0, - 1498.0, - 1488.0, - 1540.0, - 1345.0, - 1540.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 1502.0, - 1489.0, - 1502.0, - 1489.0, - 1541.0, - 1345.0, - 1541.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 1498.0, - 1488.0, - 1498.0, - 1488.0, - 1540.0, - 1345.0, - 1540.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 521.0, - 1998.0, - 1085.0, - 1998.0, - 1085.0, - 2036.0, - 521.0, - 2036.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 746.0, - 410.0, - 870.0, - 410.0, - 870.0, - 446.0, - 746.0, - 446.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 1078.0, - 1383.0, - 1078.0, - 1383.0, - 1115.0, - 319.0, - 1115.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 52, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 278, - 432, - 1340, - 432, - 1340, - 1208, - 278, - 1208 - ], - "score": 0.969 - }, - { - "category_id": 1, - "poly": [ - 314, - 1282, - 1354, - 1282, - 1354, - 1357, - 314, - 1357 - ], - "score": 0.944 - }, - { - "category_id": 1, - "poly": [ - 313, - 192, - 1379, - 192, - 1379, - 267, - 313, - 267 - ], - "score": 0.942 - }, - { - "category_id": 1, - "poly": [ - 313, - 1397, - 1405, - 1397, - 1405, - 1472, - 313, - 1472 - ], - "score": 0.937 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1624, - 146, - 1624, - 213, - 1516, - 213 - ], - "score": 0.927 - }, - { - "category_id": 2, - "poly": [ - 127, - 1388, - 294, - 1388, - 294, - 1438, - 127, - 1438 - ], - "score": 0.916 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 279, - 2187, - 279, - 2291, - 119, - 2291 - ], - "score": 0.89 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2289, - 1331, - 2289 - ], - "score": 0.885 - }, - { - "category_id": 2, - "poly": [ - 786, - 83, - 821, - 83, - 821, - 109, - 786, - 109 - ], - "score": 0.849 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 39, - 1582, - 39 - ], - "score": 0.826 - }, - { - "category_id": 2, - "poly": [ - 1345, - 1472, - 1486, - 1472, - 1486, - 1508, - 1345, - 1508 - ], - "score": 0.809 - }, - { - "category_id": 4, - "poly": [ - 744, - 301, - 870, - 301, - 870, - 340, - 744, - 340 - ], - "score": 0.519 - }, - { - "category_id": 0, - "poly": [ - 744, - 301, - 870, - 301, - 870, - 340, - 744, - 340 - ], - "score": 0.22 - }, - { - "category_id": 1, - "poly": [ - 744, - 301, - 870, - 301, - 870, - 340, - 744, - 340 - ], - "score": 0.111 - }, - { - "category_id": 1, - "poly": [ - 1345, - 1472, - 1486, - 1472, - 1486, - 1508, - 1345, - 1508 - ], - "score": 0.1 - }, - { - "category_id": 13, - "poly": [ - 503, - 996, - 521, - 996, - 521, - 1023, - 503, - 1023 - ], - "score": 0.77, - "latex": "\\theta" - }, - { - "category_id": 13, - "poly": [ - 1297, - 195, - 1320, - 195, - 1320, - 226, - 1297, - 226 - ], - "score": 0.67, - "latex": "\\theta" - }, - { - "category_id": 13, - "poly": [ - 316, - 1285, - 339, - 1285, - 339, - 1317, - 316, - 1317 - ], - "score": 0.62, - "latex": "\\theta" - }, - { - "category_id": 15, - "poly": [ - 340.0, - 1286.0, - 1352.0, - 1286.0, - 1352.0, - 1321.0, - 340.0, - 1321.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 1324.0, - 492.0, - 1324.0, - 492.0, - 1359.0, - 317.0, - 1359.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 194.0, - 1296.0, - 194.0, - 1296.0, - 232.0, - 318.0, - 232.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1321.0, - 194.0, - 1379.0, - 194.0, - 1379.0, - 232.0, - 1321.0, - 232.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 235.0, - 823.0, - 235.0, - 823.0, - 265.0, - 319.0, - 265.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1399.0, - 1403.0, - 1399.0, - 1403.0, - 1437.0, - 318.0, - 1437.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 1439.0, - 741.0, - 1439.0, - 741.0, - 1473.0, - 319.0, - 1473.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1625.0, - 147.0, - 1625.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1623.0, - 170.0, - 1623.0, - 193.0, - 1520.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1550.0, - 190.0, - 1593.0, - 190.0, - 1593.0, - 216.0, - 1550.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 1395.0, - 282.0, - 1395.0, - 282.0, - 1434.0, - 141.0, - 1434.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 2275.0, - 181.0, - 2275.0, - 181.0, - 2283.0, - 171.0, - 2283.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 2269.0, - 221.0, - 2269.0, - 221.0, - 2289.0, - 198.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1332.0, - 2266.0, - 1499.0, - 2266.0, - 1499.0, - 2291.0, - 1332.0, - 2291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 79.0, - 828.0, - 79.0, - 828.0, - 117.0, - 779.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1470.0, - 1488.0, - 1470.0, - 1488.0, - 1510.0, - 1346.0, - 1510.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 745.0, - 304.0, - 871.0, - 304.0, - 871.0, - 340.0, - 745.0, - 340.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 745.0, - 304.0, - 871.0, - 304.0, - 871.0, - 340.0, - 745.0, - 340.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 745.0, - 304.0, - 871.0, - 304.0, - 871.0, - 340.0, - 745.0, - 340.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1470.0, - 1488.0, - 1470.0, - 1488.0, - 1510.0, - 1346.0, - 1510.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 53, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 316, - 342, - 835, - 342, - 835, - 417, - 316, - 417 - ], - "score": 0.933 - }, - { - "category_id": 2, - "poly": [ - 1517, - 146, - 1624, - 146, - 1624, - 214, - 1517, - 214 - ], - "score": 0.931 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2144, - 1496, - 2144, - 1496, - 2177, - 1317, - 2177 - ], - "score": 0.891 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2266, - 1496, - 2266, - 1496, - 2289, - 1331, - 2289 - ], - "score": 0.874 - }, - { - "category_id": 2, - "poly": [ - 127, - 181, - 293, - 181, - 293, - 231, - 127, - 231 - ], - "score": 0.871 - }, - { - "category_id": 2, - "poly": [ - 119, - 2188, - 278, - 2188, - 278, - 2291, - 119, - 2291 - ], - "score": 0.866 - }, - { - "category_id": 2, - "poly": [ - 786, - 82, - 822, - 82, - 822, - 111, - 786, - 111 - ], - "score": 0.84 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 38, - 1582, - 38 - ], - "score": 0.819 - }, - { - "category_id": 2, - "poly": [ - 1344, - 416, - 1485, - 416, - 1485, - 453, - 1344, - 453 - ], - "score": 0.81 - }, - { - "category_id": 1, - "poly": [ - 313, - 191, - 1437, - 191, - 1437, - 305, - 313, - 305 - ], - "score": 0.73 - }, - { - "category_id": 2, - "poly": [ - 522, - 2072, - 1086, - 2072, - 1086, - 2107, - 522, - 2107 - ], - "score": 0.497 - }, - { - "category_id": 1, - "poly": [ - 522, - 2072, - 1086, - 2072, - 1086, - 2107, - 522, - 2107 - ], - "score": 0.3 - }, - { - "category_id": 1, - "poly": [ - 315, - 192, - 1436, - 192, - 1436, - 265, - 315, - 265 - ], - "score": 0.257 - }, - { - "category_id": 1, - "poly": [ - 321, - 269, - 1252, - 269, - 1252, - 304, - 321, - 304 - ], - "score": 0.255 - }, - { - "category_id": 1, - "poly": [ - 1344, - 416, - 1485, - 416, - 1485, - 453, - 1344, - 453 - ], - "score": 0.115 - }, - { - "category_id": 13, - "poly": [ - 600, - 343, - 634, - 343, - 634, - 376, - 600, - 376 - ], - "score": 0.84, - "latex": "5^{\\circ}" - }, - { - "category_id": 13, - "poly": [ - 1161, - 267, - 1237, - 267, - 1237, - 302, - 1161, - 302 - ], - "score": 0.78, - "latex": "41.5^{\\circ}" - }, - { - "category_id": 13, - "poly": [ - 460, - 344, - 483, - 344, - 483, - 375, - 460, - 375 - ], - "score": 0.77, - "latex": "\\theta" - }, - { - "category_id": 13, - "poly": [ - 914, - 195, - 936, - 195, - 936, - 226, - 914, - 226 - ], - "score": 0.64, - "latex": "\\theta" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 345.0, - 459.0, - 345.0, - 459.0, - 375.0, - 318.0, - 375.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 484.0, - 345.0, - 599.0, - 345.0, - 599.0, - 375.0, - 484.0, - 375.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 635.0, - 345.0, - 643.0, - 345.0, - 643.0, - 375.0, - 635.0, - 375.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 379.0, - 836.0, - 379.0, - 836.0, - 417.0, - 318.0, - 417.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1518.0, - 146.0, - 1625.0, - 146.0, - 1625.0, - 171.0, - 1518.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1521.0, - 171.0, - 1622.0, - 171.0, - 1622.0, - 194.0, - 1521.0, - 194.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1550.0, - 190.0, - 1593.0, - 190.0, - 1593.0, - 217.0, - 1550.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1317.0, - 2146.0, - 1473.0, - 2146.0, - 1473.0, - 2176.0, - 1317.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 190.0, - 239.0, - 190.0, - 239.0, - 223.0, - 140.0, - 223.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 247.0, - 192.0, - 278.0, - 192.0, - 278.0, - 221.0, - 247.0, - 221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 168.0, - 2270.0, - 183.0, - 2270.0, - 183.0, - 2288.0, - 168.0, - 2288.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 2267.0, - 223.0, - 2267.0, - 223.0, - 2291.0, - 196.0, - 2291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 827.0, - 78.0, - 827.0, - 118.0, - 780.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 3.0, - 1658.0, - 3.0, - 1658.0, - 42.0, - 1579.0, - 42.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 414.0, - 1488.0, - 414.0, - 1488.0, - 455.0, - 1345.0, - 455.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 193.0, - 913.0, - 193.0, - 913.0, - 232.0, - 317.0, - 232.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 937.0, - 193.0, - 1433.0, - 193.0, - 1433.0, - 232.0, - 937.0, - 232.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 233.0, - 760.0, - 233.0, - 760.0, - 267.0, - 318.0, - 267.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 268.0, - 1160.0, - 268.0, - 1160.0, - 303.0, - 315.0, - 303.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1238.0, - 268.0, - 1247.0, - 268.0, - 1247.0, - 303.0, - 1238.0, - 303.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 522.0, - 2070.0, - 1086.0, - 2070.0, - 1086.0, - 2107.0, - 522.0, - 2107.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 522.0, - 2070.0, - 1086.0, - 2070.0, - 1086.0, - 2107.0, - 522.0, - 2107.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 192.0, - 913.0, - 192.0, - 913.0, - 231.0, - 316.0, - 231.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 937.0, - 192.0, - 1434.0, - 192.0, - 1434.0, - 231.0, - 937.0, - 231.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 320.0, - 235.0, - 758.0, - 235.0, - 758.0, - 265.0, - 320.0, - 265.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 270.0, - 1160.0, - 270.0, - 1160.0, - 302.0, - 319.0, - 302.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1238.0, - 270.0, - 1243.0, - 270.0, - 1243.0, - 302.0, - 1238.0, - 302.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 414.0, - 1488.0, - 414.0, - 1488.0, - 455.0, - 1345.0, - 455.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 54, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 901, - 628, - 1388, - 628, - 1388, - 894, - 901, - 894 - ], - "score": 0.955 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1625, - 146, - 1625, - 213, - 1516, - 213 - ], - "score": 0.93 - }, - { - "category_id": 2, - "poly": [ - 1510, - 1926, - 1601, - 1926, - 1601, - 2043, - 1510, - 2043 - ], - "score": 0.917 - }, - { - "category_id": 1, - "poly": [ - 316, - 265, - 1322, - 265, - 1322, - 305, - 316, - 305 - ], - "score": 0.912 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2292, - 118, - 2292 - ], - "score": 0.907 - }, - { - "category_id": 3, - "poly": [ - 295, - 586, - 644, - 586, - 644, - 894, - 295, - 894 - ], - "score": 0.897 - }, - { - "category_id": 1, - "poly": [ - 318, - 192, - 1170, - 192, - 1170, - 231, - 318, - 231 - ], - "score": 0.893 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2290, - 1331, - 2290 - ], - "score": 0.886 - }, - { - "category_id": 1, - "poly": [ - 315, - 967, - 1114, - 967, - 1114, - 1007, - 315, - 1007 - ], - "score": 0.877 - }, - { - "category_id": 4, - "poly": [ - 1074, - 517, - 1218, - 517, - 1218, - 555, - 1074, - 555 - ], - "score": 0.876 - }, - { - "category_id": 4, - "poly": [ - 405, - 517, - 532, - 517, - 532, - 554, - 405, - 554 - ], - "score": 0.861 - }, - { - "category_id": 2, - "poly": [ - 786, - 83, - 822, - 83, - 822, - 111, - 786, - 111 - ], - "score": 0.855 - }, - { - "category_id": 2, - "poly": [ - 127, - 180, - 293, - 180, - 293, - 231, - 127, - 231 - ], - "score": 0.847 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 38, - 1582, - 38 - ], - "score": 0.829 - }, - { - "category_id": 1, - "poly": [ - 307, - 412, - 1447, - 412, - 1447, - 484, - 307, - 484 - ], - "score": 0.818 - }, - { - "category_id": 1, - "poly": [ - 313, - 337, - 1440, - 337, - 1440, - 410, - 313, - 410 - ], - "score": 0.807 - }, - { - "category_id": 1, - "poly": [ - 1344, - 1005, - 1486, - 1005, - 1486, - 1043, - 1344, - 1043 - ], - "score": 0.562 - }, - { - "category_id": 1, - "poly": [ - 309, - 1069, - 1490, - 1069, - 1490, - 2126, - 309, - 2126 - ], - "score": 0.561 - }, - { - "category_id": 3, - "poly": [ - 295, - 587, - 644, - 587, - 644, - 895, - 295, - 895 - ], - "score": 0.397 - }, - { - "category_id": 0, - "poly": [ - 1344, - 1005, - 1486, - 1005, - 1486, - 1043, - 1344, - 1043 - ], - "score": 0.185 - }, - { - "category_id": 1, - "poly": [ - 316, - 337, - 1448, - 337, - 1448, - 484, - 316, - 484 - ], - "score": 0.125 - }, - { - "category_id": 13, - "poly": [ - 1138, - 195, - 1160, - 195, - 1160, - 225, - 1138, - 225 - ], - "score": 0.48, - "latex": "\\theta" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1625.0, - 147.0, - 1625.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1521.0, - 170.0, - 1621.0, - 170.0, - 1621.0, - 193.0, - 1521.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1552.0, - 190.0, - 1592.0, - 190.0, - 1592.0, - 216.0, - 1552.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1535.0, - 1993.0, - 1579.0, - 1993.0, - 1579.0, - 2025.0, - 1535.0, - 2025.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 267.0, - 1322.0, - 267.0, - 1322.0, - 304.0, - 317.0, - 304.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 212.0, - 2272.5, - 212.0, - 2272.5, - 212.0, - 2285.5, - 212.0, - 2285.5 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 195.0, - 1137.0, - 195.0, - 1137.0, - 229.0, - 319.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1161.0, - 195.0, - 1165.0, - 195.0, - 1165.0, - 229.0, - 1161.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 969.0, - 1111.0, - 969.0, - 1111.0, - 1006.0, - 317.0, - 1006.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1075.0, - 518.0, - 1217.0, - 518.0, - 1217.0, - 555.0, - 1075.0, - 555.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 405.0, - 516.0, - 533.0, - 516.0, - 533.0, - 557.0, - 405.0, - 557.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 781.0, - 80.0, - 826.0, - 80.0, - 826.0, - 116.0, - 781.0, - 116.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 190.0, - 178.0, - 190.0, - 178.0, - 222.0, - 141.0, - 222.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 184.0, - 189.0, - 279.0, - 189.0, - 279.0, - 222.0, - 184.0, - 222.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 3.0, - 1658.0, - 3.0, - 1658.0, - 42.0, - 1579.0, - 42.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 413.0, - 1445.0, - 413.0, - 1445.0, - 447.0, - 318.0, - 447.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 349.0, - 449.0, - 664.0, - 449.0, - 664.0, - 483.0, - 349.0, - 483.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 341.0, - 1438.0, - 341.0, - 1438.0, - 375.0, - 319.0, - 375.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 346.0, - 378.0, - 506.0, - 378.0, - 506.0, - 413.0, - 346.0, - 413.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 1003.0, - 1488.0, - 1003.0, - 1488.0, - 1045.0, - 1345.0, - 1045.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1083.0, - 339.0, - 1083.0, - 339.0, - 1107.0, - 318.0, - 1107.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 1577.0, - 340.0, - 1577.0, - 340.0, - 1611.0, - 315.0, - 1611.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 1003.0, - 1488.0, - 1003.0, - 1488.0, - 1045.0, - 1345.0, - 1045.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 338.0, - 1438.0, - 338.0, - 1438.0, - 376.0, - 317.0, - 376.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 346.0, - 376.0, - 507.0, - 376.0, - 507.0, - 413.0, - 346.0, - 413.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 410.0, - 1448.0, - 410.0, - 1448.0, - 448.0, - 315.0, - 448.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 349.0, - 450.0, - 665.0, - 450.0, - 665.0, - 483.0, - 349.0, - 483.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 55, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 285, - 366, - 1118, - 366, - 1118, - 1039, - 285, - 1039 - ], - "score": 0.966 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1624, - 146, - 1624, - 214, - 1516, - 214 - ], - "score": 0.932 - }, - { - "category_id": 2, - "poly": [ - 127, - 1517, - 293, - 1517, - 293, - 1566, - 127, - 1566 - ], - "score": 0.908 - }, - { - "category_id": 2, - "poly": [ - 127, - 181, - 229, - 181, - 229, - 230, - 127, - 230 - ], - "score": 0.902 - }, - { - "category_id": 4, - "poly": [ - 314, - 1146, - 1151, - 1146, - 1151, - 1188, - 314, - 1188 - ], - "score": 0.897 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2143, - 1496, - 2143, - 1496, - 2178, - 1317, - 2178 - ], - "score": 0.894 - }, - { - "category_id": 2, - "poly": [ - 1330, - 2265, - 1496, - 2265, - 1496, - 2290, - 1330, - 2290 - ], - "score": 0.89 - }, - { - "category_id": 2, - "poly": [ - 127, - 1137, - 293, - 1137, - 293, - 1187, - 127, - 1187 - ], - "score": 0.883 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2291, - 118, - 2291 - ], - "score": 0.875 - }, - { - "category_id": 1, - "poly": [ - 309, - 190, - 1482, - 190, - 1482, - 263, - 309, - 263 - ], - "score": 0.873 - }, - { - "category_id": 2, - "poly": [ - 786, - 82, - 821, - 82, - 821, - 110, - 786, - 110 - ], - "score": 0.851 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 39, - 1582, - 39 - ], - "score": 0.826 - }, - { - "category_id": 4, - "poly": [ - 735, - 299, - 876, - 299, - 876, - 338, - 735, - 338 - ], - "score": 0.784 - }, - { - "category_id": 1, - "poly": [ - 516, - 1990, - 1090, - 1990, - 1090, - 2030, - 516, - 2030 - ], - "score": 0.769 - }, - { - "category_id": 1, - "poly": [ - 1360, - 1184, - 1487, - 1184, - 1487, - 1223, - 1360, - 1223 - ], - "score": 0.763 - }, - { - "category_id": 1, - "poly": [ - 313, - 1524, - 1040, - 1524, - 1040, - 1566, - 313, - 1566 - ], - "score": 0.719 - }, - { - "category_id": 1, - "poly": [ - 781, - 1404, - 1483, - 1404, - 1483, - 1453, - 781, - 1453 - ], - "score": 0.666 - }, - { - "category_id": 1, - "poly": [ - 312, - 1570, - 1490, - 1570, - 1490, - 1820, - 312, - 1820 - ], - "score": 0.652 - }, - { - "category_id": 1, - "poly": [ - 1360, - 1563, - 1486, - 1563, - 1486, - 1602, - 1360, - 1602 - ], - "score": 0.508 - }, - { - "category_id": 0, - "poly": [ - 1360, - 1563, - 1486, - 1563, - 1486, - 1602, - 1360, - 1602 - ], - "score": 0.297 - }, - { - "category_id": 3, - "poly": [ - 312, - 1570, - 1490, - 1570, - 1490, - 1820, - 312, - 1820 - ], - "score": 0.132 - }, - { - "category_id": 2, - "poly": [ - 781, - 1404, - 1483, - 1404, - 1483, - 1453, - 781, - 1453 - ], - "score": 0.128 - }, - { - "category_id": 0, - "poly": [ - 516, - 1990, - 1090, - 1990, - 1090, - 2030, - 516, - 2030 - ], - "score": 0.116 - }, - { - "category_id": 13, - "poly": [ - 1003, - 1412, - 1034, - 1412, - 1034, - 1437, - 1003, - 1437 - ], - "score": 0.5, - "latex": "=" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 146.0, - 1625.0, - 146.0, - 1625.0, - 171.0, - 1517.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 171.0, - 1622.0, - 171.0, - 1622.0, - 194.0, - 1520.0, - 194.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 190.0, - 1594.0, - 190.0, - 1594.0, - 217.0, - 1549.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 1519.0, - 287.0, - 1519.0, - 287.0, - 1565.0, - 134.0, - 1565.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 142.0, - 191.0, - 178.0, - 191.0, - 178.0, - 222.0, - 142.0, - 222.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 182.0, - 191.0, - 216.0, - 191.0, - 216.0, - 222.0, - 182.0, - 222.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 1150.0, - 1152.0, - 1150.0, - 1152.0, - 1185.0, - 319.0, - 1185.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1317.0, - 2146.0, - 1472.0, - 2146.0, - 1472.0, - 2176.0, - 1317.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 1142.0, - 283.0, - 1142.0, - 283.0, - 1183.0, - 136.0, - 1183.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 194.0, - 1486.0, - 194.0, - 1486.0, - 228.0, - 319.0, - 228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 314.0, - 228.0, - 474.0, - 228.0, - 474.0, - 266.0, - 314.0, - 266.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 781.0, - 80.0, - 827.0, - 80.0, - 827.0, - 116.0, - 781.0, - 116.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 738.0, - 302.0, - 877.0, - 302.0, - 877.0, - 337.0, - 738.0, - 337.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 521.0, - 1991.0, - 1086.0, - 1991.0, - 1086.0, - 2029.0, - 521.0, - 2029.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 1184.0, - 1487.0, - 1184.0, - 1487.0, - 1223.0, - 1362.0, - 1223.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 320.0, - 1529.0, - 1038.0, - 1529.0, - 1038.0, - 1564.0, - 320.0, - 1564.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 788.0, - 1409.0, - 1002.0, - 1409.0, - 1002.0, - 1442.0, - 788.0, - 1442.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1438.0, - 1406.0, - 1485.0, - 1406.0, - 1485.0, - 1442.0, - 1438.0, - 1442.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 1564.0, - 1489.0, - 1564.0, - 1489.0, - 1603.0, - 1363.0, - 1603.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 1561.0, - 1488.0, - 1561.0, - 1488.0, - 1603.0, - 1362.0, - 1603.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 1561.0, - 1488.0, - 1561.0, - 1488.0, - 1603.0, - 1362.0, - 1603.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 788.0, - 1409.0, - 1002.0, - 1409.0, - 1002.0, - 1442.0, - 788.0, - 1442.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1438.0, - 1406.0, - 1485.0, - 1406.0, - 1485.0, - 1442.0, - 1438.0, - 1442.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 521.0, - 1991.0, - 1086.0, - 1991.0, - 1086.0, - 2029.0, - 521.0, - 2029.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 56, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 366, - 1045, - 921, - 1045, - 921, - 1238, - 366, - 1238 - ], - "score": 0.964 - }, - { - "category_id": 3, - "poly": [ - 258, - 367, - 1352, - 367, - 1352, - 896, - 258, - 896 - ], - "score": 0.96 - }, - { - "category_id": 1, - "poly": [ - 317, - 935, - 1413, - 935, - 1413, - 1009, - 317, - 1009 - ], - "score": 0.939 - }, - { - "category_id": 1, - "poly": [ - 310, - 190, - 1470, - 190, - 1470, - 265, - 310, - 265 - ], - "score": 0.934 - }, - { - "category_id": 2, - "poly": [ - 1517, - 146, - 1624, - 146, - 1624, - 212, - 1517, - 212 - ], - "score": 0.927 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 278, - 2187, - 278, - 2291, - 119, - 2291 - ], - "score": 0.911 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2266, - 1496, - 2266, - 1496, - 2289, - 1331, - 2289 - ], - "score": 0.881 - }, - { - "category_id": 2, - "poly": [ - 787, - 83, - 822, - 83, - 822, - 111, - 787, - 111 - ], - "score": 0.856 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1653, - 4, - 1653, - 38, - 1582, - 38 - ], - "score": 0.822 - }, - { - "category_id": 4, - "poly": [ - 735, - 299, - 879, - 299, - 879, - 338, - 735, - 338 - ], - "score": 0.736 - }, - { - "category_id": 2, - "poly": [ - 128, - 1268, - 293, - 1268, - 293, - 1317, - 128, - 1317 - ], - "score": 0.68 - }, - { - "category_id": 1, - "poly": [ - 125, - 1270, - 822, - 1270, - 822, - 1318, - 125, - 1318 - ], - "score": 0.67 - }, - { - "category_id": 2, - "poly": [ - 1344, - 1314, - 1486, - 1314, - 1486, - 1353, - 1344, - 1353 - ], - "score": 0.625 - }, - { - "category_id": 2, - "poly": [ - 1443, - 1994, - 1473, - 1994, - 1473, - 2017, - 1443, - 2017 - ], - "score": 0.597 - }, - { - "category_id": 1, - "poly": [ - 1344, - 1314, - 1486, - 1314, - 1486, - 1353, - 1344, - 1353 - ], - "score": 0.353 - }, - { - "category_id": 2, - "poly": [ - 863, - 1989, - 1475, - 1989, - 1475, - 2030, - 863, - 2030 - ], - "score": 0.28 - }, - { - "category_id": 2, - "poly": [ - 868, - 1989, - 1032, - 1989, - 1032, - 2019, - 868, - 2019 - ], - "score": 0.259 - }, - { - "category_id": 0, - "poly": [ - 735, - 299, - 879, - 299, - 879, - 338, - 735, - 338 - ], - "score": 0.175 - }, - { - "category_id": 2, - "poly": [ - 125, - 1270, - 822, - 1270, - 822, - 1318, - 125, - 1318 - ], - "score": 0.125 - }, - { - "category_id": 13, - "poly": [ - 484, - 1046, - 651, - 1046, - 651, - 1083, - 484, - 1083 - ], - "score": 0.91, - "latex": "\\mathsf{A B}=4.4\\mathrm{kg}" - }, - { - "category_id": 13, - "poly": [ - 689, - 1197, - 907, - 1197, - 907, - 1235, - 689, - 1235 - ], - "score": 0.81, - "latex": "=2.10\\times10^{11}\\mathrm{P}\\mathrm{:}" - }, - { - "category_id": 13, - "poly": [ - 541, - 1086, - 691, - 1086, - 691, - 1123, - 541, - 1123 - ], - "score": 0.81, - "latex": ")=16.0\\mathrm{kg}" - }, - { - "category_id": 13, - "poly": [ - 663, - 1162, - 837, - 1162, - 837, - 1196, - 663, - 1196 - ], - "score": 0.79, - "latex": "=0.800\\mathrm{mm}" - }, - { - "category_id": 13, - "poly": [ - 683, - 1125, - 818, - 1125, - 818, - 1157, - 683, - 1157 - ], - "score": 0.71, - "latex": ";=2.00\\mathrm{m}" - }, - { - "category_id": 13, - "poly": [ - 913, - 936, - 1011, - 936, - 1011, - 971, - 913, - 971 - ], - "score": 0.6, - "latex": "1.20\\:\\mathrm{m}" - }, - { - "category_id": 13, - "poly": [ - 1003, - 1991, - 1035, - 1991, - 1035, - 2017, - 1003, - 2017 - ], - "score": 0.4, - "latex": "=" - }, - { - "category_id": 15, - "poly": [ - 366.0, - 1045.0, - 483.0, - 1045.0, - 483.0, - 1084.0, - 366.0, - 1084.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 366.0, - 1084.0, - 540.0, - 1084.0, - 540.0, - 1123.0, - 366.0, - 1123.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 368.0, - 1125.0, - 682.0, - 1125.0, - 682.0, - 1157.0, - 368.0, - 1157.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 369.0, - 1166.0, - 662.0, - 1166.0, - 662.0, - 1194.0, - 369.0, - 1194.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 367.0, - 1202.0, - 688.0, - 1202.0, - 688.0, - 1233.0, - 367.0, - 1233.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 908.0, - 1202.0, - 918.0, - 1202.0, - 918.0, - 1233.0, - 908.0, - 1233.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 938.0, - 912.0, - 938.0, - 912.0, - 972.0, - 318.0, - 972.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1012.0, - 938.0, - 1409.0, - 938.0, - 1409.0, - 972.0, - 1012.0, - 972.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 975.0, - 545.0, - 975.0, - 545.0, - 1009.0, - 318.0, - 1009.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 193.0, - 1465.0, - 193.0, - 1465.0, - 228.0, - 319.0, - 228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 232.0, - 1470.0, - 232.0, - 1470.0, - 263.0, - 316.0, - 263.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 146.0, - 1626.0, - 146.0, - 1626.0, - 172.0, - 1517.0, - 172.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 194.0, - 1520.0, - 194.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1550.0, - 189.0, - 1593.0, - 189.0, - 1593.0, - 215.0, - 1550.0, - 215.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 169.0, - 2272.0, - 181.0, - 2272.0, - 181.0, - 2287.0, - 169.0, - 2287.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 2267.0, - 224.0, - 2267.0, - 224.0, - 2292.0, - 196.0, - 2292.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 79.0, - 828.0, - 79.0, - 828.0, - 117.0, - 779.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1578.0, - 3.0, - 1658.0, - 3.0, - 1658.0, - 42.0, - 1578.0, - 42.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 738.0, - 302.0, - 878.0, - 302.0, - 878.0, - 337.0, - 738.0, - 337.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 1277.0, - 218.0, - 1277.0, - 218.0, - 1310.0, - 140.0, - 1310.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1280.0, - 276.0, - 1280.0, - 276.0, - 1306.0, - 252.0, - 1306.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 137.0, - 1273.0, - 277.0, - 1273.0, - 277.0, - 1313.0, - 137.0, - 1313.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 1282.0, - 816.0, - 1282.0, - 816.0, - 1311.0, - 319.0, - 1311.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1315.0, - 1488.0, - 1315.0, - 1488.0, - 1353.0, - 1346.0, - 1353.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1440.0, - 1993.0, - 1478.0, - 1993.0, - 1478.0, - 2024.0, - 1440.0, - 2024.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1315.0, - 1488.0, - 1315.0, - 1488.0, - 1353.0, - 1346.0, - 1353.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 870.0, - 1987.0, - 1002.0, - 1987.0, - 1002.0, - 2019.0, - 870.0, - 2019.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1441.0, - 1994.0, - 1474.0, - 1994.0, - 1474.0, - 2019.0, - 1441.0, - 2019.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 869.0, - 1988.0, - 1002.0, - 1988.0, - 1002.0, - 2020.0, - 869.0, - 2020.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 738.0, - 302.0, - 878.0, - 302.0, - 878.0, - 337.0, - 738.0, - 337.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 137.0, - 1273.0, - 277.0, - 1273.0, - 277.0, - 1313.0, - 137.0, - 1313.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 1282.0, - 816.0, - 1282.0, - 816.0, - 1311.0, - 319.0, - 1311.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 57, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 315, - 337, - 1476, - 337, - 1476, - 449, - 315, - 449 - ], - "score": 0.969 - }, - { - "category_id": 3, - "poly": [ - 239, - 550, - 1379, - 550, - 1379, - 1081, - 239, - 1081 - ], - "score": 0.966 - }, - { - "category_id": 1, - "poly": [ - 313, - 190, - 1471, - 190, - 1471, - 303, - 313, - 303 - ], - "score": 0.963 - }, - { - "category_id": 2, - "poly": [ - 1517, - 146, - 1624, - 146, - 1624, - 213, - 1517, - 213 - ], - "score": 0.93 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 279, - 2187, - 279, - 2291, - 119, - 2291 - ], - "score": 0.89 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2266, - 1496, - 2266, - 1496, - 2289, - 1331, - 2289 - ], - "score": 0.875 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2144, - 1497, - 2144, - 1497, - 2177, - 1317, - 2177 - ], - "score": 0.874 - }, - { - "category_id": 2, - "poly": [ - 127, - 180, - 293, - 180, - 293, - 231, - 127, - 231 - ], - "score": 0.873 - }, - { - "category_id": 2, - "poly": [ - 787, - 83, - 822, - 83, - 822, - 111, - 787, - 111 - ], - "score": 0.855 - }, - { - "category_id": 2, - "poly": [ - 1511, - 1986, - 1601, - 1986, - 1601, - 2104, - 1511, - 2104 - ], - "score": 0.852 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 38, - 1582, - 38 - ], - "score": 0.817 - }, - { - "category_id": 4, - "poly": [ - 734, - 484, - 879, - 484, - 879, - 523, - 734, - 523 - ], - "score": 0.792 - }, - { - "category_id": 1, - "poly": [ - 316, - 1112, - 1018, - 1112, - 1018, - 1153, - 316, - 1153 - ], - "score": 0.721 - }, - { - "category_id": 2, - "poly": [ - 1442, - 2072, - 1473, - 2072, - 1473, - 2096, - 1442, - 2096 - ], - "score": 0.683 - }, - { - "category_id": 1, - "poly": [ - 316, - 1190, - 580, - 1190, - 580, - 1228, - 316, - 1228 - ], - "score": 0.578 - }, - { - "category_id": 2, - "poly": [ - 1343, - 1227, - 1486, - 1227, - 1486, - 1265, - 1343, - 1265 - ], - "score": 0.512 - }, - { - "category_id": 2, - "poly": [ - 983, - 2073, - 1031, - 2073, - 1031, - 2095, - 983, - 2095 - ], - "score": 0.471 - }, - { - "category_id": 1, - "poly": [ - 1343, - 1227, - 1486, - 1227, - 1486, - 1265, - 1343, - 1265 - ], - "score": 0.42 - }, - { - "category_id": 1, - "poly": [ - 314, - 1112, - 1019, - 1112, - 1019, - 1229, - 314, - 1229 - ], - "score": 0.23 - }, - { - "category_id": 13, - "poly": [ - 811, - 1112, - 1008, - 1112, - 1008, - 1150, - 811, - 1150 - ], - "score": 0.89, - "latex": "7.00\\times10^{10}\\mathrm{Pa}" - }, - { - "category_id": 13, - "poly": [ - 436, - 419, - 459, - 419, - 459, - 445, - 436, - 445 - ], - "score": 0.71, - "latex": "x" - }, - { - "category_id": 13, - "poly": [ - 445, - 230, - 566, - 230, - 566, - 264, - 445, - 264 - ], - "score": 0.69, - "latex": "1.60\\mathrm{mm}" - }, - { - "category_id": 13, - "poly": [ - 550, - 1198, - 571, - 1198, - 571, - 1222, - 550, - 1222 - ], - "score": 0.33, - "latex": "x" - }, - { - "category_id": 13, - "poly": [ - 983, - 2077, - 1031, - 2077, - 1031, - 2095, - 983, - 2095 - ], - "score": 0.25, - "latex": "x=" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 337.0, - 1477.0, - 337.0, - 1477.0, - 376.0, - 315.0, - 376.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 376.0, - 1446.0, - 376.0, - 1446.0, - 410.0, - 316.0, - 410.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 413.0, - 435.0, - 413.0, - 435.0, - 449.0, - 318.0, - 449.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 460.0, - 413.0, - 1119.0, - 413.0, - 1119.0, - 449.0, - 460.0, - 449.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 193.0, - 1355.0, - 193.0, - 1355.0, - 227.0, - 319.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 232.0, - 444.0, - 232.0, - 444.0, - 265.0, - 318.0, - 265.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 567.0, - 232.0, - 1470.0, - 232.0, - 1470.0, - 265.0, - 567.0, - 265.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 268.0, - 616.0, - 268.0, - 616.0, - 305.0, - 317.0, - 305.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1518.0, - 147.0, - 1625.0, - 147.0, - 1625.0, - 170.0, - 1518.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1622.0, - 170.0, - 1622.0, - 194.0, - 1520.0, - 194.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1550.0, - 189.0, - 1594.0, - 189.0, - 1594.0, - 219.0, - 1550.0, - 219.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 2275.0, - 181.0, - 2275.0, - 181.0, - 2283.0, - 171.0, - 2283.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1318.0, - 2146.0, - 1485.0, - 2146.0, - 1485.0, - 2176.0, - 1318.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 186.0, - 285.0, - 186.0, - 285.0, - 226.0, - 136.0, - 226.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 78.0, - 828.0, - 78.0, - 828.0, - 118.0, - 779.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1536.0, - 2056.0, - 1577.0, - 2056.0, - 1577.0, - 2086.0, - 1536.0, - 2086.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 3.0, - 1658.0, - 3.0, - 1658.0, - 42.0, - 1579.0, - 42.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 739.0, - 487.0, - 878.0, - 487.0, - 878.0, - 522.0, - 739.0, - 522.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 1115.0, - 810.0, - 1115.0, - 810.0, - 1149.0, - 317.0, - 1149.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1009.0, - 1115.0, - 1016.0, - 1115.0, - 1016.0, - 1149.0, - 1009.0, - 1149.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1439.0, - 2071.0, - 1478.0, - 2071.0, - 1478.0, - 2102.0, - 1439.0, - 2102.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1192.0, - 549.0, - 1192.0, - 549.0, - 1225.0, - 318.0, - 1225.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 572.0, - 1192.0, - 579.0, - 1192.0, - 579.0, - 1225.0, - 572.0, - 1225.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 1228.0, - 1488.0, - 1228.0, - 1488.0, - 1266.0, - 1345.0, - 1266.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 980.0, - 2073.0, - 982.0, - 2073.0, - 982.0, - 2096.0, - 980.0, - 2096.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1032.0, - 2073.0, - 1032.0, - 2073.0, - 1032.0, - 2096.0, - 1032.0, - 2096.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 1228.0, - 1488.0, - 1228.0, - 1488.0, - 1266.0, - 1345.0, - 1266.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1116.0, - 810.0, - 1116.0, - 810.0, - 1148.0, - 318.0, - 1148.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1009.0, - 1116.0, - 1014.0, - 1116.0, - 1014.0, - 1148.0, - 1009.0, - 1148.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 1192.0, - 549.0, - 1192.0, - 549.0, - 1225.0, - 319.0, - 1225.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 572.0, - 1192.0, - 581.0, - 1192.0, - 581.0, - 1225.0, - 572.0, - 1225.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 58, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 394, - 367, - 1222, - 367, - 1222, - 916, - 394, - 916 - ], - "score": 0.949 - }, - { - "category_id": 1, - "poly": [ - 313, - 1445, - 1455, - 1445, - 1455, - 1520, - 313, - 1520 - ], - "score": 0.948 - }, - { - "category_id": 1, - "poly": [ - 315, - 190, - 1401, - 190, - 1401, - 265, - 315, - 265 - ], - "score": 0.932 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1624, - 146, - 1624, - 213, - 1516, - 213 - ], - "score": 0.931 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 278, - 2187, - 278, - 2292, - 119, - 2292 - ], - "score": 0.917 - }, - { - "category_id": 8, - "poly": [ - 732, - 1221, - 862, - 1221, - 862, - 1262, - 732, - 1262 - ], - "score": 0.908 - }, - { - "category_id": 2, - "poly": [ - 127, - 181, - 229, - 181, - 229, - 230, - 127, - 230 - ], - "score": 0.898 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2266, - 1496, - 2266, - 1496, - 2289, - 1331, - 2289 - ], - "score": 0.892 - }, - { - "category_id": 4, - "poly": [ - 967, - 300, - 1112, - 300, - 1112, - 338, - 967, - 338 - ], - "score": 0.882 - }, - { - "category_id": 2, - "poly": [ - 783, - 82, - 822, - 82, - 822, - 111, - 783, - 111 - ], - "score": 0.867 - }, - { - "category_id": 4, - "poly": [ - 550, - 300, - 694, - 300, - 694, - 338, - 550, - 338 - ], - "score": 0.856 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 38, - 1582, - 38 - ], - "score": 0.829 - }, - { - "category_id": 4, - "poly": [ - 310, - 958, - 1471, - 958, - 1471, - 1034, - 310, - 1034 - ], - "score": 0.64 - }, - { - "category_id": 1, - "poly": [ - 317, - 1036, - 1451, - 1036, - 1451, - 1108, - 317, - 1108 - ], - "score": 0.616 - }, - { - "category_id": 1, - "poly": [ - 317, - 1111, - 1465, - 1111, - 1465, - 1187, - 317, - 1187 - ], - "score": 0.554 - }, - { - "category_id": 1, - "poly": [ - 316, - 1296, - 973, - 1296, - 973, - 1413, - 316, - 1413 - ], - "score": 0.481 - }, - { - "category_id": 1, - "poly": [ - 324, - 1297, - 968, - 1297, - 968, - 1333, - 324, - 1333 - ], - "score": 0.27 - }, - { - "category_id": 4, - "poly": [ - 314, - 956, - 1472, - 956, - 1472, - 1186, - 314, - 1186 - ], - "score": 0.189 - }, - { - "category_id": 1, - "poly": [ - 314, - 956, - 1472, - 956, - 1472, - 1186, - 314, - 1186 - ], - "score": 0.133 - }, - { - "category_id": 1, - "poly": [ - 324, - 1341, - 914, - 1341, - 914, - 1412, - 324, - 1412 - ], - "score": 0.118 - }, - { - "category_id": 14, - "poly": [ - 730, - 1221, - 864, - 1221, - 864, - 1261, - 730, - 1261 - ], - "score": 0.91, - "latex": "F=A\\rho g y" - }, - { - "category_id": 13, - "poly": [ - 561, - 1150, - 588, - 1150, - 588, - 1180, - 561, - 1180 - ], - "score": 0.83, - "latex": "F" - }, - { - "category_id": 13, - "poly": [ - 769, - 1112, - 798, - 1112, - 798, - 1143, - 769, - 1143 - ], - "score": 0.83, - "latex": "F" - }, - { - "category_id": 13, - "poly": [ - 404, - 1342, - 428, - 1342, - 428, - 1374, - 404, - 1374 - ], - "score": 0.81, - "latex": "\\rho" - }, - { - "category_id": 13, - "poly": [ - 406, - 1381, - 429, - 1381, - 429, - 1412, - 406, - 1412 - ], - "score": 0.75, - "latex": "g" - }, - { - "category_id": 13, - "poly": [ - 406, - 1300, - 431, - 1300, - 431, - 1329, - 406, - 1329 - ], - "score": 0.74, - "latex": "A" - }, - { - "category_id": 13, - "poly": [ - 807, - 1154, - 829, - 1154, - 829, - 1186, - 807, - 1186 - ], - "score": 0.5, - "latex": "y" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 1448.0, - 1449.0, - 1448.0, - 1449.0, - 1483.0, - 319.0, - 1483.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 1487.0, - 642.0, - 1487.0, - 642.0, - 1521.0, - 317.0, - 1521.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 193.0, - 1398.0, - 193.0, - 1398.0, - 228.0, - 318.0, - 228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 230.0, - 1235.0, - 230.0, - 1235.0, - 264.0, - 317.0, - 264.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1625.0, - 147.0, - 1625.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1623.0, - 170.0, - 1623.0, - 193.0, - 1520.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1550.0, - 190.0, - 1593.0, - 190.0, - 1593.0, - 216.0, - 1550.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 167.0, - 2268.0, - 187.0, - 2268.0, - 187.0, - 2291.0, - 167.0, - 2291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 194.0, - 2267.0, - 224.0, - 2267.0, - 224.0, - 2292.0, - 194.0, - 2292.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 144.0, - 193.0, - 169.0, - 193.0, - 169.0, - 220.0, - 144.0, - 220.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 190.0, - 193.0, - 214.0, - 193.0, - 214.0, - 221.0, - 190.0, - 221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 969.0, - 301.0, - 1110.0, - 301.0, - 1110.0, - 338.0, - 969.0, - 338.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 827.0, - 78.0, - 827.0, - 118.0, - 780.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 552.0, - 299.0, - 696.0, - 299.0, - 696.0, - 340.0, - 552.0, - 340.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 3.0, - 1658.0, - 3.0, - 1658.0, - 42.0, - 1579.0, - 42.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 962.0, - 1467.0, - 962.0, - 1467.0, - 996.0, - 318.0, - 996.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1000.0, - 1319.0, - 1000.0, - 1319.0, - 1034.0, - 318.0, - 1034.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1038.0, - 1447.0, - 1038.0, - 1447.0, - 1072.0, - 318.0, - 1072.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1072.0, - 1015.0, - 1072.0, - 1015.0, - 1111.0, - 316.0, - 1111.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 1109.0, - 768.0, - 1109.0, - 768.0, - 1149.0, - 315.0, - 1149.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 799.0, - 1109.0, - 1466.0, - 1109.0, - 1466.0, - 1149.0, - 799.0, - 1149.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1149.0, - 560.0, - 1149.0, - 560.0, - 1188.0, - 316.0, - 1188.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 589.0, - 1149.0, - 806.0, - 1149.0, - 806.0, - 1188.0, - 589.0, - 1188.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 830.0, - 1149.0, - 981.0, - 1149.0, - 981.0, - 1188.0, - 830.0, - 1188.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1301.0, - 405.0, - 1301.0, - 405.0, - 1331.0, - 318.0, - 1331.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 432.0, - 1301.0, - 970.0, - 1301.0, - 970.0, - 1331.0, - 432.0, - 1331.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 429.0, - 1339.0, - 733.0, - 1339.0, - 733.0, - 1371.0, - 429.0, - 1371.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 405.0, - 1375.0, - 405.0, - 1375.0, - 405.0, - 1412.0, - 405.0, - 1412.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 430.0, - 1375.0, - 883.0, - 1375.0, - 883.0, - 1412.0, - 430.0, - 1412.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 323.0, - 1299.0, - 405.0, - 1299.0, - 405.0, - 1332.0, - 323.0, - 1332.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 432.0, - 1299.0, - 969.0, - 1299.0, - 969.0, - 1332.0, - 432.0, - 1332.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 963.0, - 1466.0, - 963.0, - 1466.0, - 995.0, - 319.0, - 995.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 999.0, - 1321.0, - 999.0, - 1321.0, - 1034.0, - 316.0, - 1034.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1037.0, - 1447.0, - 1037.0, - 1447.0, - 1074.0, - 316.0, - 1074.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 1072.0, - 1012.0, - 1072.0, - 1012.0, - 1112.0, - 315.0, - 1112.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1112.0, - 768.0, - 1112.0, - 768.0, - 1148.0, - 316.0, - 1148.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 799.0, - 1112.0, - 1463.0, - 1112.0, - 1463.0, - 1148.0, - 799.0, - 1148.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 1148.0, - 560.0, - 1148.0, - 560.0, - 1188.0, - 317.0, - 1188.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 589.0, - 1148.0, - 806.0, - 1148.0, - 806.0, - 1188.0, - 589.0, - 1188.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 830.0, - 1148.0, - 982.0, - 1148.0, - 982.0, - 1188.0, - 830.0, - 1188.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 963.0, - 1466.0, - 963.0, - 1466.0, - 995.0, - 319.0, - 995.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 999.0, - 1321.0, - 999.0, - 1321.0, - 1034.0, - 316.0, - 1034.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1037.0, - 1447.0, - 1037.0, - 1447.0, - 1074.0, - 316.0, - 1074.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 1072.0, - 1012.0, - 1072.0, - 1012.0, - 1112.0, - 315.0, - 1112.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1112.0, - 768.0, - 1112.0, - 768.0, - 1148.0, - 316.0, - 1148.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 799.0, - 1112.0, - 1463.0, - 1112.0, - 1463.0, - 1148.0, - 799.0, - 1148.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 1148.0, - 560.0, - 1148.0, - 560.0, - 1188.0, - 317.0, - 1188.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 589.0, - 1148.0, - 806.0, - 1148.0, - 806.0, - 1188.0, - 589.0, - 1188.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 830.0, - 1148.0, - 982.0, - 1148.0, - 982.0, - 1188.0, - 830.0, - 1188.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 429.0, - 1340.0, - 732.0, - 1340.0, - 732.0, - 1370.0, - 429.0, - 1370.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 430.0, - 1377.0, - 882.0, - 1377.0, - 882.0, - 1413.0, - 430.0, - 1413.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 59, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 8, - "poly": [ - 717, - 1019, - 874, - 1019, - 874, - 1119, - 717, - 1119 - ], - "score": 0.933 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1625, - 146, - 1625, - 214, - 1516, - 214 - ], - "score": 0.922 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2292, - 118, - 2292 - ], - "score": 0.903 - }, - { - "category_id": 2, - "poly": [ - 127, - 933, - 294, - 933, - 294, - 983, - 127, - 983 - ], - "score": 0.898 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2143, - 1496, - 2143, - 1496, - 2178, - 1317, - 2178 - ], - "score": 0.892 - }, - { - "category_id": 1, - "poly": [ - 312, - 941, - 1064, - 941, - 1064, - 984, - 312, - 984 - ], - "score": 0.89 - }, - { - "category_id": 1, - "poly": [ - 314, - 1269, - 996, - 1269, - 996, - 1309, - 314, - 1309 - ], - "score": 0.888 - }, - { - "category_id": 2, - "poly": [ - 1330, - 2264, - 1496, - 2264, - 1496, - 2290, - 1330, - 2290 - ], - "score": 0.885 - }, - { - "category_id": 2, - "poly": [ - 783, - 82, - 818, - 82, - 818, - 111, - 783, - 111 - ], - "score": 0.844 - }, - { - "category_id": 2, - "poly": [ - 127, - 181, - 294, - 181, - 294, - 231, - 127, - 231 - ], - "score": 0.828 - }, - { - "category_id": 1, - "poly": [ - 315, - 1158, - 984, - 1158, - 984, - 1196, - 315, - 1196 - ], - "score": 0.826 - }, - { - "category_id": 1, - "poly": [ - 310, - 188, - 1097, - 188, - 1097, - 230, - 310, - 230 - ], - "score": 0.823 - }, - { - "category_id": 2, - "poly": [ - 1582, - 3, - 1652, - 3, - 1652, - 39, - 1582, - 39 - ], - "score": 0.816 - }, - { - "category_id": 1, - "poly": [ - 318, - 1199, - 986, - 1199, - 986, - 1235, - 318, - 1235 - ], - "score": 0.786 - }, - { - "category_id": 1, - "poly": [ - 1343, - 1306, - 1487, - 1306, - 1487, - 1345, - 1343, - 1345 - ], - "score": 0.771 - }, - { - "category_id": 1, - "poly": [ - 521, - 2000, - 1088, - 2000, - 1088, - 2040, - 521, - 2040 - ], - "score": 0.624 - }, - { - "category_id": 1, - "poly": [ - 1344, - 227, - 1486, - 227, - 1486, - 265, - 1344, - 265 - ], - "score": 0.611 - }, - { - "category_id": 1, - "poly": [ - 637, - 1833, - 1474, - 1833, - 1474, - 1881, - 637, - 1881 - ], - "score": 0.524 - }, - { - "category_id": 2, - "poly": [ - 1344, - 227, - 1486, - 227, - 1486, - 265, - 1344, - 265 - ], - "score": 0.288 - }, - { - "category_id": 2, - "poly": [ - 637, - 1833, - 1474, - 1833, - 1474, - 1881, - 637, - 1881 - ], - "score": 0.245 - }, - { - "category_id": 1, - "poly": [ - 314, - 1158, - 991, - 1158, - 991, - 1236, - 314, - 1236 - ], - "score": 0.132 - }, - { - "category_id": 14, - "poly": [ - 716, - 1015, - 877, - 1015, - 877, - 1120, - 716, - 1120 - ], - "score": 0.91, - "latex": "T=2\\pi\\sqrt{\\frac{l}{g}}" - }, - { - "category_id": 13, - "poly": [ - 537, - 947, - 563, - 947, - 563, - 978, - 537, - 978 - ], - "score": 0.73, - "latex": "T" - }, - { - "category_id": 13, - "poly": [ - 862, - 1160, - 959, - 1160, - 959, - 1194, - 862, - 1194 - ], - "score": 0.72, - "latex": "85\\mathrm{mm}" - }, - { - "category_id": 13, - "poly": [ - 956, - 1841, - 987, - 1841, - 987, - 1867, - 956, - 1867 - ], - "score": 0.65, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 686, - 1198, - 794, - 1198, - 794, - 1232, - 686, - 1232 - ], - "score": 0.56, - "latex": "5.0\\mathrm{mm}" - }, - { - "category_id": 13, - "poly": [ - 637, - 1161, - 652, - 1161, - 652, - 1192, - 637, - 1192 - ], - "score": 0.36, - "latex": "l" - }, - { - "category_id": 13, - "poly": [ - 1397, - 1837, - 1471, - 1837, - 1471, - 1867, - 1397, - 1867 - ], - "score": 0.27, - "latex": "\\mathrm{m}\\mathrm{s}^{-2}" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 145.0, - 1625.0, - 145.0, - 1625.0, - 172.0, - 1517.0, - 172.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1521.0, - 171.0, - 1621.0, - 171.0, - 1621.0, - 194.0, - 1521.0, - 194.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1552.0, - 192.0, - 1592.0, - 192.0, - 1592.0, - 217.0, - 1552.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 173.0, - 2275.0, - 180.0, - 2275.0, - 180.0, - 2284.0, - 173.0, - 2284.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 210.0, - 2277.0, - 215.0, - 2277.0, - 215.0, - 2282.0, - 210.0, - 2282.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 937.0, - 284.0, - 937.0, - 284.0, - 980.0, - 140.0, - 980.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1317.0, - 2146.0, - 1472.0, - 2146.0, - 1472.0, - 2176.0, - 1317.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 946.0, - 536.0, - 946.0, - 536.0, - 983.0, - 317.0, - 983.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 564.0, - 946.0, - 1060.0, - 946.0, - 1060.0, - 983.0, - 564.0, - 983.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1271.0, - 992.0, - 1271.0, - 992.0, - 1304.0, - 318.0, - 1304.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1332.0, - 2266.0, - 1498.0, - 2266.0, - 1498.0, - 2291.0, - 1332.0, - 2291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 77.0, - 826.0, - 77.0, - 826.0, - 119.0, - 779.0, - 119.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 189.0, - 192.0, - 189.0, - 192.0, - 224.0, - 140.0, - 224.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 207.0, - 189.0, - 279.0, - 189.0, - 279.0, - 225.0, - 207.0, - 225.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 176.25, - 194.0, - 227.25, - 194.0, - 227.25, - 222.0, - 176.25, - 222.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1161.0, - 636.0, - 1161.0, - 636.0, - 1193.0, - 318.0, - 1193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 653.0, - 1161.0, - 861.0, - 1161.0, - 861.0, - 1193.0, - 653.0, - 1193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 960.0, - 1161.0, - 966.0, - 1161.0, - 966.0, - 1193.0, - 960.0, - 1193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 191.0, - 1096.0, - 191.0, - 1096.0, - 227.0, - 318.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 3.0, - 1658.0, - 3.0, - 1658.0, - 42.0, - 1579.0, - 42.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 1200.0, - 685.0, - 1200.0, - 685.0, - 1233.0, - 319.0, - 1233.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 795.0, - 1200.0, - 983.0, - 1200.0, - 983.0, - 1233.0, - 795.0, - 1233.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1305.0, - 1489.0, - 1305.0, - 1489.0, - 1346.0, - 1346.0, - 1346.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 521.0, - 2000.0, - 1085.0, - 2000.0, - 1085.0, - 2039.0, - 521.0, - 2039.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 225.0, - 1488.0, - 225.0, - 1488.0, - 267.0, - 1345.0, - 267.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 647.0, - 1839.0, - 955.0, - 1839.0, - 955.0, - 1867.0, - 647.0, - 1867.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1386.0, - 1833.5, - 1482.0, - 1833.5, - 1482.0, - 1871.5, - 1386.0, - 1871.5 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 225.0, - 1488.0, - 225.0, - 1488.0, - 267.0, - 1345.0, - 267.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 647.0, - 1839.0, - 955.0, - 1839.0, - 955.0, - 1867.0, - 647.0, - 1867.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1386.0, - 1833.5, - 1482.0, - 1833.5, - 1482.0, - 1871.5, - 1386.0, - 1871.5 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1162.0, - 636.0, - 1162.0, - 636.0, - 1192.0, - 318.0, - 1192.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 653.0, - 1162.0, - 861.0, - 1162.0, - 861.0, - 1192.0, - 653.0, - 1192.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 960.0, - 1162.0, - 965.0, - 1162.0, - 965.0, - 1192.0, - 960.0, - 1192.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 320.0, - 1201.0, - 685.0, - 1201.0, - 685.0, - 1232.0, - 320.0, - 1232.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 795.0, - 1201.0, - 984.0, - 1201.0, - 984.0, - 1232.0, - 795.0, - 1232.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 60, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 371, - 1431, - 1242, - 1431, - 1242, - 1725, - 371, - 1725 - ], - "score": 0.964 - }, - { - "category_id": 1, - "poly": [ - 313, - 1252, - 1494, - 1252, - 1494, - 1328, - 313, - 1328 - ], - "score": 0.939 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1625, - 146, - 1625, - 213, - 1516, - 213 - ], - "score": 0.932 - }, - { - "category_id": 2, - "poly": [ - 127, - 404, - 294, - 404, - 294, - 452, - 127, - 452 - ], - "score": 0.917 - }, - { - "category_id": 2, - "poly": [ - 126, - 1129, - 293, - 1129, - 293, - 1179, - 126, - 1179 - ], - "score": 0.916 - }, - { - "category_id": 1, - "poly": [ - 308, - 299, - 1465, - 299, - 1465, - 374, - 308, - 374 - ], - "score": 0.907 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 279, - 2187, - 279, - 2293, - 119, - 2293 - ], - "score": 0.9 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2290, - 1331, - 2290 - ], - "score": 0.891 - }, - { - "category_id": 2, - "poly": [ - 783, - 82, - 822, - 82, - 822, - 111, - 783, - 111 - ], - "score": 0.858 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1653, - 4, - 1653, - 39, - 1582, - 39 - ], - "score": 0.831 - }, - { - "category_id": 1, - "poly": [ - 318, - 413, - 818, - 413, - 818, - 451, - 318, - 451 - ], - "score": 0.811 - }, - { - "category_id": 4, - "poly": [ - 734, - 1361, - 880, - 1361, - 880, - 1401, - 734, - 1401 - ], - "score": 0.81 - }, - { - "category_id": 1, - "poly": [ - 1345, - 451, - 1486, - 451, - 1486, - 488, - 1345, - 488 - ], - "score": 0.785 - }, - { - "category_id": 4, - "poly": [ - 318, - 1139, - 1407, - 1139, - 1407, - 1217, - 318, - 1217 - ], - "score": 0.505 - }, - { - "category_id": 1, - "poly": [ - 318, - 1139, - 1407, - 1139, - 1407, - 1217, - 318, - 1217 - ], - "score": 0.477 - }, - { - "category_id": 1, - "poly": [ - 312, - 191, - 1362, - 191, - 1362, - 264, - 312, - 264 - ], - "score": 0.404 - }, - { - "category_id": 1, - "poly": [ - 312, - 456, - 1491, - 456, - 1491, - 1067, - 312, - 1067 - ], - "score": 0.3 - }, - { - "category_id": 1, - "poly": [ - 314, - 190, - 1349, - 190, - 1349, - 264, - 314, - 264 - ], - "score": 0.217 - }, - { - "category_id": 1, - "poly": [ - 307, - 217, - 1411, - 217, - 1411, - 264, - 307, - 264 - ], - "score": 0.181 - }, - { - "category_id": 1, - "poly": [ - 314, - 191, - 1292, - 191, - 1292, - 227, - 314, - 227 - ], - "score": 0.167 - }, - { - "category_id": 2, - "poly": [ - 1345, - 451, - 1486, - 451, - 1486, - 488, - 1345, - 488 - ], - "score": 0.163 - }, - { - "category_id": 3, - "poly": [ - 312, - 456, - 1491, - 456, - 1491, - 1067, - 312, - 1067 - ], - "score": 0.108 - }, - { - "category_id": 13, - "poly": [ - 489, - 1178, - 627, - 1178, - 627, - 1215, - 489, - 1215 - ], - "score": 0.88, - "latex": "14.2\\mathrm{m~s}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 725, - 1253, - 850, - 1253, - 850, - 1289, - 725, - 1289 - ], - "score": 0.86, - "latex": "8.0\\mathrm{m~s}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 1314, - 1141, - 1404, - 1141, - 1404, - 1176, - 1314, - 1176 - ], - "score": 0.49, - "latex": "118\\mathrm{m}" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1254.0, - 724.0, - 1254.0, - 724.0, - 1293.0, - 318.0, - 1293.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 851.0, - 1254.0, - 1484.0, - 1254.0, - 1484.0, - 1293.0, - 851.0, - 1293.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 314.0, - 1291.0, - 469.0, - 1291.0, - 469.0, - 1332.0, - 314.0, - 1332.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1625.0, - 147.0, - 1625.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1521.0, - 170.0, - 1621.0, - 170.0, - 1621.0, - 193.0, - 1521.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1552.0, - 190.0, - 1592.0, - 190.0, - 1592.0, - 216.0, - 1552.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 143.0, - 414.0, - 173.0, - 414.0, - 173.0, - 443.0, - 143.0, - 443.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 191.0, - 416.0, - 214.0, - 416.0, - 214.0, - 442.0, - 191.0, - 442.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 249.0, - 414.0, - 277.0, - 414.0, - 277.0, - 443.0, - 249.0, - 443.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 144.0, - 1138.0, - 174.0, - 1138.0, - 174.0, - 1171.0, - 144.0, - 1171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 191.0, - 1143.0, - 216.0, - 1143.0, - 216.0, - 1168.0, - 191.0, - 1168.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 1147.0, - 273.0, - 1147.0, - 273.0, - 1164.0, - 256.0, - 1164.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 302.0, - 1460.0, - 302.0, - 1460.0, - 336.0, - 318.0, - 336.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 342.0, - 687.0, - 342.0, - 687.0, - 372.0, - 318.0, - 372.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 2272.0, - 182.0, - 2272.0, - 182.0, - 2286.0, - 170.0, - 2286.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 203.0, - 2270.0, - 220.0, - 2270.0, - 220.0, - 2290.0, - 203.0, - 2290.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 778.0, - 77.0, - 830.0, - 77.0, - 830.0, - 122.0, - 778.0, - 122.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1578.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1578.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 416.0, - 818.0, - 416.0, - 818.0, - 449.0, - 319.0, - 449.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 736.0, - 1362.0, - 879.0, - 1362.0, - 879.0, - 1403.0, - 736.0, - 1403.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 449.0, - 1488.0, - 449.0, - 1488.0, - 490.0, - 1346.0, - 490.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 320.0, - 1143.0, - 1313.0, - 1143.0, - 1313.0, - 1178.0, - 320.0, - 1178.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1182.0, - 488.0, - 1182.0, - 488.0, - 1217.0, - 316.0, - 1217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 628.0, - 1182.0, - 633.0, - 1182.0, - 633.0, - 1217.0, - 628.0, - 1217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 320.0, - 1143.0, - 1313.0, - 1143.0, - 1313.0, - 1178.0, - 320.0, - 1178.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1182.0, - 488.0, - 1182.0, - 488.0, - 1217.0, - 316.0, - 1217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 628.0, - 1182.0, - 633.0, - 1182.0, - 633.0, - 1217.0, - 628.0, - 1217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 194.0, - 1295.0, - 194.0, - 1295.0, - 227.0, - 318.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 320.0, - 230.0, - 1366.0, - 230.0, - 1366.0, - 264.0, - 320.0, - 264.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 449.0, - 1492.0, - 449.0, - 1492.0, - 491.0, - 1345.0, - 491.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 195.0, - 1295.0, - 195.0, - 1295.0, - 226.0, - 318.0, - 226.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 231.0, - 1353.0, - 231.0, - 1353.0, - 262.0, - 318.0, - 262.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 230.0, - 1405.0, - 230.0, - 1405.0, - 262.0, - 318.0, - 262.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 194.0, - 1296.0, - 194.0, - 1296.0, - 227.0, - 318.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 449.0, - 1488.0, - 449.0, - 1488.0, - 490.0, - 1346.0, - 490.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 61, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 314, - 563, - 853, - 563, - 853, - 637, - 314, - 637 - ], - "score": 0.943 - }, - { - "category_id": 1, - "poly": [ - 317, - 453, - 1226, - 453, - 1226, - 527, - 317, - 527 - ], - "score": 0.94 - }, - { - "category_id": 1, - "poly": [ - 318, - 265, - 1453, - 265, - 1453, - 339, - 318, - 339 - ], - "score": 0.929 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1624, - 146, - 1624, - 214, - 1516, - 214 - ], - "score": 0.929 - }, - { - "category_id": 1, - "poly": [ - 318, - 380, - 624, - 380, - 624, - 417, - 318, - 417 - ], - "score": 0.917 - }, - { - "category_id": 1, - "poly": [ - 321, - 192, - 1202, - 192, - 1202, - 230, - 321, - 230 - ], - "score": 0.91 - }, - { - "category_id": 2, - "poly": [ - 1508, - 1617, - 1600, - 1617, - 1600, - 1734, - 1508, - 1734 - ], - "score": 0.907 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 278, - 2187, - 278, - 2292, - 119, - 2292 - ], - "score": 0.9 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2144, - 1496, - 2144, - 1496, - 2177, - 1317, - 2177 - ], - "score": 0.897 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2266, - 1496, - 2266, - 1496, - 2289, - 1331, - 2289 - ], - "score": 0.88 - }, - { - "category_id": 2, - "poly": [ - 784, - 83, - 822, - 83, - 822, - 111, - 784, - 111 - ], - "score": 0.852 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 39, - 1582, - 39 - ], - "score": 0.824 - }, - { - "category_id": 1, - "poly": [ - 1344, - 637, - 1486, - 637, - 1486, - 674, - 1344, - 674 - ], - "score": 0.505 - }, - { - "category_id": 1, - "poly": [ - 642, - 1933, - 962, - 1933, - 962, - 1970, - 642, - 1970 - ], - "score": 0.476 - }, - { - "category_id": 2, - "poly": [ - 1344, - 637, - 1486, - 637, - 1486, - 674, - 1344, - 674 - ], - "score": 0.445 - }, - { - "category_id": 2, - "poly": [ - 642, - 1933, - 962, - 1933, - 962, - 1970, - 642, - 1970 - ], - "score": 0.376 - }, - { - "category_id": 13, - "poly": [ - 709, - 489, - 834, - 489, - 834, - 525, - 709, - 525 - ], - "score": 0.88, - "latex": "8.0\\mathrm{m~s}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 1085, - 192, - 1195, - 192, - 1195, - 229, - 1085, - 229 - ], - "score": 0.76, - "latex": "0.13\\:\\mathrm{Hz}" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 565.0, - 778.0, - 565.0, - 778.0, - 598.0, - 318.0, - 598.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 602.0, - 851.0, - 602.0, - 851.0, - 636.0, - 318.0, - 636.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 321.0, - 458.0, - 1222.0, - 458.0, - 1222.0, - 487.0, - 321.0, - 487.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 320.0, - 495.0, - 708.0, - 495.0, - 708.0, - 524.0, - 320.0, - 524.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 835.0, - 495.0, - 1131.0, - 495.0, - 1131.0, - 524.0, - 835.0, - 524.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 268.0, - 1449.0, - 268.0, - 1449.0, - 306.0, - 317.0, - 306.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 314.0, - 302.0, - 1094.0, - 302.0, - 1094.0, - 343.0, - 314.0, - 343.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 146.0, - 1625.0, - 146.0, - 1625.0, - 171.0, - 1517.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 171.0, - 1622.0, - 171.0, - 1622.0, - 194.0, - 1520.0, - 194.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 190.0, - 1594.0, - 190.0, - 1594.0, - 217.0, - 1549.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 381.0, - 624.0, - 381.0, - 624.0, - 418.0, - 317.0, - 418.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 194.0, - 1084.0, - 194.0, - 1084.0, - 229.0, - 318.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1196.0, - 194.0, - 1203.0, - 194.0, - 1203.0, - 229.0, - 1196.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1544.0, - 1690.0, - 1563.0, - 1690.0, - 1563.0, - 1711.0, - 1544.0, - 1711.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 169.0, - 2272.0, - 181.0, - 2272.0, - 181.0, - 2288.0, - 169.0, - 2288.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 2268.0, - 223.0, - 2268.0, - 223.0, - 2290.0, - 197.0, - 2290.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1317.0, - 2146.0, - 1473.0, - 2146.0, - 1473.0, - 2176.0, - 1317.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 78.0, - 828.0, - 78.0, - 828.0, - 117.0, - 779.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 637.0, - 1488.0, - 637.0, - 1488.0, - 675.0, - 1346.0, - 675.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 646.0, - 1937.0, - 963.0, - 1937.0, - 963.0, - 1966.0, - 646.0, - 1966.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 637.0, - 1488.0, - 637.0, - 1488.0, - 675.0, - 1346.0, - 675.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 646.0, - 1937.0, - 963.0, - 1937.0, - 963.0, - 1966.0, - 646.0, - 1966.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 62, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1625, - 146, - 1625, - 213, - 1516, - 213 - ], - "score": 0.93 - }, - { - "category_id": 1, - "poly": [ - 250, - 1059, - 1385, - 1059, - 1385, - 1135, - 250, - 1135 - ], - "score": 0.924 - }, - { - "category_id": 1, - "poly": [ - 136, - 860, - 1422, - 860, - 1422, - 937, - 136, - 937 - ], - "score": 0.901 - }, - { - "category_id": 0, - "poly": [ - 729, - 181, - 878, - 181, - 878, - 218, - 729, - 218 - ], - "score": 0.901 - }, - { - "category_id": 1, - "poly": [ - 141, - 667, - 1302, - 667, - 1302, - 706, - 141, - 706 - ], - "score": 0.901 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2292, - 118, - 2292 - ], - "score": 0.898 - }, - { - "category_id": 1, - "poly": [ - 302, - 253, - 1295, - 253, - 1295, - 293, - 302, - 293 - ], - "score": 0.893 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2290, - 1331, - 2290 - ], - "score": 0.893 - }, - { - "category_id": 2, - "poly": [ - 128, - 1052, - 227, - 1052, - 227, - 1099, - 128, - 1099 - ], - "score": 0.874 - }, - { - "category_id": 2, - "poly": [ - 783, - 82, - 822, - 82, - 822, - 111, - 783, - 111 - ], - "score": 0.865 - }, - { - "category_id": 2, - "poly": [ - 1581, - 4, - 1653, - 4, - 1653, - 39, - 1581, - 39 - ], - "score": 0.834 - }, - { - "category_id": 1, - "poly": [ - 1362, - 1136, - 1487, - 1136, - 1487, - 1173, - 1362, - 1173 - ], - "score": 0.81 - }, - { - "category_id": 1, - "poly": [ - 504, - 326, - 1101, - 326, - 1101, - 364, - 504, - 364 - ], - "score": 0.802 - }, - { - "category_id": 1, - "poly": [ - 150, - 597, - 342, - 597, - 342, - 629, - 150, - 629 - ], - "score": 0.795 - }, - { - "category_id": 3, - "poly": [ - 1319, - 656, - 1393, - 656, - 1393, - 710, - 1319, - 710 - ], - "score": 0.789 - }, - { - "category_id": 1, - "poly": [ - 141, - 738, - 1457, - 738, - 1457, - 831, - 141, - 831 - ], - "score": 0.784 - }, - { - "category_id": 3, - "poly": [ - 289, - 776, - 364, - 776, - 364, - 836, - 289, - 836 - ], - "score": 0.619 - }, - { - "category_id": 1, - "poly": [ - 544, - 598, - 730, - 598, - 730, - 629, - 544, - 629 - ], - "score": 0.615 - }, - { - "category_id": 5, - "poly": [ - 251, - 1203, - 1206, - 1203, - 1206, - 1612, - 251, - 1612 - ], - "score": 0.595, - "html": "
SpeedJourney time
A10 μm s-1100 s
B10 km s-10.01 μs
C1 nm s-11 Gs
D0.1 Mm s-1100 ns
" - }, - { - "category_id": 2, - "poly": [ - 372, - 590, - 430, - 590, - 430, - 633, - 372, - 633 - ], - "score": 0.479 - }, - { - "category_id": 3, - "poly": [ - 251, - 1203, - 1206, - 1203, - 1206, - 1612, - 251, - 1612 - ], - "score": 0.474 - }, - { - "category_id": 1, - "poly": [ - 144, - 526, - 1231, - 526, - 1231, - 562, - 144, - 562 - ], - "score": 0.433 - }, - { - "category_id": 1, - "poly": [ - 147, - 486, - 1248, - 486, - 1248, - 563, - 147, - 563 - ], - "score": 0.327 - }, - { - "category_id": 3, - "poly": [ - 533, - 590, - 982, - 590, - 982, - 634, - 533, - 634 - ], - "score": 0.243 - }, - { - "category_id": 3, - "poly": [ - 372, - 590, - 430, - 590, - 430, - 633, - 372, - 633 - ], - "score": 0.199 - }, - { - "category_id": 1, - "poly": [ - 142, - 779, - 280, - 779, - 280, - 809, - 142, - 809 - ], - "score": 0.185 - }, - { - "category_id": 1, - "poly": [ - 147, - 738, - 1445, - 738, - 1445, - 777, - 147, - 777 - ], - "score": 0.126 - }, - { - "category_id": 1, - "poly": [ - 150, - 488, - 712, - 488, - 712, - 524, - 150, - 524 - ], - "score": 0.124 - }, - { - "category_id": 13, - "poly": [ - 483, - 1387, - 620, - 1387, - 620, - 1429, - 483, - 1429 - ], - "score": 0.61, - "latex": "10\\mathrm{kms}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 491, - 1468, - 612, - 1468, - 612, - 1509, - 491, - 1509 - ], - "score": 0.61, - "latex": "1\\mathrm{nms^{-1}}" - }, - { - "category_id": 13, - "poly": [ - 473, - 1551, - 629, - 1551, - 629, - 1588, - 473, - 1588 - ], - "score": 0.59, - "latex": "0.1\\mathrm{Mm}\\mathrm{s}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 1249, - 1564, - 1281, - 1564, - 1281, - 1577, - 1249, - 1577 - ], - "score": 0.52, - "latex": "\\smile" - }, - { - "category_id": 13, - "poly": [ - 814, - 602, - 843, - 602, - 843, - 625, - 814, - 625 - ], - "score": 0.5, - "latex": "\\textcircled{6}" - }, - { - "category_id": 13, - "poly": [ - 483, - 1306, - 621, - 1306, - 621, - 1352, - 483, - 1352 - ], - "score": 0.46, - "latex": "10~\\upmu\\mathrm{m}\\mathrm{s}^{-1}" - }, - { - "category_id": 14, - "poly": [ - 482, - 1306, - 621, - 1306, - 621, - 1352, - 482, - 1352 - ], - "score": 0.42, - "latex": "10~\\upmu\\mathrm{m}\\mathrm{s}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 288, - 1099, - 384, - 1099, - 384, - 1134, - 288, - 1134 - ], - "score": 0.4, - "latex": "1\\mathrm{mm}?" - }, - { - "category_id": 13, - "poly": [ - 753, - 602, - 783, - 602, - 783, - 627, - 753, - 627 - ], - "score": 0.39, - "latex": "\\mathbf{\\nabla\\times}" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1625.0, - 147.0, - 1625.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1521.0, - 170.0, - 1621.0, - 170.0, - 1621.0, - 193.0, - 1521.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1552.0, - 190.0, - 1592.0, - 190.0, - 1592.0, - 216.0, - 1552.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1060.0, - 1384.0, - 1060.0, - 1384.0, - 1098.0, - 254.0, - 1098.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1100.0, - 287.0, - 1100.0, - 287.0, - 1135.0, - 254.0, - 1135.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 385.0, - 1100.0, - 389.0, - 1100.0, - 389.0, - 1135.0, - 385.0, - 1135.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 142.0, - 860.0, - 1419.0, - 860.0, - 1419.0, - 900.0, - 142.0, - 900.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 898.0, - 759.0, - 898.0, - 759.0, - 937.0, - 141.0, - 937.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 732.0, - 183.0, - 877.0, - 183.0, - 877.0, - 218.0, - 732.0, - 218.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 145.0, - 669.0, - 1303.0, - 669.0, - 1303.0, - 705.0, - 145.0, - 705.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 309.0, - 257.0, - 1297.0, - 257.0, - 1297.0, - 291.0, - 309.0, - 291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 1057.0, - 215.0, - 1057.0, - 215.0, - 1094.0, - 139.0, - 1094.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 827.0, - 78.0, - 827.0, - 118.0, - 780.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 5.0, - 1657.0, - 5.0, - 1657.0, - 42.0, - 1579.0, - 42.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 1133.0, - 1489.0, - 1133.0, - 1489.0, - 1175.0, - 1363.0, - 1175.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 506.0, - 328.0, - 1101.0, - 328.0, - 1101.0, - 363.0, - 506.0, - 363.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 153.0, - 605.0, - 339.0, - 605.0, - 339.0, - 624.0, - 153.0, - 624.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 143.0, - 741.0, - 1454.0, - 741.0, - 1454.0, - 778.0, - 143.0, - 778.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 143.0, - 780.0, - 284.0, - 780.0, - 284.0, - 813.0, - 143.0, - 813.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 548.0, - 604.0, - 727.0, - 604.0, - 727.0, - 624.0, - 548.0, - 624.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 152.0, - 527.0, - 1233.0, - 527.0, - 1233.0, - 562.0, - 152.0, - 562.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 153.0, - 490.0, - 711.0, - 490.0, - 711.0, - 524.0, - 153.0, - 524.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 150.0, - 526.0, - 1232.0, - 526.0, - 1232.0, - 565.0, - 150.0, - 565.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 143.0, - 778.0, - 284.0, - 778.0, - 284.0, - 810.0, - 143.0, - 810.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 144.0, - 739.0, - 1451.0, - 739.0, - 1451.0, - 778.0, - 144.0, - 778.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 151.0, - 489.0, - 715.0, - 489.0, - 715.0, - 525.0, - 151.0, - 525.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 63, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1516, - 145, - 1625, - 145, - 1625, - 214, - 1516, - 214 - ], - "score": 0.923 - }, - { - "category_id": 1, - "poly": [ - 249, - 1555, - 970, - 1555, - 970, - 1837, - 249, - 1837 - ], - "score": 0.915 - }, - { - "category_id": 2, - "poly": [ - 127, - 1420, - 228, - 1420, - 228, - 1467, - 127, - 1467 - ], - "score": 0.9 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2292, - 118, - 2292 - ], - "score": 0.9 - }, - { - "category_id": 2, - "poly": [ - 127, - 756, - 227, - 756, - 227, - 803, - 127, - 803 - ], - "score": 0.897 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2143, - 1497, - 2143, - 1497, - 2177, - 1317, - 2177 - ], - "score": 0.895 - }, - { - "category_id": 2, - "poly": [ - 1330, - 2265, - 1496, - 2265, - 1496, - 2290, - 1330, - 2290 - ], - "score": 0.889 - }, - { - "category_id": 1, - "poly": [ - 251, - 1426, - 825, - 1426, - 825, - 1468, - 251, - 1468 - ], - "score": 0.888 - }, - { - "category_id": 1, - "poly": [ - 1362, - 1467, - 1487, - 1467, - 1487, - 1504, - 1362, - 1504 - ], - "score": 0.871 - }, - { - "category_id": 1, - "poly": [ - 1362, - 301, - 1487, - 301, - 1487, - 338, - 1362, - 338 - ], - "score": 0.868 - }, - { - "category_id": 2, - "poly": [ - 783, - 82, - 823, - 82, - 823, - 112, - 783, - 112 - ], - "score": 0.868 - }, - { - "category_id": 2, - "poly": [ - 128, - 181, - 227, - 181, - 227, - 229, - 128, - 229 - ], - "score": 0.848 - }, - { - "category_id": 2, - "poly": [ - 1581, - 4, - 1652, - 4, - 1652, - 39, - 1581, - 39 - ], - "score": 0.831 - }, - { - "category_id": 1, - "poly": [ - 253, - 763, - 881, - 763, - 881, - 804, - 253, - 804 - ], - "score": 0.682 - }, - { - "category_id": 3, - "poly": [ - 252, - 945, - 812, - 945, - 812, - 1352, - 252, - 1352 - ], - "score": 0.678 - }, - { - "category_id": 1, - "poly": [ - 249, - 384, - 611, - 384, - 611, - 671, - 249, - 671 - ], - "score": 0.593 - }, - { - "category_id": 1, - "poly": [ - 1363, - 879, - 1487, - 879, - 1487, - 915, - 1363, - 915 - ], - "score": 0.542 - }, - { - "category_id": 1, - "poly": [ - 252, - 189, - 1078, - 189, - 1078, - 229, - 252, - 229 - ], - "score": 0.54 - }, - { - "category_id": 1, - "poly": [ - 250, - 840, - 1399, - 840, - 1399, - 879, - 250, - 879 - ], - "score": 0.491 - }, - { - "category_id": 1, - "poly": [ - 254, - 261, - 1305, - 261, - 1305, - 302, - 254, - 302 - ], - "score": 0.471 - }, - { - "category_id": 1, - "poly": [ - 250, - 188, - 1305, - 188, - 1305, - 304, - 250, - 304 - ], - "score": 0.409 - }, - { - "category_id": 5, - "poly": [ - 252, - 945, - 812, - 945, - 812, - 1352, - 252, - 1352 - ], - "score": 0.33, - "html": "
NZ
A65
B87
c1613
D2017
" - }, - { - "category_id": 1, - "poly": [ - 250, - 388, - 415, - 388, - 415, - 668, - 250, - 668 - ], - "score": 0.318 - }, - { - "category_id": 1, - "poly": [ - 243, - 839, - 1453, - 839, - 1453, - 918, - 243, - 918 - ], - "score": 0.214 - }, - { - "category_id": 1, - "poly": [ - 248, - 762, - 1494, - 762, - 1494, - 918, - 248, - 918 - ], - "score": 0.141 - }, - { - "category_id": 13, - "poly": [ - 855, - 1145, - 887, - 1145, - 887, - 1158, - 855, - 1158 - ], - "score": 0.79, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 553, - 843, - 584, - 843, - 584, - 874, - 553, - 874 - ], - "score": 0.74, - "latex": "N" - }, - { - "category_id": 13, - "poly": [ - 643, - 843, - 670, - 843, - 670, - 874, - 643, - 874 - ], - "score": 0.67, - "latex": "Z" - }, - { - "category_id": 13, - "poly": [ - 855, - 1226, - 888, - 1226, - 888, - 1239, - 855, - 1239 - ], - "score": 0.59, - "latex": "\\smile" - }, - { - "category_id": 13, - "poly": [ - 517, - 768, - 549, - 768, - 549, - 799, - 517, - 799 - ], - "score": 0.5, - "latex": "N" - }, - { - "category_id": 13, - "poly": [ - 549, - 642, - 581, - 642, - 581, - 655, - 549, - 655 - ], - "score": 0.49, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 549, - 564, - 581, - 564, - 581, - 577, - 549, - 577 - ], - "score": 0.48, - "latex": "\\subset" - }, - { - "category_id": 13, - "poly": [ - 856, - 1065, - 887, - 1065, - 887, - 1078, - 856, - 1078 - ], - "score": 0.45, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 918, - 1723, - 952, - 1723, - 952, - 1743, - 918, - 1743 - ], - "score": 0.36, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 735, - 768, - 762, - 768, - 762, - 799, - 735, - 799 - ], - "score": 0.33, - "latex": "Z" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1625.0, - 147.0, - 1625.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 171.0, - 1621.0, - 171.0, - 1621.0, - 192.0, - 1520.0, - 192.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1552.0, - 190.0, - 1592.0, - 190.0, - 1592.0, - 218.0, - 1552.0, - 218.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 1561.0, - 854.0, - 1561.0, - 854.0, - 1595.0, - 256.0, - 1595.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 1639.0, - 710.0, - 1639.0, - 710.0, - 1673.0, - 256.0, - 1673.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1719.0, - 858.0, - 1719.0, - 858.0, - 1753.0, - 255.0, - 1753.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 1797.0, - 653.0, - 1797.0, - 653.0, - 1831.0, - 256.0, - 1831.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 1427.0, - 213.0, - 1427.0, - 213.0, - 1462.0, - 139.0, - 1462.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 2275.0, - 180.0, - 2275.0, - 180.0, - 2284.0, - 171.0, - 2284.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 209.0, - 2274.0, - 216.0, - 2274.0, - 216.0, - 2285.0, - 209.0, - 2285.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 143.0, - 765.0, - 170.0, - 765.0, - 170.0, - 795.0, - 143.0, - 795.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 188.0, - 766.0, - 212.0, - 766.0, - 212.0, - 794.0, - 188.0, - 794.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1318.0, - 2145.0, - 1485.0, - 2145.0, - 1485.0, - 2176.0, - 1318.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 1433.0, - 819.0, - 1433.0, - 819.0, - 1464.0, - 256.0, - 1464.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 1464.0, - 1489.0, - 1464.0, - 1489.0, - 1506.0, - 1363.0, - 1506.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 298.0, - 1489.0, - 298.0, - 1489.0, - 340.0, - 1363.0, - 340.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 78.0, - 828.0, - 78.0, - 828.0, - 117.0, - 779.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 143.0, - 193.0, - 168.0, - 193.0, - 168.0, - 221.0, - 143.0, - 221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 189.0, - 193.0, - 213.0, - 193.0, - 213.0, - 221.0, - 189.0, - 221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1578.0, - 2.0, - 1659.0, - 2.0, - 1659.0, - 44.0, - 1578.0, - 44.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 768.0, - 516.0, - 768.0, - 516.0, - 801.0, - 255.0, - 801.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 550.0, - 768.0, - 734.0, - 768.0, - 734.0, - 801.0, - 550.0, - 801.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 763.0, - 768.0, - 878.0, - 768.0, - 878.0, - 801.0, - 763.0, - 801.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 393.0, - 396.0, - 393.0, - 396.0, - 428.0, - 251.0, - 428.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 471.0, - 395.0, - 471.0, - 395.0, - 507.0, - 252.0, - 507.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 250.0, - 550.0, - 396.0, - 550.0, - 396.0, - 585.0, - 250.0, - 585.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 249.0, - 629.0, - 412.0, - 629.0, - 412.0, - 665.0, - 249.0, - 665.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 878.0, - 1488.0, - 878.0, - 1488.0, - 916.0, - 1363.0, - 916.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 194.0, - 1075.0, - 194.0, - 1075.0, - 228.0, - 256.0, - 228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 841.0, - 552.0, - 841.0, - 552.0, - 880.0, - 255.0, - 880.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 585.0, - 841.0, - 642.0, - 841.0, - 642.0, - 880.0, - 585.0, - 880.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 671.0, - 841.0, - 1350.0, - 841.0, - 1350.0, - 880.0, - 671.0, - 880.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 265.0, - 1300.0, - 265.0, - 1300.0, - 299.0, - 256.0, - 299.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 193.0, - 1075.0, - 193.0, - 1075.0, - 228.0, - 255.0, - 228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 263.0, - 1300.0, - 263.0, - 1300.0, - 300.0, - 253.0, - 300.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 392.0, - 396.0, - 392.0, - 396.0, - 429.0, - 251.0, - 429.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 472.0, - 397.0, - 472.0, - 397.0, - 505.0, - 251.0, - 505.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 550.0, - 397.0, - 550.0, - 397.0, - 585.0, - 251.0, - 585.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 249.0, - 630.0, - 413.0, - 630.0, - 413.0, - 664.0, - 249.0, - 664.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 839.0, - 552.0, - 839.0, - 552.0, - 879.0, - 254.0, - 879.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 585.0, - 839.0, - 642.0, - 839.0, - 642.0, - 879.0, - 585.0, - 879.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 671.0, - 839.0, - 1349.0, - 839.0, - 1349.0, - 879.0, - 671.0, - 879.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1358.0, - 876.0, - 1461.0, - 876.0, - 1461.0, - 916.0, - 1358.0, - 916.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 767.0, - 516.0, - 767.0, - 516.0, - 803.0, - 256.0, - 803.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 550.0, - 767.0, - 734.0, - 767.0, - 734.0, - 803.0, - 550.0, - 803.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 763.0, - 767.0, - 877.0, - 767.0, - 877.0, - 803.0, - 763.0, - 803.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 840.0, - 552.0, - 840.0, - 552.0, - 880.0, - 253.0, - 880.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 585.0, - 840.0, - 642.0, - 840.0, - 642.0, - 880.0, - 585.0, - 880.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 671.0, - 840.0, - 1351.0, - 840.0, - 1351.0, - 880.0, - 671.0, - 880.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 877.0, - 1492.0, - 877.0, - 1492.0, - 917.0, - 1362.0, - 917.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 64, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 252, - 1374, - 1298, - 1374, - 1298, - 1491, - 252, - 1491 - ], - "score": 0.972 - }, - { - "category_id": 3, - "poly": [ - 551, - 261, - 1063, - 261, - 1063, - 749, - 551, - 749 - ], - "score": 0.96 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1625, - 146, - 1625, - 213, - 1516, - 213 - ], - "score": 0.928 - }, - { - "category_id": 1, - "poly": [ - 253, - 788, - 559, - 788, - 559, - 826, - 253, - 826 - ], - "score": 0.92 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2293, - 118, - 2293 - ], - "score": 0.908 - }, - { - "category_id": 2, - "poly": [ - 1330, - 2265, - 1496, - 2265, - 1496, - 2290, - 1330, - 2290 - ], - "score": 0.896 - }, - { - "category_id": 1, - "poly": [ - 257, - 1524, - 1306, - 1524, - 1306, - 1566, - 257, - 1566 - ], - "score": 0.894 - }, - { - "category_id": 2, - "poly": [ - 128, - 1368, - 227, - 1368, - 227, - 1415, - 128, - 1415 - ], - "score": 0.873 - }, - { - "category_id": 2, - "poly": [ - 783, - 82, - 823, - 82, - 823, - 112, - 783, - 112 - ], - "score": 0.867 - }, - { - "category_id": 1, - "poly": [ - 1362, - 1563, - 1487, - 1563, - 1487, - 1601, - 1362, - 1601 - ], - "score": 0.855 - }, - { - "category_id": 1, - "poly": [ - 1362, - 825, - 1487, - 825, - 1487, - 863, - 1362, - 863 - ], - "score": 0.849 - }, - { - "category_id": 2, - "poly": [ - 128, - 181, - 228, - 181, - 228, - 229, - 128, - 229 - ], - "score": 0.839 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1653, - 4, - 1653, - 39, - 1582, - 39 - ], - "score": 0.836 - }, - { - "category_id": 5, - "poly": [ - 252, - 893, - 1167, - 893, - 1167, - 1299, - 252, - 1299 - ], - "score": 0.814, - "html": "
EFG
Aup quarkdown quarkβ
Bdown quarkup quarkβ
Cup quarkdown quarkβ+
Ddown quarkup quark+8
" - }, - { - "category_id": 1, - "poly": [ - 183, - 189, - 1420, - 189, - 1420, - 230, - 183, - 230 - ], - "score": 0.77 - }, - { - "category_id": 1, - "poly": [ - 249, - 1648, - 676, - 1648, - 676, - 1934, - 249, - 1934 - ], - "score": 0.76 - }, - { - "category_id": 1, - "poly": [ - 250, - 1650, - 502, - 1650, - 502, - 1932, - 250, - 1932 - ], - "score": 0.32 - }, - { - "category_id": 1, - "poly": [ - 242, - 1648, - 667, - 1648, - 667, - 1934, - 242, - 1934 - ], - "score": 0.27 - }, - { - "category_id": 3, - "poly": [ - 252, - 893, - 1167, - 893, - 1167, - 1299, - 252, - 1299 - ], - "score": 0.173 - }, - { - "category_id": 1, - "poly": [ - 197, - 189, - 1418, - 189, - 1418, - 230, - 197, - 230 - ], - "score": 0.149 - }, - { - "category_id": 13, - "poly": [ - 1007, - 1004, - 1043, - 1004, - 1043, - 1040, - 1007, - 1040 - ], - "score": 0.9, - "latex": "\\upbeta^{-}" - }, - { - "category_id": 13, - "poly": [ - 288, - 1412, - 442, - 1412, - 442, - 1450, - 288, - 1450 - ], - "score": 0.89, - "latex": "4.2\\times10^{-19}" - }, - { - "category_id": 13, - "poly": [ - 1008, - 1084, - 1043, - 1084, - 1043, - 1121, - 1008, - 1121 - ], - "score": 0.86, - "latex": "\\upbeta^{-}" - }, - { - "category_id": 13, - "poly": [ - 294, - 1653, - 500, - 1653, - 500, - 1692, - 294, - 1692 - ], - "score": 0.8, - "latex": "1.3\\times10^{6}\\mathrm{m}\\mathrm{s}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 1005, - 1240, - 1045, - 1240, - 1045, - 1282, - 1005, - 1282 - ], - "score": 0.76, - "latex": "\\upbeta^{+}" - }, - { - "category_id": 13, - "poly": [ - 619, - 1905, - 651, - 1905, - 651, - 1918, - 619, - 1918 - ], - "score": 0.76, - "latex": "\\subset" - }, - { - "category_id": 13, - "poly": [ - 1006, - 1162, - 1044, - 1162, - 1044, - 1201, - 1006, - 1201 - ], - "score": 0.74, - "latex": "\\upbeta^{+}" - }, - { - "category_id": 13, - "poly": [ - 619, - 1826, - 651, - 1826, - 651, - 1839, - 619, - 1839 - ], - "score": 0.71, - "latex": "\\subset" - }, - { - "category_id": 13, - "poly": [ - 727, - 1453, - 821, - 1453, - 821, - 1488, - 727, - 1488 - ], - "score": 0.66, - "latex": "2.4\\mathrm{eV}" - }, - { - "category_id": 13, - "poly": [ - 1210, - 1173, - 1241, - 1173, - 1241, - 1186, - 1210, - 1186 - ], - "score": 0.57, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 1209, - 1093, - 1242, - 1093, - 1242, - 1107, - 1209, - 1107 - ], - "score": 0.54, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 292, - 1731, - 499, - 1731, - 499, - 1771, - 292, - 1771 - ], - "score": 0.51, - "latex": "6.3\\times10^{5}\\mathrm{~m~s~}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 293, - 1890, - 499, - 1890, - 499, - 1928, - 293, - 1928 - ], - "score": 0.45, - "latex": "2.0\\times10^{5}\\mathrm{ms^{-1}}" - }, - { - "category_id": 13, - "poly": [ - 293, - 1810, - 498, - 1810, - 498, - 1850, - 293, - 1850 - ], - "score": 0.42, - "latex": "2.8\\times10^{5}\\mathrm{ms^{-1}}" - }, - { - "category_id": 13, - "poly": [ - 618, - 1746, - 651, - 1746, - 651, - 1760, - 618, - 1760 - ], - "score": 0.4, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 1209, - 1252, - 1242, - 1252, - 1242, - 1267, - 1209, - 1267 - ], - "score": 0.35, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 1209, - 1012, - 1242, - 1012, - 1242, - 1027, - 1209, - 1027 - ], - "score": 0.32, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1376.0, - 1296.0, - 1376.0, - 1296.0, - 1417.0, - 255.0, - 1417.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1413.0, - 287.0, - 1413.0, - 287.0, - 1452.0, - 253.0, - 1452.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 443.0, - 1413.0, - 872.0, - 1413.0, - 872.0, - 1452.0, - 443.0, - 1452.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 1455.0, - 726.0, - 1455.0, - 726.0, - 1487.0, - 256.0, - 1487.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 822.0, - 1455.0, - 831.0, - 1455.0, - 831.0, - 1487.0, - 822.0, - 1487.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1625.0, - 147.0, - 1625.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1521.0, - 170.0, - 1621.0, - 170.0, - 1621.0, - 193.0, - 1521.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1552.0, - 190.0, - 1592.0, - 190.0, - 1592.0, - 216.0, - 1552.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 792.0, - 554.0, - 792.0, - 554.0, - 822.0, - 257.0, - 822.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 209.0, - 2275.0, - 216.0, - 2275.0, - 216.0, - 2285.0, - 209.0, - 2285.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1526.0, - 1303.0, - 1526.0, - 1303.0, - 1563.0, - 254.0, - 1563.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 137.0, - 1371.0, - 219.0, - 1371.0, - 219.0, - 1413.0, - 137.0, - 1413.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 78.0, - 828.0, - 78.0, - 828.0, - 117.0, - 779.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 1563.0, - 1489.0, - 1563.0, - 1489.0, - 1601.0, - 1363.0, - 1601.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 826.0, - 1489.0, - 826.0, - 1489.0, - 864.0, - 1363.0, - 864.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 137.0, - 187.0, - 213.0, - 187.0, - 213.0, - 225.0, - 137.0, - 225.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1578.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1578.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 194.0, - 198.0, - 210.0, - 198.0, - 210.0, - 218.0, - 194.0, - 218.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 250.0, - 189.0, - 1423.0, - 189.0, - 1423.0, - 232.0, - 250.0, - 232.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1655.0, - 293.0, - 1655.0, - 293.0, - 1687.0, - 254.0, - 1687.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1732.0, - 291.0, - 1732.0, - 291.0, - 1768.0, - 252.0, - 1768.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1812.0, - 292.0, - 1812.0, - 292.0, - 1847.0, - 252.0, - 1847.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 499.0, - 1812.0, - 499.0, - 1812.0, - 499.0, - 1847.0, - 499.0, - 1847.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1892.0, - 292.0, - 1892.0, - 292.0, - 1925.0, - 252.0, - 1925.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1656.0, - 293.0, - 1656.0, - 293.0, - 1687.0, - 254.0, - 1687.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1734.0, - 291.0, - 1734.0, - 291.0, - 1768.0, - 253.0, - 1768.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 500.0, - 1734.0, - 500.0, - 1734.0, - 500.0, - 1768.0, - 500.0, - 1768.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1812.0, - 292.0, - 1812.0, - 292.0, - 1848.0, - 253.0, - 1848.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 499.0, - 1812.0, - 499.0, - 1812.0, - 499.0, - 1848.0, - 499.0, - 1848.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1892.0, - 292.0, - 1892.0, - 292.0, - 1925.0, - 253.0, - 1925.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 500.0, - 1892.0, - 500.0, - 1892.0, - 500.0, - 1925.0, - 500.0, - 1925.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1655.0, - 293.0, - 1655.0, - 293.0, - 1687.0, - 254.0, - 1687.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1732.0, - 291.0, - 1732.0, - 291.0, - 1768.0, - 252.0, - 1768.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1810.0, - 292.0, - 1810.0, - 292.0, - 1848.0, - 252.0, - 1848.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 499.0, - 1810.0, - 499.0, - 1810.0, - 499.0, - 1848.0, - 499.0, - 1848.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1892.0, - 292.0, - 1892.0, - 292.0, - 1925.0, - 252.0, - 1925.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 245.0, - 189.0, - 1423.0, - 189.0, - 1423.0, - 232.0, - 245.0, - 232.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 65, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 606, - 331, - 1004, - 331, - 1004, - 726, - 606, - 726 - ], - "score": 0.963 - }, - { - "category_id": 3, - "poly": [ - 606, - 907, - 1003, - 907, - 1003, - 1304, - 606, - 1304 - ], - "score": 0.961 - }, - { - "category_id": 1, - "poly": [ - 251, - 1508, - 1307, - 1508, - 1307, - 1790, - 251, - 1790 - ], - "score": 0.941 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1624, - 146, - 1624, - 214, - 1516, - 214 - ], - "score": 0.931 - }, - { - "category_id": 1, - "poly": [ - 251, - 804, - 1004, - 804, - 1004, - 843, - 251, - 843 - ], - "score": 0.92 - }, - { - "category_id": 1, - "poly": [ - 252, - 1382, - 934, - 1382, - 934, - 1421, - 252, - 1421 - ], - "score": 0.917 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2144, - 1496, - 2144, - 1496, - 2177, - 1317, - 2177 - ], - "score": 0.894 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2290, - 1331, - 2290 - ], - "score": 0.883 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 279, - 2187, - 279, - 2292, - 119, - 2292 - ], - "score": 0.874 - }, - { - "category_id": 2, - "poly": [ - 783, - 82, - 821, - 82, - 821, - 111, - 783, - 111 - ], - "score": 0.854 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 39, - 1582, - 39 - ], - "score": 0.829 - }, - { - "category_id": 2, - "poly": [ - 128, - 181, - 227, - 181, - 227, - 230, - 128, - 230 - ], - "score": 0.828 - }, - { - "category_id": 1, - "poly": [ - 252, - 190, - 1380, - 190, - 1380, - 302, - 252, - 302 - ], - "score": 0.767 - }, - { - "category_id": 1, - "poly": [ - 1363, - 1420, - 1487, - 1420, - 1487, - 1457, - 1363, - 1457 - ], - "score": 0.717 - }, - { - "category_id": 1, - "poly": [ - 258, - 264, - 1125, - 264, - 1125, - 300, - 258, - 300 - ], - "score": 0.297 - }, - { - "category_id": 1, - "poly": [ - 232, - 190, - 1378, - 190, - 1378, - 262, - 232, - 262 - ], - "score": 0.242 - }, - { - "category_id": 15, - "poly": [ - 256.0, - 1515.0, - 914.0, - 1515.0, - 914.0, - 1549.0, - 256.0, - 1549.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1588.0, - 1175.0, - 1588.0, - 1175.0, - 1632.0, - 253.0, - 1632.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1672.0, - 1187.0, - 1672.0, - 1187.0, - 1709.0, - 254.0, - 1709.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1749.0, - 974.0, - 1749.0, - 974.0, - 1786.0, - 254.0, - 1786.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 146.0, - 1625.0, - 146.0, - 1625.0, - 171.0, - 1517.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 171.0, - 1622.0, - 171.0, - 1622.0, - 194.0, - 1520.0, - 194.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 190.0, - 1594.0, - 190.0, - 1594.0, - 217.0, - 1549.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 806.0, - 1002.0, - 806.0, - 1002.0, - 842.0, - 256.0, - 842.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 1385.0, - 931.0, - 1385.0, - 931.0, - 1419.0, - 257.0, - 1419.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1317.0, - 2146.0, - 1473.0, - 2146.0, - 1473.0, - 2176.0, - 1317.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 78.0, - 828.0, - 78.0, - 828.0, - 120.0, - 779.0, - 120.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 186.0, - 218.0, - 186.0, - 218.0, - 225.0, - 136.0, - 225.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 190.0, - 1376.0, - 190.0, - 1376.0, - 230.0, - 254.0, - 230.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 230.0, - 811.0, - 230.0, - 811.0, - 263.0, - 256.0, - 263.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 265.0, - 1120.0, - 265.0, - 1120.0, - 302.0, - 254.0, - 302.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 1417.0, - 1488.0, - 1417.0, - 1488.0, - 1459.0, - 1363.0, - 1459.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 266.0, - 1120.0, - 266.0, - 1120.0, - 299.0, - 256.0, - 299.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 190.0, - 1377.0, - 190.0, - 1377.0, - 230.0, - 255.0, - 230.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 229.0, - 813.0, - 229.0, - 813.0, - 264.0, - 255.0, - 264.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 66, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 159, - 331, - 1457, - 331, - 1457, - 1010, - 159, - 1010 - ], - "score": 0.959 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1624, - 146, - 1624, - 213, - 1516, - 213 - ], - "score": 0.929 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 278, - 2187, - 278, - 2292, - 119, - 2292 - ], - "score": 0.921 - }, - { - "category_id": 1, - "poly": [ - 252, - 1084, - 1162, - 1084, - 1162, - 1125, - 252, - 1125 - ], - "score": 0.917 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2289, - 1331, - 2289 - ], - "score": 0.888 - }, - { - "category_id": 2, - "poly": [ - 783, - 82, - 822, - 82, - 822, - 111, - 783, - 111 - ], - "score": 0.867 - }, - { - "category_id": 2, - "poly": [ - 128, - 182, - 227, - 182, - 227, - 229, - 128, - 229 - ], - "score": 0.846 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 38, - 1582, - 38 - ], - "score": 0.83 - }, - { - "category_id": 1, - "poly": [ - 253, - 193, - 1243, - 193, - 1243, - 269, - 253, - 269 - ], - "score": 0.804 - }, - { - "category_id": 1, - "poly": [ - 1362, - 1123, - 1487, - 1123, - 1487, - 1161, - 1362, - 1161 - ], - "score": 0.765 - }, - { - "category_id": 3, - "poly": [ - 251, - 1190, - 1130, - 1190, - 1130, - 1598, - 251, - 1598 - ], - "score": 0.495 - }, - { - "category_id": 5, - "poly": [ - 251, - 1190, - 1130, - 1190, - 1130, - 1598, - 251, - 1598 - ], - "score": 0.464, - "html": "
Wavelength / mFrequency / kHz
A0.60.17
B0.60.34
C1.20.17
D1.20.34
" - }, - { - "category_id": 1, - "poly": [ - 282, - 193, - 1093, - 193, - 1093, - 229, - 282, - 229 - ], - "score": 0.143 - }, - { - "category_id": 13, - "poly": [ - 581, - 194, - 663, - 194, - 663, - 228, - 581, - 228 - ], - "score": 0.59, - "latex": "1.2\\textrm{m}" - }, - { - "category_id": 13, - "poly": [ - 1170, - 1551, - 1203, - 1551, - 1203, - 1564, - 1170, - 1564 - ], - "score": 0.5, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1625.0, - 147.0, - 1625.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1623.0, - 170.0, - 1623.0, - 193.0, - 1520.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1550.0, - 190.0, - 1593.0, - 190.0, - 1593.0, - 216.0, - 1550.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 169.0, - 2272.0, - 181.0, - 2272.0, - 181.0, - 2286.0, - 169.0, - 2286.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 201.0, - 2268.0, - 223.0, - 2268.0, - 223.0, - 2291.0, - 201.0, - 2291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1087.0, - 1156.0, - 1087.0, - 1156.0, - 1123.0, - 255.0, - 1123.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1332.0, - 2266.0, - 1499.0, - 2266.0, - 1499.0, - 2291.0, - 1332.0, - 2291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 827.0, - 78.0, - 827.0, - 118.0, - 780.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 188.0, - 215.0, - 188.0, - 215.0, - 225.0, - 138.0, - 225.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 3.0, - 1658.0, - 3.0, - 1658.0, - 42.0, - 1579.0, - 42.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 196.0, - 580.0, - 196.0, - 580.0, - 230.0, - 256.0, - 230.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 664.0, - 196.0, - 1097.0, - 196.0, - 1097.0, - 230.0, - 664.0, - 230.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 231.0, - 1245.0, - 231.0, - 1245.0, - 268.0, - 255.0, - 268.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 1124.0, - 1489.0, - 1124.0, - 1489.0, - 1162.0, - 1363.0, - 1162.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 286.0, - 196.0, - 580.0, - 196.0, - 580.0, - 229.0, - 286.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 664.0, - 196.0, - 1094.0, - 196.0, - 1094.0, - 229.0, - 664.0, - 229.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 67, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 249, - 963, - 1484, - 963, - 1484, - 1037, - 249, - 1037 - ], - "score": 0.935 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1625, - 146, - 1625, - 214, - 1516, - 214 - ], - "score": 0.93 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2292, - 118, - 2292 - ], - "score": 0.906 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2144, - 1497, - 2144, - 1497, - 2177, - 1317, - 2177 - ], - "score": 0.904 - }, - { - "category_id": 1, - "poly": [ - 253, - 764, - 1394, - 764, - 1394, - 924, - 253, - 924 - ], - "score": 0.886 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2290, - 1331, - 2290 - ], - "score": 0.886 - }, - { - "category_id": 2, - "poly": [ - 128, - 756, - 227, - 756, - 227, - 803, - 128, - 803 - ], - "score": 0.884 - }, - { - "category_id": 1, - "poly": [ - 573, - 1689, - 1033, - 1689, - 1033, - 1727, - 573, - 1727 - ], - "score": 0.878 - }, - { - "category_id": 1, - "poly": [ - 249, - 388, - 996, - 388, - 996, - 671, - 249, - 671 - ], - "score": 0.871 - }, - { - "category_id": 2, - "poly": [ - 782, - 81, - 823, - 81, - 823, - 112, - 782, - 112 - ], - "score": 0.865 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 39, - 1582, - 39 - ], - "score": 0.827 - }, - { - "category_id": 1, - "poly": [ - 1362, - 1038, - 1487, - 1038, - 1487, - 1076, - 1362, - 1076 - ], - "score": 0.821 - }, - { - "category_id": 2, - "poly": [ - 128, - 181, - 227, - 181, - 227, - 229, - 128, - 229 - ], - "score": 0.806 - }, - { - "category_id": 3, - "poly": [ - 251, - 1105, - 1316, - 1105, - 1316, - 1514, - 251, - 1514 - ], - "score": 0.545 - }, - { - "category_id": 1, - "poly": [ - 250, - 184, - 1490, - 184, - 1490, - 341, - 250, - 341 - ], - "score": 0.501 - }, - { - "category_id": 5, - "poly": [ - 251, - 1105, - 1316, - 1105, - 1316, - 1514, - 251, - 1514 - ], - "score": 0.475, - "html": "
Slit separationWavelength
A0.22s0.66入
B0.50s0.752
C0.60s1.20X
D1.20s0.402
" - }, - { - "category_id": 1, - "poly": [ - 252, - 188, - 784, - 188, - 784, - 229, - 252, - 229 - ], - "score": 0.385 - }, - { - "category_id": 1, - "poly": [ - 234, - 260, - 1440, - 260, - 1440, - 340, - 234, - 340 - ], - "score": 0.251 - }, - { - "category_id": 1, - "poly": [ - 248, - 261, - 1398, - 261, - 1398, - 303, - 248, - 303 - ], - "score": 0.139 - }, - { - "category_id": 1, - "poly": [ - 249, - 765, - 1214, - 765, - 1214, - 803, - 249, - 803 - ], - "score": 0.118 - }, - { - "category_id": 13, - "poly": [ - 996, - 845, - 1040, - 845, - 1040, - 927, - 996, - 927 - ], - "score": 0.86, - "latex": "\\frac{D}{2}" - }, - { - "category_id": 13, - "poly": [ - 1368, - 966, - 1437, - 966, - 1437, - 1000, - 1368, - 1000 - ], - "score": 0.81, - "latex": "1.5w" - }, - { - "category_id": 13, - "poly": [ - 1173, - 807, - 1204, - 807, - 1204, - 837, - 1173, - 837 - ], - "score": 0.8, - "latex": "D" - }, - { - "category_id": 13, - "poly": [ - 1176, - 768, - 1198, - 768, - 1198, - 798, - 1176, - 798 - ], - "score": 0.72, - "latex": "\\uplambda" - }, - { - "category_id": 13, - "poly": [ - 1359, - 1467, - 1391, - 1467, - 1391, - 1480, - 1359, - 1480 - ], - "score": 0.7, - "latex": "\\smile" - }, - { - "category_id": 13, - "poly": [ - 541, - 810, - 569, - 810, - 569, - 837, - 541, - 837 - ], - "score": 0.67, - "latex": "w" - }, - { - "category_id": 13, - "poly": [ - 667, - 774, - 687, - 774, - 687, - 799, - 667, - 799 - ], - "score": 0.52, - "latex": "s" - }, - { - "category_id": 13, - "poly": [ - 942, - 563, - 975, - 563, - 975, - 577, - 942, - 577 - ], - "score": 0.32, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 942, - 641, - 975, - 641, - 975, - 656, - 942, - 656 - ], - "score": 0.27, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 963.0, - 1367.0, - 963.0, - 1367.0, - 1004.0, - 253.0, - 1004.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1438.0, - 963.0, - 1480.0, - 963.0, - 1480.0, - 1004.0, - 1438.0, - 1004.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1005.0, - 419.0, - 1005.0, - 419.0, - 1037.0, - 255.0, - 1037.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 145.0, - 1625.0, - 145.0, - 1625.0, - 172.0, - 1517.0, - 172.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1521.0, - 171.0, - 1621.0, - 171.0, - 1621.0, - 194.0, - 1521.0, - 194.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1552.0, - 192.0, - 1592.0, - 192.0, - 1592.0, - 217.0, - 1552.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1318.0, - 2146.0, - 1485.0, - 2146.0, - 1485.0, - 2176.0, - 1318.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 767.0, - 666.0, - 767.0, - 666.0, - 805.0, - 255.0, - 805.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 688.0, - 767.0, - 1175.0, - 767.0, - 1175.0, - 805.0, - 688.0, - 805.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1199.0, - 767.0, - 1205.0, - 767.0, - 1205.0, - 805.0, - 1199.0, - 805.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 806.0, - 540.0, - 806.0, - 540.0, - 844.0, - 255.0, - 844.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 570.0, - 806.0, - 1172.0, - 806.0, - 1172.0, - 844.0, - 570.0, - 844.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1205.0, - 806.0, - 1391.0, - 806.0, - 1391.0, - 844.0, - 1205.0, - 844.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 864.0, - 992.0, - 864.0, - 992.0, - 901.0, - 255.0, - 901.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 762.0, - 188.0, - 762.0, - 188.0, - 798.0, - 139.0, - 798.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 189.0, - 766.0, - 213.0, - 766.0, - 213.0, - 795.0, - 189.0, - 795.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 577.0, - 1692.0, - 1030.0, - 1692.0, - 1030.0, - 1724.0, - 577.0, - 1724.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 396.0, - 723.0, - 396.0, - 723.0, - 430.0, - 256.0, - 430.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 474.0, - 851.0, - 474.0, - 851.0, - 510.0, - 254.0, - 510.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 553.0, - 749.0, - 553.0, - 749.0, - 586.0, - 255.0, - 586.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 633.0, - 674.0, - 633.0, - 674.0, - 665.0, - 256.0, - 665.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 79.0, - 826.0, - 79.0, - 826.0, - 117.0, - 780.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 1039.0, - 1489.0, - 1039.0, - 1489.0, - 1077.0, - 1363.0, - 1077.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 188.0, - 215.0, - 188.0, - 215.0, - 225.0, - 138.0, - 225.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 192.0, - 781.0, - 192.0, - 781.0, - 230.0, - 255.0, - 230.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 265.0, - 1384.0, - 265.0, - 1384.0, - 299.0, - 256.0, - 299.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1358.0, - 299.0, - 1492.0, - 299.0, - 1492.0, - 340.0, - 1358.0, - 340.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 192.0, - 782.0, - 192.0, - 782.0, - 229.0, - 256.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 261.0, - 1388.0, - 261.0, - 1388.0, - 300.0, - 255.0, - 300.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1359.0, - 299.0, - 1449.0, - 299.0, - 1449.0, - 342.0, - 1359.0, - 342.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 261.0, - 1387.0, - 261.0, - 1387.0, - 301.0, - 253.0, - 301.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 769.0, - 666.0, - 769.0, - 666.0, - 802.0, - 256.0, - 802.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 688.0, - 769.0, - 1175.0, - 769.0, - 1175.0, - 802.0, - 688.0, - 802.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1199.0, - 769.0, - 1204.0, - 769.0, - 1204.0, - 802.0, - 1199.0, - 802.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 68, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 600, - 1175, - 1015, - 1175, - 1015, - 1402, - 600, - 1402 - ], - "score": 0.961 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1625, - 146, - 1625, - 213, - 1516, - 213 - ], - "score": 0.932 - }, - { - "category_id": 1, - "poly": [ - 252, - 370, - 1392, - 370, - 1392, - 445, - 252, - 445 - ], - "score": 0.924 - }, - { - "category_id": 1, - "poly": [ - 252, - 189, - 1379, - 189, - 1379, - 263, - 252, - 263 - ], - "score": 0.923 - }, - { - "category_id": 1, - "poly": [ - 253, - 1442, - 1245, - 1442, - 1245, - 1482, - 253, - 1482 - ], - "score": 0.921 - }, - { - "category_id": 1, - "poly": [ - 256, - 299, - 617, - 299, - 617, - 337, - 256, - 337 - ], - "score": 0.908 - }, - { - "category_id": 2, - "poly": [ - 128, - 987, - 227, - 987, - 227, - 1035, - 128, - 1035 - ], - "score": 0.904 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 279, - 2187, - 279, - 2292, - 119, - 2292 - ], - "score": 0.903 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2290, - 1331, - 2290 - ], - "score": 0.897 - }, - { - "category_id": 2, - "poly": [ - 127, - 181, - 227, - 181, - 227, - 230, - 127, - 230 - ], - "score": 0.872 - }, - { - "category_id": 2, - "poly": [ - 783, - 82, - 822, - 82, - 822, - 112, - 783, - 112 - ], - "score": 0.869 - }, - { - "category_id": 1, - "poly": [ - 251, - 1573, - 370, - 1573, - 370, - 1849, - 251, - 1849 - ], - "score": 0.862 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 39, - 1582, - 39 - ], - "score": 0.835 - }, - { - "category_id": 1, - "poly": [ - 251, - 996, - 1362, - 996, - 1362, - 1070, - 251, - 1070 - ], - "score": 0.765 - }, - { - "category_id": 5, - "poly": [ - 251, - 513, - 1316, - 513, - 1316, - 920, - 251, - 920 - ], - "score": 0.75, - "html": "
WidthofcentralmaximumBrightness of central maximum
Aincreasesincreases
Bincreasesdecreases
Cdecreasesincreases
Ddecreasesdecreases
" - }, - { - "category_id": 1, - "poly": [ - 1362, - 1482, - 1487, - 1482, - 1487, - 1519, - 1362, - 1519 - ], - "score": 0.687 - }, - { - "category_id": 1, - "poly": [ - 1362, - 445, - 1487, - 445, - 1487, - 482, - 1362, - 482 - ], - "score": 0.654 - }, - { - "category_id": 1, - "poly": [ - 252, - 1073, - 1032, - 1073, - 1032, - 1147, - 252, - 1147 - ], - "score": 0.581 - }, - { - "category_id": 3, - "poly": [ - 251, - 513, - 1316, - 513, - 1316, - 920, - 251, - 920 - ], - "score": 0.255 - }, - { - "category_id": 1, - "poly": [ - 250, - 996, - 1364, - 996, - 1364, - 1147, - 250, - 1147 - ], - "score": 0.215 - }, - { - "category_id": 2, - "poly": [ - 1362, - 1482, - 1487, - 1482, - 1487, - 1519, - 1362, - 1519 - ], - "score": 0.212 - }, - { - "category_id": 0, - "poly": [ - 1362, - 445, - 1487, - 445, - 1487, - 482, - 1362, - 482 - ], - "score": 0.199 - }, - { - "category_id": 1, - "poly": [ - 256, - 1111, - 663, - 1111, - 663, - 1146, - 256, - 1146 - ], - "score": 0.14 - }, - { - "category_id": 1, - "poly": [ - 526, - 1565, - 605, - 1565, - 605, - 1852, - 526, - 1852 - ], - "score": 0.116 - }, - { - "category_id": 13, - "poly": [ - 1222, - 999, - 1273, - 999, - 1273, - 1032, - 1222, - 1032 - ], - "score": 0.86, - "latex": "45^{\\circ}" - }, - { - "category_id": 13, - "poly": [ - 549, - 1745, - 580, - 1745, - 580, - 1758, - 549, - 1758 - ], - "score": 0.65, - "latex": "\\smile" - }, - { - "category_id": 13, - "poly": [ - 549, - 1824, - 581, - 1824, - 581, - 1837, - 549, - 1837 - ], - "score": 0.55, - "latex": "\\smile" - }, - { - "category_id": 13, - "poly": [ - 955, - 1072, - 1023, - 1072, - 1023, - 1107, - 955, - 1107 - ], - "score": 0.5, - "latex": "2.0\\mathrm{~s~}" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1625.0, - 147.0, - 1625.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1521.0, - 170.0, - 1621.0, - 170.0, - 1621.0, - 193.0, - 1521.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1552.0, - 190.0, - 1592.0, - 190.0, - 1592.0, - 216.0, - 1552.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 371.0, - 1383.0, - 371.0, - 1383.0, - 410.0, - 254.0, - 410.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 411.0, - 374.0, - 411.0, - 374.0, - 445.0, - 252.0, - 445.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 193.0, - 1375.0, - 193.0, - 1375.0, - 227.0, - 256.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 229.0, - 427.0, - 229.0, - 427.0, - 265.0, - 252.0, - 265.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 1448.0, - 1243.0, - 1448.0, - 1243.0, - 1478.0, - 256.0, - 1478.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 303.0, - 616.0, - 303.0, - 616.0, - 333.0, - 256.0, - 333.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 993.0, - 215.0, - 993.0, - 215.0, - 1030.0, - 138.0, - 1030.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 162.0, - 2263.0, - 226.0, - 2263.0, - 226.0, - 2295.0, - 162.0, - 2295.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 186.0, - 219.0, - 186.0, - 219.0, - 225.0, - 135.0, - 225.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 827.0, - 78.0, - 827.0, - 117.0, - 780.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1572.0, - 370.0, - 1572.0, - 370.0, - 1611.0, - 252.0, - 1611.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 1650.0, - 370.0, - 1650.0, - 370.0, - 1691.0, - 251.0, - 1691.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 1731.0, - 369.0, - 1731.0, - 369.0, - 1769.0, - 251.0, - 1769.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 250.0, - 1808.0, - 370.0, - 1808.0, - 370.0, - 1848.0, - 250.0, - 1848.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1000.0, - 1221.0, - 1000.0, - 1221.0, - 1034.0, - 255.0, - 1034.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1274.0, - 1000.0, - 1358.0, - 1000.0, - 1358.0, - 1034.0, - 1274.0, - 1034.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1036.0, - 400.0, - 1036.0, - 400.0, - 1071.0, - 253.0, - 1071.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 1479.0, - 1489.0, - 1479.0, - 1489.0, - 1521.0, - 1363.0, - 1521.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 442.0, - 1489.0, - 442.0, - 1489.0, - 484.0, - 1363.0, - 484.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 1074.0, - 954.0, - 1074.0, - 954.0, - 1108.0, - 256.0, - 1108.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1024.0, - 1074.0, - 1028.0, - 1074.0, - 1028.0, - 1108.0, - 1024.0, - 1108.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1110.0, - 663.0, - 1110.0, - 663.0, - 1146.0, - 255.0, - 1146.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 1001.0, - 1221.0, - 1001.0, - 1221.0, - 1034.0, - 256.0, - 1034.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1274.0, - 1001.0, - 1358.0, - 1001.0, - 1358.0, - 1034.0, - 1274.0, - 1034.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1036.0, - 400.0, - 1036.0, - 400.0, - 1070.0, - 254.0, - 1070.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1073.0, - 954.0, - 1073.0, - 954.0, - 1109.0, - 254.0, - 1109.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1024.0, - 1073.0, - 1032.0, - 1073.0, - 1032.0, - 1109.0, - 1024.0, - 1109.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1111.0, - 662.0, - 1111.0, - 662.0, - 1146.0, - 254.0, - 1146.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 1479.0, - 1489.0, - 1479.0, - 1489.0, - 1521.0, - 1363.0, - 1521.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 442.0, - 1489.0, - 442.0, - 1489.0, - 484.0, - 1363.0, - 484.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 1112.0, - 660.0, - 1112.0, - 660.0, - 1143.0, - 257.0, - 1143.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 69, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 246, - 298, - 1410, - 298, - 1410, - 375, - 246, - 375 - ], - "score": 0.936 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1625, - 146, - 1625, - 214, - 1516, - 214 - ], - "score": 0.933 - }, - { - "category_id": 1, - "poly": [ - 255, - 189, - 1385, - 189, - 1385, - 264, - 255, - 264 - ], - "score": 0.918 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2292, - 118, - 2292 - ], - "score": 0.901 - }, - { - "category_id": 2, - "poly": [ - 1330, - 2265, - 1496, - 2265, - 1496, - 2290, - 1330, - 2290 - ], - "score": 0.894 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2143, - 1496, - 2143, - 1496, - 2177, - 1317, - 2177 - ], - "score": 0.893 - }, - { - "category_id": 1, - "poly": [ - 250, - 1422, - 1064, - 1422, - 1064, - 1464, - 250, - 1464 - ], - "score": 0.891 - }, - { - "category_id": 2, - "poly": [ - 127, - 181, - 227, - 181, - 227, - 229, - 127, - 229 - ], - "score": 0.881 - }, - { - "category_id": 2, - "poly": [ - 783, - 82, - 818, - 82, - 818, - 111, - 783, - 111 - ], - "score": 0.858 - }, - { - "category_id": 1, - "poly": [ - 254, - 921, - 620, - 921, - 620, - 961, - 254, - 961 - ], - "score": 0.849 - }, - { - "category_id": 2, - "poly": [ - 127, - 1416, - 227, - 1416, - 227, - 1463, - 127, - 1463 - ], - "score": 0.843 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 39, - 1582, - 39 - ], - "score": 0.834 - }, - { - "category_id": 1, - "poly": [ - 1362, - 960, - 1487, - 960, - 1487, - 998, - 1362, - 998 - ], - "score": 0.832 - }, - { - "category_id": 1, - "poly": [ - 250, - 1550, - 1292, - 1550, - 1292, - 1834, - 250, - 1834 - ], - "score": 0.826 - }, - { - "category_id": 1, - "poly": [ - 1363, - 1462, - 1487, - 1462, - 1487, - 1498, - 1363, - 1498 - ], - "score": 0.787 - }, - { - "category_id": 2, - "poly": [ - 128, - 915, - 227, - 915, - 227, - 962, - 128, - 962 - ], - "score": 0.78 - }, - { - "category_id": 1, - "poly": [ - 1362, - 373, - 1486, - 373, - 1486, - 410, - 1362, - 410 - ], - "score": 0.762 - }, - { - "category_id": 5, - "poly": [ - 252, - 439, - 1316, - 439, - 1316, - 848, - 252, - 848 - ], - "score": 0.633, - "html": "
Gradient of graphArea under graph
Apowermass x displacement
Bforceworkdonex time
Cpowerworkdone×time
Dforcemassxdisplacement
" - }, - { - "category_id": 1, - "poly": [ - 250, - 1047, - 802, - 1047, - 802, - 1331, - 250, - 1331 - ], - "score": 0.622 - }, - { - "category_id": 3, - "poly": [ - 250, - 1047, - 802, - 1047, - 802, - 1331, - 250, - 1331 - ], - "score": 0.49 - }, - { - "category_id": 3, - "poly": [ - 252, - 439, - 1316, - 439, - 1316, - 848, - 252, - 848 - ], - "score": 0.402 - }, - { - "category_id": 3, - "poly": [ - 250, - 1550, - 1292, - 1550, - 1292, - 1834, - 250, - 1834 - ], - "score": 0.152 - }, - { - "category_id": 13, - "poly": [ - 999, - 793, - 1029, - 793, - 1029, - 822, - 999, - 822 - ], - "score": 0.6, - "latex": "\\times" - }, - { - "category_id": 13, - "poly": [ - 1094, - 712, - 1124, - 712, - 1124, - 741, - 1094, - 741 - ], - "score": 0.59, - "latex": "\\times" - }, - { - "category_id": 13, - "poly": [ - 1000, - 552, - 1029, - 552, - 1029, - 580, - 1000, - 580 - ], - "score": 0.54, - "latex": "\\times" - }, - { - "category_id": 13, - "poly": [ - 1094, - 631, - 1124, - 631, - 1124, - 661, - 1094, - 661 - ], - "score": 0.49, - "latex": "\\times" - }, - { - "category_id": 13, - "poly": [ - 1232, - 1718, - 1267, - 1718, - 1267, - 1740, - 1232, - 1740 - ], - "score": 0.37, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 299.0, - 1409.0, - 299.0, - 1409.0, - 339.0, - 255.0, - 339.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 336.0, - 411.0, - 336.0, - 411.0, - 377.0, - 251.0, - 377.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 145.0, - 1625.0, - 145.0, - 1625.0, - 172.0, - 1517.0, - 172.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1521.0, - 171.0, - 1621.0, - 171.0, - 1621.0, - 194.0, - 1521.0, - 194.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1552.0, - 192.0, - 1592.0, - 192.0, - 1592.0, - 217.0, - 1552.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 194.0, - 1384.0, - 194.0, - 1384.0, - 228.0, - 256.0, - 228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 229.0, - 724.0, - 229.0, - 724.0, - 263.0, - 255.0, - 263.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 164.0, - 2265.0, - 223.0, - 2265.0, - 223.0, - 2294.0, - 164.0, - 2294.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1317.0, - 2145.0, - 1473.0, - 2145.0, - 1473.0, - 2176.0, - 1317.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1425.0, - 1062.0, - 1425.0, - 1062.0, - 1462.0, - 255.0, - 1462.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 189.0, - 187.0, - 189.0, - 187.0, - 224.0, - 138.0, - 224.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 194.0, - 192.5, - 205.0, - 192.5, - 205.0, - 220.0, - 194.0, - 220.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 78.0, - 826.0, - 78.0, - 826.0, - 118.0, - 779.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 926.0, - 618.0, - 926.0, - 618.0, - 960.0, - 255.0, - 960.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 1424.0, - 174.0, - 1424.0, - 174.0, - 1456.0, - 141.0, - 1456.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 182.0, - 1426.0, - 212.0, - 1426.0, - 212.0, - 1454.0, - 182.0, - 1454.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 961.0, - 1489.0, - 961.0, - 1489.0, - 999.0, - 1363.0, - 999.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 1555.0, - 753.0, - 1555.0, - 753.0, - 1591.0, - 256.0, - 1591.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1633.0, - 823.0, - 1633.0, - 823.0, - 1669.0, - 254.0, - 1669.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1712.0, - 1193.0, - 1712.0, - 1193.0, - 1750.0, - 255.0, - 1750.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1790.0, - 919.0, - 1790.0, - 919.0, - 1829.0, - 254.0, - 1829.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1364.0, - 1462.0, - 1489.0, - 1462.0, - 1489.0, - 1500.0, - 1364.0, - 1500.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 923.0, - 174.0, - 923.0, - 174.0, - 955.0, - 140.0, - 955.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 184.0, - 921.0, - 216.0, - 921.0, - 216.0, - 956.0, - 184.0, - 956.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 370.0, - 1489.0, - 370.0, - 1489.0, - 412.0, - 1362.0, - 412.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 1058.0, - 520.0, - 1058.0, - 520.0, - 1090.0, - 257.0, - 1090.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1130.0, - 528.0, - 1130.0, - 528.0, - 1172.0, - 255.0, - 1172.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 1215.0, - 699.0, - 1215.0, - 699.0, - 1246.0, - 256.0, - 1246.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1292.0, - 615.0, - 1292.0, - 615.0, - 1326.0, - 253.0, - 1326.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 70, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 367, - 261, - 1251, - 261, - 1251, - 707, - 367, - 707 - ], - "score": 0.962 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1625, - 146, - 1625, - 213, - 1516, - 213 - ], - "score": 0.929 - }, - { - "category_id": 1, - "poly": [ - 253, - 1249, - 1086, - 1249, - 1086, - 1329, - 253, - 1329 - ], - "score": 0.917 - }, - { - "category_id": 1, - "poly": [ - 253, - 1362, - 828, - 1362, - 828, - 1402, - 253, - 1402 - ], - "score": 0.907 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2293, - 118, - 2293 - ], - "score": 0.897 - }, - { - "category_id": 2, - "poly": [ - 126, - 1241, - 227, - 1241, - 227, - 1288, - 126, - 1288 - ], - "score": 0.896 - }, - { - "category_id": 1, - "poly": [ - 123, - 188, - 1382, - 188, - 1382, - 230, - 123, - 230 - ], - "score": 0.886 - }, - { - "category_id": 2, - "poly": [ - 783, - 82, - 822, - 82, - 822, - 111, - 783, - 111 - ], - "score": 0.864 - }, - { - "category_id": 1, - "poly": [ - 248, - 869, - 448, - 869, - 448, - 1157, - 248, - 1157 - ], - "score": 0.86 - }, - { - "category_id": 1, - "poly": [ - 257, - 747, - 1480, - 747, - 1480, - 821, - 257, - 821 - ], - "score": 0.843 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1653, - 4, - 1653, - 39, - 1582, - 39 - ], - "score": 0.83 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2290, - 1331, - 2290 - ], - "score": 0.815 - }, - { - "category_id": 1, - "poly": [ - 1362, - 1399, - 1487, - 1399, - 1487, - 1437, - 1362, - 1437 - ], - "score": 0.813 - }, - { - "category_id": 2, - "poly": [ - 129, - 182, - 226, - 182, - 226, - 229, - 129, - 229 - ], - "score": 0.51 - }, - { - "category_id": 3, - "poly": [ - 249, - 1479, - 612, - 1479, - 612, - 1924, - 249, - 1924 - ], - "score": 0.365 - }, - { - "category_id": 1, - "poly": [ - 249, - 1479, - 358, - 1479, - 358, - 1925, - 249, - 1925 - ], - "score": 0.361 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2290, - 1331, - 2290 - ], - "score": 0.251 - }, - { - "category_id": 1, - "poly": [ - 249, - 1479, - 612, - 1479, - 612, - 1924, - 249, - 1924 - ], - "score": 0.209 - }, - { - "category_id": 13, - "poly": [ - 875, - 1292, - 897, - 1292, - 897, - 1322, - 875, - 1322 - ], - "score": 0.79, - "latex": "k" - }, - { - "category_id": 13, - "poly": [ - 737, - 1292, - 772, - 1292, - 772, - 1324, - 737, - 1324 - ], - "score": 0.78, - "latex": "k\\nu" - }, - { - "category_id": 13, - "poly": [ - 750, - 1259, - 769, - 1259, - 769, - 1283, - 750, - 1283 - ], - "score": 0.57, - "latex": "\\nu" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1625.0, - 147.0, - 1625.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1521.0, - 170.0, - 1621.0, - 170.0, - 1621.0, - 193.0, - 1521.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1552.0, - 190.0, - 1592.0, - 190.0, - 1592.0, - 216.0, - 1552.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1255.0, - 749.0, - 1255.0, - 749.0, - 1287.0, - 255.0, - 1287.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 770.0, - 1255.0, - 775.0, - 1255.0, - 775.0, - 1287.0, - 770.0, - 1287.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1292.0, - 736.0, - 1292.0, - 736.0, - 1326.0, - 255.0, - 1326.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 773.0, - 1292.0, - 874.0, - 1292.0, - 874.0, - 1326.0, - 773.0, - 1326.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 898.0, - 1292.0, - 1083.0, - 1292.0, - 1083.0, - 1326.0, - 898.0, - 1326.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1363.0, - 824.0, - 1363.0, - 824.0, - 1400.0, - 255.0, - 1400.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2267.0, - 223.0, - 2267.0, - 223.0, - 2294.0, - 166.0, - 2294.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 1249.0, - 175.0, - 1249.0, - 175.0, - 1281.0, - 140.0, - 1281.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 181.0, - 1250.0, - 215.0, - 1250.0, - 215.0, - 1282.0, - 181.0, - 1282.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 128.0, - 181.0, - 1385.0, - 181.0, - 1385.0, - 239.0, - 128.0, - 239.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 829.0, - 78.0, - 829.0, - 118.0, - 780.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 881.0, - 283.0, - 881.0, - 283.0, - 913.0, - 254.0, - 913.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 958.0, - 283.0, - 958.0, - 283.0, - 993.0, - 254.0, - 993.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1036.0, - 286.0, - 1036.0, - 286.0, - 1073.0, - 252.0, - 1073.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1116.0, - 286.0, - 1116.0, - 286.0, - 1151.0, - 252.0, - 1151.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 749.0, - 1380.0, - 749.0, - 1380.0, - 787.0, - 255.0, - 787.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 785.0, - 1487.0, - 785.0, - 1487.0, - 826.0, - 1362.0, - 826.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1578.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1578.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 1400.0, - 1489.0, - 1400.0, - 1489.0, - 1438.0, - 1363.0, - 1438.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 137.0, - 186.0, - 219.0, - 186.0, - 219.0, - 227.0, - 137.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1496.0, - 284.0, - 1496.0, - 284.0, - 1531.0, - 253.0, - 1531.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 299.0, - 1478.0, - 351.0, - 1478.0, - 351.0, - 1517.0, - 299.0, - 1517.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 312.0, - 1521.0, - 338.0, - 1521.0, - 338.0, - 1555.0, - 312.0, - 1555.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 299.0, - 1593.0, - 350.0, - 1593.0, - 350.0, - 1634.0, - 299.0, - 1634.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1621.0, - 284.0, - 1621.0, - 284.0, - 1656.0, - 253.0, - 1656.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 308.0, - 1650.0, - 337.0, - 1650.0, - 337.0, - 1685.0, - 308.0, - 1685.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1736.0, - 357.0, - 1736.0, - 357.0, - 1784.0, - 253.0, - 1784.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 310.0, - 1835.0, - 340.0, - 1835.0, - 340.0, - 1871.0, - 310.0, - 1871.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1862.0, - 284.0, - 1862.0, - 284.0, - 1897.0, - 253.0, - 1897.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 298.0, - 1886.0, - 351.0, - 1886.0, - 351.0, - 1925.0, - 298.0, - 1925.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1498.0, - 283.0, - 1498.0, - 283.0, - 1529.0, - 254.0, - 1529.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 299.0, - 1477.0, - 352.0, - 1477.0, - 352.0, - 1518.0, - 299.0, - 1518.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 312.0, - 1522.0, - 340.0, - 1522.0, - 340.0, - 1555.0, - 312.0, - 1555.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 299.0, - 1592.0, - 351.0, - 1592.0, - 351.0, - 1634.0, - 299.0, - 1634.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1621.0, - 284.0, - 1621.0, - 284.0, - 1654.0, - 255.0, - 1654.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 310.0, - 1651.0, - 337.0, - 1651.0, - 337.0, - 1684.0, - 310.0, - 1684.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1737.0, - 357.0, - 1737.0, - 357.0, - 1783.0, - 254.0, - 1783.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 311.0, - 1836.0, - 340.0, - 1836.0, - 340.0, - 1869.0, - 311.0, - 1869.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1864.0, - 284.0, - 1864.0, - 284.0, - 1895.0, - 253.0, - 1895.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 299.0, - 1884.0, - 352.0, - 1884.0, - 352.0, - 1927.0, - 299.0, - 1927.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 71, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 477, - 981, - 1142, - 981, - 1142, - 1379, - 477, - 1379 - ], - "score": 0.966 - }, - { - "category_id": 1, - "poly": [ - 252, - 190, - 1404, - 190, - 1404, - 302, - 252, - 302 - ], - "score": 0.965 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1625, - 146, - 1625, - 214, - 1516, - 214 - ], - "score": 0.931 - }, - { - "category_id": 1, - "poly": [ - 252, - 1420, - 898, - 1420, - 898, - 1461, - 252, - 1461 - ], - "score": 0.922 - }, - { - "category_id": 1, - "poly": [ - 250, - 460, - 930, - 460, - 930, - 743, - 250, - 743 - ], - "score": 0.916 - }, - { - "category_id": 1, - "poly": [ - 252, - 831, - 1411, - 831, - 1411, - 952, - 252, - 952 - ], - "score": 0.91 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2143, - 1497, - 2143, - 1497, - 2178, - 1317, - 2178 - ], - "score": 0.901 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2292, - 118, - 2292 - ], - "score": 0.897 - }, - { - "category_id": 2, - "poly": [ - 1330, - 2265, - 1496, - 2265, - 1496, - 2290, - 1330, - 2290 - ], - "score": 0.89 - }, - { - "category_id": 1, - "poly": [ - 254, - 335, - 495, - 335, - 495, - 373, - 254, - 373 - ], - "score": 0.886 - }, - { - "category_id": 2, - "poly": [ - 128, - 182, - 227, - 182, - 227, - 229, - 128, - 229 - ], - "score": 0.87 - }, - { - "category_id": 2, - "poly": [ - 783, - 82, - 822, - 82, - 822, - 112, - 783, - 112 - ], - "score": 0.866 - }, - { - "category_id": 1, - "poly": [ - 1361, - 1458, - 1487, - 1458, - 1487, - 1498, - 1361, - 1498 - ], - "score": 0.834 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 39, - 1582, - 39 - ], - "score": 0.831 - }, - { - "category_id": 2, - "poly": [ - 128, - 827, - 227, - 827, - 227, - 875, - 128, - 875 - ], - "score": 0.813 - }, - { - "category_id": 2, - "poly": [ - 1361, - 372, - 1487, - 372, - 1487, - 411, - 1361, - 411 - ], - "score": 0.721 - }, - { - "category_id": 1, - "poly": [ - 249, - 1543, - 610, - 1543, - 610, - 1832, - 249, - 1832 - ], - "score": 0.651 - }, - { - "category_id": 1, - "poly": [ - 247, - 1543, - 609, - 1543, - 609, - 1832, - 247, - 1832 - ], - "score": 0.495 - }, - { - "category_id": 1, - "poly": [ - 251, - 1545, - 439, - 1545, - 439, - 1829, - 251, - 1829 - ], - "score": 0.46 - }, - { - "category_id": 1, - "poly": [ - 256, - 912, - 819, - 912, - 819, - 951, - 256, - 951 - ], - "score": 0.212 - }, - { - "category_id": 1, - "poly": [ - 1361, - 372, - 1487, - 372, - 1487, - 411, - 1361, - 411 - ], - "score": 0.211 - }, - { - "category_id": 13, - "poly": [ - 1342, - 840, - 1410, - 840, - 1410, - 872, - 1342, - 872 - ], - "score": 0.88, - "latex": "t=0" - }, - { - "category_id": 13, - "poly": [ - 763, - 1422, - 890, - 1422, - 890, - 1457, - 763, - 1457 - ], - "score": 0.78, - "latex": "t=1.0\\mathrm{s}?" - }, - { - "category_id": 13, - "poly": [ - 473, - 841, - 502, - 841, - 502, - 871, - 473, - 871 - ], - "score": 0.78, - "latex": "F" - }, - { - "category_id": 13, - "poly": [ - 704, - 915, - 732, - 915, - 732, - 946, - 704, - 946 - ], - "score": 0.77, - "latex": "F" - }, - { - "category_id": 13, - "poly": [ - 858, - 838, - 946, - 838, - 946, - 877, - 858, - 877 - ], - "score": 0.73, - "latex": "2.0\\mathrm{kg}" - }, - { - "category_id": 13, - "poly": [ - 549, - 1802, - 581, - 1802, - 581, - 1815, - 549, - 1815 - ], - "score": 0.71, - "latex": "\\subset" - }, - { - "category_id": 13, - "poly": [ - 874, - 557, - 907, - 557, - 907, - 570, - 874, - 570 - ], - "score": 0.7, - "latex": "\\subset" - }, - { - "category_id": 13, - "poly": [ - 549, - 1723, - 581, - 1723, - 581, - 1736, - 549, - 1736 - ], - "score": 0.46, - "latex": "\\subset" - }, - { - "category_id": 13, - "poly": [ - 874, - 635, - 907, - 635, - 907, - 649, - 874, - 649 - ], - "score": 0.45, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 874, - 713, - 907, - 713, - 907, - 728, - 874, - 728 - ], - "score": 0.4, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 292, - 1549, - 435, - 1549, - 435, - 1589, - 292, - 1589 - ], - "score": 0.34, - "latex": "3.75\\mathrm{m~s}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 796, - 918, - 812, - 918, - 812, - 945, - 796, - 945 - ], - "score": 0.3, - "latex": "t" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 194.0, - 1022.0, - 194.0, - 1022.0, - 227.0, - 257.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 230.0, - 1401.0, - 230.0, - 1401.0, - 263.0, - 257.0, - 263.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 265.0, - 799.0, - 265.0, - 799.0, - 300.0, - 254.0, - 300.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 145.0, - 1625.0, - 145.0, - 1625.0, - 172.0, - 1517.0, - 172.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1521.0, - 171.0, - 1621.0, - 171.0, - 1621.0, - 194.0, - 1521.0, - 194.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1552.0, - 192.0, - 1592.0, - 192.0, - 1592.0, - 217.0, - 1552.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 1424.0, - 762.0, - 1424.0, - 762.0, - 1458.0, - 257.0, - 1458.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 891.0, - 1424.0, - 892.0, - 1424.0, - 892.0, - 1458.0, - 891.0, - 1458.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 465.0, - 795.0, - 465.0, - 795.0, - 502.0, - 255.0, - 502.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 544.0, - 736.0, - 544.0, - 736.0, - 581.0, - 254.0, - 581.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 623.0, - 722.0, - 623.0, - 722.0, - 659.0, - 253.0, - 659.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 703.0, - 660.0, - 703.0, - 660.0, - 736.0, - 255.0, - 736.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 840.0, - 472.0, - 840.0, - 472.0, - 875.0, - 256.0, - 875.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 503.0, - 840.0, - 857.0, - 840.0, - 857.0, - 875.0, - 503.0, - 875.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 947.0, - 840.0, - 1341.0, - 840.0, - 1341.0, - 875.0, - 947.0, - 875.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 914.0, - 703.0, - 914.0, - 703.0, - 952.0, - 254.0, - 952.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 733.0, - 914.0, - 795.0, - 914.0, - 795.0, - 952.0, - 733.0, - 952.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 813.0, - 914.0, - 822.0, - 914.0, - 822.0, - 952.0, - 813.0, - 952.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1318.0, - 2146.0, - 1486.0, - 2146.0, - 1486.0, - 2176.0, - 1318.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 163.0, - 2263.0, - 227.0, - 2263.0, - 227.0, - 2295.0, - 163.0, - 2295.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 339.0, - 493.0, - 339.0, - 493.0, - 369.0, - 256.0, - 369.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 190.0, - 180.0, - 190.0, - 180.0, - 224.0, - 140.0, - 224.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 183.0, - 193.0, - 214.0, - 193.0, - 214.0, - 221.0, - 183.0, - 221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 827.0, - 78.0, - 827.0, - 117.0, - 780.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 1459.0, - 1490.0, - 1459.0, - 1490.0, - 1499.0, - 1363.0, - 1499.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 833.0, - 215.0, - 833.0, - 215.0, - 870.0, - 138.0, - 870.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 370.0, - 1489.0, - 370.0, - 1489.0, - 412.0, - 1363.0, - 412.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1554.0, - 291.0, - 1554.0, - 291.0, - 1586.0, - 253.0, - 1586.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 436.0, - 1554.0, - 436.0, - 1554.0, - 436.0, - 1586.0, - 436.0, - 1586.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1632.0, - 435.0, - 1632.0, - 435.0, - 1665.0, - 253.0, - 1665.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 1710.0, - 436.0, - 1710.0, - 436.0, - 1743.0, - 251.0, - 1743.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 1789.0, - 437.0, - 1789.0, - 437.0, - 1823.0, - 251.0, - 1823.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1553.0, - 291.0, - 1553.0, - 291.0, - 1587.0, - 252.0, - 1587.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 1631.0, - 437.0, - 1631.0, - 437.0, - 1666.0, - 251.0, - 1666.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 1710.0, - 436.0, - 1710.0, - 436.0, - 1744.0, - 251.0, - 1744.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 1789.0, - 436.0, - 1789.0, - 436.0, - 1823.0, - 251.0, - 1823.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1553.0, - 291.0, - 1553.0, - 291.0, - 1587.0, - 253.0, - 1587.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 436.0, - 1553.0, - 436.0, - 1553.0, - 436.0, - 1587.0, - 436.0, - 1587.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1631.0, - 436.0, - 1631.0, - 436.0, - 1666.0, - 252.0, - 1666.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1710.0, - 436.0, - 1710.0, - 436.0, - 1743.0, - 252.0, - 1743.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 1789.0, - 436.0, - 1789.0, - 436.0, - 1824.0, - 251.0, - 1824.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 915.0, - 703.0, - 915.0, - 703.0, - 949.0, - 257.0, - 949.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 733.0, - 915.0, - 795.0, - 915.0, - 795.0, - 949.0, - 733.0, - 949.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 813.0, - 915.0, - 819.0, - 915.0, - 819.0, - 949.0, - 813.0, - 949.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 370.0, - 1489.0, - 370.0, - 1489.0, - 412.0, - 1363.0, - 412.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 72, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 251, - 878, - 1175, - 878, - 1175, - 954, - 251, - 954 - ], - "score": 0.954 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1625, - 146, - 1625, - 213, - 1516, - 213 - ], - "score": 0.929 - }, - { - "category_id": 3, - "poly": [ - 425, - 257, - 1191, - 257, - 1191, - 730, - 425, - 730 - ], - "score": 0.925 - }, - { - "category_id": 1, - "poly": [ - 248, - 1814, - 448, - 1814, - 448, - 2104, - 248, - 2104 - ], - "score": 0.924 - }, - { - "category_id": 3, - "poly": [ - 309, - 988, - 1306, - 988, - 1306, - 1775, - 309, - 1775 - ], - "score": 0.921 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2290, - 1331, - 2290 - ], - "score": 0.888 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2292, - 118, - 2292 - ], - "score": 0.884 - }, - { - "category_id": 1, - "poly": [ - 253, - 769, - 1031, - 769, - 1031, - 843, - 253, - 843 - ], - "score": 0.87 - }, - { - "category_id": 1, - "poly": [ - 169, - 188, - 1318, - 188, - 1318, - 229, - 169, - 229 - ], - "score": 0.865 - }, - { - "category_id": 2, - "poly": [ - 783, - 83, - 821, - 83, - 821, - 110, - 783, - 110 - ], - "score": 0.862 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1653, - 4, - 1653, - 39, - 1582, - 39 - ], - "score": 0.833 - }, - { - "category_id": 1, - "poly": [ - 1362, - 955, - 1487, - 955, - 1487, - 992, - 1362, - 992 - ], - "score": 0.805 - }, - { - "category_id": 2, - "poly": [ - 129, - 182, - 227, - 182, - 227, - 229, - 129, - 229 - ], - "score": 0.788 - }, - { - "category_id": 3, - "poly": [ - 312, - 994, - 625, - 994, - 625, - 1772, - 312, - 1772 - ], - "score": 0.691 - }, - { - "category_id": 3, - "poly": [ - 986, - 994, - 1299, - 994, - 1299, - 1771, - 986, - 1771 - ], - "score": 0.41 - }, - { - "category_id": 1, - "poly": [ - 258, - 769, - 802, - 769, - 802, - 805, - 258, - 805 - ], - "score": 0.273 - }, - { - "category_id": 13, - "poly": [ - 1000, - 1576, - 1019, - 1576, - 1019, - 1593, - 1000, - 1593 - ], - "score": 0.84, - "latex": "\\sigma" - }, - { - "category_id": 13, - "poly": [ - 472, - 1283, - 493, - 1283, - 493, - 1309, - 472, - 1309 - ], - "score": 0.82, - "latex": "^{d}" - }, - { - "category_id": 13, - "poly": [ - 1150, - 1283, - 1171, - 1283, - 1171, - 1310, - 1150, - 1310 - ], - "score": 0.8, - "latex": "^{d}" - }, - { - "category_id": 13, - "poly": [ - 999, - 1158, - 1019, - 1158, - 1019, - 1175, - 999, - 1175 - ], - "score": 0.78, - "latex": "\\sigma" - }, - { - "category_id": 13, - "poly": [ - 322, - 1158, - 341, - 1158, - 341, - 1174, - 322, - 1174 - ], - "score": 0.76, - "latex": "\\sigma" - }, - { - "category_id": 13, - "poly": [ - 924, - 886, - 947, - 886, - 947, - 912, - 924, - 912 - ], - "score": 0.75, - "latex": "\\sigma" - }, - { - "category_id": 13, - "poly": [ - 322, - 1576, - 341, - 1576, - 341, - 1593, - 322, - 1593 - ], - "score": 0.74, - "latex": "\\sigma" - }, - { - "category_id": 13, - "poly": [ - 472, - 1701, - 494, - 1701, - 494, - 1727, - 472, - 1727 - ], - "score": 0.7, - "latex": "^{d}" - }, - { - "category_id": 13, - "poly": [ - 376, - 919, - 399, - 919, - 399, - 950, - 376, - 950 - ], - "score": 0.64, - "latex": "d" - }, - { - "category_id": 13, - "poly": [ - 1150, - 1701, - 1171, - 1701, - 1171, - 1727, - 1150, - 1727 - ], - "score": 0.57, - "latex": "^{d}" - }, - { - "category_id": 13, - "poly": [ - 391, - 1836, - 423, - 1836, - 423, - 1850, - 391, - 1850 - ], - "score": 0.51, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 392, - 1915, - 423, - 1915, - 423, - 1929, - 392, - 1929 - ], - "score": 0.49, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 470, - 919, - 494, - 919, - 494, - 950, - 470, - 950 - ], - "score": 0.31, - "latex": "\\mathbf{J}" - }, - { - "category_id": 13, - "poly": [ - 998, - 1261, - 1016, - 1261, - 1016, - 1284, - 998, - 1284 - ], - "score": 0.28, - "latex": "_0" - }, - { - "category_id": 13, - "poly": [ - 998, - 1679, - 1016, - 1679, - 1016, - 1701, - 998, - 1701 - ], - "score": 0.25, - "latex": "_0" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 879.0, - 923.0, - 879.0, - 923.0, - 917.0, - 254.0, - 917.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 948.0, - 879.0, - 1175.0, - 879.0, - 1175.0, - 917.0, - 948.0, - 917.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 919.0, - 375.0, - 919.0, - 375.0, - 950.0, - 256.0, - 950.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 400.0, - 919.0, - 469.0, - 919.0, - 469.0, - 950.0, - 400.0, - 950.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 495.0, - 919.0, - 574.0, - 919.0, - 574.0, - 950.0, - 495.0, - 950.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1625.0, - 147.0, - 1625.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1521.0, - 170.0, - 1621.0, - 170.0, - 1621.0, - 193.0, - 1521.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1552.0, - 190.0, - 1592.0, - 190.0, - 1592.0, - 216.0, - 1552.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1826.0, - 283.0, - 1826.0, - 283.0, - 1858.0, - 253.0, - 1858.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1903.0, - 283.0, - 1903.0, - 283.0, - 1937.0, - 254.0, - 1937.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 1981.0, - 286.0, - 1981.0, - 286.0, - 2017.0, - 251.0, - 2017.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 2061.0, - 286.0, - 2061.0, - 286.0, - 2096.0, - 252.0, - 2096.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2266.0, - 224.0, - 2266.0, - 224.0, - 2293.0, - 166.0, - 2293.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 770.0, - 806.0, - 770.0, - 806.0, - 807.0, - 255.0, - 807.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 806.0, - 1029.0, - 806.0, - 1029.0, - 842.0, - 255.0, - 842.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 188.0, - 1324.0, - 188.0, - 1324.0, - 231.0, - 253.0, - 231.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 79.0, - 829.0, - 79.0, - 829.0, - 117.0, - 779.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1578.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1578.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 952.0, - 1489.0, - 952.0, - 1489.0, - 994.0, - 1363.0, - 994.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 191.0, - 175.0, - 191.0, - 175.0, - 223.0, - 141.0, - 223.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 182.0, - 192.0, - 215.0, - 192.0, - 215.0, - 223.0, - 182.0, - 223.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 772.0, - 803.0, - 772.0, - 803.0, - 805.0, - 256.0, - 805.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 73, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 303, - 910, - 1314, - 910, - 1314, - 1771, - 303, - 1771 - ], - "score": 0.968 - }, - { - "category_id": 3, - "poly": [ - 304, - 330, - 1314, - 330, - 1314, - 657, - 304, - 657 - ], - "score": 0.964 - }, - { - "category_id": 1, - "poly": [ - 256, - 696, - 1464, - 696, - 1464, - 770, - 256, - 770 - ], - "score": 0.937 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1624, - 146, - 1624, - 214, - 1516, - 214 - ], - "score": 0.924 - }, - { - "category_id": 1, - "poly": [ - 247, - 1819, - 449, - 1819, - 449, - 2109, - 247, - 2109 - ], - "score": 0.919 - }, - { - "category_id": 1, - "poly": [ - 254, - 805, - 1001, - 805, - 1001, - 845, - 254, - 845 - ], - "score": 0.918 - }, - { - "category_id": 1, - "poly": [ - 248, - 189, - 1448, - 189, - 1448, - 262, - 248, - 262 - ], - "score": 0.912 - }, - { - "category_id": 2, - "poly": [ - 1317, - 2143, - 1496, - 2143, - 1496, - 2177, - 1317, - 2177 - ], - "score": 0.879 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2290, - 1331, - 2290 - ], - "score": 0.876 - }, - { - "category_id": 2, - "poly": [ - 783, - 82, - 822, - 82, - 822, - 111, - 783, - 111 - ], - "score": 0.865 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2292, - 118, - 2292 - ], - "score": 0.855 - }, - { - "category_id": 2, - "poly": [ - 129, - 182, - 226, - 182, - 226, - 229, - 129, - 229 - ], - "score": 0.845 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1653, - 4, - 1653, - 38, - 1582, - 38 - ], - "score": 0.83 - }, - { - "category_id": 1, - "poly": [ - 1363, - 843, - 1487, - 843, - 1487, - 881, - 1363, - 881 - ], - "score": 0.7 - }, - { - "category_id": 15, - "poly": [ - 258.0, - 700.0, - 1462.0, - 700.0, - 1462.0, - 734.0, - 258.0, - 734.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 738.0, - 408.0, - 738.0, - 408.0, - 770.0, - 254.0, - 770.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 146.0, - 1625.0, - 146.0, - 1625.0, - 171.0, - 1517.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 171.0, - 1622.0, - 171.0, - 1622.0, - 194.0, - 1520.0, - 194.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1549.0, - 190.0, - 1594.0, - 190.0, - 1594.0, - 217.0, - 1549.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1832.0, - 283.0, - 1832.0, - 283.0, - 1865.0, - 254.0, - 1865.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1911.0, - 284.0, - 1911.0, - 284.0, - 1944.0, - 254.0, - 1944.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1987.0, - 285.0, - 1987.0, - 285.0, - 2023.0, - 252.0, - 2023.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 2067.0, - 285.0, - 2067.0, - 285.0, - 2102.0, - 252.0, - 2102.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 806.0, - 997.0, - 806.0, - 997.0, - 843.0, - 255.0, - 843.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 193.0, - 1445.0, - 193.0, - 1445.0, - 227.0, - 255.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 249.0, - 224.0, - 323.0, - 224.0, - 323.0, - 266.0, - 249.0, - 266.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1317.0, - 2145.0, - 1473.0, - 2145.0, - 1473.0, - 2176.0, - 1317.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 78.0, - 827.0, - 78.0, - 827.0, - 118.0, - 779.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2267.0, - 222.0, - 2267.0, - 222.0, - 2292.0, - 166.0, - 2292.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 187.0, - 219.0, - 187.0, - 219.0, - 226.0, - 136.0, - 226.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1578.0, - 3.0, - 1658.0, - 3.0, - 1658.0, - 42.0, - 1578.0, - 42.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1364.0, - 844.0, - 1489.0, - 844.0, - 1489.0, - 882.0, - 1364.0, - 882.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 74, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 338, - 260, - 1277, - 260, - 1277, - 611, - 338, - 611 - ], - "score": 0.967 - }, - { - "category_id": 1, - "poly": [ - 254, - 721, - 1347, - 721, - 1347, - 837, - 254, - 837 - ], - "score": 0.964 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1625, - 146, - 1625, - 213, - 1516, - 213 - ], - "score": 0.932 - }, - { - "category_id": 1, - "poly": [ - 253, - 1560, - 907, - 1560, - 907, - 1600, - 253, - 1600 - ], - "score": 0.917 - }, - { - "category_id": 1, - "poly": [ - 256, - 649, - 631, - 649, - 631, - 687, - 256, - 687 - ], - "score": 0.911 - }, - { - "category_id": 1, - "poly": [ - 253, - 871, - 1122, - 871, - 1122, - 910, - 253, - 910 - ], - "score": 0.91 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2292, - 118, - 2292 - ], - "score": 0.906 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2265, - 1496, - 2265, - 1496, - 2290, - 1331, - 2290 - ], - "score": 0.897 - }, - { - "category_id": 2, - "poly": [ - 127, - 1365, - 227, - 1365, - 227, - 1411, - 127, - 1411 - ], - "score": 0.895 - }, - { - "category_id": 1, - "poly": [ - 211, - 189, - 1288, - 189, - 1288, - 229, - 211, - 229 - ], - "score": 0.889 - }, - { - "category_id": 2, - "poly": [ - 783, - 82, - 822, - 82, - 822, - 112, - 783, - 112 - ], - "score": 0.867 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 39, - 1582, - 39 - ], - "score": 0.837 - }, - { - "category_id": 1, - "poly": [ - 253, - 1450, - 1392, - 1450, - 1392, - 1524, - 253, - 1524 - ], - "score": 0.804 - }, - { - "category_id": 2, - "poly": [ - 129, - 182, - 227, - 182, - 227, - 229, - 129, - 229 - ], - "score": 0.777 - }, - { - "category_id": 1, - "poly": [ - 239, - 1372, - 1469, - 1372, - 1469, - 1447, - 239, - 1447 - ], - "score": 0.771 - }, - { - "category_id": 1, - "poly": [ - 250, - 999, - 365, - 999, - 365, - 1275, - 250, - 1275 - ], - "score": 0.721 - }, - { - "category_id": 2, - "poly": [ - 1362, - 1598, - 1487, - 1598, - 1487, - 1636, - 1362, - 1636 - ], - "score": 0.576 - }, - { - "category_id": 2, - "poly": [ - 1362, - 908, - 1487, - 908, - 1487, - 947, - 1362, - 947 - ], - "score": 0.505 - }, - { - "category_id": 1, - "poly": [ - 1362, - 908, - 1487, - 908, - 1487, - 947, - 1362, - 947 - ], - "score": 0.5 - }, - { - "category_id": 1, - "poly": [ - 249, - 1686, - 333, - 1686, - 333, - 1964, - 249, - 1964 - ], - "score": 0.437 - }, - { - "category_id": 1, - "poly": [ - 245, - 1682, - 502, - 1682, - 502, - 1970, - 245, - 1970 - ], - "score": 0.398 - }, - { - "category_id": 1, - "poly": [ - 1362, - 1598, - 1487, - 1598, - 1487, - 1636, - 1362, - 1636 - ], - "score": 0.369 - }, - { - "category_id": 3, - "poly": [ - 525, - 993, - 606, - 993, - 606, - 1280, - 525, - 1280 - ], - "score": 0.308 - }, - { - "category_id": 3, - "poly": [ - 250, - 993, - 611, - 993, - 611, - 1279, - 250, - 1279 - ], - "score": 0.217 - }, - { - "category_id": 1, - "poly": [ - 251, - 1372, - 1470, - 1372, - 1470, - 1525, - 251, - 1525 - ], - "score": 0.16 - }, - { - "category_id": 13, - "poly": [ - 858, - 797, - 990, - 797, - 990, - 833, - 858, - 833 - ], - "score": 0.88, - "latex": "300\\mathrm{m~s}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 794, - 762, - 844, - 762, - 844, - 795, - 794, - 795 - ], - "score": 0.87, - "latex": "45^{\\circ}" - }, - { - "category_id": 13, - "poly": [ - 687, - 1449, - 759, - 1449, - 759, - 1484, - 687, - 1484 - ], - "score": 0.62, - "latex": "20\\mathrm{V}" - }, - { - "category_id": 13, - "poly": [ - 549, - 1172, - 581, - 1172, - 581, - 1185, - 549, - 1185 - ], - "score": 0.51, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 549, - 1093, - 581, - 1093, - 581, - 1106, - 549, - 1106 - ], - "score": 0.4, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 445, - 650, - 545, - 650, - 545, - 686, - 445, - 686 - ], - "score": 0.37, - "latex": "2.00\\mathrm{m}" - }, - { - "category_id": 13, - "poly": [ - 549, - 1250, - 581, - 1250, - 581, - 1264, - 549, - 1264 - ], - "score": 0.33, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 485, - 1488, - 578, - 1488, - 578, - 1523, - 485, - 1523 - ], - "score": 0.32, - "latex": "100\\mathrm{~W~}" - }, - { - "category_id": 13, - "poly": [ - 988, - 1375, - 1060, - 1375, - 1060, - 1410, - 988, - 1410 - ], - "score": 0.25, - "latex": "25\\mathrm{~V~}" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 722.0, - 1344.0, - 722.0, - 1344.0, - 760.0, - 255.0, - 760.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 761.0, - 793.0, - 761.0, - 793.0, - 798.0, - 254.0, - 798.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 845.0, - 761.0, - 854.0, - 761.0, - 854.0, - 798.0, - 845.0, - 798.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 799.0, - 857.0, - 799.0, - 857.0, - 834.0, - 254.0, - 834.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 991.0, - 799.0, - 998.0, - 799.0, - 998.0, - 834.0, - 991.0, - 834.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1625.0, - 147.0, - 1625.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1521.0, - 170.0, - 1621.0, - 170.0, - 1621.0, - 193.0, - 1521.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1552.0, - 190.0, - 1592.0, - 190.0, - 1592.0, - 216.0, - 1552.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1561.0, - 904.0, - 1561.0, - 904.0, - 1598.0, - 255.0, - 1598.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 651.0, - 444.0, - 651.0, - 444.0, - 686.0, - 256.0, - 686.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 546.0, - 651.0, - 629.0, - 651.0, - 629.0, - 686.0, - 546.0, - 686.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 874.0, - 1119.0, - 874.0, - 1119.0, - 907.0, - 255.0, - 907.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2266.0, - 224.0, - 2266.0, - 224.0, - 2293.0, - 166.0, - 2293.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 1372.0, - 176.0, - 1372.0, - 176.0, - 1404.0, - 141.0, - 1404.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 182.0, - 1374.0, - 212.0, - 1374.0, - 212.0, - 1404.0, - 182.0, - 1404.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 233.0, - 190.0, - 1289.0, - 190.0, - 1289.0, - 228.0, - 233.0, - 228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 781.0, - 80.0, - 826.0, - 80.0, - 826.0, - 116.0, - 781.0, - 116.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1448.0, - 686.0, - 1448.0, - 686.0, - 1490.0, - 255.0, - 1490.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 760.0, - 1448.0, - 1380.0, - 1448.0, - 1380.0, - 1490.0, - 760.0, - 1490.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1490.0, - 484.0, - 1490.0, - 484.0, - 1524.0, - 255.0, - 1524.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 579.0, - 1490.0, - 586.0, - 1490.0, - 586.0, - 1524.0, - 579.0, - 1524.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 188.0, - 213.0, - 188.0, - 213.0, - 226.0, - 138.0, - 226.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1378.0, - 987.0, - 1378.0, - 987.0, - 1412.0, - 255.0, - 1412.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1061.0, - 1378.0, - 1466.0, - 1378.0, - 1466.0, - 1412.0, - 1061.0, - 1412.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1416.0, - 405.0, - 1416.0, - 405.0, - 1448.0, - 254.0, - 1448.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 1000.0, - 336.0, - 1000.0, - 336.0, - 1039.0, - 251.0, - 1039.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1079.0, - 353.0, - 1079.0, - 353.0, - 1118.0, - 252.0, - 1118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1156.0, - 352.0, - 1156.0, - 352.0, - 1197.0, - 252.0, - 1197.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 1237.0, - 369.0, - 1237.0, - 369.0, - 1275.0, - 251.0, - 1275.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 1598.0, - 1489.0, - 1598.0, - 1489.0, - 1636.0, - 1363.0, - 1636.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 906.0, - 1489.0, - 906.0, - 1489.0, - 948.0, - 1363.0, - 948.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 906.0, - 1489.0, - 906.0, - 1489.0, - 948.0, - 1363.0, - 948.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 1687.0, - 337.0, - 1687.0, - 337.0, - 1729.0, - 251.0, - 1729.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 248.0, - 1765.0, - 337.0, - 1765.0, - 337.0, - 1806.0, - 248.0, - 1806.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1847.0, - 336.0, - 1847.0, - 336.0, - 1884.0, - 253.0, - 1884.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1927.0, - 287.0, - 1927.0, - 287.0, - 1961.0, - 254.0, - 1961.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 290.0, - 1926.0, - 336.0, - 1926.0, - 336.0, - 1963.0, - 290.0, - 1963.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1690.0, - 336.0, - 1690.0, - 336.0, - 1727.0, - 252.0, - 1727.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1767.0, - 337.0, - 1767.0, - 337.0, - 1806.0, - 252.0, - 1806.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1849.0, - 334.0, - 1849.0, - 334.0, - 1883.0, - 255.0, - 1883.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1926.0, - 336.0, - 1926.0, - 336.0, - 1963.0, - 253.0, - 1963.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 1598.0, - 1489.0, - 1598.0, - 1489.0, - 1636.0, - 1363.0, - 1636.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1375.0, - 987.0, - 1375.0, - 987.0, - 1413.0, - 252.0, - 1413.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1061.0, - 1375.0, - 1468.0, - 1375.0, - 1468.0, - 1413.0, - 1061.0, - 1413.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1417.0, - 406.0, - 1417.0, - 406.0, - 1447.0, - 255.0, - 1447.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 1448.0, - 686.0, - 1448.0, - 686.0, - 1489.0, - 252.0, - 1489.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 760.0, - 1448.0, - 1381.0, - 1448.0, - 1381.0, - 1489.0, - 760.0, - 1489.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1489.0, - 484.0, - 1489.0, - 484.0, - 1524.0, - 253.0, - 1524.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 579.0, - 1489.0, - 588.0, - 1489.0, - 588.0, - 1524.0, - 579.0, - 1524.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 75, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 521, - 254, - 1092, - 254, - 1092, - 487, - 521, - 487 - ], - "score": 0.962 - }, - { - "category_id": 3, - "poly": [ - 586, - 1379, - 1029, - 1379, - 1029, - 1580, - 586, - 1580 - ], - "score": 0.958 - }, - { - "category_id": 1, - "poly": [ - 253, - 522, - 1432, - 522, - 1432, - 600, - 253, - 600 - ], - "score": 0.948 - }, - { - "category_id": 1, - "poly": [ - 254, - 1283, - 1461, - 1283, - 1461, - 1359, - 254, - 1359 - ], - "score": 0.944 - }, - { - "category_id": 2, - "poly": [ - 1517, - 144, - 1627, - 144, - 1627, - 213, - 1517, - 213 - ], - "score": 0.929 - }, - { - "category_id": 2, - "poly": [ - 1508, - 1896, - 1599, - 1896, - 1599, - 2014, - 1508, - 2014 - ], - "score": 0.923 - }, - { - "category_id": 2, - "poly": [ - 127, - 1275, - 228, - 1275, - 228, - 1323, - 127, - 1323 - ], - "score": 0.917 - }, - { - "category_id": 1, - "poly": [ - 248, - 1614, - 1311, - 1614, - 1311, - 1656, - 248, - 1656 - ], - "score": 0.905 - }, - { - "category_id": 2, - "poly": [ - 1330, - 2265, - 1496, - 2265, - 1496, - 2290, - 1330, - 2290 - ], - "score": 0.899 - }, - { - "category_id": 1, - "poly": [ - 236, - 190, - 1249, - 190, - 1249, - 232, - 236, - 232 - ], - "score": 0.896 - }, - { - "category_id": 2, - "poly": [ - 118, - 2187, - 279, - 2187, - 279, - 2292, - 118, - 2292 - ], - "score": 0.889 - }, - { - "category_id": 2, - "poly": [ - 783, - 82, - 821, - 82, - 821, - 111, - 783, - 111 - ], - "score": 0.869 - }, - { - "category_id": 1, - "poly": [ - 254, - 635, - 456, - 635, - 456, - 673, - 254, - 673 - ], - "score": 0.866 - }, - { - "category_id": 2, - "poly": [ - 128, - 181, - 227, - 181, - 227, - 230, - 128, - 230 - ], - "score": 0.859 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1653, - 4, - 1653, - 39, - 1582, - 39 - ], - "score": 0.839 - }, - { - "category_id": 1, - "poly": [ - 250, - 1731, - 1031, - 1731, - 1031, - 2017, - 250, - 2017 - ], - "score": 0.783 - }, - { - "category_id": 1, - "poly": [ - 1363, - 1653, - 1487, - 1653, - 1487, - 1690, - 1363, - 1690 - ], - "score": 0.761 - }, - { - "category_id": 2, - "poly": [ - 641, - 2073, - 967, - 2073, - 967, - 2111, - 641, - 2111 - ], - "score": 0.528 - }, - { - "category_id": 3, - "poly": [ - 248, - 742, - 611, - 742, - 611, - 1214, - 248, - 1214 - ], - "score": 0.526 - }, - { - "category_id": 1, - "poly": [ - 1361, - 673, - 1488, - 673, - 1488, - 712, - 1361, - 712 - ], - "score": 0.517 - }, - { - "category_id": 2, - "poly": [ - 1361, - 673, - 1488, - 673, - 1488, - 712, - 1361, - 712 - ], - "score": 0.421 - }, - { - "category_id": 0, - "poly": [ - 641, - 2073, - 967, - 2073, - 967, - 2111, - 641, - 2111 - ], - "score": 0.408 - }, - { - "category_id": 3, - "poly": [ - 250, - 1731, - 1031, - 1731, - 1031, - 2017, - 250, - 2017 - ], - "score": 0.272 - }, - { - "category_id": 1, - "poly": [ - 247, - 742, - 356, - 742, - 356, - 1220, - 247, - 1220 - ], - "score": 0.223 - }, - { - "category_id": 1, - "poly": [ - 248, - 742, - 611, - 742, - 611, - 1214, - 248, - 1214 - ], - "score": 0.135 - }, - { - "category_id": 13, - "poly": [ - 996, - 529, - 1018, - 529, - 1018, - 556, - 996, - 556 - ], - "score": 0.64, - "latex": "\\nu" - }, - { - "category_id": 13, - "poly": [ - 345, - 569, - 364, - 569, - 364, - 594, - 345, - 594 - ], - "score": 0.53, - "latex": "r" - }, - { - "category_id": 13, - "poly": [ - 415, - 636, - 454, - 636, - 454, - 669, - 415, - 669 - ], - "score": 0.49, - "latex": "\\theta?" - }, - { - "category_id": 13, - "poly": [ - 794, - 563, - 816, - 563, - 816, - 595, - 794, - 595 - ], - "score": 0.49, - "latex": "\\theta" - }, - { - "category_id": 13, - "poly": [ - 549, - 1035, - 581, - 1035, - 581, - 1048, - 549, - 1048 - ], - "score": 0.48, - "latex": "\\subset" - }, - { - "category_id": 13, - "poly": [ - 1219, - 194, - 1241, - 194, - 1241, - 226, - 1219, - 226 - ], - "score": 0.45, - "latex": "\\theta" - }, - { - "category_id": 13, - "poly": [ - 972, - 1900, - 1008, - 1900, - 1008, - 1923, - 972, - 1923 - ], - "score": 0.25, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 523.0, - 995.0, - 523.0, - 995.0, - 560.0, - 255.0, - 560.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1019.0, - 523.0, - 1426.0, - 523.0, - 1426.0, - 560.0, - 1019.0, - 560.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 562.0, - 344.0, - 562.0, - 344.0, - 600.0, - 254.0, - 600.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 365.0, - 562.0, - 793.0, - 562.0, - 793.0, - 600.0, - 365.0, - 600.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 817.0, - 562.0, - 824.0, - 562.0, - 824.0, - 600.0, - 817.0, - 600.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1287.0, - 1458.0, - 1287.0, - 1458.0, - 1321.0, - 254.0, - 1321.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1322.0, - 676.0, - 1322.0, - 676.0, - 1358.0, - 254.0, - 1358.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1519.0, - 146.0, - 1626.0, - 146.0, - 1626.0, - 169.0, - 1519.0, - 169.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1522.0, - 169.0, - 1624.0, - 169.0, - 1624.0, - 192.0, - 1522.0, - 192.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1553.0, - 190.0, - 1594.0, - 190.0, - 1594.0, - 215.0, - 1553.0, - 215.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1533.0, - 1963.0, - 1575.0, - 1963.0, - 1575.0, - 1996.0, - 1533.0, - 1996.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 1283.0, - 174.0, - 1283.0, - 174.0, - 1317.0, - 141.0, - 1317.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 183.0, - 1286.0, - 213.0, - 1286.0, - 213.0, - 1314.0, - 183.0, - 1314.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 1618.0, - 1308.0, - 1618.0, - 1308.0, - 1653.0, - 256.0, - 1653.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 193.0, - 1218.0, - 193.0, - 1218.0, - 230.0, - 254.0, - 230.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1242.0, - 193.0, - 1248.0, - 193.0, - 1248.0, - 230.0, - 1242.0, - 230.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2266.0, - 221.0, - 2266.0, - 221.0, - 2292.0, - 166.0, - 2292.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 78.0, - 828.0, - 78.0, - 828.0, - 118.0, - 779.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 639.0, - 414.0, - 639.0, - 414.0, - 670.0, - 256.0, - 670.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 142.0, - 192.0, - 170.0, - 192.0, - 170.0, - 222.0, - 142.0, - 222.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 186.0, - 190.0, - 215.0, - 190.0, - 215.0, - 223.0, - 186.0, - 223.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1578.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1578.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 1741.0, - 680.0, - 1741.0, - 680.0, - 1771.0, - 256.0, - 1771.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1819.0, - 705.0, - 1819.0, - 705.0, - 1852.0, - 255.0, - 1852.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1899.0, - 937.0, - 1899.0, - 937.0, - 1932.0, - 255.0, - 1932.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1975.0, - 910.0, - 1975.0, - 910.0, - 2010.0, - 255.0, - 2010.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 1650.0, - 1488.0, - 1650.0, - 1488.0, - 1692.0, - 1363.0, - 1692.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 641.0, - 2076.0, - 965.0, - 2076.0, - 965.0, - 2106.0, - 641.0, - 2106.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 673.0, - 1488.0, - 673.0, - 1488.0, - 712.0, - 1363.0, - 712.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 673.0, - 1488.0, - 673.0, - 1488.0, - 712.0, - 1363.0, - 712.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 641.0, - 2076.0, - 965.0, - 2076.0, - 965.0, - 2106.0, - 641.0, - 2106.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 768.0, - 282.0, - 768.0, - 282.0, - 800.0, - 255.0, - 800.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 802.0, - 340.0, - 802.0, - 340.0, - 827.0, - 315.0, - 827.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 897.0, - 282.0, - 897.0, - 282.0, - 929.0, - 255.0, - 929.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 309.0, - 927.0, - 339.0, - 927.0, - 339.0, - 962.0, - 309.0, - 962.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1021.0, - 284.0, - 1021.0, - 284.0, - 1057.0, - 254.0, - 1057.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 301.0, - 1007.0, - 339.0, - 1007.0, - 339.0, - 1082.0, - 301.0, - 1082.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 1151.0, - 282.0, - 1151.0, - 282.0, - 1182.0, - 255.0, - 1182.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 301.0, - 1121.0, - 337.0, - 1121.0, - 337.0, - 1173.0, - 301.0, - 1173.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 301.0, - 1180.0, - 338.0, - 1180.0, - 338.0, - 1215.0, - 301.0, - 1215.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 290.75, - 747.0, - 360.75, - 747.0, - 360.75, - 786.0, - 290.75, - 786.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 293.75, - 871.0, - 353.75, - 871.0, - 353.75, - 907.0, - 293.75, - 907.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 768.0, - 283.0, - 768.0, - 283.0, - 800.0, - 255.0, - 800.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 803.0, - 339.0, - 803.0, - 339.0, - 825.0, - 317.0, - 825.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 255.0, - 897.0, - 284.0, - 897.0, - 284.0, - 930.0, - 255.0, - 930.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 311.0, - 927.0, - 338.0, - 927.0, - 338.0, - 961.0, - 311.0, - 961.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1021.0, - 285.0, - 1021.0, - 285.0, - 1057.0, - 253.0, - 1057.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 298.0, - 1007.0, - 340.0, - 1007.0, - 340.0, - 1082.0, - 298.0, - 1082.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 300.0, - 1120.0, - 338.0, - 1120.0, - 338.0, - 1163.0, - 300.0, - 1163.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1151.0, - 283.0, - 1151.0, - 283.0, - 1183.0, - 254.0, - 1183.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 298.0, - 1181.0, - 340.0, - 1181.0, - 340.0, - 1215.0, - 298.0, - 1215.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 288.0, - 747.0, - 364.0, - 747.0, - 364.0, - 785.0, - 288.0, - 785.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 293.75, - 870.0, - 353.75, - 870.0, - 353.75, - 908.0, - 293.75, - 908.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 76, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 118, - 2187, - 278, - 2187, - 278, - 2292, - 118, - 2292 - ], - "score": 0.907 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2266, - 1496, - 2266, - 1496, - 2289, - 1331, - 2289 - ], - "score": 0.869 - }, - { - "category_id": 2, - "poly": [ - 784, - 83, - 821, - 83, - 821, - 111, - 784, - 111 - ], - "score": 0.853 - }, - { - "category_id": 2, - "poly": [ - 1582, - 5, - 1652, - 5, - 1652, - 38, - 1582, - 38 - ], - "score": 0.807 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1625, - 146, - 1625, - 214, - 1516, - 214 - ], - "score": 0.784 - }, - { - "category_id": 3, - "poly": [ - 103, - 148, - 1501, - 148, - 1501, - 2136, - 103, - 2136 - ], - "score": 0.567 - }, - { - "category_id": 1, - "poly": [ - 480, - 184, - 1129, - 184, - 1129, - 224, - 480, - 224 - ], - "score": 0.393 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1625, - 146, - 1625, - 214, - 1516, - 214 - ], - "score": 0.341 - }, - { - "category_id": 15, - "poly": [ - 162.0, - 2263.0, - 226.0, - 2263.0, - 226.0, - 2295.0, - 162.0, - 2295.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 781.0, - 80.0, - 827.0, - 80.0, - 827.0, - 116.0, - 781.0, - 116.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1580.0, - 5.0, - 1656.0, - 5.0, - 1656.0, - 41.0, - 1580.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1624.0, - 147.0, - 1624.0, - 171.0, - 1517.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1621.0, - 170.0, - 1621.0, - 191.0, - 1520.0, - 191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1551.0, - 190.0, - 1592.0, - 190.0, - 1592.0, - 216.0, - 1551.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 484.0, - 188.0, - 1122.0, - 188.0, - 1122.0, - 222.0, - 484.0, - 222.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1624.0, - 147.0, - 1624.0, - 171.0, - 1517.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 170.0, - 1621.0, - 170.0, - 1621.0, - 191.0, - 1520.0, - 191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1551.0, - 190.0, - 1592.0, - 190.0, - 1592.0, - 216.0, - 1551.0, - 216.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 77, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 133, - 180, - 1467, - 180, - 1467, - 2067, - 133, - 2067 - ], - "score": 0.951, - "html": "
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
" - }, - { - "category_id": 2, - "poly": [ - 119, - 2186, - 279, - 2186, - 279, - 2292, - 119, - 2292 - ], - "score": 0.922 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2266, - 1496, - 2266, - 1496, - 2289, - 1331, - 2289 - ], - "score": 0.884 - }, - { - "category_id": 2, - "poly": [ - 784, - 83, - 821, - 83, - 821, - 111, - 784, - 111 - ], - "score": 0.856 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1625, - 146, - 1625, - 214, - 1516, - 214 - ], - "score": 0.835 - }, - { - "category_id": 2, - "poly": [ - 1582, - 5, - 1652, - 5, - 1652, - 38, - 1582, - 38 - ], - "score": 0.82 - }, - { - "category_id": 15, - "poly": [ - 167.0, - 2268.0, - 188.0, - 2268.0, - 188.0, - 2289.0, - 167.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 193.0, - 2267.0, - 222.0, - 2267.0, - 222.0, - 2290.0, - 193.0, - 2290.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 827.0, - 78.0, - 827.0, - 117.0, - 780.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 145.0, - 1625.0, - 145.0, - 1625.0, - 172.0, - 1517.0, - 172.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1521.0, - 171.0, - 1621.0, - 171.0, - 1621.0, - 194.0, - 1521.0, - 194.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1552.0, - 192.0, - 1592.0, - 192.0, - 1592.0, - 217.0, - 1552.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1580.0, - 5.0, - 1656.0, - 5.0, - 1656.0, - 41.0, - 1580.0, - 41.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 78, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 136, - 173, - 1466, - 173, - 1466, - 2106, - 136, - 2106 - ], - "score": 0.947, - "html": "
Question numberAdditional page, if required. Write the question numbers in the left-hand margin.
Copyrightinformation
For confidentiality purposes, allacknowledgements of third-party copyright material are published in a separate booklet.This booklet is published aftereach live examinationseries and is availableforfree download fromwww.aqa.org.uk.
Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the
" - }, - { - "category_id": 2, - "poly": [ - 1040, - 2119, - 1502, - 2119, - 1502, - 2227, - 1040, - 2227 - ], - "score": 0.919 - }, - { - "category_id": 2, - "poly": [ - 119, - 2187, - 278, - 2187, - 278, - 2291, - 119, - 2291 - ], - "score": 0.915 - }, - { - "category_id": 2, - "poly": [ - 1516, - 146, - 1625, - 146, - 1625, - 213, - 1516, - 213 - ], - "score": 0.882 - }, - { - "category_id": 2, - "poly": [ - 1331, - 2266, - 1496, - 2266, - 1496, - 2289, - 1331, - 2289 - ], - "score": 0.873 - }, - { - "category_id": 2, - "poly": [ - 784, - 83, - 822, - 83, - 822, - 110, - 784, - 110 - ], - "score": 0.849 - }, - { - "category_id": 2, - "poly": [ - 1582, - 5, - 1652, - 5, - 1652, - 38, - 1582, - 38 - ], - "score": 0.824 - }, - { - "category_id": 13, - "poly": [ - 384, - 2024, - 404, - 2024, - 404, - 2045, - 384, - 2045 - ], - "score": 0.47, - "latex": "\\circledcirc" - }, - { - "category_id": 15, - "poly": [ - 1084.0, - 2196.0, - 1377.0, - 2196.0, - 1377.0, - 2225.0, - 1084.0, - 2225.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 168.0, - 2270.0, - 186.0, - 2270.0, - 186.0, - 2288.0, - 168.0, - 2288.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 190.0, - 2267.0, - 223.0, - 2267.0, - 223.0, - 2291.0, - 190.0, - 2291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 147.0, - 1625.0, - 147.0, - 1625.0, - 170.0, - 1517.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1521.0, - 170.0, - 1621.0, - 170.0, - 1621.0, - 193.0, - 1521.0, - 193.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1552.0, - 190.0, - 1592.0, - 190.0, - 1592.0, - 216.0, - 1552.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1333.0, - 2268.0, - 1498.0, - 2268.0, - 1498.0, - 2289.0, - 1333.0, - 2289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 827.0, - 78.0, - 827.0, - 117.0, - 780.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1580.0, - 5.0, - 1656.0, - 5.0, - 1656.0, - 41.0, - 1580.0, - 41.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 79, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 110, - 982, - 358, - 982, - 358, - 1022, - 110, - 1022 - ], - "score": 0.865 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1651, - 4, - 1651, - 39, - 1582, - 39 - ], - "score": 0.805 - }, - { - "category_id": 1, - "poly": [ - 113, - 899, - 297, - 899, - 297, - 946, - 113, - 946 - ], - "score": 0.79 - }, - { - "category_id": 0, - "poly": [ - 112, - 829, - 344, - 829, - 344, - 872, - 112, - 872 - ], - "score": 0.78 - }, - { - "category_id": 1, - "poly": [ - 117, - 2131, - 429, - 2131, - 429, - 2175, - 117, - 2175 - ], - "score": 0.479 - }, - { - "category_id": 1, - "poly": [ - 108, - 441, - 416, - 441, - 416, - 797, - 108, - 797 - ], - "score": 0.465 - }, - { - "category_id": 2, - "poly": [ - 117, - 2131, - 429, - 2131, - 429, - 2175, - 117, - 2175 - ], - "score": 0.399 - }, - { - "category_id": 1, - "poly": [ - 110, - 72, - 481, - 72, - 481, - 210, - 110, - 210 - ], - "score": 0.399 - }, - { - "category_id": 0, - "poly": [ - 108, - 441, - 416, - 441, - 416, - 797, - 108, - 797 - ], - "score": 0.281 - }, - { - "category_id": 1, - "poly": [ - 114, - 745, - 265, - 745, - 265, - 794, - 114, - 794 - ], - "score": 0.201 - }, - { - "category_id": 0, - "poly": [ - 110, - 72, - 481, - 72, - 481, - 210, - 110, - 210 - ], - "score": 0.159 - }, - { - "category_id": 3, - "poly": [ - 110, - 72, - 481, - 72, - 481, - 210, - 110, - 210 - ], - "score": 0.13 - }, - { - "category_id": 2, - "poly": [ - 110, - 72, - 481, - 72, - 481, - 210, - 110, - 210 - ], - "score": 0.128 - }, - { - "category_id": 15, - "poly": [ - 114.0, - 987.0, - 357.0, - 987.0, - 357.0, - 1017.0, - 114.0, - 1017.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1580.0, - 5.0, - 1655.0, - 5.0, - 1655.0, - 42.0, - 1580.0, - 42.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 905.0, - 293.0, - 905.0, - 293.0, - 941.0, - 113.0, - 941.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 833.0, - 341.0, - 833.0, - 341.0, - 868.0, - 115.0, - 868.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 2134.0, - 428.0, - 2134.0, - 428.0, - 2172.0, - 118.0, - 2172.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 455.0, - 407.0, - 455.0, - 407.0, - 517.0, - 115.0, - 517.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 553.0, - 404.0, - 553.0, - 404.0, - 615.0, - 117.0, - 615.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 644.0, - 356.0, - 644.0, - 356.0, - 718.0, - 116.0, - 718.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 111.0, - 745.0, - 267.0, - 745.0, - 267.0, - 794.0, - 111.0, - 794.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 2134.0, - 428.0, - 2134.0, - 428.0, - 2172.0, - 118.0, - 2172.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 93.0, - 465.0, - 93.0, - 465.0, - 204.0, - 113.0, - 204.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 455.0, - 407.0, - 455.0, - 407.0, - 517.0, - 115.0, - 517.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 553.0, - 404.0, - 553.0, - 404.0, - 615.0, - 117.0, - 615.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 644.0, - 356.0, - 644.0, - 356.0, - 718.0, - 116.0, - 718.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 111.0, - 745.0, - 267.0, - 745.0, - 267.0, - 794.0, - 111.0, - 794.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 111.0, - 746.0, - 267.0, - 746.0, - 267.0, - 795.0, - 111.0, - 795.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 93.0, - 465.0, - 93.0, - 465.0, - 204.0, - 113.0, - 204.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 93.0, - 465.0, - 93.0, - 465.0, - 204.0, - 113.0, - 204.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 80, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 119, - 597, - 1503, - 597, - 1503, - 778, - 119, - 778 - ], - "score": 0.973 - }, - { - "category_id": 1, - "poly": [ - 117, - 234, - 1513, - 234, - 1513, - 561, - 117, - 561 - ], - "score": 0.951 - }, - { - "category_id": 1, - "poly": [ - 119, - 849, - 1002, - 849, - 1002, - 886, - 119, - 886 - ], - "score": 0.904 - }, - { - "category_id": 0, - "poly": [ - 117, - 2045, - 338, - 2045, - 338, - 2072, - 117, - 2072 - ], - "score": 0.901 - }, - { - "category_id": 2, - "poly": [ - 691, - 99, - 1537, - 99, - 1537, - 135, - 691, - 135 - ], - "score": 0.865 - }, - { - "category_id": 1, - "poly": [ - 118, - 2154, - 641, - 2154, - 641, - 2178, - 118, - 2178 - ], - "score": 0.84 - }, - { - "category_id": 2, - "poly": [ - 1583, - 5, - 1651, - 5, - 1651, - 38, - 1583, - 38 - ], - "score": 0.828 - }, - { - "category_id": 2, - "poly": [ - 116, - 2216, - 132, - 2216, - 132, - 2237, - 116, - 2237 - ], - "score": 0.781 - }, - { - "category_id": 1, - "poly": [ - 119, - 2087, - 1533, - 2087, - 1533, - 2135, - 119, - 2135 - ], - "score": 0.535 - }, - { - "category_id": 2, - "poly": [ - 119, - 2087, - 1533, - 2087, - 1533, - 2135, - 119, - 2135 - ], - "score": 0.368 - }, - { - "category_id": 1, - "poly": [ - 118, - 235, - 1516, - 235, - 1516, - 560, - 118, - 560 - ], - "score": 0.114 - }, - { - "category_id": 13, - "poly": [ - 204, - 2155, - 223, - 2155, - 223, - 2175, - 204, - 2175 - ], - "score": 0.61, - "latex": "\\circledcirc" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 601.0, - 1487.0, - 601.0, - 1487.0, - 633.0, - 117.0, - 633.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 638.0, - 1456.0, - 638.0, - 1456.0, - 670.0, - 117.0, - 670.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 673.0, - 1428.0, - 673.0, - 1428.0, - 709.0, - 115.0, - 709.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 711.0, - 1504.0, - 711.0, - 1504.0, - 743.0, - 115.0, - 743.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 748.0, - 209.0, - 748.0, - 209.0, - 779.0, - 112.0, - 779.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 237.0, - 1518.0, - 237.0, - 1518.0, - 274.0, - 114.0, - 274.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 276.0, - 1485.0, - 276.0, - 1485.0, - 309.0, - 117.0, - 309.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 312.0, - 1519.0, - 312.0, - 1519.0, - 344.0, - 117.0, - 344.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 349.0, - 1452.0, - 349.0, - 1452.0, - 381.0, - 115.0, - 381.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 384.0, - 1477.0, - 384.0, - 1477.0, - 417.0, - 115.0, - 417.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 420.0, - 1488.0, - 420.0, - 1488.0, - 452.0, - 115.0, - 452.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 455.0, - 1410.0, - 455.0, - 1410.0, - 491.0, - 112.0, - 491.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 491.0, - 1490.0, - 491.0, - 1490.0, - 528.0, - 114.0, - 528.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 529.0, - 857.0, - 529.0, - 857.0, - 562.0, - 115.0, - 562.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 851.0, - 1002.0, - 851.0, - 1002.0, - 887.0, - 116.0, - 887.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 2047.0, - 342.0, - 2047.0, - 342.0, - 2074.0, - 116.0, - 2074.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 693.0, - 101.0, - 1536.0, - 101.0, - 1536.0, - 131.0, - 693.0, - 131.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 2155.0, - 203.0, - 2155.0, - 203.0, - 2180.0, - 117.0, - 2180.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 224.0, - 2155.0, - 640.0, - 2155.0, - 640.0, - 2180.0, - 224.0, - 2180.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 5.0, - 1654.0, - 5.0, - 1654.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 2213.0, - 138.0, - 2213.0, - 138.0, - 2244.0, - 113.0, - 2244.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 2086.0, - 1529.0, - 2086.0, - 1529.0, - 2111.0, - 116.0, - 2111.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 2111.0, - 399.0, - 2111.0, - 399.0, - 2136.0, - 116.0, - 2136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 2086.0, - 1529.0, - 2086.0, - 1529.0, - 2111.0, - 116.0, - 2111.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 2111.0, - 399.0, - 2111.0, - 399.0, - 2136.0, - 116.0, - 2136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 235.0, - 1518.0, - 235.0, - 1518.0, - 273.0, - 113.0, - 273.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 275.0, - 1485.0, - 275.0, - 1485.0, - 311.0, - 116.0, - 311.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 313.0, - 1518.0, - 313.0, - 1518.0, - 344.0, - 118.0, - 344.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 349.0, - 1449.0, - 349.0, - 1449.0, - 381.0, - 116.0, - 381.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 383.0, - 1480.0, - 383.0, - 1480.0, - 421.0, - 113.0, - 421.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 419.0, - 1491.0, - 419.0, - 1491.0, - 454.0, - 115.0, - 454.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 456.0, - 1408.0, - 456.0, - 1408.0, - 492.0, - 115.0, - 492.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 492.0, - 1483.0, - 492.0, - 1483.0, - 524.0, - 116.0, - 524.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 527.0, - 859.0, - 527.0, - 859.0, - 564.0, - 115.0, - 564.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 81, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 116, - 904, - 1532, - 904, - 1532, - 1121, - 116, - 1121 - ], - "score": 0.979 - }, - { - "category_id": 1, - "poly": [ - 118, - 1232, - 1527, - 1232, - 1527, - 1449, - 118, - 1449 - ], - "score": 0.979 - }, - { - "category_id": 1, - "poly": [ - 117, - 651, - 1524, - 651, - 1524, - 867, - 117, - 867 - ], - "score": 0.977 - }, - { - "category_id": 1, - "poly": [ - 119, - 1593, - 1457, - 1593, - 1457, - 1702, - 119, - 1702 - ], - "score": 0.969 - }, - { - "category_id": 1, - "poly": [ - 113, - 359, - 1459, - 359, - 1459, - 432, - 113, - 432 - ], - "score": 0.948 - }, - { - "category_id": 0, - "poly": [ - 117, - 272, - 902, - 272, - 902, - 324, - 117, - 324 - ], - "score": 0.942 - }, - { - "category_id": 1, - "poly": [ - 111, - 1486, - 1526, - 1486, - 1526, - 1558, - 111, - 1558 - ], - "score": 0.941 - }, - { - "category_id": 1, - "poly": [ - 112, - 468, - 1495, - 468, - 1495, - 541, - 112, - 541 - ], - "score": 0.941 - }, - { - "category_id": 1, - "poly": [ - 116, - 1737, - 1350, - 1737, - 1350, - 1775, - 116, - 1775 - ], - "score": 0.911 - }, - { - "category_id": 0, - "poly": [ - 120, - 1152, - 543, - 1152, - 543, - 1195, - 120, - 1195 - ], - "score": 0.896 - }, - { - "category_id": 0, - "poly": [ - 118, - 571, - 533, - 571, - 533, - 616, - 118, - 616 - ], - "score": 0.895 - }, - { - "category_id": 2, - "poly": [ - 689, - 99, - 1539, - 99, - 1539, - 135, - 689, - 135 - ], - "score": 0.868 - }, - { - "category_id": 2, - "poly": [ - 1583, - 5, - 1651, - 5, - 1651, - 38, - 1583, - 38 - ], - "score": 0.832 - }, - { - "category_id": 2, - "poly": [ - 1520, - 2215, - 1538, - 2215, - 1538, - 2238, - 1520, - 2238 - ], - "score": 0.801 - }, - { - "category_id": 2, - "poly": [ - 1520, - 2215, - 1538, - 2215, - 1538, - 2237, - 1520, - 2237 - ], - "score": 0.208 - }, - { - "category_id": 15, - "poly": [ - 117.0, - 907.0, - 1516.0, - 907.0, - 1516.0, - 943.0, - 117.0, - 943.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 943.0, - 1506.0, - 943.0, - 1506.0, - 979.0, - 115.0, - 979.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 979.0, - 1460.0, - 979.0, - 1460.0, - 1016.0, - 115.0, - 1016.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 1016.0, - 1535.0, - 1016.0, - 1535.0, - 1050.0, - 113.0, - 1050.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1054.0, - 1494.0, - 1054.0, - 1494.0, - 1085.0, - 117.0, - 1085.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 1087.0, - 1411.0, - 1087.0, - 1411.0, - 1123.0, - 115.0, - 1123.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1235.0, - 1473.0, - 1235.0, - 1473.0, - 1271.0, - 117.0, - 1271.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1273.0, - 1517.0, - 1273.0, - 1517.0, - 1304.0, - 117.0, - 1304.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1309.0, - 1484.0, - 1309.0, - 1484.0, - 1340.0, - 117.0, - 1340.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1345.0, - 1500.0, - 1345.0, - 1500.0, - 1377.0, - 117.0, - 1377.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1382.0, - 1530.0, - 1382.0, - 1530.0, - 1413.0, - 117.0, - 1413.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 1418.0, - 1399.0, - 1418.0, - 1399.0, - 1449.0, - 115.0, - 1449.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 654.0, - 1521.0, - 654.0, - 1521.0, - 685.0, - 119.0, - 685.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 688.0, - 1521.0, - 688.0, - 1521.0, - 726.0, - 114.0, - 726.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 724.0, - 1474.0, - 724.0, - 1474.0, - 762.0, - 114.0, - 762.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 764.0, - 1488.0, - 764.0, - 1488.0, - 795.0, - 117.0, - 795.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 799.0, - 1483.0, - 799.0, - 1483.0, - 835.0, - 116.0, - 835.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 833.0, - 566.0, - 833.0, - 566.0, - 871.0, - 113.0, - 871.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1595.0, - 1452.0, - 1595.0, - 1452.0, - 1631.0, - 117.0, - 1631.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 1631.0, - 1420.0, - 1631.0, - 1420.0, - 1667.0, - 115.0, - 1667.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 1667.0, - 1227.0, - 1667.0, - 1227.0, - 1705.0, - 112.0, - 1705.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 364.0, - 1447.0, - 364.0, - 1447.0, - 394.0, - 117.0, - 394.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 400.0, - 1459.0, - 400.0, - 1459.0, - 433.0, - 117.0, - 433.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 275.0, - 900.0, - 275.0, - 900.0, - 325.0, - 116.0, - 325.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 1484.0, - 1522.0, - 1484.0, - 1522.0, - 1526.0, - 115.0, - 1526.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 1526.0, - 919.0, - 1526.0, - 919.0, - 1560.0, - 118.0, - 1560.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 470.0, - 1491.0, - 470.0, - 1491.0, - 510.0, - 116.0, - 510.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 508.0, - 1414.0, - 508.0, - 1414.0, - 542.0, - 116.0, - 542.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1742.0, - 1347.0, - 1742.0, - 1347.0, - 1773.0, - 117.0, - 1773.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 1156.0, - 544.0, - 1156.0, - 544.0, - 1195.0, - 118.0, - 1195.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 577.0, - 533.0, - 577.0, - 533.0, - 614.0, - 117.0, - 614.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 693.0, - 101.0, - 1536.0, - 101.0, - 1536.0, - 131.0, - 693.0, - 131.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 5.0, - 1654.0, - 5.0, - 1654.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1518.0, - 2213.0, - 1543.0, - 2213.0, - 1543.0, - 2244.0, - 1518.0, - 2244.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 2215.0, - 1542.0, - 2215.0, - 1542.0, - 2243.0, - 1520.0, - 2243.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 82, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 2267, - 5, - 2337, - 5, - 2337, - 39, - 2267, - 39 - ], - "score": 0.834 - }, - { - "category_id": 2, - "poly": [ - 153, - 1529, - 173, - 1529, - 173, - 1553, - 153, - 1553 - ], - "score": 0.823 - }, - { - "category_id": 2, - "poly": [ - 1254, - 97, - 2106, - 97, - 2106, - 136, - 1254, - 136 - ], - "score": 0.737 - }, - { - "category_id": 5, - "poly": [ - 102, - 341, - 2158, - 341, - 2158, - 1328, - 102, - 1328 - ], - "score": 0.624, - "html": "
01.1lodine-131 has 6 more neutrons (than iodine-125) Condone iodine-131 has 78 neutrons and iodine-125 has 72 neutrons. Condone “6 fewer/less neutrons than iodine-131\" Do not credit nucleons. Suggestion of difference in number of protons loses the mark.
01.2131 (nucleons) If more than one number is given, the nucleon number must be explicit. Accept reverse arguments.1
01.3The tellurium has 1 more neutron (than iodine-125) v The tellurium has 1 fewer proton (than iodine-125) Accept telluriumhas73neutrons Accepttelluriumhas52protons Condone “\"proton number\". Condone \"number of neutrons/protons have increased/decreasedbyone\" Treat any nuclear reactions as neutral. Discussion of electrons in nucleus scores max 1. Accept answer in terms of quarks (one more down and one fewer up). Ignore references to nucleons/mass number.2
" - }, - { - "category_id": 5, - "poly": [ - 82, - 648, - 2177, - 648, - 2177, - 748, - 82, - 748 - ], - "score": 0.618, - "html": "
01.2131 (nucleons) If more than one number is given, the nucleon number must be explicit.
" - }, - { - "category_id": 5, - "poly": [ - 95, - 241, - 2175, - 241, - 2175, - 326, - 95, - 326 - ], - "score": 0.585, - "html": "
QuestionAnswersAdditional Comments/GuidelinesMark
" - }, - { - "category_id": 5, - "poly": [ - 71, - 768, - 2181, - 768, - 2181, - 1346, - 71, - 1346 - ], - "score": 0.454, - "html": "
The tellurium has 1 more neutron (than iodine-125) v The tellurium has 1 fewer proton (than iodine-125) 01.3Accept reverse arguments. Accept tellurium has 73 neutrons Accepttelluriumhas52protons Condone\"protonnumber\". Condone\"numberofneutrons/protonshave increased/decreasedbyone 2
" - }, - { - "category_id": 5, - "poly": [ - 84, - 344, - 2176, - 344, - 2176, - 628, - 84, - 628 - ], - "score": 0.291, - "html": "
01.1lodine-131has6moreneutrons (than iodine-125)√Condoneiodine-131has78neutronsand iodine-125has72neutrons.1
Condone\"6 fewer/less neutrons than iodine-131\" Do not credit nucleons. Suggestionofdifferenceinnumberofprotonsloses
" - }, - { - "category_id": 13, - "poly": [ - 988, - 800, - 1021, - 800, - 1021, - 831, - 988, - 831 - ], - "score": 0.27, - "latex": "\\checkmark" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 4.0, - 2339.0, - 4.0, - 2339.0, - 41.0, - 2265.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 1532.0, - 173.0, - 1532.0, - 173.0, - 1554.0, - 155.0, - 1554.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1261.0, - 101.0, - 2102.0, - 101.0, - 2102.0, - 132.0, - 1261.0, - 132.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 83, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 54, - 228, - 2238, - 228, - 2238, - 1532, - 54, - 1532 - ], - "score": 0.93, - "html": "
AAny 3.
beta-decay: (electron and) anti-neutrino released; (internal conversion: only electron released);Treat each difference, as delimited by the answer book, as a single independent mark.
CB (both statements required for mark) internalconversion:allelectronsreleasedwillhavesimilar/discrete energies/momenta beta-decay: electrons will have a range of energies/momenta vContradictionwithin a difference cancels the mark for that difference (on list basis). For a contradiction between separate differences treat the incorrect differenceasneutral.
01.4(internal conversion: no change in constituents of nucleus/element does not change)Allow: F (both statements required for mark)
beta-decay: neutron converted to proton(allow in terms of quarks)/element changes (to one with (one) more p, different Z, different proton number/different atomic number)) Internal conversion: may be accompanied by X-ray photon Beta-decay: may be accompanied by gamma photonv3
D (internal conversion: orbital electron lost)Allow“shells\"for“orbitals\".
beta-decay: electron comes from nucleus / no change in orbital electrons v
Do not award separate marks for force and
E (both statements required for mark) internal conversion: mediated by electromagnetic force / virtualexchangeparticle Condone \"W boson\" or \"W particle\" but not W+ and
photons
W
beta-decay: mediated by weak interaction / W √
Total
7
" - }, - { - "category_id": 2, - "poly": [ - 1255, - 98, - 2106, - 98, - 2106, - 136, - 1255, - 136 - ], - "score": 0.84 - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2337, - 6, - 2337, - 39, - 2267, - 39 - ], - "score": 0.838 - }, - { - "category_id": 2, - "poly": [ - 2086, - 1529, - 2107, - 1529, - 2107, - 1555, - 2086, - 1555 - ], - "score": 0.798 - }, - { - "category_id": 13, - "poly": [ - 1851, - 1269, - 1898, - 1269, - 1898, - 1303, - 1851, - 1303 - ], - "score": 0.69, - "latex": "\\mathsf{W}^{+}" - }, - { - "category_id": 15, - "poly": [ - 1260.0, - 101.0, - 2103.0, - 101.0, - 2103.0, - 131.0, - 1260.0, - 131.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 5.0, - 2339.0, - 5.0, - 2339.0, - 40.0, - 2265.0, - 40.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2088.0, - 1530.0, - 2107.0, - 1530.0, - 2107.0, - 1555.0, - 2088.0, - 1555.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 84, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 80, - 431, - 2175, - 431, - 2175, - 1477, - 80, - 1477 - ], - "score": 0.956, - "html": "
Treat each point independently. Prism material/it has/they have same refractive index / optical density as windscreen vCondone'it has'or‘they have'or just'same’
Allow\"no change of speed between prism and windscreen\" Allow \"made from same material\"
02.2 Prism fitted to windscreen without gaps vDo not allow“same refractive index between them\" Treat“monochromatic\"asneutral Allow\"contact between prism and windscreen is clean\" etc. Allow \"touching the windscreen\"2
Condone suggestion that any bonding material has same refractive index (as prism and windscreen). Do not accept 'no boundary'
(1) = (990) =() = 02.3 each boundary) The first mark is for the calculation. The second is for the discussion but is contingent on obtaining a value for C.2
" - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2337, - 6, - 2337, - 39, - 2267, - 39 - ], - "score": 0.836 - }, - { - "category_id": 2, - "poly": [ - 152, - 1528, - 174, - 1528, - 174, - 1555, - 152, - 1555 - ], - "score": 0.796 - }, - { - "category_id": 5, - "poly": [ - 78, - 206, - 2177, - 206, - 2177, - 292, - 78, - 292 - ], - "score": 0.753, - "html": "
QuestionAnswersAdditional Comments/GuidelinesMark
" - }, - { - "category_id": 5, - "poly": [ - 89, - 311, - 2183, - 311, - 2183, - 479, - 89, - 479 - ], - "score": 0.501, - "html": "
Ray enters (prism) along normal v 02.1Allow normal explained eg at right angles to surface Accept “angle of incidence is O\".
" - }, - { - "category_id": 0, - "poly": [ - 1255, - 97, - 2106, - 97, - 2106, - 136, - 1255, - 136 - ], - "score": 0.462 - }, - { - "category_id": 5, - "poly": [ - 77, - 1144, - 2177, - 1144, - 2177, - 1463, - 77, - 1463 - ], - "score": 0.334, - "html": "
=(=()=The first mark is for the calculation.
02.345° > critical angle / 41.1° resulting in total internal reflection / tir (at eachboundary)The second isfor the discussionbut is contingent 2 onobtainingavalueforC. Ecffor anyC<45°
" - }, - { - "category_id": 2, - "poly": [ - 1255, - 97, - 2106, - 97, - 2106, - 136, - 1255, - 136 - ], - "score": 0.287 - }, - { - "category_id": 13, - "poly": [ - 1424, - 1391, - 1531, - 1391, - 1531, - 1425, - 1424, - 1425 - ], - "score": 0.83, - "latex": "C<45^{\\circ}" - }, - { - "category_id": 13, - "poly": [ - 556, - 1297, - 652, - 1297, - 652, - 1332, - 556, - 1332 - ], - "score": 0.64, - "latex": "/41.1^{\\circ}" - }, - { - "category_id": 13, - "poly": [ - 292, - 1180, - 346, - 1180, - 346, - 1213, - 292, - 1213 - ], - "score": 0.56, - "latex": "{\\mathfrak{C}}=" - }, - { - "category_id": 13, - "poly": [ - 547, - 1183, - 574, - 1183, - 574, - 1209, - 547, - 1209 - ], - "score": 0.47, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 289, - 1298, - 378, - 1298, - 378, - 1331, - 289, - 1331 - ], - "score": 0.43, - "latex": "45^{\\circ}~>" - }, - { - "category_id": 13, - "poly": [ - 1664, - 396, - 1695, - 396, - 1695, - 428, - 1664, - 428 - ], - "score": 0.4, - "latex": "0\"" - }, - { - "category_id": 13, - "poly": [ - 1596, - 1333, - 1622, - 1333, - 1622, - 1365, - 1596, - 1365 - ], - "score": 0.33, - "latex": "c" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 5.0, - 2339.0, - 5.0, - 2339.0, - 40.0, - 2265.0, - 40.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 153.0, - 1530.0, - 175.0, - 1530.0, - 175.0, - 1558.0, - 153.0, - 1558.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1260.0, - 101.0, - 2103.0, - 101.0, - 2103.0, - 132.0, - 1260.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1260.0, - 101.0, - 2103.0, - 101.0, - 2103.0, - 132.0, - 1260.0, - 132.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 85, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 87, - 227, - 2170, - 227, - 2170, - 1484, - 87, - 1484 - ], - "score": 0.956, - "html": "
Do not allow “angle of incidence> critical angle\" on its own.
02.4Calculation of critical angle at glass-water boundary (61.0°) OR Calculation of possible n from glass to water (0.707) or absolute n for glass (1.88) OR Calculation of angle of refraction in water (53.9°) 2
So total internal reflection no longer takes place OR some light escapes/refracts (into water) / less light reflects v (Less light stays within windscreen so less light detected at sensor)Do not allow suggestion that TiR occurs at critical angle/when angle of incidence=critical angle. Do not allow \"ray/all the light escapes/refracts\" or \"no light reflects\" or \"less TiR\". Do not condone “total internal refraction/diffraction'
02.5Statement of effect of change in n on the path direction v (Sensible reference to the variation of a few per cent) leads to the idea that change is unlikely to be significant vEg for MP1 Light may change direction inside windscreen Light may change direction at a windscreen boundary Eg for MP2 Variation too small to deviate significantly withinwindscreen-internaleffect VariationtoosmalltoaffecttiratAwithoutMax 2
" - }, - { - "category_id": 5, - "poly": [ - 89, - 136, - 2165, - 136, - 2165, - 362, - 89, - 362 - ], - "score": 0.857, - "html": "
Accept clear reference to angle at point A in place
of45°statement. Do not allow “angle of incidence> critical angle\" on
" - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2337, - 6, - 2337, - 39, - 2267, - 39 - ], - "score": 0.836 - }, - { - "category_id": 2, - "poly": [ - 2086, - 1528, - 2106, - 1528, - 2106, - 1553, - 2086, - 1553 - ], - "score": 0.816 - }, - { - "category_id": 2, - "poly": [ - 1256, - 97, - 2106, - 97, - 2106, - 135, - 1256, - 135 - ], - "score": 0.668 - }, - { - "category_id": 5, - "poly": [ - 77, - 1060, - 2187, - 1060, - 2187, - 1480, - 77, - 1480 - ], - "score": 0.255, - "html": "
02.5StatementofeffectofchangeinnonthepathdirectionvEg for MP1
Light may change direction inside windscreen Light may change direction at a windscreen
boundary (Sensiblereferencetothevariationofafewpercent)leadstothe Eg for MP2 idea that change is unlikely to be significant √ VariationtoosmalltodeviatesignificantlyMax 2
" - }, - { - "category_id": 6, - "poly": [ - 1256, - 97, - 2106, - 97, - 2106, - 135, - 1256, - 135 - ], - "score": 0.124 - }, - { - "category_id": 13, - "poly": [ - 1301, - 195, - 1353, - 195, - 1353, - 227, - 1301, - 227 - ], - "score": 0.67, - "latex": "45^{\\circ}" - }, - { - "category_id": 13, - "poly": [ - 1681, - 821, - 1701, - 821, - 1701, - 842, - 1681, - 842 - ], - "score": 0.46, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 1162, - 526, - 1185, - 526, - 1185, - 552, - 1162, - 552 - ], - "score": 0.42, - "latex": "n" - }, - { - "category_id": 13, - "poly": [ - 854, - 671, - 983, - 671, - 983, - 709, - 854, - 709 - ], - "score": 0.42, - "latex": "(53.9^{\\circ})\\bigstar" - }, - { - "category_id": 13, - "poly": [ - 887, - 1335, - 917, - 1335, - 917, - 1364, - 887, - 1364 - ], - "score": 0.37, - "latex": "\\checkmark" - }, - { - "category_id": 13, - "poly": [ - 730, - 1097, - 755, - 1097, - 755, - 1125, - 730, - 1125 - ], - "score": 0.33, - "latex": "n" - }, - { - "category_id": 13, - "poly": [ - 604, - 526, - 628, - 526, - 628, - 553, - 604, - 553 - ], - "score": 0.27, - "latex": "n" - }, - { - "category_id": 13, - "poly": [ - 1005, - 414, - 1098, - 414, - 1098, - 453, - 1005, - 453 - ], - "score": 0.27, - "latex": "(61.0^{\\circ})" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 5.0, - 2339.0, - 5.0, - 2339.0, - 40.0, - 2265.0, - 40.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2084.0, - 1529.0, - 2109.0, - 1529.0, - 2109.0, - 1559.0, - 2084.0, - 1559.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1260.0, - 101.0, - 2103.0, - 101.0, - 2103.0, - 131.0, - 1260.0, - 131.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1260.0, - 101.0, - 2103.0, - 101.0, - 2103.0, - 131.0, - 1260.0, - 131.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 86, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 39, - 135, - 2192, - 135, - 2192, - 448, - 39, - 448 - ], - "score": 0.968, - "html": "
droplet-boundaryeffect Variationtoosmalltosignificantlyaffect transmissionatAwithdroplet-boundary effect Allow discussions that may cause a difference, eg
thereisasummativeeffectfrommultiplereflections etc
" - }, - { - "category_id": 2, - "poly": [ - 2268, - 6, - 2337, - 6, - 2337, - 39, - 2268, - 39 - ], - "score": 0.84 - }, - { - "category_id": 2, - "poly": [ - 154, - 1530, - 172, - 1530, - 172, - 1552, - 154, - 1552 - ], - "score": 0.827 - }, - { - "category_id": 2, - "poly": [ - 1256, - 97, - 2106, - 97, - 2106, - 135, - 1256, - 135 - ], - "score": 0.708 - }, - { - "category_id": 15, - "poly": [ - 2264.0, - 5.0, - 2339.0, - 5.0, - 2339.0, - 40.0, - 2264.0, - 40.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 153.0, - 1530.0, - 175.0, - 1530.0, - 175.0, - 1558.0, - 153.0, - 1558.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1260.0, - 101.0, - 2103.0, - 101.0, - 2103.0, - 131.0, - 1260.0, - 131.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 87, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 86, - 243, - 2174, - 243, - 2174, - 1159, - 86, - 1159 - ], - "score": 0.97, - "html": "
More sensitive because... more likely to encounter/detectwater dropORwill encountermore water drops bigger decrease in light intensity, so more sensitive to rain v 02.6Allow any 2 comments taken from list . Theremust beasense of whether the comment relatestoanimprovementordecreasein sensitivity.Max 2
Treat as list; mark 1 and 2 independently. Allowideaoflargerarea
Do not allow a response that discusses travel time of ray.
Total11
" - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2337, - 6, - 2337, - 39, - 2267, - 39 - ], - "score": 0.832 - }, - { - "category_id": 2, - "poly": [ - 2086, - 1529, - 2106, - 1529, - 2106, - 1554, - 2086, - 1554 - ], - "score": 0.828 - }, - { - "category_id": 2, - "poly": [ - 1254, - 97, - 2106, - 97, - 2106, - 136, - 1254, - 136 - ], - "score": 0.774 - }, - { - "category_id": 13, - "poly": [ - 458, - 570, - 489, - 570, - 489, - 600, - 458, - 600 - ], - "score": 0.27, - "latex": "\\checkmark" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 5.0, - 2339.0, - 5.0, - 2339.0, - 40.0, - 2265.0, - 40.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2087.0, - 1530.0, - 2107.0, - 1530.0, - 2107.0, - 1558.0, - 2087.0, - 1558.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1261.0, - 101.0, - 2102.0, - 101.0, - 2102.0, - 132.0, - 1261.0, - 132.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 88, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 83, - 241, - 2174, - 241, - 2174, - 327, - 83, - 327 - ], - "score": 0.91, - "html": "
QuestionAnswersAdditional Comments/GuidelinesMark
" - }, - { - "category_id": 2, - "poly": [ - 2267, - 5, - 2337, - 5, - 2337, - 39, - 2267, - 39 - ], - "score": 0.838 - }, - { - "category_id": 5, - "poly": [ - 81, - 339, - 2180, - 339, - 2180, - 1486, - 81, - 1486 - ], - "score": 0.788, - "html": "
03.1Central maximum with lower intensity maxima (either side) Central maximum is twice as wide/wider than other maxima vMP1 is for comparison of intensity. Condone references to brightness/dimness. MP2 is for comparison of width Award credit for a drawn answer eg on Fig 3. Suggestion that pattern due towhite light = max 1 Reference to Young's slit or equation = max 1 If only a single maximum is referred to MP2=0 but2
03.2MP1 can score for description of intensity variation. Wider (central) maxima (maximum) 'The pattern is wider/more spread out' gets 1 mark if no other marks given. Not \"larger pattern\". Condone \"larger\" distances between maxima. (Subsequent) maxima further apart v Condone 'maxima more spaced out' Reference to Young's slit or equation = max 1
03.3d= 1 × 10-3/500(= 2 × 10-6) (sin θ= n2/d = 6.5 × 10-7 /2 × 10-6 = 0.33)lgnorecommentsrelated tochange inwavelength AllowPOT error for d for MP1 May be seen in diffraction grating equation.2
" - }, - { - "category_id": 2, - "poly": [ - 1255, - 97, - 2106, - 97, - 2106, - 136, - 1255, - 136 - ], - "score": 0.745 - }, - { - "category_id": 2, - "poly": [ - 156, - 1528, - 186, - 1528, - 186, - 1555, - 156, - 1555 - ], - "score": 0.678 - }, - { - "category_id": 5, - "poly": [ - 82, - 348, - 2181, - 348, - 2181, - 832, - 82, - 832 - ], - "score": 0.446, - "html": "
03.1Central maximumwithlowerintensitymaxima(eitherside) Centralmaximumistwiceaswide/widerthanothermaximavMP1 isfor comparisonof intensity.Condone referencestobrightness/dimness. MP2isforcomparisonofwidth2
AwardcreditforadrawnansweregonFig3. Suggestion thatpatternduetowhitelight=max1
" - }, - { - "category_id": 5, - "poly": [ - 74, - 1307, - 2190, - 1307, - 2190, - 1500, - 74, - 1500 - ], - "score": 0.369, - "html": "
d= 1 × 10-3/500 (= 2 × 10-6) 03.3 (ce'0 = g-01 x7 / L-01 x S'9 = p/u =θ u!s)AllowPOTerrorfordforMP1 May be seen in diffraction grating equation.2
" - }, - { - "category_id": 2, - "poly": [ - 156, - 1529, - 186, - 1529, - 186, - 1555, - 156, - 1555 - ], - "score": 0.272 - }, - { - "category_id": 5, - "poly": [ - 79, - 852, - 2188, - 852, - 2188, - 1343, - 79, - 1343 - ], - "score": 0.119, - "html": "
Wider (central) maxima (maximum) 03.2 (Subsequent)maximafurtherapart'The pattern is wider/more spread out' gets 1 mark
ifnoothermarksgiven. Not \"larger pattern\".
Condone \"larger” distances between maxima.
2
Condone 'maxima more spaced out'
Reference to Young's slit or equation = max 1
Ignore comments related to change in wavelength
" - }, - { - "category_id": 13, - "poly": [ - 1793, - 748, - 1895, - 748, - 1895, - 781, - 1793, - 781 - ], - "score": 0.81, - "latex": "\\mathsf{M P}2{=}0" - }, - { - "category_id": 13, - "poly": [ - 290, - 1323, - 711, - 1323, - 711, - 1369, - 290, - 1369 - ], - "score": 0.76, - "latex": "d=1\\times10^{-3}/500(=2\\times10^{-6})\\check{}" - }, - { - "category_id": 13, - "poly": [ - 1828, - 576, - 1855, - 576, - 1855, - 601, - 1828, - 601 - ], - "score": 0.73, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 1774, - 682, - 1802, - 682, - 1802, - 706, - 1774, - 706 - ], - "score": 0.72, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 1774, - 1119, - 1803, - 1119, - 1803, - 1144, - 1774, - 1144 - ], - "score": 0.72, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 347, - 1382, - 873, - 1382, - 873, - 1421, - 347, - 1421 - ], - "score": 0.7, - "latex": "\\theta=\\eta\\lambda/d=6.5\\times10^{-7}/2\\times10^{-6}=0.33)" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 4.0, - 2339.0, - 4.0, - 2339.0, - 41.0, - 2265.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1260.0, - 101.0, - 2103.0, - 101.0, - 2103.0, - 132.0, - 1260.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 152.0, - 1528.0, - 188.0, - 1528.0, - 188.0, - 1560.0, - 152.0, - 1560.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 152.0, - 1528.0, - 188.0, - 1528.0, - 188.0, - 1560.0, - 152.0, - 1560.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 89, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 77, - 307, - 2175, - 307, - 2175, - 775, - 77, - 775 - ], - "score": 0.927, - "html": "
Any two from: V vGivecreditforanswershownindiagram
03.4(Range of wavelengths results in):Evidenceforthesemarksmaybeseenin calculations
Central maximumunchanged inwidthTreatintensityvariationasneutral.Max2
Broader maxima/range of angles for each maximum/order Gradually getting broader/more spread out for greater order maxima
(.06
" - }, - { - "category_id": 5, - "poly": [ - 89, - 136, - 2162, - 136, - 2162, - 289, - 89, - 289 - ], - "score": 0.927, - "html": "
0=19%√Allow max 1 for use of grating constant rather than
dto give 7.45 x 10-11 o if no other credit available.
" - }, - { - "category_id": 2, - "poly": [ - 2077, - 1529, - 2103, - 1529, - 2103, - 1553, - 2077, - 1553 - ], - "score": 0.85 - }, - { - "category_id": 2, - "poly": [ - 2267, - 5, - 2337, - 5, - 2337, - 39, - 2267, - 39 - ], - "score": 0.823 - }, - { - "category_id": 2, - "poly": [ - 1257, - 97, - 2106, - 97, - 2106, - 135, - 1257, - 135 - ], - "score": 0.428 - }, - { - "category_id": 6, - "poly": [ - 1257, - 97, - 2106, - 97, - 2106, - 135, - 1257, - 135 - ], - "score": 0.217 - }, - { - "category_id": 5, - "poly": [ - 209, - 753, - 2169, - 753, - 2169, - 819, - 209, - 819 - ], - "score": 0.125, - "html": "
8
" - }, - { - "category_id": 13, - "poly": [ - 1180, - 629, - 1226, - 629, - 1226, - 661, - 1180, - 661 - ], - "score": 0.8, - "latex": "\\theta>" - }, - { - "category_id": 13, - "poly": [ - 1392, - 190, - 1570, - 190, - 1570, - 228, - 1392, - 228 - ], - "score": 0.75, - "latex": "7.45\\times10^{-11}\\circ" - }, - { - "category_id": 13, - "poly": [ - 1269, - 196, - 1293, - 196, - 1293, - 226, - 1269, - 226 - ], - "score": 0.29, - "latex": "d" - }, - { - "category_id": 15, - "poly": [ - 2074.0, - 1529.0, - 2108.0, - 1529.0, - 2108.0, - 1557.0, - 2074.0, - 1557.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 4.0, - 2339.0, - 4.0, - 2339.0, - 41.0, - 2265.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1260.0, - 101.0, - 2102.0, - 101.0, - 2102.0, - 131.0, - 1260.0, - 131.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1260.0, - 101.0, - 2102.0, - 101.0, - 2102.0, - 131.0, - 1260.0, - 131.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 90, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 74, - 289, - 2183, - 289, - 2183, - 1468, - 74, - 1468 - ], - "score": 0.925, - "html": "
04.1The centre of mass of the beam and box is at the pivot v Idea that moments balance / sum of the moments is zero at this position v OR The anticlockwise moment (of weight of the beam) = clockwise moment (of weight of the box) Links pivot position to a consideration of moments v max 1Accept one route or the other, do not accept points from both. Allow max 1 for \"the pivot is to the right of the centre (of mass) of the beam\" pivot' on its own does not get the first mark 2 Award 2 for 1.25 x weight of beam = 1.5 x weight of empty box Confusion of moments with eg work done/forces =
04.2Clockwise moment = 610 x 9.81 × 1.5 (= 8976 N m) Anticlockwise moment = 250 × 4 + T sin 50 × 4.0 (N m)v Use of clockwise = anticlockwisev Use of T sin 50° seen / relates vertical component to tensionv T(= 1994/sin 50° )= 2600 (N)vCredit any evidence towork out a moment with one mark Condone cos 50 in MP2. Allow ecf for clockwise moment 5 Allow ecf for anticlockwise moment Use of g = 10 N kg-1 gives 2990 N Omission of 4.0 m (g = 9.8) gives 10410 N. Use of c0s 50 (g = 9.8) gives 3100 N
" - }, - { - "category_id": 2, - "poly": [ - 2267, - 5, - 2337, - 5, - 2337, - 39, - 2267, - 39 - ], - "score": 0.838 - }, - { - "category_id": 2, - "poly": [ - 156, - 1528, - 186, - 1528, - 186, - 1555, - 156, - 1555 - ], - "score": 0.826 - }, - { - "category_id": 2, - "poly": [ - 1255, - 97, - 2106, - 97, - 2106, - 136, - 1255, - 136 - ], - "score": 0.744 - }, - { - "category_id": 5, - "poly": [ - 75, - 241, - 2178, - 241, - 2178, - 326, - 75, - 326 - ], - "score": 0.55, - "html": "
Question AnswersAdditionalComments/GuidelinesMark
" - }, - { - "category_id": 5, - "poly": [ - 77, - 950, - 2197, - 950, - 2197, - 1471, - 77, - 1471 - ], - "score": 0.101, - "html": "
04.2Clockwise moment = 610 x 9.81 × 1.5 (= 8976 N m) Anticlockwise moment = 250 × 4 + T sin 50 × 4.0 (N m) Useofclockwise=anticlockwisev Use ofT sin50°seen / relatesvertical componentto tensionv T(= 1994/sin 50°) = 2600 (N)Creditanyevidencetoworkoutamomentwithone mark Condonecos50inMP2. Allowecfforclockwisemoment Allowecfforanticlockwisemoment
" - }, - { - "category_id": 13, - "poly": [ - 1365, - 1332, - 1544, - 1332, - 1544, - 1371, - 1365, - 1371 - ], - "score": 0.9, - "latex": "g={10}\\mathsf{N}\\mathsf{k g}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 462, - 1151, - 512, - 1151, - 512, - 1185, - 462, - 1185 - ], - "score": 0.84, - "latex": "50^{\\circ}" - }, - { - "category_id": 13, - "poly": [ - 1468, - 1416, - 1580, - 1416, - 1580, - 1453, - 1468, - 1453 - ], - "score": 0.82, - "latex": "(g=9.8)" - }, - { - "category_id": 13, - "poly": [ - 524, - 1097, - 552, - 1097, - 552, - 1122, - 524, - 1122 - ], - "score": 0.79, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 1529, - 1375, - 1639, - 1375, - 1639, - 1412, - 1529, - 1412 - ], - "score": 0.78, - "latex": "(g=9.8)" - }, - { - "category_id": 13, - "poly": [ - 977, - 576, - 1004, - 576, - 1004, - 602, - 977, - 602 - ], - "score": 0.77, - "latex": "=" - }, - { - "category_id": 14, - "poly": [ - 291, - 1208, - 728, - 1208, - 728, - 1250, - 291, - 1250 - ], - "score": 0.72, - "latex": "T(=1994/\\sin50^{\\circ})=2600(\\mathrm{N})^{\\circ}" - }, - { - "category_id": 13, - "poly": [ - 1572, - 711, - 1674, - 711, - 1674, - 745, - 1572, - 745 - ], - "score": 0.63, - "latex": "=1.5\\times" - }, - { - "category_id": 13, - "poly": [ - 1437, - 1375, - 1520, - 1375, - 1520, - 1410, - 1437, - 1410 - ], - "score": 0.6, - "latex": "4.0\\mathrm{m}" - }, - { - "category_id": 13, - "poly": [ - 549, - 970, - 1028, - 970, - 1028, - 1011, - 549, - 1011 - ], - "score": 0.56, - "latex": "=610\\times9.81\\times1.5(=8976\\mathrm{Nm})\\times" - }, - { - "category_id": 13, - "poly": [ - 1269, - 711, - 1358, - 711, - 1358, - 745, - 1269, - 745 - ], - "score": 0.55, - "latex": "1.25\\times" - }, - { - "category_id": 13, - "poly": [ - 1925, - 830, - 1952, - 830, - 1952, - 855, - 1925, - 855 - ], - "score": 0.44, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 390, - 1152, - 414, - 1152, - 414, - 1184, - 390, - 1184 - ], - "score": 0.39, - "latex": "\\tau" - }, - { - "category_id": 13, - "poly": [ - 596, - 1030, - 1073, - 1030, - 1073, - 1071, - 596, - 1071 - ], - "score": 0.34, - "latex": "=250\\times4+T\\sin50\\times4.0(\\mathsf{N m})\\mathcal{checkmark}" - }, - { - "category_id": 13, - "poly": [ - 292, - 1208, - 728, - 1208, - 728, - 1250, - 292, - 1250 - ], - "score": 0.33, - "latex": "T(=1994/\\sin50^{\\circ})=2600(\\mathrm{N})^{\\circ}" - }, - { - "category_id": 13, - "poly": [ - 1036, - 361, - 1066, - 361, - 1066, - 391, - 1036, - 391 - ], - "score": 0.29, - "latex": "\\checkmark" - }, - { - "category_id": 13, - "poly": [ - 1726, - 1373, - 1845, - 1373, - 1845, - 1409, - 1726, - 1409 - ], - "score": 0.26, - "latex": "10410\\mathrm{N}" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 4.0, - 2339.0, - 4.0, - 2339.0, - 41.0, - 2265.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 152.0, - 1528.0, - 188.0, - 1528.0, - 188.0, - 1559.0, - 152.0, - 1559.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1260.0, - 101.0, - 2103.0, - 101.0, - 2103.0, - 132.0, - 1260.0, - 132.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 91, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 91, - 136, - 2178, - 136, - 2178, - 368, - 91, - 368 - ], - "score": 0.973, - "html": "
Allow max 4 for use of g = 10 N kg-1.
" - }, - { - "category_id": 2, - "poly": [ - 2077, - 1530, - 2105, - 1530, - 2105, - 1553, - 2077, - 1553 - ], - "score": 0.854 - }, - { - "category_id": 2, - "poly": [ - 2267, - 5, - 2337, - 5, - 2337, - 40, - 2267, - 40 - ], - "score": 0.824 - }, - { - "category_id": 2, - "poly": [ - 1255, - 97, - 2106, - 97, - 2106, - 135, - 1255, - 135 - ], - "score": 0.767 - }, - { - "category_id": 13, - "poly": [ - 1576, - 186, - 1755, - 186, - 1755, - 228, - 1576, - 228 - ], - "score": 0.84, - "latex": "\\overline{{g=10}}\\mathsf{N}\\mathsf{k g}^{-1}" - }, - { - "category_id": 15, - "poly": [ - 2073.0, - 1528.0, - 2109.0, - 1528.0, - 2109.0, - 1559.0, - 2073.0, - 1559.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 5.0, - 2339.0, - 5.0, - 2339.0, - 40.0, - 2265.0, - 40.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1260.0, - 101.0, - 2103.0, - 101.0, - 2103.0, - 131.0, - 1260.0, - 131.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 92, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 23, - 135, - 2189, - 135, - 2189, - 463, - 23, - 463 - ], - "score": 0.964, - "html": "
04.37.5 = 12 g t (t = 1.2 s)
2
(calculatedistance)AllowecffromincorrecttforMP2
s (= ut = 18 × 1.2) = 22 (m)v
" - }, - { - "category_id": 2, - "poly": [ - 157, - 1529, - 184, - 1529, - 184, - 1553, - 157, - 1553 - ], - "score": 0.866 - }, - { - "category_id": 2, - "poly": [ - 2267, - 5, - 2337, - 5, - 2337, - 40, - 2267, - 40 - ], - "score": 0.834 - }, - { - "category_id": 2, - "poly": [ - 1255, - 96, - 2106, - 96, - 2106, - 135, - 1255, - 135 - ], - "score": 0.714 - }, - { - "category_id": 6, - "poly": [ - 1255, - 96, - 2106, - 96, - 2106, - 135, - 1255, - 135 - ], - "score": 0.103 - }, - { - "category_id": 14, - "poly": [ - 288, - 386, - 689, - 386, - 689, - 427, - 288, - 427 - ], - "score": 0.72, - "latex": "s(=u t=18\\times1.2)=22(\\mathrm{m})\\mathcal{v}" - }, - { - "category_id": 15, - "poly": [ - 153.0, - 1528.0, - 189.0, - 1528.0, - 189.0, - 1558.0, - 153.0, - 1558.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 5.0, - 2339.0, - 5.0, - 2339.0, - 40.0, - 2265.0, - 40.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1260.0, - 100.0, - 2103.0, - 100.0, - 2103.0, - 131.0, - 1260.0, - 131.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1260.0, - 100.0, - 2103.0, - 100.0, - 2103.0, - 131.0, - 1260.0, - 131.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 93, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 75, - 136, - 2173, - 136, - 2173, - 1121, - 75, - 1121 - ], - "score": 0.976, - "html": "
04.4(Range will be greater:) component of velocity upwards v rock will spend longer in the air v greater tv therefore_the range is greater v OR (Range will be smaller) Counterweight will fall less far before projectile released v Less energy transferred to rock v Initial speed of rock less/horizontal velocity reduced v therefore_the range is smaller OR (balanced arguments)Candidates can argue from both lists to reach a balanced view suggesting that there is no change. Full credit can be obtained from 2 deductions from one list V√+ consistent conclusionv 1 deduction from each list √√+ consistent conclusion v Do not allow an unsupported conclusion. Max3 Conclusion must be consistent with correct statements. Treat incorrect statements as neutral. Do not reward arguments based on a longer time of flight.
Totaltherefore the range is unchanged / answer is indeterminatev12
" - }, - { - "category_id": 2, - "poly": [ - 2077, - 1529, - 2105, - 1529, - 2105, - 1554, - 2077, - 1554 - ], - "score": 0.86 - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2338, - 6, - 2338, - 39, - 2267, - 39 - ], - "score": 0.815 - }, - { - "category_id": 2, - "poly": [ - 1256, - 97, - 2106, - 97, - 2106, - 134, - 1256, - 134 - ], - "score": 0.686 - }, - { - "category_id": 6, - "poly": [ - 1256, - 97, - 2106, - 97, - 2106, - 134, - 1256, - 134 - ], - "score": 0.157 - }, - { - "category_id": 13, - "poly": [ - 1625, - 434, - 1697, - 434, - 1697, - 465, - 1625, - 465 - ], - "score": 0.86, - "latex": "\\checkmark+" - }, - { - "category_id": 13, - "poly": [ - 1625, - 353, - 1696, - 353, - 1696, - 384, - 1625, - 384 - ], - "score": 0.86, - "latex": "\\checkmark+" - }, - { - "category_id": 13, - "poly": [ - 1421, - 474, - 1451, - 474, - 1451, - 504, - 1421, - 504 - ], - "score": 0.41, - "latex": "\\checkmark" - }, - { - "category_id": 15, - "poly": [ - 2073.0, - 1528.0, - 2109.0, - 1528.0, - 2109.0, - 1558.0, - 2073.0, - 1558.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2264.0, - 5.0, - 2339.0, - 5.0, - 2339.0, - 40.0, - 2264.0, - 40.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1260.0, - 101.0, - 2103.0, - 101.0, - 2103.0, - 130.0, - 1260.0, - 130.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1260.0, - 101.0, - 2103.0, - 101.0, - 2103.0, - 130.0, - 1260.0, - 130.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 94, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 80, - 242, - 2176, - 242, - 2176, - 327, - 80, - 327 - ], - "score": 0.92, - "html": "
Question AnswersAdditional Comments/GuidelinesMark
" - }, - { - "category_id": 2, - "poly": [ - 2267, - 5, - 2337, - 5, - 2337, - 39, - 2267, - 39 - ], - "score": 0.838 - }, - { - "category_id": 5, - "poly": [ - 57, - 1108, - 2163, - 1108, - 2163, - 1445, - 57, - 1445 - ], - "score": 0.793, - "html": "
05.3(KE before collision = 700 kJ)Allow ecf for speed from 05.13
Speed (parallel to barrier) after (= 31 × cos 20) = 28.7 m sUse of KE = p²/2m can gain full credit. Allowecfformomentumin05.2
KE after( = %2 × 1.5 × 103 × 28.72 ) = 618 kJ v Change = 700 - 618 (= 82 kJ)Final answer depends on extent towhich candidate hasrounded in earlierparts.Allow correctly
" - }, - { - "category_id": 2, - "poly": [ - 1255, - 97, - 2106, - 97, - 2106, - 136, - 1255, - 136 - ], - "score": 0.784 - }, - { - "category_id": 5, - "poly": [ - 74, - 698, - 2169, - 698, - 2169, - 1127, - 74, - 1127 - ], - "score": 0.674, - "html": "
05.2Component of velocity = 31 × cos (20) ORAllowecfforspeedfrom05.1
evidence of using momentum = mass x velocity (eg 1.5 x 10? x a velocity) vAccept 4.65 x 104 kg m s-1 for max 2 3
= 4.4 × 104 √ For unit only accept kg m s-1 OR NsvUse of 30.6 m s-1 gives 43 kN s
" - }, - { - "category_id": 5, - "poly": [ - 79, - 347, - 2167, - 347, - 2167, - 685, - 79, - 685 - ], - "score": 0.555, - "html": "
05.1Conversion of 110 km h-1 to 31 m sAllowecfforincorrectorfailure tocarryoutspeed 2
= 1 x 1.5 × 103 x their conversion2 with a consistent answerv (= 7(.2) × 105)conversion Expectanswer tobecalculatedcorrectlyandto2+ sf.
" - }, - { - "category_id": 2, - "poly": [ - 156, - 1528, - 185, - 1528, - 185, - 1555, - 156, - 1555 - ], - "score": 0.514 - }, - { - "category_id": 2, - "poly": [ - 156, - 1528, - 186, - 1528, - 186, - 1555, - 156, - 1555 - ], - "score": 0.449 - }, - { - "category_id": 13, - "poly": [ - 1365, - 1192, - 1524, - 1192, - 1524, - 1233, - 1365, - 1233 - ], - "score": 0.9, - "latex": "{\\mathsf{K E}}={\\mathsf{p}}^{2}/2{\\mathsf{m}}" - }, - { - "category_id": 13, - "poly": [ - 489, - 374, - 640, - 374, - 640, - 415, - 489, - 415 - ], - "score": 0.85, - "latex": "110\\mathrm{kmh}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 1366, - 904, - 1504, - 904, - 1504, - 943, - 1366, - 943 - ], - "score": 0.84, - "latex": "30.6\\mathrm{~m~s~}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 716, - 1196, - 1127, - 1196, - 1127, - 1240, - 716, - 1240 - ], - "score": 0.83, - "latex": "(=31\\times\\cos20)=28.7\\mathrm{m}\\mathrm{s}^{-1}\\check{\\checkmark}" - }, - { - "category_id": 13, - "poly": [ - 1915, - 477, - 1956, - 477, - 1956, - 509, - 1915, - 509 - ], - "score": 0.79, - "latex": "^{2+}" - }, - { - "category_id": 13, - "poly": [ - 403, - 1255, - 910, - 1255, - 910, - 1300, - 403, - 1300 - ], - "score": 0.76, - "latex": "(=\\%\\times1.5\\times10^{3}\\times28.7^{2})=618.\\mathrm{kJ}\\times" - }, - { - "category_id": 13, - "poly": [ - 695, - 860, - 724, - 860, - 724, - 885, - 695, - 885 - ], - "score": 0.76, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 1370, - 847, - 1625, - 847, - 1625, - 888, - 1370, - 888 - ], - "score": 0.73, - "latex": "4.65\\times10^{4}\\mathrm{kg}\\mathrm{m}\\mathrm{s}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 676, - 373, - 798, - 373, - 798, - 415, - 676, - 415 - ], - "score": 0.64, - "latex": "31\\mathrm{m~s}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 804, - 859, - 830, - 859, - 830, - 885, - 804, - 885 - ], - "score": 0.63, - "latex": "\\times" - }, - { - "category_id": 13, - "poly": [ - 291, - 495, - 483, - 495, - 483, - 541, - 291, - 541 - ], - "score": 0.51, - "latex": "(=7(.2)\\times10^{5})" - }, - { - "category_id": 13, - "poly": [ - 289, - 435, - 543, - 435, - 543, - 477, - 289, - 477 - ], - "score": 0.48, - "latex": "=\\%\\times1.5\\times10^{3}\\times" - }, - { - "category_id": 13, - "poly": [ - 372, - 1320, - 731, - 1320, - 731, - 1360, - 372, - 1360 - ], - "score": 0.48, - "latex": "\\mathsf{\\Pi}_{\\mathsf{J}}\\mathsf{e}=700-618\\lor(=82\\mathrm{kJ})" - }, - { - "category_id": 13, - "poly": [ - 565, - 1008, - 681, - 1008, - 681, - 1052, - 565, - 1052 - ], - "score": 0.44, - "latex": "\\mathrm{kg}\\mathrm{m}\\mathrm{s}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 559, - 1140, - 684, - 1140, - 684, - 1176, - 559, - 1176 - ], - "score": 0.33, - "latex": "=700\\mathrm{kJ}" - }, - { - "category_id": 13, - "poly": [ - 598, - 737, - 694, - 737, - 694, - 773, - 598, - 773 - ], - "score": 0.32, - "latex": "=31\\times" - }, - { - "category_id": 14, - "poly": [ - 288, - 946, - 478, - 946, - 478, - 990, - 288, - 990 - ], - "score": 0.29, - "latex": "=4.4\\times10^{4}\\times" - }, - { - "category_id": 13, - "poly": [ - 288, - 946, - 478, - 946, - 478, - 989, - 288, - 989 - ], - "score": 0.29, - "latex": "=4.4\\times10^{4}\\times" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 4.0, - 2339.0, - 4.0, - 2339.0, - 41.0, - 2265.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1260.0, - 101.0, - 2103.0, - 101.0, - 2103.0, - 132.0, - 1260.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 151.0, - 1528.0, - 189.0, - 1528.0, - 189.0, - 1560.0, - 151.0, - 1560.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 152.0, - 1528.0, - 188.0, - 1528.0, - 188.0, - 1559.0, - 152.0, - 1559.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 95, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 80, - 136, - 2178, - 136, - 2178, - 475, - 80, - 475 - ], - "score": 0.975, - "html": "
Speed (perpendicular to barrier) after = 31 × sin 20 (= 10.5 m s Loss of KE (= %2 × 1.5 × 103 × 10.52 ) = 82 kJ Justification that total KE = KE due to speed parallel to barrier + KE due tospeedperpendicular tobarrier√Inthisquestion, do not insist on final answer to 2+ Sf.
" - }, - { - "category_id": 2, - "poly": [ - 2078, - 1529, - 2104, - 1529, - 2104, - 1552, - 2078, - 1552 - ], - "score": 0.848 - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2337, - 6, - 2337, - 39, - 2267, - 39 - ], - "score": 0.825 - }, - { - "category_id": 2, - "poly": [ - 1256, - 97, - 2106, - 97, - 2106, - 135, - 1256, - 135 - ], - "score": 0.69 - }, - { - "category_id": 13, - "poly": [ - 584, - 288, - 705, - 288, - 705, - 322, - 584, - 322 - ], - "score": 0.84, - "latex": "\\mathsf{K E}=\\mathsf{K E}" - }, - { - "category_id": 13, - "poly": [ - 449, - 223, - 949, - 223, - 949, - 268, - 449, - 268 - ], - "score": 0.77, - "latex": "(=\\%\\times1.5\\times10^{3}\\times10.5^{2})=82\\mathrm{kJ}\\ √" - }, - { - "category_id": 13, - "poly": [ - 1908, - 168, - 1950, - 168, - 1950, - 201, - 1908, - 201 - ], - "score": 0.71, - "latex": "^{2+}" - }, - { - "category_id": 13, - "poly": [ - 1130, - 292, - 1157, - 292, - 1157, - 319, - 1130, - 319 - ], - "score": 0.59, - "latex": "^+" - }, - { - "category_id": 13, - "poly": [ - 808, - 329, - 839, - 329, - 839, - 359, - 808, - 359 - ], - "score": 0.45, - "latex": "\\checkmark" - }, - { - "category_id": 14, - "poly": [ - 447, - 222, - 950, - 222, - 950, - 268, - 447, - 268 - ], - "score": 0.38, - "latex": "(=\\%\\times1.5\\times10^{3}\\times10.5^{2})=82\\mathrm{kJ}\\ √" - }, - { - "category_id": 15, - "poly": [ - 2071.0, - 1527.0, - 2110.0, - 1527.0, - 2110.0, - 1562.0, - 2071.0, - 1562.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 5.0, - 2339.0, - 5.0, - 2339.0, - 40.0, - 2265.0, - 40.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1260.0, - 101.0, - 2103.0, - 101.0, - 2103.0, - 131.0, - 1260.0, - 131.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 96, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 33, - 220, - 2180, - 220, - 2180, - 1447, - 33, - 1447 - ], - "score": 0.957, - "html": "
05.4Evidence of work done = force × distance Eg Force = 82 000 / 1.5 0R their value for 05.3÷1.5v Allow 80 kJ for energy = 5.5 × 104 Nv This is less than braking force - so yes. v OR energy approach 90 kJ v
work done by barrier = 60 kN x 1.5 mv
which is > Ek of vehicle, so yes v OR impulse argument
evaluate time taken to stop, 0.26 s v3 Generalschemeforalternativesandreverse arguments is:
impulse value leading to distance or forcev ·conclusion consistent with correct method of calculation vfirst step calculation subsequent calculation(s) leading to
comparativevalue.Allow ecf for error in first step.
conclusion consistent with correct method of calculation
OR use of F=ma and suvat : F= ma leading to a = (-)40 m s-2√
suvat leads to 1.37 mvAlternative suvat method:
uses suvat to get a = 36.5 m s-2
which is <1.5 m, s0 yes vuses F=ma
which is <60 kN, s0 yes
" - }, - { - "category_id": 2, - "poly": [ - 1254, - 97, - 2106, - 97, - 2106, - 136, - 1254, - 136 - ], - "score": 0.861 - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2337, - 6, - 2337, - 39, - 2267, - 39 - ], - "score": 0.837 - }, - { - "category_id": 2, - "poly": [ - 156, - 1528, - 186, - 1528, - 186, - 1555, - 156, - 1555 - ], - "score": 0.704 - }, - { - "category_id": 2, - "poly": [ - 156, - 1528, - 186, - 1528, - 186, - 1555, - 156, - 1555 - ], - "score": 0.244 - }, - { - "category_id": 13, - "poly": [ - 505, - 713, - 570, - 713, - 570, - 748, - 505, - 748 - ], - "score": 0.87, - "latex": ">\\mathsf{E}_{\\mathsf{k}}" - }, - { - "category_id": 13, - "poly": [ - 628, - 1256, - 850, - 1256, - 850, - 1296, - 628, - 1296 - ], - "score": 0.86, - "latex": "a=(-)40\\mathrm{m}\\mathrm{s}^{-2}\\mathcal{A}" - }, - { - "category_id": 13, - "poly": [ - 1607, - 1304, - 1804, - 1304, - 1804, - 1341, - 1607, - 1341 - ], - "score": 0.82, - "latex": "\\mathsf{a}=36.5\\mathsf{m}\\mathsf{s}^{-2}" - }, - { - "category_id": 13, - "poly": [ - 605, - 278, - 632, - 278, - 632, - 303, - 605, - 303 - ], - "score": 0.81, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 437, - 1200, - 522, - 1200, - 522, - 1233, - 437, - 1233 - ], - "score": 0.8, - "latex": "F{=}m a" - }, - { - "category_id": 13, - "poly": [ - 507, - 1344, - 606, - 1344, - 606, - 1378, - 507, - 1378 - ], - "score": 0.77, - "latex": "{<}1.5\\mathrm{~m~}" - }, - { - "category_id": 13, - "poly": [ - 388, - 1258, - 433, - 1258, - 433, - 1291, - 388, - 1291 - ], - "score": 0.75, - "latex": "\\mathsf{F}\\mathbf{=}" - }, - { - "category_id": 13, - "poly": [ - 1484, - 1382, - 1586, - 1382, - 1586, - 1415, - 1484, - 1415 - ], - "score": 0.67, - "latex": "<60~\\mathsf{k N}" - }, - { - "category_id": 13, - "poly": [ - 864, - 331, - 1013, - 331, - 1013, - 369, - 864, - 369 - ], - "score": 0.64, - "latex": "05.3{\\div}1.5{\\checkmark}" - }, - { - "category_id": 13, - "poly": [ - 673, - 626, - 921, - 626, - 921, - 663, - 673, - 663 - ], - "score": 0.6, - "latex": "=60\\mathrm{kN}\\times1.5\\mathrm{m}" - }, - { - "category_id": 13, - "poly": [ - 710, - 278, - 735, - 278, - 735, - 304, - 710, - 304 - ], - "score": 0.59, - "latex": "\\times" - }, - { - "category_id": 13, - "poly": [ - 772, - 943, - 895, - 943, - 895, - 979, - 772, - 979 - ], - "score": 0.55, - "latex": "0.26\\thinspace\\mathsf{s}\\thinspace\\checkmark" - }, - { - "category_id": 14, - "poly": [ - 288, - 388, - 502, - 388, - 502, - 432, - 288, - 432 - ], - "score": 0.52, - "latex": "=5.5\\times10^{4}\\mathrm{N}" - }, - { - "category_id": 13, - "poly": [ - 389, - 668, - 504, - 668, - 504, - 705, - 389, - 705 - ], - "score": 0.47, - "latex": "90\\mathrm{\\sfKJ}\\mathcal{I}" - }, - { - "category_id": 13, - "poly": [ - 590, - 1302, - 709, - 1302, - 709, - 1336, - 590, - 1336 - ], - "score": 0.41, - "latex": "1.37\\mathrm{m}\\check{}" - }, - { - "category_id": 13, - "poly": [ - 1440, - 1345, - 1525, - 1345, - 1525, - 1376, - 1440, - 1376 - ], - "score": 0.29, - "latex": "\\mathsf{F}{=}\\mathsf{m}\\mathsf{a}" - }, - { - "category_id": 13, - "poly": [ - 715, - 1344, - 745, - 1344, - 745, - 1373, - 715, - 1373 - ], - "score": 0.26, - "latex": "\\checkmark" - }, - { - "category_id": 15, - "poly": [ - 1261.0, - 101.0, - 2102.0, - 101.0, - 2102.0, - 132.0, - 1261.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 5.0, - 2339.0, - 5.0, - 2339.0, - 40.0, - 2265.0, - 40.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 152.0, - 1526.0, - 191.0, - 1526.0, - 191.0, - 1561.0, - 152.0, - 1561.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 152.0, - 1526.0, - 191.0, - 1526.0, - 191.0, - 1561.0, - 152.0, - 1561.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 97, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 77, - 134, - 2179, - 134, - 2179, - 735, - 77, - 735 - ], - "score": 0.971, - "html": "
(Steel barrier is better because)
05.5Increasetimeofcontactasmaterialdeforms Reference to impulse (= change in momentum = Ft) implies smaller force (on dummy) OR Increasing stopping distance as material deforms v Reference to work done (= Fs) implies smaller force (on dummy) vAllow correct discussionleading to concretebarrier is worse. Alternativesecondmarkforeither alternativecan beawardedforcorrectreferencetoF=ma2
Total13
" - }, - { - "category_id": 2, - "poly": [ - 2077, - 1529, - 2105, - 1529, - 2105, - 1553, - 2077, - 1553 - ], - "score": 0.853 - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2338, - 6, - 2338, - 39, - 2267, - 39 - ], - "score": 0.812 - }, - { - "category_id": 2, - "poly": [ - 1255, - 97, - 2106, - 97, - 2106, - 135, - 1255, - 135 - ], - "score": 0.583 - }, - { - "category_id": 6, - "poly": [ - 1255, - 97, - 2106, - 97, - 2106, - 135, - 1255, - 135 - ], - "score": 0.173 - }, - { - "category_id": 13, - "poly": [ - 923, - 283, - 985, - 283, - 985, - 315, - 923, - 315 - ], - "score": 0.73, - "latex": "=\\mathsf{F t}" - }, - { - "category_id": 13, - "poly": [ - 624, - 550, - 707, - 550, - 707, - 587, - 624, - 587 - ], - "score": 0.73, - "latex": "(=\\mathsf{F}\\mathsf{s})" - }, - { - "category_id": 13, - "poly": [ - 598, - 286, - 622, - 286, - 622, - 311, - 598, - 311 - ], - "score": 0.65, - "latex": "\\fallingdotseq" - }, - { - "category_id": 15, - "poly": [ - 2073.0, - 1528.0, - 2109.0, - 1528.0, - 2109.0, - 1558.0, - 2073.0, - 1558.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2264.0, - 5.0, - 2339.0, - 5.0, - 2339.0, - 40.0, - 2264.0, - 40.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1260.0, - 101.0, - 2103.0, - 101.0, - 2103.0, - 131.0, - 1260.0, - 131.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1260.0, - 101.0, - 2103.0, - 101.0, - 2103.0, - 131.0, - 1260.0, - 131.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 98, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 154, - 1529, - 185, - 1529, - 185, - 1554, - 154, - 1554 - ], - "score": 0.882 - }, - { - "category_id": 5, - "poly": [ - 81, - 458, - 2176, - 458, - 2176, - 813, - 81, - 813 - ], - "score": 0.865, - "html": "
06.2A = 4.2 (mm) read from graph T = 2.0 (ms) read from graph Condone power of ten error in A and/or T but not in final answer. Evidence for T might be seen in equation, as 5003
(f). (amax = 4.2 × 10-3 × (2 × π /(2 × 10-3)2
4.1(5) × 104 (m s-²) (Do not allow 4.2)Only allowed ecf for max 2 is use of 4.1 mm for A, giving 4.0 x 104 (m s-2)
" - }, - { - "category_id": 5, - "poly": [ - 85, - 243, - 2176, - 243, - 2176, - 328, - 85, - 328 - ], - "score": 0.855, - "html": "
QuestionAnswersAdditional Comments/GuidelinesMark
" - }, - { - "category_id": 2, - "poly": [ - 2267, - 5, - 2337, - 5, - 2337, - 39, - 2267, - 39 - ], - "score": 0.834 - }, - { - "category_id": 5, - "poly": [ - 91, - 349, - 2172, - 349, - 2172, - 438, - 91, - 438 - ], - "score": 0.751, - "html": "
1.5 (ms) 06.11
" - }, - { - "category_id": 2, - "poly": [ - 1254, - 97, - 2106, - 97, - 2106, - 136, - 1254, - 136 - ], - "score": 0.739 - }, - { - "category_id": 5, - "poly": [ - 85, - 832, - 2174, - 832, - 2174, - 982, - 85, - 982 - ], - "score": 0.539, - "html": "
06.3longitudinalBothrequiredfor1mark
(they)oscillate along direction of energy transferCondone“vibrate\"for oscillate.
Condone‘travel'fortransfer
" - }, - { - "category_id": 5, - "poly": [ - 206, - 1002, - 2169, - 1002, - 2169, - 1069, - 206, - 1069 - ], - "score": 0.281, - "html": "
5
" - }, - { - "category_id": 5, - "poly": [ - 83, - 832, - 2172, - 832, - 2172, - 980, - 83, - 980 - ], - "score": 0.28, - "html": "
06.3longitudinalBothrequired for 1 mark
(they) oscillate along direction of energy transferCondone“vibrate\"foroscillate. Condone‘travel'fortransfer
" - }, - { - "category_id": 5, - "poly": [ - 79, - 830, - 2173, - 830, - 2173, - 1068, - 79, - 1068 - ], - "score": 0.166, - "html": "
06.3longitudinal (they) oscillate along direction of energy transferBoth required for 1 mark Condone“vibrate”for oscillate. Condone‘travel'fortransfer
Total5
" - }, - { - "category_id": 13, - "poly": [ - 1355, - 709, - 1581, - 709, - 1581, - 754, - 1355, - 754 - ], - "score": 0.85, - "latex": "4.0\\times10^{4}(\\mathrm{m}\\mathrm{s}^{-2})" - }, - { - "category_id": 14, - "poly": [ - 290, - 645, - 814, - 645, - 814, - 691, - 290, - 691 - ], - "score": 0.66, - "latex": "(\\mathsf{a}_{\\mathsf{m a x}}=4.2\\times10^{-3}\\times(2\\times\\pi/(2\\times10^{-3}))^{2}" - }, - { - "category_id": 13, - "poly": [ - 289, - 533, - 390, - 533, - 390, - 570, - 289, - 570 - ], - "score": 0.64, - "latex": "\\mathsf{T}=2.0" - }, - { - "category_id": 13, - "poly": [ - 1758, - 674, - 1865, - 674, - 1865, - 709, - 1758, - 709 - ], - "score": 0.42, - "latex": "4.1\\mathrm{mm}" - }, - { - "category_id": 14, - "poly": [ - 287, - 704, - 839, - 704, - 839, - 754, - 287, - 754 - ], - "score": 0.41, - "latex": "4.1(5)\\times10^{4}(\\mathrm{m}\\mathrm{s}^{-2})\\times(\\mathrm{Donot}\\mathsf{a}\\|\\mathsf{o}\\mathsf{w}4.2)" - }, - { - "category_id": 13, - "poly": [ - 289, - 473, - 392, - 473, - 392, - 508, - 289, - 508 - ], - "score": 0.28, - "latex": "\\mathsf{A}=4.2" - }, - { - "category_id": 15, - "poly": [ - 152.0, - 1529.0, - 189.0, - 1529.0, - 189.0, - 1559.0, - 152.0, - 1559.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 4.0, - 2339.0, - 4.0, - 2339.0, - 41.0, - 2265.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1261.0, - 101.0, - 2102.0, - 101.0, - 2102.0, - 132.0, - 1261.0, - 132.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 99, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 70, - 268, - 2172, - 268, - 2172, - 1445, - 70, - 1445 - ], - "score": 0.863, - "html": "
QuestionAnswersAdditionalComments/GuidelinesMark
07.1Mention of increase in lost volts/ pd across internal resistance (in cell)v (because) current has increased OR internal resistance is a larger proportion of total resistance OR ratio of internal: external resistance is larger vAccept reverse arguments Do not accept terminal pd has decreased Treat comments about resistance of lamp as neutral2
07.2Lost volts reduced (current remains the same, V2 > V1) OR Effective internal resistance is a smaller proportion of total resistance / ratio of internal: external resistance is smaller v (because) two cells in parallel behave as a single cell (with the same emf) but with half the internal resistance / reduced internal resistancev Alternative: Current through each cell is less than cell on its own v Decreased current through cell decreases lost volts / pd dropped across internal resistance v2
" - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2337, - 6, - 2337, - 39, - 2267, - 39 - ], - "score": 0.833 - }, - { - "category_id": 2, - "poly": [ - 2074, - 1529, - 2104, - 1529, - 2104, - 1554, - 2074, - 1554 - ], - "score": 0.828 - }, - { - "category_id": 5, - "poly": [ - 97, - 241, - 2169, - 241, - 2169, - 326, - 97, - 326 - ], - "score": 0.8, - "html": "
QuestionAnswersAdditional Comments/GuidelinesMark
" - }, - { - "category_id": 2, - "poly": [ - 1255, - 98, - 2106, - 98, - 2106, - 136, - 1255, - 136 - ], - "score": 0.784 - }, - { - "category_id": 5, - "poly": [ - 88, - 347, - 2169, - 347, - 2169, - 799, - 88, - 799 - ], - "score": 0.322, - "html": "
07.1Mention of increase in lost volts/ pd across internal resistance (in cell)v (because)Acceptreversearguments Do not accept terminal pd has decreased2
currenthasincreased ORTreat comments about resistance of lamp as neutral
internal resistance is a larger proportion of total resistance OR ratio of internal: external resistance is larger v
" - }, - { - "category_id": 5, - "poly": [ - 87, - 813, - 2176, - 813, - 2176, - 1444, - 87, - 1444 - ], - "score": 0.106, - "html": "
07.2
/ ratio of internal: external resistance is smallerv (because)
" - }, - { - "category_id": 13, - "poly": [ - 918, - 830, - 1034, - 830, - 1034, - 866, - 918, - 866 - ], - "score": 0.73, - "latex": "\\lor2>\\lor1" - }, - { - "category_id": 13, - "poly": [ - 928, - 984, - 960, - 984, - 960, - 1015, - 928, - 1015 - ], - "score": 0.31, - "latex": "\\checkmark" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 5.0, - 2339.0, - 5.0, - 2339.0, - 40.0, - 2265.0, - 40.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2072.0, - 1528.0, - 2109.0, - 1528.0, - 2109.0, - 1560.0, - 2072.0, - 1560.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1260.0, - 101.0, - 2103.0, - 101.0, - 2103.0, - 131.0, - 1260.0, - 131.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 100, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 37, - 136, - 2191, - 136, - 2191, - 653, - 37, - 653 - ], - "score": 0.938, - "html": "
Total4
" - }, - { - "category_id": 5, - "poly": [ - 138, - 1330, - 1485, - 1330, - 1485, - 1452, - 138, - 1452 - ], - "score": 0.895, - "html": "
Keys to Objective Test Questions (each correct answer is worth 1 mark)
8 9 10 11 12 13 14 15 16 17 18 19
" - }, - { - "category_id": 2, - "poly": [ - 2267, - 5, - 2337, - 5, - 2337, - 40, - 2267, - 40 - ], - "score": 0.809 - }, - { - "category_id": 2, - "poly": [ - 154, - 1528, - 185, - 1528, - 185, - 1555, - 154, - 1555 - ], - "score": 0.677 - }, - { - "category_id": 2, - "poly": [ - 1254, - 97, - 2106, - 97, - 2106, - 135, - 1254, - 135 - ], - "score": 0.529 - }, - { - "category_id": 6, - "poly": [ - 1254, - 97, - 2106, - 97, - 2106, - 135, - 1254, - 135 - ], - "score": 0.319 - }, - { - "category_id": 2, - "poly": [ - 154, - 1529, - 185, - 1529, - 185, - 1554, - 154, - 1554 - ], - "score": 0.318 - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 5.0, - 2339.0, - 5.0, - 2339.0, - 40.0, - 2265.0, - 40.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 152.0, - 1528.0, - 189.0, - 1528.0, - 189.0, - 1560.0, - 152.0, - 1560.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1261.0, - 101.0, - 2102.0, - 101.0, - 2102.0, - 131.0, - 1261.0, - 131.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1261.0, - 101.0, - 2102.0, - 101.0, - 2102.0, - 131.0, - 1261.0, - 131.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 152.0, - 1528.0, - 189.0, - 1528.0, - 189.0, - 1560.0, - 152.0, - 1560.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 101, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 120, - 144, - 1655, - 144, - 1655, - 438, - 120, - 438 - ], - "score": 0.952, - "html": "
ADCCCABDDBCC
20212223242526272829303132
DBDDBBACCDCAD
" - }, - { - "category_id": 2, - "poly": [ - 2075, - 1529, - 2105, - 1529, - 2105, - 1554, - 2075, - 1554 - ], - "score": 0.862 - }, - { - "category_id": 2, - "poly": [ - 2267, - 5, - 2337, - 5, - 2337, - 40, - 2267, - 40 - ], - "score": 0.819 - }, - { - "category_id": 2, - "poly": [ - 1251, - 97, - 2106, - 97, - 2106, - 135, - 1251, - 135 - ], - "score": 0.665 - }, - { - "category_id": 1, - "poly": [ - 1251, - 97, - 2106, - 97, - 2106, - 135, - 1251, - 135 - ], - "score": 0.15 - }, - { - "category_id": 15, - "poly": [ - 2073.0, - 1528.0, - 2109.0, - 1528.0, - 2109.0, - 1558.0, - 2073.0, - 1558.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 5.0, - 2339.0, - 5.0, - 2339.0, - 40.0, - 2265.0, - 40.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1260.0, - 101.0, - 2102.0, - 101.0, - 2102.0, - 131.0, - 1260.0, - 131.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1260.0, - 101.0, - 2102.0, - 101.0, - 2102.0, - 131.0, - 1260.0, - 131.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 102, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 127, - 2055, - 703, - 2055, - 703, - 2165, - 127, - 2165 - ], - "score": 0.854 - }, - { - "category_id": 1, - "poly": [ - 127, - 982, - 373, - 982, - 373, - 1022, - 127, - 1022 - ], - "score": 0.853 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 39, - 1582, - 39 - ], - "score": 0.788 - }, - { - "category_id": 0, - "poly": [ - 127, - 829, - 359, - 829, - 359, - 872, - 127, - 872 - ], - "score": 0.738 - }, - { - "category_id": 1, - "poly": [ - 128, - 899, - 311, - 899, - 311, - 946, - 128, - 946 - ], - "score": 0.719 - }, - { - "category_id": 1, - "poly": [ - 123, - 444, - 431, - 444, - 431, - 797, - 123, - 797 - ], - "score": 0.569 - }, - { - "category_id": 0, - "poly": [ - 123, - 444, - 431, - 444, - 431, - 797, - 123, - 797 - ], - "score": 0.347 - }, - { - "category_id": 0, - "poly": [ - 110, - 71, - 482, - 71, - 482, - 210, - 110, - 210 - ], - "score": 0.259 - }, - { - "category_id": 2, - "poly": [ - 110, - 71, - 482, - 71, - 482, - 210, - 110, - 210 - ], - "score": 0.252 - }, - { - "category_id": 1, - "poly": [ - 110, - 71, - 482, - 71, - 482, - 210, - 110, - 210 - ], - "score": 0.166 - }, - { - "category_id": 1, - "poly": [ - 129, - 745, - 279, - 745, - 279, - 794, - 129, - 794 - ], - "score": 0.128 - }, - { - "category_id": 3, - "poly": [ - 110, - 71, - 482, - 71, - 482, - 210, - 110, - 210 - ], - "score": 0.103 - }, - { - "category_id": 15, - "poly": [ - 171.0, - 2134.0, - 646.0, - 2134.0, - 646.0, - 2163.0, - 171.0, - 2163.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 129.0, - 987.0, - 370.0, - 987.0, - 370.0, - 1017.0, - 129.0, - 1017.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 130.0, - 833.0, - 356.0, - 833.0, - 356.0, - 868.0, - 130.0, - 868.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 128.0, - 905.0, - 307.0, - 905.0, - 307.0, - 941.0, - 128.0, - 941.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 129.0, - 454.0, - 366.0, - 454.0, - 366.0, - 519.0, - 129.0, - 519.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 555.0, - 421.0, - 555.0, - 421.0, - 616.0, - 133.0, - 616.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 131.0, - 645.0, - 373.0, - 645.0, - 373.0, - 718.0, - 131.0, - 718.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 127.0, - 747.0, - 282.0, - 747.0, - 282.0, - 793.0, - 127.0, - 793.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 129.0, - 454.0, - 366.0, - 454.0, - 366.0, - 519.0, - 129.0, - 519.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 555.0, - 421.0, - 555.0, - 421.0, - 616.0, - 133.0, - 616.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 131.0, - 645.0, - 373.0, - 645.0, - 373.0, - 718.0, - 131.0, - 718.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 127.0, - 747.0, - 282.0, - 747.0, - 282.0, - 793.0, - 127.0, - 793.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 102.0, - 398.0, - 102.0, - 398.0, - 204.0, - 113.0, - 204.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 358.0, - 90.0, - 490.0, - 90.0, - 490.0, - 174.0, - 358.0, - 174.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 102.0, - 398.0, - 102.0, - 398.0, - 204.0, - 113.0, - 204.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 358.0, - 90.0, - 490.0, - 90.0, - 490.0, - 174.0, - 358.0, - 174.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 102.0, - 398.0, - 102.0, - 398.0, - 204.0, - 113.0, - 204.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 358.0, - 90.0, - 490.0, - 90.0, - 490.0, - 174.0, - 358.0, - 174.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 126.0, - 745.0, - 282.0, - 745.0, - 282.0, - 794.0, - 126.0, - 794.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 103, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 118, - 596, - 1503, - 596, - 1503, - 779, - 118, - 779 - ], - "score": 0.973 - }, - { - "category_id": 1, - "poly": [ - 119, - 849, - 1002, - 849, - 1002, - 886, - 119, - 886 - ], - "score": 0.906 - }, - { - "category_id": 0, - "poly": [ - 132, - 2023, - 353, - 2023, - 353, - 2050, - 132, - 2050 - ], - "score": 0.903 - }, - { - "category_id": 1, - "poly": [ - 129, - 2063, - 1497, - 2063, - 1497, - 2134, - 129, - 2134 - ], - "score": 0.89 - }, - { - "category_id": 2, - "poly": [ - 689, - 100, - 1536, - 100, - 1536, - 136, - 689, - 136 - ], - "score": 0.875 - }, - { - "category_id": 2, - "poly": [ - 1583, - 6, - 1652, - 6, - 1652, - 38, - 1583, - 38 - ], - "score": 0.822 - }, - { - "category_id": 1, - "poly": [ - 133, - 2154, - 653, - 2154, - 653, - 2178, - 133, - 2178 - ], - "score": 0.811 - }, - { - "category_id": 1, - "poly": [ - 117, - 234, - 1515, - 234, - 1515, - 561, - 117, - 561 - ], - "score": 0.794 - }, - { - "category_id": 2, - "poly": [ - 116, - 2216, - 132, - 2216, - 132, - 2237, - 116, - 2237 - ], - "score": 0.784 - }, - { - "category_id": 1, - "poly": [ - 116, - 234, - 1513, - 234, - 1513, - 561, - 116, - 561 - ], - "score": 0.522 - }, - { - "category_id": 2, - "poly": [ - 133, - 2154, - 653, - 2154, - 653, - 2178, - 133, - 2178 - ], - "score": 0.12 - }, - { - "category_id": 13, - "poly": [ - 218, - 2155, - 238, - 2155, - 238, - 2175, - 218, - 2175 - ], - "score": 0.67, - "latex": "\\circledcirc" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 599.0, - 1485.0, - 599.0, - 1485.0, - 631.0, - 116.0, - 631.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 636.0, - 1457.0, - 636.0, - 1457.0, - 673.0, - 116.0, - 673.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 673.0, - 1426.0, - 673.0, - 1426.0, - 710.0, - 114.0, - 710.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 708.0, - 1505.0, - 708.0, - 1505.0, - 743.0, - 113.0, - 743.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 109.0, - 747.0, - 209.0, - 747.0, - 209.0, - 780.0, - 109.0, - 780.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 851.0, - 1002.0, - 851.0, - 1002.0, - 887.0, - 116.0, - 887.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 131.0, - 2025.0, - 355.0, - 2025.0, - 355.0, - 2052.0, - 131.0, - 2052.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 2063.0, - 1475.0, - 2063.0, - 1475.0, - 2091.0, - 133.0, - 2091.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 129.0, - 2086.0, - 1495.0, - 2086.0, - 1495.0, - 2113.0, - 129.0, - 2113.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 128.0, - 2109.0, - 513.0, - 2109.0, - 513.0, - 2136.0, - 128.0, - 2136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 691.0, - 100.0, - 1536.0, - 100.0, - 1536.0, - 134.0, - 691.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1578.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1578.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 132.0, - 2155.0, - 217.0, - 2155.0, - 217.0, - 2180.0, - 132.0, - 2180.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 239.0, - 2155.0, - 653.0, - 2155.0, - 653.0, - 2180.0, - 239.0, - 2180.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 237.0, - 1517.0, - 237.0, - 1517.0, - 274.0, - 114.0, - 274.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 276.0, - 1485.0, - 276.0, - 1485.0, - 309.0, - 115.0, - 309.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 313.0, - 1517.0, - 313.0, - 1517.0, - 346.0, - 115.0, - 346.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 349.0, - 1450.0, - 349.0, - 1450.0, - 381.0, - 115.0, - 381.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 383.0, - 1481.0, - 383.0, - 1481.0, - 421.0, - 112.0, - 421.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 421.0, - 1489.0, - 421.0, - 1489.0, - 454.0, - 115.0, - 454.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 457.0, - 1407.0, - 457.0, - 1407.0, - 489.0, - 115.0, - 489.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 491.0, - 1487.0, - 491.0, - 1487.0, - 528.0, - 114.0, - 528.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 529.0, - 730.0, - 529.0, - 730.0, - 562.0, - 115.0, - 562.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 2213.0, - 138.0, - 2213.0, - 138.0, - 2244.0, - 113.0, - 2244.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 237.0, - 1516.0, - 237.0, - 1516.0, - 274.0, - 114.0, - 274.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 274.0, - 1487.0, - 274.0, - 1487.0, - 309.0, - 113.0, - 309.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 313.0, - 1518.0, - 313.0, - 1518.0, - 346.0, - 116.0, - 346.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 349.0, - 1451.0, - 349.0, - 1451.0, - 381.0, - 114.0, - 381.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 384.0, - 1477.0, - 384.0, - 1477.0, - 417.0, - 116.0, - 417.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 421.0, - 1488.0, - 421.0, - 1488.0, - 454.0, - 116.0, - 454.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 457.0, - 1407.0, - 457.0, - 1407.0, - 489.0, - 116.0, - 489.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 491.0, - 1487.0, - 491.0, - 1487.0, - 528.0, - 114.0, - 528.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 529.0, - 730.0, - 529.0, - 730.0, - 562.0, - 116.0, - 562.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 132.0, - 2155.0, - 217.0, - 2155.0, - 217.0, - 2180.0, - 132.0, - 2180.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 239.0, - 2155.0, - 653.0, - 2155.0, - 653.0, - 2180.0, - 239.0, - 2180.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 104, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 116, - 870, - 1510, - 870, - 1510, - 976, - 116, - 976 - ], - "score": 0.967 - }, - { - "category_id": 1, - "poly": [ - 118, - 2032, - 1520, - 2032, - 1520, - 2174, - 118, - 2174 - ], - "score": 0.966 - }, - { - "category_id": 1, - "poly": [ - 118, - 1009, - 1508, - 1009, - 1508, - 1117, - 118, - 1117 - ], - "score": 0.965 - }, - { - "category_id": 1, - "poly": [ - 117, - 512, - 1526, - 512, - 1526, - 730, - 117, - 730 - ], - "score": 0.964 - }, - { - "category_id": 1, - "poly": [ - 118, - 1736, - 1493, - 1736, - 1493, - 1809, - 118, - 1809 - ], - "score": 0.942 - }, - { - "category_id": 1, - "poly": [ - 113, - 1632, - 1505, - 1632, - 1505, - 1704, - 113, - 1704 - ], - "score": 0.94 - }, - { - "category_id": 1, - "poly": [ - 111, - 764, - 1504, - 764, - 1504, - 836, - 111, - 836 - ], - "score": 0.94 - }, - { - "category_id": 0, - "poly": [ - 115, - 241, - 1052, - 241, - 1052, - 292, - 115, - 292 - ], - "score": 0.935 - }, - { - "category_id": 0, - "poly": [ - 117, - 1952, - 795, - 1952, - 795, - 1996, - 117, - 1996 - ], - "score": 0.932 - }, - { - "category_id": 1, - "poly": [ - 111, - 1842, - 1495, - 1842, - 1495, - 1913, - 111, - 1913 - ], - "score": 0.921 - }, - { - "category_id": 0, - "poly": [ - 116, - 1154, - 384, - 1154, - 384, - 1198, - 116, - 1198 - ], - "score": 0.92 - }, - { - "category_id": 0, - "poly": [ - 119, - 1551, - 474, - 1551, - 474, - 1597, - 119, - 1597 - ], - "score": 0.915 - }, - { - "category_id": 2, - "poly": [ - 686, - 100, - 1537, - 100, - 1537, - 136, - 686, - 136 - ], - "score": 0.872 - }, - { - "category_id": 1, - "poly": [ - 116, - 439, - 713, - 439, - 713, - 477, - 116, - 477 - ], - "score": 0.867 - }, - { - "category_id": 0, - "poly": [ - 117, - 350, - 299, - 350, - 299, - 394, - 117, - 394 - ], - "score": 0.85 - }, - { - "category_id": 1, - "poly": [ - 152, - 1244, - 1512, - 1244, - 1512, - 1423, - 152, - 1423 - ], - "score": 0.821 - }, - { - "category_id": 2, - "poly": [ - 1582, - 5, - 1652, - 5, - 1652, - 38, - 1582, - 38 - ], - "score": 0.821 - }, - { - "category_id": 2, - "poly": [ - 1519, - 2216, - 1537, - 2216, - 1537, - 2238, - 1519, - 2238 - ], - "score": 0.783 - }, - { - "category_id": 0, - "poly": [ - 117, - 1458, - 426, - 1458, - 426, - 1503, - 117, - 1503 - ], - "score": 0.749 - }, - { - "category_id": 1, - "poly": [ - 117, - 1458, - 426, - 1458, - 426, - 1503, - 117, - 1503 - ], - "score": 0.191 - }, - { - "category_id": 1, - "poly": [ - 152, - 1244, - 1497, - 1244, - 1497, - 1314, - 152, - 1314 - ], - "score": 0.133 - }, - { - "category_id": 1, - "poly": [ - 159, - 1318, - 1495, - 1318, - 1495, - 1349, - 159, - 1349 - ], - "score": 0.124 - }, - { - "category_id": 1, - "poly": [ - 117, - 439, - 712, - 439, - 712, - 477, - 117, - 477 - ], - "score": 0.122 - }, - { - "category_id": 1, - "poly": [ - 152, - 1352, - 1504, - 1352, - 1504, - 1422, - 152, - 1422 - ], - "score": 0.111 - }, - { - "category_id": 13, - "poly": [ - 1381, - 1674, - 1410, - 1674, - 1410, - 1699, - 1381, - 1699 - ], - "score": 0.78, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 1265, - 1673, - 1291, - 1673, - 1291, - 1699, - 1265, - 1699 - ], - "score": 0.75, - "latex": "+" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 875.0, - 1464.0, - 875.0, - 1464.0, - 905.0, - 117.0, - 905.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 909.0, - 1506.0, - 909.0, - 1506.0, - 944.0, - 114.0, - 944.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 944.0, - 376.0, - 944.0, - 376.0, - 978.0, - 113.0, - 978.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 2035.0, - 1429.0, - 2035.0, - 1429.0, - 2068.0, - 117.0, - 2068.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 2068.0, - 1467.0, - 2068.0, - 1467.0, - 2104.0, - 113.0, - 2104.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 2106.0, - 1523.0, - 2106.0, - 1523.0, - 2139.0, - 115.0, - 2139.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 2141.0, - 816.0, - 2141.0, - 816.0, - 2174.0, - 117.0, - 2174.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 1013.0, - 1504.0, - 1013.0, - 1504.0, - 1048.0, - 116.0, - 1048.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 1048.0, - 1470.0, - 1048.0, - 1470.0, - 1084.0, - 115.0, - 1084.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 1084.0, - 268.0, - 1084.0, - 268.0, - 1120.0, - 115.0, - 1120.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 517.0, - 804.0, - 517.0, - 804.0, - 548.0, - 119.0, - 548.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 551.0, - 704.0, - 551.0, - 704.0, - 588.0, - 114.0, - 588.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 590.0, - 829.0, - 590.0, - 829.0, - 626.0, - 116.0, - 626.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 626.0, - 1436.0, - 626.0, - 1436.0, - 662.0, - 133.0, - 662.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 149.0, - 664.0, - 1524.0, - 664.0, - 1524.0, - 696.0, - 149.0, - 696.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 147.0, - 699.0, - 589.0, - 699.0, - 589.0, - 730.0, - 147.0, - 730.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1737.0, - 1485.0, - 1737.0, - 1485.0, - 1773.0, - 117.0, - 1773.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 1775.0, - 1382.0, - 1775.0, - 1382.0, - 1808.0, - 116.0, - 1808.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 1632.0, - 1504.0, - 1632.0, - 1504.0, - 1672.0, - 116.0, - 1672.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 1668.0, - 1264.0, - 1668.0, - 1264.0, - 1707.0, - 116.0, - 1707.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1292.0, - 1668.0, - 1380.0, - 1668.0, - 1380.0, - 1707.0, - 1292.0, - 1707.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1411.0, - 1668.0, - 1505.0, - 1668.0, - 1505.0, - 1707.0, - 1411.0, - 1707.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 764.0, - 1512.0, - 764.0, - 1512.0, - 804.0, - 115.0, - 804.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 804.0, - 865.0, - 804.0, - 865.0, - 838.0, - 117.0, - 838.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 245.0, - 1050.0, - 245.0, - 1050.0, - 289.0, - 118.0, - 289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 1949.0, - 179.0, - 1949.0, - 179.0, - 1998.0, - 113.0, - 1998.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 216.0, - 1956.0, - 794.0, - 1956.0, - 794.0, - 1994.0, - 216.0, - 1994.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 1844.0, - 1489.0, - 1844.0, - 1489.0, - 1883.0, - 115.0, - 1883.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 1881.0, - 258.0, - 1881.0, - 258.0, - 1913.0, - 113.0, - 1913.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1154.0, - 383.0, - 1154.0, - 383.0, - 1199.0, - 117.0, - 1199.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 1552.0, - 179.0, - 1552.0, - 179.0, - 1596.0, - 112.0, - 1596.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 214.0, - 1558.0, - 472.0, - 1558.0, - 472.0, - 1595.0, - 214.0, - 1595.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 691.0, - 100.0, - 1536.0, - 100.0, - 1536.0, - 134.0, - 691.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 442.0, - 712.0, - 442.0, - 712.0, - 474.0, - 118.0, - 474.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 353.0, - 299.0, - 353.0, - 299.0, - 392.0, - 116.0, - 392.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 154.0, - 1246.0, - 205.0, - 1246.0, - 205.0, - 1278.0, - 154.0, - 1278.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 231.0, - 1245.0, - 1495.0, - 1245.0, - 1495.0, - 1280.0, - 231.0, - 1280.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 233.0, - 1281.0, - 1503.0, - 1281.0, - 1503.0, - 1318.0, - 233.0, - 1318.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 151.0, - 1313.0, - 210.0, - 1313.0, - 210.0, - 1351.0, - 151.0, - 1351.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 231.0, - 1316.0, - 1471.0, - 1316.0, - 1471.0, - 1351.0, - 231.0, - 1351.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 151.0, - 1349.0, - 210.0, - 1349.0, - 210.0, - 1386.0, - 151.0, - 1386.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 233.0, - 1354.0, - 1513.0, - 1354.0, - 1513.0, - 1386.0, - 233.0, - 1386.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 233.0, - 1389.0, - 1136.0, - 1389.0, - 1136.0, - 1421.0, - 233.0, - 1421.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1580.0, - 5.0, - 1656.0, - 5.0, - 1656.0, - 41.0, - 1580.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1518.0, - 2213.0, - 1542.0, - 2213.0, - 1542.0, - 2244.0, - 1518.0, - 2244.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1462.0, - 424.0, - 1462.0, - 424.0, - 1502.0, - 117.0, - 1502.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1462.0, - 424.0, - 1462.0, - 424.0, - 1502.0, - 117.0, - 1502.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 1246.0, - 1493.0, - 1246.0, - 1493.0, - 1278.0, - 155.0, - 1278.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 232.0, - 1280.0, - 1500.0, - 1280.0, - 1500.0, - 1316.0, - 232.0, - 1316.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 151.0, - 1312.0, - 1470.0, - 1312.0, - 1470.0, - 1351.0, - 151.0, - 1351.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 442.0, - 712.0, - 442.0, - 712.0, - 474.0, - 117.0, - 474.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 1351.0, - 1507.0, - 1351.0, - 1507.0, - 1384.0, - 155.0, - 1384.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 232.0, - 1387.0, - 1138.0, - 1387.0, - 1138.0, - 1422.0, - 232.0, - 1422.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 105, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 117, - 1813, - 1525, - 1813, - 1525, - 2028, - 117, - 2028 - ], - "score": 0.978 - }, - { - "category_id": 1, - "poly": [ - 118, - 870, - 1470, - 870, - 1470, - 976, - 118, - 976 - ], - "score": 0.972 - }, - { - "category_id": 1, - "poly": [ - 119, - 2061, - 1521, - 2061, - 1521, - 2169, - 119, - 2169 - ], - "score": 0.97 - }, - { - "category_id": 1, - "poly": [ - 117, - 340, - 1465, - 340, - 1465, - 447, - 117, - 447 - ], - "score": 0.968 - }, - { - "category_id": 1, - "poly": [ - 111, - 1305, - 1526, - 1305, - 1526, - 1377, - 111, - 1377 - ], - "score": 0.949 - }, - { - "category_id": 1, - "poly": [ - 113, - 1102, - 1467, - 1102, - 1467, - 1175, - 113, - 1175 - ], - "score": 0.946 - }, - { - "category_id": 1, - "poly": [ - 116, - 1612, - 1455, - 1612, - 1455, - 1684, - 116, - 1684 - ], - "score": 0.943 - }, - { - "category_id": 1, - "poly": [ - 112, - 573, - 1437, - 573, - 1437, - 648, - 112, - 648 - ], - "score": 0.942 - }, - { - "category_id": 1, - "poly": [ - 112, - 1507, - 1500, - 1507, - 1500, - 1580, - 112, - 1580 - ], - "score": 0.942 - }, - { - "category_id": 1, - "poly": [ - 114, - 763, - 1484, - 763, - 1484, - 835, - 114, - 835 - ], - "score": 0.941 - }, - { - "category_id": 1, - "poly": [ - 112, - 235, - 1501, - 235, - 1501, - 308, - 112, - 308 - ], - "score": 0.938 - }, - { - "category_id": 0, - "poly": [ - 116, - 1722, - 662, - 1722, - 662, - 1767, - 116, - 1767 - ], - "score": 0.927 - }, - { - "category_id": 0, - "poly": [ - 118, - 1014, - 500, - 1014, - 500, - 1059, - 118, - 1059 - ], - "score": 0.922 - }, - { - "category_id": 0, - "poly": [ - 118, - 485, - 540, - 485, - 540, - 529, - 118, - 529 - ], - "score": 0.922 - }, - { - "category_id": 0, - "poly": [ - 117, - 1211, - 363, - 1211, - 363, - 1256, - 117, - 1256 - ], - "score": 0.918 - }, - { - "category_id": 0, - "poly": [ - 116, - 1413, - 788, - 1413, - 788, - 1459, - 116, - 1459 - ], - "score": 0.885 - }, - { - "category_id": 2, - "poly": [ - 688, - 100, - 1536, - 100, - 1536, - 136, - 688, - 136 - ], - "score": 0.882 - }, - { - "category_id": 1, - "poly": [ - 121, - 685, - 1350, - 685, - 1350, - 728, - 121, - 728 - ], - "score": 0.87 - }, - { - "category_id": 2, - "poly": [ - 1583, - 6, - 1652, - 6, - 1652, - 38, - 1583, - 38 - ], - "score": 0.833 - }, - { - "category_id": 2, - "poly": [ - 116, - 2216, - 132, - 2216, - 132, - 2236, - 116, - 2236 - ], - "score": 0.789 - }, - { - "category_id": 15, - "poly": [ - 114.0, - 1814.0, - 1454.0, - 1814.0, - 1454.0, - 1855.0, - 114.0, - 1855.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 1852.0, - 1525.0, - 1852.0, - 1525.0, - 1891.0, - 113.0, - 1891.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 1889.0, - 1525.0, - 1889.0, - 1525.0, - 1925.0, - 114.0, - 1925.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 1924.0, - 1492.0, - 1924.0, - 1492.0, - 1960.0, - 114.0, - 1960.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 1958.0, - 1506.0, - 1958.0, - 1506.0, - 1994.0, - 114.0, - 1994.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 1994.0, - 1358.0, - 1994.0, - 1358.0, - 2030.0, - 114.0, - 2030.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 867.0, - 1466.0, - 867.0, - 1466.0, - 910.0, - 113.0, - 910.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 910.0, - 1414.0, - 910.0, - 1414.0, - 941.0, - 118.0, - 941.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 944.0, - 743.0, - 944.0, - 743.0, - 979.0, - 113.0, - 979.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 2066.0, - 1507.0, - 2066.0, - 1507.0, - 2097.0, - 119.0, - 2097.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 2100.0, - 1519.0, - 2100.0, - 1519.0, - 2133.0, - 116.0, - 2133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 2136.0, - 1474.0, - 2136.0, - 1474.0, - 2169.0, - 114.0, - 2169.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 345.0, - 1447.0, - 345.0, - 1447.0, - 376.0, - 117.0, - 376.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 379.0, - 1461.0, - 379.0, - 1461.0, - 415.0, - 114.0, - 415.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 413.0, - 198.0, - 413.0, - 198.0, - 450.0, - 112.0, - 450.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 1307.0, - 1533.0, - 1307.0, - 1533.0, - 1343.0, - 116.0, - 1343.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 1345.0, - 927.0, - 1345.0, - 927.0, - 1379.0, - 116.0, - 1379.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 1106.0, - 1459.0, - 1106.0, - 1459.0, - 1140.0, - 119.0, - 1140.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 1143.0, - 1096.0, - 1143.0, - 1096.0, - 1176.0, - 116.0, - 1176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 1616.0, - 1456.0, - 1616.0, - 1456.0, - 1649.0, - 120.0, - 1649.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 1651.0, - 598.0, - 1651.0, - 598.0, - 1684.0, - 115.0, - 1684.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 578.0, - 1429.0, - 578.0, - 1429.0, - 612.0, - 118.0, - 612.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 611.0, - 228.0, - 611.0, - 228.0, - 652.0, - 112.0, - 652.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 1511.0, - 1505.0, - 1511.0, - 1505.0, - 1545.0, - 119.0, - 1545.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 1545.0, - 1279.0, - 1545.0, - 1279.0, - 1585.0, - 116.0, - 1585.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 767.0, - 1485.0, - 767.0, - 1485.0, - 800.0, - 119.0, - 800.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 803.0, - 1010.0, - 803.0, - 1010.0, - 837.0, - 118.0, - 837.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 239.0, - 1506.0, - 239.0, - 1506.0, - 273.0, - 116.0, - 273.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 270.0, - 1284.0, - 270.0, - 1284.0, - 311.0, - 115.0, - 311.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 1724.0, - 179.0, - 1724.0, - 179.0, - 1764.0, - 114.0, - 1764.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 211.0, - 1727.0, - 659.0, - 1727.0, - 659.0, - 1766.0, - 211.0, - 1766.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 1016.0, - 177.0, - 1016.0, - 177.0, - 1056.0, - 114.0, - 1056.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 213.0, - 1018.0, - 496.0, - 1018.0, - 496.0, - 1059.0, - 213.0, - 1059.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 482.0, - 178.0, - 482.0, - 178.0, - 531.0, - 113.0, - 531.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 215.0, - 490.0, - 537.0, - 490.0, - 537.0, - 526.0, - 215.0, - 526.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 1213.0, - 179.0, - 1213.0, - 179.0, - 1255.0, - 112.0, - 1255.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 212.0, - 1214.0, - 363.0, - 1214.0, - 363.0, - 1256.0, - 212.0, - 1256.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 1415.0, - 185.0, - 1415.0, - 185.0, - 1457.0, - 112.0, - 1457.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 212.0, - 1419.0, - 786.0, - 1419.0, - 786.0, - 1454.0, - 212.0, - 1454.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 691.0, - 100.0, - 1536.0, - 100.0, - 1536.0, - 134.0, - 691.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 683.0, - 180.0, - 683.0, - 180.0, - 730.0, - 114.0, - 730.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 214.0, - 684.0, - 1353.0, - 684.0, - 1353.0, - 729.0, - 214.0, - 729.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1578.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1578.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 2218.0, - 135.0, - 2218.0, - 135.0, - 2239.0, - 116.0, - 2239.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 106, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 118, - 469, - 1531, - 469, - 1531, - 682, - 118, - 682 - ], - "score": 0.978 - }, - { - "category_id": 1, - "poly": [ - 117, - 1348, - 1532, - 1348, - 1532, - 1560, - 117, - 1560 - ], - "score": 0.977 - }, - { - "category_id": 1, - "poly": [ - 118, - 1594, - 1520, - 1594, - 1520, - 1807, - 118, - 1807 - ], - "score": 0.977 - }, - { - "category_id": 1, - "poly": [ - 117, - 1102, - 1528, - 1102, - 1528, - 1315, - 117, - 1315 - ], - "score": 0.976 - }, - { - "category_id": 1, - "poly": [ - 118, - 235, - 1530, - 235, - 1530, - 343, - 118, - 343 - ], - "score": 0.969 - }, - { - "category_id": 1, - "poly": [ - 119, - 1946, - 1457, - 1946, - 1457, - 2053, - 119, - 2053 - ], - "score": 0.965 - }, - { - "category_id": 1, - "poly": [ - 117, - 798, - 1540, - 798, - 1540, - 870, - 117, - 870 - ], - "score": 0.949 - }, - { - "category_id": 1, - "poly": [ - 112, - 1841, - 1526, - 1841, - 1526, - 1913, - 112, - 1913 - ], - "score": 0.942 - }, - { - "category_id": 1, - "poly": [ - 112, - 905, - 1503, - 905, - 1503, - 976, - 112, - 976 - ], - "score": 0.939 - }, - { - "category_id": 0, - "poly": [ - 118, - 380, - 446, - 380, - 446, - 424, - 118, - 424 - ], - "score": 0.925 - }, - { - "category_id": 0, - "poly": [ - 117, - 720, - 862, - 720, - 862, - 762, - 117, - 762 - ], - "score": 0.923 - }, - { - "category_id": 1, - "poly": [ - 113, - 2087, - 1349, - 2087, - 1349, - 2125, - 113, - 2125 - ], - "score": 0.908 - }, - { - "category_id": 2, - "poly": [ - 688, - 100, - 1536, - 100, - 1536, - 135, - 688, - 135 - ], - "score": 0.881 - }, - { - "category_id": 2, - "poly": [ - 1583, - 6, - 1652, - 6, - 1652, - 38, - 1583, - 38 - ], - "score": 0.827 - }, - { - "category_id": 2, - "poly": [ - 1520, - 2215, - 1537, - 2215, - 1537, - 2238, - 1520, - 2238 - ], - "score": 0.74 - }, - { - "category_id": 0, - "poly": [ - 119, - 1014, - 442, - 1014, - 442, - 1057, - 119, - 1057 - ], - "score": 0.643 - }, - { - "category_id": 1, - "poly": [ - 119, - 1014, - 442, - 1014, - 442, - 1057, - 119, - 1057 - ], - "score": 0.317 - }, - { - "category_id": 13, - "poly": [ - 274, - 646, - 473, - 646, - 473, - 682, - 274, - 682 - ], - "score": 0.88, - "latex": "1~\\mathsf{k g}~\\mathsf{m}^{2}\\mathsf{s}^{-2}\\mathsf{A}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 759, - 612, - 813, - 612, - 813, - 644, - 759, - 644 - ], - "score": 0.79, - "latex": "\\mathsf{m}^{-2}" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 468.0, - 1534.0, - 468.0, - 1534.0, - 510.0, - 114.0, - 510.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 507.0, - 1505.0, - 507.0, - 1505.0, - 543.0, - 115.0, - 543.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 541.0, - 1494.0, - 541.0, - 1494.0, - 577.0, - 117.0, - 577.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 579.0, - 1504.0, - 579.0, - 1504.0, - 613.0, - 115.0, - 613.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 613.0, - 758.0, - 613.0, - 758.0, - 649.0, - 115.0, - 649.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 814.0, - 613.0, - 1475.0, - 613.0, - 1475.0, - 649.0, - 814.0, - 649.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 647.0, - 273.0, - 647.0, - 273.0, - 683.0, - 115.0, - 683.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 474.0, - 647.0, - 623.0, - 647.0, - 623.0, - 683.0, - 474.0, - 683.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 1348.0, - 1514.0, - 1348.0, - 1514.0, - 1386.0, - 114.0, - 1386.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 1387.0, - 1513.0, - 1387.0, - 1513.0, - 1423.0, - 116.0, - 1423.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 1425.0, - 1459.0, - 1425.0, - 1459.0, - 1456.0, - 118.0, - 1456.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 1457.0, - 1535.0, - 1457.0, - 1535.0, - 1493.0, - 114.0, - 1493.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 1493.0, - 1495.0, - 1493.0, - 1495.0, - 1529.0, - 114.0, - 1529.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 1527.0, - 351.0, - 1527.0, - 351.0, - 1561.0, - 113.0, - 1561.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 1595.0, - 1468.0, - 1595.0, - 1468.0, - 1630.0, - 118.0, - 1630.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 1630.0, - 1520.0, - 1630.0, - 1520.0, - 1668.0, - 115.0, - 1668.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 1671.0, - 1470.0, - 1671.0, - 1470.0, - 1702.0, - 118.0, - 1702.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1705.0, - 1445.0, - 1705.0, - 1445.0, - 1736.0, - 117.0, - 1736.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1738.0, - 1507.0, - 1738.0, - 1507.0, - 1774.0, - 117.0, - 1774.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 1774.0, - 337.0, - 1774.0, - 337.0, - 1810.0, - 115.0, - 1810.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1106.0, - 1523.0, - 1106.0, - 1523.0, - 1137.0, - 117.0, - 1137.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 1140.0, - 1529.0, - 1140.0, - 1529.0, - 1176.0, - 116.0, - 1176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 1174.0, - 1482.0, - 1174.0, - 1482.0, - 1212.0, - 113.0, - 1212.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 1213.0, - 1496.0, - 1213.0, - 1496.0, - 1244.0, - 116.0, - 1244.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 1248.0, - 1484.0, - 1248.0, - 1484.0, - 1283.0, - 116.0, - 1283.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 1279.0, - 566.0, - 1279.0, - 566.0, - 1318.0, - 113.0, - 1318.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 240.0, - 1523.0, - 240.0, - 1523.0, - 271.0, - 118.0, - 271.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 274.0, - 1415.0, - 274.0, - 1415.0, - 310.0, - 115.0, - 310.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 307.0, - 1533.0, - 307.0, - 1533.0, - 347.0, - 112.0, - 347.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 1951.0, - 1450.0, - 1951.0, - 1450.0, - 1982.0, - 118.0, - 1982.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 1985.0, - 1420.0, - 1985.0, - 1420.0, - 2021.0, - 115.0, - 2021.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 2022.0, - 1224.0, - 2022.0, - 1224.0, - 2053.0, - 115.0, - 2053.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 802.0, - 1534.0, - 802.0, - 1534.0, - 836.0, - 115.0, - 836.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 838.0, - 1525.0, - 838.0, - 1525.0, - 872.0, - 116.0, - 872.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1841.0, - 1521.0, - 1841.0, - 1521.0, - 1881.0, - 117.0, - 1881.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1881.0, - 918.0, - 1881.0, - 918.0, - 1915.0, - 117.0, - 1915.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 903.0, - 1492.0, - 903.0, - 1492.0, - 944.0, - 115.0, - 944.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 944.0, - 1423.0, - 944.0, - 1423.0, - 978.0, - 115.0, - 978.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 380.0, - 177.0, - 380.0, - 177.0, - 424.0, - 114.0, - 424.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 214.0, - 382.0, - 447.0, - 382.0, - 447.0, - 425.0, - 214.0, - 425.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 721.0, - 862.0, - 721.0, - 862.0, - 762.0, - 118.0, - 762.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 2089.0, - 1348.0, - 2089.0, - 1348.0, - 2125.0, - 117.0, - 2125.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 693.0, - 103.0, - 1535.0, - 103.0, - 1535.0, - 132.0, - 693.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1578.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1578.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1519.0, - 2215.0, - 1540.0, - 2215.0, - 1540.0, - 2242.0, - 1519.0, - 2242.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 1020.0, - 441.0, - 1020.0, - 441.0, - 1056.0, - 119.0, - 1056.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 1020.0, - 441.0, - 1020.0, - 441.0, - 1056.0, - 119.0, - 1056.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 107, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 106, - 241, - 2109, - 241, - 2109, - 441, - 106, - 441 - ], - "score": 0.956, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.1uds vDo not accept D for d. Penalise extra particles1AO3
" - }, - { - "category_id": 5, - "poly": [ - 88, - 508, - 2115, - 508, - 2115, - 1110, - 88, - 1110 - ], - "score": 0.948, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.2weak(interaction / force)v strangeness changes (in this decay) (from -1 to 0 and strangeness can only change in a weak interaction)MP2:2AO1
Reject negative arguments (eg 'strangeness is conserved in a strong interaction')
Reject the idea that strangeness always changes in a weak interaction. General statement ofstrangeness
conservationintheweakinteractiononits own is insufficient.
Accept “strangeness is not conserved (in this
decay)\".
Condone “strangeness is lost\".
" - }, - { - "category_id": 2, - "poly": [ - 1254, - 98, - 2105, - 98, - 2105, - 137, - 1254, - 137 - ], - "score": 0.865 - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2338, - 6, - 2338, - 40, - 2267, - 40 - ], - "score": 0.834 - }, - { - "category_id": 2, - "poly": [ - 153, - 1529, - 173, - 1529, - 173, - 1554, - 153, - 1554 - ], - "score": 0.799 - }, - { - "category_id": 15, - "poly": [ - 1259.0, - 100.0, - 2102.0, - 100.0, - 2102.0, - 134.0, - 1259.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 4.0, - 2341.0, - 4.0, - 2341.0, - 41.0, - 2265.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 154.0, - 1530.0, - 175.0, - 1530.0, - 175.0, - 1559.0, - 154.0, - 1559.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 108, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 106, - 617, - 2110, - 617, - 2110, - 921, - 106, - 921 - ], - "score": 0.912, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.41.1(1) × 103 (MeV) Rejectincorrectlyroundedanswers. Accept: 1100 MeV (2sf) / 1110 MeV (3sf) / 1115MeV (4sf)etc Calculatorvalue:1114.66875MeV1AO1
" - }, - { - "category_id": 5, - "poly": [ - 104, - 205, - 2111, - 205, - 2111, - 553, - 104, - 553 - ], - "score": 0.896, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.3anti-neutronvAcceptn1AO1
Reject ambiguous answers unless supported byotherevidence.
Do not accept answer solely in terms of quarks
" - }, - { - "category_id": 2, - "poly": [ - 2086, - 1528, - 2106, - 1528, - 2106, - 1553, - 2086, - 1553 - ], - "score": 0.835 - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2338, - 6, - 2338, - 40, - 2267, - 40 - ], - "score": 0.831 - }, - { - "category_id": 2, - "poly": [ - 1253, - 97, - 2105, - 97, - 2105, - 138, - 1253, - 138 - ], - "score": 0.802 - }, - { - "category_id": 15, - "poly": [ - 2084.0, - 1529.0, - 2109.0, - 1529.0, - 2109.0, - 1559.0, - 2084.0, - 1559.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 4.0, - 2341.0, - 4.0, - 2341.0, - 41.0, - 2265.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1261.0, - 102.0, - 2101.0, - 102.0, - 2101.0, - 133.0, - 1261.0, - 133.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 109, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 75, - 307, - 2135, - 307, - 2135, - 1035, - 75, - 1035 - ], - "score": 0.965, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
01.5Any one from v (teams must be large and international) because: research is expensive / requires funding from many countries both scientists and engineers are required (because the machines used for research are complex/large pieces of civil engineering) research is multi-faceted / multi-disciplinary (becauseTreat idea of peer review as neutral (this argues for independent teams). Do not accept idea that it 'avoids bias' or 'reproducibility'.1AO1
" - }, - { - "category_id": 2, - "poly": [ - 1254, - 98, - 2106, - 98, - 2106, - 137, - 1254, - 137 - ], - "score": 0.866 - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2338, - 6, - 2338, - 40, - 2267, - 40 - ], - "score": 0.835 - }, - { - "category_id": 2, - "poly": [ - 153, - 1529, - 173, - 1529, - 173, - 1554, - 153, - 1554 - ], - "score": 0.756 - }, - { - "category_id": 5, - "poly": [ - 88, - 967, - 1929, - 967, - 1929, - 1034, - 88, - 1034 - ], - "score": 0.297, - "html": "
Total9
" - }, - { - "category_id": 2, - "poly": [ - 153, - 1529, - 173, - 1529, - 173, - 1554, - 153, - 1554 - ], - "score": 0.125 - }, - { - "category_id": 15, - "poly": [ - 1261.0, - 102.0, - 2101.0, - 102.0, - 2101.0, - 133.0, - 1261.0, - 133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 4.0, - 2341.0, - 4.0, - 2341.0, - 41.0, - 2265.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 154.0, - 1530.0, - 175.0, - 1530.0, - 175.0, - 1559.0, - 154.0, - 1559.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 154.0, - 1530.0, - 175.0, - 1530.0, - 175.0, - 1559.0, - 154.0, - 1559.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 110, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 99, - 241, - 2116, - 241, - 2116, - 783, - 99, - 783 - ], - "score": 0.969, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
02.1Conversion of 1230 km h-1 to m s-1 ORExpect to see 342 m s-1 (341.7)2AO1
Calculates time for 343 m s-1 run ORExpect to see 4.69 sAO2
Calculates total time (using total distance, 3.22 km, and speed record)Expect to see 9.42 s
OR Calculates unknown speed vExpect to see 340.3 m s-1
Answer that rounds to 4.73 (s) Do not accept 2sf for final answer.
" - }, - { - "category_id": 2, - "poly": [ - 1254, - 98, - 2105, - 98, - 2105, - 137, - 1254, - 137 - ], - "score": 0.866 - }, - { - "category_id": 2, - "poly": [ - 2085, - 1528, - 2107, - 1528, - 2107, - 1555, - 2085, - 1555 - ], - "score": 0.843 - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2338, - 6, - 2338, - 40, - 2267, - 40 - ], - "score": 0.834 - }, - { - "category_id": 5, - "poly": [ - 114, - 850, - 2103, - 850, - 2103, - 923, - 114, - 923 - ], - "score": 0.693, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
" - }, - { - "category_id": 5, - "poly": [ - 93, - 936, - 2101, - 936, - 2101, - 1191, - 93, - 1191 - ], - "score": 0.612, - "html": "
02.2speed from graph: 450 m s -1√Accept445-455ms-12AO3 AO2
Use of their speed and KE equationto give consistent answervExpect to see 6.6 × 108 (J)
" - }, - { - "category_id": 5, - "poly": [ - 101, - 853, - 2106, - 853, - 2106, - 1192, - 101, - 1192 - ], - "score": 0.588, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
02.2speed from graph: 450 m s Use of their speed and KE equation to give consistentAccept 445 - 455 m s-12AO3 AO2
" - }, - { - "category_id": 5, - "poly": [ - 92, - 850, - 2070, - 850, - 2070, - 922, - 92, - 922 - ], - "score": 0.13, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
" - }, - { - "category_id": 13, - "poly": [ - 561, - 424, - 679, - 424, - 679, - 458, - 561, - 458 - ], - "score": 0.8, - "latex": "343~\\mathrm{m~s^{-1}}" - }, - { - "category_id": 13, - "poly": [ - 499, - 349, - 668, - 349, - 668, - 388, - 499, - 388 - ], - "score": 0.68, - "latex": "1230\\mathrm{kmh^{-1}}" - }, - { - "category_id": 13, - "poly": [ - 872, - 498, - 985, - 498, - 985, - 533, - 872, - 533 - ], - "score": 0.65, - "latex": "3.22\\mathrm{km}" - }, - { - "category_id": 13, - "poly": [ - 703, - 349, - 782, - 349, - 782, - 387, - 703, - 387 - ], - "score": 0.55, - "latex": "\\mathrm{m~s^{-1}}" - }, - { - "category_id": 13, - "poly": [ - 556, - 956, - 692, - 956, - 692, - 1000, - 556, - 1000 - ], - "score": 0.5, - "latex": "450\\mathrm{m~s~}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 1327, - 1125, - 1487, - 1125, - 1487, - 1168, - 1327, - 1168 - ], - "score": 0.4, - "latex": "6.6\\times10^{8}\\left(\\mathrm{{J}}\\right)" - }, - { - "category_id": 13, - "poly": [ - 1329, - 585, - 1482, - 585, - 1482, - 622, - 1329, - 622 - ], - "score": 0.36, - "latex": "340.3\\mathrm{m}\\mathrm{s}^{-1}" - }, - { - "category_id": 15, - "poly": [ - 1259.0, - 100.0, - 2102.0, - 100.0, - 2102.0, - 134.0, - 1259.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2086.0, - 1530.0, - 2107.0, - 1530.0, - 2107.0, - 1557.0, - 2086.0, - 1557.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 4.0, - 2341.0, - 4.0, - 2341.0, - 41.0, - 2265.0, - 41.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 111, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 75, - 238, - 2130, - 238, - 2130, - 1002, - 75, - 1002 - ], - "score": 0.97, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
02.3MAX three from: VvvExpect to see 450 m s-1 for their speed4 AO1 AO22× A03
Evidence for gradient may be on figure
AllowECFfrom02.2
Use of graph to determine gradient 450 5600
= 0.080(4)
Uses (their) speed and (their) gradient to give accelerationExpect to see 450 x 0.08
Use of F = m × (their a) to give resultant force Use of P = (their F)x (their speed)= 36(.2) m s-2
Expect to see 2.35 x 105 N
Final answer between 16% and 17%vExpect to see 450 x 2.35 x 105 = 106 MWReject power that is calculated assuming a
" - }, - { - "category_id": 2, - "poly": [ - 157, - 1529, - 185, - 1529, - 185, - 1554, - 157, - 1554 - ], - "score": 0.867 - }, - { - "category_id": 2, - "poly": [ - 1254, - 98, - 2105, - 98, - 2105, - 137, - 1254, - 137 - ], - "score": 0.838 - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2338, - 6, - 2338, - 40, - 2267, - 40 - ], - "score": 0.83 - }, - { - "category_id": 13, - "poly": [ - 1428, - 704, - 1606, - 704, - 1606, - 742, - 1428, - 742 - ], - "score": 0.88, - "latex": "2.35\\times10^{5}\\mathrm{N}" - }, - { - "category_id": 13, - "poly": [ - 1428, - 750, - 1658, - 750, - 1658, - 788, - 1428, - 788 - ], - "score": 0.88, - "latex": "450\\times2.35\\times10^{5}" - }, - { - "category_id": 13, - "poly": [ - 606, - 840, - 671, - 840, - 671, - 874, - 606, - 874 - ], - "score": 0.87, - "latex": "16\\%" - }, - { - "category_id": 13, - "poly": [ - 1329, - 332, - 1461, - 332, - 1461, - 368, - 1329, - 368 - ], - "score": 0.73, - "latex": "450\\mathrm{m}\\mathrm{s}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 735, - 840, - 794, - 840, - 794, - 873, - 735, - 873 - ], - "score": 0.71, - "latex": "17\\%" - }, - { - "category_id": 13, - "poly": [ - 1429, - 615, - 1577, - 615, - 1577, - 652, - 1429, - 652 - ], - "score": 0.7, - "latex": "450\\times0.08" - }, - { - "category_id": 13, - "poly": [ - 1231, - 552, - 1435, - 552, - 1435, - 610, - 1231, - 610 - ], - "score": 0.7, - "latex": "\\frac{450}{5600}=0.080(4)" - }, - { - "category_id": 13, - "poly": [ - 495, - 684, - 723, - 684, - 723, - 720, - 495, - 720 - ], - "score": 0.54, - "latex": "F=m\\times(\\operatorname{their}a)" - }, - { - "category_id": 13, - "poly": [ - 1232, - 795, - 1388, - 795, - 1388, - 834, - 1232, - 834 - ], - "score": 0.44, - "latex": "=106\\mathrm{MW}" - }, - { - "category_id": 13, - "poly": [ - 631, - 730, - 692, - 730, - 692, - 765, - 631, - 765 - ], - "score": 0.39, - "latex": "F)x" - }, - { - "category_id": 13, - "poly": [ - 692, - 690, - 714, - 690, - 714, - 717, - 692, - 717 - ], - "score": 0.36, - "latex": "a" - }, - { - "category_id": 13, - "poly": [ - 495, - 731, - 552, - 731, - 552, - 762, - 495, - 762 - ], - "score": 0.33, - "latex": "P=" - }, - { - "category_id": 13, - "poly": [ - 666, - 733, - 691, - 733, - 691, - 762, - 666, - 762 - ], - "score": 0.33, - "latex": "_{x}" - }, - { - "category_id": 13, - "poly": [ - 1233, - 658, - 1426, - 658, - 1426, - 698, - 1233, - 698 - ], - "score": 0.31, - "latex": "=36(.2)\\mathrm{m}\\mathrm{s}^{-2}" - }, - { - "category_id": 13, - "poly": [ - 1963, - 450, - 2077, - 450, - 2077, - 488, - 1963, - 488 - ], - "score": 0.3, - "latex": "2\\times\\mathsf{A O3}" - }, - { - "category_id": 14, - "poly": [ - 1232, - 657, - 1427, - 657, - 1427, - 698, - 1232, - 698 - ], - "score": 0.3, - "latex": "=36(.2)\\mathrm{m}\\mathrm{s}^{-2}" - }, - { - "category_id": 15, - "poly": [ - 152.0, - 1528.0, - 189.0, - 1528.0, - 189.0, - 1560.0, - 152.0, - 1560.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1259.0, - 100.0, - 2102.0, - 100.0, - 2102.0, - 134.0, - 1259.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 4.0, - 2341.0, - 4.0, - 2341.0, - 41.0, - 2265.0, - 41.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 112, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 80, - 276, - 2125, - 276, - 2125, - 1041, - 80, - 1041 - ], - "score": 0.972, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
02.4Identifies distance decelerating ANDallow 7000 m to 7600 m2AO3
max velocity = (470 ±5) m s-1 Uses suvat equation(s)allow answer consistent with their distance that rounds to 15 or 16
to get a = (-) 15 m s-2 which is less than 3g (so yes). vgive full credit to calculations that show that an acceleration of 3g would stop the car in a (much) shorter distance, with a statement that
this means that the actual acceleration must be (much) less than 3g. For MP2 allow calculation of gradientx average speed to give
Totalα = (-) 15 m s-2 which is less than 3g (so yes)10
" - }, - { - "category_id": 2, - "poly": [ - 1254, - 98, - 2106, - 98, - 2106, - 137, - 1254, - 137 - ], - "score": 0.864 - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2338, - 6, - 2338, - 40, - 2267, - 40 - ], - "score": 0.832 - }, - { - "category_id": 2, - "poly": [ - 2076, - 1529, - 2102, - 1529, - 2102, - 1554, - 2076, - 1554 - ], - "score": 0.626 - }, - { - "category_id": 2, - "poly": [ - 2076, - 1529, - 2103, - 1529, - 2103, - 1554, - 2076, - 1554 - ], - "score": 0.197 - }, - { - "category_id": 13, - "poly": [ - 1135, - 903, - 1352, - 903, - 1352, - 945, - 1135, - 945 - ], - "score": 0.82, - "latex": "a=(-)~15\\mathrm{m}\\mathrm{s}^{-2}" - }, - { - "category_id": 13, - "poly": [ - 1253, - 860, - 1277, - 860, - 1277, - 885, - 1253, - 885 - ], - "score": 0.7, - "latex": "\\times" - }, - { - "category_id": 13, - "poly": [ - 1384, - 641, - 1423, - 641, - 1423, - 677, - 1384, - 677 - ], - "score": 0.6, - "latex": "3g" - }, - { - "category_id": 13, - "poly": [ - 853, - 622, - 892, - 622, - 892, - 659, - 853, - 659 - ], - "score": 0.57, - "latex": "3g" - }, - { - "category_id": 13, - "poly": [ - 385, - 619, - 603, - 619, - 603, - 659, - 385, - 659 - ], - "score": 0.56, - "latex": "a=(-)~15\\mathrm{m}\\mathrm{s}^{-2}" - }, - { - "category_id": 13, - "poly": [ - 384, - 622, - 480, - 622, - 480, - 659, - 384, - 659 - ], - "score": 0.54, - "latex": "a=(-)" - }, - { - "category_id": 13, - "poly": [ - 1411, - 749, - 1449, - 749, - 1449, - 785, - 1411, - 785 - ], - "score": 0.52, - "latex": "3g" - }, - { - "category_id": 13, - "poly": [ - 471, - 491, - 736, - 491, - 736, - 532, - 471, - 532 - ], - "score": 0.49, - "latex": "=(470\\pm5)\\mathrm{~m~s~}^{-1}\\times" - }, - { - "category_id": 13, - "poly": [ - 1355, - 387, - 1464, - 387, - 1464, - 423, - 1355, - 423 - ], - "score": 0.41, - "latex": "7600\\mathrm{m}" - }, - { - "category_id": 13, - "poly": [ - 1603, - 907, - 1642, - 907, - 1642, - 944, - 1603, - 944 - ], - "score": 0.4, - "latex": "3g" - }, - { - "category_id": 13, - "poly": [ - 473, - 499, - 503, - 499, - 503, - 525, - 473, - 525 - ], - "score": 0.34, - "latex": "=" - }, - { - "category_id": 15, - "poly": [ - 1261.0, - 102.0, - 2101.0, - 102.0, - 2101.0, - 133.0, - 1261.0, - 133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 4.0, - 2341.0, - 4.0, - 2341.0, - 41.0, - 2265.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2072.0, - 1529.0, - 2109.0, - 1529.0, - 2109.0, - 1558.0, - 2072.0, - 1558.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2073.0, - 1528.0, - 2108.0, - 1528.0, - 2108.0, - 1560.0, - 2073.0, - 1560.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 113, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 91, - 238, - 2130, - 238, - 2130, - 1001, - 91, - 1001 - ], - "score": 0.971, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
03.1(1 C of) the charge gains ε J on passing through cellIf no other mark awarded, allow one mark for definition of emf in terms of energy transfer.2AO1
OR energy transferred (by 1 C) in R1 is V1 (J)accept: 'dissipated'
OR energy transferred (by 1 C) in R2 is V2 (J)accept “lost volts' for Ir but reject 'voltage across r
ORaccept 'work done' for 'energy transferred'
energy transferred (by 1 C) in r is Ir (J)
(for conservation of energy)Alternative for MP2 = V1 + V2 + Ir
ε = IR1 + IR2 + Ir vprovided that MP1 is awarded.
" - }, - { - "category_id": 2, - "poly": [ - 157, - 1529, - 185, - 1529, - 185, - 1554, - 157, - 1554 - ], - "score": 0.869 - }, - { - "category_id": 2, - "poly": [ - 1254, - 98, - 2105, - 98, - 2105, - 137, - 1254, - 137 - ], - "score": 0.829 - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2338, - 6, - 2338, - 40, - 2267, - 40 - ], - "score": 0.828 - }, - { - "category_id": 13, - "poly": [ - 707, - 593, - 746, - 593, - 746, - 627, - 707, - 627 - ], - "score": 0.83, - "latex": "{\\bf R}_{2}" - }, - { - "category_id": 13, - "poly": [ - 781, - 593, - 817, - 593, - 817, - 627, - 781, - 627 - ], - "score": 0.81, - "latex": "V_{2}" - }, - { - "category_id": 13, - "poly": [ - 758, - 702, - 791, - 702, - 791, - 733, - 758, - 733 - ], - "score": 0.77, - "latex": "I r" - }, - { - "category_id": 13, - "poly": [ - 707, - 707, - 728, - 707, - 728, - 732, - 707, - 732 - ], - "score": 0.72, - "latex": "r" - }, - { - "category_id": 13, - "poly": [ - 781, - 485, - 817, - 485, - 817, - 520, - 781, - 520 - ], - "score": 0.7, - "latex": "V_{1}" - }, - { - "category_id": 14, - "poly": [ - 1134, - 833, - 1351, - 833, - 1351, - 870, - 1134, - 870 - ], - "score": 0.65, - "latex": "\\varepsilon=V_{1}+V_{2}+I r" - }, - { - "category_id": 13, - "poly": [ - 707, - 485, - 746, - 485, - 746, - 520, - 707, - 520 - ], - "score": 0.61, - "latex": "{\\bf R}_{1}" - }, - { - "category_id": 13, - "poly": [ - 609, - 702, - 669, - 702, - 669, - 735, - 609, - 735 - ], - "score": 0.47, - "latex": "1\\mathrm{C})" - }, - { - "category_id": 14, - "poly": [ - 307, - 860, - 573, - 860, - 573, - 897, - 307, - 897 - ], - "score": 0.43, - "latex": "\\varepsilon=I R_{1}+I R_{2}+I r~\\checkmark" - }, - { - "category_id": 13, - "poly": [ - 1417, - 529, - 1448, - 529, - 1448, - 560, - 1417, - 560 - ], - "score": 0.4, - "latex": "I r" - }, - { - "category_id": 13, - "poly": [ - 1232, - 566, - 1256, - 566, - 1256, - 597, - 1232, - 597 - ], - "score": 0.34, - "latex": "r" - }, - { - "category_id": 13, - "poly": [ - 609, - 593, - 668, - 593, - 668, - 628, - 609, - 628 - ], - "score": 0.28, - "latex": "1\\mathrm{C})" - }, - { - "category_id": 15, - "poly": [ - 153.0, - 1528.0, - 188.0, - 1528.0, - 188.0, - 1558.0, - 153.0, - 1558.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1259.0, - 100.0, - 2102.0, - 100.0, - 2102.0, - 134.0, - 1259.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 4.0, - 2341.0, - 4.0, - 2341.0, - 41.0, - 2265.0, - 41.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 114, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 98, - 200, - 2137, - 200, - 2137, - 1049, - 98, - 1049 - ], - "score": 0.978, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
03.2Equates emf to Ir + 2.89 in some formv 1If no other mark awarded, award one mark for use of emf value in MP2. Allow in MP1 (their current/A) x125Q for 2.89 V3AO2 × 3
Calculates I from 2.89÷125 (=0.02312 A) 2Allow alternative routes for V1 and 2. E.g. \"Lost volts'= 0.11 V √ 1 Applies potential-divider equation e.g. 0.11÷2.89 = r÷125 √2 OR 3÷(125 + r) = 2.89÷125√ 1V 2
" - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2338, - 6, - 2338, - 40, - 2267, - 40 - ], - "score": 0.828 - }, - { - "category_id": 2, - "poly": [ - 2077, - 1529, - 2106, - 1529, - 2106, - 1554, - 2077, - 1554 - ], - "score": 0.744 - }, - { - "category_id": 2, - "poly": [ - 1254, - 98, - 2105, - 98, - 2105, - 138, - 1254, - 138 - ], - "score": 0.721 - }, - { - "category_id": 2, - "poly": [ - 2077, - 1529, - 2106, - 1529, - 2106, - 1555, - 2077, - 1555 - ], - "score": 0.245 - }, - { - "category_id": 13, - "poly": [ - 1528, - 401, - 1621, - 401, - 1621, - 436, - 1528, - 436 - ], - "score": 0.88, - "latex": "\\times125\\Omega" - }, - { - "category_id": 13, - "poly": [ - 1504, - 508, - 1542, - 508, - 1542, - 541, - 1504, - 541 - ], - "score": 0.87, - "latex": "\\checkmark_{1}" - }, - { - "category_id": 13, - "poly": [ - 1606, - 506, - 1644, - 506, - 1644, - 541, - 1606, - 541 - ], - "score": 0.86, - "latex": "\\checkmark_{2}" - }, - { - "category_id": 13, - "poly": [ - 512, - 311, - 626, - 311, - 626, - 345, - 512, - 345 - ], - "score": 0.8, - "latex": "I r+2.89" - }, - { - "category_id": 13, - "poly": [ - 1133, - 666, - 1434, - 666, - 1434, - 705, - 1133, - 705 - ], - "score": 0.72, - "latex": "0.11{\\div}2.89=r{\\div}125\\times_{2}" - }, - { - "category_id": 13, - "poly": [ - 1133, - 775, - 1502, - 775, - 1502, - 812, - 1133, - 812 - ], - "score": 0.68, - "latex": "3{\\div}(125+\\mathbf{r})=2.89{\\div}125{\\check{\\times}}_{1}{\\check{\\times}}_{2}" - }, - { - "category_id": 13, - "poly": [ - 1276, - 558, - 1442, - 558, - 1442, - 597, - 1276, - 597 - ], - "score": 0.63, - "latex": "\\overset{\\cdot}{=}0.11\\mathrm{~V~}\\overset{\\cdot}{\\sim}_{1}" - }, - { - "category_id": 13, - "poly": [ - 1441, - 935, - 1548, - 935, - 1548, - 973, - 1441, - 973 - ], - "score": 0.58, - "latex": "4.76(\\Omega)" - }, - { - "category_id": 13, - "poly": [ - 395, - 885, - 597, - 885, - 597, - 922, - 395, - 922 - ], - "score": 0.53, - "latex": "r=4.76(\\Omega)\\lor_{3}" - }, - { - "category_id": 13, - "poly": [ - 539, - 520, - 661, - 520, - 661, - 555, - 539, - 555 - ], - "score": 0.45, - "latex": "2.89{\\div}125" - }, - { - "category_id": 14, - "poly": [ - 1133, - 775, - 1501, - 775, - 1501, - 813, - 1133, - 813 - ], - "score": 0.44, - "latex": "3{\\div}(125+\\mathbf{r})=2.89{\\div}125{\\check{\\times}}_{1}{\\check{\\times}}_{2}" - }, - { - "category_id": 13, - "poly": [ - 1667, - 401, - 1757, - 401, - 1757, - 435, - 1667, - 435 - ], - "score": 0.37, - "latex": "2.89\\mathrm{V}" - }, - { - "category_id": 14, - "poly": [ - 1132, - 666, - 1434, - 666, - 1434, - 705, - 1132, - 705 - ], - "score": 0.35, - "latex": "0.11{\\div}2.89=r{\\div}125\\times_{2}" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 4.0, - 2341.0, - 4.0, - 2341.0, - 41.0, - 2265.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2072.0, - 1528.0, - 2109.0, - 1528.0, - 2109.0, - 1559.0, - 2072.0, - 1559.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1259.0, - 99.0, - 2103.0, - 99.0, - 2103.0, - 134.0, - 1259.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2072.0, - 1528.0, - 2109.0, - 1528.0, - 2109.0, - 1559.0, - 2072.0, - 1559.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 115, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 97, - 243, - 2144, - 243, - 2144, - 1152, - 97, - 1152 - ], - "score": 0.977, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
03.3(Resistance splits 25 Q and 104.8 Q) Applies potential divider formula eg V 25 3.00 129.8 V = 0.58 (V) ~ If no other mark awarded, allow one mark forAccept other routes for MP1 e.g. using V = IR, with 25 Ω and their current, for example from I = 0.023 A (from Q03.2) emf 3 total resistance 125+r I =terminal pd 125 OR using V = 3 2.89 with an identification of 2.89 V 5 as the terminal pd.2AO2x 2
" - }, - { - "category_id": 2, - "poly": [ - 156, - 1529, - 184, - 1529, - 184, - 1553, - 156, - 1553 - ], - "score": 0.87 - }, - { - "category_id": 2, - "poly": [ - 1254, - 98, - 2105, - 98, - 2105, - 137, - 1254, - 137 - ], - "score": 0.847 - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2338, - 6, - 2338, - 40, - 2267, - 40 - ], - "score": 0.83 - }, - { - "category_id": 13, - "poly": [ - 1215, - 858, - 1325, - 858, - 1325, - 914, - 1215, - 914 - ], - "score": 0.91, - "latex": "\\begin{array}{r}{V=\\frac{2.89}{5}}\\end{array}" - }, - { - "category_id": 13, - "poly": [ - 1215, - 407, - 1298, - 407, - 1298, - 438, - 1215, - 438 - ], - "score": 0.88, - "latex": "V=I R" - }, - { - "category_id": 13, - "poly": [ - 1372, - 405, - 1445, - 405, - 1445, - 439, - 1372, - 439 - ], - "score": 0.81, - "latex": "25~\\Omega" - }, - { - "category_id": 13, - "poly": [ - 1460, - 1057, - 1573, - 1057, - 1573, - 1092, - 1460, - 1092 - ], - "score": 0.74, - "latex": "129.8\\Omega" - }, - { - "category_id": 13, - "poly": [ - 1216, - 1057, - 1314, - 1057, - 1314, - 1092, - 1216, - 1092 - ], - "score": 0.73, - "latex": "29.8\\Omega" - }, - { - "category_id": 13, - "poly": [ - 777, - 549, - 957, - 549, - 957, - 641, - 777, - 641 - ], - "score": 0.72, - "latex": "\\frac{V}{3.00}{=}\\frac{25}{129.8}" - }, - { - "category_id": 13, - "poly": [ - 1231, - 629, - 1281, - 629, - 1281, - 662, - 1231, - 662 - ], - "score": 0.53, - "latex": "I=" - }, - { - "category_id": 13, - "poly": [ - 684, - 477, - 797, - 477, - 797, - 513, - 684, - 513 - ], - "score": 0.44, - "latex": "104.8\\Omega;" - }, - { - "category_id": 13, - "poly": [ - 547, - 477, - 620, - 477, - 620, - 512, - 547, - 512 - ], - "score": 0.39, - "latex": "25~\\Omega" - }, - { - "category_id": 13, - "poly": [ - 1964, - 352, - 2079, - 352, - 2079, - 389, - 1964, - 389 - ], - "score": 0.37, - "latex": "{\\tt A O}2\\times2" - }, - { - "category_id": 13, - "poly": [ - 1232, - 496, - 1351, - 496, - 1351, - 530, - 1232, - 530 - ], - "score": 0.3, - "latex": "I=0.023" - }, - { - "category_id": 15, - "poly": [ - 152.0, - 1528.0, - 189.0, - 1528.0, - 189.0, - 1557.0, - 152.0, - 1557.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1259.0, - 100.0, - 2102.0, - 100.0, - 2102.0, - 134.0, - 1259.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 4.0, - 2341.0, - 4.0, - 2341.0, - 41.0, - 2265.0, - 41.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 116, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 83, - 269, - 2153, - 269, - 2153, - 1340, - 83, - 1340 - ], - "score": 0.968, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
03.4Any four from: Straight line O V A to P 1v Less steep non-zero gradient from P to Q 2V Short steep increase at Q 3V Q to R about same non-zero gradient as P to Q 4v Horizontal line from R to B at 3.0 V 5v3.0 V pd/ V 0 A P Q RB position of C For 3V allow range no greater than width of \"Q\" label on horizontal axis. If graph sketched from 3 V (at A) to 0V (at B) award max 2 (based on 2Y and 4~). If a single diagonal straight line from O V (at A) to B, award iV only. If a single diagonal straight line from O V (at A) to R and then horizontal to B, award only 1V and 5v if scored (ie max 2).Max 4AO3 × 4
" - }, - { - "category_id": 2, - "poly": [ - 1254, - 98, - 2106, - 98, - 2106, - 137, - 1254, - 137 - ], - "score": 0.872 - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2338, - 6, - 2338, - 39, - 2267, - 39 - ], - "score": 0.834 - }, - { - "category_id": 2, - "poly": [ - 2077, - 1529, - 2106, - 1529, - 2106, - 1555, - 2077, - 1555 - ], - "score": 0.768 - }, - { - "category_id": 2, - "poly": [ - 2076, - 1529, - 2106, - 1529, - 2106, - 1555, - 2076, - 1555 - ], - "score": 0.181 - }, - { - "category_id": 5, - "poly": [ - 59, - 1247, - 1970, - 1247, - 1970, - 1314, - 59, - 1314 - ], - "score": 0.156, - "html": "
Total11
" - }, - { - "category_id": 13, - "poly": [ - 1239, - 1180, - 1279, - 1180, - 1279, - 1216, - 1239, - 1216 - ], - "score": 0.85, - "latex": "{_5}^{\\checkmark}" - }, - { - "category_id": 13, - "poly": [ - 1188, - 836, - 1229, - 836, - 1229, - 874, - 1188, - 874 - ], - "score": 0.85, - "latex": "_3^{\\bigstar}" - }, - { - "category_id": 13, - "poly": [ - 1464, - 963, - 1504, - 963, - 1504, - 1000, - 1464, - 1000 - ], - "score": 0.83, - "latex": "_2^{\\surd3}" - }, - { - "category_id": 13, - "poly": [ - 1567, - 963, - 1605, - 963, - 1605, - 999, - 1567, - 999 - ], - "score": 0.79, - "latex": "_4\\surd" - }, - { - "category_id": 13, - "poly": [ - 1134, - 1181, - 1173, - 1181, - 1173, - 1216, - 1134, - 1216 - ], - "score": 0.76, - "latex": "\\L_{1}\\times" - }, - { - "category_id": 13, - "poly": [ - 700, - 720, - 823, - 720, - 823, - 761, - 700, - 761 - ], - "score": 0.68, - "latex": "3.0\\mathrm{~V~}_{5}\\" - }, - { - "category_id": 13, - "poly": [ - 1631, - 1109, - 1684, - 1109, - 1684, - 1143, - 1631, - 1143 - ], - "score": 0.56, - "latex": "_{0\\vee}" - }, - { - "category_id": 13, - "poly": [ - 1631, - 1018, - 1684, - 1018, - 1684, - 1052, - 1631, - 1052 - ], - "score": 0.54, - "latex": "_{0\\vee}" - }, - { - "category_id": 13, - "poly": [ - 915, - 646, - 990, - 646, - 990, - 687, - 915, - 687 - ], - "score": 0.5, - "latex": "\\mathbf{Q\\theta_{4}}^{\\sqrt{\\phantom{\\frac{1}{2}}}}" - }, - { - "category_id": 13, - "poly": [ - 1134, - 876, - 1184, - 876, - 1184, - 909, - 1134, - 909 - ], - "score": 0.37, - "latex": "{\\bf\\ddot{\\rho}}{\\bf Q}^{\\prime}" - }, - { - "category_id": 13, - "poly": [ - 1336, - 1054, - 1372, - 1054, - 1372, - 1089, - 1336, - 1089 - ], - "score": 0.33, - "latex": "\\L_{1}\\times" - }, - { - "category_id": 13, - "poly": [ - 852, - 652, - 880, - 652, - 880, - 684, - 852, - 684 - ], - "score": 0.32, - "latex": "\\mathsf{\\textbf{P}}" - }, - { - "category_id": 13, - "poly": [ - 1961, - 380, - 2081, - 380, - 2081, - 416, - 1961, - 416 - ], - "score": 0.31, - "latex": "{\\mathsf{A O}}3\\times4" - }, - { - "category_id": 13, - "poly": [ - 635, - 725, - 664, - 725, - 664, - 757, - 635, - 757 - ], - "score": 0.29, - "latex": "\\mathbf{B}" - }, - { - "category_id": 13, - "poly": [ - 772, - 505, - 800, - 505, - 800, - 538, - 772, - 538 - ], - "score": 0.27, - "latex": "\\mathsf{\\textbf{P}}" - }, - { - "category_id": 13, - "poly": [ - 1337, - 1054, - 1431, - 1054, - 1431, - 1091, - 1337, - 1091 - ], - "score": 0.26, - "latex": "\\mathsf{\\Gamma}_{1}\\mathsf{\\Gamma}_{0}\\mathsf{n}|\\mathsf{y}" - }, - { - "category_id": 15, - "poly": [ - 1261.0, - 102.0, - 2101.0, - 102.0, - 2101.0, - 133.0, - 1261.0, - 133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 5.0, - 2342.0, - 5.0, - 2342.0, - 40.0, - 2265.0, - 40.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2072.0, - 1528.0, - 2109.0, - 1528.0, - 2109.0, - 1559.0, - 2072.0, - 1559.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2073.0, - 1528.0, - 2108.0, - 1528.0, - 2108.0, - 1559.0, - 2073.0, - 1559.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 117, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 105, - 241, - 2111, - 241, - 2111, - 496, - 105, - 496 - ], - "score": 0.957, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
04.1Uses 1 sinc= m to get 1.51 vMustseerelevantworktoawardthemark. Minimum3sfmustbeseen1AO1
" - }, - { - "category_id": 2, - "poly": [ - 156, - 1529, - 185, - 1529, - 185, - 1554, - 156, - 1554 - ], - "score": 0.865 - }, - { - "category_id": 2, - "poly": [ - 1254, - 98, - 2105, - 98, - 2105, - 137, - 1254, - 137 - ], - "score": 0.864 - }, - { - "category_id": 5, - "poly": [ - 80, - 638, - 2114, - 638, - 2114, - 1168, - 80, - 1168 - ], - "score": 0.862, - "html": "
04.2(Each) angle of incidence is 45° (at 2nd and 3rd surfaces) AND totalinternalreflectionoccurs/whichisgreater thanthe2AO1 AO2
critical angle.v Angleof incidence as rayleavesblock is 0°
OR The ray leaves along the normal (and so the ray emerges parallel to the incident ray). v
" - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2338, - 6, - 2338, - 40, - 2267, - 40 - ], - "score": 0.833 - }, - { - "category_id": 5, - "poly": [ - 115, - 559, - 2105, - 559, - 2105, - 633, - 115, - 633 - ], - "score": 0.704, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
" - }, - { - "category_id": 5, - "poly": [ - 85, - 557, - 2114, - 557, - 2114, - 1170, - 85, - 1170 - ], - "score": 0.144, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
04.2(Each) angle of incidence is 45° (at 2nd and 3rd surfaces) AND2AO1 AO2
total internalreflectionoccurs/whichisgreater thanthe critical angle. v
Angle of incidence as ray leaves block is 0°
OR The ray leaves along the normal (and so the ray emerges
parallel to the incident ray). v
" - }, - { - "category_id": 13, - "poly": [ - 683, - 652, - 736, - 652, - 736, - 685, - 683, - 685 - ], - "score": 0.81, - "latex": "45^{\\circ}" - }, - { - "category_id": 13, - "poly": [ - 889, - 652, - 930, - 652, - 930, - 684, - 889, - 684 - ], - "score": 0.65, - "latex": "3^{\\mathsf{r d}}" - }, - { - "category_id": 13, - "poly": [ - 782, - 652, - 827, - 652, - 827, - 684, - 782, - 684 - ], - "score": 0.61, - "latex": "2^{\\mathrm{nd}}" - }, - { - "category_id": 13, - "poly": [ - 857, - 919, - 892, - 919, - 892, - 951, - 857, - 951 - ], - "score": 0.56, - "latex": "0^{\\circ}" - }, - { - "category_id": 15, - "poly": [ - 150.0, - 1527.0, - 190.0, - 1527.0, - 190.0, - 1562.0, - 150.0, - 1562.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1259.0, - 100.0, - 2102.0, - 100.0, - 2102.0, - 134.0, - 1259.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 4.0, - 2341.0, - 4.0, - 2341.0, - 41.0, - 2265.0, - 41.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 118, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 89, - 198, - 2114, - 198, - 2114, - 848, - 89, - 848 - ], - "score": 0.958, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
04.3Only (totally internally) reflected ray seen at 2nd reflecting boundary Reflected ray parallel to first refracted ray (by eye)vFor MP2:3AO2
acceptablerange forray
isthelargestangleof incidence forwntcn allof thelightleavesthroughthe
" - }, - { - "category_id": 2, - "poly": [ - 2077, - 1529, - 2104, - 1529, - 2104, - 1553, - 2077, - 1553 - ], - "score": 0.874 - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2338, - 6, - 2338, - 40, - 2267, - 40 - ], - "score": 0.827 - }, - { - "category_id": 2, - "poly": [ - 1254, - 98, - 2105, - 98, - 2105, - 137, - 1254, - 137 - ], - "score": 0.776 - }, - { - "category_id": 13, - "poly": [ - 895, - 326, - 941, - 326, - 941, - 359, - 895, - 359 - ], - "score": 0.79, - "latex": "2^{\\mathrm{nd}}" - }, - { - "category_id": 15, - "poly": [ - 2071.0, - 1526.0, - 2109.0, - 1526.0, - 2109.0, - 1561.0, - 2071.0, - 1561.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 4.0, - 2341.0, - 4.0, - 2341.0, - 41.0, - 2265.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1259.0, - 100.0, - 2102.0, - 100.0, - 2102.0, - 134.0, - 1259.0, - 134.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 119, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 97, - 236, - 2131, - 236, - 2131, - 1010, - 97, - 1010 - ], - "score": 0.977, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
04.4Angle of incidence at 2nd reflecting boundary = 41.5° √MP1 is an identification of angle at 2nd reflecting boundary4AO1
Angle of reflection at 1st reflecting boundary = 48.5° MP2 is (90°- their angle at 2nd reflecting boundary)
Angle of refraction at entry = (90° - 45° - 41.5°) = 3.5° MP3 is (45° - their angle at 2nd reflecting boundary)
Use of n = 1.5 and Snell's law to give 5.3° to at least 2 sf vAccept answer that rounds to 5.30
The identification of their angles can be inferred from their working or diagram. Simply writing 90° - 41.5° = 48.5° does not get a mark on its own.
" - }, - { - "category_id": 2, - "poly": [ - 157, - 1529, - 185, - 1529, - 185, - 1554, - 157, - 1554 - ], - "score": 0.868 - }, - { - "category_id": 2, - "poly": [ - 1254, - 98, - 2105, - 98, - 2105, - 137, - 1254, - 137 - ], - "score": 0.851 - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2338, - 6, - 2338, - 40, - 2267, - 40 - ], - "score": 0.831 - }, - { - "category_id": 13, - "poly": [ - 1231, - 916, - 1496, - 916, - 1496, - 953, - 1231, - 953 - ], - "score": 0.91, - "latex": "90^{\\circ}-41.5^{\\circ}=48.5^{\\circ}" - }, - { - "category_id": 13, - "poly": [ - 396, - 771, - 495, - 771, - 495, - 805, - 396, - 805 - ], - "score": 0.87, - "latex": "n=1.5" - }, - { - "category_id": 13, - "poly": [ - 810, - 771, - 870, - 771, - 870, - 805, - 810, - 805 - ], - "score": 0.86, - "latex": "5.3^{\\circ}" - }, - { - "category_id": 13, - "poly": [ - 1492, - 494, - 1538, - 494, - 1538, - 526, - 1492, - 526 - ], - "score": 0.83, - "latex": "2^{\\mathrm{nd}}" - }, - { - "category_id": 13, - "poly": [ - 1502, - 640, - 1548, - 640, - 1548, - 672, - 1502, - 672 - ], - "score": 0.83, - "latex": "2^{\\mathrm{nd}}" - }, - { - "category_id": 13, - "poly": [ - 661, - 648, - 1072, - 648, - 1072, - 687, - 661, - 687 - ], - "score": 0.82, - "latex": "=(90^{\\circ}-45^{\\circ}-41.5^{\\circ})=3.5^{\\circ}~\\checkmark" - }, - { - "category_id": 13, - "poly": [ - 1248, - 641, - 1296, - 641, - 1296, - 673, - 1248, - 673 - ], - "score": 0.82, - "latex": "45^{\\circ}" - }, - { - "category_id": 13, - "poly": [ - 591, - 352, - 637, - 352, - 637, - 385, - 591, - 385 - ], - "score": 0.82, - "latex": "2^{\\mathrm{nd}}" - }, - { - "category_id": 13, - "poly": [ - 1247, - 494, - 1296, - 494, - 1296, - 527, - 1247, - 527 - ], - "score": 0.81, - "latex": "90^{\\circ}." - }, - { - "category_id": 13, - "poly": [ - 903, - 350, - 1045, - 350, - 1045, - 387, - 903, - 387 - ], - "score": 0.79, - "latex": "=41.5^{\\circ}~\\checkmark" - }, - { - "category_id": 13, - "poly": [ - 1539, - 788, - 1600, - 788, - 1600, - 823, - 1539, - 823 - ], - "score": 0.72, - "latex": "5.3^{\\circ}" - }, - { - "category_id": 13, - "poly": [ - 588, - 473, - 626, - 473, - 626, - 505, - 588, - 505 - ], - "score": 0.68, - "latex": "1\\mathsf{s t}" - }, - { - "category_id": 13, - "poly": [ - 891, - 472, - 1023, - 472, - 1023, - 508, - 891, - 508 - ], - "score": 0.46, - "latex": "=48.5^{\\circ}\\circ" - }, - { - "category_id": 13, - "poly": [ - 1071, - 771, - 1099, - 771, - 1099, - 799, - 1071, - 799 - ], - "score": 0.39, - "latex": "\\checkmark" - }, - { - "category_id": 13, - "poly": [ - 1608, - 347, - 1654, - 347, - 1654, - 382, - 1608, - 382 - ], - "score": 0.38, - "latex": "2^{\\mathrm{nd}}" - }, - { - "category_id": 13, - "poly": [ - 664, - 654, - 693, - 654, - 693, - 680, - 664, - 680 - ], - "score": 0.32, - "latex": "=" - }, - { - "category_id": 15, - "poly": [ - 153.0, - 1526.0, - 190.0, - 1526.0, - 190.0, - 1561.0, - 153.0, - 1561.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1259.0, - 100.0, - 2102.0, - 100.0, - 2102.0, - 134.0, - 1259.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 4.0, - 2341.0, - 4.0, - 2341.0, - 41.0, - 2265.0, - 41.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 120, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 80, - 202, - 2130, - 202, - 2130, - 998, - 80, - 998 - ], - "score": 0.971, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
04.5Using 60° prism (Fig 9) does not work because: light would not leave the prism at the original angle v · idea that light will escape from second reflection v A smaller n (Fig 10) does not work because: ·larger critical angle v which would reduce the value of θ√Suggestion that the design would work limits the mark to Max 1 for that design.4AO3
AlternativeforMP2
Light would no longer be totally internally reflected at second reflection OR
angle of incidence at second reflection is now less than the critical angle
14
" - }, - { - "category_id": 2, - "poly": [ - 2077, - 1529, - 2106, - 1529, - 2106, - 1554, - 2077, - 1554 - ], - "score": 0.881 - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2338, - 6, - 2338, - 40, - 2267, - 40 - ], - "score": 0.828 - }, - { - "category_id": 2, - "poly": [ - 1254, - 98, - 2105, - 98, - 2105, - 137, - 1254, - 137 - ], - "score": 0.767 - }, - { - "category_id": 13, - "poly": [ - 386, - 362, - 438, - 362, - 438, - 398, - 386, - 398 - ], - "score": 0.8, - "latex": "60^{\\circ}" - }, - { - "category_id": 13, - "poly": [ - 1026, - 423, - 1056, - 423, - 1056, - 452, - 1026, - 452 - ], - "score": 0.33, - "latex": "\\checkmark" - }, - { - "category_id": 15, - "poly": [ - 2072.0, - 1528.0, - 2109.0, - 1528.0, - 2109.0, - 1560.0, - 2072.0, - 1560.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 4.0, - 2341.0, - 4.0, - 2341.0, - 41.0, - 2265.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1259.0, - 100.0, - 2102.0, - 100.0, - 2102.0, - 134.0, - 1259.0, - 134.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 121, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 102, - 238, - 2120, - 238, - 2120, - 835, - 102, - 835 - ], - "score": 0.975, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
05.1Evidence of appropriate use of Figure 11 e.g. 105 × 106 ÷7.5 × 10-4Some evidence that Figure 11 is used: calculationbased on a point on linebetween1AO1
75 MPa and 125 MPa OR calculation from point on straight line
extended
OR Use of triangle from more than half of the
linear section.
leading to an answer in the range 1.38 to 1.42 x 10l1 Pa
Allow 2 sf answer 1.4 x 10ll (Pa).
" - }, - { - "category_id": 5, - "poly": [ - 89, - 898, - 2118, - 898, - 2118, - 1472, - 89, - 1472 - ], - "score": 0.962, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
05.2Idea that wire undergoes only (very) small (increase in) strain beyond the linear section before fracture vReject idea that there is no increase in strain. Condone 'extension' or '(plastic) deformation' for 'strain'. Condone 'shortly after' for “beyond”1AO1 x 1
" - }, - { - "category_id": 2, - "poly": [ - 154, - 1528, - 185, - 1528, - 185, - 1555, - 154, - 1555 - ], - "score": 0.87 - }, - { - "category_id": 2, - "poly": [ - 1254, - 98, - 2105, - 98, - 2105, - 137, - 1254, - 137 - ], - "score": 0.866 - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2338, - 6, - 2338, - 39, - 2267, - 39 - ], - "score": 0.837 - }, - { - "category_id": 13, - "poly": [ - 1408, - 1416, - 1542, - 1416, - 1542, - 1451, - 1408, - 1451 - ], - "score": 0.88, - "latex": "12.7\\mathrm{~x~}10^{-4}" - }, - { - "category_id": 13, - "poly": [ - 1273, - 1416, - 1372, - 1416, - 1372, - 1451, - 1273, - 1451 - ], - "score": 0.87, - "latex": "9\\mathrm{~x~}10^{-4}" - }, - { - "category_id": 13, - "poly": [ - 903, - 733, - 1102, - 733, - 1102, - 773, - 903, - 773 - ], - "score": 0.79, - "latex": "1.42\\times10^{11}\\mathrm{Pa}" - }, - { - "category_id": 13, - "poly": [ - 1383, - 776, - 1518, - 776, - 1518, - 814, - 1383, - 814 - ], - "score": 0.72, - "latex": "1.4\\times10^{11}" - }, - { - "category_id": 13, - "poly": [ - 306, - 402, - 603, - 402, - 603, - 444, - 306, - 444 - ], - "score": 0.57, - "latex": "105\\times10^{6}\\div7.5\\times10^{-4}" - }, - { - "category_id": 14, - "poly": [ - 306, - 402, - 603, - 402, - 603, - 444, - 306, - 444 - ], - "score": 0.4, - "latex": "105\\times10^{6}\\div7.5\\times10^{-4}" - }, - { - "category_id": 15, - "poly": [ - 152.0, - 1529.0, - 189.0, - 1529.0, - 189.0, - 1559.0, - 152.0, - 1559.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1259.0, - 100.0, - 2102.0, - 100.0, - 2102.0, - 134.0, - 1259.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 5.0, - 2342.0, - 5.0, - 2342.0, - 40.0, - 2265.0, - 40.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 122, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 86, - 273, - 2122, - 273, - 2122, - 955, - 86, - 955 - ], - "score": 0.97, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
05.3Evidence of determination of total load or load on one wireTotal load = (4.4 + 16.0) × 9.8(1) = 200(.1) N Allow 'g' for 9.8(1)3AO1x1 AO2x 2
(halves load) Use of E =(their F)x L A×△LExpect to see F =100 N and A = 5.03 x 10-7 m2. Condone use of d in calculation of cross-sectional area A in MP2. Or separate calculations using o = F÷A, E = o÷strain, strain = △L÷L CondonePOT error in MP2.
" - }, - { - "category_id": 2, - "poly": [ - 2074, - 1529, - 2102, - 1529, - 2102, - 1554, - 2074, - 1554 - ], - "score": 0.876 - }, - { - "category_id": 2, - "poly": [ - 1254, - 98, - 2106, - 98, - 2106, - 137, - 1254, - 137 - ], - "score": 0.859 - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2338, - 6, - 2338, - 40, - 2267, - 40 - ], - "score": 0.83 - }, - { - "category_id": 13, - "poly": [ - 1132, - 583, - 1388, - 583, - 1388, - 620, - 1132, - 620 - ], - "score": 0.91, - "latex": "A=5.03\\times10^{-7}\\mathrm{m}^{2}" - }, - { - "category_id": 13, - "poly": [ - 1554, - 680, - 1669, - 680, - 1669, - 713, - 1554, - 713 - ], - "score": 0.89, - "latex": "\\sigma=F{\\div}A" - }, - { - "category_id": 13, - "poly": [ - 1327, - 548, - 1462, - 548, - 1462, - 580, - 1327, - 580 - ], - "score": 0.89, - "latex": "F{=}100\\mathrm{N}" - }, - { - "category_id": 13, - "poly": [ - 1134, - 720, - 1213, - 720, - 1213, - 752, - 1134, - 752 - ], - "score": 0.88, - "latex": "E=\\sigma." - }, - { - "category_id": 13, - "poly": [ - 1213, - 383, - 1750, - 383, - 1750, - 422, - 1213, - 422 - ], - "score": 0.84, - "latex": "{\\mathsf{l o a d}}=(4.4+16.0)\\times9.8(1)=200(.1){\\mathrm{N}}" - }, - { - "category_id": 13, - "poly": [ - 394, - 533, - 660, - 533, - 660, - 623, - 394, - 623 - ], - "score": 0.81, - "latex": "E={\\frac{\\left(\\operatorname{their}F\\right)\\times L}{A\\times\\Delta L}}~\\times" - }, - { - "category_id": 13, - "poly": [ - 1396, - 719, - 1511, - 719, - 1511, - 753, - 1396, - 753 - ], - "score": 0.8, - "latex": "=\\Delta L{\\div}L" - }, - { - "category_id": 13, - "poly": [ - 1625, - 589, - 1646, - 589, - 1646, - 618, - 1625, - 618 - ], - "score": 0.73, - "latex": "d" - }, - { - "category_id": 13, - "poly": [ - 301, - 893, - 641, - 893, - 641, - 930, - 301, - 930 - ], - "score": 0.66, - "latex": "\\Delta L=1.1(4)\\times10^{-3}~(\\mathrm{m})~\\check{<}" - }, - { - "category_id": 13, - "poly": [ - 1601, - 625, - 1626, - 625, - 1626, - 654, - 1601, - 654 - ], - "score": 0.39, - "latex": "A" - }, - { - "category_id": 13, - "poly": [ - 1964, - 444, - 2078, - 444, - 2078, - 481, - 1964, - 481 - ], - "score": 0.32, - "latex": "{\\tt A O}2\\times2" - }, - { - "category_id": 15, - "poly": [ - 2072.0, - 1528.0, - 2108.0, - 1528.0, - 2108.0, - 1559.0, - 2072.0, - 1559.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1261.0, - 102.0, - 2101.0, - 102.0, - 2101.0, - 133.0, - 1261.0, - 133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 4.0, - 2341.0, - 4.0, - 2341.0, - 41.0, - 2265.0, - 41.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 123, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 105, - 176, - 2145, - 176, - 2145, - 1343, - 105, - 1343 - ], - "score": 0.979, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
05.4Evidence of extension/strain in each wire is the same 1v Substitutes data leading to Fa = 1.33 Fs 2V Calculates Fs or Fa 3v Evidence of an attempt at a moment equation 4vL ={FL÷AE} steel ={FL÷AE} aluminium {F÷d²E} steel ={F÷d²E} aluminium 1v F F 0.8² × 210 1.62 × 70 Fa = 1.33 Fs OR Fs = 0.752 Fa 2v 1.33 Fs + Fs = 200 N Fs = 86 N, Fa = 114 N 3v Attempt to takemoments about A or B or other suitable point, expect to see 16.0gx = 228 - 4.4g ~4 Note that an answer of 1.14 m comes from not taking into account the weight of the5AO3x 5
TotalDistance = 1.18 m V5beam Award max 4 for this approach. ECF forMP2 andMP3inMP410
" - }, - { - "category_id": 2, - "poly": [ - 154, - 1529, - 185, - 1529, - 185, - 1554, - 154, - 1554 - ], - "score": 0.855 - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2338, - 6, - 2338, - 39, - 2267, - 39 - ], - "score": 0.829 - }, - { - "category_id": 2, - "poly": [ - 1254, - 98, - 2105, - 98, - 2105, - 137, - 1254, - 137 - ], - "score": 0.797 - }, - { - "category_id": 13, - "poly": [ - 667, - 364, - 880, - 364, - 880, - 401, - 667, - 401 - ], - "score": 0.87, - "latex": "F_{\\mathrm{a}}=1.33~F_{\\mathrm{s}}~{}_{2}\\mathcal{A}" - }, - { - "category_id": 13, - "poly": [ - 1135, - 890, - 1453, - 890, - 1453, - 929, - 1135, - 929 - ], - "score": 0.84, - "latex": "16.0g x=228-4.4g\\lor_{4}" - }, - { - "category_id": 13, - "poly": [ - 1133, - 315, - 1578, - 315, - 1578, - 355, - 1133, - 355 - ], - "score": 0.73, - "latex": "\\mathit{A L}=\\{F L{\\div}A E\\}\\mathsf{s t e e l}=\\{F L{\\div}A E\\}" - }, - { - "category_id": 13, - "poly": [ - 449, - 733, - 486, - 733, - 486, - 765, - 449, - 765 - ], - "score": 0.7, - "latex": "F_{\\mathrm{s}}" - }, - { - "category_id": 13, - "poly": [ - 1135, - 369, - 1484, - 369, - 1484, - 411, - 1135, - 411 - ], - "score": 0.69, - "latex": "\\{F{\\div}d^{2}E\\}\\mathsf{s t e e l}=\\{F{\\div}d^{2}E\\}" - }, - { - "category_id": 13, - "poly": [ - 924, - 836, - 966, - 836, - 966, - 870, - 924, - 870 - ], - "score": 0.6, - "latex": "_4\\surd" - }, - { - "category_id": 13, - "poly": [ - 1026, - 311, - 1066, - 311, - 1066, - 346, - 1026, - 346 - ], - "score": 0.52, - "latex": "\\L_{1}\\lor\\textmd{1}" - }, - { - "category_id": 13, - "poly": [ - 1636, - 373, - 1677, - 373, - 1677, - 408, - 1636, - 408 - ], - "score": 0.5, - "latex": "\\L_{1}\\lor\\textmd{1}" - }, - { - "category_id": 13, - "poly": [ - 1137, - 478, - 1439, - 478, - 1439, - 562, - 1137, - 562 - ], - "score": 0.5, - "latex": "\\frac{F_{\\mathrm{s}}}{0.8^{2}\\times210}{=}\\frac{F_{\\mathrm{a}}}{1.6^{2}\\times70}" - }, - { - "category_id": 14, - "poly": [ - 1137, - 477, - 1439, - 477, - 1439, - 562, - 1137, - 562 - ], - "score": 0.39, - "latex": "\\frac{F_{\\mathrm{s}}}{0.8^{2}\\times210}{=}\\frac{F_{\\mathrm{a}}}{1.6^{2}\\times70}" - }, - { - "category_id": 13, - "poly": [ - 1452, - 963, - 1550, - 963, - 1550, - 997, - 1452, - 997 - ], - "score": 0.36, - "latex": "1.14\\mathrm{~m~}" - }, - { - "category_id": 14, - "poly": [ - 1132, - 745, - 1481, - 745, - 1481, - 785, - 1132, - 785 - ], - "score": 0.33, - "latex": "F_{\\mathrm{s}}=86~\\mathrm{N},F_{\\mathrm{a}}=114\\mathrm{N}~_{3}\\mathcal{V}" - }, - { - "category_id": 14, - "poly": [ - 1129, - 668, - 1421, - 668, - 1421, - 708, - 1129, - 708 - ], - "score": 0.31, - "latex": "1.33\\:F_{\\mathrm{s}}+F_{\\mathrm{s}}=200\\:\\mathrm{N}" - }, - { - "category_id": 13, - "poly": [ - 1964, - 312, - 2079, - 312, - 2079, - 350, - 1964, - 350 - ], - "score": 0.29, - "latex": "A O3\\times5" - }, - { - "category_id": 13, - "poly": [ - 1280, - 746, - 1477, - 746, - 1477, - 784, - 1280, - 784 - ], - "score": 0.28, - "latex": "F_{\\mathrm{a}}=114\\mathrm{N}_{3}\\mathcal{A}" - }, - { - "category_id": 15, - "poly": [ - 152.0, - 1528.0, - 189.0, - 1528.0, - 189.0, - 1559.0, - 152.0, - 1559.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 5.0, - 2342.0, - 5.0, - 2342.0, - 40.0, - 2265.0, - 40.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1259.0, - 100.0, - 2102.0, - 100.0, - 2102.0, - 134.0, - 1259.0, - 134.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 124, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 92, - 239, - 2114, - 239, - 2114, - 923, - 92, - 923 - ], - "score": 0.968, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
06.1Equates resultant force to ma and shows a proportional to y, as Apmg are all constantvIn MP1: Condone upthrust/buoyancy force for2AO1x 1 AO2x 1
resultant force
F = ma = -Apyg
Apyg =D
m Condone missing minus signs in MP1.
oscillation v(hence SHM)In MP2:
Minus sign included and explained: (restoring) force/acceleration directed to centre of
Minus because force/acceleration is in
opposite direction to y OWTTE
" - }, - { - "category_id": 2, - "poly": [ - 2074, - 1528, - 2106, - 1528, - 2106, - 1555, - 2074, - 1555 - ], - "score": 0.868 - }, - { - "category_id": 2, - "poly": [ - 1254, - 98, - 2105, - 98, - 2105, - 137, - 1254, - 137 - ], - "score": 0.86 - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2338, - 6, - 2338, - 39, - 2267, - 39 - ], - "score": 0.834 - }, - { - "category_id": 5, - "poly": [ - 92, - 954, - 2110, - 954, - 2110, - 1377, - 92, - 1377 - ], - "score": 0.713, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
06.2g (T=2π/∞)S0∞= (= 10.74 rad s-1AlternativeforMP1: calculates time (0.58(5) s) AND then uses ① from this time2AO1 x 1 AO2×1
(amax = - c²ymax 1
0.58 (m s-2) from some correct workingMP2forcorrectcalculationofacceleration.
" - }, - { - "category_id": 5, - "poly": [ - 107, - 954, - 2111, - 954, - 2111, - 1029, - 107, - 1029 - ], - "score": 0.677, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
" - }, - { - "category_id": 5, - "poly": [ - 74, - 1041, - 2112, - 1041, - 2112, - 1379, - 74, - 1379 - ], - "score": 0.439, - "html": "
06.2g (T=2π/∞)S0@: V (= 10.74 rad s-1)AlternativeforMP1: 2 calculates time (0.58(5) s) AND then uses Φ fromthistimeAO1×1 AO2× 1
(amax = - co²ymax × ymax = (9.81÷0.085) x 0.005 ) 1
0.58 (m s-2) from some correct workingMP2forcorrectcalculationofacceleration.
" - }, - { - "category_id": 14, - "poly": [ - 1138, - 546, - 1308, - 546, - 1308, - 631, - 1138, - 631 - ], - "score": 0.82, - "latex": "a=-{\\frac{A\\rho y g}{m}}" - }, - { - "category_id": 14, - "poly": [ - 299, - 1175, - 1024, - 1175, - 1024, - 1245, - 299, - 1245 - ], - "score": 0.77, - "latex": "(a_{\\mathrm{max}}=-\\omega^{2}y_{\\mathrm{max}}=\\frac g l\\times y_{\\mathrm{max}}=(9.81\\div0.085)\\times0.005)" - }, - { - "category_id": 13, - "poly": [ - 1134, - 493, - 1362, - 493, - 1362, - 531, - 1134, - 531 - ], - "score": 0.61, - "latex": "F=m a=-A\\rho y g" - }, - { - "category_id": 13, - "poly": [ - 488, - 1041, - 858, - 1041, - 858, - 1141, - 488, - 1141 - ], - "score": 0.58, - "latex": "\\omega=\\sqrt{\\frac{g}{l}}\\mathcal{I}\\left(=10.74\\mathrm{rad}\\mathrm{s}^{-1}\\right)" - }, - { - "category_id": 14, - "poly": [ - 1134, - 493, - 1361, - 493, - 1361, - 531, - 1134, - 531 - ], - "score": 0.52, - "latex": "F=m a=-A\\rho y g" - }, - { - "category_id": 13, - "poly": [ - 1415, - 849, - 1438, - 849, - 1438, - 882, - 1415, - 882 - ], - "score": 0.47, - "latex": "y" - }, - { - "category_id": 13, - "poly": [ - 301, - 1313, - 494, - 1313, - 494, - 1355, - 301, - 1355 - ], - "score": 0.3, - "latex": "0.58(\\mathrm{m~s~}^{-2})\\lor" - }, - { - "category_id": 13, - "poly": [ - 1964, - 395, - 2076, - 395, - 2076, - 431, - 1964, - 431 - ], - "score": 0.29, - "latex": "\\mathsf{A O}2\\times\\mathsf{1}" - }, - { - "category_id": 13, - "poly": [ - 453, - 396, - 476, - 396, - 476, - 422, - 453, - 422 - ], - "score": 0.26, - "latex": "a" - }, - { - "category_id": 15, - "poly": [ - 2072.0, - 1528.0, - 2109.0, - 1528.0, - 2109.0, - 1558.0, - 2072.0, - 1558.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1259.0, - 100.0, - 2102.0, - 100.0, - 2102.0, - 134.0, - 1259.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 5.0, - 2342.0, - 5.0, - 2342.0, - 40.0, - 2265.0, - 40.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 125, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 88, - 203, - 2113, - 203, - 2113, - 582, - 88, - 582 - ], - "score": 0.974, - "html": "
QuestionAnswersAdditionalcomments/GuidelinesMarkAO
06.3Idea that (at resonance) frequency of forced vibrations equals natural/resonant frequency 1vAcceptfullylabelledgraphofamplitudevs driving frequency with resonance frequency clearly labelled1V and an amplitude peak. 2v2AO1×2
Idea that amplitude (of vibrations/oscillations) is at a maximum2vCondone 'wave frequency' for 'driving frequency' Ignorereferencesto phase
" - }, - { - "category_id": 2, - "poly": [ - 155, - 1529, - 184, - 1529, - 184, - 1553, - 155, - 1553 - ], - "score": 0.874 - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2338, - 6, - 2338, - 40, - 2267, - 40 - ], - "score": 0.835 - }, - { - "category_id": 2, - "poly": [ - 1253, - 98, - 2105, - 98, - 2105, - 138, - 1253, - 138 - ], - "score": 0.723 - }, - { - "category_id": 13, - "poly": [ - 1704, - 386, - 1744, - 386, - 1744, - 420, - 1704, - 420 - ], - "score": 0.37, - "latex": "_2\\surd" - }, - { - "category_id": 13, - "poly": [ - 1339, - 386, - 1376, - 386, - 1376, - 418, - 1339, - 418 - ], - "score": 0.28, - "latex": "\\L_{1}\\lor\\textmd{1}" - }, - { - "category_id": 15, - "poly": [ - 152.0, - 1528.0, - 190.0, - 1528.0, - 190.0, - 1558.0, - 152.0, - 1558.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 4.0, - 2341.0, - 4.0, - 2341.0, - 41.0, - 2265.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1259.0, - 99.0, - 2102.0, - 99.0, - 2102.0, - 134.0, - 1259.0, - 134.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 126, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 90, - 193, - 2151, - 193, - 2151, - 1404, - 90, - 1404 - ], - "score": 0.975, - "html": "
QuestionAnswersAdditional comments/GuidelinesMarkAO
06.4stopped: wave frequency (= )= 0.12 Hz 1v1Vis for calculation of (driving) frequency when stopped. Condone reference to \"frequency of waves'.3AO3x 3
moving: when ship continues at 8 m s-1, forcing frequency will be further from resonant frequency 2vevidence can come from the substitution. Reject simple “0.12 (Hz)\" 2V is for a relevant comment about the moving situation OR calculation of forcing frequency with the ship moving (giving 0.05 Hz) For 2V accept incorrect calculation from adding speeds provided comment that this frequency is further from resonant frequency. 3V is for statement of why moving is the
eg for stopped option wave/forcing frequency very close to natural frequency, (so amplitude of oscillations will be high)Allow answer for 3v that mentions that damping will be highly likely, so amplitudes may not reach high enough values to prevent
OR for moving option resonance does not occur 3voperation
" - }, - { - "category_id": 2, - "poly": [ - 2074, - 1528, - 2106, - 1528, - 2106, - 1555, - 2074, - 1555 - ], - "score": 0.858 - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2338, - 6, - 2338, - 39, - 2267, - 39 - ], - "score": 0.831 - }, - { - "category_id": 2, - "poly": [ - 1254, - 98, - 2105, - 98, - 2105, - 137, - 1254, - 137 - ], - "score": 0.772 - }, - { - "category_id": 5, - "poly": [ - 59, - 1315, - 1949, - 1315, - 1949, - 1384, - 59, - 1384 - ], - "score": 0.149, - "html": "
Total9
" - }, - { - "category_id": 13, - "poly": [ - 647, - 322, - 914, - 322, - 914, - 395, - 647, - 395 - ], - "score": 0.9, - "latex": "(=\\frac{\\nu}{\\lambda})=0.12\\mathrm{Hz}_{1}\\ltimes" - }, - { - "category_id": 13, - "poly": [ - 744, - 592, - 842, - 592, - 842, - 627, - 744, - 627 - ], - "score": 0.87, - "latex": "8~\\mathrm{m~s^{-1}}" - }, - { - "category_id": 13, - "poly": [ - 1366, - 1063, - 1407, - 1063, - 1407, - 1096, - 1366, - 1096 - ], - "score": 0.86, - "latex": "_3\\checkmark" - }, - { - "category_id": 13, - "poly": [ - 1134, - 563, - 1174, - 563, - 1174, - 597, - 1134, - 597 - ], - "score": 0.83, - "latex": "_2\\surd" - }, - { - "category_id": 13, - "poly": [ - 1134, - 921, - 1174, - 921, - 1174, - 956, - 1134, - 956 - ], - "score": 0.82, - "latex": "_3\\checkmark" - }, - { - "category_id": 13, - "poly": [ - 1188, - 796, - 1228, - 796, - 1228, - 830, - 1188, - 830 - ], - "score": 0.81, - "latex": "_2\\surd" - }, - { - "category_id": 13, - "poly": [ - 1340, - 742, - 1451, - 742, - 1451, - 778, - 1340, - 778 - ], - "score": 0.53, - "latex": "0.05\\mathrm{Hz}" - }, - { - "category_id": 13, - "poly": [ - 828, - 635, - 870, - 635, - 870, - 671, - 828, - 671 - ], - "score": 0.46, - "latex": "_2\\surd" - }, - { - "category_id": 13, - "poly": [ - 1964, - 312, - 2079, - 312, - 2079, - 350, - 1964, - 350 - ], - "score": 0.27, - "latex": "\\mathsf{A O}3\\times3" - }, - { - "category_id": 15, - "poly": [ - 2072.0, - 1528.0, - 2109.0, - 1528.0, - 2109.0, - 1558.0, - 2072.0, - 1558.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 5.0, - 2342.0, - 5.0, - 2342.0, - 40.0, - 2265.0, - 40.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1259.0, - 100.0, - 2102.0, - 100.0, - 2102.0, - 134.0, - 1259.0, - 134.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 127, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 150, - 229, - 1679, - 229, - 1679, - 1473, - 150, - 1473 - ], - "score": 0.98, - "html": "
QuestionKeyAnswer
07A10 μm s-1 100 s
08B4 m s-1
09B8 7
10DThey decay into electrons.
11Bdown quark up quark β
12C2.8 × 10 m s-1
13Adecreasing the kinetic energy of the electrons
14C1.2 0.17
15BThey have a constant phase relationship.
16A0.22s 0.662
17Cdecreases increases
18C45 m
19Dforce mass x displacement
20Cdisplacement and momentum
21BA current in it causes no heating effect.
22BB
" - }, - { - "category_id": 2, - "poly": [ - 1255, - 99, - 2105, - 99, - 2105, - 136, - 1255, - 136 - ], - "score": 0.877 - }, - { - "category_id": 2, - "poly": [ - 154, - 1528, - 185, - 1528, - 185, - 1555, - 154, - 1555 - ], - "score": 0.866 - }, - { - "category_id": 2, - "poly": [ - 2268, - 6, - 2338, - 6, - 2338, - 39, - 2268, - 39 - ], - "score": 0.826 - }, - { - "category_id": 14, - "poly": [ - 993, - 680, - 1204, - 680, - 1204, - 723, - 993, - 723 - ], - "score": 0.54, - "latex": "2.8\\times10^{5}\\mathrm{ms^{-1}}" - }, - { - "category_id": 13, - "poly": [ - 1116, - 1188, - 1145, - 1188, - 1145, - 1217, - 1116, - 1217 - ], - "score": 0.39, - "latex": "\\times" - }, - { - "category_id": 15, - "poly": [ - 1260.0, - 103.0, - 2102.0, - 103.0, - 2102.0, - 132.0, - 1260.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 153.0, - 1530.0, - 188.0, - 1530.0, - 188.0, - 1557.0, - 153.0, - 1557.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2264.0, - 4.0, - 2343.0, - 4.0, - 2343.0, - 42.0, - 2264.0, - 42.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 128, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 149, - 231, - 1682, - 231, - 1682, - 1350, - 149, - 1350 - ], - "score": 0.975, - "html": "
23Amg k
24CThe acceleration is unchanged.
25C7.50 m s-1
26D0 p 一 K
27DX
28A19
" - }, - { - "category_id": 2, - "poly": [ - 2074, - 1528, - 2105, - 1528, - 2105, - 1554, - 2074, - 1554 - ], - "score": 0.883 - }, - { - "category_id": 2, - "poly": [ - 1255, - 99, - 2105, - 99, - 2105, - 136, - 1255, - 136 - ], - "score": 0.874 - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2338, - 6, - 2338, - 40, - 2267, - 40 - ], - "score": 0.822 - }, - { - "category_id": 13, - "poly": [ - 1104, - 757, - 1125, - 757, - 1125, - 783, - 1104, - 783 - ], - "score": 0.43, - "latex": "d" - }, - { - "category_id": 15, - "poly": [ - 2072.0, - 1528.0, - 2109.0, - 1528.0, - 2109.0, - 1559.0, - 2072.0, - 1559.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1260.0, - 103.0, - 2102.0, - 103.0, - 2102.0, - 132.0, - 1260.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 4.0, - 2341.0, - 4.0, - 2341.0, - 41.0, - 2265.0, - 41.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 129, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 151, - 279, - 1680, - 279, - 1680, - 569, - 151, - 569 - ], - "score": 0.975, - "html": "
29B36
30D2y— rg
31Bthe kinetic energy of the mass
" - }, - { - "category_id": 2, - "poly": [ - 1254, - 98, - 2106, - 98, - 2106, - 137, - 1254, - 137 - ], - "score": 0.869 - }, - { - "category_id": 2, - "poly": [ - 2267, - 5, - 2338, - 5, - 2338, - 40, - 2267, - 40 - ], - "score": 0.817 - }, - { - "category_id": 2, - "poly": [ - 154, - 1529, - 185, - 1529, - 185, - 1554, - 154, - 1554 - ], - "score": 0.722 - }, - { - "category_id": 2, - "poly": [ - 154, - 1529, - 185, - 1529, - 185, - 1554, - 154, - 1554 - ], - "score": 0.265 - }, - { - "category_id": 15, - "poly": [ - 1261.0, - 102.0, - 2101.0, - 102.0, - 2101.0, - 133.0, - 1261.0, - 133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 5.0, - 2342.0, - 5.0, - 2342.0, - 40.0, - 2265.0, - 40.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 153.0, - 1530.0, - 188.0, - 1530.0, - 188.0, - 1557.0, - 153.0, - 1557.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 153.0, - 1530.0, - 188.0, - 1530.0, - 188.0, - 1557.0, - 153.0, - 1557.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 130, - "height": 1654, - "width": 2339 - } - } -] \ No newline at end of file diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/7408_1_June_2019_1739552566_spans.pdf b/pdf_output/7408_1_June_2019_1739552566/auto/7408_1_June_2019_1739552566_spans.pdf deleted file mode 100644 index 7cdffe03366dff0cb5ce3602862525e22e596e98..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/7408_1_June_2019_1739552566_spans.pdf +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c0d640a75ca3ce9ffd90cd93ca365b19c528143a27b766956ac006b5ca423d4c -size 2357924 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/01c45e6ab071d4b21b95d3898710c437392fcecdc2a1e316a57eb913d0040b0f.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/01c45e6ab071d4b21b95d3898710c437392fcecdc2a1e316a57eb913d0040b0f.jpg deleted file mode 100644 index bca053aa95bf1ab107b89d72ee2384d80d8323ce..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/01c45e6ab071d4b21b95d3898710c437392fcecdc2a1e316a57eb913d0040b0f.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ddade040d041c8387ff0a4d75140c40d6da9766fd1c4bc8c8c7b66adfd200aa5 -size 4836 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/0341f0a8113368ec4c4311167f1a870b8054149af1695356487fb464c85e784b.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/0341f0a8113368ec4c4311167f1a870b8054149af1695356487fb464c85e784b.jpg deleted file mode 100644 index 02dbd7f1e9c54411bee6104dcfacf30091f0565d..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/0341f0a8113368ec4c4311167f1a870b8054149af1695356487fb464c85e784b.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c7d1bf3b96c6aef3a4c768b23ed8be62335971589bcb4c5ed72a15f245162516 -size 89937 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/03974bf815a435dc925ed8df555fa4a19a0fd550eb08f60e67699123bbe56446.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/03974bf815a435dc925ed8df555fa4a19a0fd550eb08f60e67699123bbe56446.jpg deleted file mode 100644 index a7bf82a2b401d708a59490602584369c1b9bf85e..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/03974bf815a435dc925ed8df555fa4a19a0fd550eb08f60e67699123bbe56446.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f83450bcb49747c62204930d7a72dc2e4d9a7a66b5a7038278191635cb80e108 -size 276397 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/03cc19547f04886912985e4757085cd1f2a26a7501426da9fe03276a3675f826.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/03cc19547f04886912985e4757085cd1f2a26a7501426da9fe03276a3675f826.jpg deleted file mode 100644 index 37d6dce9a91e860cc5180435ecabc0cc9d229e0e..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/03cc19547f04886912985e4757085cd1f2a26a7501426da9fe03276a3675f826.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9c2ad9785229d24c1d7f0f8ccdf663fde54a6db18216a9102eab38e42f652934 -size 64787 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/040afa95244ad6af8e31e279611140b49dcc0790869ebbca95353736ef6ccd6b.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/040afa95244ad6af8e31e279611140b49dcc0790869ebbca95353736ef6ccd6b.jpg deleted file mode 100644 index 1c2ffac15dbd05731f26338bf493ef10ce8e3b0b..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/040afa95244ad6af8e31e279611140b49dcc0790869ebbca95353736ef6ccd6b.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b1f6a91a3456689192916b4704a5e46ac4a059f4c0bff23c0e8ba0eaecb2b19a -size 37997 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/046272758a9f601e216ac9000a79e56ff1f0c83747fb4a54e9b882acb08608d1.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/046272758a9f601e216ac9000a79e56ff1f0c83747fb4a54e9b882acb08608d1.jpg deleted file mode 100644 index de7114349d7a836b6597fad0d4f49ae55ae7c786..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/046272758a9f601e216ac9000a79e56ff1f0c83747fb4a54e9b882acb08608d1.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c67811de093c54e723d3214abf95e4211caa7f2d66995ea922d578368be250d0 -size 5272 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/076d48c6524c4b495f3149e65690a763cbe5364506f36211399320ce211394bd.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/076d48c6524c4b495f3149e65690a763cbe5364506f36211399320ce211394bd.jpg deleted file mode 100644 index b2ba0760f5407788c0e6177a45e7f6e4c99f5b44..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/076d48c6524c4b495f3149e65690a763cbe5364506f36211399320ce211394bd.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c68538f298e16d3afe81db5f672fb6248483b81e9006ce57d76c7f1d784ea6db -size 43290 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/0801163dd5d73fa65ba88e570473f58c1a58298d0e4b992a1ec0cef9b6929853.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/0801163dd5d73fa65ba88e570473f58c1a58298d0e4b992a1ec0cef9b6929853.jpg deleted file mode 100644 index 4c0795d1936e9964c52d66712a558a1db03b81b9..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/0801163dd5d73fa65ba88e570473f58c1a58298d0e4b992a1ec0cef9b6929853.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:582635ab97b899947c9c3e767b9c87e843a3703576d7868d1778beeeb422683b -size 61032 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/094b4450e7343638a1ec955e5f1af99ac05903bd9003eb54d02ef61f4d31b4ab.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/094b4450e7343638a1ec955e5f1af99ac05903bd9003eb54d02ef61f4d31b4ab.jpg deleted file mode 100644 index 65a464c5d008a0b16b1d76ad0073285028462bb5..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/094b4450e7343638a1ec955e5f1af99ac05903bd9003eb54d02ef61f4d31b4ab.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c44a17619dee530d1b558af70add4019a28e5dcaef1e56752b2d7c3a9a8a0797 -size 39183 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/0b5f6d4f2e6fc2a8232dfa1d2565264abb0403a362dd2751b0b9bd00bc0b508d.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/0b5f6d4f2e6fc2a8232dfa1d2565264abb0403a362dd2751b0b9bd00bc0b508d.jpg deleted file mode 100644 index f10f59222b2ccffc8f3ddf59a0422c78d9e4d7c0..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/0b5f6d4f2e6fc2a8232dfa1d2565264abb0403a362dd2751b0b9bd00bc0b508d.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ab7b5031bde989af0637ef667464113cb5596f045de6375f42afd670de118292 -size 12469 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/0f9535557d9dc0b2323ec38d0fb1dbf2960e2d69d4755cfca5ece9492f52a822.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/0f9535557d9dc0b2323ec38d0fb1dbf2960e2d69d4755cfca5ece9492f52a822.jpg deleted file mode 100644 index 3f090febfa70cd07c30636e5682bb8ca6296ab29..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/0f9535557d9dc0b2323ec38d0fb1dbf2960e2d69d4755cfca5ece9492f52a822.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3f8d86e0231877f2c66469dbfa5889217a222393082bdea158981f49bafcdbcd -size 4646 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/0fc5d650d9231f8340c2cc739a4ff09f17e43942249c59faa5925bec273f3514.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/0fc5d650d9231f8340c2cc739a4ff09f17e43942249c59faa5925bec273f3514.jpg deleted file mode 100644 index 3b21eef17700f4d6fcd635db48ab8e6d0a133ae8..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/0fc5d650d9231f8340c2cc739a4ff09f17e43942249c59faa5925bec273f3514.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:197c7c4c6d0d816a20c7e05e107155d943336908da7ffd7b646eccbda74bc5a1 -size 208062 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/10b783dde63ecc34a873d5c620e5c98444adb0bcbdb086a96bfa6e611dff2a7a.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/10b783dde63ecc34a873d5c620e5c98444adb0bcbdb086a96bfa6e611dff2a7a.jpg deleted file mode 100644 index 215c1cbe46d7debbc876b87c702c04f3d6f4ac64..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/10b783dde63ecc34a873d5c620e5c98444adb0bcbdb086a96bfa6e611dff2a7a.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:272c043871911761318141930bd05698fa88797c82f82ef778a140a3369945aa -size 262004 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/10fe5965c77c0bb40c20f2cd2f8b631e93193e67d44e858a850d7e1f2451532f.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/10fe5965c77c0bb40c20f2cd2f8b631e93193e67d44e858a850d7e1f2451532f.jpg deleted file mode 100644 index c37b852e59c9a9ee240b0c0347bb4cbb12a1b2c0..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/10fe5965c77c0bb40c20f2cd2f8b631e93193e67d44e858a850d7e1f2451532f.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a7a25200834422bbaac8b2de93e27091ef795d26d2c38b2420dab4d40d235e6e -size 48870 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/1406274efcc816dedfc4944b865335093faa06ac99f49182b9bbf91f467a4223.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/1406274efcc816dedfc4944b865335093faa06ac99f49182b9bbf91f467a4223.jpg deleted file mode 100644 index 506e6096eff8931477d77ac0eb161998401a24bd..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/1406274efcc816dedfc4944b865335093faa06ac99f49182b9bbf91f467a4223.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c27baeac4b00e89a2f3c2b964593d4054bca27c8c9887db8409765d6842c0bb5 -size 4998 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/15b9c6a01998d98ccddc3091fe62ae55ec2299ffd56e834d44279c258845d2be.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/15b9c6a01998d98ccddc3091fe62ae55ec2299ffd56e834d44279c258845d2be.jpg deleted file mode 100644 index ae1829d9031662a345de39e06f768c45eb9699f3..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/15b9c6a01998d98ccddc3091fe62ae55ec2299ffd56e834d44279c258845d2be.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e0ee4003a7f6b266babeb5d979feda8d416f93fe2ece90ab0e70c4b64f61b605 -size 34337 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/1a198c59f492e483e31727e683f4cf85d19ea817ff7c03f86f7f10676481dd1d.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/1a198c59f492e483e31727e683f4cf85d19ea817ff7c03f86f7f10676481dd1d.jpg deleted file mode 100644 index a2bb68591b0811cd488ffc37fc3281527b67df1f..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/1a198c59f492e483e31727e683f4cf85d19ea817ff7c03f86f7f10676481dd1d.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:77b52bf9d87f8ce18ffd33bb12ee9cd5017a3927f786fb17cd6401259f043b4d -size 88768 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/1a76007d35ceadc62f9b5fe7d5c550771686055401a31605aee3a7c86d75fb79.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/1a76007d35ceadc62f9b5fe7d5c550771686055401a31605aee3a7c86d75fb79.jpg deleted file mode 100644 index 014bf83965665ed749fd25c6559eefe2dd6eb4a1..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/1a76007d35ceadc62f9b5fe7d5c550771686055401a31605aee3a7c86d75fb79.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:204fc1d3524a24a9e573658a397da677ca90166a6776417af3091a23a36aa10d -size 27450 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/1b51321d182d4468f445d86a2bf2cf5aef4b47cbc27ffdf69d55b1c089987f7a.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/1b51321d182d4468f445d86a2bf2cf5aef4b47cbc27ffdf69d55b1c089987f7a.jpg deleted file mode 100644 index fc5060a9861515d16f10b7d30174d1332ef0d877..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/1b51321d182d4468f445d86a2bf2cf5aef4b47cbc27ffdf69d55b1c089987f7a.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fcf6563a58aa24dd14d5df5b3ac567c825ff99eaff23e0164220a8929251bf4f -size 264363 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/1c853eb0f948c092c1f236c3d258df7ac9348343756865072b9c7bb4a46acd19.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/1c853eb0f948c092c1f236c3d258df7ac9348343756865072b9c7bb4a46acd19.jpg deleted file mode 100644 index 37cc4dd4deba459f2df612f559b86ba5592faa05..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/1c853eb0f948c092c1f236c3d258df7ac9348343756865072b9c7bb4a46acd19.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dd64c928ea8aa86b6778afb80a838d91b1319b8b40a6a26f5e1262e059b367bc -size 83670 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/1d589cccb55276ec12548654ba735da0c12ed7d491898b6ac22c6f92b6359180.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/1d589cccb55276ec12548654ba735da0c12ed7d491898b6ac22c6f92b6359180.jpg deleted file mode 100644 index 123948394cd909b0782fc957518bb15084461c99..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/1d589cccb55276ec12548654ba735da0c12ed7d491898b6ac22c6f92b6359180.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:db887a3ab647e34942e0109b809a6fcc14dc7fb4a01778a9b44cfa401e70f719 -size 4924 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/1e3f511c7a7f5581cb9d4f48dc5dafb24055de4d8b52de72437ebaecebdcec19.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/1e3f511c7a7f5581cb9d4f48dc5dafb24055de4d8b52de72437ebaecebdcec19.jpg deleted file mode 100644 index 561a655f3a1bc0099bd15c4f865548f9734cdeae..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/1e3f511c7a7f5581cb9d4f48dc5dafb24055de4d8b52de72437ebaecebdcec19.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:571ba52e179585aa8cc7cb2eec4b2da7c5f294add0358831c59b08956b7a18a3 -size 189705 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/1efd430ca87371be6652ac0ca207b44b81b2fceb6a978214b56340b28e216d51.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/1efd430ca87371be6652ac0ca207b44b81b2fceb6a978214b56340b28e216d51.jpg deleted file mode 100644 index c316d8e63ab009c07b4b44e6ace0dff562fd9775..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/1efd430ca87371be6652ac0ca207b44b81b2fceb6a978214b56340b28e216d51.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:729caf40d2b063c6ebcd4a0726953bb8263075d0105d9949e6ba169df46737eb -size 4924 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/1feed3eaa59b84f4643a2da1f5f31e2ccf8380b85d6071c56858bd008a51732c.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/1feed3eaa59b84f4643a2da1f5f31e2ccf8380b85d6071c56858bd008a51732c.jpg deleted file mode 100644 index 3bc3d772f3a90ab58ccabf916839d3c407e0348e..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/1feed3eaa59b84f4643a2da1f5f31e2ccf8380b85d6071c56858bd008a51732c.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cda33637305d8bbd791276e59eff4d56a607692cc014bf9cd55b33cc31383fa0 -size 40481 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/201f1959d2f8348670644b70641547d3247582cc72191f18d312acedc401a130.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/201f1959d2f8348670644b70641547d3247582cc72191f18d312acedc401a130.jpg deleted file mode 100644 index 6583fcf2f44f9c69dd47050e814618ff41f5b4f9..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/201f1959d2f8348670644b70641547d3247582cc72191f18d312acedc401a130.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:44bd29c104e939d14f1e74c281ffc1224fbc549d587f5e04c0ecc4e8e28cf821 -size 40538 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/2385ad01c49b4dcb813021c2181c8cf3f346a5d4aec8018273a9d4bd47ce869e.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/2385ad01c49b4dcb813021c2181c8cf3f346a5d4aec8018273a9d4bd47ce869e.jpg deleted file mode 100644 index 806f8c08ab1fb052a03a3b206deab6b1038fdb81..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/2385ad01c49b4dcb813021c2181c8cf3f346a5d4aec8018273a9d4bd47ce869e.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:75b6ce276f06d79629a70ec2f5905cc8ce2120f1c692c40922919a758e5edb89 -size 2267 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/2396ac8c3de9241742820b5d3fc3cbe857f3787866ed51b69bf1581d59a196ab.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/2396ac8c3de9241742820b5d3fc3cbe857f3787866ed51b69bf1581d59a196ab.jpg deleted file mode 100644 index 12d892caa1e4a78d12f96b33b01faefea4164d77..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/2396ac8c3de9241742820b5d3fc3cbe857f3787866ed51b69bf1581d59a196ab.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7eb2f921a4033b77b92b7dd7e7eed490d63f7b674e1401e49b9ed1d9f2322da9 -size 272691 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/256852c584e2056c2eff91c7a65dffe0078628b99e159e8a9ec5882ff139d37d.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/256852c584e2056c2eff91c7a65dffe0078628b99e159e8a9ec5882ff139d37d.jpg deleted file mode 100644 index d339a9301f6d2629421f0963c81934c518ce51e2..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/256852c584e2056c2eff91c7a65dffe0078628b99e159e8a9ec5882ff139d37d.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e13404d2578bf1f0aa3154d7890066e28a0b86568e57708d13350448dba829bd -size 277574 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/25be9a776968767016ad4f01c16137f63cdcf38d4ecae80ac5eb845529219d00.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/25be9a776968767016ad4f01c16137f63cdcf38d4ecae80ac5eb845529219d00.jpg deleted file mode 100644 index 773cd52b83dc22e8df27f425c35dc6ea5a956b41..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/25be9a776968767016ad4f01c16137f63cdcf38d4ecae80ac5eb845529219d00.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d22b1b3a224b58dbc5e05b8bf9ea27e406e89b4a46c7e538335e88b1c08a389c -size 14906 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/285ea99a385fc0fdb208790189bcc391d914a2c51484de6c2a72e2de4d7d8bbe.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/285ea99a385fc0fdb208790189bcc391d914a2c51484de6c2a72e2de4d7d8bbe.jpg deleted file mode 100644 index 7b263a4035a9a0ed0fdf2cfb1d4e748febfdd527..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/285ea99a385fc0fdb208790189bcc391d914a2c51484de6c2a72e2de4d7d8bbe.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cf53c3f12199682bc8d52059b841ca22d302be8d7a49b624dc4b18b8e0624157 -size 440172 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/29bd375d1bfae31c93b54ba0523be6ec40a9e5cda5128c1800b2b32214a29cdb.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/29bd375d1bfae31c93b54ba0523be6ec40a9e5cda5128c1800b2b32214a29cdb.jpg deleted file mode 100644 index 2fa8b0adbd839adb286c501474484bb60205b2fb..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/29bd375d1bfae31c93b54ba0523be6ec40a9e5cda5128c1800b2b32214a29cdb.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:26c5309986c213293f4aced1087d4cdc17a5742a9cbfa8a0d2bd9953680ad897 -size 43969 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/2a13e7b1db89920fcedabd407eedd68924eb6bb7204104d9e92acceffbe5516b.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/2a13e7b1db89920fcedabd407eedd68924eb6bb7204104d9e92acceffbe5516b.jpg deleted file mode 100644 index 06172f057230301b472b3748f9b9afc2199e292a..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/2a13e7b1db89920fcedabd407eedd68924eb6bb7204104d9e92acceffbe5516b.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:df75369a7ccb4bcf96394f71dc161caf7606931802529591d2d1a34b1dcb4cca -size 97740 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/2aeffab49a778cb119c80f10ec0ff8dbc52fe852dfbab42b4a39df0a24da26b4.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/2aeffab49a778cb119c80f10ec0ff8dbc52fe852dfbab42b4a39df0a24da26b4.jpg deleted file mode 100644 index 250546f4b635e6ba74119b4c6412674d079659d3..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/2aeffab49a778cb119c80f10ec0ff8dbc52fe852dfbab42b4a39df0a24da26b4.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2caf0918b22c3375cbc347111715774bf9ad9db3b1a02b73ca64a899a53a64ab -size 110360 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/2dc6eb1feb9b638e506f876ed84f3e449e02d28e394081421b10c96570567031.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/2dc6eb1feb9b638e506f876ed84f3e449e02d28e394081421b10c96570567031.jpg deleted file mode 100644 index eb2a8d94110b0b2805dfb838c15efa86af23a1b5..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/2dc6eb1feb9b638e506f876ed84f3e449e02d28e394081421b10c96570567031.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b8881aeea60412de491b16fb0e8e96fb74c5435156a66af8db866189b525e469 -size 18373 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/2e7aed1ffeda4c5270c22bf7b6fae3ba913ddbc0567d4f722649ba2b97e8e912.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/2e7aed1ffeda4c5270c22bf7b6fae3ba913ddbc0567d4f722649ba2b97e8e912.jpg deleted file mode 100644 index c003c74e4155397f38442072c7bf9b4b008ffe4b..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/2e7aed1ffeda4c5270c22bf7b6fae3ba913ddbc0567d4f722649ba2b97e8e912.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ebc520a98b36181d96ddff94d8c940efa6b27b8460f234a0804deb3c0361daf5 -size 81937 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/35277b008e97a716f70e45aa32c220c4fc4a7e18a874470641ae3d94bc27e26e.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/35277b008e97a716f70e45aa32c220c4fc4a7e18a874470641ae3d94bc27e26e.jpg deleted file mode 100644 index 0477f0476053116423b9b026406da470abd68cb2..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/35277b008e97a716f70e45aa32c220c4fc4a7e18a874470641ae3d94bc27e26e.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:edb27de6337394e93712fa241492db0c35df11f77a8d1b11f4db8ae739783c07 -size 393516 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/353c155147e5e92821617ea22c8ece0fe19d27a67b9b7f4293b1edf57a664ac9.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/353c155147e5e92821617ea22c8ece0fe19d27a67b9b7f4293b1edf57a664ac9.jpg deleted file mode 100644 index 4b23869d9dd9b15ca9fedd145fbcaa70c34fd110..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/353c155147e5e92821617ea22c8ece0fe19d27a67b9b7f4293b1edf57a664ac9.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9c9efaa08cce8e03173c914afc8d4153036e11b2ffe61b6f85cc61706b32f48f -size 4875 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/3869272d01fa7d807b87241f0a196d688b1f30669d80572c17ada0bcff2f223e.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/3869272d01fa7d807b87241f0a196d688b1f30669d80572c17ada0bcff2f223e.jpg deleted file mode 100644 index 15ab6f94736535bab0512d8321abdacb861d9238..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/3869272d01fa7d807b87241f0a196d688b1f30669d80572c17ada0bcff2f223e.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aaa35e1034b92ed4d07a545b4567c0c4c56081ce74883c3f80dcee3a33e0fbfd -size 4847 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/3bbf541743e7972a6731ac1d17bba4846c037a92f254a4fa4a876f9420ce1769.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/3bbf541743e7972a6731ac1d17bba4846c037a92f254a4fa4a876f9420ce1769.jpg deleted file mode 100644 index cd0c2390cf8fd513f098e322ef9a6018956710cf..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/3bbf541743e7972a6731ac1d17bba4846c037a92f254a4fa4a876f9420ce1769.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3c149653c4caf6cdcbc39b3c6c04a9c9da6aeb6ce0222c6d023c5f6865bbfc05 -size 34316 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/3e901f3fea35b80edd32390c7e3c2a7b11e5e18779065ebbf16c8fed8caa2a5b.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/3e901f3fea35b80edd32390c7e3c2a7b11e5e18779065ebbf16c8fed8caa2a5b.jpg deleted file mode 100644 index af5ca3077df22c128a4dd95321ef7e8c31779e96..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/3e901f3fea35b80edd32390c7e3c2a7b11e5e18779065ebbf16c8fed8caa2a5b.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3659ae2b9a3a8bc33bf36a0f80813b0b267e7d73baedfb3d33ec3e81fb3111dd -size 135537 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/3f576db96ea0abf9c1b89284326055f51e6339a887c12f6aa02cb0302ab2deba.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/3f576db96ea0abf9c1b89284326055f51e6339a887c12f6aa02cb0302ab2deba.jpg deleted file mode 100644 index ca9163495c8b0dba09b82735e290aa74cbea2537..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/3f576db96ea0abf9c1b89284326055f51e6339a887c12f6aa02cb0302ab2deba.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bc6728e66a5d24d170b6fd67683377879697a431e9d41456bd12379c45d52f8e -size 23589 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/429377680bf1eab098132953c8f6c07f75ca6a4f58f5e3903adccea5950f41ec.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/429377680bf1eab098132953c8f6c07f75ca6a4f58f5e3903adccea5950f41ec.jpg deleted file mode 100644 index c3cf283ccb5ca778cb70dafa7e878cd7efcef422..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/429377680bf1eab098132953c8f6c07f75ca6a4f58f5e3903adccea5950f41ec.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b1af79478a65819e70ce497ded034e222d80837f25da809ef4d107967f91607f -size 55730 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/44027576eae4f37b85f7768971a883dfef91070832f41d721ccd24adf861379f.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/44027576eae4f37b85f7768971a883dfef91070832f41d721ccd24adf861379f.jpg deleted file mode 100644 index 1b8291311cda6c9b84f6f949d74b094f8c86380f..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/44027576eae4f37b85f7768971a883dfef91070832f41d721ccd24adf861379f.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8a58fd1f5ad114138e62839fc6b52cfa5d18e967082607048e59c506ca45b7ad -size 9041 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/44b1d4cf7a79b186f6049d6ec7f972462a57f574c3cb41e18b1a810022551015.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/44b1d4cf7a79b186f6049d6ec7f972462a57f574c3cb41e18b1a810022551015.jpg deleted file mode 100644 index 40f2fb0839797e3e7a299d995267f7d54b5c0a0a..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/44b1d4cf7a79b186f6049d6ec7f972462a57f574c3cb41e18b1a810022551015.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:59b7524f4752fe266e2630c16c1030b10b0a74c6b2e7ab5cd6d59e9ad3a88a30 -size 38577 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/469a3e10e6dff61f6ab5b50b4a42aab0a12fdcb118ae677a19f1d4b60c17aaa3.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/469a3e10e6dff61f6ab5b50b4a42aab0a12fdcb118ae677a19f1d4b60c17aaa3.jpg deleted file mode 100644 index a3743b99f1a8b04278cf150ea6a9df36b37929b4..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/469a3e10e6dff61f6ab5b50b4a42aab0a12fdcb118ae677a19f1d4b60c17aaa3.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:36e2fd421ba26e72d3c882019ef3b0777557d565439dae87028b0669d49d009c -size 33059 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/46e70cec9112412d6ad0f31ff2a5c52902cb416b0945f7320186304d360fe9fc.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/46e70cec9112412d6ad0f31ff2a5c52902cb416b0945f7320186304d360fe9fc.jpg deleted file mode 100644 index 5cc5c6617c2a71970abf3de9d5f4bf0dc07829c3..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/46e70cec9112412d6ad0f31ff2a5c52902cb416b0945f7320186304d360fe9fc.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:68c6bfc19dbf9c8910ebd23d0603d226d2abf32124cdd5f0d55ec3226624b7be -size 3067 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/4889a3dab6a2f6e10f0d871914de4a8d036b9518f24a1cb18c2c25781f154f8a.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/4889a3dab6a2f6e10f0d871914de4a8d036b9518f24a1cb18c2c25781f154f8a.jpg deleted file mode 100644 index 3f91b7b38f59af574a9d9b1af28301244b061241..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/4889a3dab6a2f6e10f0d871914de4a8d036b9518f24a1cb18c2c25781f154f8a.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:896b8a5535cb7a7172b404a389e2eef62f7803ec0878096fe1489d9f155579c8 -size 86173 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/4957170dd7d8e85d9d623469a895fe7f7038724ff9703ced08b3e24a1d0ea693.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/4957170dd7d8e85d9d623469a895fe7f7038724ff9703ced08b3e24a1d0ea693.jpg deleted file mode 100644 index 3c722a7211324aabfc695991c65eac4238267782..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/4957170dd7d8e85d9d623469a895fe7f7038724ff9703ced08b3e24a1d0ea693.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6e424750845ece61cf5eb0088c046165cbe4e7c93be287b0f0e9c45a49c23668 -size 349568 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/4b012981154c1ce8d7ce1795ac00b0545a4e6d4a1e9f31cf806b90196cd35403.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/4b012981154c1ce8d7ce1795ac00b0545a4e6d4a1e9f31cf806b90196cd35403.jpg deleted file mode 100644 index 6e01d484d8a0e845dc0dd313c882ad7c06219450..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/4b012981154c1ce8d7ce1795ac00b0545a4e6d4a1e9f31cf806b90196cd35403.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cac57ae13596f92b64636c49acc450ba913ebbd188eb39db49f4c85f81386e95 -size 22143 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/4b43b951db653f5a43ed85934e9802c981d24681065c8f4da844a2610378feaa.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/4b43b951db653f5a43ed85934e9802c981d24681065c8f4da844a2610378feaa.jpg deleted file mode 100644 index 0bd10aa61fb7048f15a2101b84bb2aa69331fd04..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/4b43b951db653f5a43ed85934e9802c981d24681065c8f4da844a2610378feaa.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e82193e45798b14c3de2fd4c93dce631ff8ae49f861b05055991c130a7f1d9ce -size 77797 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/4b9a8fc761c493dcf513cfe98d12648514d62b9dcd5f1e9573834c61e2ced345.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/4b9a8fc761c493dcf513cfe98d12648514d62b9dcd5f1e9573834c61e2ced345.jpg deleted file mode 100644 index 79d9d18574e0445ede17a4531d4c62b731fcd0d9..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/4b9a8fc761c493dcf513cfe98d12648514d62b9dcd5f1e9573834c61e2ced345.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:03050e2f6bcb99831c71903ce1c7b3036a64bd7fc16cb7059279035d24830efd -size 50773 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/4cc79f3b36b865d03cd79b60f417c2cc67740b3fa5c2224c535b4ef3c77ce1ac.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/4cc79f3b36b865d03cd79b60f417c2cc67740b3fa5c2224c535b4ef3c77ce1ac.jpg deleted file mode 100644 index 0bc2a739c5cac60cf20ca2444a677271c3569811..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/4cc79f3b36b865d03cd79b60f417c2cc67740b3fa5c2224c535b4ef3c77ce1ac.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c863ee9837815eb6831b2800aa9f1cf9a784638bc6840f8b55271c141e245c7e -size 45088 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/525c53aa6dfc03507ebfd7e0b0233f6b52d6485465e88c7bbdb3f3288423d9a1.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/525c53aa6dfc03507ebfd7e0b0233f6b52d6485465e88c7bbdb3f3288423d9a1.jpg deleted file mode 100644 index 768633f9de0709d95af0fed30b86d380f697fee7..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/525c53aa6dfc03507ebfd7e0b0233f6b52d6485465e88c7bbdb3f3288423d9a1.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:58ae711e6e75ba74492b0948094058c041a737896c4e927024396e0a3cea725b -size 333134 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/5291319c9aa668f9d5157b04ff252b73daaa5a76817cde7d58fa120db83b9a35.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/5291319c9aa668f9d5157b04ff252b73daaa5a76817cde7d58fa120db83b9a35.jpg deleted file mode 100644 index 6b1fe9f059d624778fbc73e69d95ab931dcd5926..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/5291319c9aa668f9d5157b04ff252b73daaa5a76817cde7d58fa120db83b9a35.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3346ec566fbcdfc1b7c612f9a7d82a7fad2b251a3e8e518850c663e703795316 -size 167289 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/5400a1bc747a225e13f223a7294e1e88168637c81beb088a13a4bab7776de572.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/5400a1bc747a225e13f223a7294e1e88168637c81beb088a13a4bab7776de572.jpg deleted file mode 100644 index b5f289369ec35191f6ebd9f99bc5e5c6cb1e7584..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/5400a1bc747a225e13f223a7294e1e88168637c81beb088a13a4bab7776de572.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bab0f1f1de126a552604c3adb6740cca6ccc3a240942aa2450e9d622f85f86a3 -size 4838 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/552ea65dfae798a061f6d16b93136390e65d935169ecff89841ed7ecc8cb18e2.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/552ea65dfae798a061f6d16b93136390e65d935169ecff89841ed7ecc8cb18e2.jpg deleted file mode 100644 index 9f5aab0e85b543accce95ca46fd9703864cbd634..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/552ea65dfae798a061f6d16b93136390e65d935169ecff89841ed7ecc8cb18e2.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:23257fb38ea021bdc23a21a67a4e80ac06fd91262be8f31793b4aa84e289ef3c -size 25954 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/57010858c5feefedbe145aac2f533cc8def1151b67ca5408bff90ff2905cd741.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/57010858c5feefedbe145aac2f533cc8def1151b67ca5408bff90ff2905cd741.jpg deleted file mode 100644 index 05bd8c08355fb214f6ef5d74c0e380523577154a..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/57010858c5feefedbe145aac2f533cc8def1151b67ca5408bff90ff2905cd741.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6ae2a7b5f7dfa4776500c05ca2c62c4713312c5d5f5263d98a26ab8c11466dd0 -size 314114 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/57809694c69edfb88b0dc622314d3e346a19c9f3ffe5e6691bfc64acc61f4abc.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/57809694c69edfb88b0dc622314d3e346a19c9f3ffe5e6691bfc64acc61f4abc.jpg deleted file mode 100644 index 0ef766142102400dff25eac897f84966a436eb85..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/57809694c69edfb88b0dc622314d3e346a19c9f3ffe5e6691bfc64acc61f4abc.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:120e7fbc3dfc94c3266d43d7640c945106daf4c43fa0119b0e15e0c4faf56868 -size 111140 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/59794ad74e3c90f35560f033094612b7bd0d38e73b7a1e043fec98d9de64372a.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/59794ad74e3c90f35560f033094612b7bd0d38e73b7a1e043fec98d9de64372a.jpg deleted file mode 100644 index bda89cf3a2b066ea0e01271fb2899fd968b3e983..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/59794ad74e3c90f35560f033094612b7bd0d38e73b7a1e043fec98d9de64372a.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:87a84a860ae5f186c45fd54e68f7b5e6aaed94e87dd9b2194c7d184a45be4b80 -size 87085 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/5abbdd19ad01175edda239875d47c069530f6522e97aa81b4fb9d816008d7da5.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/5abbdd19ad01175edda239875d47c069530f6522e97aa81b4fb9d816008d7da5.jpg deleted file mode 100644 index 6379343d5f2d84eedd83c1dea96db2a98ebcaeb7..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/5abbdd19ad01175edda239875d47c069530f6522e97aa81b4fb9d816008d7da5.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b34375d3bc3b6b6dea79df7fbdf230262c74840771a8e52dd3ba9375c78666ba -size 27700 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/5acbfddb641053eb041bc9f7e66ff93d5feb92e11e3cca9d194eb37c8dff9a90.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/5acbfddb641053eb041bc9f7e66ff93d5feb92e11e3cca9d194eb37c8dff9a90.jpg deleted file mode 100644 index 4892818a08dd05bbd028bcea5e69a039e4e00750..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/5acbfddb641053eb041bc9f7e66ff93d5feb92e11e3cca9d194eb37c8dff9a90.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:25634ab019310c443090315362b1209e4087e828ebe0af18c73310d5c383b386 -size 22552 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/5c6187fefe7e4eebe84b832c33069bd27cdac86291768f32c85d4d31ffb6630a.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/5c6187fefe7e4eebe84b832c33069bd27cdac86291768f32c85d4d31ffb6630a.jpg deleted file mode 100644 index ab6b21b7b58e075debc3643b6a3e50748ccecce8..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/5c6187fefe7e4eebe84b832c33069bd27cdac86291768f32c85d4d31ffb6630a.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8fcb59da6b360f1e3d5ffe02c54a26b9b897367a7dbeb749c40a19603f72d3f6 -size 129310 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/5cd0702bdc366f5fc7c168eba29229f73b51ca7707aa7f1acb56491fc04ba792.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/5cd0702bdc366f5fc7c168eba29229f73b51ca7707aa7f1acb56491fc04ba792.jpg deleted file mode 100644 index 6d74488171aaaf73265f3fae289301d4260d9407..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/5cd0702bdc366f5fc7c168eba29229f73b51ca7707aa7f1acb56491fc04ba792.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:02b3743ef5b1c0a6955dfcc1d53b5d7308e7213690957991bfdf69a40476699a -size 104193 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/64f8cb3315bededcdf8a0b3e86b02009d1573729329341fe0c5934a972f723da.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/64f8cb3315bededcdf8a0b3e86b02009d1573729329341fe0c5934a972f723da.jpg deleted file mode 100644 index bd17e3142ce5d99407ea286c9bede246b984e25e..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/64f8cb3315bededcdf8a0b3e86b02009d1573729329341fe0c5934a972f723da.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9e468f4cef515a1f54d0ce18530b59693ba4c5b99cb3455e0516af16b68ab2e7 -size 352010 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/66fb7eb20250427d055fa86658fa9f9db690d252c872b7cd5474b92db6f81f30.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/66fb7eb20250427d055fa86658fa9f9db690d252c872b7cd5474b92db6f81f30.jpg deleted file mode 100644 index e7932a0528f2e6e5a4446b821ec2b281c6b0bb62..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/66fb7eb20250427d055fa86658fa9f9db690d252c872b7cd5474b92db6f81f30.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3688a13d9a84c6787da97e48c4be16ec0a903b60855c840def9fc99df0a1c762 -size 150629 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/681578c65b0e5e04aa6b7755ce583140fdbd0996ce8f2c2b0ab50ea717a3c845.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/681578c65b0e5e04aa6b7755ce583140fdbd0996ce8f2c2b0ab50ea717a3c845.jpg deleted file mode 100644 index 180f090c4135b9584b951e3e2830dd68ed1be588..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/681578c65b0e5e04aa6b7755ce583140fdbd0996ce8f2c2b0ab50ea717a3c845.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:51feb2ff19d2af5158251553f1d94cc3ea6ca3edba39d8b056f775812ce6fbc2 -size 4676 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/68652cb80907f916334c1c88a8b63137ea940564c05ca05dda97a3644e29ea0f.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/68652cb80907f916334c1c88a8b63137ea940564c05ca05dda97a3644e29ea0f.jpg deleted file mode 100644 index 73c04beb3f6fc7894bfae73f2475973416676e25..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/68652cb80907f916334c1c88a8b63137ea940564c05ca05dda97a3644e29ea0f.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1b50f33d25ea38297ec5dcd6def1ca594d2999c66f1fadf91faee9857f811ba9 -size 12890 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/6a4b9d47500081c17a5f4aa349c166cf8b97c29d1a922c4d9312674bafe79cd2.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/6a4b9d47500081c17a5f4aa349c166cf8b97c29d1a922c4d9312674bafe79cd2.jpg deleted file mode 100644 index 08f48004e67f7e4ef49f5258e25ca7817490911c..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/6a4b9d47500081c17a5f4aa349c166cf8b97c29d1a922c4d9312674bafe79cd2.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7ea3dabc857e3ff92d9b3347b989a18f352144cba9cdcf3aab6a54f09e727b56 -size 53913 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/6ab34b205e9aaaee2efc6b2e1859b1d6c8ab157414588aec02126af39a42b95c.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/6ab34b205e9aaaee2efc6b2e1859b1d6c8ab157414588aec02126af39a42b95c.jpg deleted file mode 100644 index 0ee156aacf3e20918083ceafd649ebe03b68f1e7..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/6ab34b205e9aaaee2efc6b2e1859b1d6c8ab157414588aec02126af39a42b95c.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0b1dddb4410b4724b12251d5062b434b60cf706005544b84656b7d30d5ce1493 -size 390941 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/6d4b17f3897c2425b971603390f7397c8b021dbce7cc1b53711c7a4ab466afde.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/6d4b17f3897c2425b971603390f7397c8b021dbce7cc1b53711c7a4ab466afde.jpg deleted file mode 100644 index e4fc868ce96fd04ed6802910eaf42a72d988462e..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/6d4b17f3897c2425b971603390f7397c8b021dbce7cc1b53711c7a4ab466afde.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:186d2e5e2de488aee123798ebc70b07ccf2962eb0a197683d4152dae47dda993 -size 24143 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/70afa8dbed080b21609b2c4745737ac382034279ea95a75b1b272d809f7ae91c.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/70afa8dbed080b21609b2c4745737ac382034279ea95a75b1b272d809f7ae91c.jpg deleted file mode 100644 index 40a4cc0704c69023e1de7e52bbbe51463e4bbbde..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/70afa8dbed080b21609b2c4745737ac382034279ea95a75b1b272d809f7ae91c.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5eabef8c6718d3115b68d7394ab10f53183b05d08cf3de0899ab414f21dd0615 -size 175100 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/72554c83e4bb64df58485ca58b591daaf060f41a66b505242bff8fca4409e020.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/72554c83e4bb64df58485ca58b591daaf060f41a66b505242bff8fca4409e020.jpg deleted file mode 100644 index ce72b4c60c523ca83f2cfd571fa923c336827261..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/72554c83e4bb64df58485ca58b591daaf060f41a66b505242bff8fca4409e020.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:00b976124e533089d0210532070ad3fbcd2a4ac86da073da01eff898b5951402 -size 42123 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/729c39e8c747e3dd41e75544994ef349cf590f24847c0667699f7ccb2b495e34.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/729c39e8c747e3dd41e75544994ef349cf590f24847c0667699f7ccb2b495e34.jpg deleted file mode 100644 index 3710d604f138a58d526d2e1670100bfacbf2b991..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/729c39e8c747e3dd41e75544994ef349cf590f24847c0667699f7ccb2b495e34.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b5fb6175817033e7d5390527c72721ea19527a1592eddc60c8dab750c8368170 -size 65794 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/7796a57ddb358aad82fc155ec2252104c0937ec33523372402bb3fc77bdb843e.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/7796a57ddb358aad82fc155ec2252104c0937ec33523372402bb3fc77bdb843e.jpg deleted file mode 100644 index 5ab356ec51ed85c8230a8e6fdcdde0c3d07e5128..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/7796a57ddb358aad82fc155ec2252104c0937ec33523372402bb3fc77bdb843e.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f02a52d5730d3abae6895ffb6e648f85f7afe1bf6a262323f1c9e5c9d7bc860c -size 182457 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/77bb2d37d708972bbc45658589f16c12cbd14ec8a061d940c224506ec4964f00.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/77bb2d37d708972bbc45658589f16c12cbd14ec8a061d940c224506ec4964f00.jpg deleted file mode 100644 index 9df8c5a5ea242be679561352461f5b3299d0fd92..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/77bb2d37d708972bbc45658589f16c12cbd14ec8a061d940c224506ec4964f00.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c23ee073ed91ae894929dab93981d825e20da016867403dee71959a406d0c323 -size 82075 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/7932cffa7a49f04e2988d89d80a3d2fc280d5463d09c6a1e7ec17ebe339da8ce.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/7932cffa7a49f04e2988d89d80a3d2fc280d5463d09c6a1e7ec17ebe339da8ce.jpg deleted file mode 100644 index 91edd24320d06a26e0bcb1613f4ba4863267f778..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/7932cffa7a49f04e2988d89d80a3d2fc280d5463d09c6a1e7ec17ebe339da8ce.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:da3d79b68394aa8ab7b0c9179f3ef1789843721064662bd513828ca031c347ee -size 140924 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/79cfcf82952ab2f62289c52dd4b0980c5108e8ae16540dd6543c3b8e64d73cec.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/79cfcf82952ab2f62289c52dd4b0980c5108e8ae16540dd6543c3b8e64d73cec.jpg deleted file mode 100644 index 5cd0757df14af580a6490f0aa31a1b601f686b08..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/79cfcf82952ab2f62289c52dd4b0980c5108e8ae16540dd6543c3b8e64d73cec.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3df4e1c101ce5ada75a9a155698908f57f985f5154834a4d34f52620056420e4 -size 298022 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/7ac40b1fcd1ddcf16449f2caf39baea59c8d308085d8edbf5214743500ec21eb.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/7ac40b1fcd1ddcf16449f2caf39baea59c8d308085d8edbf5214743500ec21eb.jpg deleted file mode 100644 index 9acafac626e4cff5df61b24174bcbc77d203a942..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/7ac40b1fcd1ddcf16449f2caf39baea59c8d308085d8edbf5214743500ec21eb.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4a1ebae3f14003310064ddb9e0e8a8c2f7f5649f458f4921cf20f04c1c97bded -size 37095 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/7c8e14945066cf5ed3344a4be90b3d82174e88eb545cda6532b593a851a68805.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/7c8e14945066cf5ed3344a4be90b3d82174e88eb545cda6532b593a851a68805.jpg deleted file mode 100644 index 29d4aee4b4c3887db73c962864fe144e7524feed..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/7c8e14945066cf5ed3344a4be90b3d82174e88eb545cda6532b593a851a68805.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:39a845ffffe0bb7f07022da5c6286aac8b735ee1f5b04bd8e3d58218d66c3692 -size 26256 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/7d292096dc2b9770c5ab39a7ea14716702ba3560a704e80245a258c41c252850.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/7d292096dc2b9770c5ab39a7ea14716702ba3560a704e80245a258c41c252850.jpg deleted file mode 100644 index d94a7806e86b0885e18ef018fd0bbe47bea24aae..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/7d292096dc2b9770c5ab39a7ea14716702ba3560a704e80245a258c41c252850.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8a741fdeac811e2736ef6911ce889c26a06b8f5bed2a0d435dc6ff2b52f0d602 -size 194006 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/7de2e3cf5be681ce1c6209fa2ac0dab26d2b5540940b08364ba4b046637b71e0.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/7de2e3cf5be681ce1c6209fa2ac0dab26d2b5540940b08364ba4b046637b71e0.jpg deleted file mode 100644 index bfae6701e425b28acea6a70541e212a18b2aaee6..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/7de2e3cf5be681ce1c6209fa2ac0dab26d2b5540940b08364ba4b046637b71e0.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dab08a6ba0eea090c42252b7963dd9c64715cd40b7c785fafd3eb10037625ebb -size 41266 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/7e571968d5b47a250b9205ed1e293ffcdf63568799f1e21ca2f27009eb14d5ca.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/7e571968d5b47a250b9205ed1e293ffcdf63568799f1e21ca2f27009eb14d5ca.jpg deleted file mode 100644 index 25fc835b1b782a2f4134f6e32d620f9a90e03a2f..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/7e571968d5b47a250b9205ed1e293ffcdf63568799f1e21ca2f27009eb14d5ca.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:741d223200c3b8eeb33da513334c8f210af2c457d7b4ebd97658e098f6784d5e -size 27154 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/7e78c7f03121ab049b0dd847d1cb6d246afedbb8c6293263922bd41925b0c72a.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/7e78c7f03121ab049b0dd847d1cb6d246afedbb8c6293263922bd41925b0c72a.jpg deleted file mode 100644 index 3526419a0a08aad8c7b7e1e3324bc690e1051046..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/7e78c7f03121ab049b0dd847d1cb6d246afedbb8c6293263922bd41925b0c72a.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:11b2f8a6ac95d279ca6dfe25c3d7c76d48471c5b4cb46041cf33d76139db3b57 -size 27449 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/8497e6cd14aa20c9ca5e9f454cbcb887974bec9216b18142a7bb60ebec73ec54.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/8497e6cd14aa20c9ca5e9f454cbcb887974bec9216b18142a7bb60ebec73ec54.jpg deleted file mode 100644 index 788916bcc0e23d08e8ab637141d418232b768bd5..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/8497e6cd14aa20c9ca5e9f454cbcb887974bec9216b18142a7bb60ebec73ec54.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4d3d60a220688d279a5d5991ed0c3a599584ed48a3b099273633a88348fd0cfe -size 139882 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/84f7a6f3a80b387a1519775205d7a921757193312816f74cad954e6efbb3232b.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/84f7a6f3a80b387a1519775205d7a921757193312816f74cad954e6efbb3232b.jpg deleted file mode 100644 index 64bacb204b4c89dd9815fc94bcb09f449fe713ae..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/84f7a6f3a80b387a1519775205d7a921757193312816f74cad954e6efbb3232b.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b67a27e6f5de6cdd0acd7843417da339ac306e0fa14d82f146e0073a6f0f9984 -size 428130 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/881777c94b13121046e04e5c5e6770844f443df2efd1d9c914317729b0656a8a.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/881777c94b13121046e04e5c5e6770844f443df2efd1d9c914317729b0656a8a.jpg deleted file mode 100644 index 1e7d24eede16095c4005ba3b2e0e4848672a574e..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/881777c94b13121046e04e5c5e6770844f443df2efd1d9c914317729b0656a8a.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5eb112dba82587509db3e16086d4b721b5b253a9359d96daa1cd3075169b18bf -size 176667 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/8ab2a3e935386e6d30aea0945cf82f23be9ef81d7cba4a42b60f3aac1508e0c6.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/8ab2a3e935386e6d30aea0945cf82f23be9ef81d7cba4a42b60f3aac1508e0c6.jpg deleted file mode 100644 index 0467844d0369364f393e0dc12746ab309358bd73..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/8ab2a3e935386e6d30aea0945cf82f23be9ef81d7cba4a42b60f3aac1508e0c6.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7e15127322f851ce5d2478417f328dcb4511c86567dc8d0d9bbe748447017e13 -size 27270 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/8abee1e6ec31997b2ac7625b6d5bf329ec4b092da8a4308cdd8918686801058a.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/8abee1e6ec31997b2ac7625b6d5bf329ec4b092da8a4308cdd8918686801058a.jpg deleted file mode 100644 index 75354be9773aa1b2fc4954dcf3b97bdd92df06f6..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/8abee1e6ec31997b2ac7625b6d5bf329ec4b092da8a4308cdd8918686801058a.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:18f1431f1b378d4e56a1c80c6dc29e3f47037d11f4ed0600c13f8b6afacb5880 -size 17914 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/8d378e83d46f3bdcc0e5022b4183358f9a5b9ff9f6064fedbc07fddf9b26881d.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/8d378e83d46f3bdcc0e5022b4183358f9a5b9ff9f6064fedbc07fddf9b26881d.jpg deleted file mode 100644 index ae16b1e72c4c5424fd703628ebff2ae05e037ab7..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/8d378e83d46f3bdcc0e5022b4183358f9a5b9ff9f6064fedbc07fddf9b26881d.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c0f2afd9737f6b57f4346f0ca08d31627bdc416cbbb21ac15f2afe9c7cf885f7 -size 229901 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/8da7ff924c1989577c679b9a6c0d45be475bb3fa3c2017ffa7186a3efb0d0c94.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/8da7ff924c1989577c679b9a6c0d45be475bb3fa3c2017ffa7186a3efb0d0c94.jpg deleted file mode 100644 index 3f54c581b9e72db615ae02906d7a21c07606da02..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/8da7ff924c1989577c679b9a6c0d45be475bb3fa3c2017ffa7186a3efb0d0c94.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d107c97ea6c1e3c96f2b2621705eaa029cb3104a8264a6ab6ccc7e1896f11eeb -size 4890 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/9224e2ca294c6476680c41903d9f1a8f76b6f25447a8767ca2e779fdc7395170.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/9224e2ca294c6476680c41903d9f1a8f76b6f25447a8767ca2e779fdc7395170.jpg deleted file mode 100644 index 601dfde0e24e45472e7e7864bb86000329c70151..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/9224e2ca294c6476680c41903d9f1a8f76b6f25447a8767ca2e779fdc7395170.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7d9772f2f9d9f70919817a55375594e1c6926d2930a9ee8093d5e90cf673244b -size 57434 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/93d00ab9d656d2ceeb8bd8778e8b2dec96657bb77c36069aa296048f386ceae9.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/93d00ab9d656d2ceeb8bd8778e8b2dec96657bb77c36069aa296048f386ceae9.jpg deleted file mode 100644 index ab998c3c65e9660bf62af02bdc0adfa2849d9c37..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/93d00ab9d656d2ceeb8bd8778e8b2dec96657bb77c36069aa296048f386ceae9.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:92bce6971281af2075e76b33032d41a32525c10c432c6bddbf12a1862e9fa321 -size 188850 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/93ff3930946f9d84389c70d9a39970d476a23f32097eef05828f2edf98c516be.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/93ff3930946f9d84389c70d9a39970d476a23f32097eef05828f2edf98c516be.jpg deleted file mode 100644 index df9197adbc2e81a922e8b8d6a945df2cbc9e0d35..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/93ff3930946f9d84389c70d9a39970d476a23f32097eef05828f2edf98c516be.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fb10adaf6bcaceabab9a39f57f12e6e909801d225174a42bda0bbc9053b3118f -size 82417 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/94790d517992ad0e0c91e57138375104209a4bec48ce7c00b1ff28cb9b42f523.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/94790d517992ad0e0c91e57138375104209a4bec48ce7c00b1ff28cb9b42f523.jpg deleted file mode 100644 index f61e38defa824354af1f3cc4da9296b61c7ae7b8..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/94790d517992ad0e0c91e57138375104209a4bec48ce7c00b1ff28cb9b42f523.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f1ca9a589a7004d85c97f59bd3d29ae35a1f0d9c3e45a6d796955d294c2e37b7 -size 218047 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/94f41ab6880e4ec606cdb00f81ad78569db03647b17fe0fb419eb733862ed667.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/94f41ab6880e4ec606cdb00f81ad78569db03647b17fe0fb419eb733862ed667.jpg deleted file mode 100644 index ffe292535cbb51d88975a3cb848105859199b2d2..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/94f41ab6880e4ec606cdb00f81ad78569db03647b17fe0fb419eb733862ed667.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:18c93bc558efdc0b81a314f2da537e5607c5b4e72d202db04820f85426864007 -size 173268 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/987a29e481fb9fd331b10c8e28fd602d6ec79bff053c07b0a0aa34056366cf6c.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/987a29e481fb9fd331b10c8e28fd602d6ec79bff053c07b0a0aa34056366cf6c.jpg deleted file mode 100644 index 0688ee5122654aa79690005da86ec9a12770ab81..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/987a29e481fb9fd331b10c8e28fd602d6ec79bff053c07b0a0aa34056366cf6c.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3e266c9a3bf7f557c22a369b45140b8c788ae541a922019bd8f5a34e723589a4 -size 93296 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/9a755c2b6a0b1e7642ed5ca1052bde3de04138f8a4b4425cfd20f765a966efa0.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/9a755c2b6a0b1e7642ed5ca1052bde3de04138f8a4b4425cfd20f765a966efa0.jpg deleted file mode 100644 index 5f7e026b6802eb545f9715318fbad212e4c4a66c..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/9a755c2b6a0b1e7642ed5ca1052bde3de04138f8a4b4425cfd20f765a966efa0.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e120e64cb8ef2319bad4f121893039bf654d9f185a0cea11d5fa96d647431db5 -size 406828 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/9c68d31c621d2ab4783e16299f2168c3d9b65c7668044d30d3455aa4e98d8043.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/9c68d31c621d2ab4783e16299f2168c3d9b65c7668044d30d3455aa4e98d8043.jpg deleted file mode 100644 index c70f841c3655fe02b746f2929bfe3df63ee9c6da..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/9c68d31c621d2ab4783e16299f2168c3d9b65c7668044d30d3455aa4e98d8043.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2275c1aa50f744f1d75b7d8aa3f741de3b40f4e40e01a1b7f0edc14f42119df4 -size 77835 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/9c756f7308b5ce6c68f8ea520a992f52919cf84bc4e9246ba2d147dba4db4a8b.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/9c756f7308b5ce6c68f8ea520a992f52919cf84bc4e9246ba2d147dba4db4a8b.jpg deleted file mode 100644 index 70805e542234ba26b7d9378613348b05206c5dc9..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/9c756f7308b5ce6c68f8ea520a992f52919cf84bc4e9246ba2d147dba4db4a8b.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1ff8be133a5d8b122cd1dd676650f76624d52d527263ae59b472f3e22c0ed98a -size 4683 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/9cec0251051fbb3775d6dbf9e72581e9f9580e9cf4622b4f8ff16008805b8209.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/9cec0251051fbb3775d6dbf9e72581e9f9580e9cf4622b4f8ff16008805b8209.jpg deleted file mode 100644 index 2579400c68ada767fd6ac592d77df64cd9db2add..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/9cec0251051fbb3775d6dbf9e72581e9f9580e9cf4622b4f8ff16008805b8209.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8ec013543026468b5c8cceb4278f62484ebc03ff6b3a8b56acb95196868b245c -size 4275 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/9f5c4788d9d209a71fa73ef44d11f46fd04d5d18ecc842776eff007f3d872474.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/9f5c4788d9d209a71fa73ef44d11f46fd04d5d18ecc842776eff007f3d872474.jpg deleted file mode 100644 index 09207c90fd22f93d1db13c23dc4d0a63f0f1bb02..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/9f5c4788d9d209a71fa73ef44d11f46fd04d5d18ecc842776eff007f3d872474.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a5395c7be9b7e5c03ab49abcfd8a0e44c6e8151671a39d94bfef3368e777dab1 -size 24171 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/9fae45d647e784e5001583976e9fe0553222143bf458f5f259334254b8796545.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/9fae45d647e784e5001583976e9fe0553222143bf458f5f259334254b8796545.jpg deleted file mode 100644 index 4525660f6c79139326d54a259da45ca5cc18a81e..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/9fae45d647e784e5001583976e9fe0553222143bf458f5f259334254b8796545.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:61851402035550b7badd8ca239f71ea0a93f734b7be31b89f3d3db335e49e9fc -size 50524 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/a1fe560a1181e67cc06b8a8eb79894f34669d2031b50659cdd72fd7d90dd00a2.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/a1fe560a1181e67cc06b8a8eb79894f34669d2031b50659cdd72fd7d90dd00a2.jpg deleted file mode 100644 index 069950a7b9595389a5bcebfcb051402f32f22419..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/a1fe560a1181e67cc06b8a8eb79894f34669d2031b50659cdd72fd7d90dd00a2.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c69779e2385ea8160fe423400c73ac8521c89150ddd85ba65d9134a15680498b -size 34320 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/a4d70f89757c75f39d00c133a4b5d7878e86ac591d26af27642c3048e8d93446.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/a4d70f89757c75f39d00c133a4b5d7878e86ac591d26af27642c3048e8d93446.jpg deleted file mode 100644 index a5b9f1ec59d270aeab88e6e53930bc75056ce104..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/a4d70f89757c75f39d00c133a4b5d7878e86ac591d26af27642c3048e8d93446.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:72b7e5606c12ef446d515381f8fe6301a645a56b26921af20babc89d5f0df1b2 -size 4856 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/a6110daf80338d3809ad4e230772f9952bda886d4d4d562a668e977a4264e527.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/a6110daf80338d3809ad4e230772f9952bda886d4d4d562a668e977a4264e527.jpg deleted file mode 100644 index b0508e04055e08037c45d9f5bef4179e058bbd0f..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/a6110daf80338d3809ad4e230772f9952bda886d4d4d562a668e977a4264e527.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:47a2b1577c5527910e73e7c040b52b71b0659e7b1751f3416e33822f5c87ace2 -size 20163 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/a6170c918ad88811d00ba23894b2ca436ccb90514531f171d45402df961e14f3.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/a6170c918ad88811d00ba23894b2ca436ccb90514531f171d45402df961e14f3.jpg deleted file mode 100644 index a4bd9dcc44183bcc5b17a36e2d389ef9f4af5ab8..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/a6170c918ad88811d00ba23894b2ca436ccb90514531f171d45402df961e14f3.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d2f80e802880c32d74e35bde96fd6c646d258333d5efed29e9ea41ebf49c390f -size 160533 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/a6c32bff5558f984a0bc4cf5af43bafcb87dc23974036a0fcd9f1d3a87e17b17.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/a6c32bff5558f984a0bc4cf5af43bafcb87dc23974036a0fcd9f1d3a87e17b17.jpg deleted file mode 100644 index 255b60382b7ff9620dd1eb178cd0a9f7a64b5f89..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/a6c32bff5558f984a0bc4cf5af43bafcb87dc23974036a0fcd9f1d3a87e17b17.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eedc527a67f80f3bb690bdd3eac26a783af8b58e0eb499147f8660c09f195f9c -size 110778 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/a917e8581e8ead4fed205c229ae8504393b6bf37cbabef89a852da1bd27e24dd.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/a917e8581e8ead4fed205c229ae8504393b6bf37cbabef89a852da1bd27e24dd.jpg deleted file mode 100644 index 4a004addcce485a81d6304b8249fffe46103f543..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/a917e8581e8ead4fed205c229ae8504393b6bf37cbabef89a852da1bd27e24dd.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:986320984524538cee9f52b17c8d513631e38a019a01cf3d0b97672d2683da26 -size 24579 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/a9c8e4c76cb475e96d7dab0fa62ee0c3a5e4754f10db5b0b00edc1fbb50acce8.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/a9c8e4c76cb475e96d7dab0fa62ee0c3a5e4754f10db5b0b00edc1fbb50acce8.jpg deleted file mode 100644 index ed8da2d68bbf68472ea02c0eb001714a5ac5b989..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/a9c8e4c76cb475e96d7dab0fa62ee0c3a5e4754f10db5b0b00edc1fbb50acce8.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f48426d82ab86340b8bab75580601de573199c76ee7808c9bf036ef2ab760252 -size 84556 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/ac7b554d8ed73367994abb552352a73d0017c5b3f34a69133c24f3fe96130e0c.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/ac7b554d8ed73367994abb552352a73d0017c5b3f34a69133c24f3fe96130e0c.jpg deleted file mode 100644 index 1f11031b7d68148f8b1a721f0734046c83c22393..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/ac7b554d8ed73367994abb552352a73d0017c5b3f34a69133c24f3fe96130e0c.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a29c8d6649a4328f8f1c02a88bd0b949ef75b5d6bf0c55670ec96128aed69ddd -size 144241 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/afdb467c0e3976a0fbc7ca8e251a51ca8b5a95f7c60b84c7d9604ba3bf20fb0b.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/afdb467c0e3976a0fbc7ca8e251a51ca8b5a95f7c60b84c7d9604ba3bf20fb0b.jpg deleted file mode 100644 index 345aed81496f57727d83eb2e230b96a54ee4c69a..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/afdb467c0e3976a0fbc7ca8e251a51ca8b5a95f7c60b84c7d9604ba3bf20fb0b.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4bd5df72e56b4fca15ea6312cc33fd88b2e90b77cdb98d1edb25d1b646e051d5 -size 27025 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/b093eec94cb17567e3ee76cdd17f1d084a3cb4d3c516419fa17327fb25936124.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/b093eec94cb17567e3ee76cdd17f1d084a3cb4d3c516419fa17327fb25936124.jpg deleted file mode 100644 index 9b75e3723505a1633259eb5367d6dbb1e3a763a9..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/b093eec94cb17567e3ee76cdd17f1d084a3cb4d3c516419fa17327fb25936124.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c6056d0cfb12d41aa20c74534bbe4ba69746b755ee964095be877c611fcfe40e -size 47801 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/b26ce9f6714b3da27ff71e8ebb73ec9e95252a2e7209c9633a1c15c39b1c05b1.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/b26ce9f6714b3da27ff71e8ebb73ec9e95252a2e7209c9633a1c15c39b1c05b1.jpg deleted file mode 100644 index 40584a347cc72ab690fef5d84bde29442235f497..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/b26ce9f6714b3da27ff71e8ebb73ec9e95252a2e7209c9633a1c15c39b1c05b1.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9678153359c36f3e6a54d7d18ee7a2fbf492a38dfafc29db40a8a03c52e89614 -size 45377 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/b2edc2a2a00f86f4bd4d91426ee61a95d5babe2e34416d17a60a156b3d6ed111.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/b2edc2a2a00f86f4bd4d91426ee61a95d5babe2e34416d17a60a156b3d6ed111.jpg deleted file mode 100644 index 882181e8bd37d1bab58fd03a32514ed1d7a44960..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/b2edc2a2a00f86f4bd4d91426ee61a95d5babe2e34416d17a60a156b3d6ed111.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a545cbdf7c132549d110cd452b231ae3c11d004844f575f9e7f48eaa1f9b65d7 -size 4965 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/b318a9043f925407ef9112a29e0c326eee0fa519213dc3d7fd78bac2f6da184f.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/b318a9043f925407ef9112a29e0c326eee0fa519213dc3d7fd78bac2f6da184f.jpg deleted file mode 100644 index 5192c532b4cc847e198ad2d29a0ff10a70e081f7..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/b318a9043f925407ef9112a29e0c326eee0fa519213dc3d7fd78bac2f6da184f.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:37d77109bf74b9b574855215f812d94eefadef26602931ba3687affd7e205a98 -size 14021 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/b4292b9ab6a0d61bebc36ea25d1e7aa52c17e4ff642dc2b318d623add9cc4dfd.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/b4292b9ab6a0d61bebc36ea25d1e7aa52c17e4ff642dc2b318d623add9cc4dfd.jpg deleted file mode 100644 index 48aa5b8dcdb19d11f15d082e3dac950e91c30fde..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/b4292b9ab6a0d61bebc36ea25d1e7aa52c17e4ff642dc2b318d623add9cc4dfd.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e8b6e7c4e921122cd10e22102aefc8bbda17817784481b98261cf7592fedeb02 -size 32196 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/b59926f9d24baebce0e545ebefa26e68114d5a6877489ee9acadf8b24ce7341e.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/b59926f9d24baebce0e545ebefa26e68114d5a6877489ee9acadf8b24ce7341e.jpg deleted file mode 100644 index cd511c6f7ec8b3e96f5af8455be0bdb9b0ad57d8..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/b59926f9d24baebce0e545ebefa26e68114d5a6877489ee9acadf8b24ce7341e.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3b823093f043b09f3d0dcefb7cb6c2e91d1e6ac96a7d762a4a3004953f0c358d -size 68542 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/b71095a5eb9eb4adb51c5bc4ebb0466e117291f9ec36320882640bdf5569b838.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/b71095a5eb9eb4adb51c5bc4ebb0466e117291f9ec36320882640bdf5569b838.jpg deleted file mode 100644 index 85fc53fbf7ab011200778790761f3a0e63041472..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/b71095a5eb9eb4adb51c5bc4ebb0466e117291f9ec36320882640bdf5569b838.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2403be496caa20c6958255bb3f435d62a426efd67a976cedb7ffbead3f9db435 -size 66915 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/bb4a44ec32468bf6bfe2956723b1c201975431db8ecb7e124e72245c08efbeee.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/bb4a44ec32468bf6bfe2956723b1c201975431db8ecb7e124e72245c08efbeee.jpg deleted file mode 100644 index 5e5a68d15b4ef454bd18f23c9ab762ecdc03cfe3..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/bb4a44ec32468bf6bfe2956723b1c201975431db8ecb7e124e72245c08efbeee.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f5fe4c43d0444fda79fb42ecbd02f660de898055cbb3217740b503140385795e -size 27490 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/bbccf30d69340d2d9dbdd455609e40c4ecd1620e7955b5bac7dd60fc68f59cc6.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/bbccf30d69340d2d9dbdd455609e40c4ecd1620e7955b5bac7dd60fc68f59cc6.jpg deleted file mode 100644 index 32c749b2d3c534bc514e4c158d4e8f297d97d77a..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/bbccf30d69340d2d9dbdd455609e40c4ecd1620e7955b5bac7dd60fc68f59cc6.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4dfbd6e919f961ec0706c3a8cc20dd63a6e91f6252e9c24852eee28670ffdc2b -size 28188 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/bc0d117ccd2413548ce8a0b16acf1fac1dd445e2518b732875699fa7385cd5ef.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/bc0d117ccd2413548ce8a0b16acf1fac1dd445e2518b732875699fa7385cd5ef.jpg deleted file mode 100644 index 9129b06ffe0ce80c808540250f5574935558d883..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/bc0d117ccd2413548ce8a0b16acf1fac1dd445e2518b732875699fa7385cd5ef.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b9fd968741be6cb66bc358614aafdb0dab5d542db7b87c494328e5569f290bde -size 63577 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/bc512113d46ff76cc39ec209875d6b17ae02a05dd71e713b096295ae7e731951.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/bc512113d46ff76cc39ec209875d6b17ae02a05dd71e713b096295ae7e731951.jpg deleted file mode 100644 index 96add67eb6c938fbd5af1e17fb16e1807f612d03..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/bc512113d46ff76cc39ec209875d6b17ae02a05dd71e713b096295ae7e731951.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ec9341831b345e55a0198ec970e32f0012ae30341a9ec35d9f017b1f2a523d6b -size 37604 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/bc8d0e365da0d6b89e9a913a27af5bc0fb2ac2f61fe1b32890bf32c33e2c6ed3.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/bc8d0e365da0d6b89e9a913a27af5bc0fb2ac2f61fe1b32890bf32c33e2c6ed3.jpg deleted file mode 100644 index 6e4011bad8902920d6b28737150a3e9180b9dc5a..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/bc8d0e365da0d6b89e9a913a27af5bc0fb2ac2f61fe1b32890bf32c33e2c6ed3.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:97d6cd707c85fd58ce8f93c7901014ce2bd4b2f7259ec29bee64d4112b0bc02e -size 56504 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/c14d497240075e93ac06a29be98fc0899a5792c064a9ea58e94028ce7dc66ae9.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/c14d497240075e93ac06a29be98fc0899a5792c064a9ea58e94028ce7dc66ae9.jpg deleted file mode 100644 index e2954c840facf0691080f1dc7d2b175ee1efbccb..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/c14d497240075e93ac06a29be98fc0899a5792c064a9ea58e94028ce7dc66ae9.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:469fc36743d70096b27536f09ad1c879f2b0667d7177b92060686c5b32fcd203 -size 285424 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/c7488800dca40982482ca4de387b97282e026520496a19c2a27cbe6047f8048b.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/c7488800dca40982482ca4de387b97282e026520496a19c2a27cbe6047f8048b.jpg deleted file mode 100644 index 927517d5f96b9d16157bdae0cfb72a16122abffb..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/c7488800dca40982482ca4de387b97282e026520496a19c2a27cbe6047f8048b.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b6a71392b85366d55cbd0b84aeddfd94890ac9fa61f7c64708cdcf0d8a902c31 -size 103322 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/ca7d0aa420f562544b429b85300501c17ca7881f4eb566a71e117f42b87f590c.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/ca7d0aa420f562544b429b85300501c17ca7881f4eb566a71e117f42b87f590c.jpg deleted file mode 100644 index a206341afe4794c478916a953c7ab9004ca20bdd..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/ca7d0aa420f562544b429b85300501c17ca7881f4eb566a71e117f42b87f590c.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d97e35fc008c3732bb667956999d1090fb77712a44452cb289a841b018fb4b1f -size 48937 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/cb088436b75cb40297766854775680e265adb0b45826096d02941a1fc6bd325a.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/cb088436b75cb40297766854775680e265adb0b45826096d02941a1fc6bd325a.jpg deleted file mode 100644 index cfbc9d915e15aa5eb7ce058bafbe967064bd6db1..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/cb088436b75cb40297766854775680e265adb0b45826096d02941a1fc6bd325a.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:31cbf0814921162375ee3ee9f810205a90a3452332b9702a90df124387c0f98c -size 154261 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/cd4ce3af50f954eb058f6cc8093cb9da40b553f64860b24e882b21a6c3fc8950.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/cd4ce3af50f954eb058f6cc8093cb9da40b553f64860b24e882b21a6c3fc8950.jpg deleted file mode 100644 index 40f0d7f4d0360f4583def84cad3df8fbec7b4a20..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/cd4ce3af50f954eb058f6cc8093cb9da40b553f64860b24e882b21a6c3fc8950.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:50568cf37b52c003fd94c5a23fa3af50055b3628c24273d4d3eee613f0ee4c7a -size 37177 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/ce27ad9bc78f9bc1162d578b67e29e78a971663103a5283f2c87a0d03181ff33.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/ce27ad9bc78f9bc1162d578b67e29e78a971663103a5283f2c87a0d03181ff33.jpg deleted file mode 100644 index 092e2aa16ba8122186b180051198067a211094a3..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/ce27ad9bc78f9bc1162d578b67e29e78a971663103a5283f2c87a0d03181ff33.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e7942f9b915c117db6d80062a45b83a769c75a24c909f30e2c043ab08e7d0197 -size 15520 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/cec4d7067800f674ca4048c0facede294d80c82a33a27099484a5b3517504db7.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/cec4d7067800f674ca4048c0facede294d80c82a33a27099484a5b3517504db7.jpg deleted file mode 100644 index a8caf53049e544bd10f0d4d3e87c5d5248fcbc59..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/cec4d7067800f674ca4048c0facede294d80c82a33a27099484a5b3517504db7.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ba19b845aa9121b26f393d27c891240acba3f02828ca403bf426a9fc649dfddd -size 390951 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/cf5467f872c2bddddacfcd544a1f0381470d9024b7ca5d9c34baa062b2f25012.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/cf5467f872c2bddddacfcd544a1f0381470d9024b7ca5d9c34baa062b2f25012.jpg deleted file mode 100644 index 536cfc3670749cd4d4f9a170bbcaa0f94a6ffb40..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/cf5467f872c2bddddacfcd544a1f0381470d9024b7ca5d9c34baa062b2f25012.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a9370240da22a999391622aa992ad85e397b2548d2744ff3fa2195ade11016ec -size 103881 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/cfceffade000f19fcb620af61b574c898b3cdff3bc4a7879171c91093d4f11ac.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/cfceffade000f19fcb620af61b574c898b3cdff3bc4a7879171c91093d4f11ac.jpg deleted file mode 100644 index 2ac14c69786a430fd57bf70af300f509a3a16d44..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/cfceffade000f19fcb620af61b574c898b3cdff3bc4a7879171c91093d4f11ac.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2d7e72a6e09339a81d95b8fbae1e485b9888ce2e247bdc9716e6e6946e889537 -size 121763 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/d0bcade1d6eecd11c7b01a830874a85e0bdc19ea90eb2b78af4ae3d59d3ae4f8.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/d0bcade1d6eecd11c7b01a830874a85e0bdc19ea90eb2b78af4ae3d59d3ae4f8.jpg deleted file mode 100644 index 48e93999c52a0d5755cb41162fde171b2e8cd9e8..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/d0bcade1d6eecd11c7b01a830874a85e0bdc19ea90eb2b78af4ae3d59d3ae4f8.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0ed0dcb906eed308824b1fa87c045d9e62ebfb3b7d7e725159675c49b17d9f3f -size 31477 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/d0f8df12e078fe5004d479e019cc81f8f9d3d0c2f07cfd8fcb2f3723c6b2edf3.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/d0f8df12e078fe5004d479e019cc81f8f9d3d0c2f07cfd8fcb2f3723c6b2edf3.jpg deleted file mode 100644 index 099f7ada150c785b245d2b268d9b50309ac45d4c..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/d0f8df12e078fe5004d479e019cc81f8f9d3d0c2f07cfd8fcb2f3723c6b2edf3.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4053618fce5b7eae9f71e6ac17fa62f82ef8ea2b8513389bd7363aac37b10638 -size 45690 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/d16b66292d34ae7fb47e44e2b0285b155962b9eb55095d147e64c7fe41ed69c5.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/d16b66292d34ae7fb47e44e2b0285b155962b9eb55095d147e64c7fe41ed69c5.jpg deleted file mode 100644 index 526526434f21a5d0e92fa96ad065172590198429..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/d16b66292d34ae7fb47e44e2b0285b155962b9eb55095d147e64c7fe41ed69c5.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1463e4a1f2f5aec629c9716f6404469185943e45e539c63b5174bbde0f5bda04 -size 76047 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/d1edca35517d08df20cb2242d138d7406e55681993e8dcbdbd673c28869f7b91.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/d1edca35517d08df20cb2242d138d7406e55681993e8dcbdbd673c28869f7b91.jpg deleted file mode 100644 index 3cf077f7e4bed6f5e4edbad31dc48d76e048392e..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/d1edca35517d08df20cb2242d138d7406e55681993e8dcbdbd673c28869f7b91.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5ee190d4b8fa748c88f440a8376cfc0fe7aa8c06af9adc9990a3c6a1715dcde5 -size 158253 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/d2bdea75a6aea5e3a5ea6c8f7827484366b6aebdea44d4e22117dd2e745b46fd.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/d2bdea75a6aea5e3a5ea6c8f7827484366b6aebdea44d4e22117dd2e745b46fd.jpg deleted file mode 100644 index ad2010600fe13c51912b43bc5790909c1afb9a75..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/d2bdea75a6aea5e3a5ea6c8f7827484366b6aebdea44d4e22117dd2e745b46fd.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c0521f51108196d1858eb5b2456f6cac3bb46bf416a348e45e24f5d068045be1 -size 88701 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/d4b9ea543fa7fecbd310e55676ac451822c1761ce42383ab75893e6bf2abe5da.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/d4b9ea543fa7fecbd310e55676ac451822c1761ce42383ab75893e6bf2abe5da.jpg deleted file mode 100644 index 6669fb489e4bf580b78e05ee59a2442914220405..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/d4b9ea543fa7fecbd310e55676ac451822c1761ce42383ab75893e6bf2abe5da.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ba933ad33c13f3d66cfb086a9a7fd5ae1340fbf2c073b8c4b7d2cbedf4e73b94 -size 4746 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/d5311b2001e7c70634cbbc6703a6866357ab24d260dc32abf9eb5df4c04a1ff8.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/d5311b2001e7c70634cbbc6703a6866357ab24d260dc32abf9eb5df4c04a1ff8.jpg deleted file mode 100644 index b97732b40cc13bc3f980da501d5aaac6922d3001..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/d5311b2001e7c70634cbbc6703a6866357ab24d260dc32abf9eb5df4c04a1ff8.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:712d9a79d8ae7166b5f17584d00dcfc6fcdcc7770310e78742998c00328bf6ea -size 15652 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/d5adcc1c8d2076adfaa968721816e1ece8cce5bb575f889b544f54dacf508b3d.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/d5adcc1c8d2076adfaa968721816e1ece8cce5bb575f889b544f54dacf508b3d.jpg deleted file mode 100644 index 6537b79f625b8f0952322e5c166238611645a76a..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/d5adcc1c8d2076adfaa968721816e1ece8cce5bb575f889b544f54dacf508b3d.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0fecee2a5c9505d4ac3f08c2d8a48e7105bbd28ac910555c46fe8127dee737ee -size 2374 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/d655065f0021e9cd6476e5101e273f7dc2194a85535176d4136ea238995f0165.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/d655065f0021e9cd6476e5101e273f7dc2194a85535176d4136ea238995f0165.jpg deleted file mode 100644 index 7d3cfec57ff96b92cee2b2fddbec792574df4b4c..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/d655065f0021e9cd6476e5101e273f7dc2194a85535176d4136ea238995f0165.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:40d32ecd97b96b0a7c043367b8b6a6caa620a5050e99a8f9d4782ba989513d39 -size 12315 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/db22b44bd39f12e148b3f3fb24796dac867d480b6e05301c5b425486067b70a0.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/db22b44bd39f12e148b3f3fb24796dac867d480b6e05301c5b425486067b70a0.jpg deleted file mode 100644 index 8de10b7a6dc8da95389ab975cf22251169efa14a..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/db22b44bd39f12e148b3f3fb24796dac867d480b6e05301c5b425486067b70a0.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4628611810fb0b9c4ab7a6f44b18262476c7e2a8913cde05665f79d1272d608b -size 392908 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/dd645ace588ac4d57fbdb977f36a28fafb86bd2b891c142ab43107962ff781b4.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/dd645ace588ac4d57fbdb977f36a28fafb86bd2b891c142ab43107962ff781b4.jpg deleted file mode 100644 index 10ee9ab967f6155644a798228cb75b45494b33a6..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/dd645ace588ac4d57fbdb977f36a28fafb86bd2b891c142ab43107962ff781b4.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5d68e5622949653b7238d45f8b528270f6b2fb0d344a15d38e546aea77ca3e7a -size 35407 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/de9a802d6cbcd57baf944cc3bc60d657cc47877d862f8e9d3fb0aa6fc5dbda6c.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/de9a802d6cbcd57baf944cc3bc60d657cc47877d862f8e9d3fb0aa6fc5dbda6c.jpg deleted file mode 100644 index 61f1bbe8405a01243717b59e7fdccdab7e9e68b2..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/de9a802d6cbcd57baf944cc3bc60d657cc47877d862f8e9d3fb0aa6fc5dbda6c.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4378ad6f9f0ed8d975c1e3e38f5c2b89307a9d4bbbb934960568209027ab56db -size 39506 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/e15b5c0a90d2d0538a480bbb998b1e999c5ce87cecdf0a09c885a9045a934b40.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/e15b5c0a90d2d0538a480bbb998b1e999c5ce87cecdf0a09c885a9045a934b40.jpg deleted file mode 100644 index 6d46b59f27c6a28cd56b9c8f94abf75aa03ba0c7..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/e15b5c0a90d2d0538a480bbb998b1e999c5ce87cecdf0a09c885a9045a934b40.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:06eda7256f76229eba6eb043c1e3f3599f890812862e32d490018156380ec5c2 -size 72234 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/e358e7f4aa36894fd37ef2f8ed5eaae0486a936cceaf4da51821e4590eed089c.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/e358e7f4aa36894fd37ef2f8ed5eaae0486a936cceaf4da51821e4590eed089c.jpg deleted file mode 100644 index 01ac5f5fc6a09b682a470a71f0713a11c0f37bd0..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/e358e7f4aa36894fd37ef2f8ed5eaae0486a936cceaf4da51821e4590eed089c.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5d363d6ef6094e5e85d215f0ff447d5672044af08a41e2d403e5570b1bcaf7e9 -size 4912 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/e366da6f2631cbd47c9a3f6ea6a2b0f5532229422527e30c29f0d43e3e42de0f.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/e366da6f2631cbd47c9a3f6ea6a2b0f5532229422527e30c29f0d43e3e42de0f.jpg deleted file mode 100644 index 25d9cfbcff6f734ffb65de0307f5cc25eb9bbec8..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/e366da6f2631cbd47c9a3f6ea6a2b0f5532229422527e30c29f0d43e3e42de0f.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:72193d519ea3b9fccb3cdb4c56ffe42fcba3469daedb25fc84fb5e382f503fd9 -size 34226 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/e86a5d0d48a73c866a4f8ff407cd0a4b8b736f5809168e8da027b7be585f8f3d.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/e86a5d0d48a73c866a4f8ff407cd0a4b8b736f5809168e8da027b7be585f8f3d.jpg deleted file mode 100644 index 02180d7406e4e82f402f0085455bb992bf97f75f..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/e86a5d0d48a73c866a4f8ff407cd0a4b8b736f5809168e8da027b7be585f8f3d.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1a2eb6282d63bcfd7e524ac055de72ca4fc8d3fe9ccacb8183ed2bb70f5d4203 -size 244681 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/ea941352209dfc8fb34f02adb6174c4e07d425b1dc854f780547d7568ea9ed10.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/ea941352209dfc8fb34f02adb6174c4e07d425b1dc854f780547d7568ea9ed10.jpg deleted file mode 100644 index 946c6c424b582607d2815e9058fa4f78f9ad0030..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/ea941352209dfc8fb34f02adb6174c4e07d425b1dc854f780547d7568ea9ed10.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e892bf21b4074f026538a42bd84d96ed5726779e56c973cea7a1acb9c78ab9e0 -size 53979 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/eb1c0c6439c29b068b6eaabbd9df21f4eb3b2b3a7c9883f2bb8bdf78fecd191c.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/eb1c0c6439c29b068b6eaabbd9df21f4eb3b2b3a7c9883f2bb8bdf78fecd191c.jpg deleted file mode 100644 index cc99205ad75db4612f0e928f0d81f2b9478e0569..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/eb1c0c6439c29b068b6eaabbd9df21f4eb3b2b3a7c9883f2bb8bdf78fecd191c.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fee4c82fbf90c6e83b19f8fff3be5ebd82e16230fd367ef2bdbbb5ecd53c408d -size 206242 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/ed0e1d08ba703ff647c64b472741f8c9da88f767c5352d59e15a35a581f0f473.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/ed0e1d08ba703ff647c64b472741f8c9da88f767c5352d59e15a35a581f0f473.jpg deleted file mode 100644 index 94af77d9e84b77b8524eadd7c78dc7987e8d5e38..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/ed0e1d08ba703ff647c64b472741f8c9da88f767c5352d59e15a35a581f0f473.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d14067cb03f1daeaca724ac967bbbe5f860410ec27402a2b83b6826d80aae41d -size 121447 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/ef2f92872bc37f4bb50504962ce3c88d856e222176a0a41be7b7f5002afa0af0.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/ef2f92872bc37f4bb50504962ce3c88d856e222176a0a41be7b7f5002afa0af0.jpg deleted file mode 100644 index 6301af336c408ff846823ceb9a5467d0b64577f2..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/ef2f92872bc37f4bb50504962ce3c88d856e222176a0a41be7b7f5002afa0af0.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c29675bc7d8236b397e0c31551c2393b029a713c953f27a3d6829dae2d9c75ab -size 128838 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/f003ab9632052c94fd7041d219b360221ca0a674f6cb630ad5371c5e4e663900.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/f003ab9632052c94fd7041d219b360221ca0a674f6cb630ad5371c5e4e663900.jpg deleted file mode 100644 index d1266bd969293874b78dc30b483bead935ec83cf..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/f003ab9632052c94fd7041d219b360221ca0a674f6cb630ad5371c5e4e663900.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f96bae38eb3350d7bbd348aab71d33e7af0376c00cd1b4797216bf59fcbb7f8b -size 25796 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/f06bc7de8b270c4f2c3be9d0ce85ede5e7cfa45dd91ea708cbd1931e5d8331cf.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/f06bc7de8b270c4f2c3be9d0ce85ede5e7cfa45dd91ea708cbd1931e5d8331cf.jpg deleted file mode 100644 index 83cee274d478a832d09c95d1664d4f01ca8060f5..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/f06bc7de8b270c4f2c3be9d0ce85ede5e7cfa45dd91ea708cbd1931e5d8331cf.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:53944aa92cdf04cfd56af01cc15601abc6777511c4f6bff7b4899b852fbb6836 -size 21790 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/f119cd93d6a348c643cac5ab18443d68d27d6b1caba0bd2121adc5fe84c76623.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/f119cd93d6a348c643cac5ab18443d68d27d6b1caba0bd2121adc5fe84c76623.jpg deleted file mode 100644 index fd6d17309a5c242fb2c62606812adbb548cd7a73..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/f119cd93d6a348c643cac5ab18443d68d27d6b1caba0bd2121adc5fe84c76623.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:69fd8aaad4efbd0189660d525fb1e95483517a945dcc7136c615310eae80857f -size 204542 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/f196269a0925414c8b0dafa701109262a2054259282780d5e061a25a3267fbb2.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/f196269a0925414c8b0dafa701109262a2054259282780d5e061a25a3267fbb2.jpg deleted file mode 100644 index 0606be5119730663bb510ecc55404690b3eaa044..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/f196269a0925414c8b0dafa701109262a2054259282780d5e061a25a3267fbb2.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:21da0b50c65cd9574a9150c85b1ee5d4807784910f244d3cc7d0427e7ef28231 -size 4715 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/f365891b67658e2e41a1822c3521de6a60fa56e3a543a8c2e131533cc9ea09ab.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/f365891b67658e2e41a1822c3521de6a60fa56e3a543a8c2e131533cc9ea09ab.jpg deleted file mode 100644 index 76a7e069a92f4b2e09beed572794cdc61b713cb7..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/f365891b67658e2e41a1822c3521de6a60fa56e3a543a8c2e131533cc9ea09ab.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:24f380f02b6d526ee3b5d1bb3631ce4488f200a63ae4d717db8fc51eb1508222 -size 162878 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/f4152bf7f36be4eb4b5a5dbc1b2bc68a717e3aadd707d4770c6aef92ffe42808.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/f4152bf7f36be4eb4b5a5dbc1b2bc68a717e3aadd707d4770c6aef92ffe42808.jpg deleted file mode 100644 index 23829252ff0141ed47a6625c942a33ef98984b16..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/f4152bf7f36be4eb4b5a5dbc1b2bc68a717e3aadd707d4770c6aef92ffe42808.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2c67eefa13069b4289657ca25e214a5b08574feeddfce4a128771e22e1edb625 -size 4946 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/f42e2684308c219d576a6bc28bb221f6c0287f99639e84d19e7aced8afcc6395.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/f42e2684308c219d576a6bc28bb221f6c0287f99639e84d19e7aced8afcc6395.jpg deleted file mode 100644 index 0181c08d558a760cad4edeeee54e8959180cb79b..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/f42e2684308c219d576a6bc28bb221f6c0287f99639e84d19e7aced8afcc6395.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dc8af525b3f1054f3e01c239a99628e84a20cb6447d019f77b0dee21418a5131 -size 27499 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/f50cbe3f2421601529a6bba898b42799a4b1bfec30161fc5a381cd8098f81689.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/f50cbe3f2421601529a6bba898b42799a4b1bfec30161fc5a381cd8098f81689.jpg deleted file mode 100644 index ebc7e176d95808e4d6427974de18e2f86ab524e2..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/f50cbe3f2421601529a6bba898b42799a4b1bfec30161fc5a381cd8098f81689.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:db41a2041f6ba4b05983d1b9eb864c4548af942220f6c6dccf53967005b57987 -size 34533 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/f62ef80ef0cd64aeb2c80e953290f8f0223d598402ff9a63a319b98d167c0ced.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/f62ef80ef0cd64aeb2c80e953290f8f0223d598402ff9a63a319b98d167c0ced.jpg deleted file mode 100644 index 1eec364dfec48fab79a640ea03e176826593eef2..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/f62ef80ef0cd64aeb2c80e953290f8f0223d598402ff9a63a319b98d167c0ced.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7e1ee1bfbc7bb495097fd537262327ff23c0ce92ee23d6115896fba1cce13b36 -size 285218 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/f79e89205bf4b010f43ecee9d8710a2fb5472a81aa95475b8bc8d5c72132746f.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/f79e89205bf4b010f43ecee9d8710a2fb5472a81aa95475b8bc8d5c72132746f.jpg deleted file mode 100644 index 4da9b980a07b2b4974c7bf18256b94c574856802..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/f79e89205bf4b010f43ecee9d8710a2fb5472a81aa95475b8bc8d5c72132746f.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7eedcaf0595af823957e3d632a8e5f36854c8f510832cfb0390e257015f5e53c -size 350998 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/fabc3263cd3a872616fd323d3dd9d35c53da4d2ddf638358e589f2a33caae3f1.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/fabc3263cd3a872616fd323d3dd9d35c53da4d2ddf638358e589f2a33caae3f1.jpg deleted file mode 100644 index 997a05939adf9378271109d7c5606d1def545fdb..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/fabc3263cd3a872616fd323d3dd9d35c53da4d2ddf638358e589f2a33caae3f1.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1d5c177b2f79c16a4a04fe385df27e2c8fad17c9d38c3d48d61358a5075ddb86 -size 50069 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/fc90fe09eb45c0e24e0102ba561fcf3790dfbd2bc6039fb07037f0b360e27e1b.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/fc90fe09eb45c0e24e0102ba561fcf3790dfbd2bc6039fb07037f0b360e27e1b.jpg deleted file mode 100644 index 5d9752d2f3baa50988ff69b4f29c7446a172c7be..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/fc90fe09eb45c0e24e0102ba561fcf3790dfbd2bc6039fb07037f0b360e27e1b.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3f73ccdf7c691ffac6bbd17bd6e77ec1aee748106b77dd845b960ee4e0149444 -size 8553 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/fdb096c8aaf4f45c67f73ec1592b5496c5dffb1dfd4c3c3b27f71beab04b2f99.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/fdb096c8aaf4f45c67f73ec1592b5496c5dffb1dfd4c3c3b27f71beab04b2f99.jpg deleted file mode 100644 index 855d6a5b72288ec77b3e3f73cbd6f0e4167073d4..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/fdb096c8aaf4f45c67f73ec1592b5496c5dffb1dfd4c3c3b27f71beab04b2f99.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a515555b7f67e459b77f263c142cdfb4a7564e45bd460913b792dde1dc3acf22 -size 4796 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/fe11f5d4d779ab6f8e11b6b0be250f73f795ee54148741172a3b19c5d2078ee4.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/fe11f5d4d779ab6f8e11b6b0be250f73f795ee54148741172a3b19c5d2078ee4.jpg deleted file mode 100644 index 48057f36881b87c256ac0f31fc5f5d5069f9c734..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/fe11f5d4d779ab6f8e11b6b0be250f73f795ee54148741172a3b19c5d2078ee4.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:343f8514e611588236ee81c5ab6fe84e05e67b8f04c320f83287e03d4ad978d5 -size 22364 diff --git a/pdf_output/7408_1_June_2019_1739552566/auto/images/ff7ac384adbdd82b394556f406fa6e2759de5cd4ae0aaef93676518d53fa2706.jpg b/pdf_output/7408_1_June_2019_1739552566/auto/images/ff7ac384adbdd82b394556f406fa6e2759de5cd4ae0aaef93676518d53fa2706.jpg deleted file mode 100644 index 3453ee72f23a7f35cfaadd0558d91b9de4909ffc..0000000000000000000000000000000000000000 --- a/pdf_output/7408_1_June_2019_1739552566/auto/images/ff7ac384adbdd82b394556f406fa6e2759de5cd4ae0aaef93676518d53fa2706.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1fc454acb6b8a23fbcd479a32ba48bd0560525ed2e9cad15a2de1757f60b16bb -size 110263 diff --git a/pdf_output/8525_2_1739552314/auto/8525_2_1739552314.md b/pdf_output/8525_2_1739552314/auto/8525_2_1739552314.md deleted file mode 100644 index ab9fa49a75f115cd962ea6c30797ca3badfe8a36..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/8525_2_1739552314.md +++ /dev/null @@ -1,552 +0,0 @@ -Please write clearly in block capitals. - -Centre number - -Candidate number - -![images/109e42de42b05477c98efdddb7ff5b384443346f802c2302d0a164177dca46a1.jpg]() - -Surname Forename(s) Candidate signature - -# GCSE COMPUTER SCIENCE - -Paper 2 - Computing concepts - -# Specimen Assessment Materials Time allowed: 1 hour 45 minutes - -# Materials - -There are no additional materials required for this paper. -You must not use a calculator. - -![images/ce7523814b245ce58050b7c51fca17f896772359b7ef56c8afc633b88e92dc84.jpg]() - -# Instructions - -• Use black ink or black ball-point pen. Use pencil only for drawing. -• Answer all questions. -• You must answer the questions in the spaces provided. -• Do all rough work in this book. -• Cross through any work you do not want to be marked. - -# Information - -• The total number of marks available for this paper is 90. - -# Advice - -For the multiple-choice questions, completely fill in the lozenge alongside the appropriate answer. CORRECT METHOD WRONG METHODS $\mathbf{\pi}^{\infty}$ $\textcircled{6}$ $\nmid$ - -If you want to change your answer you must cross out your original answer as shown. - -If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown. - -Answer all questions. - -A bit pattern is shown in Figure 1. - -# Figure 1 - -# 01001110 - -Convert the bit pattern shown in Figure 1 into decimal. - -[1 mark] - -Convert the bit pattern shown in Figure 1 into hexadecimal. - -[2 marks] Answer: - -A student’s answer to the question “Why is hexadecimal often used instead of binary?” is shown in Figure 2. - -# Figure 2 - -Because it uses fewer digits it will take up less space in a computer’s memory. - -Explain why the student’s answer is incorrect. - -[2 marks] - -Explain how a binary number can be multiplied by 8 by shifting bits. - -[2 marks] - -ASCII (American Standard Code for Information Interchange) is a coding system that can be used to represent characters. In ASCII the character A is represented by the numeric code 65. - -Shade one lozenge to indicate which character is represented by the numeric code 70. - -[1 mark] - -![images/6989c268ffff85e3d801fa7b22b088b05aa8009598116a2fb95ce457493865be.jpg]() - -A E B F C f D 6 E e - -Unicode is an alternative to the ASCII coding system. - -State two advantages of using Unicode to represent characters instead of using ASCII. - -[2 marks] - -When data is stored in a computer it is often compressed. One method that can be used to compress text data is Huffman coding. To produce a Huffman code each character in a piece of text is placed in a tree, with its position in the tree determined by how often the character was used in the piece of text. - -A Huffman tree for the text ZOE SAW A ZEBRA AT THE ZOO is shown in Figure 3. - -![images/4045db713ae31b5bc3347bbd491291a0ea95ec4f92bd597e34a82b72646ccd9d.jpg]() -Figure 3 - -Using this Huffman tree, the Huffman coding for the character E would be the bit pattern 110 because from the top of the tree E is to the right, then right again and then left. - -The character Z is represented by the bit pattern 010 because from the top of the tree Z is to the left, then right and then left. - -Using the Huffman code in Figure 3, complete the table to show the Huffman coding for the characters O, SPACE and B. [3 marks] - -
CharacterHuffman coding
O
SPACE
B
- -Using Huffman coding, the text ZOE SAW A ZEBRA AT THE ZOO can be stored in 83 bits. - -Calculate how many additional bits are needed to store the same piece of text using ASCII. Show your working. [3 marks] - -Bob purchases a 4GB SD card for use as secondary storage in his phone. - -Calculate how many megabytes there are in 4GB. Show your working. - -[2 marks] - -An SD card is a type of solid state storage. - -State two advantages of solid state storage compared to magnetic storage. - -[2 marks] - -Many modern desktop computers have both solid state drives and magnetic hard disk drives. - -Give two reasons why desktop computers have a magnetic hard disk drive and a solid state drive instead of having just a solid state drive. - -[2 marks] - -Describe how data is stored on, and read from, a magnetic hard disk. - -[4 marks] - -Turn over for the next question - -In recent years, there has been a large growth in the use of cloud storage. - -Discuss the advantages and disadvantages of using cloud storage. - -In your answer you should include an explanation of the reasons for the large growth in recent years and consider any legal, ethical and environmental issues related to the use of cloud storage. [9 marks] - -
use Or cloud storage. [sypu 6]
- -Most schools have a computer network. - -Some schools allow teachers to access the school network from their home computers. - -Give one reason why some schools allow this and one reason why some schools do not allow this. - -[2 marks] - -Reason for: Reason against: - -State three advantages of using a computer network. - -[3 marks] - -PANs and LANs are two different types of network. - -Describe one difference between a PAN and a LAN. - -[1 mark] - -Give one example of where a PAN could be used. - -[1 mark] - -When two computers on a network communicate with each other they need to use the same protocol. - -Define the term network protocol. - -![images/7616d4ea5ca5360828a1abd1e11cc5efa22f44ead1d7e627f6db521bb225e7f1.jpg]() - -For questions 0 3 6 to 0 3 8 shade one lozenge to indicate the most suitable protocol to use in the situation described. - -Used to retrieve email stored on a server - -[1 mark] - -![images/b28e048d0ee3999de27c64482bc7d7d51dc2059da636ac82d6540664af879df4.jpg]() - -A HTTP B HTTPS C FTP D SMTP E IMAP - -Used to make a payment securely when purchasing goods from a website - -[1 mark] - -![images/f9f17426e116156d0aeafcba2a9eac0bee147deadcbf4e6e527096222ca138e9.jpg]() - -A HTTP B HTTPS C FTP D SMTP E IMAP - -Used to send an email from a client machine to an email server. - -[1 mark] - -A HTTP B HTTPS C FTP D SMTP E IMAP - -![images/66db834f2ec0495259ed6fda461062687a8c6bd5dc85739b134b93efdf8545f5.jpg]() - -TCP/IP is a protocol used in networking. There are 4 layers in the TCP/IP stack. - -Complete the table by placing the four layers of the TCP/IP stack into order (1-4) where 1 is the top layer and 4 is the bottom layer. - -[3 marks] - -
LayerOrder(1-4)
Transport
Link
Internet
Application
- -Many computers use the Von Neumann architecture. - -In a computer that uses the Von Neumann architecture, bit patterns can be stored in the main memory. Shade the correct lozenge to indicate what these bit patterns could represent. You should only shade one lozenge. - -[1 mark] - -A Data -B Instructions -C Data and instructions -D Data or instructions, but not both - -![images/40843124807eab8c7beadf8d790ac6447f01002ee7051047ce9007f986a3b2ef.jpg]() - -Five components of a CPU are given below. For each row in Table 1, choose the letter A, B, C, D, E that best matches the description. - -Letters should not be used more than once. - -A. Bus -B. Arithmetic Logic Unit -C. Control Unit -D. Clock -E. Register - -[3 marks] - -Table 1 - - -
DescriptionLetter
Sendsacontinuousseriesofelectronicpulses
Decodesthecurrentinstruction
Completescalculations
- -Social engineering is where someone is tricked or manipulated into providing secure information or access to a secure system. Describe each of the following social engineering techniques. - -[3 marks] - -Blagging: - -Phishing: - -Shouldering: - -Turn over for the next question - -A sound engineer is recording a singer. - -Describe why the sound must be converted to a digital format before it can be stored on a computer system. - -[2 marks] - -The sound engineer is using a sampling rate of $2000\mathsf{H z}$ and a sample resolution of 4 bits. What is the minimum file size of a 5-second recording? Your answer should be given in bytes. - -You should show your working. - -[4 marks] - -The sound engineer currently uses a sample resolution of 4 bits which enables a sample to be stored as one of 16 different bit patterns. She wants to increase the number of bit patterns available from 16 to 32. Shade one lozenge which shows the minimum sample resolution (in bits) she can choose that will allow her to do this. - -[1 mark] - -A 3 bits B 5 bits C 8 bits D 16 bits - -![images/bb20470f62e08855b68c29b8bec4fad7163ccac0351ee46ff08117dd95d93440.jpg]() - -Shade one lozenge to show which of the following correctly states the effects of increasing the sampling rate. - -[1 mark] - -A Decreases both the quality of the recording and the file size B Has no effect on the quality of the recording or the file size C Improves the quality of the recording and has no effect on the file size D Improves the quality of the recording and increases the file size - -![images/f95eeb7928e931242cfc911d362061023c8b6e3e1e3044530f63745bbccdd772.jpg]() - -Turn over for the next question - -The three examples of code shown in Figure 4 are all equivalent to one another. - -Figure 4 -Shade one lozenge to show the statement that is true about Figure 4. - - -
Example 1Example 2Example3
a←4 b13 IF a=b THEN C ↑a+b ENDIFMOV RO,#4 MOV R1,#3 CMP RO,1 R1 BNE end ADD R2, RO,Rl end: 11111001 0000 0100 1001 0001 0011 0100 0000 0001 1010 0101 0000 1100 0010 00000000 0000 0000 0000 0001 0000
- -[1 mark] - -![images/a604ee0ebcc7cc047bf5f8a26c4358794f523676642ee04a1de334558c98b3ff.jpg]() - -Explain why a developer, who is good at both low-level and high-level programming, would normally use high-level languages when writing programs. - -
[syeuu +]
- -Statements A and B refer to two different types of program translator. - -Statement A: This type of translator can convert a high-level language program into machine code. The source code is analysed fully during the translation process. The result of this translation can be saved, meaning the translation process does not need to be repeated. - -Statement B: This type of translator was used to convert the code in Example 2 to the code in Example 3 in Figure 4. - -State the type of program translators referred to in statements A and B. - -[2 marks] - -Statement A: Statement B: - -Turn over for the next question - -Complete the truth table for the AND logic gate. - -[1 mark] - -
ABA AND B
00
01
10
11
- -A logic circuit is being developed for an audio advert in a shop that plays automatically if a customer is detected nearby. - -The system has two sensors, $\mathsf{A}_{1}$ and $\mathsf{A}_{2}$ , that detect if a customer is near. The audio plays if either of these sensors is activated. The system should only play if another audio system, S, is not playing. The output from the circuit, for whether the advert should play or not, is Q. - -Complete the logic circuit for this system. - -[3 marks] - -![images/10ceaa3c143dbf32bee4f3b3093ede11d1a8d38d97e4d329f4c0c2738ece031f.jpg]() - -![images/2b09f88e4798039f7c0dc725a7432b3c6074d0e8af21b11f153de211beb736b3.jpg]() - -A relational database is being developed to store information about the games that are available to play at a games café and the advance bookings that have been made for those games. Each game has a unique name. - -The database contains two tables: Game and Booking. - -The database is currently being tested by the person who has developed it so the database tables only contain a small amount of data that is being used for testing. - -The contents of the tables are shown in Figure 5. - -# Figure 5 - -Game - - -
NameMinPlayersMaxPlayersLengthOfGameComplexity
Friday11252.12
Scythe15903.37
Terra Mystica251003.95
Agricola14903.31
Pandemic24452.42
- -Booking - - -
GameTablelDNameDateStartTimeCustomerHours
1Friday28/05/1911Hawkins1
2Scythe28/05/1911Jemisin1
3Pandemic28/05/1915Gormally1
1Pandemic28/05/1913Van Perlo2
1Terra Mystica29/05/1915Hawkins2
- -State the field in the Booking table that is a foreign key. - -[1 mark] - -State the most suitable data type to use for the Complexity field. - -[1 mark] - -Due to a change in layout at the café, the game table with an ID of 2 is no longer suitable for games that can have more than four players. The manager needs to find out the customer, date and time of all bookings made for the game table with an ID of 2 that are for a game that can have more than four players. - -Write an SQL query that could be used to find this information for the manager. The results should be shown in date order. - -[6 marks] - -![images/dc8ac2383017485c9a7e108096abdbaf793d0c89937cffb4a28ced50d9b0dffd.jpg]() - -The LengthOfGame field shows the average amount of time it takes to play a game in minutes. - -A query to add 10 minutes to the length of time taken for all games that have a Complexity of more than three is shown in Figure 6. - -# Figure 6 - -UPDATE Game -SET LengthOfGame $=$ LengthOfGame + 9 -WHERE Complexity $<=3$ - -The query contains two errors. Refine the query in Figure 6 to correct the errors. [2 marks] - -The games café is evaluating the security for their network. - -State two reasons why using a biometric authentication measure is better than password authentication for staff accounts. - -[2 marks] - -Explain why it would not be appropriate for the café to use MAC address filtering on their wireless network. - -[2 marks] - -END OF QUESTIONS - -![images/ebcc00357b30be9bfde27b90bb35b0e6e4d7c48a10db773ef397fc7ba3f52a74.jpg]() - -# Copyright information - -For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk. - -Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team. - -Copyright $\copyright$ 2019 AQA and its licensors. All rights reserved. - -AQA - - -# GCSE COMPUTER SCIENCE 8525/2 Paper 2 Computing concepts - -Mark scheme Specimen Assessment Materials - -Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students’ responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students’ scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer. - -It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark schemes on the basis of one year’s document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper. - -Further copies of this mark scheme are available from aqa.org.uk - -The following annotation is used in the mark scheme: - -, means a single mark -// - means alternative response -$/$ means an alternative word or sub-phrase -A means acceptable creditworthy answer. Also used to denote a valid answer that goes beyond the expectations of the GCSE syllabus. -R - means reject answer as not creditworthy -NE - means not enough -I - means ignore -DPT - in some questions a specific error made by a candidate, if repeated, could result in the candidate failing to gain more than one mark. The DPT label indicates that this mistake should only result in a candidate losing one mark on the first occasion that the error is made. Provided that the answer remains understandable, subsequent marks should be awarded as if the error was not being repeated. - -# Level of response marking instructions - -Level of response mark schemes are broken down into levels, each of which has a descriptor. The descriptor for the level shows the average performance for the level. There are marks in each level. - -Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as instructed) to show the qualities that are being looked for. You can then apply the mark scheme. - -# Step 1 Determine a level - -Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer. With practice and familiarity you will find that for better answers you will be able to quickly skip through the lower levels of the mark scheme. - -When assigning a level you should look at the overall quality of the answer and not look to pick holes in small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level and then use the variability of the response to help decide the mark within the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be placed in level 3 but be awarded a mark near the top of the level because of the level 4 content. - -# Step 2 Determine a mark - -Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate marks can help with this. The exemplar materials used during standardisation will help. There will be an answer in the standardising materials which will correspond with each level of the mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer with the example to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner’s mark on the example. - -You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate. - -Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be exhaustive and you must credit other valid points. Students do not have to cover all of the points mentioned in the Indicative content to reach the highest level of the mark scheme. - -An answer which contains nothing of relevance to the question must be awarded no marks. - -
QuPartMarking guidanceTotal marks
- -
011Mark is for A02 (apply)1
78;
- -
012AllmarksAo2 (apply)2
4; (This must be the left hand digit to gain the mark)
E; (This must be the right hand digit to gain the mark)
Maximum1mark:Iffinalanswernotcorrect.
- -
013All marks Ao1 (understanding) 2
(The answer is incorrect because) the number will (still) be represented using
binary in a computer's memory;
so it will take up the same amount of memory space;
- -
014All marks AO1 (understanding) 2 (Shifting the bit pattern) three places; to the left; Markasfollows:
- -
015Mark is for A02 (apply)1
BF;
R. If more than one lozenge shaded
- -
016All marks AO1 (understanding) 2
/ specialist documents;Advantages: Can represent awiderrangeof characters; Can represent characters from a wider range of languages; Can represent characters used in scientific / mathematical /technical
- -
QuPartMarking guidanceTotal marks
- -
01 7 All marks AO2 (apply)
CharacterHuffman coding
111
SPACE10
B00110
Markasfollows:
- -
0181 mark for AO1 (understanding) and 2 marks for A02 (apply) 7;*26; =182 182 - 83; = 993
- -
02 11 mark for AO1 (recall) and 1 mark for A02 (apply) 2
1000× 4//4000;;x 1 mark for A01: identifying that there are 10o0 megabytes in a gigabyte;
1 mark for AO2: multiplying by 4;
A.1024 × 4 // 4096;
Maximum 1mark: If final answer not correct.
- -
QuPartMarking guidanceTotal marks
- -
022All marks AO1 (understanding)2
Max2
Lighter; Smaller; Uses less power; More robust; Generates less heat; Quieter;
- -
0232 marks for Ao2 (apply) 2 Using just solid state would cost much more;
- -
024All marks AO1 (understanding)4
On a hard disk binary data represented by tiny magnetised regions; where the magnetic orientation in one direction represents O, and the other direction represents 1; When reading data the read/write head is moved (to be overcorrecttrack);andtheplatter/diskspinsround; A whole sector/block read in one go (by the read/write head);
- -
QuPartTotal marks
Marking guidance
- -
02 5All marks A02 (apply)9
Level 3Description Answer demonstrates a sustained line of reasoning with a substantiatedMark Range 7-9
2technological and social reasons. There is a logically structured consideration of the advantages and the disadvantages associated with the use of cloud storage - including relevant points covering at least two of legal, ethical and environmental issues. Answer includes an explanation for the recent large growth in the use of cloud4-6
storage that includes both technological and social reasons. There is a logically structured consideration of the advantages and the disadvantages associated with the use of cloud storage - including one or two relevant points related to legal, ethical and environmental issues.1-3
some of the reasons for the recent large growth in the use of cloud computing and/or brief consideration of the advantages and/or disadvantages associated with using cloud storage.
Nocreditworthyanswer0
- -
Guidance - Indicative Response (reasons for growth) Higher bandwidth mobile networks (eg 4G); Increased availability of mobile devices; Reduction in cost of large capacity storage devices; Improvements in network security; People have a higher level of trust in cloud storage; Improvements inwebbrowser software; Increased availability of supercomputers (for cloud processing); Companies have managed to develop business models based on cloud computing that allow them to make a profit; Guidance - Indicative Response (advantages of cloud storage) Enables user to access their data from more places/devices; cloud storage publically available); Increases the amount of storage available; Reduced cost of computing devices for users as no need for as much built-in secondary storage;
- -
QuPartMarking guidanceTotal marks
- -
031All marks Ao1 (understanding) 2
Reasons for allowing: them to plan lessons at home; travel difficulties); Reasonsfor not allowing:Teachers can access resources on the school network to allow Teachers can teach lessons from home (using videoconferencing) if they are not able to get into work (eg
network);Teachers can access electronic copies of student work so that they do not have to carry marking home; Data protection issues - schools may not want potentially sensitive student information to be accessed outside of school; To try to help teachers have a work-life balance; Increased security risks as teachers may not have fully- anti-virus software on their home computer this may cause problems when they connect their computer to the school
- -
032 All marks AO1 (understanding) Share hardware; A. by example Sharedata/files; Easier to work collaboratively; Useofcommunicationtools3 deployment, centralised back-ups;
- -
QuPartMarking guidanceTotal
marks
- -
0331 mark for AO1 (understanding) 1
example);PANs are centred around one person, LANs cover a limited geographical area / LANs cover a larger area; PANs have one user, LANs (normally) have more than one user; PAN uses Bluetooth, LAN uses alternative protocols / connection methods (A. by
- -
0341 mark for Ao1 (understanding) 1
Wearablecomputingdevices;
Connecting headphones to a music player;
Connecting pedometer to a mobile phone;
Max 1A.any suitable example
- -
035All marks Ao1 (recall)2
a set of rules;
thatallowtwodevicestocommunicate;
- -
036Mark is for AO1 (recall)1
EIMAP;
R. If more than one lozenge shaded
- -
037Mark is for AO1 (recall)1
BHTTPS;
R. If more than one lozenge shaded
- -
QuPartTotal
Marking guidancemarks
- -
038Mark is for AO1 (recall)1
DSMTP;
R. If more than one lozenge shaded
- -
039All marks AO1 (recall)3
LayerOrder (1-4)
Transport2
Link4
Network3
Application1
Mark as follows:
1 mark: any row correct;
- -
QuPartMarking guidanceTotal marks
- -
0411 marks for AO1 1 (understanding)
C Data and instructions;
R. If more than one lozenge shaded
- -
04 23 marks for Ao1 (understanding)3
DescriptionLetter
SendsacontinuousseriesofelectronicpulsesD;
DecodesthecurrentinstructionC;
Completes calculationsB;
Markasfollows: 1 mark: one row correct;
2 marks: two rows correct; 3 marks: all rows correct;
- -
53 marks for AO1 (understanding) 1 mark each for describing the social engineering technique.
Blagging
This is where a victim is tricked/persuaded by a fraudster to give their details or payment information for a false reason/purpose;
Phishing Is where the victim receives and responds to a communication that appears to be from a valid or known source but is in fact fraudulent. (It allows the fraudster to
capture private information before the victim realises); This is where someone watches and records\remembers a victim entering their
Shouldering information to gain access to a system);pin or security information such as passwords. (They can then use this
- -
QuPartMarking guidanceTotal marks
- -
0612 marks for Ao1 (understanding)2
Maximumof2from:
Computer systems use binary/ones and zeros/voltage on or off; Soundisanalogue/continuous;
Computersuse digitaldata/discretevalues;
- -
0624 marks for A02 (apply) 4 marks if answer is correct4
5,000 bytes/5,000B:.;
A. 5,000
If answer given is not 5,ooo bytes then award working marks as follows:
Mark A for multiplying any two of 2,0o0, 4 and 5 even if the result is incorrect; Mark B for multiplying all of 2,0o0, 4 and 5 even if the result is incorrect;
Mark C for attempting to divide the result of a multiplication by 8; Partially correct examples:
Example 1
2,000 *4 = 8,000;(Mark A)
8,000 / 8 = 1,000; (Mark C)
Example 2
2,000 * 4 * 5 = 20,000; (Mark A and Mark B, note result is incorrect)
20,000 / 8 = 2,000; (Mark C, note result is incorrect)
- -
QuPartMarking guidanceTotal marks
- -
063Mark is for AO2 2 (apply)1
B 5 bits;
- -
06 4(apply) 1
D Improves the quality of the recording a andincreases the file size; 1
- -
07 1Mark is for AO1 (understanding) 1
C Only two of the examples of code are e inlow-level languages;
- -
072 Maximum four marks from:4 marks for Ao1 (understanding)4
·High-level languages have built-in functions;
High-level languages have built-in libraries; High-level languages have more support/help; High-level languages have structures (such as selection and iteration);
High-level languages can be less machine dependent/more portable;
It (usually) requires fewer lines of code to be written;
It is (usually) quicker to develop code in high-level languages; It is easier to find mistakes in code;
Thecodeiseasiertomaintain//understand;
It is easier to structure code in high-level languages; NE. references to efficiency or speed unless correctly qualified;
R. Answers relating to programmer expertise;
- -
0732 marks for AO1 (understanding)2
[Statement A:] compiler;
[StatementB:]assembler;
- -
QuPartTotal
Marking guidance marks
- -
081Mark is for Ao1 (understanding)1
Only reward if column A AND B is completely correct;
ABAANDB
000
010
100
111
- -![images/397f42e7994bb68df175e02b4a7bf245cb07f6fdb7ec40b009165096a2b244da.jpg]() - -![images/4a78b89fb3cbe6efa070b85decfbb6187e65113afd742171d4fe1e85992d2b0c.jpg]() - -
QuPartMarking guidanceTotal marks
- -
091 mark for A02 (apply)1
Name;
- -
0921 mark for A02 (apply)1
Real //Float//Decimal;
- -
0936 marks for A03 (program)
1 mark: correct fields in SELECT clause
1 mark: one correct table in FROM clause 1 mark: second correct table in FROM clause
1 mark: a correct condition in WHERE clause
1 mark: correct conditions and correct usage of AND in WHERE clause // correct
conditions and correct usage of AND in WHERE clause and correct usage of ON withINNERJOIN 1 mark:ORDERBY clause
Max 5 if any errors Sample answer
- -
QuPartMarking guidanceTotal marks
- -
094 2 marks for Ao3 (refine)
1 mark: changing +9 to +10;
1 mark: changing <=3 to >3
UPDATE Game
SET LengthOfGame = LengthOfGame + 10
WHERE Complexity
- -
101AllmarksAo2(apply) 2
Staff could forget their password // staff can't forget biometric measure; Shouldering risk when staff entering their password // no risk of shouldering when using biometric data;
Lower risk of hacking; Max 2
- -
102AllmarksAo2 (apply)2
Network is made available to members of the public; Won't know the MAC addresses for (most) of the devices connecting to the network;
- -Copyright information - -AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre. \ No newline at end of file diff --git a/pdf_output/8525_2_1739552314/auto/8525_2_1739552314_content_list.json b/pdf_output/8525_2_1739552314/auto/8525_2_1739552314_content_list.json deleted file mode 100644 index 4550f7f1f202a2433efbc1e7963d583d60e177d9..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/8525_2_1739552314_content_list.json +++ /dev/null @@ -1,1576 +0,0 @@ -[ - { - "type": "text", - "text": "Please write clearly in block capitals. ", - "page_idx": 0 - }, - { - "type": "text", - "text": "Centre number ", - "page_idx": 0 - }, - { - "type": "text", - "text": "Candidate number ", - "page_idx": 0 - }, - { - "type": "table", - "img_path": "images/109e42de42b05477c98efdddb7ff5b384443346f802c2302d0a164177dca46a1.jpg", - "table_caption": [], - "table_footnote": [], - "page_idx": 0 - }, - { - "type": "text", - "text": "Surname Forename(s) Candidate signature ", - "page_idx": 0 - }, - { - "type": "text", - "text": "GCSE COMPUTER SCIENCE ", - "text_level": 1, - "page_idx": 0 - }, - { - "type": "text", - "text": "Paper 2 - Computing concepts ", - "page_idx": 0 - }, - { - "type": "text", - "text": "Specimen Assessment Materials Time allowed: 1 hour 45 minutes ", - "text_level": 1, - "page_idx": 0 - }, - { - "type": "text", - "text": "Materials ", - "text_level": 1, - "page_idx": 0 - }, - { - "type": "text", - "text": "There are no additional materials required for this paper. \nYou must not use a calculator. ", - "page_idx": 0 - }, - { - "type": "image", - "img_path": "images/ce7523814b245ce58050b7c51fca17f896772359b7ef56c8afc633b88e92dc84.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 0 - }, - { - "type": "text", - "text": "Instructions ", - "text_level": 1, - "page_idx": 0 - }, - { - "type": "text", - "text": "• Use black ink or black ball-point pen. Use pencil only for drawing. \n• Answer all questions. \n• You must answer the questions in the spaces provided. \n• Do all rough work in this book. \n• Cross through any work you do not want to be marked. ", - "page_idx": 0 - }, - { - "type": "text", - "text": "Information ", - "text_level": 1, - "page_idx": 0 - }, - { - "type": "text", - "text": "• The total number of marks available for this paper is 90. ", - "page_idx": 0 - }, - { - "type": "text", - "text": "Advice ", - "text_level": 1, - "page_idx": 0 - }, - { - "type": "text", - "text": "For the multiple-choice questions, completely fill in the lozenge alongside the appropriate answer. CORRECT METHOD WRONG METHODS $\\mathbf{\\pi}^{\\infty}$ $\\textcircled{6}$ $\\nmid$ ", - "page_idx": 0 - }, - { - "type": "text", - "text": "If you want to change your answer you must cross out your original answer as shown. ", - "page_idx": 0 - }, - { - "type": "text", - "text": "If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown. ", - "page_idx": 0 - }, - { - "type": "text", - "text": "Answer all questions. ", - "page_idx": 1 - }, - { - "type": "text", - "text": "A bit pattern is shown in Figure 1. ", - "page_idx": 1 - }, - { - "type": "text", - "text": "Figure 1 ", - "text_level": 1, - "page_idx": 1 - }, - { - "type": "text", - "text": "01001110 ", - "text_level": 1, - "page_idx": 1 - }, - { - "type": "text", - "text": "Convert the bit pattern shown in Figure 1 into decimal. ", - "page_idx": 1 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 1 - }, - { - "type": "text", - "text": "Convert the bit pattern shown in Figure 1 into hexadecimal. ", - "page_idx": 1 - }, - { - "type": "text", - "text": "[2 marks] Answer: ", - "page_idx": 1 - }, - { - "type": "text", - "text": "A student’s answer to the question “Why is hexadecimal often used instead of binary?” is shown in Figure 2. ", - "page_idx": 2 - }, - { - "type": "text", - "text": "Figure 2 ", - "text_level": 1, - "page_idx": 2 - }, - { - "type": "text", - "text": "Because it uses fewer digits it will take up less space in a computer’s memory. ", - "page_idx": 2 - }, - { - "type": "text", - "text": "Explain why the student’s answer is incorrect. ", - "page_idx": 2 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 2 - }, - { - "type": "text", - "text": "Explain how a binary number can be multiplied by 8 by shifting bits. ", - "page_idx": 2 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 2 - }, - { - "type": "text", - "text": "ASCII (American Standard Code for Information Interchange) is a coding system that can be used to represent characters. In ASCII the character A is represented by the numeric code 65. ", - "page_idx": 2 - }, - { - "type": "text", - "text": "Shade one lozenge to indicate which character is represented by the numeric code 70. ", - "page_idx": 2 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 2 - }, - { - "type": "image", - "img_path": "images/6989c268ffff85e3d801fa7b22b088b05aa8009598116a2fb95ce457493865be.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 2 - }, - { - "type": "text", - "text": "A E B F C f D 6 E e ", - "page_idx": 2 - }, - { - "type": "text", - "text": "Unicode is an alternative to the ASCII coding system. ", - "page_idx": 3 - }, - { - "type": "text", - "text": "State two advantages of using Unicode to represent characters instead of using ASCII. ", - "page_idx": 3 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 3 - }, - { - "type": "text", - "text": "When data is stored in a computer it is often compressed. One method that can be used to compress text data is Huffman coding. To produce a Huffman code each character in a piece of text is placed in a tree, with its position in the tree determined by how often the character was used in the piece of text. ", - "page_idx": 3 - }, - { - "type": "text", - "text": "A Huffman tree for the text ZOE SAW A ZEBRA AT THE ZOO is shown in Figure 3. ", - "page_idx": 3 - }, - { - "type": "image", - "img_path": "images/4045db713ae31b5bc3347bbd491291a0ea95ec4f92bd597e34a82b72646ccd9d.jpg", - "img_caption": [ - "Figure 3 " - ], - "img_footnote": [], - "page_idx": 3 - }, - { - "type": "text", - "text": "Using this Huffman tree, the Huffman coding for the character E would be the bit pattern 110 because from the top of the tree E is to the right, then right again and then left. ", - "page_idx": 4 - }, - { - "type": "text", - "text": "The character Z is represented by the bit pattern 010 because from the top of the tree Z is to the left, then right and then left. ", - "page_idx": 4 - }, - { - "type": "text", - "text": "Using the Huffman code in Figure 3, complete the table to show the Huffman coding for the characters O, SPACE and B. [3 marks] ", - "page_idx": 4 - }, - { - "type": "table", - "img_path": "images/c19f1600f83e1949bb24ccda1f07759d6395e726760f7200dc1baacd09c980fd.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
CharacterHuffman coding
O
SPACE
B
\n\n", - "page_idx": 4 - }, - { - "type": "text", - "text": "Using Huffman coding, the text ZOE SAW A ZEBRA AT THE ZOO can be stored in 83 bits. ", - "page_idx": 4 - }, - { - "type": "text", - "text": "Calculate how many additional bits are needed to store the same piece of text using ASCII. Show your working. [3 marks] ", - "page_idx": 4 - }, - { - "type": "text", - "text": "", - "page_idx": 4 - }, - { - "type": "text", - "text": "Bob purchases a 4GB SD card for use as secondary storage in his phone. ", - "page_idx": 5 - }, - { - "type": "text", - "text": "Calculate how many megabytes there are in 4GB. Show your working. ", - "page_idx": 5 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 5 - }, - { - "type": "text", - "text": "An SD card is a type of solid state storage. ", - "page_idx": 5 - }, - { - "type": "text", - "text": "State two advantages of solid state storage compared to magnetic storage. ", - "page_idx": 5 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 5 - }, - { - "type": "text", - "text": "Many modern desktop computers have both solid state drives and magnetic hard disk drives. ", - "page_idx": 6 - }, - { - "type": "text", - "text": "Give two reasons why desktop computers have a magnetic hard disk drive and a solid state drive instead of having just a solid state drive. ", - "page_idx": 6 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 6 - }, - { - "type": "text", - "text": "Describe how data is stored on, and read from, a magnetic hard disk. ", - "page_idx": 6 - }, - { - "type": "text", - "text": "[4 marks] ", - "page_idx": 6 - }, - { - "type": "text", - "text": "", - "page_idx": 6 - }, - { - "type": "text", - "text": "Turn over for the next question ", - "page_idx": 6 - }, - { - "type": "text", - "text": "In recent years, there has been a large growth in the use of cloud storage. ", - "page_idx": 7 - }, - { - "type": "text", - "text": "Discuss the advantages and disadvantages of using cloud storage. ", - "page_idx": 7 - }, - { - "type": "text", - "text": "In your answer you should include an explanation of the reasons for the large growth in recent years and consider any legal, ethical and environmental issues related to the use of cloud storage. [9 marks] ", - "page_idx": 7 - }, - { - "type": "table", - "img_path": "images/f4f24c76021a0c0c42d5c3a22c11f8f9f4ecf01dc19fdfcb0a203ede55cd9dc6.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
use Or cloud storage. [sypu 6]
\n\n", - "page_idx": 7 - }, - { - "type": "text", - "text": "Most schools have a computer network. ", - "page_idx": 8 - }, - { - "type": "text", - "text": "Some schools allow teachers to access the school network from their home computers. ", - "page_idx": 8 - }, - { - "type": "text", - "text": "Give one reason why some schools allow this and one reason why some schools do not allow this. ", - "page_idx": 8 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 8 - }, - { - "type": "text", - "text": "Reason for: Reason against: ", - "page_idx": 8 - }, - { - "type": "text", - "text": "State three advantages of using a computer network. ", - "page_idx": 8 - }, - { - "type": "text", - "text": "[3 marks] ", - "page_idx": 8 - }, - { - "type": "text", - "text": "PANs and LANs are two different types of network. ", - "page_idx": 8 - }, - { - "type": "text", - "text": "Describe one difference between a PAN and a LAN. ", - "page_idx": 8 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 8 - }, - { - "type": "text", - "text": "Give one example of where a PAN could be used. ", - "page_idx": 8 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 8 - }, - { - "type": "text", - "text": "When two computers on a network communicate with each other they need to use the same protocol. ", - "page_idx": 9 - }, - { - "type": "text", - "text": "Define the term network protocol. ", - "page_idx": 9 - }, - { - "type": "image", - "img_path": "images/7616d4ea5ca5360828a1abd1e11cc5efa22f44ead1d7e627f6db521bb225e7f1.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 9 - }, - { - "type": "text", - "text": "For questions 0 3 6 to 0 3 8 shade one lozenge to indicate the most suitable protocol to use in the situation described. ", - "page_idx": 9 - }, - { - "type": "text", - "text": "Used to retrieve email stored on a server ", - "page_idx": 9 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 9 - }, - { - "type": "image", - "img_path": "images/b28e048d0ee3999de27c64482bc7d7d51dc2059da636ac82d6540664af879df4.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 9 - }, - { - "type": "text", - "text": "A HTTP B HTTPS C FTP D SMTP E IMAP ", - "page_idx": 9 - }, - { - "type": "text", - "text": "Used to make a payment securely when purchasing goods from a website ", - "page_idx": 9 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 9 - }, - { - "type": "image", - "img_path": "images/f9f17426e116156d0aeafcba2a9eac0bee147deadcbf4e6e527096222ca138e9.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 9 - }, - { - "type": "text", - "text": "A HTTP B HTTPS C FTP D SMTP E IMAP ", - "page_idx": 9 - }, - { - "type": "text", - "text": "Used to send an email from a client machine to an email server. ", - "page_idx": 10 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 10 - }, - { - "type": "text", - "text": "A HTTP B HTTPS C FTP D SMTP E IMAP ", - "page_idx": 10 - }, - { - "type": "image", - "img_path": "images/66db834f2ec0495259ed6fda461062687a8c6bd5dc85739b134b93efdf8545f5.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 10 - }, - { - "type": "text", - "text": "TCP/IP is a protocol used in networking. There are 4 layers in the TCP/IP stack. ", - "page_idx": 10 - }, - { - "type": "text", - "text": "Complete the table by placing the four layers of the TCP/IP stack into order (1-4) where 1 is the top layer and 4 is the bottom layer. ", - "page_idx": 10 - }, - { - "type": "text", - "text": "[3 marks] ", - "page_idx": 10 - }, - { - "type": "table", - "img_path": "images/dd2926eae2834c6fc73b97a12d9e8c3c25ba0aaccecbcba103d1350f11b9a751.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
LayerOrder(1-4)
Transport
Link
Internet
Application
\n\n", - "page_idx": 10 - }, - { - "type": "text", - "text": "Many computers use the Von Neumann architecture. ", - "page_idx": 10 - }, - { - "type": "text", - "text": "In a computer that uses the Von Neumann architecture, bit patterns can be stored in the main memory. Shade the correct lozenge to indicate what these bit patterns could represent. You should only shade one lozenge. ", - "page_idx": 10 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 10 - }, - { - "type": "text", - "text": "A Data \nB Instructions \nC Data and instructions \nD Data or instructions, but not both ", - "page_idx": 10 - }, - { - "type": "image", - "img_path": "images/40843124807eab8c7beadf8d790ac6447f01002ee7051047ce9007f986a3b2ef.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 10 - }, - { - "type": "text", - "text": "Five components of a CPU are given below. For each row in Table 1, choose the letter A, B, C, D, E that best matches the description. ", - "page_idx": 11 - }, - { - "type": "text", - "text": "Letters should not be used more than once. ", - "page_idx": 11 - }, - { - "type": "text", - "text": "A. Bus \nB. Arithmetic Logic Unit \nC. Control Unit \nD. Clock \nE. Register ", - "page_idx": 11 - }, - { - "type": "text", - "text": "[3 marks] ", - "page_idx": 11 - }, - { - "type": "table", - "img_path": "images/ee030c20fa412019264203c879fb1e96bf55afaf39bb8da82fccd3f9acb4bfff.jpg", - "table_caption": [ - "Table 1 " - ], - "table_footnote": [], - "table_body": "\n\n
DescriptionLetter
Sendsacontinuousseriesofelectronicpulses
Decodesthecurrentinstruction
Completescalculations
\n\n", - "page_idx": 11 - }, - { - "type": "text", - "text": "Social engineering is where someone is tricked or manipulated into providing secure information or access to a secure system. Describe each of the following social engineering techniques. ", - "page_idx": 12 - }, - { - "type": "text", - "text": "[3 marks] ", - "page_idx": 12 - }, - { - "type": "text", - "text": "Blagging: ", - "page_idx": 12 - }, - { - "type": "text", - "text": "Phishing: ", - "page_idx": 12 - }, - { - "type": "text", - "text": "Shouldering: ", - "page_idx": 12 - }, - { - "type": "text", - "text": "Turn over for the next question ", - "page_idx": 12 - }, - { - "type": "text", - "text": "A sound engineer is recording a singer. ", - "page_idx": 13 - }, - { - "type": "text", - "text": "Describe why the sound must be converted to a digital format before it can be stored on a computer system. ", - "page_idx": 13 - }, - { - "type": "text", - "text": "", - "page_idx": 13 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 13 - }, - { - "type": "text", - "text": "The sound engineer is using a sampling rate of $2000\\mathsf{H z}$ and a sample resolution of 4 bits. What is the minimum file size of a 5-second recording? Your answer should be given in bytes. ", - "page_idx": 13 - }, - { - "type": "text", - "text": "You should show your working. ", - "page_idx": 13 - }, - { - "type": "text", - "text": "[4 marks] ", - "page_idx": 13 - }, - { - "type": "text", - "text": "", - "page_idx": 13 - }, - { - "type": "text", - "text": "The sound engineer currently uses a sample resolution of 4 bits which enables a sample to be stored as one of 16 different bit patterns. She wants to increase the number of bit patterns available from 16 to 32. Shade one lozenge which shows the minimum sample resolution (in bits) she can choose that will allow her to do this. ", - "page_idx": 14 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 14 - }, - { - "type": "text", - "text": "A 3 bits B 5 bits C 8 bits D 16 bits ", - "page_idx": 14 - }, - { - "type": "image", - "img_path": "images/bb20470f62e08855b68c29b8bec4fad7163ccac0351ee46ff08117dd95d93440.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 14 - }, - { - "type": "text", - "text": "Shade one lozenge to show which of the following correctly states the effects of increasing the sampling rate. ", - "page_idx": 14 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 14 - }, - { - "type": "text", - "text": "A Decreases both the quality of the recording and the file size B Has no effect on the quality of the recording or the file size C Improves the quality of the recording and has no effect on the file size D Improves the quality of the recording and increases the file size ", - "page_idx": 14 - }, - { - "type": "image", - "img_path": "images/f95eeb7928e931242cfc911d362061023c8b6e3e1e3044530f63745bbccdd772.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 14 - }, - { - "type": "text", - "text": "Turn over for the next question ", - "page_idx": 14 - }, - { - "type": "text", - "text": "The three examples of code shown in Figure 4 are all equivalent to one another. ", - "page_idx": 15 - }, - { - "type": "table", - "img_path": "images/4867dc150e137e28e85607b61bff55f1fe31cd32199d713100bbf7e7bea7fd96.jpg", - "table_caption": [ - "Figure 4 ", - "Shade one lozenge to show the statement that is true about Figure 4. " - ], - "table_footnote": [], - "table_body": "\n\n
Example 1Example 2Example3
a←4 b13 IF a=b THEN C ↑a+b ENDIFMOV RO,#4 MOV R1,#3 CMP RO,1 R1 BNE end ADD R2, RO,Rl end: 11111001 0000 0100 1001 0001 0011 0100 0000 0001 1010 0101 0000 1100 0010 00000000 0000 0000 0000 0001 0000
\n\n", - "page_idx": 15 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 15 - }, - { - "type": "image", - "img_path": "images/a604ee0ebcc7cc047bf5f8a26c4358794f523676642ee04a1de334558c98b3ff.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 15 - }, - { - "type": "text", - "text": "Explain why a developer, who is good at both low-level and high-level programming, would normally use high-level languages when writing programs. ", - "page_idx": 15 - }, - { - "type": "text", - "text": "", - "page_idx": 15 - }, - { - "type": "table", - "img_path": "images/67b41e21ceb6b3a9e01c5367c7310cd3cc25e7afa9673c0856370ce6295b93a7.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
[syeuu +]
\n\n", - "page_idx": 15 - }, - { - "type": "text", - "text": "Statements A and B refer to two different types of program translator. ", - "page_idx": 16 - }, - { - "type": "text", - "text": "Statement A: This type of translator can convert a high-level language program into machine code. The source code is analysed fully during the translation process. The result of this translation can be saved, meaning the translation process does not need to be repeated. ", - "page_idx": 16 - }, - { - "type": "text", - "text": "Statement B: This type of translator was used to convert the code in Example 2 to the code in Example 3 in Figure 4. ", - "page_idx": 16 - }, - { - "type": "text", - "text": "State the type of program translators referred to in statements A and B. ", - "page_idx": 16 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 16 - }, - { - "type": "text", - "text": "Statement A: Statement B: ", - "page_idx": 16 - }, - { - "type": "text", - "text": "Turn over for the next question ", - "page_idx": 16 - }, - { - "type": "text", - "text": "Complete the truth table for the AND logic gate. ", - "page_idx": 17 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 17 - }, - { - "type": "table", - "img_path": "images/960399d4e891a964880d9cf05be9e750b128387430faeaa16f9d0a3f1cd091ee.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
ABA AND B
00
01
10
11
\n\n", - "page_idx": 17 - }, - { - "type": "text", - "text": "A logic circuit is being developed for an audio advert in a shop that plays automatically if a customer is detected nearby. ", - "page_idx": 17 - }, - { - "type": "text", - "text": "The system has two sensors, $\\mathsf{A}_{1}$ and $\\mathsf{A}_{2}$ , that detect if a customer is near. The audio plays if either of these sensors is activated. The system should only play if another audio system, S, is not playing. The output from the circuit, for whether the advert should play or not, is Q. ", - "page_idx": 17 - }, - { - "type": "text", - "text": "Complete the logic circuit for this system. ", - "page_idx": 17 - }, - { - "type": "text", - "text": "[3 marks] ", - "page_idx": 17 - }, - { - "type": "image", - "img_path": "images/10ceaa3c143dbf32bee4f3b3093ede11d1a8d38d97e4d329f4c0c2738ece031f.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 17 - }, - { - "type": "image", - "img_path": "images/2b09f88e4798039f7c0dc725a7432b3c6074d0e8af21b11f153de211beb736b3.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 18 - }, - { - "type": "text", - "text": "A relational database is being developed to store information about the games that are available to play at a games café and the advance bookings that have been made for those games. Each game has a unique name. ", - "page_idx": 19 - }, - { - "type": "text", - "text": "The database contains two tables: Game and Booking. ", - "page_idx": 19 - }, - { - "type": "text", - "text": "The database is currently being tested by the person who has developed it so the database tables only contain a small amount of data that is being used for testing. ", - "page_idx": 19 - }, - { - "type": "text", - "text": "The contents of the tables are shown in Figure 5. ", - "page_idx": 19 - }, - { - "type": "text", - "text": "Figure 5 ", - "text_level": 1, - "page_idx": 19 - }, - { - "type": "table", - "img_path": "images/f20f2cf15525bc788493eb06730adf1a4265d1001aa98ad211e8bd92c23efc26.jpg", - "table_caption": [ - "Game " - ], - "table_footnote": [], - "table_body": "\n\n
NameMinPlayersMaxPlayersLengthOfGameComplexity
Friday11252.12
Scythe15903.37
Terra Mystica251003.95
Agricola14903.31
Pandemic24452.42
\n\n", - "page_idx": 19 - }, - { - "type": "table", - "img_path": "images/5601a09087e108f54341f1d688daf2dd5dfbb9b4d34f94ec568b793bcebf6f21.jpg", - "table_caption": [ - "Booking " - ], - "table_footnote": [], - "table_body": "\n\n
GameTablelDNameDateStartTimeCustomerHours
1Friday28/05/1911Hawkins1
2Scythe28/05/1911Jemisin1
3Pandemic28/05/1915Gormally1
1Pandemic28/05/1913Van Perlo2
1Terra Mystica29/05/1915Hawkins2
\n\n", - "page_idx": 19 - }, - { - "type": "text", - "text": "State the field in the Booking table that is a foreign key. ", - "page_idx": 19 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 19 - }, - { - "type": "text", - "text": "State the most suitable data type to use for the Complexity field. ", - "page_idx": 20 - }, - { - "type": "text", - "text": "[1 mark] ", - "page_idx": 20 - }, - { - "type": "text", - "text": "Due to a change in layout at the café, the game table with an ID of 2 is no longer suitable for games that can have more than four players. The manager needs to find out the customer, date and time of all bookings made for the game table with an ID of 2 that are for a game that can have more than four players. ", - "page_idx": 20 - }, - { - "type": "text", - "text": "Write an SQL query that could be used to find this information for the manager. The results should be shown in date order. ", - "page_idx": 20 - }, - { - "type": "text", - "text": "[6 marks] ", - "page_idx": 20 - }, - { - "type": "table", - "img_path": "images/dc8ac2383017485c9a7e108096abdbaf793d0c89937cffb4a28ced50d9b0dffd.jpg", - "table_caption": [], - "table_footnote": [], - "page_idx": 20 - }, - { - "type": "text", - "text": "The LengthOfGame field shows the average amount of time it takes to play a game in minutes. ", - "page_idx": 21 - }, - { - "type": "text", - "text": "A query to add 10 minutes to the length of time taken for all games that have a Complexity of more than three is shown in Figure 6. ", - "page_idx": 21 - }, - { - "type": "text", - "text": "Figure 6 ", - "text_level": 1, - "page_idx": 21 - }, - { - "type": "text", - "text": "UPDATE Game \nSET LengthOfGame $=$ LengthOfGame + 9 \nWHERE Complexity $<=3$ ", - "page_idx": 21 - }, - { - "type": "text", - "text": "The query contains two errors. Refine the query in Figure 6 to correct the errors. [2 marks] ", - "page_idx": 21 - }, - { - "type": "text", - "text": "The games café is evaluating the security for their network. ", - "page_idx": 21 - }, - { - "type": "text", - "text": "State two reasons why using a biometric authentication measure is better than password authentication for staff accounts. ", - "page_idx": 21 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 21 - }, - { - "type": "text", - "text": "", - "page_idx": 21 - }, - { - "type": "text", - "text": "Explain why it would not be appropriate for the café to use MAC address filtering on their wireless network. ", - "page_idx": 22 - }, - { - "type": "text", - "text": "[2 marks] ", - "page_idx": 22 - }, - { - "type": "text", - "text": "END OF QUESTIONS ", - "page_idx": 22 - }, - { - "type": "image", - "img_path": "images/ebcc00357b30be9bfde27b90bb35b0e6e4d7c48a10db773ef397fc7ba3f52a74.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 23 - }, - { - "type": "text", - "text": "Copyright information ", - "text_level": 1, - "page_idx": 23 - }, - { - "type": "text", - "text": "For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk. ", - "page_idx": 23 - }, - { - "type": "text", - "text": "Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team. ", - "page_idx": 23 - }, - { - "type": "text", - "text": "Copyright $\\copyright$ 2019 AQA and its licensors. All rights reserved. ", - "page_idx": 23 - }, - { - "type": "text", - "text": "AQA - ", - "page_idx": 24 - }, - { - "type": "text", - "text": "GCSE COMPUTER SCIENCE 8525/2 Paper 2 Computing concepts ", - "text_level": 1, - "page_idx": 24 - }, - { - "type": "text", - "text": "Mark scheme Specimen Assessment Materials ", - "page_idx": 24 - }, - { - "type": "text", - "text": "Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students’ responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students’ scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer. ", - "page_idx": 25 - }, - { - "type": "text", - "text": "It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark schemes on the basis of one year’s document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper. ", - "page_idx": 25 - }, - { - "type": "text", - "text": "Further copies of this mark scheme are available from aqa.org.uk ", - "page_idx": 25 - }, - { - "type": "text", - "text": "The following annotation is used in the mark scheme: ", - "page_idx": 25 - }, - { - "type": "text", - "text": ", means a single mark \n// - means alternative response \n$/$ means an alternative word or sub-phrase \nA means acceptable creditworthy answer. Also used to denote a valid answer that goes beyond the expectations of the GCSE syllabus. \nR - means reject answer as not creditworthy \nNE - means not enough \nI - means ignore \nDPT - in some questions a specific error made by a candidate, if repeated, could result in the candidate failing to gain more than one mark. The DPT label indicates that this mistake should only result in a candidate losing one mark on the first occasion that the error is made. Provided that the answer remains understandable, subsequent marks should be awarded as if the error was not being repeated. ", - "page_idx": 25 - }, - { - "type": "text", - "text": "Level of response marking instructions ", - "text_level": 1, - "page_idx": 26 - }, - { - "type": "text", - "text": "Level of response mark schemes are broken down into levels, each of which has a descriptor. The descriptor for the level shows the average performance for the level. There are marks in each level. ", - "page_idx": 26 - }, - { - "type": "text", - "text": "Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as instructed) to show the qualities that are being looked for. You can then apply the mark scheme. ", - "page_idx": 26 - }, - { - "type": "text", - "text": "Step 1 Determine a level ", - "text_level": 1, - "page_idx": 26 - }, - { - "type": "text", - "text": "Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer. With practice and familiarity you will find that for better answers you will be able to quickly skip through the lower levels of the mark scheme. ", - "page_idx": 26 - }, - { - "type": "text", - "text": "When assigning a level you should look at the overall quality of the answer and not look to pick holes in small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level and then use the variability of the response to help decide the mark within the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be placed in level 3 but be awarded a mark near the top of the level because of the level 4 content. ", - "page_idx": 26 - }, - { - "type": "text", - "text": "Step 2 Determine a mark ", - "text_level": 1, - "page_idx": 26 - }, - { - "type": "text", - "text": "Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate marks can help with this. The exemplar materials used during standardisation will help. There will be an answer in the standardising materials which will correspond with each level of the mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer with the example to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner’s mark on the example. ", - "page_idx": 26 - }, - { - "type": "text", - "text": "You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate. ", - "page_idx": 26 - }, - { - "type": "text", - "text": "Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be exhaustive and you must credit other valid points. Students do not have to cover all of the points mentioned in the Indicative content to reach the highest level of the mark scheme. ", - "page_idx": 26 - }, - { - "type": "text", - "text": "An answer which contains nothing of relevance to the question must be awarded no marks. ", - "page_idx": 26 - }, - { - "type": "table", - "img_path": "images/d17864221099a7d8f28181bfdaceec24e74c819819a816517bca4897520ba6cb.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuPartMarking guidanceTotal marks
\n\n", - "page_idx": 27 - }, - { - "type": "table", - "img_path": "images/04dbd5a8d70a2229da5ee92610a681e820b072c5f9a931eb7c8d4ce648e2fd67.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
011Mark is for A02 (apply)1
78;
\n\n", - "page_idx": 27 - }, - { - "type": "table", - "img_path": "images/a86d43692de1c5e2fb443ad9cedcab56c6f321154d9eb76b7b38f858b9cdc02d.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
012AllmarksAo2 (apply)2
4; (This must be the left hand digit to gain the mark)
E; (This must be the right hand digit to gain the mark)
Maximum1mark:Iffinalanswernotcorrect.
\n\n", - "page_idx": 27 - }, - { - "type": "table", - "img_path": "images/0be5275c2e9e135faa737515583efff83fc9c1f0f0afd5bb535b74c1e61c4b4f.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
013All marks Ao1 (understanding) 2
(The answer is incorrect because) the number will (still) be represented using
binary in a computer's memory;
so it will take up the same amount of memory space;
\n\n", - "page_idx": 27 - }, - { - "type": "table", - "img_path": "images/46797a43e264dd6f988a8a78e49a5527a970deea2a3c43b592235b494ff9d40c.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
014All marks AO1 (understanding) 2 (Shifting the bit pattern) three places; to the left; Markasfollows:
\n\n", - "page_idx": 27 - }, - { - "type": "table", - "img_path": "images/6776886ddebd782c80d650845e62b4eb8184de2fcb7a55ede21cdf950f4906b0.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
015Mark is for A02 (apply)1
BF;
R. If more than one lozenge shaded
\n\n", - "page_idx": 27 - }, - { - "type": "table", - "img_path": "images/7fc1b00d996b0f85e6d78ab88d37b3785684d63af2a09293377ab79b7856ec14.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
016All marks AO1 (understanding) 2
/ specialist documents;Advantages: Can represent awiderrangeof characters; Can represent characters from a wider range of languages; Can represent characters used in scientific / mathematical /technical
\n\n", - "page_idx": 27 - }, - { - "type": "table", - "img_path": "images/985bc2bfa5641945832fe8baf603e2b4581fe2ad844a5993b9e951708e0a6326.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuPartMarking guidanceTotal marks
\n\n", - "page_idx": 28 - }, - { - "type": "table", - "img_path": "images/2793f86e1f4b3689f5339861c0649858028e7f8579b966d91b684d4263969b72.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
01 7 All marks AO2 (apply)
CharacterHuffman coding
111
SPACE10
B00110
Markasfollows:
\n\n", - "page_idx": 28 - }, - { - "type": "table", - "img_path": "images/a6fff5e092309a705725327f9da0cee49936b2b70b4f1f3cac6cc0e8eaaefa48.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
0181 mark for AO1 (understanding) and 2 marks for A02 (apply) 7;*26; =182 182 - 83; = 993
\n\n", - "page_idx": 28 - }, - { - "type": "table", - "img_path": "images/c0cd36406c118653560dce1984edb6d92136c0fb550c3cc9fdc33345a3091bc7.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
02 11 mark for AO1 (recall) and 1 mark for A02 (apply) 2
1000× 4//4000;;x 1 mark for A01: identifying that there are 10o0 megabytes in a gigabyte;
1 mark for AO2: multiplying by 4;
A.1024 × 4 // 4096;
Maximum 1mark: If final answer not correct.
\n\n", - "page_idx": 28 - }, - { - "type": "table", - "img_path": "images/ec363901540601fe1e0ee1f3c625a0bf0136c1c7a1001ac6b41dab52d64ce245.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuPartMarking guidanceTotal marks
\n\n", - "page_idx": 29 - }, - { - "type": "table", - "img_path": "images/14e79cfc8a9ffffd2cfc3ca9f1145c9b6d1d7a0dbf4e783fd7da0df2cef26bf5.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
022All marks AO1 (understanding)2
Max2
Lighter; Smaller; Uses less power; More robust; Generates less heat; Quieter;
\n\n", - "page_idx": 29 - }, - { - "type": "table", - "img_path": "images/399bef768c2fa3a11de2e40d67b0ec4969731a3767f25edee28f31a5d017f1c4.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
0232 marks for Ao2 (apply) 2 Using just solid state would cost much more;
\n\n", - "page_idx": 29 - }, - { - "type": "table", - "img_path": "images/a336f0b4d87064b0f793e654453d03bc5faf76b5a04d03f82d6f655472ec1769.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
024All marks AO1 (understanding)4
On a hard disk binary data represented by tiny magnetised regions; where the magnetic orientation in one direction represents O, and the other direction represents 1; When reading data the read/write head is moved (to be overcorrecttrack);andtheplatter/diskspinsround; A whole sector/block read in one go (by the read/write head);
\n\n", - "page_idx": 29 - }, - { - "type": "table", - "img_path": "images/b88afd9fdfeb8cf3369d76015aa3317d8f878f32eeb6ead03420fc54210c6f11.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuPartTotal marks
Marking guidance
\n\n", - "page_idx": 30 - }, - { - "type": "table", - "img_path": "images/c5171351beaf971a9802a9698820b3ac32b5d4e4f5daedaed6f07fa62fa05586.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
02 5All marks A02 (apply)9
Level 3Description Answer demonstrates a sustained line of reasoning with a substantiatedMark Range 7-9
2technological and social reasons. There is a logically structured consideration of the advantages and the disadvantages associated with the use of cloud storage - including relevant points covering at least two of legal, ethical and environmental issues. Answer includes an explanation for the recent large growth in the use of cloud4-6
storage that includes both technological and social reasons. There is a logically structured consideration of the advantages and the disadvantages associated with the use of cloud storage - including one or two relevant points related to legal, ethical and environmental issues.1-3
some of the reasons for the recent large growth in the use of cloud computing and/or brief consideration of the advantages and/or disadvantages associated with using cloud storage.
Nocreditworthyanswer0
\n\n", - "page_idx": 30 - }, - { - "type": "table", - "img_path": "images/72b0557315f443bccfa486351e3aa1d60c6fd88184fc4859a047e5556a04d4c1.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Guidance - Indicative Response (reasons for growth) Higher bandwidth mobile networks (eg 4G); Increased availability of mobile devices; Reduction in cost of large capacity storage devices; Improvements in network security; People have a higher level of trust in cloud storage; Improvements inwebbrowser software; Increased availability of supercomputers (for cloud processing); Companies have managed to develop business models based on cloud computing that allow them to make a profit; Guidance - Indicative Response (advantages of cloud storage) Enables user to access their data from more places/devices; cloud storage publically available); Increases the amount of storage available; Reduced cost of computing devices for users as no need for as much built-in secondary storage;
\n\n", - "page_idx": 31 - }, - { - "type": "table", - "img_path": "images/5b63c8560f53a2e0b03f5cc9e96d2eac5186b716617a4649d4276aa1f800c77e.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuPartMarking guidanceTotal marks
\n\n", - "page_idx": 32 - }, - { - "type": "table", - "img_path": "images/ab33130c62e82b036c4e02c5db3517dcb56d4c845a38ca2294a752e78c148b8e.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
031All marks Ao1 (understanding) 2
Reasons for allowing: them to plan lessons at home; travel difficulties); Reasonsfor not allowing:Teachers can access resources on the school network to allow Teachers can teach lessons from home (using videoconferencing) if they are not able to get into work (eg
network);Teachers can access electronic copies of student work so that they do not have to carry marking home; Data protection issues - schools may not want potentially sensitive student information to be accessed outside of school; To try to help teachers have a work-life balance; Increased security risks as teachers may not have fully- anti-virus software on their home computer this may cause problems when they connect their computer to the school
\n\n", - "page_idx": 32 - }, - { - "type": "table", - "img_path": "images/dad2f0751fcc595859eed636a4804f6ae89a938dee6b5a35fdce6001d2b5a2b3.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
032 All marks AO1 (understanding) Share hardware; A. by example Sharedata/files; Easier to work collaboratively; Useofcommunicationtools3 deployment, centralised back-ups;
\n\n", - "page_idx": 32 - }, - { - "type": "table", - "img_path": "images/9a2424506ded8c36c7ccbdddb4af26f8bab9f33bc422dda6d428be6af9603d35.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuPartMarking guidanceTotal
marks
\n\n", - "page_idx": 33 - }, - { - "type": "table", - "img_path": "images/cff165aac49e81f4db2231d193a8cb3f31157734b5d7b3bf668f9fab3fe2aa8e.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
0331 mark for AO1 (understanding) 1
example);PANs are centred around one person, LANs cover a limited geographical area / LANs cover a larger area; PANs have one user, LANs (normally) have more than one user; PAN uses Bluetooth, LAN uses alternative protocols / connection methods (A. by
\n\n", - "page_idx": 33 - }, - { - "type": "table", - "img_path": "images/9b6b3c4f7d85d31513bb596b4445b26ed2672efb9bf9342644dd8b14a2e62735.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
0341 mark for Ao1 (understanding) 1
Wearablecomputingdevices;
Connecting headphones to a music player;
Connecting pedometer to a mobile phone;
Max 1A.any suitable example
\n\n", - "page_idx": 33 - }, - { - "type": "table", - "img_path": "images/f05b34dfbcefe67cd8b5f40e7c9d8a38db57bc9c6ecbb4d38b47cf775942d745.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
035All marks Ao1 (recall)2
a set of rules;
thatallowtwodevicestocommunicate;
\n\n", - "page_idx": 33 - }, - { - "type": "table", - "img_path": "images/437ceedb4162c5ec9a7e074aa55117e7e3ed1bb049f7f10c4b711ab9a9684b73.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
036Mark is for AO1 (recall)1
EIMAP;
R. If more than one lozenge shaded
\n\n", - "page_idx": 33 - }, - { - "type": "table", - "img_path": "images/08c7ed4e250a45c45ccd907bdab4d7a60c9b8dbda6633f5ea30a7c5bd49b38b6.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
037Mark is for AO1 (recall)1
BHTTPS;
R. If more than one lozenge shaded
\n\n", - "page_idx": 33 - }, - { - "type": "table", - "img_path": "images/657404a5e394e658dfe18fccab1f5a1eff9e5031fbafe0538e047306932a560d.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuPartTotal
Marking guidancemarks
\n\n", - "page_idx": 34 - }, - { - "type": "table", - "img_path": "images/c54cc30b929edbc444d6afaf45aa452a2808d486e7904f69f4b8cb52a2c8c518.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
038Mark is for AO1 (recall)1
DSMTP;
R. If more than one lozenge shaded
\n\n", - "page_idx": 34 - }, - { - "type": "table", - "img_path": "images/8da72768a5fb5139de6d4883e6be878b48239f1dc070d9a9a561cc88672234e6.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
039All marks AO1 (recall)3
LayerOrder (1-4)
Transport2
Link4
Network3
Application1
Mark as follows:
1 mark: any row correct;
\n\n", - "page_idx": 34 - }, - { - "type": "table", - "img_path": "images/088791c0fcee93fd05f88c9b0bd30adb93020460efeb061144b3241634192ec7.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuPartMarking guidanceTotal marks
\n\n", - "page_idx": 35 - }, - { - "type": "table", - "img_path": "images/afce2b46b4fbf0612c268f70b44c61d0cb8183ddf0e382b2ed93fa21a9d39be4.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
0411 marks for AO1 1 (understanding)
C Data and instructions;
R. If more than one lozenge shaded
\n\n", - "page_idx": 35 - }, - { - "type": "table", - "img_path": "images/2a6b1aef9b4ddc5b843dd126eeda69a1454a6803b395fab3fce6b5ae98492e17.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
04 23 marks for Ao1 (understanding)3
DescriptionLetter
SendsacontinuousseriesofelectronicpulsesD;
DecodesthecurrentinstructionC;
Completes calculationsB;
Markasfollows: 1 mark: one row correct;
2 marks: two rows correct; 3 marks: all rows correct;
\n\n", - "page_idx": 35 - }, - { - "type": "table", - "img_path": "images/7fd62f2e53350edb484e59610d3adcf103b5bebec5c1a394a0c06fb21cc5e640.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
53 marks for AO1 (understanding) 1 mark each for describing the social engineering technique.
Blagging
This is where a victim is tricked/persuaded by a fraudster to give their details or payment information for a false reason/purpose;
Phishing Is where the victim receives and responds to a communication that appears to be from a valid or known source but is in fact fraudulent. (It allows the fraudster to
capture private information before the victim realises); This is where someone watches and records\\remembers a victim entering their
Shouldering information to gain access to a system);pin or security information such as passwords. (They can then use this
\n\n", - "page_idx": 35 - }, - { - "type": "table", - "img_path": "images/810e0d328ee108aeb0f01636b0962589dd4ece3c33418530471b148d5cfd4276.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuPartMarking guidanceTotal marks
\n\n", - "page_idx": 36 - }, - { - "type": "table", - "img_path": "images/624f2dc333ef7456b17cd229367a2863cae9bee21a0860fe4ffd330e08479047.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
0612 marks for Ao1 (understanding)2
Maximumof2from:
Computer systems use binary/ones and zeros/voltage on or off; Soundisanalogue/continuous;
Computersuse digitaldata/discretevalues;
\n\n", - "page_idx": 36 - }, - { - "type": "table", - "img_path": "images/991134e341eaade6149e76df605d2b8907d6b912586446672b08f039af016a80.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
0624 marks for A02 (apply) 4 marks if answer is correct4
5,000 bytes/5,000B:.;
A. 5,000
If answer given is not 5,ooo bytes then award working marks as follows:
Mark A for multiplying any two of 2,0o0, 4 and 5 even if the result is incorrect; Mark B for multiplying all of 2,0o0, 4 and 5 even if the result is incorrect;
Mark C for attempting to divide the result of a multiplication by 8; Partially correct examples:
Example 1
2,000 *4 = 8,000;(Mark A)
8,000 / 8 = 1,000; (Mark C)
Example 2
2,000 * 4 * 5 = 20,000; (Mark A and Mark B, note result is incorrect)
20,000 / 8 = 2,000; (Mark C, note result is incorrect)
\n\n", - "page_idx": 36 - }, - { - "type": "table", - "img_path": "images/3e342cd8b19fca9bf8ebf0e47ecedc7b79019b028d879b564a60f4f50e285bf0.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuPartMarking guidanceTotal marks
\n\n", - "page_idx": 37 - }, - { - "type": "table", - "img_path": "images/7a8716225e6f1c1649718174b625f2ac782a3d64e3523eff5f6ed9fce40cd6af.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
063Mark is for AO2 2 (apply)1
B 5 bits;
\n\n", - "page_idx": 37 - }, - { - "type": "table", - "img_path": "images/fb8202ea737c85ea0103c4a17f6d973b19097395da7316328f4c5b6bb0c2d496.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
06 4(apply) 1
D Improves the quality of the recording a andincreases the file size; 1
\n\n", - "page_idx": 37 - }, - { - "type": "table", - "img_path": "images/e6ebbfd852d26ce3fa6b8588fecaae57d9d47d14782398d47b3853a7e5664389.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
07 1Mark is for AO1 (understanding) 1
C Only two of the examples of code are e inlow-level languages;
\n\n", - "page_idx": 37 - }, - { - "type": "table", - "img_path": "images/17a19e919a03ab0722c9846676b25fca6e28c36d097b79a116b9c75478042819.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
072 Maximum four marks from:4 marks for Ao1 (understanding)4
·High-level languages have built-in functions;
High-level languages have built-in libraries; High-level languages have more support/help; High-level languages have structures (such as selection and iteration);
High-level languages can be less machine dependent/more portable;
It (usually) requires fewer lines of code to be written;
It is (usually) quicker to develop code in high-level languages; It is easier to find mistakes in code;
Thecodeiseasiertomaintain//understand;
It is easier to structure code in high-level languages; NE. references to efficiency or speed unless correctly qualified;
R. Answers relating to programmer expertise;
\n\n", - "page_idx": 37 - }, - { - "type": "table", - "img_path": "images/ef48390f9dd95e88ffccd32fa895a3a04dcb7af443bca80402785bbccb49a783.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
0732 marks for AO1 (understanding)2
[Statement A:] compiler;
[StatementB:]assembler;
\n\n", - "page_idx": 37 - }, - { - "type": "table", - "img_path": "images/02c1cadd367fa122e76ac9808a0f3ec5973c65193ac088a37a4bacfcf2761b12.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuPartTotal
Marking guidance marks
\n\n", - "page_idx": 38 - }, - { - "type": "table", - "img_path": "images/b7be943cd651859b63903c9bfbf7dc26b350f2293621743f8acb84876e99ddfe.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
081Mark is for Ao1 (understanding)1
Only reward if column A AND B is completely correct;
ABAANDB
000
010
100
111
\n\n", - "page_idx": 38 - }, - { - "type": "image", - "img_path": "images/397f42e7994bb68df175e02b4a7bf245cb07f6fdb7ec40b009165096a2b244da.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 38 - }, - { - "type": "image", - "img_path": "images/4a78b89fb3cbe6efa070b85decfbb6187e65113afd742171d4fe1e85992d2b0c.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 39 - }, - { - "type": "table", - "img_path": "images/0ec65725c74dbdac9376d56439a98447e8cf5086764877f8774df29057536cc0.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuPartMarking guidanceTotal marks
\n\n", - "page_idx": 40 - }, - { - "type": "table", - "img_path": "images/819feeb5d771a14dfa9425ed3a345fc1a486a0f9df38574211319bfbf2b24a7c.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
091 mark for A02 (apply)1
Name;
\n\n", - "page_idx": 40 - }, - { - "type": "table", - "img_path": "images/8066f24424a9cc3dfeb345799556792dd77c453ae83f6da5c96bed6056c3dbb8.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
0921 mark for A02 (apply)1
Real //Float//Decimal;
\n\n", - "page_idx": 40 - }, - { - "type": "table", - "img_path": "images/2aa1481597518ee183a9db2935aeab47710513dae1ff1de52893c5fe9b8469af.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
0936 marks for A03 (program)
1 mark: correct fields in SELECT clause
1 mark: one correct table in FROM clause 1 mark: second correct table in FROM clause
1 mark: a correct condition in WHERE clause
1 mark: correct conditions and correct usage of AND in WHERE clause // correct
conditions and correct usage of AND in WHERE clause and correct usage of ON withINNERJOIN 1 mark:ORDERBY clause
Max 5 if any errors Sample answer
\n\n", - "page_idx": 40 - }, - { - "type": "table", - "img_path": "images/01f46cbd6cc34152652d38ea03c3f0b96b5e2028910cd7c9c146d98663b3f873.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuPartMarking guidanceTotal marks
\n\n", - "page_idx": 41 - }, - { - "type": "table", - "img_path": "images/efb604da99242a75029c4acf4106fce705f52c36628b92519fd4529e0f39bbfc.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
094 2 marks for Ao3 (refine)
1 mark: changing +9 to +10;
1 mark: changing <=3 to >3
UPDATE Game
SET LengthOfGame = LengthOfGame + 10
WHERE Complexity
\n\n", - "page_idx": 41 - }, - { - "type": "table", - "img_path": "images/6e57acc728cff5a795cb8856ee562c6f957ab0110c43e2d310db6ff4a0c1b4d1.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
101AllmarksAo2(apply) 2
Staff could forget their password // staff can't forget biometric measure; Shouldering risk when staff entering their password // no risk of shouldering when using biometric data;
Lower risk of hacking; Max 2
\n\n", - "page_idx": 41 - }, - { - "type": "table", - "img_path": "images/268d9a7b93a4d42a756f68e0cdb73b9809b4337811ff353b47d0d1b2bf83d778.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
102AllmarksAo2 (apply)2
Network is made available to members of the public; Won't know the MAC addresses for (most) of the devices connecting to the network;
\n\n", - "page_idx": 41 - }, - { - "type": "text", - "text": "Copyright information ", - "page_idx": 41 - }, - { - "type": "text", - "text": "AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre. ", - "page_idx": 41 - } -] \ No newline at end of file diff --git a/pdf_output/8525_2_1739552314/auto/8525_2_1739552314_layout.pdf b/pdf_output/8525_2_1739552314/auto/8525_2_1739552314_layout.pdf deleted file mode 100644 index eb993234a9b7dd53a34438742b50bdbc08f0b24e..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/8525_2_1739552314_layout.pdf +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d087274f80932ec0696cbff18bec26250204f52b1d9b11781d15895dabdcd5c3 -size 812086 diff --git a/pdf_output/8525_2_1739552314/auto/8525_2_1739552314_middle.json b/pdf_output/8525_2_1739552314/auto/8525_2_1739552314_middle.json deleted file mode 100644 index ffa87693dc3c5cf7780e062f45cac53715cd8f91..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/8525_2_1739552314_middle.json +++ /dev/null @@ -1,49370 +0,0 @@ -{ - "pdf_info": [ - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 56, - 115, - 235, - 129 - ], - "lines": [ - { - "bbox": [ - 55, - 115, - 234, - 128 - ], - "spans": [ - { - "bbox": [ - 55, - 115, - 234, - 128 - ], - "score": 1.0, - "content": "Please write clearly in block capitals.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 55, - 139, - 282, - 171 - ], - "lines": [ - { - "bbox": [ - 56, - 153, - 131, - 165 - ], - "spans": [ - { - "bbox": [ - 56, - 153, - 131, - 165 - ], - "score": 1.0, - "content": "Centre number", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 311, - 153, - 404, - 165 - ], - "lines": [ - { - "bbox": [ - 312, - 154, - 403, - 164 - ], - "spans": [ - { - "bbox": [ - 312, - 154, - 403, - 164 - ], - "score": 1.0, - "content": "Candidate number", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "table", - "bbox": [ - 413, - 140, - 528, - 170 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 413, - 140, - 528, - 170 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 413, - 140, - 528, - 170 - ], - "spans": [ - { - "bbox": [ - 413, - 140, - 528, - 170 - ], - "score": 0.142, - "type": "table", - "image_path": "109e42de42b05477c98efdddb7ff5b384443346f802c2302d0a164177dca46a1.jpg" - } - ] - } - ], - "index": 3.5, - "virtual_lines": [ - { - "bbox": [ - 413, - 140, - 528, - 155.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 413, - 155.0, - 528, - 170.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3.5 - }, - { - "type": "text", - "bbox": [ - 51, - 187, - 530, - 269 - ], - "lines": [ - { - "bbox": [ - 55, - 189, - 103, - 205 - ], - "spans": [ - { - "bbox": [ - 55, - 189, - 103, - 205 - ], - "score": 1.0, - "content": "Surname ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 55, - 214, - 121, - 231 - ], - "spans": [ - { - "bbox": [ - 55, - 214, - 121, - 231 - ], - "score": 1.0, - "content": "Forename(s)", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 55, - 242, - 156, - 255 - ], - "spans": [ - { - "bbox": [ - 55, - 242, - 156, - 255 - ], - "score": 1.0, - "content": "Candidate signature", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6 - }, - { - "type": "title", - "bbox": [ - 40, - 285, - 295, - 348 - ], - "lines": [ - { - "bbox": [ - 41, - 287, - 106, - 311 - ], - "spans": [ - { - "bbox": [ - 41, - 287, - 106, - 311 - ], - "score": 1.0, - "content": "GCSE", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 43, - 323, - 292, - 343 - ], - "spans": [ - { - "bbox": [ - 43, - 323, - 292, - 343 - ], - "score": 1.0, - "content": "COMPUTER SCIENCE", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8.5 - }, - { - "type": "text", - "bbox": [ - 40, - 357, - 255, - 376 - ], - "lines": [ - { - "bbox": [ - 40, - 358, - 254, - 375 - ], - "spans": [ - { - "bbox": [ - 40, - 358, - 254, - 375 - ], - "score": 1.0, - "content": "Paper 2 - Computing concepts", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "title", - "bbox": [ - 39, - 412, - 463, - 430 - ], - "lines": [ - { - "bbox": [ - 39, - 414, - 462, - 429 - ], - "spans": [ - { - "bbox": [ - 39, - 414, - 462, - 429 - ], - "score": 1.0, - "content": "Specimen Assessment Materials Time allowed: 1 hour 45 minutes", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "title", - "bbox": [ - 39, - 450, - 92, - 462 - ], - "lines": [ - { - "bbox": [ - 39, - 450, - 92, - 462 - ], - "spans": [ - { - "bbox": [ - 39, - 450, - 92, - 462 - ], - "score": 1.0, - "content": "Materials", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 38, - 464, - 326, - 489 - ], - "lines": [ - { - "bbox": [ - 44, - 464, - 326, - 476 - ], - "spans": [ - { - "bbox": [ - 44, - 464, - 326, - 476 - ], - "score": 1.0, - "content": " There are no additional materials required for this paper.", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 44, - 477, - 201, - 489 - ], - "spans": [ - { - "bbox": [ - 44, - 477, - 201, - 489 - ], - "score": 1.0, - "content": " You must not use a calculator.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 13.5 - }, - { - "type": "image", - "bbox": [ - 345, - 447, - 390, - 503 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 345, - 447, - 390, - 503 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 345, - 447, - 390, - 503 - ], - "spans": [ - { - "bbox": [ - 345, - 447, - 390, - 503 - ], - "score": 0.799, - "type": "image", - "image_path": "ce7523814b245ce58050b7c51fca17f896772359b7ef56c8afc633b88e92dc84.jpg" - } - ] - } - ], - "index": 15, - "virtual_lines": [ - { - "bbox": [ - 345, - 447, - 390, - 503 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 15 - }, - { - "type": "title", - "bbox": [ - 38, - 516, - 108, - 528 - ], - "lines": [ - { - "bbox": [ - 38, - 516, - 108, - 529 - ], - "spans": [ - { - "bbox": [ - 38, - 516, - 108, - 529 - ], - "score": 1.0, - "content": "Instructions", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16 - }, - { - "type": "text", - "bbox": [ - 38, - 529, - 369, - 595 - ], - "lines": [ - { - "bbox": [ - 41, - 529, - 368, - 543 - ], - "spans": [ - { - "bbox": [ - 41, - 529, - 368, - 543 - ], - "score": 1.0, - "content": "• Use black ink or black ball-point pen. Use pencil only for drawing.", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 41, - 543, - 156, - 555 - ], - "spans": [ - { - "bbox": [ - 41, - 543, - 156, - 555 - ], - "score": 1.0, - "content": "• Answer all questions.", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 39, - 556, - 321, - 568 - ], - "spans": [ - { - "bbox": [ - 39, - 556, - 321, - 568 - ], - "score": 1.0, - "content": "• You must answer the questions in the spaces provided.", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 39, - 568, - 199, - 581 - ], - "spans": [ - { - "bbox": [ - 39, - 568, - 199, - 581 - ], - "score": 1.0, - "content": "• Do all rough work in this book.", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 39, - 582, - 319, - 595 - ], - "spans": [ - { - "bbox": [ - 39, - 582, - 319, - 595 - ], - "score": 1.0, - "content": "• Cross through any work you do not want to be marked.", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 19 - }, - { - "type": "title", - "bbox": [ - 38, - 616, - 106, - 628 - ], - "lines": [ - { - "bbox": [ - 38, - 616, - 106, - 628 - ], - "spans": [ - { - "bbox": [ - 38, - 616, - 106, - 628 - ], - "score": 1.0, - "content": "Information", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 22 - }, - { - "type": "text", - "bbox": [ - 38, - 629, - 323, - 642 - ], - "lines": [ - { - "bbox": [ - 42, - 629, - 322, - 641 - ], - "spans": [ - { - "bbox": [ - 42, - 629, - 322, - 641 - ], - "score": 1.0, - "content": "• The total number of marks available for this paper is 90.", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 23 - }, - { - "type": "title", - "bbox": [ - 42, - 655, - 83, - 668 - ], - "lines": [ - { - "bbox": [ - 42, - 655, - 83, - 668 - ], - "spans": [ - { - "bbox": [ - 42, - 655, - 83, - 668 - ], - "score": 1.0, - "content": "Advice", - "type": "text" - } - ], - "index": 24 - } - ], - "index": 24 - }, - { - "type": "text", - "bbox": [ - 46, - 680, - 527, - 713 - ], - "lines": [ - { - "bbox": [ - 47, - 680, - 525, - 695 - ], - "spans": [ - { - "bbox": [ - 47, - 680, - 525, - 695 - ], - "score": 1.0, - "content": "For the multiple-choice questions, completely fill in the lozenge alongside the appropriate answer. ", - "type": "text" - } - ], - "index": 25 - }, - { - "bbox": [ - 63, - 697, - 389, - 710 - ], - "spans": [ - { - "bbox": [ - 63, - 699, - 132, - 709 - ], - "score": 1.0, - "content": "CORRECT METHOD", - "type": "text" - }, - { - "bbox": [ - 239, - 700, - 307, - 710 - ], - "score": 1.0, - "content": "WRONG METHODS ", - "type": "text" - }, - { - "bbox": [ - 314, - 700, - 325, - 709 - ], - "score": 0.55, - "content": "\\mathbf{\\pi}^{\\infty}", - "type": "inline_equation", - "height": 9, - "width": 11 - }, - { - "bbox": [ - 336, - 700, - 347, - 708 - ], - "score": 0.69, - "content": "\\textcircled{6}", - "type": "inline_equation", - "height": 8, - "width": 11 - }, - { - "bbox": [ - 379, - 697, - 389, - 709 - ], - "score": 0.45, - "content": "\\nmid", - "type": "inline_equation", - "height": 12, - "width": 10 - } - ], - "index": 26 - } - ], - "index": 25.5 - }, - { - "type": "text", - "bbox": [ - 48, - 719, - 474, - 733 - ], - "lines": [ - { - "bbox": [ - 48, - 720, - 493, - 733 - ], - "spans": [ - { - "bbox": [ - 48, - 720, - 493, - 733 - ], - "score": 1.0, - "content": "If you want to change your answer you must cross out your original answer as shown. ", - "type": "text" - } - ], - "index": 27 - } - ], - "index": 27 - }, - { - "type": "text", - "bbox": [ - 47, - 722, - 532, - 770 - ], - "lines": [ - { - "bbox": [ - 45, - 737, - 532, - 752 - ], - "spans": [ - { - "bbox": [ - 45, - 737, - 532, - 752 - ], - "score": 1.0, - "content": "If you wish to return to an answer previously crossed out, ring the answer you now wish to select as ", - "type": "text" - } - ], - "index": 28 - }, - { - "bbox": [ - 45, - 752, - 83, - 764 - ], - "spans": [ - { - "bbox": [ - 45, - 752, - 83, - 764 - ], - "score": 1.0, - "content": "shown.", - "type": "text" - } - ], - "index": 29 - } - ], - "index": 28.5 - } - ], - "layout_bboxes": [], - "page_idx": 0, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 345, - 447, - 390, - 503 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 345, - 447, - 390, - 503 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 345, - 447, - 390, - 503 - ], - "spans": [ - { - "bbox": [ - 345, - 447, - 390, - 503 - ], - "score": 0.799, - "type": "image", - "image_path": "ce7523814b245ce58050b7c51fca17f896772359b7ef56c8afc633b88e92dc84.jpg" - } - ] - } - ], - "index": 15, - "virtual_lines": [ - { - "bbox": [ - 345, - 447, - 390, - 503 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 15 - } - ], - "tables": [ - { - "type": "table", - "bbox": [ - 413, - 140, - 528, - 170 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 413, - 140, - 528, - 170 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 413, - 140, - 528, - 170 - ], - "spans": [ - { - "bbox": [ - 413, - 140, - 528, - 170 - ], - "score": 0.142, - "type": "table", - "image_path": "109e42de42b05477c98efdddb7ff5b384443346f802c2302d0a164177dca46a1.jpg" - } - ] - } - ], - "index": 3.5, - "virtual_lines": [ - { - "bbox": [ - 413, - 140, - 528, - 155.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 413, - 155.0, - 528, - 170.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3.5 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 480, - 806, - 546, - 827 - ], - "lines": [ - { - "bbox": [ - 481, - 807, - 546, - 826 - ], - "spans": [ - { - "bbox": [ - 481, - 807, - 546, - 826 - ], - "score": 1.0, - "content": "8525/2", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 470, - 714, - 496, - 732 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 38, - 43, - 170, - 92 - ], - "lines": [ - { - "bbox": [ - 38, - 46, - 167, - 90 - ], - "spans": [ - { - "bbox": [ - 38, - 53, - 136, - 90 - ], - "score": 0.9746087193489075, - "content": "AQA", - "type": "text" - }, - { - "bbox": [ - 140, - 46, - 167, - 78 - ], - "score": 0.5620973706245422, - "content": "-", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 56, - 115, - 235, - 129 - ], - "lines": [ - { - "bbox": [ - 55, - 115, - 234, - 128 - ], - "spans": [ - { - "bbox": [ - 55, - 115, - 234, - 128 - ], - "score": 1.0, - "content": "Please write clearly in block capitals.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 55, - 115, - 234, - 128 - ] - }, - { - "type": "text", - "bbox": [ - 55, - 139, - 282, - 171 - ], - "lines": [ - { - "bbox": [ - 56, - 153, - 131, - 165 - ], - "spans": [ - { - "bbox": [ - 56, - 153, - 131, - 165 - ], - "score": 1.0, - "content": "Centre number", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 56, - 153, - 131, - 165 - ] - }, - { - "type": "text", - "bbox": [ - 311, - 153, - 404, - 165 - ], - "lines": [ - { - "bbox": [ - 312, - 154, - 403, - 164 - ], - "spans": [ - { - "bbox": [ - 312, - 154, - 403, - 164 - ], - "score": 1.0, - "content": "Candidate number", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 312, - 154, - 403, - 164 - ] - }, - { - "type": "table", - "bbox": [ - 413, - 140, - 528, - 170 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 413, - 140, - 528, - 170 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 413, - 140, - 528, - 170 - ], - "spans": [ - { - "bbox": [ - 413, - 140, - 528, - 170 - ], - "score": 0.142, - "type": "table", - "image_path": "109e42de42b05477c98efdddb7ff5b384443346f802c2302d0a164177dca46a1.jpg" - } - ] - } - ], - "index": 3.5, - "virtual_lines": [ - { - "bbox": [ - 413, - 140, - 528, - 155.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 413, - 155.0, - 528, - 170.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3.5, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 51, - 187, - 530, - 269 - ], - "lines": [ - { - "bbox": [ - 55, - 189, - 103, - 205 - ], - "spans": [ - { - "bbox": [ - 55, - 189, - 103, - 205 - ], - "score": 1.0, - "content": "Surname ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 55, - 214, - 121, - 231 - ], - "spans": [ - { - "bbox": [ - 55, - 214, - 121, - 231 - ], - "score": 1.0, - "content": "Forename(s)", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 55, - 242, - 156, - 255 - ], - "spans": [ - { - "bbox": [ - 55, - 242, - 156, - 255 - ], - "score": 1.0, - "content": "Candidate signature", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 55, - 189, - 156, - 255 - ] - }, - { - "type": "title", - "bbox": [ - 40, - 285, - 295, - 348 - ], - "lines": [ - { - "bbox": [ - 41, - 287, - 106, - 311 - ], - "spans": [ - { - "bbox": [ - 41, - 287, - 106, - 311 - ], - "score": 1.0, - "content": "GCSE", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 43, - 323, - 292, - 343 - ], - "spans": [ - { - "bbox": [ - 43, - 323, - 292, - 343 - ], - "score": 1.0, - "content": "COMPUTER SCIENCE", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8.5, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 40, - 357, - 255, - 376 - ], - "lines": [ - { - "bbox": [ - 40, - 358, - 254, - 375 - ], - "spans": [ - { - "bbox": [ - 40, - 358, - 254, - 375 - ], - "score": 1.0, - "content": "Paper 2 - Computing concepts", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 358, - 254, - 375 - ] - }, - { - "type": "title", - "bbox": [ - 39, - 412, - 463, - 430 - ], - "lines": [ - { - "bbox": [ - 39, - 414, - 462, - 429 - ], - "spans": [ - { - "bbox": [ - 39, - 414, - 462, - 429 - ], - "score": 1.0, - "content": "Specimen Assessment Materials Time allowed: 1 hour 45 minutes", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 39, - 450, - 92, - 462 - ], - "lines": [ - { - "bbox": [ - 39, - 450, - 92, - 462 - ], - "spans": [ - { - "bbox": [ - 39, - 450, - 92, - 462 - ], - "score": 1.0, - "content": "Materials", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 38, - 464, - 326, - 489 - ], - "lines": [ - { - "bbox": [ - 44, - 464, - 326, - 476 - ], - "spans": [ - { - "bbox": [ - 44, - 464, - 326, - 476 - ], - "score": 1.0, - "content": " There are no additional materials required for this paper.", - "type": "text" - } - ], - "index": 13, - "is_list_end_line": true - }, - { - "bbox": [ - 44, - 477, - 201, - 489 - ], - "spans": [ - { - "bbox": [ - 44, - 477, - 201, - 489 - ], - "score": 1.0, - "content": " You must not use a calculator.", - "type": "text" - } - ], - "index": 14, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 13.5, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 44, - 464, - 326, - 489 - ] - }, - { - "type": "image", - "bbox": [ - 345, - 447, - 390, - 503 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 345, - 447, - 390, - 503 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 345, - 447, - 390, - 503 - ], - "spans": [ - { - "bbox": [ - 345, - 447, - 390, - 503 - ], - "score": 0.799, - "type": "image", - "image_path": "ce7523814b245ce58050b7c51fca17f896772359b7ef56c8afc633b88e92dc84.jpg" - } - ] - } - ], - "index": 15, - "virtual_lines": [ - { - "bbox": [ - 345, - 447, - 390, - 503 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 15, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 38, - 516, - 108, - 528 - ], - "lines": [ - { - "bbox": [ - 38, - 516, - 108, - 529 - ], - "spans": [ - { - "bbox": [ - 38, - 516, - 108, - 529 - ], - "score": 1.0, - "content": "Instructions", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 38, - 529, - 369, - 595 - ], - "lines": [ - { - "bbox": [ - 41, - 529, - 368, - 543 - ], - "spans": [ - { - "bbox": [ - 41, - 529, - 368, - 543 - ], - "score": 1.0, - "content": "• Use black ink or black ball-point pen. Use pencil only for drawing.", - "type": "text" - } - ], - "index": 17, - "is_list_end_line": true - }, - { - "bbox": [ - 41, - 543, - 156, - 555 - ], - "spans": [ - { - "bbox": [ - 41, - 543, - 156, - 555 - ], - "score": 1.0, - "content": "• Answer all questions.", - "type": "text" - } - ], - "index": 18, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 39, - 556, - 321, - 568 - ], - "spans": [ - { - "bbox": [ - 39, - 556, - 321, - 568 - ], - "score": 1.0, - "content": "• You must answer the questions in the spaces provided.", - "type": "text" - } - ], - "index": 19, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 39, - 568, - 199, - 581 - ], - "spans": [ - { - "bbox": [ - 39, - 568, - 199, - 581 - ], - "score": 1.0, - "content": "• Do all rough work in this book.", - "type": "text" - } - ], - "index": 20, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 39, - 582, - 319, - 595 - ], - "spans": [ - { - "bbox": [ - 39, - 582, - 319, - 595 - ], - "score": 1.0, - "content": "• Cross through any work you do not want to be marked.", - "type": "text" - } - ], - "index": 21, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 19, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 39, - 529, - 368, - 595 - ] - }, - { - "type": "title", - "bbox": [ - 38, - 616, - 106, - 628 - ], - "lines": [ - { - "bbox": [ - 38, - 616, - 106, - 628 - ], - "spans": [ - { - "bbox": [ - 38, - 616, - 106, - 628 - ], - "score": 1.0, - "content": "Information", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 22, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 38, - 629, - 323, - 642 - ], - "lines": [ - { - "bbox": [ - 42, - 629, - 322, - 641 - ], - "spans": [ - { - "bbox": [ - 42, - 629, - 322, - 641 - ], - "score": 1.0, - "content": "• The total number of marks available for this paper is 90.", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 23, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 629, - 322, - 641 - ] - }, - { - "type": "title", - "bbox": [ - 42, - 655, - 83, - 668 - ], - "lines": [ - { - "bbox": [ - 42, - 655, - 83, - 668 - ], - "spans": [ - { - "bbox": [ - 42, - 655, - 83, - 668 - ], - "score": 1.0, - "content": "Advice", - "type": "text" - } - ], - "index": 24 - } - ], - "index": 24, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 46, - 680, - 527, - 713 - ], - "lines": [ - { - "bbox": [ - 47, - 680, - 525, - 695 - ], - "spans": [ - { - "bbox": [ - 47, - 680, - 525, - 695 - ], - "score": 1.0, - "content": "For the multiple-choice questions, completely fill in the lozenge alongside the appropriate answer. ", - "type": "text" - } - ], - "index": 25 - }, - { - "bbox": [ - 63, - 697, - 389, - 710 - ], - "spans": [ - { - "bbox": [ - 63, - 699, - 132, - 709 - ], - "score": 1.0, - "content": "CORRECT METHOD", - "type": "text" - }, - { - "bbox": [ - 239, - 700, - 307, - 710 - ], - "score": 1.0, - "content": "WRONG METHODS ", - "type": "text" - }, - { - "bbox": [ - 314, - 700, - 325, - 709 - ], - "score": 0.55, - "content": "\\mathbf{\\pi}^{\\infty}", - "type": "inline_equation", - "height": 9, - "width": 11 - }, - { - "bbox": [ - 336, - 700, - 347, - 708 - ], - "score": 0.69, - "content": "\\textcircled{6}", - "type": "inline_equation", - "height": 8, - "width": 11 - }, - { - "bbox": [ - 379, - 697, - 389, - 709 - ], - "score": 0.45, - "content": "\\nmid", - "type": "inline_equation", - "height": 12, - "width": 10 - } - ], - "index": 26 - } - ], - "index": 25.5, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 47, - 680, - 525, - 710 - ] - }, - { - "type": "text", - "bbox": [ - 48, - 719, - 474, - 733 - ], - "lines": [ - { - "bbox": [ - 48, - 720, - 493, - 733 - ], - "spans": [ - { - "bbox": [ - 48, - 720, - 493, - 733 - ], - "score": 1.0, - "content": "If you want to change your answer you must cross out your original answer as shown. ", - "type": "text" - } - ], - "index": 27 - } - ], - "index": 27, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 48, - 720, - 493, - 733 - ] - }, - { - "type": "text", - "bbox": [ - 47, - 722, - 532, - 770 - ], - "lines": [ - { - "bbox": [ - 45, - 737, - 532, - 752 - ], - "spans": [ - { - "bbox": [ - 45, - 737, - 532, - 752 - ], - "score": 1.0, - "content": "If you wish to return to an answer previously crossed out, ring the answer you now wish to select as ", - "type": "text" - } - ], - "index": 28 - }, - { - "bbox": [ - 45, - 752, - 83, - 764 - ], - "spans": [ - { - "bbox": [ - 45, - 752, - 83, - 764 - ], - "score": 1.0, - "content": "shown.", - "type": "text" - } - ], - "index": 29 - } - ], - "index": 28.5, - "page_num": "page_0", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 45, - 737, - 532, - 764 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 235, - 78, - 342, - 91 - ], - "lines": [ - { - "bbox": [ - 236, - 79, - 341, - 91 - ], - "spans": [ - { - "bbox": [ - 236, - 79, - 341, - 91 - ], - "score": 0.9812984466552734, - "content": "Answer all questions.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 113, - 128, - 281, - 142 - ], - "lines": [ - { - "bbox": [ - 114, - 130, - 280, - 141 - ], - "spans": [ - { - "bbox": [ - 114, - 130, - 280, - 141 - ], - "score": 1.0, - "content": "A bit pattern is shown in Figure 1.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "title", - "bbox": [ - 301, - 153, - 347, - 167 - ], - "lines": [ - { - "bbox": [ - 302, - 154, - 347, - 167 - ], - "spans": [ - { - "bbox": [ - 302, - 154, - 347, - 167 - ], - "score": 1.0, - "content": "Figure 1", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "title", - "bbox": [ - 281, - 192, - 368, - 210 - ], - "lines": [ - { - "bbox": [ - 283, - 194, - 367, - 208 - ], - "spans": [ - { - "bbox": [ - 283, - 194, - 367, - 208 - ], - "score": 1.0, - "content": "01001110", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 112, - 237, - 382, - 252 - ], - "lines": [ - { - "bbox": [ - 114, - 239, - 380, - 250 - ], - "spans": [ - { - "bbox": [ - 114, - 239, - 380, - 250 - ], - "score": 1.0, - "content": "Convert the bit pattern shown in Figure 1 into decimal.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 112, - 241, - 537, - 318 - ], - "lines": [ - { - "bbox": [ - 490, - 251, - 536, - 266 - ], - "spans": [ - { - "bbox": [ - 490, - 251, - 536, - 266 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 112, - 354, - 405, - 369 - ], - "lines": [ - { - "bbox": [ - 114, - 356, - 404, - 367 - ], - "spans": [ - { - "bbox": [ - 114, - 356, - 404, - 367 - ], - "score": 1.0, - "content": "Convert the bit pattern shown in Figure 1 into hexadecimal.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 111, - 379, - 537, - 501 - ], - "lines": [ - { - "bbox": [ - 485, - 380, - 536, - 395 - ], - "spans": [ - { - "bbox": [ - 485, - 380, - 536, - 395 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 283, - 484, - 327, - 499 - ], - "spans": [ - { - "bbox": [ - 283, - 484, - 327, - 499 - ], - "score": 1.0, - "content": "Answer: ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7.5 - } - ], - "layout_bboxes": [], - "page_idx": 1, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 45, - 353, - 105, - 371 - ], - "lines": [ - { - "bbox": [ - 48, - 354, - 103, - 371 - ], - "spans": [ - { - "bbox": [ - 48, - 354, - 103, - 371 - ], - "score": 1.0, - "content": "0 1 . 2 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 127, - 82, - 145 - ], - "lines": [ - { - "bbox": [ - 50, - 130, - 76, - 142 - ], - "spans": [ - { - "bbox": [ - 50, - 130, - 76, - 142 - ], - "score": 1.0, - "content": "0 1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 236, - 105, - 254 - ], - "lines": [ - { - "bbox": [ - 48, - 238, - 102, - 254 - ], - "spans": [ - { - "bbox": [ - 48, - 238, - 102, - 254 - ], - "score": 1.0, - "content": "0 1 . 1 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 543, - 55, - 582, - 80 - ], - "lines": [ - { - "bbox": [ - 544, - 56, - 582, - 64 - ], - "spans": [ - { - "bbox": [ - 544, - 56, - 582, - 64 - ], - "score": 1.0, - "content": "Do not write", - "type": "text" - } - ] - }, - { - "bbox": [ - 544, - 64, - 581, - 73 - ], - "spans": [ - { - "bbox": [ - 544, - 64, - 581, - 73 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 555, - 71, - 571, - 82 - ], - "spans": [ - { - "bbox": [ - 555, - 71, - 571, - 82 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 285, - 29, - 293, - 39 - ], - "lines": [ - { - "bbox": [ - 283, - 28, - 294, - 43 - ], - "spans": [ - { - "bbox": [ - 283, - 28, - 294, - 43 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 15, - "width": 11 - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 235, - 78, - 342, - 91 - ], - "lines": [ - { - "bbox": [ - 236, - 79, - 341, - 91 - ], - "spans": [ - { - "bbox": [ - 236, - 79, - 341, - 91 - ], - "score": 0.9812984466552734, - "content": "Answer all questions.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 236, - 79, - 341, - 91 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 128, - 281, - 142 - ], - "lines": [ - { - "bbox": [ - 114, - 130, - 280, - 141 - ], - "spans": [ - { - "bbox": [ - 114, - 130, - 280, - 141 - ], - "score": 1.0, - "content": "A bit pattern is shown in Figure 1.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 130, - 280, - 141 - ] - }, - { - "type": "title", - "bbox": [ - 301, - 153, - 347, - 167 - ], - "lines": [ - { - "bbox": [ - 302, - 154, - 347, - 167 - ], - "spans": [ - { - "bbox": [ - 302, - 154, - 347, - 167 - ], - "score": 1.0, - "content": "Figure 1", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 281, - 192, - 368, - 210 - ], - "lines": [ - { - "bbox": [ - 283, - 194, - 367, - 208 - ], - "spans": [ - { - "bbox": [ - 283, - 194, - 367, - 208 - ], - "score": 1.0, - "content": "01001110", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 237, - 382, - 252 - ], - "lines": [ - { - "bbox": [ - 114, - 239, - 380, - 250 - ], - "spans": [ - { - "bbox": [ - 114, - 239, - 380, - 250 - ], - "score": 1.0, - "content": "Convert the bit pattern shown in Figure 1 into decimal.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 239, - 380, - 250 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 241, - 537, - 318 - ], - "lines": [ - { - "bbox": [ - 490, - 251, - 536, - 266 - ], - "spans": [ - { - "bbox": [ - 490, - 251, - 536, - 266 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 490, - 251, - 536, - 266 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 354, - 405, - 369 - ], - "lines": [ - { - "bbox": [ - 114, - 356, - 404, - 367 - ], - "spans": [ - { - "bbox": [ - 114, - 356, - 404, - 367 - ], - "score": 1.0, - "content": "Convert the bit pattern shown in Figure 1 into hexadecimal.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 356, - 404, - 367 - ] - }, - { - "type": "text", - "bbox": [ - 111, - 379, - 537, - 501 - ], - "lines": [ - { - "bbox": [ - 485, - 380, - 536, - 395 - ], - "spans": [ - { - "bbox": [ - 485, - 380, - 536, - 395 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 283, - 484, - 327, - 499 - ], - "spans": [ - { - "bbox": [ - 283, - 484, - 327, - 499 - ], - "score": 1.0, - "content": "Answer: ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7.5, - "page_num": "page_1", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 283, - 380, - 536, - 499 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 66, - 495, - 93 - ], - "lines": [ - { - "bbox": [ - 114, - 68, - 494, - 79 - ], - "spans": [ - { - "bbox": [ - 114, - 68, - 494, - 79 - ], - "score": 1.0, - "content": "A student’s answer to the question “Why is hexadecimal often used instead of", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 80, - 261, - 93 - ], - "spans": [ - { - "bbox": [ - 114, - 80, - 261, - 93 - ], - "score": 1.0, - "content": "binary?” is shown in Figure 2.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "title", - "bbox": [ - 301, - 105, - 347, - 119 - ], - "lines": [ - { - "bbox": [ - 302, - 106, - 348, - 119 - ], - "spans": [ - { - "bbox": [ - 302, - 106, - 348, - 119 - ], - "score": 1.0, - "content": "Figure 2 ", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 116, - 144, - 512, - 185 - ], - "lines": [ - { - "bbox": [ - 119, - 158, - 502, - 172 - ], - "spans": [ - { - "bbox": [ - 119, - 158, - 502, - 172 - ], - "score": 1.0, - "content": "Because it uses fewer digits it will take up less space in a computer’s memory.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 113, - 197, - 337, - 211 - ], - "lines": [ - { - "bbox": [ - 114, - 199, - 337, - 211 - ], - "spans": [ - { - "bbox": [ - 114, - 199, - 337, - 211 - ], - "score": 1.0, - "content": "Explain why the student’s answer is incorrect.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 113, - 211, - 536, - 329 - ], - "lines": [ - { - "bbox": [ - 485, - 210, - 536, - 225 - ], - "spans": [ - { - "bbox": [ - 485, - 210, - 536, - 225 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 113, - 340, - 443, - 355 - ], - "lines": [ - { - "bbox": [ - 114, - 342, - 441, - 354 - ], - "spans": [ - { - "bbox": [ - 114, - 342, - 441, - 354 - ], - "score": 1.0, - "content": "Explain how a binary number can be multiplied by 8 by shifting bits.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 112, - 352, - 537, - 472 - ], - "lines": [ - { - "bbox": [ - 483, - 353, - 534, - 368 - ], - "spans": [ - { - "bbox": [ - 483, - 353, - 534, - 368 - ], - "score": 1.0, - "content": "[2 marks]", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 110, - 483, - 527, - 523 - ], - "lines": [ - { - "bbox": [ - 111, - 484, - 526, - 497 - ], - "spans": [ - { - "bbox": [ - 111, - 484, - 526, - 497 - ], - "score": 1.0, - "content": "ASCII (American Standard Code for Information Interchange) is a coding system that ", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 109, - 496, - 522, - 510 - ], - "spans": [ - { - "bbox": [ - 109, - 496, - 522, - 510 - ], - "score": 1.0, - "content": "can be used to represent characters. In ASCII the character A is represented by the", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 110, - 511, - 196, - 523 - ], - "spans": [ - { - "bbox": [ - 110, - 511, - 196, - 523 - ], - "score": 1.0, - "content": "numeric code 65.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 112, - 536, - 522, - 561 - ], - "lines": [ - { - "bbox": [ - 114, - 537, - 519, - 549 - ], - "spans": [ - { - "bbox": [ - 114, - 537, - 519, - 549 - ], - "score": 1.0, - "content": "Shade one lozenge to indicate which character is represented by the numeric code", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 113, - 549, - 132, - 563 - ], - "spans": [ - { - "bbox": [ - 113, - 549, - 132, - 563 - ], - "score": 1.0, - "content": "70. ", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11.5 - }, - { - "type": "text", - "bbox": [ - 490, - 563, - 535, - 577 - ], - "lines": [ - { - "bbox": [ - 490, - 562, - 535, - 577 - ], - "spans": [ - { - "bbox": [ - 490, - 562, - 535, - 577 - ], - "score": 1.0, - "content": " [1 mark]", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "image", - "bbox": [ - 384, - 586, - 414, - 709 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 384, - 586, - 414, - 709 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 384, - 586, - 414, - 709 - ], - "spans": [ - { - "bbox": [ - 384, - 586, - 414, - 709 - ], - "score": 0.674, - "type": "image", - "image_path": "6989c268ffff85e3d801fa7b22b088b05aa8009598116a2fb95ce457493865be.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 384, - 586, - 414, - 709 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 235, - 587, - 273, - 705 - ], - "lines": [ - { - "bbox": [ - 237, - 589, - 273, - 602 - ], - "spans": [ - { - "bbox": [ - 237, - 589, - 249, - 602 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 261, - 589, - 273, - 602 - ], - "score": 1.0, - "content": "E ", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 237, - 615, - 273, - 628 - ], - "spans": [ - { - "bbox": [ - 237, - 615, - 249, - 628 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 261, - 615, - 273, - 628 - ], - "score": 1.0, - "content": "F ", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 237, - 640, - 272, - 655 - ], - "spans": [ - { - "bbox": [ - 237, - 640, - 249, - 655 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 262, - 640, - 272, - 654 - ], - "score": 1.0, - "content": "f", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 237, - 666, - 273, - 680 - ], - "spans": [ - { - "bbox": [ - 237, - 667, - 249, - 680 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 263, - 666, - 273, - 679 - ], - "score": 1.0, - "content": "6 ", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 237, - 692, - 273, - 707 - ], - "spans": [ - { - "bbox": [ - 237, - 692, - 248, - 707 - ], - "score": 1.0, - "content": "E ", - "type": "text" - }, - { - "bbox": [ - 262, - 694, - 273, - 706 - ], - "score": 1.0, - "content": "e ", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 17 - } - ], - "layout_bboxes": [], - "page_idx": 2, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 384, - 586, - 414, - 709 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 384, - 586, - 414, - 709 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 384, - 586, - 414, - 709 - ], - "spans": [ - { - "bbox": [ - 384, - 586, - 414, - 709 - ], - "score": 0.674, - "type": "image", - "image_path": "6989c268ffff85e3d801fa7b22b088b05aa8009598116a2fb95ce457493865be.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 384, - 586, - 414, - 709 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 14 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 542, - 55, - 580, - 80 - ], - "lines": [ - { - "bbox": [ - 542, - 56, - 581, - 65 - ], - "spans": [ - { - "bbox": [ - 542, - 56, - 581, - 65 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 544, - 64, - 580, - 73 - ], - "spans": [ - { - "bbox": [ - 544, - 64, - 580, - 73 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 554, - 71, - 570, - 82 - ], - "spans": [ - { - "bbox": [ - 554, - 71, - 570, - 82 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 534, - 105, - 553 - ], - "lines": [ - { - "bbox": [ - 49, - 537, - 102, - 551 - ], - "spans": [ - { - "bbox": [ - 49, - 537, - 102, - 551 - ], - "score": 1.0, - "content": "0 1 . 5 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 339, - 106, - 357 - ], - "lines": [ - { - "bbox": [ - 49, - 341, - 102, - 356 - ], - "spans": [ - { - "bbox": [ - 49, - 341, - 102, - 356 - ], - "score": 1.0, - "content": "0 1 . 4 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 105, - 83 - ], - "lines": [ - { - "bbox": [ - 52, - 69, - 99, - 80 - ], - "spans": [ - { - "bbox": [ - 52, - 69, - 63, - 80 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 90, - 70, - 99, - 79 - ], - "score": 1.0, - "content": "3", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 464, - 774, - 530, - 786 - ], - "lines": [ - { - "bbox": [ - 464, - 775, - 519, - 786 - ], - "spans": [ - { - "bbox": [ - 464, - 775, - 519, - 786 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 285, - 29, - 293, - 39 - ], - "lines": [ - { - "bbox": [ - 285, - 28, - 294, - 41 - ], - "spans": [ - { - "bbox": [ - 285, - 28, - 294, - 41 - ], - "score": 1.0, - "content": "3 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 66, - 495, - 93 - ], - "lines": [ - { - "bbox": [ - 114, - 68, - 494, - 79 - ], - "spans": [ - { - "bbox": [ - 114, - 68, - 494, - 79 - ], - "score": 1.0, - "content": "A student’s answer to the question “Why is hexadecimal often used instead of", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 80, - 261, - 93 - ], - "spans": [ - { - "bbox": [ - 114, - 80, - 261, - 93 - ], - "score": 1.0, - "content": "binary?” is shown in Figure 2.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 68, - 494, - 93 - ] - }, - { - "type": "title", - "bbox": [ - 301, - 105, - 347, - 119 - ], - "lines": [ - { - "bbox": [ - 302, - 106, - 348, - 119 - ], - "spans": [ - { - "bbox": [ - 302, - 106, - 348, - 119 - ], - "score": 1.0, - "content": "Figure 2 ", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 116, - 144, - 512, - 185 - ], - "lines": [ - { - "bbox": [ - 119, - 158, - 502, - 172 - ], - "spans": [ - { - "bbox": [ - 119, - 158, - 502, - 172 - ], - "score": 1.0, - "content": "Because it uses fewer digits it will take up less space in a computer’s memory.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 119, - 158, - 502, - 172 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 197, - 337, - 211 - ], - "lines": [ - { - "bbox": [ - 114, - 199, - 337, - 211 - ], - "spans": [ - { - "bbox": [ - 114, - 199, - 337, - 211 - ], - "score": 1.0, - "content": "Explain why the student’s answer is incorrect.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 199, - 337, - 211 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 211, - 536, - 329 - ], - "lines": [ - { - "bbox": [ - 485, - 210, - 536, - 225 - ], - "spans": [ - { - "bbox": [ - 485, - 210, - 536, - 225 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 485, - 210, - 536, - 225 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 340, - 443, - 355 - ], - "lines": [ - { - "bbox": [ - 114, - 342, - 441, - 354 - ], - "spans": [ - { - "bbox": [ - 114, - 342, - 441, - 354 - ], - "score": 1.0, - "content": "Explain how a binary number can be multiplied by 8 by shifting bits.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 342, - 441, - 354 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 352, - 537, - 472 - ], - "lines": [ - { - "bbox": [ - 483, - 353, - 534, - 368 - ], - "spans": [ - { - "bbox": [ - 483, - 353, - 534, - 368 - ], - "score": 1.0, - "content": "[2 marks]", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 483, - 353, - 534, - 368 - ] - }, - { - "type": "text", - "bbox": [ - 110, - 483, - 527, - 523 - ], - "lines": [ - { - "bbox": [ - 111, - 484, - 526, - 497 - ], - "spans": [ - { - "bbox": [ - 111, - 484, - 526, - 497 - ], - "score": 1.0, - "content": "ASCII (American Standard Code for Information Interchange) is a coding system that ", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 109, - 496, - 522, - 510 - ], - "spans": [ - { - "bbox": [ - 109, - 496, - 522, - 510 - ], - "score": 1.0, - "content": "can be used to represent characters. In ASCII the character A is represented by the", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 110, - 511, - 196, - 523 - ], - "spans": [ - { - "bbox": [ - 110, - 511, - 196, - 523 - ], - "score": 1.0, - "content": "numeric code 65.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 109, - 484, - 526, - 523 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 536, - 522, - 561 - ], - "lines": [ - { - "bbox": [ - 114, - 537, - 519, - 549 - ], - "spans": [ - { - "bbox": [ - 114, - 537, - 519, - 549 - ], - "score": 1.0, - "content": "Shade one lozenge to indicate which character is represented by the numeric code", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 113, - 549, - 132, - 563 - ], - "spans": [ - { - "bbox": [ - 113, - 549, - 132, - 563 - ], - "score": 1.0, - "content": "70. ", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11.5, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 537, - 519, - 563 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 563, - 535, - 577 - ], - "lines": [ - { - "bbox": [ - 490, - 562, - 535, - 577 - ], - "spans": [ - { - "bbox": [ - 490, - 562, - 535, - 577 - ], - "score": 1.0, - "content": " [1 mark]", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 490, - 562, - 535, - 577 - ] - }, - { - "type": "image", - "bbox": [ - 384, - 586, - 414, - 709 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 384, - 586, - 414, - 709 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 384, - 586, - 414, - 709 - ], - "spans": [ - { - "bbox": [ - 384, - 586, - 414, - 709 - ], - "score": 0.674, - "type": "image", - "image_path": "6989c268ffff85e3d801fa7b22b088b05aa8009598116a2fb95ce457493865be.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 384, - 586, - 414, - 709 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 14, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 235, - 587, - 273, - 705 - ], - "lines": [ - { - "bbox": [ - 237, - 589, - 273, - 602 - ], - "spans": [ - { - "bbox": [ - 237, - 589, - 249, - 602 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 261, - 589, - 273, - 602 - ], - "score": 1.0, - "content": "E ", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 237, - 615, - 273, - 628 - ], - "spans": [ - { - "bbox": [ - 237, - 615, - 249, - 628 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 261, - 615, - 273, - 628 - ], - "score": 1.0, - "content": "F ", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 237, - 640, - 272, - 655 - ], - "spans": [ - { - "bbox": [ - 237, - 640, - 249, - 655 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 262, - 640, - 272, - 654 - ], - "score": 1.0, - "content": "f", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 237, - 666, - 273, - 680 - ], - "spans": [ - { - "bbox": [ - 237, - 667, - 249, - 680 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 263, - 666, - 273, - 679 - ], - "score": 1.0, - "content": "6 ", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 237, - 692, - 273, - 707 - ], - "spans": [ - { - "bbox": [ - 237, - 692, - 248, - 707 - ], - "score": 1.0, - "content": "E ", - "type": "text" - }, - { - "bbox": [ - 262, - 694, - 273, - 706 - ], - "score": 1.0, - "content": "e ", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 17, - "page_num": "page_2", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 237, - 589, - 273, - 707 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 66, - 374, - 80 - ], - "lines": [ - { - "bbox": [ - 114, - 66, - 374, - 80 - ], - "spans": [ - { - "bbox": [ - 114, - 66, - 374, - 80 - ], - "score": 1.0, - "content": "Unicode is an alternative to the ASCII coding system.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 113, - 92, - 508, - 118 - ], - "lines": [ - { - "bbox": [ - 113, - 92, - 505, - 107 - ], - "spans": [ - { - "bbox": [ - 113, - 92, - 505, - 107 - ], - "score": 1.0, - "content": "State two advantages of using Unicode to represent characters instead of using", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 113, - 106, - 148, - 119 - ], - "spans": [ - { - "bbox": [ - 113, - 106, - 148, - 119 - ], - "score": 1.0, - "content": "ASCII.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5 - }, - { - "type": "text", - "bbox": [ - 112, - 119, - 536, - 237 - ], - "lines": [ - { - "bbox": [ - 485, - 118, - 536, - 133 - ], - "spans": [ - { - "bbox": [ - 485, - 118, - 536, - 133 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 105, - 267, - 517, - 320 - ], - "lines": [ - { - "bbox": [ - 105, - 268, - 511, - 280 - ], - "spans": [ - { - "bbox": [ - 105, - 268, - 511, - 280 - ], - "score": 1.0, - "content": "When data is stored in a computer it is often compressed. One method that can be", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 104, - 281, - 503, - 294 - ], - "spans": [ - { - "bbox": [ - 104, - 281, - 503, - 294 - ], - "score": 1.0, - "content": "used to compress text data is Huffman coding. To produce a Huffman code each", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 105, - 295, - 516, - 307 - ], - "spans": [ - { - "bbox": [ - 105, - 295, - 516, - 307 - ], - "score": 1.0, - "content": "character in a piece of text is placed in a tree, with its position in the tree determined", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 105, - 308, - 381, - 320 - ], - "spans": [ - { - "bbox": [ - 105, - 308, - 381, - 320 - ], - "score": 1.0, - "content": "by how often the character was used in the piece of text.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 5.5 - }, - { - "type": "text", - "bbox": [ - 104, - 332, - 485, - 359 - ], - "lines": [ - { - "bbox": [ - 105, - 333, - 483, - 344 - ], - "spans": [ - { - "bbox": [ - 105, - 333, - 483, - 344 - ], - "score": 1.0, - "content": "A Huffman tree for the text ZOE SAW A ZEBRA AT THE ZOO is shown in", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 105, - 346, - 153, - 359 - ], - "spans": [ - { - "bbox": [ - 105, - 346, - 153, - 359 - ], - "score": 1.0, - "content": "Figure 3.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8.5 - }, - { - "type": "image", - "bbox": [ - 109, - 401, - 523, - 759 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 295, - 371, - 341, - 385 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 296, - 372, - 341, - 385 - ], - "spans": [ - { - "bbox": [ - 296, - 372, - 341, - 385 - ], - "score": 1.0, - "content": "Figure 3", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "image_body", - "bbox": [ - 109, - 401, - 523, - 759 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 109, - 401, - 523, - 759 - ], - "spans": [ - { - "bbox": [ - 109, - 401, - 523, - 759 - ], - "score": 0.961, - "type": "image", - "image_path": "4045db713ae31b5bc3347bbd491291a0ea95ec4f92bd597e34a82b72646ccd9d.jpg" - } - ] - } - ], - "index": 12, - "virtual_lines": [ - { - "bbox": [ - 109, - 401, - 523, - 520.3333333333334 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 109, - 520.3333333333334, - 523, - 639.6666666666667 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 109, - 639.6666666666667, - 523, - 759.0000000000001 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "index": 11.0 - } - ], - "layout_bboxes": [], - "page_idx": 3, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 109, - 401, - 523, - 759 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 295, - 371, - 341, - 385 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 296, - 372, - 341, - 385 - ], - "spans": [ - { - "bbox": [ - 296, - 372, - 341, - 385 - ], - "score": 1.0, - "content": "Figure 3", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "image_body", - "bbox": [ - 109, - 401, - 523, - 759 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 109, - 401, - 523, - 759 - ], - "spans": [ - { - "bbox": [ - 109, - 401, - 523, - 759 - ], - "score": 0.961, - "type": "image", - "image_path": "4045db713ae31b5bc3347bbd491291a0ea95ec4f92bd597e34a82b72646ccd9d.jpg" - } - ] - } - ], - "index": 12, - "virtual_lines": [ - { - "bbox": [ - 109, - 401, - 523, - 520.3333333333334 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 109, - 520.3333333333334, - 523, - 639.6666666666667 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 109, - 639.6666666666667, - 523, - 759.0000000000001 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "index": 11.0 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 543, - 55, - 581, - 80 - ], - "lines": [ - { - "bbox": [ - 543, - 56, - 582, - 64 - ], - "spans": [ - { - "bbox": [ - 543, - 56, - 582, - 64 - ], - "score": 1.0, - "content": "Do not write", - "type": "text" - } - ] - }, - { - "bbox": [ - 545, - 64, - 581, - 73 - ], - "spans": [ - { - "bbox": [ - 545, - 64, - 581, - 73 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 556, - 73, - 571, - 81 - ], - "spans": [ - { - "bbox": [ - 556, - 73, - 571, - 81 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 105, - 83 - ], - "lines": [ - { - "bbox": [ - 51, - 69, - 99, - 79 - ], - "spans": [ - { - "bbox": [ - 51, - 69, - 61, - 79 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 92, - 70, - 99, - 79 - ], - "score": 1.0, - "content": "6", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 285, - 29, - 292, - 39 - ], - "lines": [ - { - "bbox": [ - 285, - 29, - 294, - 41 - ], - "spans": [ - { - "bbox": [ - 285, - 29, - 294, - 41 - ], - "score": 1.0, - "content": "4 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 66, - 374, - 80 - ], - "lines": [ - { - "bbox": [ - 114, - 66, - 374, - 80 - ], - "spans": [ - { - "bbox": [ - 114, - 66, - 374, - 80 - ], - "score": 1.0, - "content": "Unicode is an alternative to the ASCII coding system.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 66, - 374, - 80 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 92, - 508, - 118 - ], - "lines": [ - { - "bbox": [ - 113, - 92, - 505, - 107 - ], - "spans": [ - { - "bbox": [ - 113, - 92, - 505, - 107 - ], - "score": 1.0, - "content": "State two advantages of using Unicode to represent characters instead of using", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 113, - 106, - 148, - 119 - ], - "spans": [ - { - "bbox": [ - 113, - 106, - 148, - 119 - ], - "score": 1.0, - "content": "ASCII.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 92, - 505, - 119 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 119, - 536, - 237 - ], - "lines": [ - { - "bbox": [ - 485, - 118, - 536, - 133 - ], - "spans": [ - { - "bbox": [ - 485, - 118, - 536, - 133 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 485, - 118, - 536, - 133 - ] - }, - { - "type": "text", - "bbox": [ - 105, - 267, - 517, - 320 - ], - "lines": [ - { - "bbox": [ - 105, - 268, - 511, - 280 - ], - "spans": [ - { - "bbox": [ - 105, - 268, - 511, - 280 - ], - "score": 1.0, - "content": "When data is stored in a computer it is often compressed. One method that can be", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 104, - 281, - 503, - 294 - ], - "spans": [ - { - "bbox": [ - 104, - 281, - 503, - 294 - ], - "score": 1.0, - "content": "used to compress text data is Huffman coding. To produce a Huffman code each", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 105, - 295, - 516, - 307 - ], - "spans": [ - { - "bbox": [ - 105, - 295, - 516, - 307 - ], - "score": 1.0, - "content": "character in a piece of text is placed in a tree, with its position in the tree determined", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 105, - 308, - 381, - 320 - ], - "spans": [ - { - "bbox": [ - 105, - 308, - 381, - 320 - ], - "score": 1.0, - "content": "by how often the character was used in the piece of text.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 5.5, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 104, - 268, - 516, - 320 - ] - }, - { - "type": "text", - "bbox": [ - 104, - 332, - 485, - 359 - ], - "lines": [ - { - "bbox": [ - 105, - 333, - 483, - 344 - ], - "spans": [ - { - "bbox": [ - 105, - 333, - 483, - 344 - ], - "score": 1.0, - "content": "A Huffman tree for the text ZOE SAW A ZEBRA AT THE ZOO is shown in", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 105, - 346, - 153, - 359 - ], - "spans": [ - { - "bbox": [ - 105, - 346, - 153, - 359 - ], - "score": 1.0, - "content": "Figure 3.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8.5, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 105, - 333, - 483, - 359 - ] - }, - { - "type": "image", - "bbox": [ - 109, - 401, - 523, - 759 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 295, - 371, - 341, - 385 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 296, - 372, - 341, - 385 - ], - "spans": [ - { - "bbox": [ - 296, - 372, - 341, - 385 - ], - "score": 1.0, - "content": "Figure 3", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "image_body", - "bbox": [ - 109, - 401, - 523, - 759 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 109, - 401, - 523, - 759 - ], - "spans": [ - { - "bbox": [ - 109, - 401, - 523, - 759 - ], - "score": 0.961, - "type": "image", - "image_path": "4045db713ae31b5bc3347bbd491291a0ea95ec4f92bd597e34a82b72646ccd9d.jpg" - } - ] - } - ], - "index": 12, - "virtual_lines": [ - { - "bbox": [ - 109, - 401, - 523, - 520.3333333333334 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 109, - 520.3333333333334, - 523, - 639.6666666666667 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 109, - 639.6666666666667, - 523, - 759.0000000000001 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "index": 11.0, - "page_num": "page_3", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 106, - 66, - 527, - 105 - ], - "lines": [ - { - "bbox": [ - 107, - 68, - 498, - 79 - ], - "spans": [ - { - "bbox": [ - 107, - 68, - 498, - 79 - ], - "score": 1.0, - "content": "Using this Huffman tree, the Huffman coding for the character E would be the bit", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 105, - 80, - 527, - 92 - ], - "spans": [ - { - "bbox": [ - 105, - 80, - 527, - 92 - ], - "score": 1.0, - "content": "pattern 110 because from the top of the tree E is to the right, then right again and then", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 104, - 92, - 126, - 106 - ], - "spans": [ - { - "bbox": [ - 104, - 92, - 126, - 106 - ], - "score": 1.0, - "content": "left.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 104, - 118, - 526, - 145 - ], - "lines": [ - { - "bbox": [ - 106, - 119, - 525, - 132 - ], - "spans": [ - { - "bbox": [ - 106, - 119, - 525, - 132 - ], - "score": 1.0, - "content": "The character Z is represented by the bit pattern 010 because from the top of the tree", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 107, - 133, - 292, - 145 - ], - "spans": [ - { - "bbox": [ - 107, - 133, - 292, - 145 - ], - "score": 1.0, - "content": "Z is to the left, then right and then left.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5 - }, - { - "type": "text", - "bbox": [ - 110, - 183, - 533, - 209 - ], - "lines": [ - { - "bbox": [ - 113, - 183, - 527, - 197 - ], - "spans": [ - { - "bbox": [ - 113, - 183, - 527, - 197 - ], - "score": 1.0, - "content": "Using the Huffman code in Figure 3, complete the table to show the Huffman coding", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 113, - 196, - 536, - 211 - ], - "spans": [ - { - "bbox": [ - 113, - 196, - 288, - 209 - ], - "score": 1.0, - "content": "for the characters O, SPACE and B.", - "type": "text" - }, - { - "bbox": [ - 483, - 197, - 536, - 211 - ], - "score": 1.0, - "content": " [3 marks] ", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5.5 - }, - { - "type": "table", - "bbox": [ - 223, - 235, - 425, - 341 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 223, - 235, - 425, - 341 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 223, - 235, - 425, - 341 - ], - "spans": [ - { - "bbox": [ - 223, - 235, - 425, - 341 - ], - "score": 0.974, - "html": "
CharacterHuffman coding
O
SPACE
B
", - "type": "table", - "image_path": "c19f1600f83e1949bb24ccda1f07759d6395e726760f7200dc1baacd09c980fd.jpg" - } - ] - } - ], - "index": 11, - "virtual_lines": [ - { - "bbox": [ - 223, - 235, - 425, - 248 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 223, - 248, - 425, - 261 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 223, - 261, - 425, - 274 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 223, - 274, - 425, - 287 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 223, - 287, - 425, - 300 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 223, - 300, - 425, - 313 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 223, - 313, - 425, - 326 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 223, - 326, - 425, - 339 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 223, - 339, - 425, - 352 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 111, - 367, - 527, - 393 - ], - "lines": [ - { - "bbox": [ - 114, - 367, - 527, - 380 - ], - "spans": [ - { - "bbox": [ - 114, - 367, - 527, - 380 - ], - "score": 1.0, - "content": "Using Huffman coding, the text ZOE SAW A ZEBRA AT THE ZOO can be stored ", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 113, - 380, - 162, - 393 - ], - "spans": [ - { - "bbox": [ - 113, - 380, - 162, - 393 - ], - "score": 1.0, - "content": "in 83 bits.", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 16.5 - }, - { - "type": "text", - "bbox": [ - 112, - 406, - 531, - 433 - ], - "lines": [ - { - "bbox": [ - 113, - 405, - 524, - 420 - ], - "spans": [ - { - "bbox": [ - 113, - 405, - 524, - 420 - ], - "score": 1.0, - "content": "Calculate how many additional bits are needed to store the same piece of text using", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 113, - 419, - 534, - 434 - ], - "spans": [ - { - "bbox": [ - 113, - 419, - 249, - 433 - ], - "score": 1.0, - "content": "ASCII. Show your working.", - "type": "text" - }, - { - "bbox": [ - 482, - 419, - 534, - 434 - ], - "score": 1.0, - "content": " [3 marks]", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 18.5 - }, - { - "type": "text", - "bbox": [ - 112, - 446, - 536, - 589 - ], - "lines": [ - { - "bbox": [ - 112, - 446, - 536, - 493.6666666666667 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 112, - 493.6666666666667, - 536, - 541.3333333333334 - ], - "spans": [], - "index": 21 - }, - { - "bbox": [ - 112, - 541.3333333333334, - 536, - 589.0 - ], - "spans": [], - "index": 22 - } - ], - "index": 21 - } - ], - "layout_bboxes": [], - "page_idx": 4, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 223, - 235, - 425, - 341 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 223, - 235, - 425, - 341 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 223, - 235, - 425, - 341 - ], - "spans": [ - { - "bbox": [ - 223, - 235, - 425, - 341 - ], - "score": 0.974, - "html": "
CharacterHuffman coding
O
SPACE
B
", - "type": "table", - "image_path": "c19f1600f83e1949bb24ccda1f07759d6395e726760f7200dc1baacd09c980fd.jpg" - } - ] - } - ], - "index": 11, - "virtual_lines": [ - { - "bbox": [ - 223, - 235, - 425, - 248 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 223, - 248, - 425, - 261 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 223, - 261, - 425, - 274 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 223, - 274, - 425, - 287 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 223, - 287, - 425, - 300 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 223, - 300, - 425, - 313 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 223, - 313, - 425, - 326 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 223, - 326, - 425, - 339 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 223, - 339, - 425, - 352 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 11 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 542, - 55, - 580, - 80 - ], - "lines": [ - { - "bbox": [ - 542, - 56, - 581, - 65 - ], - "spans": [ - { - "bbox": [ - 542, - 56, - 581, - 65 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 543, - 65, - 580, - 73 - ], - "spans": [ - { - "bbox": [ - 543, - 65, - 580, - 73 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 554, - 73, - 570, - 82 - ], - "spans": [ - { - "bbox": [ - 554, - 73, - 570, - 82 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 365, - 105, - 383 - ], - "lines": [ - { - "bbox": [ - 50, - 368, - 100, - 380 - ], - "spans": [ - { - "bbox": [ - 50, - 368, - 63, - 380 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 69, - 371, - 76, - 377 - ], - "score": 1.0, - "content": "1", - "type": "text" - }, - { - "bbox": [ - 91, - 369, - 100, - 379 - ], - "score": 1.0, - "content": "8", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 181, - 105, - 200 - ], - "lines": [ - { - "bbox": [ - 48, - 183, - 103, - 199 - ], - "spans": [ - { - "bbox": [ - 48, - 183, - 103, - 199 - ], - "score": 1.0, - "content": "0 1 . 7 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 464, - 774, - 531, - 786 - ], - "lines": [ - { - "bbox": [ - 464, - 775, - 518, - 786 - ], - "spans": [ - { - "bbox": [ - 464, - 775, - 518, - 786 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 285, - 29, - 293, - 39 - ], - "lines": [ - { - "bbox": [ - 284, - 28, - 294, - 41 - ], - "spans": [ - { - "bbox": [ - 284, - 28, - 294, - 41 - ], - "score": 1.0, - "content": "5 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 106, - 66, - 527, - 105 - ], - "lines": [ - { - "bbox": [ - 107, - 68, - 498, - 79 - ], - "spans": [ - { - "bbox": [ - 107, - 68, - 498, - 79 - ], - "score": 1.0, - "content": "Using this Huffman tree, the Huffman coding for the character E would be the bit", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 105, - 80, - 527, - 92 - ], - "spans": [ - { - "bbox": [ - 105, - 80, - 527, - 92 - ], - "score": 1.0, - "content": "pattern 110 because from the top of the tree E is to the right, then right again and then", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 104, - 92, - 126, - 106 - ], - "spans": [ - { - "bbox": [ - 104, - 92, - 126, - 106 - ], - "score": 1.0, - "content": "left.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1, - "page_num": "page_4", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 104, - 68, - 527, - 106 - ] - }, - { - "type": "text", - "bbox": [ - 104, - 118, - 526, - 145 - ], - "lines": [ - { - "bbox": [ - 106, - 119, - 525, - 132 - ], - "spans": [ - { - "bbox": [ - 106, - 119, - 525, - 132 - ], - "score": 1.0, - "content": "The character Z is represented by the bit pattern 010 because from the top of the tree", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 107, - 133, - 292, - 145 - ], - "spans": [ - { - "bbox": [ - 107, - 133, - 292, - 145 - ], - "score": 1.0, - "content": "Z is to the left, then right and then left.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5, - "page_num": "page_4", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 106, - 119, - 525, - 145 - ] - }, - { - "type": "text", - "bbox": [ - 110, - 183, - 533, - 209 - ], - "lines": [ - { - "bbox": [ - 113, - 183, - 527, - 197 - ], - "spans": [ - { - "bbox": [ - 113, - 183, - 527, - 197 - ], - "score": 1.0, - "content": "Using the Huffman code in Figure 3, complete the table to show the Huffman coding", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 113, - 196, - 536, - 211 - ], - "spans": [ - { - "bbox": [ - 113, - 196, - 288, - 209 - ], - "score": 1.0, - "content": "for the characters O, SPACE and B.", - "type": "text" - }, - { - "bbox": [ - 483, - 197, - 536, - 211 - ], - "score": 1.0, - "content": " [3 marks] ", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5.5, - "page_num": "page_4", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 183, - 536, - 211 - ] - }, - { - "type": "table", - "bbox": [ - 223, - 235, - 425, - 341 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 223, - 235, - 425, - 341 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 223, - 235, - 425, - 341 - ], - "spans": [ - { - "bbox": [ - 223, - 235, - 425, - 341 - ], - "score": 0.974, - "html": "
CharacterHuffman coding
O
SPACE
B
", - "type": "table", - "image_path": "c19f1600f83e1949bb24ccda1f07759d6395e726760f7200dc1baacd09c980fd.jpg" - } - ] - } - ], - "index": 11, - "virtual_lines": [ - { - "bbox": [ - 223, - 235, - 425, - 248 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 223, - 248, - 425, - 261 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 223, - 261, - 425, - 274 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 223, - 274, - 425, - 287 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 223, - 287, - 425, - 300 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 223, - 300, - 425, - 313 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 223, - 313, - 425, - 326 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 223, - 326, - 425, - 339 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 223, - 339, - 425, - 352 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 11, - "page_num": "page_4", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 111, - 367, - 527, - 393 - ], - "lines": [ - { - "bbox": [ - 114, - 367, - 527, - 380 - ], - "spans": [ - { - "bbox": [ - 114, - 367, - 527, - 380 - ], - "score": 1.0, - "content": "Using Huffman coding, the text ZOE SAW A ZEBRA AT THE ZOO can be stored ", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 113, - 380, - 162, - 393 - ], - "spans": [ - { - "bbox": [ - 113, - 380, - 162, - 393 - ], - "score": 1.0, - "content": "in 83 bits.", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 16.5, - "page_num": "page_4", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 367, - 527, - 393 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 406, - 531, - 433 - ], - "lines": [ - { - "bbox": [ - 113, - 405, - 524, - 420 - ], - "spans": [ - { - "bbox": [ - 113, - 405, - 524, - 420 - ], - "score": 1.0, - "content": "Calculate how many additional bits are needed to store the same piece of text using", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 113, - 419, - 534, - 434 - ], - "spans": [ - { - "bbox": [ - 113, - 419, - 249, - 433 - ], - "score": 1.0, - "content": "ASCII. Show your working.", - "type": "text" - }, - { - "bbox": [ - 482, - 419, - 534, - 434 - ], - "score": 1.0, - "content": " [3 marks]", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 18.5, - "page_num": "page_4", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 405, - 534, - 434 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 446, - 536, - 589 - ], - "lines": [ - { - "bbox": [ - 112, - 446, - 536, - 493.6666666666667 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 112, - 493.6666666666667, - 536, - 541.3333333333334 - ], - "spans": [], - "index": 21 - }, - { - "bbox": [ - 112, - 541.3333333333334, - 536, - 589.0 - ], - "spans": [], - "index": 22 - } - ], - "index": 21, - "page_num": "page_4", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 112, - 446, - 536, - 589.0 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 66, - 476, - 81 - ], - "lines": [ - { - "bbox": [ - 114, - 68, - 476, - 80 - ], - "spans": [ - { - "bbox": [ - 114, - 68, - 476, - 80 - ], - "score": 1.0, - "content": "Bob purchases a 4GB SD card for use as secondary storage in his phone.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 113, - 104, - 461, - 120 - ], - "lines": [ - { - "bbox": [ - 113, - 105, - 458, - 120 - ], - "spans": [ - { - "bbox": [ - 113, - 105, - 458, - 120 - ], - "score": 1.0, - "content": "Calculate how many megabytes there are in 4GB. Show your working.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 112, - 132, - 537, - 250 - ], - "lines": [ - { - "bbox": [ - 485, - 131, - 536, - 146 - ], - "spans": [ - { - "bbox": [ - 485, - 131, - 536, - 146 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 112, - 261, - 323, - 275 - ], - "lines": [ - { - "bbox": [ - 113, - 262, - 323, - 275 - ], - "spans": [ - { - "bbox": [ - 113, - 262, - 323, - 275 - ], - "score": 1.0, - "content": "An SD card is a type of solid state storage.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 114, - 287, - 483, - 302 - ], - "lines": [ - { - "bbox": [ - 114, - 288, - 482, - 301 - ], - "spans": [ - { - "bbox": [ - 114, - 288, - 482, - 301 - ], - "score": 1.0, - "content": "State two advantages of solid state storage compared to magnetic storage.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 112, - 300, - 537, - 420 - ], - "lines": [ - { - "bbox": [ - 484, - 300, - 536, - 316 - ], - "spans": [ - { - "bbox": [ - 484, - 300, - 536, - 316 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - } - ], - "layout_bboxes": [], - "page_idx": 5, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 543, - 55, - 581, - 80 - ], - "lines": [ - { - "bbox": [ - 543, - 56, - 582, - 64 - ], - "spans": [ - { - "bbox": [ - 543, - 56, - 582, - 64 - ], - "score": 1.0, - "content": "Do not write", - "type": "text" - } - ] - }, - { - "bbox": [ - 545, - 64, - 581, - 73 - ], - "spans": [ - { - "bbox": [ - 545, - 64, - 581, - 73 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 556, - 73, - 571, - 81 - ], - "spans": [ - { - "bbox": [ - 556, - 73, - 571, - 81 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 46, - 260, - 105, - 278 - ], - "lines": [ - { - "bbox": [ - 49, - 261, - 103, - 277 - ], - "spans": [ - { - "bbox": [ - 49, - 261, - 103, - 277 - ], - "score": 1.0, - "content": "0 2 . 2 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 104, - 105, - 122 - ], - "lines": [ - { - "bbox": [ - 48, - 105, - 102, - 121 - ], - "spans": [ - { - "bbox": [ - 48, - 105, - 102, - 121 - ], - "score": 1.0, - "content": "0 2 . 1 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 46, - 65, - 82, - 83 - ], - "lines": [ - { - "bbox": [ - 49, - 66, - 79, - 82 - ], - "spans": [ - { - "bbox": [ - 49, - 66, - 79, - 82 - ], - "score": 1.0, - "content": "0 2 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 284, - 29, - 293, - 39 - ], - "lines": [ - { - "bbox": [ - 284, - 28, - 294, - 41 - ], - "spans": [ - { - "bbox": [ - 284, - 28, - 294, - 41 - ], - "score": 1.0, - "content": "6 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 66, - 476, - 81 - ], - "lines": [ - { - "bbox": [ - 114, - 68, - 476, - 80 - ], - "spans": [ - { - "bbox": [ - 114, - 68, - 476, - 80 - ], - "score": 1.0, - "content": "Bob purchases a 4GB SD card for use as secondary storage in his phone.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_5", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 68, - 476, - 80 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 104, - 461, - 120 - ], - "lines": [ - { - "bbox": [ - 113, - 105, - 458, - 120 - ], - "spans": [ - { - "bbox": [ - 113, - 105, - 458, - 120 - ], - "score": 1.0, - "content": "Calculate how many megabytes there are in 4GB. Show your working.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_5", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 105, - 458, - 120 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 132, - 537, - 250 - ], - "lines": [ - { - "bbox": [ - 485, - 131, - 536, - 146 - ], - "spans": [ - { - "bbox": [ - 485, - 131, - 536, - 146 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_5", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 485, - 131, - 536, - 146 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 261, - 323, - 275 - ], - "lines": [ - { - "bbox": [ - 113, - 262, - 323, - 275 - ], - "spans": [ - { - "bbox": [ - 113, - 262, - 323, - 275 - ], - "score": 1.0, - "content": "An SD card is a type of solid state storage.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_5", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 262, - 323, - 275 - ] - }, - { - "type": "text", - "bbox": [ - 114, - 287, - 483, - 302 - ], - "lines": [ - { - "bbox": [ - 114, - 288, - 482, - 301 - ], - "spans": [ - { - "bbox": [ - 114, - 288, - 482, - 301 - ], - "score": 1.0, - "content": "State two advantages of solid state storage compared to magnetic storage.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_5", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 288, - 482, - 301 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 300, - 537, - 420 - ], - "lines": [ - { - "bbox": [ - 484, - 300, - 536, - 316 - ], - "spans": [ - { - "bbox": [ - 484, - 300, - 536, - 316 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_5", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 484, - 300, - 536, - 316 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 110, - 66, - 532, - 92 - ], - "lines": [ - { - "bbox": [ - 114, - 67, - 532, - 79 - ], - "spans": [ - { - "bbox": [ - 114, - 67, - 532, - 79 - ], - "score": 1.0, - "content": "Many modern desktop computers have both solid state drives and magnetic hard disk", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 79, - 149, - 93 - ], - "spans": [ - { - "bbox": [ - 113, - 79, - 149, - 93 - ], - "score": 1.0, - "content": "drives. ", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 113, - 105, - 512, - 132 - ], - "lines": [ - { - "bbox": [ - 114, - 106, - 510, - 118 - ], - "spans": [ - { - "bbox": [ - 114, - 106, - 510, - 118 - ], - "score": 1.0, - "content": "Give two reasons why desktop computers have a magnetic hard disk drive and a", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 114, - 119, - 389, - 132 - ], - "spans": [ - { - "bbox": [ - 114, - 119, - 389, - 132 - ], - "score": 1.0, - "content": "solid state drive instead of having just a solid state drive.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5 - }, - { - "type": "text", - "bbox": [ - 112, - 132, - 536, - 250 - ], - "lines": [ - { - "bbox": [ - 484, - 132, - 537, - 147 - ], - "spans": [ - { - "bbox": [ - 484, - 132, - 537, - 147 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 113, - 261, - 453, - 276 - ], - "lines": [ - { - "bbox": [ - 114, - 262, - 451, - 274 - ], - "spans": [ - { - "bbox": [ - 114, - 262, - 451, - 274 - ], - "score": 1.0, - "content": "Describe how data is stored on, and read from, a magnetic hard disk.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 484, - 275, - 535, - 289 - ], - "lines": [ - { - "bbox": [ - 484, - 275, - 536, - 289 - ], - "spans": [ - { - "bbox": [ - 484, - 275, - 536, - 289 - ], - "score": 1.0, - "content": "[4 marks] ", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 112, - 284, - 536, - 498 - ], - "lines": [ - { - "bbox": [ - 112, - 284, - 536, - 355.3333333333333 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 112, - 355.3333333333333, - 536, - 426.66666666666663 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 112, - 426.66666666666663, - 536, - 497.99999999999994 - ], - "spans": [], - "index": 9 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 207, - 612, - 372, - 626 - ], - "lines": [ - { - "bbox": [ - 207, - 613, - 371, - 625 - ], - "spans": [ - { - "bbox": [ - 207, - 613, - 371, - 625 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - } - ], - "layout_bboxes": [], - "page_idx": 6, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 542, - 55, - 580, - 80 - ], - "lines": [ - { - "bbox": [ - 542, - 56, - 581, - 65 - ], - "spans": [ - { - "bbox": [ - 542, - 56, - 581, - 65 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 544, - 64, - 580, - 73 - ], - "spans": [ - { - "bbox": [ - 544, - 64, - 580, - 73 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 554, - 71, - 570, - 82 - ], - "spans": [ - { - "bbox": [ - 554, - 71, - 570, - 82 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 260, - 105, - 278 - ], - "lines": [ - { - "bbox": [ - 49, - 262, - 100, - 276 - ], - "spans": [ - { - "bbox": [ - 49, - 262, - 86, - 276 - ], - "score": 1.0, - "content": "0 2 .", - "type": "text" - }, - { - "bbox": [ - 89, - 264, - 100, - 274 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 105, - 83 - ], - "lines": [ - { - "bbox": [ - 48, - 66, - 103, - 82 - ], - "spans": [ - { - "bbox": [ - 48, - 66, - 103, - 82 - ], - "score": 1.0, - "content": "0 2 . 3 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 464, - 774, - 531, - 786 - ], - "lines": [ - { - "bbox": [ - 464, - 775, - 518, - 786 - ], - "spans": [ - { - "bbox": [ - 464, - 775, - 518, - 786 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 285, - 29, - 292, - 39 - ], - "lines": [ - { - "bbox": [ - 283, - 28, - 294, - 41 - ], - "spans": [ - { - "bbox": [ - 283, - 28, - 294, - 41 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 13, - "width": 11 - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 110, - 66, - 532, - 92 - ], - "lines": [ - { - "bbox": [ - 114, - 67, - 532, - 79 - ], - "spans": [ - { - "bbox": [ - 114, - 67, - 532, - 79 - ], - "score": 1.0, - "content": "Many modern desktop computers have both solid state drives and magnetic hard disk", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 79, - 149, - 93 - ], - "spans": [ - { - "bbox": [ - 113, - 79, - 149, - 93 - ], - "score": 1.0, - "content": "drives. ", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 67, - 532, - 93 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 105, - 512, - 132 - ], - "lines": [ - { - "bbox": [ - 114, - 106, - 510, - 118 - ], - "spans": [ - { - "bbox": [ - 114, - 106, - 510, - 118 - ], - "score": 1.0, - "content": "Give two reasons why desktop computers have a magnetic hard disk drive and a", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 114, - 119, - 389, - 132 - ], - "spans": [ - { - "bbox": [ - 114, - 119, - 389, - 132 - ], - "score": 1.0, - "content": "solid state drive instead of having just a solid state drive.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 106, - 510, - 132 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 132, - 536, - 250 - ], - "lines": [ - { - "bbox": [ - 484, - 132, - 537, - 147 - ], - "spans": [ - { - "bbox": [ - 484, - 132, - 537, - 147 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 484, - 132, - 537, - 147 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 261, - 453, - 276 - ], - "lines": [ - { - "bbox": [ - 114, - 262, - 451, - 274 - ], - "spans": [ - { - "bbox": [ - 114, - 262, - 451, - 274 - ], - "score": 1.0, - "content": "Describe how data is stored on, and read from, a magnetic hard disk.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 262, - 451, - 274 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 275, - 535, - 289 - ], - "lines": [ - { - "bbox": [ - 484, - 275, - 536, - 289 - ], - "spans": [ - { - "bbox": [ - 484, - 275, - 536, - 289 - ], - "score": 1.0, - "content": "[4 marks] ", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 484, - 275, - 536, - 289 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 284, - 536, - 498 - ], - "lines": [ - { - "bbox": [ - 112, - 284, - 536, - 355.3333333333333 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 112, - 355.3333333333333, - 536, - 426.66666666666663 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 112, - 426.66666666666663, - 536, - 497.99999999999994 - ], - "spans": [], - "index": 9 - } - ], - "index": 8, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 112, - 284, - 536, - 497.99999999999994 - ] - }, - { - "type": "text", - "bbox": [ - 207, - 612, - 372, - 626 - ], - "lines": [ - { - "bbox": [ - 207, - 613, - 371, - 625 - ], - "spans": [ - { - "bbox": [ - 207, - 613, - 371, - 625 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_6", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 207, - 613, - 371, - 625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 66, - 475, - 80 - ], - "lines": [ - { - "bbox": [ - 114, - 67, - 475, - 80 - ], - "spans": [ - { - "bbox": [ - 114, - 67, - 475, - 80 - ], - "score": 1.0, - "content": "In recent years, there has been a large growth in the use of cloud storage.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 113, - 92, - 442, - 106 - ], - "lines": [ - { - "bbox": [ - 114, - 93, - 441, - 106 - ], - "spans": [ - { - "bbox": [ - 114, - 93, - 441, - 106 - ], - "score": 1.0, - "content": "Discuss the advantages and disadvantages of using cloud storage.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 113, - 118, - 533, - 159 - ], - "lines": [ - { - "bbox": [ - 113, - 119, - 527, - 132 - ], - "spans": [ - { - "bbox": [ - 113, - 119, - 527, - 132 - ], - "score": 1.0, - "content": "In your answer you should include an explanation of the reasons for the large growth", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 113, - 133, - 535, - 144 - ], - "spans": [ - { - "bbox": [ - 113, - 133, - 535, - 144 - ], - "score": 1.0, - "content": "in recent years and consider any legal, ethical and environmental issues related to the ", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 113, - 145, - 535, - 159 - ], - "spans": [ - { - "bbox": [ - 113, - 145, - 218, - 159 - ], - "score": 1.0, - "content": "use of cloud storage.", - "type": "text" - }, - { - "bbox": [ - 483, - 145, - 535, - 159 - ], - "score": 1.0, - "content": "[9 marks] ", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3 - }, - { - "type": "table", - "bbox": [ - 112, - 151, - 536, - 632 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 112, - 151, - 536, - 632 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 112, - 151, - 536, - 632 - ], - "spans": [ - { - "bbox": [ - 112, - 151, - 536, - 632 - ], - "score": 0.401, - "html": "
use Or cloud storage. [sypu 6]
", - "type": "table", - "image_path": "f4f24c76021a0c0c42d5c3a22c11f8f9f4ecf01dc19fdfcb0a203ede55cd9dc6.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 112, - 151, - 536, - 311.33333333333337 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 112, - 311.33333333333337, - 536, - 471.66666666666674 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 112, - 471.66666666666674, - 536, - 632.0000000000001 - ], - "spans": [], - "index": 7 - } - ] - } - ], - "index": 6 - } - ], - "layout_bboxes": [], - "page_idx": 7, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 112, - 151, - 536, - 632 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 112, - 151, - 536, - 632 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 112, - 151, - 536, - 632 - ], - "spans": [ - { - "bbox": [ - 112, - 151, - 536, - 632 - ], - "score": 0.401, - "html": "
use Or cloud storage. [sypu 6]
", - "type": "table", - "image_path": "f4f24c76021a0c0c42d5c3a22c11f8f9f4ecf01dc19fdfcb0a203ede55cd9dc6.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 112, - 151, - 536, - 311.33333333333337 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 112, - 311.33333333333337, - 536, - 471.66666666666674 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 112, - 471.66666666666674, - 536, - 632.0000000000001 - ], - "spans": [], - "index": 7 - } - ] - } - ], - "index": 6 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 543, - 55, - 581, - 80 - ], - "lines": [ - { - "bbox": [ - 543, - 56, - 582, - 64 - ], - "spans": [ - { - "bbox": [ - 543, - 56, - 582, - 64 - ], - "score": 1.0, - "content": "Do not write", - "type": "text" - } - ] - }, - { - "bbox": [ - 545, - 64, - 581, - 73 - ], - "spans": [ - { - "bbox": [ - 545, - 64, - 581, - 73 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 556, - 73, - 571, - 81 - ], - "spans": [ - { - "bbox": [ - 556, - 73, - 571, - 81 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 105, - 83 - ], - "lines": [ - { - "bbox": [ - 49, - 67, - 102, - 81 - ], - "spans": [ - { - "bbox": [ - 49, - 67, - 102, - 81 - ], - "score": 1.0, - "content": "0 2 . 5 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 285, - 29, - 293, - 39 - ], - "lines": [ - { - "bbox": [ - 284, - 28, - 294, - 41 - ], - "spans": [ - { - "bbox": [ - 284, - 28, - 294, - 41 - ], - "score": 1.0, - "content": "8 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 66, - 475, - 80 - ], - "lines": [ - { - "bbox": [ - 114, - 67, - 475, - 80 - ], - "spans": [ - { - "bbox": [ - 114, - 67, - 475, - 80 - ], - "score": 1.0, - "content": "In recent years, there has been a large growth in the use of cloud storage.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_7", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 67, - 475, - 80 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 92, - 442, - 106 - ], - "lines": [ - { - "bbox": [ - 114, - 93, - 441, - 106 - ], - "spans": [ - { - "bbox": [ - 114, - 93, - 441, - 106 - ], - "score": 1.0, - "content": "Discuss the advantages and disadvantages of using cloud storage.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_7", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 93, - 441, - 106 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 118, - 533, - 159 - ], - "lines": [ - { - "bbox": [ - 113, - 119, - 527, - 132 - ], - "spans": [ - { - "bbox": [ - 113, - 119, - 527, - 132 - ], - "score": 1.0, - "content": "In your answer you should include an explanation of the reasons for the large growth", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 113, - 133, - 535, - 144 - ], - "spans": [ - { - "bbox": [ - 113, - 133, - 535, - 144 - ], - "score": 1.0, - "content": "in recent years and consider any legal, ethical and environmental issues related to the ", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 113, - 145, - 535, - 159 - ], - "spans": [ - { - "bbox": [ - 113, - 145, - 218, - 159 - ], - "score": 1.0, - "content": "use of cloud storage.", - "type": "text" - }, - { - "bbox": [ - 483, - 145, - 535, - 159 - ], - "score": 1.0, - "content": "[9 marks] ", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3, - "page_num": "page_7", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 119, - 535, - 159 - ] - }, - { - "type": "table", - "bbox": [ - 112, - 151, - 536, - 632 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 112, - 151, - 536, - 632 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 112, - 151, - 536, - 632 - ], - "spans": [ - { - "bbox": [ - 112, - 151, - 536, - 632 - ], - "score": 0.401, - "html": "
use Or cloud storage. [sypu 6]
", - "type": "table", - "image_path": "f4f24c76021a0c0c42d5c3a22c11f8f9f4ecf01dc19fdfcb0a203ede55cd9dc6.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 112, - 151, - 536, - 311.33333333333337 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 112, - 311.33333333333337, - 536, - 471.66666666666674 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 112, - 471.66666666666674, - 536, - 632.0000000000001 - ], - "spans": [], - "index": 7 - } - ] - } - ], - "index": 6, - "page_num": "page_7", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 66, - 309, - 80 - ], - "lines": [ - { - "bbox": [ - 114, - 68, - 309, - 79 - ], - "spans": [ - { - "bbox": [ - 114, - 68, - 309, - 79 - ], - "score": 1.0, - "content": "Most schools have a computer network.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 112, - 117, - 483, - 143 - ], - "lines": [ - { - "bbox": [ - 114, - 118, - 482, - 129 - ], - "spans": [ - { - "bbox": [ - 114, - 118, - 482, - 129 - ], - "score": 1.0, - "content": "Some schools allow teachers to access the school network from their home", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 113, - 131, - 170, - 144 - ], - "spans": [ - { - "bbox": [ - 113, - 131, - 170, - 144 - ], - "score": 1.0, - "content": "computers.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5 - }, - { - "type": "text", - "bbox": [ - 113, - 156, - 531, - 182 - ], - "lines": [ - { - "bbox": [ - 113, - 156, - 528, - 170 - ], - "spans": [ - { - "bbox": [ - 113, - 156, - 528, - 170 - ], - "score": 1.0, - "content": "Give one reason why some schools allow this and one reason why some schools do", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 113, - 170, - 182, - 182 - ], - "spans": [ - { - "bbox": [ - 113, - 170, - 182, - 182 - ], - "score": 1.0, - "content": "not allow this.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5 - }, - { - "type": "text", - "bbox": [ - 484, - 183, - 535, - 196 - ], - "lines": [ - { - "bbox": [ - 485, - 182, - 536, - 197 - ], - "spans": [ - { - "bbox": [ - 485, - 182, - 536, - 197 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 112, - 208, - 536, - 301 - ], - "lines": [ - { - "bbox": [ - 113, - 208, - 173, - 222 - ], - "spans": [ - { - "bbox": [ - 113, - 208, - 173, - 222 - ], - "score": 1.0, - "content": "Reason for:", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 113, - 261, - 195, - 273 - ], - "spans": [ - { - "bbox": [ - 113, - 261, - 195, - 273 - ], - "score": 1.0, - "content": "Reason against:", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6.5 - }, - { - "type": "text", - "bbox": [ - 112, - 323, - 376, - 338 - ], - "lines": [ - { - "bbox": [ - 114, - 323, - 374, - 337 - ], - "spans": [ - { - "bbox": [ - 114, - 323, - 374, - 337 - ], - "score": 1.0, - "content": "State three advantages of using a computer network.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 112, - 334, - 536, - 507 - ], - "lines": [ - { - "bbox": [ - 482, - 336, - 533, - 351 - ], - "spans": [ - { - "bbox": [ - 482, - 336, - 533, - 351 - ], - "score": 1.0, - "content": "[3 marks]", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 110, - 530, - 361, - 544 - ], - "lines": [ - { - "bbox": [ - 111, - 531, - 358, - 543 - ], - "spans": [ - { - "bbox": [ - 111, - 531, - 358, - 543 - ], - "score": 1.0, - "content": "PANs and LANs are two different types of network.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 111, - 555, - 371, - 569 - ], - "lines": [ - { - "bbox": [ - 115, - 556, - 370, - 568 - ], - "spans": [ - { - "bbox": [ - 115, - 556, - 370, - 568 - ], - "score": 1.0, - "content": "Describe one difference between a PAN and a LAN.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 112, - 565, - 537, - 634 - ], - "lines": [ - { - "bbox": [ - 490, - 568, - 536, - 583 - ], - "spans": [ - { - "bbox": [ - 490, - 568, - 536, - 583 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 112, - 657, - 361, - 671 - ], - "lines": [ - { - "bbox": [ - 114, - 658, - 360, - 671 - ], - "spans": [ - { - "bbox": [ - 114, - 658, - 360, - 671 - ], - "score": 1.0, - "content": "Give one example of where a PAN could be used.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "text", - "bbox": [ - 108, - 668, - 536, - 766 - ], - "lines": [ - { - "bbox": [ - 490, - 671, - 536, - 685 - ], - "spans": [ - { - "bbox": [ - 490, - 671, - 536, - 685 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - } - ], - "layout_bboxes": [], - "page_idx": 8, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 542, - 55, - 580, - 80 - ], - "lines": [ - { - "bbox": [ - 542, - 56, - 581, - 65 - ], - "spans": [ - { - "bbox": [ - 542, - 56, - 581, - 65 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 543, - 65, - 580, - 73 - ], - "spans": [ - { - "bbox": [ - 543, - 65, - 580, - 73 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 554, - 73, - 570, - 82 - ], - "spans": [ - { - "bbox": [ - 554, - 73, - 570, - 82 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 46, - 656, - 105, - 673 - ], - "lines": [ - { - "bbox": [ - 50, - 659, - 99, - 671 - ], - "spans": [ - { - "bbox": [ - 50, - 659, - 78, - 671 - ], - "score": 1.0, - "content": "0 3 ", - "type": "text" - }, - { - "bbox": [ - 90, - 661, - 99, - 669 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 554, - 105, - 571 - ], - "lines": [ - { - "bbox": [ - 50, - 556, - 99, - 569 - ], - "spans": [ - { - "bbox": [ - 50, - 556, - 80, - 569 - ], - "score": 1.0, - "content": "0 3 ", - "type": "text" - }, - { - "bbox": [ - 90, - 558, - 99, - 567 - ], - "score": 1.0, - "content": "3", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 115, - 105, - 133 - ], - "lines": [ - { - "bbox": [ - 48, - 117, - 102, - 133 - ], - "spans": [ - { - "bbox": [ - 48, - 117, - 102, - 133 - ], - "score": 1.0, - "content": "0 3 . 1 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 322, - 105, - 340 - ], - "lines": [ - { - "bbox": [ - 48, - 323, - 103, - 339 - ], - "spans": [ - { - "bbox": [ - 48, - 323, - 103, - 339 - ], - "score": 1.0, - "content": "0 3 . 2 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 82, - 83 - ], - "lines": [ - { - "bbox": [ - 50, - 68, - 77, - 80 - ], - "spans": [ - { - "bbox": [ - 50, - 68, - 64, - 80 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 65, - 69, - 77, - 80 - ], - "score": 1.0, - "content": "3", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 284, - 29, - 293, - 39 - ], - "lines": [ - { - "bbox": [ - 284, - 28, - 294, - 41 - ], - "spans": [ - { - "bbox": [ - 284, - 28, - 294, - 41 - ], - "score": 1.0, - "content": "9 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 464, - 774, - 530, - 786 - ], - "lines": [ - { - "bbox": [ - 464, - 775, - 519, - 786 - ], - "spans": [ - { - "bbox": [ - 464, - 775, - 519, - 786 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 66, - 309, - 80 - ], - "lines": [ - { - "bbox": [ - 114, - 68, - 309, - 79 - ], - "spans": [ - { - "bbox": [ - 114, - 68, - 309, - 79 - ], - "score": 1.0, - "content": "Most schools have a computer network.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 68, - 309, - 79 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 117, - 483, - 143 - ], - "lines": [ - { - "bbox": [ - 114, - 118, - 482, - 129 - ], - "spans": [ - { - "bbox": [ - 114, - 118, - 482, - 129 - ], - "score": 1.0, - "content": "Some schools allow teachers to access the school network from their home", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 113, - 131, - 170, - 144 - ], - "spans": [ - { - "bbox": [ - 113, - 131, - 170, - 144 - ], - "score": 1.0, - "content": "computers.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 118, - 482, - 144 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 156, - 531, - 182 - ], - "lines": [ - { - "bbox": [ - 113, - 156, - 528, - 170 - ], - "spans": [ - { - "bbox": [ - 113, - 156, - 528, - 170 - ], - "score": 1.0, - "content": "Give one reason why some schools allow this and one reason why some schools do", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 113, - 170, - 182, - 182 - ], - "spans": [ - { - "bbox": [ - 113, - 170, - 182, - 182 - ], - "score": 1.0, - "content": "not allow this.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 156, - 528, - 182 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 183, - 535, - 196 - ], - "lines": [ - { - "bbox": [ - 485, - 182, - 536, - 197 - ], - "spans": [ - { - "bbox": [ - 485, - 182, - 536, - 197 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 485, - 182, - 536, - 197 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 208, - 536, - 301 - ], - "lines": [ - { - "bbox": [ - 113, - 208, - 173, - 222 - ], - "spans": [ - { - "bbox": [ - 113, - 208, - 173, - 222 - ], - "score": 1.0, - "content": "Reason for:", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 113, - 261, - 195, - 273 - ], - "spans": [ - { - "bbox": [ - 113, - 261, - 195, - 273 - ], - "score": 1.0, - "content": "Reason against:", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6.5, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 208, - 195, - 273 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 323, - 376, - 338 - ], - "lines": [ - { - "bbox": [ - 114, - 323, - 374, - 337 - ], - "spans": [ - { - "bbox": [ - 114, - 323, - 374, - 337 - ], - "score": 1.0, - "content": "State three advantages of using a computer network.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 323, - 374, - 337 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 334, - 536, - 507 - ], - "lines": [ - { - "bbox": [ - 482, - 336, - 533, - 351 - ], - "spans": [ - { - "bbox": [ - 482, - 336, - 533, - 351 - ], - "score": 1.0, - "content": "[3 marks]", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 482, - 336, - 533, - 351 - ] - }, - { - "type": "text", - "bbox": [ - 110, - 530, - 361, - 544 - ], - "lines": [ - { - "bbox": [ - 111, - 531, - 358, - 543 - ], - "spans": [ - { - "bbox": [ - 111, - 531, - 358, - 543 - ], - "score": 1.0, - "content": "PANs and LANs are two different types of network.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 111, - 531, - 358, - 543 - ] - }, - { - "type": "text", - "bbox": [ - 111, - 555, - 371, - 569 - ], - "lines": [ - { - "bbox": [ - 115, - 556, - 370, - 568 - ], - "spans": [ - { - "bbox": [ - 115, - 556, - 370, - 568 - ], - "score": 1.0, - "content": "Describe one difference between a PAN and a LAN.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 115, - 556, - 370, - 568 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 565, - 537, - 634 - ], - "lines": [ - { - "bbox": [ - 490, - 568, - 536, - 583 - ], - "spans": [ - { - "bbox": [ - 490, - 568, - 536, - 583 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 490, - 568, - 536, - 583 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 657, - 361, - 671 - ], - "lines": [ - { - "bbox": [ - 114, - 658, - 360, - 671 - ], - "spans": [ - { - "bbox": [ - 114, - 658, - 360, - 671 - ], - "score": 1.0, - "content": "Give one example of where a PAN could be used.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 658, - 360, - 671 - ] - }, - { - "type": "text", - "bbox": [ - 108, - 668, - 536, - 766 - ], - "lines": [ - { - "bbox": [ - 490, - 671, - 536, - 685 - ], - "spans": [ - { - "bbox": [ - 490, - 671, - 536, - 685 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_8", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 490, - 671, - 536, - 685 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 110, - 78, - 534, - 104 - ], - "lines": [ - { - "bbox": [ - 113, - 78, - 534, - 91 - ], - "spans": [ - { - "bbox": [ - 113, - 78, - 534, - 91 - ], - "score": 1.0, - "content": "When two computers on a network communicate with each other they need to use the", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 92, - 188, - 104 - ], - "spans": [ - { - "bbox": [ - 113, - 92, - 188, - 104 - ], - "score": 1.0, - "content": "same protocol.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 114, - 117, - 278, - 131 - ], - "lines": [ - { - "bbox": [ - 114, - 118, - 277, - 130 - ], - "spans": [ - { - "bbox": [ - 114, - 118, - 277, - 130 - ], - "score": 1.0, - "content": "Define the term network protocol.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "image", - "bbox": [ - 112, - 132, - 536, - 249 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 112, - 132, - 536, - 249 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 112, - 132, - 536, - 249 - ], - "spans": [ - { - "bbox": [ - 112, - 132, - 536, - 249 - ], - "score": 0.791, - "type": "image", - "image_path": "7616d4ea5ca5360828a1abd1e11cc5efa22f44ead1d7e627f6db521bb225e7f1.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 112, - 132, - 536, - 171.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 112, - 171.0, - 536, - 210.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 112, - 210.0, - 536, - 249.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 116, - 269, - 514, - 300 - ], - "lines": [ - { - "bbox": [ - 117, - 273, - 512, - 285 - ], - "spans": [ - { - "bbox": [ - 117, - 273, - 227, - 285 - ], - "score": 1.0, - "content": "For questions 0 3 ", - "type": "text" - }, - { - "bbox": [ - 236, - 274, - 251, - 284 - ], - "score": 1.0, - "content": "6 ", - "type": "text" - }, - { - "bbox": [ - 257, - 276, - 268, - 283 - ], - "score": 1.0, - "content": "to", - "type": "text" - }, - { - "bbox": [ - 276, - 273, - 313, - 284 - ], - "score": 1.0, - "content": "0 3 ", - "type": "text" - }, - { - "bbox": [ - 325, - 275, - 335, - 283 - ], - "score": 1.0, - "content": "8", - "type": "text" - }, - { - "bbox": [ - 344, - 273, - 512, - 285 - ], - "score": 1.0, - "content": "shade one lozenge to indicate the", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 116, - 287, - 386, - 298 - ], - "spans": [ - { - "bbox": [ - 116, - 287, - 386, - 298 - ], - "score": 1.0, - "content": "most suitable protocol to use in the situation described.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6.5 - }, - { - "type": "text", - "bbox": [ - 112, - 323, - 315, - 337 - ], - "lines": [ - { - "bbox": [ - 114, - 324, - 315, - 336 - ], - "spans": [ - { - "bbox": [ - 114, - 324, - 315, - 336 - ], - "score": 1.0, - "content": "Used to retrieve email stored on a server", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 490, - 336, - 535, - 350 - ], - "lines": [ - { - "bbox": [ - 490, - 337, - 535, - 351 - ], - "spans": [ - { - "bbox": [ - 490, - 337, - 535, - 351 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "image", - "bbox": [ - 352, - 359, - 381, - 483 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 352, - 359, - 381, - 483 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 352, - 359, - 381, - 483 - ], - "spans": [ - { - "bbox": [ - 352, - 359, - 381, - 483 - ], - "score": 0.689, - "type": "image", - "image_path": "b28e048d0ee3999de27c64482bc7d7d51dc2059da636ac82d6540664af879df4.jpg" - } - ] - } - ], - "index": 11, - "virtual_lines": [ - { - "bbox": [ - 352, - 359, - 381, - 483 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 116, - 362, - 182, - 480 - ], - "lines": [ - { - "bbox": [ - 118, - 363, - 175, - 376 - ], - "spans": [ - { - "bbox": [ - 118, - 363, - 130, - 376 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 143, - 363, - 175, - 375 - ], - "score": 1.0, - "content": "HTTP", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 118, - 389, - 182, - 402 - ], - "spans": [ - { - "bbox": [ - 118, - 389, - 130, - 402 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 143, - 389, - 182, - 401 - ], - "score": 1.0, - "content": "HTTPS", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 118, - 414, - 167, - 428 - ], - "spans": [ - { - "bbox": [ - 118, - 414, - 130, - 428 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 143, - 414, - 167, - 428 - ], - "score": 1.0, - "content": "FTP", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 118, - 440, - 176, - 453 - ], - "spans": [ - { - "bbox": [ - 118, - 440, - 130, - 453 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 143, - 440, - 176, - 453 - ], - "score": 1.0, - "content": "SMTP", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 118, - 467, - 173, - 480 - ], - "spans": [ - { - "bbox": [ - 118, - 467, - 129, - 480 - ], - "score": 1.0, - "content": "E", - "type": "text" - }, - { - "bbox": [ - 143, - 467, - 173, - 479 - ], - "score": 1.0, - "content": "IMAP", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 13 - }, - { - "type": "text", - "bbox": [ - 111, - 544, - 476, - 558 - ], - "lines": [ - { - "bbox": [ - 114, - 545, - 476, - 557 - ], - "spans": [ - { - "bbox": [ - 114, - 545, - 476, - 557 - ], - "score": 1.0, - "content": "Used to make a payment securely when purchasing goods from a website", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16 - }, - { - "type": "text", - "bbox": [ - 490, - 557, - 535, - 571 - ], - "lines": [ - { - "bbox": [ - 491, - 557, - 536, - 572 - ], - "spans": [ - { - "bbox": [ - 491, - 557, - 536, - 572 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 17 - }, - { - "type": "image", - "bbox": [ - 352, - 580, - 381, - 704 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 352, - 580, - 381, - 704 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 352, - 580, - 381, - 704 - ], - "spans": [ - { - "bbox": [ - 352, - 580, - 381, - 704 - ], - "score": 0.747, - "type": "image", - "image_path": "f9f17426e116156d0aeafcba2a9eac0bee147deadcbf4e6e527096222ca138e9.jpg" - } - ] - } - ], - "index": 18, - "virtual_lines": [ - { - "bbox": [ - 352, - 580, - 381, - 704 - ], - "spans": [], - "index": 18 - } - ] - } - ], - "index": 18 - }, - { - "type": "text", - "bbox": [ - 116, - 582, - 182, - 701 - ], - "lines": [ - { - "bbox": [ - 117, - 583, - 175, - 596 - ], - "spans": [ - { - "bbox": [ - 117, - 583, - 130, - 596 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 143, - 583, - 175, - 596 - ], - "score": 1.0, - "content": "HTTP", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 118, - 609, - 182, - 622 - ], - "spans": [ - { - "bbox": [ - 118, - 609, - 130, - 622 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 143, - 609, - 182, - 621 - ], - "score": 1.0, - "content": "HTTPS", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 118, - 635, - 167, - 649 - ], - "spans": [ - { - "bbox": [ - 118, - 635, - 130, - 649 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 143, - 635, - 167, - 647 - ], - "score": 1.0, - "content": "FTP", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 118, - 661, - 177, - 674 - ], - "spans": [ - { - "bbox": [ - 118, - 661, - 130, - 674 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 143, - 661, - 177, - 674 - ], - "score": 1.0, - "content": "SMTP", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 118, - 687, - 173, - 700 - ], - "spans": [ - { - "bbox": [ - 118, - 687, - 129, - 700 - ], - "score": 1.0, - "content": "E", - "type": "text" - }, - { - "bbox": [ - 143, - 687, - 173, - 700 - ], - "score": 1.0, - "content": "IMAP", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 21 - } - ], - "layout_bboxes": [], - "page_idx": 9, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 112, - 132, - 536, - 249 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 112, - 132, - 536, - 249 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 112, - 132, - 536, - 249 - ], - "spans": [ - { - "bbox": [ - 112, - 132, - 536, - 249 - ], - "score": 0.791, - "type": "image", - "image_path": "7616d4ea5ca5360828a1abd1e11cc5efa22f44ead1d7e627f6db521bb225e7f1.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 112, - 132, - 536, - 171.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 112, - 171.0, - 536, - 210.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 112, - 210.0, - 536, - 249.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "image", - "bbox": [ - 352, - 359, - 381, - 483 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 352, - 359, - 381, - 483 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 352, - 359, - 381, - 483 - ], - "spans": [ - { - "bbox": [ - 352, - 359, - 381, - 483 - ], - "score": 0.689, - "type": "image", - "image_path": "b28e048d0ee3999de27c64482bc7d7d51dc2059da636ac82d6540664af879df4.jpg" - } - ] - } - ], - "index": 11, - "virtual_lines": [ - { - "bbox": [ - 352, - 359, - 381, - 483 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 11 - }, - { - "type": "image", - "bbox": [ - 352, - 580, - 381, - 704 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 352, - 580, - 381, - 704 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 352, - 580, - 381, - 704 - ], - "spans": [ - { - "bbox": [ - 352, - 580, - 381, - 704 - ], - "score": 0.747, - "type": "image", - "image_path": "f9f17426e116156d0aeafcba2a9eac0bee147deadcbf4e6e527096222ca138e9.jpg" - } - ] - } - ], - "index": 18, - "virtual_lines": [ - { - "bbox": [ - 352, - 580, - 381, - 704 - ], - "spans": [], - "index": 18 - } - ] - } - ], - "index": 18 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 45, - 77, - 105, - 95 - ], - "lines": [ - { - "bbox": [ - 49, - 78, - 100, - 93 - ], - "spans": [ - { - "bbox": [ - 49, - 78, - 100, - 93 - ], - "score": 1.0, - "content": "0 3 . 5", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 543, - 55, - 582, - 80 - ], - "lines": [ - { - "bbox": [ - 543, - 55, - 582, - 65 - ], - "spans": [ - { - "bbox": [ - 543, - 55, - 582, - 65 - ], - "score": 1.0, - "content": "Do not write", - "type": "text" - } - ] - }, - { - "bbox": [ - 544, - 64, - 581, - 73 - ], - "spans": [ - { - "bbox": [ - 544, - 64, - 581, - 73 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 556, - 72, - 571, - 81 - ], - "spans": [ - { - "bbox": [ - 556, - 72, - 571, - 81 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 322, - 105, - 340 - ], - "lines": [ - { - "bbox": [ - 50, - 325, - 100, - 337 - ], - "spans": [ - { - "bbox": [ - 50, - 325, - 67, - 337 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 67, - 326, - 78, - 336 - ], - "score": 1.0, - "content": "3 ", - "type": "text" - }, - { - "bbox": [ - 91, - 326, - 100, - 336 - ], - "score": 1.0, - "content": "6", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 542, - 105, - 560 - ], - "lines": [ - { - "bbox": [ - 50, - 545, - 100, - 558 - ], - "spans": [ - { - "bbox": [ - 50, - 545, - 100, - 558 - ], - "score": 1.0, - "content": "0 3 . 7", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "10 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 484, - 130, - 535, - 144 - ], - "lines": [] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 110, - 78, - 534, - 104 - ], - "lines": [ - { - "bbox": [ - 113, - 78, - 534, - 91 - ], - "spans": [ - { - "bbox": [ - 113, - 78, - 534, - 91 - ], - "score": 1.0, - "content": "When two computers on a network communicate with each other they need to use the", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 92, - 188, - 104 - ], - "spans": [ - { - "bbox": [ - 113, - 92, - 188, - 104 - ], - "score": 1.0, - "content": "same protocol.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_9", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 78, - 534, - 104 - ] - }, - { - "type": "text", - "bbox": [ - 114, - 117, - 278, - 131 - ], - "lines": [ - { - "bbox": [ - 114, - 118, - 277, - 130 - ], - "spans": [ - { - "bbox": [ - 114, - 118, - 277, - 130 - ], - "score": 1.0, - "content": "Define the term network protocol.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_9", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 118, - 277, - 130 - ] - }, - { - "type": "image", - "bbox": [ - 112, - 132, - 536, - 249 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 112, - 132, - 536, - 249 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 112, - 132, - 536, - 249 - ], - "spans": [ - { - "bbox": [ - 112, - 132, - 536, - 249 - ], - "score": 0.791, - "type": "image", - "image_path": "7616d4ea5ca5360828a1abd1e11cc5efa22f44ead1d7e627f6db521bb225e7f1.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 112, - 132, - 536, - 171.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 112, - 171.0, - 536, - 210.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 112, - 210.0, - 536, - 249.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_9", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 116, - 269, - 514, - 300 - ], - "lines": [ - { - "bbox": [ - 117, - 273, - 512, - 285 - ], - "spans": [ - { - "bbox": [ - 117, - 273, - 227, - 285 - ], - "score": 1.0, - "content": "For questions 0 3 ", - "type": "text" - }, - { - "bbox": [ - 236, - 274, - 251, - 284 - ], - "score": 1.0, - "content": "6 ", - "type": "text" - }, - { - "bbox": [ - 257, - 276, - 268, - 283 - ], - "score": 1.0, - "content": "to", - "type": "text" - }, - { - "bbox": [ - 276, - 273, - 313, - 284 - ], - "score": 1.0, - "content": "0 3 ", - "type": "text" - }, - { - "bbox": [ - 325, - 275, - 335, - 283 - ], - "score": 1.0, - "content": "8", - "type": "text" - }, - { - "bbox": [ - 344, - 273, - 512, - 285 - ], - "score": 1.0, - "content": "shade one lozenge to indicate the", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 116, - 287, - 386, - 298 - ], - "spans": [ - { - "bbox": [ - 116, - 287, - 386, - 298 - ], - "score": 1.0, - "content": "most suitable protocol to use in the situation described.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6.5, - "page_num": "page_9", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 116, - 273, - 512, - 298 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 323, - 315, - 337 - ], - "lines": [ - { - "bbox": [ - 114, - 324, - 315, - 336 - ], - "spans": [ - { - "bbox": [ - 114, - 324, - 315, - 336 - ], - "score": 1.0, - "content": "Used to retrieve email stored on a server", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_9", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 324, - 315, - 336 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 336, - 535, - 350 - ], - "lines": [ - { - "bbox": [ - 490, - 337, - 535, - 351 - ], - "spans": [ - { - "bbox": [ - 490, - 337, - 535, - 351 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_9", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 490, - 337, - 535, - 351 - ] - }, - { - "type": "image", - "bbox": [ - 352, - 359, - 381, - 483 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 352, - 359, - 381, - 483 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 352, - 359, - 381, - 483 - ], - "spans": [ - { - "bbox": [ - 352, - 359, - 381, - 483 - ], - "score": 0.689, - "type": "image", - "image_path": "b28e048d0ee3999de27c64482bc7d7d51dc2059da636ac82d6540664af879df4.jpg" - } - ] - } - ], - "index": 11, - "virtual_lines": [ - { - "bbox": [ - 352, - 359, - 381, - 483 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 11, - "page_num": "page_9", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 116, - 362, - 182, - 480 - ], - "lines": [ - { - "bbox": [ - 118, - 363, - 175, - 376 - ], - "spans": [ - { - "bbox": [ - 118, - 363, - 130, - 376 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 143, - 363, - 175, - 375 - ], - "score": 1.0, - "content": "HTTP", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 118, - 389, - 182, - 402 - ], - "spans": [ - { - "bbox": [ - 118, - 389, - 130, - 402 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 143, - 389, - 182, - 401 - ], - "score": 1.0, - "content": "HTTPS", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 118, - 414, - 167, - 428 - ], - "spans": [ - { - "bbox": [ - 118, - 414, - 130, - 428 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 143, - 414, - 167, - 428 - ], - "score": 1.0, - "content": "FTP", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 118, - 440, - 176, - 453 - ], - "spans": [ - { - "bbox": [ - 118, - 440, - 130, - 453 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 143, - 440, - 176, - 453 - ], - "score": 1.0, - "content": "SMTP", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 118, - 467, - 173, - 480 - ], - "spans": [ - { - "bbox": [ - 118, - 467, - 129, - 480 - ], - "score": 1.0, - "content": "E", - "type": "text" - }, - { - "bbox": [ - 143, - 467, - 173, - 479 - ], - "score": 1.0, - "content": "IMAP", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 13, - "page_num": "page_9", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 118, - 363, - 182, - 480 - ] - }, - { - "type": "text", - "bbox": [ - 111, - 544, - 476, - 558 - ], - "lines": [ - { - "bbox": [ - 114, - 545, - 476, - 557 - ], - "spans": [ - { - "bbox": [ - 114, - 545, - 476, - 557 - ], - "score": 1.0, - "content": "Used to make a payment securely when purchasing goods from a website", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16, - "page_num": "page_9", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 545, - 476, - 557 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 557, - 535, - 571 - ], - "lines": [ - { - "bbox": [ - 491, - 557, - 536, - 572 - ], - "spans": [ - { - "bbox": [ - 491, - 557, - 536, - 572 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 17, - "page_num": "page_9", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 557, - 536, - 572 - ] - }, - { - "type": "image", - "bbox": [ - 352, - 580, - 381, - 704 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 352, - 580, - 381, - 704 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 352, - 580, - 381, - 704 - ], - "spans": [ - { - "bbox": [ - 352, - 580, - 381, - 704 - ], - "score": 0.747, - "type": "image", - "image_path": "f9f17426e116156d0aeafcba2a9eac0bee147deadcbf4e6e527096222ca138e9.jpg" - } - ] - } - ], - "index": 18, - "virtual_lines": [ - { - "bbox": [ - 352, - 580, - 381, - 704 - ], - "spans": [], - "index": 18 - } - ] - } - ], - "index": 18, - "page_num": "page_9", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 116, - 582, - 182, - 701 - ], - "lines": [ - { - "bbox": [ - 117, - 583, - 175, - 596 - ], - "spans": [ - { - "bbox": [ - 117, - 583, - 130, - 596 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 143, - 583, - 175, - 596 - ], - "score": 1.0, - "content": "HTTP", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 118, - 609, - 182, - 622 - ], - "spans": [ - { - "bbox": [ - 118, - 609, - 130, - 622 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 143, - 609, - 182, - 621 - ], - "score": 1.0, - "content": "HTTPS", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 118, - 635, - 167, - 649 - ], - "spans": [ - { - "bbox": [ - 118, - 635, - 130, - 649 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 143, - 635, - 167, - 647 - ], - "score": 1.0, - "content": "FTP", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 118, - 661, - 177, - 674 - ], - "spans": [ - { - "bbox": [ - 118, - 661, - 130, - 674 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 143, - 661, - 177, - 674 - ], - "score": 1.0, - "content": "SMTP", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 118, - 687, - 173, - 700 - ], - "spans": [ - { - "bbox": [ - 118, - 687, - 129, - 700 - ], - "score": 1.0, - "content": "E", - "type": "text" - }, - { - "bbox": [ - 143, - 687, - 173, - 700 - ], - "score": 1.0, - "content": "IMAP", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 21, - "page_num": "page_9", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 117, - 583, - 182, - 700 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 79, - 426, - 93 - ], - "lines": [ - { - "bbox": [ - 114, - 79, - 426, - 91 - ], - "spans": [ - { - "bbox": [ - 114, - 79, - 426, - 91 - ], - "score": 1.0, - "content": "Used to send an email from a client machine to an email server.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 490, - 93, - 535, - 106 - ], - "lines": [ - { - "bbox": [ - 490, - 92, - 536, - 107 - ], - "spans": [ - { - "bbox": [ - 490, - 92, - 536, - 107 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 117, - 117, - 182, - 236 - ], - "lines": [ - { - "bbox": [ - 118, - 118, - 176, - 132 - ], - "spans": [ - { - "bbox": [ - 118, - 118, - 130, - 132 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 143, - 118, - 176, - 131 - ], - "score": 1.0, - "content": "HTTP ", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 118, - 144, - 182, - 157 - ], - "spans": [ - { - "bbox": [ - 118, - 144, - 130, - 157 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 144, - 145, - 182, - 156 - ], - "score": 1.0, - "content": "HTTPS", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 118, - 170, - 168, - 184 - ], - "spans": [ - { - "bbox": [ - 118, - 170, - 130, - 184 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 142, - 170, - 168, - 183 - ], - "score": 1.0, - "content": "FTP ", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 118, - 196, - 177, - 209 - ], - "spans": [ - { - "bbox": [ - 118, - 196, - 130, - 209 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 143, - 196, - 177, - 209 - ], - "score": 1.0, - "content": "SMTP", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 118, - 222, - 173, - 235 - ], - "spans": [ - { - "bbox": [ - 118, - 222, - 130, - 235 - ], - "score": 1.0, - "content": "E ", - "type": "text" - }, - { - "bbox": [ - 143, - 222, - 173, - 235 - ], - "score": 1.0, - "content": "IMAP", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 4 - }, - { - "type": "image", - "bbox": [ - 352, - 116, - 381, - 239 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 352, - 116, - 381, - 239 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 352, - 116, - 381, - 239 - ], - "spans": [ - { - "bbox": [ - 352, - 116, - 381, - 239 - ], - "score": 0.757, - "type": "image", - "image_path": "66db834f2ec0495259ed6fda461062687a8c6bd5dc85739b134b93efdf8545f5.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 352, - 116, - 381, - 239 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 111, - 273, - 508, - 288 - ], - "lines": [ - { - "bbox": [ - 113, - 274, - 507, - 287 - ], - "spans": [ - { - "bbox": [ - 113, - 274, - 507, - 287 - ], - "score": 1.0, - "content": "TCP/IP is a protocol used in networking. There are 4 layers in the TCP/IP stack.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 114, - 299, - 508, - 327 - ], - "lines": [ - { - "bbox": [ - 114, - 300, - 507, - 314 - ], - "spans": [ - { - "bbox": [ - 114, - 300, - 507, - 314 - ], - "score": 1.0, - "content": "Complete the table by placing the four layers of the TCP/IP stack into order (1-4)", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 114, - 315, - 356, - 326 - ], - "spans": [ - { - "bbox": [ - 114, - 315, - 356, - 326 - ], - "score": 1.0, - "content": "where 1 is the top layer and 4 is the bottom layer.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9.5 - }, - { - "type": "text", - "bbox": [ - 484, - 327, - 535, - 340 - ], - "lines": [ - { - "bbox": [ - 485, - 326, - 536, - 341 - ], - "spans": [ - { - "bbox": [ - 485, - 326, - 536, - 341 - ], - "score": 1.0, - "content": "[3 marks] ", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "table", - "bbox": [ - 208, - 351, - 439, - 455 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 208, - 351, - 439, - 455 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 208, - 351, - 439, - 455 - ], - "spans": [ - { - "bbox": [ - 208, - 351, - 439, - 455 - ], - "score": 0.976, - "html": "
LayerOrder(1-4)
Transport
Link
Internet
Application
", - "type": "table", - "image_path": "dd2926eae2834c6fc73b97a12d9e8c3c25ba0aaccecbcba103d1350f11b9a751.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 208, - 351, - 439, - 364.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 208, - 364.0, - 439, - 377.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 208, - 377.0, - 439, - 390.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 208, - 390.0, - 439, - 403.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 208, - 403.0, - 439, - 416.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 208, - 416.0, - 439, - 429.0 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 208, - 429.0, - 439, - 442.0 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 208, - 442.0, - 439, - 455.0 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 208, - 455.0, - 439, - 468.0 - ], - "spans": [], - "index": 20 - } - ] - } - ], - "index": 16 - }, - { - "type": "text", - "bbox": [ - 112, - 504, - 373, - 518 - ], - "lines": [ - { - "bbox": [ - 114, - 505, - 372, - 517 - ], - "spans": [ - { - "bbox": [ - 114, - 505, - 372, - 517 - ], - "score": 1.0, - "content": "Many computers use the Von Neumann architecture.", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 21 - }, - { - "type": "text", - "bbox": [ - 112, - 554, - 533, - 594 - ], - "lines": [ - { - "bbox": [ - 114, - 556, - 525, - 568 - ], - "spans": [ - { - "bbox": [ - 114, - 556, - 525, - 568 - ], - "score": 1.0, - "content": "In a computer that uses the Von Neumann architecture, bit patterns can be stored in", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 114, - 569, - 532, - 581 - ], - "spans": [ - { - "bbox": [ - 114, - 569, - 532, - 581 - ], - "score": 1.0, - "content": "the main memory. Shade the correct lozenge to indicate what these bit patterns could", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 113, - 581, - 346, - 595 - ], - "spans": [ - { - "bbox": [ - 113, - 581, - 346, - 595 - ], - "score": 1.0, - "content": "represent. You should only shade one lozenge.", - "type": "text" - } - ], - "index": 24 - } - ], - "index": 23 - }, - { - "type": "text", - "bbox": [ - 490, - 594, - 535, - 608 - ], - "lines": [ - { - "bbox": [ - 490, - 593, - 536, - 608 - ], - "spans": [ - { - "bbox": [ - 490, - 593, - 536, - 608 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 25 - } - ], - "index": 25 - }, - { - "type": "text", - "bbox": [ - 117, - 614, - 305, - 714 - ], - "lines": [ - { - "bbox": [ - 118, - 614, - 169, - 628 - ], - "spans": [ - { - "bbox": [ - 118, - 614, - 130, - 627 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 142, - 614, - 169, - 628 - ], - "score": 1.0, - "content": "Data ", - "type": "text" - } - ], - "index": 26 - }, - { - "bbox": [ - 118, - 643, - 201, - 656 - ], - "spans": [ - { - "bbox": [ - 118, - 643, - 130, - 656 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 143, - 644, - 201, - 655 - ], - "score": 1.0, - "content": "Instructions", - "type": "text" - } - ], - "index": 27 - }, - { - "bbox": [ - 118, - 670, - 248, - 684 - ], - "spans": [ - { - "bbox": [ - 118, - 670, - 131, - 684 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 143, - 672, - 248, - 683 - ], - "score": 1.0, - "content": "Data and instructions", - "type": "text" - } - ], - "index": 29 - }, - { - "bbox": [ - 118, - 699, - 304, - 712 - ], - "spans": [ - { - "bbox": [ - 118, - 699, - 130, - 712 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 143, - 700, - 304, - 712 - ], - "score": 1.0, - "content": "Data or instructions, but not both", - "type": "text" - } - ], - "index": 30 - } - ], - "index": 28.0 - }, - { - "type": "image", - "bbox": [ - 440, - 611, - 469, - 714 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 440, - 611, - 469, - 714 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 440, - 611, - 469, - 714 - ], - "spans": [ - { - "bbox": [ - 440, - 611, - 469, - 714 - ], - "score": 0.75, - "type": "image", - "image_path": "40843124807eab8c7beadf8d790ac6447f01002ee7051047ce9007f986a3b2ef.jpg" - } - ] - } - ], - "index": 28, - "virtual_lines": [ - { - "bbox": [ - 440, - 611, - 469, - 714 - ], - "spans": [], - "index": 28 - } - ] - } - ], - "index": 28 - } - ], - "layout_bboxes": [], - "page_idx": 10, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 352, - 116, - 381, - 239 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 352, - 116, - 381, - 239 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 352, - 116, - 381, - 239 - ], - "spans": [ - { - "bbox": [ - 352, - 116, - 381, - 239 - ], - "score": 0.757, - "type": "image", - "image_path": "66db834f2ec0495259ed6fda461062687a8c6bd5dc85739b134b93efdf8545f5.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 352, - 116, - 381, - 239 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 5 - }, - { - "type": "image", - "bbox": [ - 440, - 611, - 469, - 714 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 440, - 611, - 469, - 714 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 440, - 611, - 469, - 714 - ], - "spans": [ - { - "bbox": [ - 440, - 611, - 469, - 714 - ], - "score": 0.75, - "type": "image", - "image_path": "40843124807eab8c7beadf8d790ac6447f01002ee7051047ce9007f986a3b2ef.jpg" - } - ] - } - ], - "index": 28, - "virtual_lines": [ - { - "bbox": [ - 440, - 611, - 469, - 714 - ], - "spans": [], - "index": 28 - } - ] - } - ], - "index": 28 - } - ], - "tables": [ - { - "type": "table", - "bbox": [ - 208, - 351, - 439, - 455 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 208, - 351, - 439, - 455 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 208, - 351, - 439, - 455 - ], - "spans": [ - { - "bbox": [ - 208, - 351, - 439, - 455 - ], - "score": 0.976, - "html": "
LayerOrder(1-4)
Transport
Link
Internet
Application
", - "type": "table", - "image_path": "dd2926eae2834c6fc73b97a12d9e8c3c25ba0aaccecbcba103d1350f11b9a751.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 208, - 351, - 439, - 364.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 208, - 364.0, - 439, - 377.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 208, - 377.0, - 439, - 390.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 208, - 390.0, - 439, - 403.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 208, - 403.0, - 439, - 416.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 208, - 416.0, - 439, - 429.0 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 208, - 429.0, - 439, - 442.0 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 208, - 442.0, - 439, - 455.0 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 208, - 455.0, - 439, - 468.0 - ], - "spans": [], - "index": 20 - } - ] - } - ], - "index": 16 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 45, - 552, - 105, - 571 - ], - "lines": [ - { - "bbox": [ - 50, - 556, - 101, - 568 - ], - "spans": [ - { - "bbox": [ - 50, - 556, - 64, - 568 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 66, - 556, - 101, - 568 - ], - "score": 1.0, - "content": "4 . 1 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 272, - 105, - 290 - ], - "lines": [ - { - "bbox": [ - 50, - 276, - 98, - 287 - ], - "spans": [ - { - "bbox": [ - 50, - 276, - 65, - 287 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 66, - 277, - 77, - 286 - ], - "score": 1.0, - "content": "3", - "type": "text" - }, - { - "bbox": [ - 91, - 278, - 98, - 286 - ], - "score": 1.0, - "content": "9", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 503, - 82, - 520 - ], - "lines": [ - { - "bbox": [ - 51, - 506, - 77, - 517 - ], - "spans": [ - { - "bbox": [ - 51, - 506, - 63, - 517 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 65, - 507, - 77, - 517 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 77, - 105, - 95 - ], - "lines": [ - { - "bbox": [ - 51, - 81, - 99, - 92 - ], - "spans": [ - { - "bbox": [ - 51, - 81, - 61, - 92 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 68, - 82, - 77, - 91 - ], - "score": 1.0, - "content": "3", - "type": "text" - }, - { - "bbox": [ - 91, - 81, - 99, - 91 - ], - "score": 1.0, - "content": "8", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 542, - 55, - 580, - 80 - ], - "lines": [ - { - "bbox": [ - 542, - 56, - 581, - 65 - ], - "spans": [ - { - "bbox": [ - 542, - 56, - 581, - 65 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 544, - 64, - 580, - 73 - ], - "spans": [ - { - "bbox": [ - 544, - 64, - 580, - 73 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 554, - 71, - 570, - 82 - ], - "spans": [ - { - "bbox": [ - 554, - 71, - 570, - 82 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 295, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 297, - 41 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 297, - 41 - ], - "score": 1.0, - "content": "11 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 464, - 774, - 530, - 786 - ], - "lines": [ - { - "bbox": [ - 464, - 775, - 519, - 785 - ], - "spans": [ - { - "bbox": [ - 464, - 775, - 519, - 785 - ], - "score": 0.9168607592582703, - "content": "Turn over.", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 79, - 426, - 93 - ], - "lines": [ - { - "bbox": [ - 114, - 79, - 426, - 91 - ], - "spans": [ - { - "bbox": [ - 114, - 79, - 426, - 91 - ], - "score": 1.0, - "content": "Used to send an email from a client machine to an email server.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_10", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 79, - 426, - 91 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 93, - 535, - 106 - ], - "lines": [ - { - "bbox": [ - 490, - 92, - 536, - 107 - ], - "spans": [ - { - "bbox": [ - 490, - 92, - 536, - 107 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_10", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 490, - 92, - 536, - 107 - ] - }, - { - "type": "text", - "bbox": [ - 117, - 117, - 182, - 236 - ], - "lines": [ - { - "bbox": [ - 118, - 118, - 176, - 132 - ], - "spans": [ - { - "bbox": [ - 118, - 118, - 130, - 132 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 143, - 118, - 176, - 131 - ], - "score": 1.0, - "content": "HTTP ", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 118, - 144, - 182, - 157 - ], - "spans": [ - { - "bbox": [ - 118, - 144, - 130, - 157 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 144, - 145, - 182, - 156 - ], - "score": 1.0, - "content": "HTTPS", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 118, - 170, - 168, - 184 - ], - "spans": [ - { - "bbox": [ - 118, - 170, - 130, - 184 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 142, - 170, - 168, - 183 - ], - "score": 1.0, - "content": "FTP ", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 118, - 196, - 177, - 209 - ], - "spans": [ - { - "bbox": [ - 118, - 196, - 130, - 209 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 143, - 196, - 177, - 209 - ], - "score": 1.0, - "content": "SMTP", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 118, - 222, - 173, - 235 - ], - "spans": [ - { - "bbox": [ - 118, - 222, - 130, - 235 - ], - "score": 1.0, - "content": "E ", - "type": "text" - }, - { - "bbox": [ - 143, - 222, - 173, - 235 - ], - "score": 1.0, - "content": "IMAP", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 4, - "page_num": "page_10", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 118, - 118, - 182, - 235 - ] - }, - { - "type": "image", - "bbox": [ - 352, - 116, - 381, - 239 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 352, - 116, - 381, - 239 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 352, - 116, - 381, - 239 - ], - "spans": [ - { - "bbox": [ - 352, - 116, - 381, - 239 - ], - "score": 0.757, - "type": "image", - "image_path": "66db834f2ec0495259ed6fda461062687a8c6bd5dc85739b134b93efdf8545f5.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 352, - 116, - 381, - 239 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 5, - "page_num": "page_10", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 111, - 273, - 508, - 288 - ], - "lines": [ - { - "bbox": [ - 113, - 274, - 507, - 287 - ], - "spans": [ - { - "bbox": [ - 113, - 274, - 507, - 287 - ], - "score": 1.0, - "content": "TCP/IP is a protocol used in networking. There are 4 layers in the TCP/IP stack.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_10", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 274, - 507, - 287 - ] - }, - { - "type": "text", - "bbox": [ - 114, - 299, - 508, - 327 - ], - "lines": [ - { - "bbox": [ - 114, - 300, - 507, - 314 - ], - "spans": [ - { - "bbox": [ - 114, - 300, - 507, - 314 - ], - "score": 1.0, - "content": "Complete the table by placing the four layers of the TCP/IP stack into order (1-4)", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 114, - 315, - 356, - 326 - ], - "spans": [ - { - "bbox": [ - 114, - 315, - 356, - 326 - ], - "score": 1.0, - "content": "where 1 is the top layer and 4 is the bottom layer.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9.5, - "page_num": "page_10", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 300, - 507, - 326 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 327, - 535, - 340 - ], - "lines": [ - { - "bbox": [ - 485, - 326, - 536, - 341 - ], - "spans": [ - { - "bbox": [ - 485, - 326, - 536, - 341 - ], - "score": 1.0, - "content": "[3 marks] ", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_10", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 485, - 326, - 536, - 341 - ] - }, - { - "type": "table", - "bbox": [ - 208, - 351, - 439, - 455 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 208, - 351, - 439, - 455 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 208, - 351, - 439, - 455 - ], - "spans": [ - { - "bbox": [ - 208, - 351, - 439, - 455 - ], - "score": 0.976, - "html": "
LayerOrder(1-4)
Transport
Link
Internet
Application
", - "type": "table", - "image_path": "dd2926eae2834c6fc73b97a12d9e8c3c25ba0aaccecbcba103d1350f11b9a751.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 208, - 351, - 439, - 364.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 208, - 364.0, - 439, - 377.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 208, - 377.0, - 439, - 390.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 208, - 390.0, - 439, - 403.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 208, - 403.0, - 439, - 416.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 208, - 416.0, - 439, - 429.0 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 208, - 429.0, - 439, - 442.0 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 208, - 442.0, - 439, - 455.0 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 208, - 455.0, - 439, - 468.0 - ], - "spans": [], - "index": 20 - } - ] - } - ], - "index": 16, - "page_num": "page_10", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 504, - 373, - 518 - ], - "lines": [ - { - "bbox": [ - 114, - 505, - 372, - 517 - ], - "spans": [ - { - "bbox": [ - 114, - 505, - 372, - 517 - ], - "score": 1.0, - "content": "Many computers use the Von Neumann architecture.", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 21, - "page_num": "page_10", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 505, - 372, - 517 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 554, - 533, - 594 - ], - "lines": [ - { - "bbox": [ - 114, - 556, - 525, - 568 - ], - "spans": [ - { - "bbox": [ - 114, - 556, - 525, - 568 - ], - "score": 1.0, - "content": "In a computer that uses the Von Neumann architecture, bit patterns can be stored in", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 114, - 569, - 532, - 581 - ], - "spans": [ - { - "bbox": [ - 114, - 569, - 532, - 581 - ], - "score": 1.0, - "content": "the main memory. Shade the correct lozenge to indicate what these bit patterns could", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 113, - 581, - 346, - 595 - ], - "spans": [ - { - "bbox": [ - 113, - 581, - 346, - 595 - ], - "score": 1.0, - "content": "represent. You should only shade one lozenge.", - "type": "text" - } - ], - "index": 24 - } - ], - "index": 23, - "page_num": "page_10", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 556, - 532, - 595 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 594, - 535, - 608 - ], - "lines": [ - { - "bbox": [ - 490, - 593, - 536, - 608 - ], - "spans": [ - { - "bbox": [ - 490, - 593, - 536, - 608 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 25 - } - ], - "index": 25, - "page_num": "page_10", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 490, - 593, - 536, - 608 - ] - }, - { - "type": "list", - "bbox": [ - 117, - 614, - 305, - 714 - ], - "lines": [ - { - "bbox": [ - 118, - 614, - 169, - 628 - ], - "spans": [ - { - "bbox": [ - 118, - 614, - 130, - 627 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 142, - 614, - 169, - 628 - ], - "score": 1.0, - "content": "Data ", - "type": "text" - } - ], - "index": 26, - "is_list_start_line": true - }, - { - "bbox": [ - 118, - 643, - 201, - 656 - ], - "spans": [ - { - "bbox": [ - 118, - 643, - 130, - 656 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 143, - 644, - 201, - 655 - ], - "score": 1.0, - "content": "Instructions", - "type": "text" - } - ], - "index": 27, - "is_list_start_line": true - }, - { - "bbox": [ - 118, - 670, - 248, - 684 - ], - "spans": [ - { - "bbox": [ - 118, - 670, - 131, - 684 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 143, - 672, - 248, - 683 - ], - "score": 1.0, - "content": "Data and instructions", - "type": "text" - } - ], - "index": 29, - "is_list_start_line": true - }, - { - "bbox": [ - 118, - 699, - 304, - 712 - ], - "spans": [ - { - "bbox": [ - 118, - 699, - 130, - 712 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 143, - 700, - 304, - 712 - ], - "score": 1.0, - "content": "Data or instructions, but not both", - "type": "text" - } - ], - "index": 30, - "is_list_start_line": true - } - ], - "index": 28.0, - "page_num": "page_10", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 118, - 614, - 304, - 712 - ] - }, - { - "type": "image", - "bbox": [ - 440, - 611, - 469, - 714 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 440, - 611, - 469, - 714 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 440, - 611, - 469, - 714 - ], - "spans": [ - { - "bbox": [ - 440, - 611, - 469, - 714 - ], - "score": 0.75, - "type": "image", - "image_path": "40843124807eab8c7beadf8d790ac6447f01002ee7051047ce9007f986a3b2ef.jpg" - } - ] - } - ], - "index": 28, - "virtual_lines": [ - { - "bbox": [ - 440, - 611, - 469, - 714 - ], - "spans": [], - "index": 28 - } - ] - } - ], - "index": 28, - "page_num": "page_10", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 79, - 511, - 106 - ], - "lines": [ - { - "bbox": [ - 114, - 80, - 510, - 92 - ], - "spans": [ - { - "bbox": [ - 114, - 80, - 510, - 92 - ], - "score": 1.0, - "content": "Five components of a CPU are given below. For each row in Table 1, choose the", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 93, - 374, - 105 - ], - "spans": [ - { - "bbox": [ - 113, - 93, - 374, - 105 - ], - "score": 1.0, - "content": "letter A, B, C, D, E that best matches the description.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 113, - 118, - 329, - 132 - ], - "lines": [ - { - "bbox": [ - 114, - 119, - 329, - 131 - ], - "spans": [ - { - "bbox": [ - 114, - 119, - 329, - 131 - ], - "score": 1.0, - "content": "Letters should not be used more than once.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 112, - 145, - 234, - 210 - ], - "lines": [ - { - "bbox": [ - 113, - 144, - 152, - 157 - ], - "spans": [ - { - "bbox": [ - 113, - 144, - 152, - 157 - ], - "score": 1.0, - "content": "A. Bus", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 113, - 158, - 234, - 170 - ], - "spans": [ - { - "bbox": [ - 113, - 158, - 234, - 170 - ], - "score": 1.0, - "content": "B. Arithmetic Logic Unit", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 113, - 170, - 192, - 183 - ], - "spans": [ - { - "bbox": [ - 113, - 170, - 192, - 183 - ], - "score": 1.0, - "content": "C. Control Unit ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 113, - 183, - 161, - 195 - ], - "spans": [ - { - "bbox": [ - 113, - 183, - 161, - 195 - ], - "score": 1.0, - "content": "D. Clock", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 113, - 196, - 174, - 210 - ], - "spans": [ - { - "bbox": [ - 113, - 196, - 174, - 210 - ], - "score": 1.0, - "content": "E. Register ", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 484, - 209, - 535, - 223 - ], - "lines": [ - { - "bbox": [ - 484, - 209, - 536, - 224 - ], - "spans": [ - { - "bbox": [ - 484, - 209, - 536, - 224 - ], - "score": 1.0, - "content": "[3 marks] ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "table", - "bbox": [ - 161, - 272, - 487, - 405 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 305, - 248, - 344, - 261 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 304, - 249, - 345, - 261 - ], - "spans": [ - { - "bbox": [ - 304, - 249, - 345, - 261 - ], - "score": 1.0, - "content": "Table 1", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "table_body", - "bbox": [ - 161, - 272, - 487, - 405 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 161, - 272, - 487, - 405 - ], - "spans": [ - { - "bbox": [ - 161, - 272, - 487, - 405 - ], - "score": 0.981, - "html": "
DescriptionLetter
Sendsacontinuousseriesofelectronicpulses
Decodesthecurrentinstruction
Completescalculations
", - "type": "table", - "image_path": "ee030c20fa412019264203c879fb1e96bf55afaf39bb8da82fccd3f9acb4bfff.jpg" - } - ] - } - ], - "index": 11, - "virtual_lines": [ - { - "bbox": [ - 161, - 272, - 487, - 316.3333333333333 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 161, - 316.3333333333333, - 487, - 360.66666666666663 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 161, - 360.66666666666663, - 487, - 404.99999999999994 - ], - "spans": [], - "index": 12 - } - ] - } - ], - "index": 10.0 - } - ], - "layout_bboxes": [], - "page_idx": 11, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 161, - 272, - 487, - 405 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 305, - 248, - 344, - 261 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 304, - 249, - 345, - 261 - ], - "spans": [ - { - "bbox": [ - 304, - 249, - 345, - 261 - ], - "score": 1.0, - "content": "Table 1", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "table_body", - "bbox": [ - 161, - 272, - 487, - 405 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 161, - 272, - 487, - 405 - ], - "spans": [ - { - "bbox": [ - 161, - 272, - 487, - 405 - ], - "score": 0.981, - "html": "
DescriptionLetter
Sendsacontinuousseriesofelectronicpulses
Decodesthecurrentinstruction
Completescalculations
", - "type": "table", - "image_path": "ee030c20fa412019264203c879fb1e96bf55afaf39bb8da82fccd3f9acb4bfff.jpg" - } - ] - } - ], - "index": 11, - "virtual_lines": [ - { - "bbox": [ - 161, - 272, - 487, - 316.3333333333333 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 161, - 316.3333333333333, - 487, - 360.66666666666663 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 161, - 360.66666666666663, - 487, - 404.99999999999994 - ], - "spans": [], - "index": 12 - } - ] - } - ], - "index": 10.0 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 543, - 55, - 581, - 80 - ], - "lines": [ - { - "bbox": [ - 543, - 56, - 582, - 64 - ], - "spans": [ - { - "bbox": [ - 543, - 56, - 582, - 64 - ], - "score": 1.0, - "content": "Do not write", - "type": "text" - } - ] - }, - { - "bbox": [ - 545, - 64, - 581, - 73 - ], - "spans": [ - { - "bbox": [ - 545, - 64, - 581, - 73 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 556, - 73, - 571, - 81 - ], - "spans": [ - { - "bbox": [ - 556, - 73, - 571, - 81 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 77, - 105, - 95 - ], - "lines": [ - { - "bbox": [ - 50, - 81, - 100, - 92 - ], - "spans": [ - { - "bbox": [ - 50, - 81, - 64, - 92 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 68, - 82, - 79, - 91 - ], - "score": 1.0, - "content": "4 ", - "type": "text" - }, - { - "bbox": [ - 87, - 81, - 100, - 92 - ], - "score": 1.0, - "content": "2", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "12 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 79, - 511, - 106 - ], - "lines": [ - { - "bbox": [ - 114, - 80, - 510, - 92 - ], - "spans": [ - { - "bbox": [ - 114, - 80, - 510, - 92 - ], - "score": 1.0, - "content": "Five components of a CPU are given below. For each row in Table 1, choose the", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 93, - 374, - 105 - ], - "spans": [ - { - "bbox": [ - 113, - 93, - 374, - 105 - ], - "score": 1.0, - "content": "letter A, B, C, D, E that best matches the description.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_11", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 80, - 510, - 105 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 118, - 329, - 132 - ], - "lines": [ - { - "bbox": [ - 114, - 119, - 329, - 131 - ], - "spans": [ - { - "bbox": [ - 114, - 119, - 329, - 131 - ], - "score": 1.0, - "content": "Letters should not be used more than once.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_11", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 119, - 329, - 131 - ] - }, - { - "type": "list", - "bbox": [ - 112, - 145, - 234, - 210 - ], - "lines": [ - { - "bbox": [ - 113, - 144, - 152, - 157 - ], - "spans": [ - { - "bbox": [ - 113, - 144, - 152, - 157 - ], - "score": 1.0, - "content": "A. Bus", - "type": "text" - } - ], - "index": 3, - "is_list_start_line": true - }, - { - "bbox": [ - 113, - 158, - 234, - 170 - ], - "spans": [ - { - "bbox": [ - 113, - 158, - 234, - 170 - ], - "score": 1.0, - "content": "B. Arithmetic Logic Unit", - "type": "text" - } - ], - "index": 4, - "is_list_start_line": true - }, - { - "bbox": [ - 113, - 170, - 192, - 183 - ], - "spans": [ - { - "bbox": [ - 113, - 170, - 192, - 183 - ], - "score": 1.0, - "content": "C. Control Unit ", - "type": "text" - } - ], - "index": 5, - "is_list_start_line": true - }, - { - "bbox": [ - 113, - 183, - 161, - 195 - ], - "spans": [ - { - "bbox": [ - 113, - 183, - 161, - 195 - ], - "score": 1.0, - "content": "D. Clock", - "type": "text" - } - ], - "index": 6, - "is_list_start_line": true - }, - { - "bbox": [ - 113, - 196, - 174, - 210 - ], - "spans": [ - { - "bbox": [ - 113, - 196, - 174, - 210 - ], - "score": 1.0, - "content": "E. Register ", - "type": "text" - } - ], - "index": 7, - "is_list_start_line": true - } - ], - "index": 5, - "page_num": "page_11", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 144, - 234, - 210 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 209, - 535, - 223 - ], - "lines": [ - { - "bbox": [ - 484, - 209, - 536, - 224 - ], - "spans": [ - { - "bbox": [ - 484, - 209, - 536, - 224 - ], - "score": 1.0, - "content": "[3 marks] ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_11", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 484, - 209, - 536, - 224 - ] - }, - { - "type": "table", - "bbox": [ - 161, - 272, - 487, - 405 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 305, - 248, - 344, - 261 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 304, - 249, - 345, - 261 - ], - "spans": [ - { - "bbox": [ - 304, - 249, - 345, - 261 - ], - "score": 1.0, - "content": "Table 1", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "table_body", - "bbox": [ - 161, - 272, - 487, - 405 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 161, - 272, - 487, - 405 - ], - "spans": [ - { - "bbox": [ - 161, - 272, - 487, - 405 - ], - "score": 0.981, - "html": "
DescriptionLetter
Sendsacontinuousseriesofelectronicpulses
Decodesthecurrentinstruction
Completescalculations
", - "type": "table", - "image_path": "ee030c20fa412019264203c879fb1e96bf55afaf39bb8da82fccd3f9acb4bfff.jpg" - } - ] - } - ], - "index": 11, - "virtual_lines": [ - { - "bbox": [ - 161, - 272, - 487, - 316.3333333333333 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 161, - 316.3333333333333, - 487, - 360.66666666666663 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 161, - 360.66666666666663, - 487, - 404.99999999999994 - ], - "spans": [], - "index": 12 - } - ] - } - ], - "index": 10.0, - "page_num": "page_11", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 78, - 526, - 116 - ], - "lines": [ - { - "bbox": [ - 114, - 78, - 526, - 92 - ], - "spans": [ - { - "bbox": [ - 114, - 78, - 526, - 92 - ], - "score": 1.0, - "content": "Social engineering is where someone is tricked or manipulated into providing secure", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 92, - 500, - 104 - ], - "spans": [ - { - "bbox": [ - 114, - 92, - 500, - 104 - ], - "score": 1.0, - "content": "information or access to a secure system. Describe each of the following social", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 114, - 105, - 231, - 117 - ], - "spans": [ - { - "bbox": [ - 114, - 105, - 231, - 117 - ], - "score": 1.0, - "content": "engineering techniques.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 484, - 116, - 535, - 129 - ], - "lines": [ - { - "bbox": [ - 485, - 117, - 536, - 130 - ], - "spans": [ - { - "bbox": [ - 485, - 117, - 536, - 130 - ], - "score": 1.0, - "content": "[3 marks] ", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 113, - 142, - 536, - 234 - ], - "lines": [ - { - "bbox": [ - 114, - 141, - 166, - 158 - ], - "spans": [ - { - "bbox": [ - 114, - 141, - 166, - 158 - ], - "score": 1.0, - "content": "Blagging:", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 113, - 245, - 536, - 337 - ], - "lines": [ - { - "bbox": [ - 113, - 244, - 167, - 261 - ], - "spans": [ - { - "bbox": [ - 113, - 244, - 167, - 261 - ], - "score": 1.0, - "content": "Phishing: ", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 113, - 349, - 536, - 441 - ], - "lines": [ - { - "bbox": [ - 113, - 348, - 184, - 364 - ], - "spans": [ - { - "bbox": [ - 113, - 348, - 184, - 364 - ], - "score": 1.0, - "content": "Shouldering:", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 207, - 583, - 371, - 596 - ], - "lines": [ - { - "bbox": [ - 207, - 583, - 371, - 595 - ], - "spans": [ - { - "bbox": [ - 207, - 583, - 371, - 595 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - } - ], - "layout_bboxes": [], - "page_idx": 12, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 543, - 55, - 580, - 80 - ], - "lines": [ - { - "bbox": [ - 542, - 56, - 581, - 65 - ], - "spans": [ - { - "bbox": [ - 542, - 56, - 581, - 65 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 543, - 64, - 580, - 73 - ], - "spans": [ - { - "bbox": [ - 543, - 64, - 580, - 73 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 554, - 71, - 570, - 82 - ], - "spans": [ - { - "bbox": [ - 554, - 71, - 570, - 82 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 77, - 82, - 94 - ], - "lines": [ - { - "bbox": [ - 50, - 80, - 77, - 91 - ], - "spans": [ - { - "bbox": [ - 50, - 80, - 77, - 91 - ], - "score": 1.0, - "content": "0 5", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "13 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 464, - 774, - 531, - 786 - ], - "lines": [ - { - "bbox": [ - 464, - 775, - 519, - 786 - ], - "spans": [ - { - "bbox": [ - 464, - 775, - 519, - 786 - ], - "score": 1.0, - "content": "Turn over ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 113, - 78, - 526, - 116 - ], - "lines": [ - { - "bbox": [ - 114, - 78, - 526, - 92 - ], - "spans": [ - { - "bbox": [ - 114, - 78, - 526, - 92 - ], - "score": 1.0, - "content": "Social engineering is where someone is tricked or manipulated into providing secure", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 92, - 500, - 104 - ], - "spans": [ - { - "bbox": [ - 114, - 92, - 500, - 104 - ], - "score": 1.0, - "content": "information or access to a secure system. Describe each of the following social", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 114, - 105, - 231, - 117 - ], - "spans": [ - { - "bbox": [ - 114, - 105, - 231, - 117 - ], - "score": 1.0, - "content": "engineering techniques.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1, - "page_num": "page_12", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 78, - 526, - 117 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 116, - 535, - 129 - ], - "lines": [ - { - "bbox": [ - 485, - 117, - 536, - 130 - ], - "spans": [ - { - "bbox": [ - 485, - 117, - 536, - 130 - ], - "score": 1.0, - "content": "[3 marks] ", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_12", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 485, - 117, - 536, - 130 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 142, - 536, - 234 - ], - "lines": [ - { - "bbox": [ - 114, - 141, - 166, - 158 - ], - "spans": [ - { - "bbox": [ - 114, - 141, - 166, - 158 - ], - "score": 1.0, - "content": "Blagging:", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_12", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 141, - 166, - 158 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 245, - 536, - 337 - ], - "lines": [ - { - "bbox": [ - 113, - 244, - 167, - 261 - ], - "spans": [ - { - "bbox": [ - 113, - 244, - 167, - 261 - ], - "score": 1.0, - "content": "Phishing: ", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_12", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 244, - 167, - 261 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 349, - 536, - 441 - ], - "lines": [ - { - "bbox": [ - 113, - 348, - 184, - 364 - ], - "spans": [ - { - "bbox": [ - 113, - 348, - 184, - 364 - ], - "score": 1.0, - "content": "Shouldering:", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_12", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 348, - 184, - 364 - ] - }, - { - "type": "text", - "bbox": [ - 207, - 583, - 371, - 596 - ], - "lines": [ - { - "bbox": [ - 207, - 583, - 371, - 595 - ], - "spans": [ - { - "bbox": [ - 207, - 583, - 371, - 595 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_12", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 207, - 583, - 371, - 595 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 114, - 66, - 307, - 80 - ], - "lines": [ - { - "bbox": [ - 114, - 67, - 307, - 80 - ], - "spans": [ - { - "bbox": [ - 114, - 67, - 307, - 80 - ], - "score": 1.0, - "content": "A sound engineer is recording a singer.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 112, - 94, - 528, - 120 - ], - "lines": [ - { - "bbox": [ - 115, - 96, - 526, - 106 - ], - "spans": [ - { - "bbox": [ - 115, - 96, - 526, - 106 - ], - "score": 1.0, - "content": "Describe why the sound must be converted to a digital format before it can be stored", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 114, - 109, - 227, - 121 - ], - "spans": [ - { - "bbox": [ - 114, - 109, - 227, - 121 - ], - "score": 1.0, - "content": "on a computer system.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5 - }, - { - "type": "text", - "bbox": [ - 484, - 120, - 535, - 134 - ], - "lines": [ - { - "bbox": [ - 484, - 120, - 535, - 134 - ], - "spans": [], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 112, - 123, - 536, - 238 - ], - "lines": [ - { - "bbox": [ - 485, - 120, - 536, - 134 - ], - "spans": [ - { - "bbox": [ - 485, - 120, - 536, - 134 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 113, - 249, - 532, - 289 - ], - "lines": [ - { - "bbox": [ - 114, - 250, - 530, - 263 - ], - "spans": [ - { - "bbox": [ - 114, - 251, - 345, - 263 - ], - "score": 1.0, - "content": "The sound engineer is using a sampling rate of", - "type": "text" - }, - { - "bbox": [ - 346, - 250, - 389, - 262 - ], - "score": 0.61, - "content": "2000\\mathsf{H z}", - "type": "inline_equation", - "height": 12, - "width": 43 - }, - { - "bbox": [ - 389, - 251, - 530, - 263 - ], - "score": 1.0, - "content": " and a sample resolution of 4", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 114, - 264, - 525, - 276 - ], - "spans": [ - { - "bbox": [ - 114, - 264, - 525, - 276 - ], - "score": 1.0, - "content": "bits. What is the minimum file size of a 5-second recording? Your answer should be", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 113, - 277, - 188, - 290 - ], - "spans": [ - { - "bbox": [ - 113, - 277, - 188, - 290 - ], - "score": 1.0, - "content": "given in bytes.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 114, - 302, - 268, - 316 - ], - "lines": [ - { - "bbox": [ - 114, - 302, - 267, - 315 - ], - "spans": [ - { - "bbox": [ - 114, - 302, - 267, - 315 - ], - "score": 1.0, - "content": "You should show your working.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 484, - 315, - 535, - 329 - ], - "lines": [ - { - "bbox": [ - 485, - 316, - 535, - 329 - ], - "spans": [ - { - "bbox": [ - 485, - 316, - 535, - 329 - ], - "score": 1.0, - "content": "[4 marks]", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 112, - 330, - 536, - 538 - ], - "lines": [ - { - "bbox": [ - 112, - 330, - 536, - 399.3333333333333 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 112, - 399.3333333333333, - 536, - 468.66666666666663 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 112, - 468.66666666666663, - 536, - 538.0 - ], - "spans": [], - "index": 12 - } - ], - "index": 11 - } - ], - "layout_bboxes": [], - "page_idx": 13, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 543, - 55, - 581, - 80 - ], - "lines": [ - { - "bbox": [ - 543, - 56, - 582, - 64 - ], - "spans": [ - { - "bbox": [ - 543, - 56, - 582, - 64 - ], - "score": 1.0, - "content": "Do not write", - "type": "text" - } - ] - }, - { - "bbox": [ - 545, - 64, - 581, - 73 - ], - "spans": [ - { - "bbox": [ - 545, - 64, - 581, - 73 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 556, - 73, - 571, - 81 - ], - "spans": [ - { - "bbox": [ - 556, - 73, - 571, - 81 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 92, - 105, - 110 - ], - "lines": [ - { - "bbox": [ - 51, - 95, - 99, - 107 - ], - "spans": [ - { - "bbox": [ - 51, - 95, - 64, - 107 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 68, - 97, - 77, - 106 - ], - "score": 1.0, - "content": "6", - "type": "text" - }, - { - "bbox": [ - 89, - 97, - 99, - 106 - ], - "score": 1.0, - "content": "1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 248, - 105, - 266 - ], - "lines": [ - { - "bbox": [ - 50, - 250, - 102, - 265 - ], - "spans": [ - { - "bbox": [ - 50, - 250, - 102, - 265 - ], - "score": 1.0, - "content": "0 6 . 2 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 46, - 65, - 82, - 82 - ], - "lines": [ - { - "bbox": [ - 51, - 68, - 76, - 79 - ], - "spans": [ - { - "bbox": [ - 51, - 68, - 61, - 79 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 68, - 69, - 76, - 79 - ], - "score": 1.0, - "content": "6", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "14 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 114, - 66, - 307, - 80 - ], - "lines": [ - { - "bbox": [ - 114, - 67, - 307, - 80 - ], - "spans": [ - { - "bbox": [ - 114, - 67, - 307, - 80 - ], - "score": 1.0, - "content": "A sound engineer is recording a singer.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_13", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 67, - 307, - 80 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 94, - 528, - 120 - ], - "lines": [ - { - "bbox": [ - 115, - 96, - 526, - 106 - ], - "spans": [ - { - "bbox": [ - 115, - 96, - 526, - 106 - ], - "score": 1.0, - "content": "Describe why the sound must be converted to a digital format before it can be stored", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 114, - 109, - 227, - 121 - ], - "spans": [ - { - "bbox": [ - 114, - 109, - 227, - 121 - ], - "score": 1.0, - "content": "on a computer system.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5, - "page_num": "page_13", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 96, - 526, - 121 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 120, - 535, - 134 - ], - "lines": [ - { - "bbox": [ - 484, - 120, - 535, - 134 - ], - "spans": [], - "index": 3 - } - ], - "index": 3, - "page_num": "page_13", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 484, - 120, - 535, - 134 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 123, - 536, - 238 - ], - "lines": [ - { - "bbox": [ - 485, - 120, - 536, - 134 - ], - "spans": [ - { - "bbox": [ - 485, - 120, - 536, - 134 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_13", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 485, - 120, - 536, - 134 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 249, - 532, - 289 - ], - "lines": [ - { - "bbox": [ - 114, - 250, - 530, - 263 - ], - "spans": [ - { - "bbox": [ - 114, - 251, - 345, - 263 - ], - "score": 1.0, - "content": "The sound engineer is using a sampling rate of", - "type": "text" - }, - { - "bbox": [ - 346, - 250, - 389, - 262 - ], - "score": 0.61, - "content": "2000\\mathsf{H z}", - "type": "inline_equation", - "height": 12, - "width": 43 - }, - { - "bbox": [ - 389, - 251, - 530, - 263 - ], - "score": 1.0, - "content": " and a sample resolution of 4", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 114, - 264, - 525, - 276 - ], - "spans": [ - { - "bbox": [ - 114, - 264, - 525, - 276 - ], - "score": 1.0, - "content": "bits. What is the minimum file size of a 5-second recording? Your answer should be", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 113, - 277, - 188, - 290 - ], - "spans": [ - { - "bbox": [ - 113, - 277, - 188, - 290 - ], - "score": 1.0, - "content": "given in bytes.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6, - "page_num": "page_13", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 250, - 530, - 290 - ] - }, - { - "type": "text", - "bbox": [ - 114, - 302, - 268, - 316 - ], - "lines": [ - { - "bbox": [ - 114, - 302, - 267, - 315 - ], - "spans": [ - { - "bbox": [ - 114, - 302, - 267, - 315 - ], - "score": 1.0, - "content": "You should show your working.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_13", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 302, - 267, - 315 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 315, - 535, - 329 - ], - "lines": [ - { - "bbox": [ - 485, - 316, - 535, - 329 - ], - "spans": [ - { - "bbox": [ - 485, - 316, - 535, - 329 - ], - "score": 1.0, - "content": "[4 marks]", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_13", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 485, - 316, - 535, - 329 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 330, - 536, - 538 - ], - "lines": [ - { - "bbox": [ - 112, - 330, - 536, - 399.3333333333333 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 112, - 399.3333333333333, - 536, - 468.66666666666663 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 112, - 468.66666666666663, - 536, - 538.0 - ], - "spans": [], - "index": 12 - } - ], - "index": 11, - "page_num": "page_13", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 112, - 330, - 536, - 538.0 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 44, - 53, - 527, - 106 - ], - "lines": [ - { - "bbox": [ - 114, - 55, - 508, - 67 - ], - "spans": [ - { - "bbox": [ - 114, - 55, - 508, - 67 - ], - "score": 1.0, - "content": "The sound engineer currently uses a sample resolution of 4 bits which enables a ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 68, - 513, - 80 - ], - "spans": [ - { - "bbox": [ - 114, - 68, - 513, - 80 - ], - "score": 1.0, - "content": "sample to be stored as one of 16 different bit patterns. She wants to increase the ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 114, - 81, - 526, - 93 - ], - "spans": [ - { - "bbox": [ - 114, - 81, - 526, - 93 - ], - "score": 1.0, - "content": "number of bit patterns available from 16 to 32. Shade one lozenge which shows the", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 113, - 94, - 511, - 106 - ], - "spans": [ - { - "bbox": [ - 113, - 94, - 511, - 106 - ], - "score": 1.0, - "content": "minimum sample resolution (in bits) she can choose that will allow her to do this.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 1.5 - }, - { - "type": "text", - "bbox": [ - 491, - 106, - 535, - 119 - ], - "lines": [ - { - "bbox": [ - 491, - 106, - 535, - 120 - ], - "spans": [ - { - "bbox": [ - 491, - 106, - 535, - 120 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 117, - 152, - 179, - 251 - ], - "lines": [ - { - "bbox": [ - 118, - 152, - 172, - 165 - ], - "spans": [ - { - "bbox": [ - 118, - 152, - 131, - 165 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 142, - 152, - 172, - 165 - ], - "score": 1.0, - "content": "3 bits", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 118, - 181, - 172, - 194 - ], - "spans": [ - { - "bbox": [ - 118, - 181, - 130, - 194 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 142, - 181, - 172, - 194 - ], - "score": 1.0, - "content": "5 bits", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 118, - 209, - 172, - 222 - ], - "spans": [ - { - "bbox": [ - 118, - 209, - 130, - 222 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 142, - 209, - 172, - 222 - ], - "score": 1.0, - "content": "8 bits", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 118, - 237, - 178, - 250 - ], - "spans": [ - { - "bbox": [ - 118, - 238, - 130, - 250 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 143, - 237, - 178, - 250 - ], - "score": 1.0, - "content": "16 bits", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 7.0 - }, - { - "type": "image", - "bbox": [ - 440, - 148, - 469, - 253 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 440, - 148, - 469, - 253 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 440, - 148, - 469, - 253 - ], - "spans": [ - { - "bbox": [ - 440, - 148, - 469, - 253 - ], - "score": 0.63, - "type": "image", - "image_path": "bb20470f62e08855b68c29b8bec4fad7163ccac0351ee46ff08117dd95d93440.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 440, - 148, - 469, - 253 - ], - "spans": [], - "index": 7 - } - ] - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 115, - 283, - 505, - 310 - ], - "lines": [ - { - "bbox": [ - 114, - 284, - 505, - 298 - ], - "spans": [ - { - "bbox": [ - 114, - 284, - 505, - 298 - ], - "score": 1.0, - "content": "Shade one lozenge to show which of the following correctly states the effects of ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 113, - 297, - 256, - 311 - ], - "spans": [ - { - "bbox": [ - 113, - 297, - 256, - 311 - ], - "score": 1.0, - "content": "increasing the sampling rate.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5 - }, - { - "type": "text", - "bbox": [ - 490, - 310, - 535, - 323 - ], - "lines": [ - { - "bbox": [ - 491, - 310, - 536, - 324 - ], - "spans": [ - { - "bbox": [ - 491, - 310, - 536, - 324 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 118, - 342, - 485, - 443 - ], - "lines": [ - { - "bbox": [ - 119, - 343, - 434, - 356 - ], - "spans": [ - { - "bbox": [ - 119, - 344, - 130, - 355 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 143, - 343, - 434, - 356 - ], - "score": 1.0, - "content": "Decreases both the quality of the recording and the file size", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 118, - 371, - 429, - 385 - ], - "spans": [ - { - "bbox": [ - 118, - 371, - 130, - 385 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 143, - 372, - 429, - 385 - ], - "score": 1.0, - "content": "Has no effect on the quality of the recording or the file size", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 118, - 399, - 485, - 414 - ], - "spans": [ - { - "bbox": [ - 118, - 399, - 131, - 414 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 143, - 400, - 485, - 414 - ], - "score": 1.0, - "content": "Improves the quality of the recording and has no effect on the file size ", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 118, - 428, - 453, - 442 - ], - "spans": [ - { - "bbox": [ - 118, - 428, - 130, - 442 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 143, - 429, - 453, - 442 - ], - "score": 1.0, - "content": "Improves the quality of the recording and increases the file size", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 15.0 - }, - { - "type": "image", - "bbox": [ - 497, - 339, - 524, - 443 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 497, - 339, - 524, - 443 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 497, - 339, - 524, - 443 - ], - "spans": [ - { - "bbox": [ - 497, - 339, - 524, - 443 - ], - "score": 0.176, - "type": "image", - "image_path": "f95eeb7928e931242cfc911d362061023c8b6e3e1e3044530f63745bbccdd772.jpg" - } - ] - } - ], - "index": 15, - "virtual_lines": [ - { - "bbox": [ - 497, - 339, - 524, - 443 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 15 - }, - { - "type": "text", - "bbox": [ - 207, - 614, - 371, - 627 - ], - "lines": [ - { - "bbox": [ - 207, - 615, - 371, - 627 - ], - "spans": [ - { - "bbox": [ - 207, - 615, - 371, - 627 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18 - } - ], - "layout_bboxes": [], - "page_idx": 14, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 440, - 148, - 469, - 253 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 440, - 148, - 469, - 253 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 440, - 148, - 469, - 253 - ], - "spans": [ - { - "bbox": [ - 440, - 148, - 469, - 253 - ], - "score": 0.63, - "type": "image", - "image_path": "bb20470f62e08855b68c29b8bec4fad7163ccac0351ee46ff08117dd95d93440.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 440, - 148, - 469, - 253 - ], - "spans": [], - "index": 7 - } - ] - } - ], - "index": 7 - }, - { - "type": "image", - "bbox": [ - 497, - 339, - 524, - 443 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 497, - 339, - 524, - 443 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 497, - 339, - 524, - 443 - ], - "spans": [ - { - "bbox": [ - 497, - 339, - 524, - 443 - ], - "score": 0.176, - "type": "image", - "image_path": "f95eeb7928e931242cfc911d362061023c8b6e3e1e3044530f63745bbccdd772.jpg" - } - ] - } - ], - "index": 15, - "virtual_lines": [ - { - "bbox": [ - 497, - 339, - 524, - 443 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 15 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 45, - 282, - 105, - 299 - ], - "lines": [ - { - "bbox": [ - 51, - 286, - 99, - 296 - ], - "spans": [ - { - "bbox": [ - 51, - 286, - 64, - 296 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 68, - 286, - 77, - 295 - ], - "score": 1.0, - "content": "6", - "type": "text" - }, - { - "bbox": [ - 90, - 286, - 99, - 295 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 543, - 55, - 580, - 80 - ], - "lines": [ - { - "bbox": [ - 542, - 56, - 581, - 65 - ], - "spans": [ - { - "bbox": [ - 542, - 56, - 581, - 65 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 543, - 64, - 580, - 73 - ], - "spans": [ - { - "bbox": [ - 543, - 64, - 580, - 73 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 554, - 71, - 570, - 82 - ], - "spans": [ - { - "bbox": [ - 554, - 71, - 570, - 82 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "15 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 464, - 774, - 531, - 786 - ], - "lines": [ - { - "bbox": [ - 464, - 775, - 519, - 785 - ], - "spans": [ - { - "bbox": [ - 464, - 775, - 519, - 785 - ], - "score": 0.9168607592582703, - "content": "Turn over.", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 52, - 104, - 70 - ], - "lines": [ - { - "bbox": [ - 48, - 53, - 102, - 69 - ], - "spans": [ - { - "bbox": [ - 48, - 53, - 102, - 69 - ], - "score": 1.0, - "content": "0 6 . 3 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 498, - 426, - 522, - 442 - ], - "lines": [] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 44, - 53, - 527, - 106 - ], - "lines": [ - { - "bbox": [ - 114, - 55, - 508, - 67 - ], - "spans": [ - { - "bbox": [ - 114, - 55, - 508, - 67 - ], - "score": 1.0, - "content": "The sound engineer currently uses a sample resolution of 4 bits which enables a ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 68, - 513, - 80 - ], - "spans": [ - { - "bbox": [ - 114, - 68, - 513, - 80 - ], - "score": 1.0, - "content": "sample to be stored as one of 16 different bit patterns. She wants to increase the ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 114, - 81, - 526, - 93 - ], - "spans": [ - { - "bbox": [ - 114, - 81, - 526, - 93 - ], - "score": 1.0, - "content": "number of bit patterns available from 16 to 32. Shade one lozenge which shows the", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 113, - 94, - 511, - 106 - ], - "spans": [ - { - "bbox": [ - 113, - 94, - 511, - 106 - ], - "score": 1.0, - "content": "minimum sample resolution (in bits) she can choose that will allow her to do this.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 1.5, - "page_num": "page_14", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 55, - 526, - 106 - ] - }, - { - "type": "text", - "bbox": [ - 491, - 106, - 535, - 119 - ], - "lines": [ - { - "bbox": [ - 491, - 106, - 535, - 120 - ], - "spans": [ - { - "bbox": [ - 491, - 106, - 535, - 120 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_14", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 106, - 535, - 120 - ] - }, - { - "type": "text", - "bbox": [ - 117, - 152, - 179, - 251 - ], - "lines": [ - { - "bbox": [ - 118, - 152, - 172, - 165 - ], - "spans": [ - { - "bbox": [ - 118, - 152, - 131, - 165 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 142, - 152, - 172, - 165 - ], - "score": 1.0, - "content": "3 bits", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 118, - 181, - 172, - 194 - ], - "spans": [ - { - "bbox": [ - 118, - 181, - 130, - 194 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 142, - 181, - 172, - 194 - ], - "score": 1.0, - "content": "5 bits", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 118, - 209, - 172, - 222 - ], - "spans": [ - { - "bbox": [ - 118, - 209, - 130, - 222 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 142, - 209, - 172, - 222 - ], - "score": 1.0, - "content": "8 bits", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 118, - 237, - 178, - 250 - ], - "spans": [ - { - "bbox": [ - 118, - 238, - 130, - 250 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 143, - 237, - 178, - 250 - ], - "score": 1.0, - "content": "16 bits", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 7.0, - "page_num": "page_14", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 118, - 152, - 178, - 250 - ] - }, - { - "type": "image", - "bbox": [ - 440, - 148, - 469, - 253 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 440, - 148, - 469, - 253 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 440, - 148, - 469, - 253 - ], - "spans": [ - { - "bbox": [ - 440, - 148, - 469, - 253 - ], - "score": 0.63, - "type": "image", - "image_path": "bb20470f62e08855b68c29b8bec4fad7163ccac0351ee46ff08117dd95d93440.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 440, - 148, - 469, - 253 - ], - "spans": [], - "index": 7 - } - ] - } - ], - "index": 7, - "page_num": "page_14", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 115, - 283, - 505, - 310 - ], - "lines": [ - { - "bbox": [ - 114, - 284, - 505, - 298 - ], - "spans": [ - { - "bbox": [ - 114, - 284, - 505, - 298 - ], - "score": 1.0, - "content": "Shade one lozenge to show which of the following correctly states the effects of ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 113, - 297, - 256, - 311 - ], - "spans": [ - { - "bbox": [ - 113, - 297, - 256, - 311 - ], - "score": 1.0, - "content": "increasing the sampling rate.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5, - "page_num": "page_14", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 284, - 505, - 311 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 310, - 535, - 323 - ], - "lines": [ - { - "bbox": [ - 491, - 310, - 536, - 324 - ], - "spans": [ - { - "bbox": [ - 491, - 310, - 536, - 324 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_14", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 310, - 536, - 324 - ] - }, - { - "type": "text", - "bbox": [ - 118, - 342, - 485, - 443 - ], - "lines": [ - { - "bbox": [ - 119, - 343, - 434, - 356 - ], - "spans": [ - { - "bbox": [ - 119, - 344, - 130, - 355 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 143, - 343, - 434, - 356 - ], - "score": 1.0, - "content": "Decreases both the quality of the recording and the file size", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 118, - 371, - 429, - 385 - ], - "spans": [ - { - "bbox": [ - 118, - 371, - 130, - 385 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 143, - 372, - 429, - 385 - ], - "score": 1.0, - "content": "Has no effect on the quality of the recording or the file size", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 118, - 399, - 485, - 414 - ], - "spans": [ - { - "bbox": [ - 118, - 399, - 131, - 414 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 143, - 400, - 485, - 414 - ], - "score": 1.0, - "content": "Improves the quality of the recording and has no effect on the file size ", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 118, - 428, - 453, - 442 - ], - "spans": [ - { - "bbox": [ - 118, - 428, - 130, - 442 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 143, - 429, - 453, - 442 - ], - "score": 1.0, - "content": "Improves the quality of the recording and increases the file size", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 15.0, - "page_num": "page_14", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 118, - 343, - 485, - 442 - ] - }, - { - "type": "image", - "bbox": [ - 497, - 339, - 524, - 443 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 497, - 339, - 524, - 443 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 497, - 339, - 524, - 443 - ], - "spans": [ - { - "bbox": [ - 497, - 339, - 524, - 443 - ], - "score": 0.176, - "type": "image", - "image_path": "f95eeb7928e931242cfc911d362061023c8b6e3e1e3044530f63745bbccdd772.jpg" - } - ] - } - ], - "index": 15, - "virtual_lines": [ - { - "bbox": [ - 497, - 339, - 524, - 443 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 15, - "page_num": "page_14", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 207, - 614, - 371, - 627 - ], - "lines": [ - { - "bbox": [ - 207, - 615, - 371, - 627 - ], - "spans": [ - { - "bbox": [ - 207, - 615, - 371, - 627 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18, - "page_num": "page_14", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 207, - 615, - 371, - 627 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 123, - 66, - 522, - 80 - ], - "lines": [ - { - "bbox": [ - 127, - 67, - 521, - 79 - ], - "spans": [ - { - "bbox": [ - 127, - 67, - 521, - 79 - ], - "score": 1.0, - "content": "The three examples of code shown in Figure 4 are all equivalent to one another.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table", - "bbox": [ - 126, - 116, - 506, - 243 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 267, - 92, - 313, - 105 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 267, - 91, - 313, - 106 - ], - "spans": [ - { - "bbox": [ - 267, - 91, - 313, - 106 - ], - "score": 1.0, - "content": " Figure 4 ", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "table_body", - "bbox": [ - 126, - 116, - 506, - 243 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 126, - 116, - 506, - 243 - ], - "spans": [ - { - "bbox": [ - 126, - 116, - 506, - 243 - ], - "score": 0.968, - "html": "
Example 1Example 2Example3
a←4 b13 IF a=b THEN C ↑a+b ENDIFMOV RO,#4 MOV R1,#3 CMP RO,1 R1 BNE end ADD R2, RO,Rl end: 11111001 0000 0100 1001 0001 0011 0100 0000 0001 1010 0101 0000 1100 0010 00000000 0000 0000 0000 0001 0000
", - "type": "table", - "image_path": "4867dc150e137e28e85607b61bff55f1fe31cd32199d713100bbf7e7bea7fd96.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 126, - 116, - 506, - 158.33333333333334 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 126, - 158.33333333333334, - 506, - 200.66666666666669 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 126, - 200.66666666666669, - 506, - 243.00000000000003 - ], - "spans": [], - "index": 4 - } - ] - }, - { - "type": "table_caption", - "bbox": [ - 125, - 255, - 467, - 269 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 126, - 257, - 466, - 267 - ], - "spans": [ - { - "bbox": [ - 126, - 257, - 466, - 267 - ], - "score": 1.0, - "content": "Shade one lozenge to show the statement that is true about Figure 4.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 486, - 268, - 531, - 282 - ], - "lines": [ - { - "bbox": [ - 486, - 268, - 531, - 282 - ], - "spans": [ - { - "bbox": [ - 486, - 268, - 531, - 282 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "image", - "bbox": [ - 123, - 311, - 527, - 416 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 123, - 311, - 527, - 416 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 123, - 312, - 527, - 416 - ], - "spans": [ - { - "bbox": [ - 123, - 312, - 527, - 416 - ], - "score": 0.186, - "type": "image", - "image_path": "a604ee0ebcc7cc047bf5f8a26c4358794f523676642ee04a1de334558c98b3ff.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 123, - 311, - 527, - 346.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 123, - 346.0, - 527, - 381.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 123, - 381.0, - 527, - 416.0 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 122, - 449, - 534, - 476 - ], - "lines": [ - { - "bbox": [ - 123, - 449, - 533, - 464 - ], - "spans": [ - { - "bbox": [ - 123, - 449, - 533, - 464 - ], - "score": 1.0, - "content": "Explain why a developer, who is good at both low-level and high-level programming,", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 122, - 464, - 439, - 476 - ], - "spans": [ - { - "bbox": [ - 122, - 464, - 439, - 476 - ], - "score": 1.0, - "content": "would normally use high-level languages when writing programs.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5 - }, - { - "type": "text", - "bbox": [ - 486, - 476, - 536, - 489 - ], - "lines": [ - { - "bbox": [ - 486, - 476, - 536, - 489 - ], - "spans": [], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "table", - "bbox": [ - 121, - 482, - 539, - 766 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 121, - 482, - 539, - 766 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 486, - 476, - 537, - 489 - ], - "spans": [ - { - "bbox": [ - 486, - 476, - 537, - 489 - ], - "score": 1.0, - "content": "[4 marks]", - "type": "text" - } - ] - }, - { - "bbox": [ - 121, - 482, - 539, - 766 - ], - "spans": [ - { - "bbox": [ - 121, - 482, - 539, - 766 - ], - "score": 0.508, - "html": "
[syeuu +]
", - "type": "table", - "image_path": "67b41e21ceb6b3a9e01c5367c7310cd3cc25e7afa9673c0856370ce6295b93a7.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 121, - 482, - 539, - 576.6666666666666 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 121, - 576.6666666666666, - 539, - 671.3333333333333 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 121, - 671.3333333333333, - 539, - 765.9999999999999 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 14 - } - ], - "layout_bboxes": [], - "page_idx": 15, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 123, - 311, - 527, - 416 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 123, - 311, - 527, - 416 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 123, - 312, - 527, - 416 - ], - "spans": [ - { - "bbox": [ - 123, - 312, - 527, - 416 - ], - "score": 0.186, - "type": "image", - "image_path": "a604ee0ebcc7cc047bf5f8a26c4358794f523676642ee04a1de334558c98b3ff.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 123, - 311, - 527, - 346.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 123, - 346.0, - 527, - 381.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 123, - 381.0, - 527, - 416.0 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 8 - } - ], - "tables": [ - { - "type": "table", - "bbox": [ - 126, - 116, - 506, - 243 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 267, - 92, - 313, - 105 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 267, - 91, - 313, - 106 - ], - "spans": [ - { - "bbox": [ - 267, - 91, - 313, - 106 - ], - "score": 1.0, - "content": " Figure 4 ", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "table_body", - "bbox": [ - 126, - 116, - 506, - 243 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 126, - 116, - 506, - 243 - ], - "spans": [ - { - "bbox": [ - 126, - 116, - 506, - 243 - ], - "score": 0.968, - "html": "
Example 1Example 2Example3
a←4 b13 IF a=b THEN C ↑a+b ENDIFMOV RO,#4 MOV R1,#3 CMP RO,1 R1 BNE end ADD R2, RO,Rl end: 11111001 0000 0100 1001 0001 0011 0100 0000 0001 1010 0101 0000 1100 0010 00000000 0000 0000 0000 0001 0000
", - "type": "table", - "image_path": "4867dc150e137e28e85607b61bff55f1fe31cd32199d713100bbf7e7bea7fd96.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 126, - 116, - 506, - 158.33333333333334 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 126, - 158.33333333333334, - 506, - 200.66666666666669 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 126, - 200.66666666666669, - 506, - 243.00000000000003 - ], - "spans": [], - "index": 4 - } - ] - }, - { - "type": "table_caption", - "bbox": [ - 125, - 255, - 467, - 269 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 126, - 257, - 466, - 267 - ], - "spans": [ - { - "bbox": [ - 126, - 257, - 466, - 267 - ], - "score": 1.0, - "content": "Shade one lozenge to show the statement that is true about Figure 4.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - } - ], - "index": 3 - }, - { - "type": "table", - "bbox": [ - 121, - 482, - 539, - 766 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 121, - 482, - 539, - 766 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 486, - 476, - 537, - 489 - ], - "spans": [ - { - "bbox": [ - 486, - 476, - 537, - 489 - ], - "score": 1.0, - "content": "[4 marks]", - "type": "text" - } - ] - }, - { - "bbox": [ - 121, - 482, - 539, - 766 - ], - "spans": [ - { - "bbox": [ - 121, - 482, - 539, - 766 - ], - "score": 0.508, - "html": "
[syeuu +]
", - "type": "table", - "image_path": "67b41e21ceb6b3a9e01c5367c7310cd3cc25e7afa9673c0856370ce6295b93a7.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 121, - 482, - 539, - 576.6666666666666 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 121, - 576.6666666666666, - 539, - 671.3333333333333 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 121, - 671.3333333333333, - 539, - 765.9999999999999 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 14 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 40, - 448, - 101, - 466 - ], - "lines": [ - { - "bbox": [ - 43, - 449, - 99, - 465 - ], - "spans": [ - { - "bbox": [ - 43, - 449, - 99, - 465 - ], - "score": 1.0, - "content": "0 7 . 2 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 40, - 253, - 101, - 272 - ], - "lines": [ - { - "bbox": [ - 42, - 254, - 99, - 271 - ], - "spans": [ - { - "bbox": [ - 42, - 254, - 99, - 271 - ], - "score": 1.0, - "content": "0 7 . 1 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 40, - 65, - 77, - 82 - ], - "lines": [ - { - "bbox": [ - 47, - 67, - 72, - 80 - ], - "spans": [ - { - "bbox": [ - 47, - 67, - 72, - 80 - ], - "score": 1.0, - "content": "0 7", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 543, - 55, - 582, - 80 - ], - "lines": [ - { - "bbox": [ - 543, - 55, - 582, - 65 - ], - "spans": [ - { - "bbox": [ - 543, - 55, - 582, - 65 - ], - "score": 1.0, - "content": "Do not write", - "type": "text" - } - ] - }, - { - "bbox": [ - 544, - 64, - 581, - 73 - ], - "spans": [ - { - "bbox": [ - 544, - 64, - 581, - 73 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 556, - 72, - 570, - 80 - ], - "spans": [ - { - "bbox": [ - 556, - 72, - 570, - 80 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "16 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 499, - 313, - 524, - 329 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 500, - 398, - 524, - 414 - ], - "lines": [] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 123, - 66, - 522, - 80 - ], - "lines": [ - { - "bbox": [ - 127, - 67, - 521, - 79 - ], - "spans": [ - { - "bbox": [ - 127, - 67, - 521, - 79 - ], - "score": 1.0, - "content": "The three examples of code shown in Figure 4 are all equivalent to one another.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_15", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 127, - 67, - 521, - 79 - ] - }, - { - "type": "table", - "bbox": [ - 126, - 116, - 506, - 243 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 267, - 92, - 313, - 105 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 267, - 91, - 313, - 106 - ], - "spans": [ - { - "bbox": [ - 267, - 91, - 313, - 106 - ], - "score": 1.0, - "content": " Figure 4 ", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "table_body", - "bbox": [ - 126, - 116, - 506, - 243 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 126, - 116, - 506, - 243 - ], - "spans": [ - { - "bbox": [ - 126, - 116, - 506, - 243 - ], - "score": 0.968, - "html": "
Example 1Example 2Example3
a←4 b13 IF a=b THEN C ↑a+b ENDIFMOV RO,#4 MOV R1,#3 CMP RO,1 R1 BNE end ADD R2, RO,Rl end: 11111001 0000 0100 1001 0001 0011 0100 0000 0001 1010 0101 0000 1100 0010 00000000 0000 0000 0000 0001 0000
", - "type": "table", - "image_path": "4867dc150e137e28e85607b61bff55f1fe31cd32199d713100bbf7e7bea7fd96.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 126, - 116, - 506, - 158.33333333333334 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 126, - 158.33333333333334, - 506, - 200.66666666666669 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 126, - 200.66666666666669, - 506, - 243.00000000000003 - ], - "spans": [], - "index": 4 - } - ] - }, - { - "type": "table_caption", - "bbox": [ - 125, - 255, - 467, - 269 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 126, - 257, - 466, - 267 - ], - "spans": [ - { - "bbox": [ - 126, - 257, - 466, - 267 - ], - "score": 1.0, - "content": "Shade one lozenge to show the statement that is true about Figure 4.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - } - ], - "index": 3, - "page_num": "page_15", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 486, - 268, - 531, - 282 - ], - "lines": [ - { - "bbox": [ - 486, - 268, - 531, - 282 - ], - "spans": [ - { - "bbox": [ - 486, - 268, - 531, - 282 - ], - "score": 1.0, - "content": "[1 mark]", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_15", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 486, - 268, - 531, - 282 - ] - }, - { - "type": "image", - "bbox": [ - 123, - 311, - 527, - 416 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 123, - 311, - 527, - 416 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 123, - 312, - 527, - 416 - ], - "spans": [ - { - "bbox": [ - 123, - 312, - 527, - 416 - ], - "score": 0.186, - "type": "image", - "image_path": "a604ee0ebcc7cc047bf5f8a26c4358794f523676642ee04a1de334558c98b3ff.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 123, - 311, - 527, - 346.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 123, - 346.0, - 527, - 381.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 123, - 381.0, - 527, - 416.0 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 8, - "page_num": "page_15", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 122, - 449, - 534, - 476 - ], - "lines": [ - { - "bbox": [ - 123, - 449, - 533, - 464 - ], - "spans": [ - { - "bbox": [ - 123, - 449, - 533, - 464 - ], - "score": 1.0, - "content": "Explain why a developer, who is good at both low-level and high-level programming,", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 122, - 464, - 439, - 476 - ], - "spans": [ - { - "bbox": [ - 122, - 464, - 439, - 476 - ], - "score": 1.0, - "content": "would normally use high-level languages when writing programs.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5, - "page_num": "page_15", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 122, - 449, - 533, - 476 - ] - }, - { - "type": "text", - "bbox": [ - 486, - 476, - 536, - 489 - ], - "lines": [ - { - "bbox": [ - 486, - 476, - 536, - 489 - ], - "spans": [], - "index": 12 - } - ], - "index": 12, - "page_num": "page_15", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 486, - 476, - 536, - 489 - ] - }, - { - "type": "table", - "bbox": [ - 121, - 482, - 539, - 766 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 121, - 482, - 539, - 766 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 486, - 476, - 537, - 489 - ], - "spans": [ - { - "bbox": [ - 486, - 476, - 537, - 489 - ], - "score": 1.0, - "content": "[4 marks]", - "type": "text" - } - ] - }, - { - "bbox": [ - 121, - 482, - 539, - 766 - ], - "spans": [ - { - "bbox": [ - 121, - 482, - 539, - 766 - ], - "score": 0.508, - "html": "
[syeuu +]
", - "type": "table", - "image_path": "67b41e21ceb6b3a9e01c5367c7310cd3cc25e7afa9673c0856370ce6295b93a7.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 121, - 482, - 539, - 576.6666666666666 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 121, - 576.6666666666666, - 539, - 671.3333333333333 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 121, - 671.3333333333333, - 539, - 765.9999999999999 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 14, - "page_num": "page_15", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 126, - 65, - 466, - 79 - ], - "lines": [ - { - "bbox": [ - 127, - 67, - 465, - 79 - ], - "spans": [ - { - "bbox": [ - 127, - 67, - 465, - 79 - ], - "score": 1.0, - "content": "Statements A and B refer to two different types of program translator.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 127, - 91, - 516, - 142 - ], - "lines": [ - { - "bbox": [ - 126, - 92, - 517, - 106 - ], - "spans": [ - { - "bbox": [ - 126, - 92, - 517, - 106 - ], - "score": 1.0, - "content": "Statement A: This type of translator can convert a high-level language program ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 126, - 106, - 495, - 117 - ], - "spans": [ - { - "bbox": [ - 126, - 106, - 495, - 117 - ], - "score": 1.0, - "content": "into machine code. The source code is analysed fully during the translation", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 127, - 118, - 500, - 130 - ], - "spans": [ - { - "bbox": [ - 127, - 118, - 500, - 130 - ], - "score": 1.0, - "content": "process. The result of this translation can be saved, meaning the translation", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 127, - 131, - 316, - 141 - ], - "spans": [ - { - "bbox": [ - 127, - 131, - 316, - 141 - ], - "score": 1.0, - "content": "process does not need to be repeated.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 2.5 - }, - { - "type": "text", - "bbox": [ - 126, - 155, - 463, - 181 - ], - "lines": [ - { - "bbox": [ - 127, - 155, - 463, - 168 - ], - "spans": [ - { - "bbox": [ - 127, - 155, - 463, - 168 - ], - "score": 1.0, - "content": "Statement B: This type of translator was used to convert the code in", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 127, - 168, - 368, - 180 - ], - "spans": [ - { - "bbox": [ - 127, - 168, - 368, - 180 - ], - "score": 1.0, - "content": "Example 2 to the code in Example 3 in Figure 4.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5.5 - }, - { - "type": "text", - "bbox": [ - 126, - 192, - 475, - 206 - ], - "lines": [ - { - "bbox": [ - 127, - 194, - 475, - 206 - ], - "spans": [ - { - "bbox": [ - 127, - 194, - 475, - 206 - ], - "score": 1.0, - "content": "State the type of program translators referred to in statements A and B.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 482, - 218, - 533, - 232 - ], - "lines": [ - { - "bbox": [ - 482, - 218, - 534, - 232 - ], - "spans": [ - { - "bbox": [ - 482, - 218, - 534, - 232 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 125, - 242, - 536, - 349 - ], - "lines": [ - { - "bbox": [ - 130, - 243, - 196, - 257 - ], - "spans": [ - { - "bbox": [ - 130, - 243, - 196, - 257 - ], - "score": 1.0, - "content": "Statement A:", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 130, - 309, - 196, - 321 - ], - "spans": [ - { - "bbox": [ - 130, - 309, - 196, - 321 - ], - "score": 1.0, - "content": "Statement B:", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9.5 - }, - { - "type": "text", - "bbox": [ - 207, - 525, - 371, - 538 - ], - "lines": [ - { - "bbox": [ - 207, - 525, - 371, - 537 - ], - "spans": [ - { - "bbox": [ - 207, - 525, - 371, - 537 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - } - ], - "layout_bboxes": [], - "page_idx": 16, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 542, - 55, - 580, - 80 - ], - "lines": [ - { - "bbox": [ - 542, - 56, - 581, - 65 - ], - "spans": [ - { - "bbox": [ - 542, - 56, - 581, - 65 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 543, - 64, - 580, - 73 - ], - "spans": [ - { - "bbox": [ - 543, - 64, - 580, - 73 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 554, - 71, - 570, - 82 - ], - "spans": [ - { - "bbox": [ - 554, - 71, - 570, - 82 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 40, - 64, - 101, - 83 - ], - "lines": [ - { - "bbox": [ - 45, - 68, - 98, - 81 - ], - "spans": [ - { - "bbox": [ - 45, - 68, - 83, - 80 - ], - "score": 1.0, - "content": "0 7 . ", - "type": "text" - }, - { - "bbox": [ - 77, - 68, - 98, - 81 - ], - "score": 1.0, - "content": "3 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 464, - 774, - 531, - 786 - ], - "lines": [ - { - "bbox": [ - 464, - 775, - 518, - 785 - ], - "spans": [ - { - "bbox": [ - 464, - 775, - 518, - 785 - ], - "score": 0.9998342990875244, - "content": "Turn over", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 295, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "17 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 126, - 65, - 466, - 79 - ], - "lines": [ - { - "bbox": [ - 127, - 67, - 465, - 79 - ], - "spans": [ - { - "bbox": [ - 127, - 67, - 465, - 79 - ], - "score": 1.0, - "content": "Statements A and B refer to two different types of program translator.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_16", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 127, - 67, - 465, - 79 - ] - }, - { - "type": "text", - "bbox": [ - 127, - 91, - 516, - 142 - ], - "lines": [ - { - "bbox": [ - 126, - 92, - 517, - 106 - ], - "spans": [ - { - "bbox": [ - 126, - 92, - 517, - 106 - ], - "score": 1.0, - "content": "Statement A: This type of translator can convert a high-level language program ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 126, - 106, - 495, - 117 - ], - "spans": [ - { - "bbox": [ - 126, - 106, - 495, - 117 - ], - "score": 1.0, - "content": "into machine code. The source code is analysed fully during the translation", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 127, - 118, - 500, - 130 - ], - "spans": [ - { - "bbox": [ - 127, - 118, - 500, - 130 - ], - "score": 1.0, - "content": "process. The result of this translation can be saved, meaning the translation", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 127, - 131, - 316, - 141 - ], - "spans": [ - { - "bbox": [ - 127, - 131, - 316, - 141 - ], - "score": 1.0, - "content": "process does not need to be repeated.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 2.5, - "page_num": "page_16", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 126, - 92, - 517, - 141 - ] - }, - { - "type": "text", - "bbox": [ - 126, - 155, - 463, - 181 - ], - "lines": [ - { - "bbox": [ - 127, - 155, - 463, - 168 - ], - "spans": [ - { - "bbox": [ - 127, - 155, - 463, - 168 - ], - "score": 1.0, - "content": "Statement B: This type of translator was used to convert the code in", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 127, - 168, - 368, - 180 - ], - "spans": [ - { - "bbox": [ - 127, - 168, - 368, - 180 - ], - "score": 1.0, - "content": "Example 2 to the code in Example 3 in Figure 4.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5.5, - "page_num": "page_16", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 127, - 155, - 463, - 180 - ] - }, - { - "type": "text", - "bbox": [ - 126, - 192, - 475, - 206 - ], - "lines": [ - { - "bbox": [ - 127, - 194, - 475, - 206 - ], - "spans": [ - { - "bbox": [ - 127, - 194, - 475, - 206 - ], - "score": 1.0, - "content": "State the type of program translators referred to in statements A and B.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_16", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 127, - 194, - 475, - 206 - ] - }, - { - "type": "text", - "bbox": [ - 482, - 218, - 533, - 232 - ], - "lines": [ - { - "bbox": [ - 482, - 218, - 534, - 232 - ], - "spans": [ - { - "bbox": [ - 482, - 218, - 534, - 232 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_16", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 482, - 218, - 534, - 232 - ] - }, - { - "type": "text", - "bbox": [ - 125, - 242, - 536, - 349 - ], - "lines": [ - { - "bbox": [ - 130, - 243, - 196, - 257 - ], - "spans": [ - { - "bbox": [ - 130, - 243, - 196, - 257 - ], - "score": 1.0, - "content": "Statement A:", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 130, - 309, - 196, - 321 - ], - "spans": [ - { - "bbox": [ - 130, - 309, - 196, - 321 - ], - "score": 1.0, - "content": "Statement B:", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9.5, - "page_num": "page_16", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 130, - 243, - 196, - 321 - ] - }, - { - "type": "text", - "bbox": [ - 207, - 525, - 371, - 538 - ], - "lines": [ - { - "bbox": [ - 207, - 525, - 371, - 537 - ], - "spans": [ - { - "bbox": [ - 207, - 525, - 371, - 537 - ], - "score": 1.0, - "content": "Turn over for the next question", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_16", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 207, - 525, - 371, - 537 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 78, - 347, - 93 - ], - "lines": [ - { - "bbox": [ - 114, - 79, - 345, - 92 - ], - "spans": [ - { - "bbox": [ - 114, - 79, - 345, - 92 - ], - "score": 1.0, - "content": "Complete the truth table for the AND logic gate.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 490, - 92, - 535, - 106 - ], - "lines": [ - { - "bbox": [ - 490, - 92, - 536, - 106 - ], - "spans": [ - { - "bbox": [ - 490, - 92, - 536, - 106 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 195, - 117, - 454, - 263 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 195, - 117, - 454, - 263 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 195, - 117, - 454, - 263 - ], - "spans": [ - { - "bbox": [ - 195, - 117, - 454, - 263 - ], - "score": 0.979, - "html": "
ABA AND B
00
01
10
11
", - "type": "table", - "image_path": "960399d4e891a964880d9cf05be9e750b128387430faeaa16f9d0a3f1cd091ee.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 195, - 117, - 454, - 165.66666666666666 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 195, - 165.66666666666666, - 454, - 214.33333333333331 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 195, - 214.33333333333331, - 454, - 263.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 110, - 326, - 538, - 353 - ], - "lines": [ - { - "bbox": [ - 114, - 327, - 534, - 340 - ], - "spans": [ - { - "bbox": [ - 114, - 327, - 534, - 340 - ], - "score": 1.0, - "content": "A logic circuit is being developed for an audio advert in a shop that plays automatically", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 113, - 340, - 273, - 353 - ], - "spans": [ - { - "bbox": [ - 113, - 340, - 273, - 353 - ], - "score": 1.0, - "content": "if a customer is detected nearby.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5.5 - }, - { - "type": "text", - "bbox": [ - 131, - 365, - 530, - 419 - ], - "lines": [ - { - "bbox": [ - 149, - 366, - 528, - 378 - ], - "spans": [ - { - "bbox": [ - 149, - 366, - 294, - 378 - ], - "score": 1.0, - "content": "The system has two sensors,", - "type": "text" - }, - { - "bbox": [ - 295, - 366, - 308, - 378 - ], - "score": 0.76, - "content": "\\mathsf{A}_{1}", - "type": "inline_equation", - "height": 12, - "width": 13 - }, - { - "bbox": [ - 308, - 366, - 330, - 378 - ], - "score": 1.0, - "content": " and", - "type": "text" - }, - { - "bbox": [ - 330, - 366, - 344, - 378 - ], - "score": 0.79, - "content": "\\mathsf{A}_{2}", - "type": "inline_equation", - "height": 12, - "width": 14 - }, - { - "bbox": [ - 344, - 366, - 528, - 378 - ], - "score": 1.0, - "content": ", that detect if a customer is near. The", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 150, - 380, - 390, - 391 - ], - "spans": [ - { - "bbox": [ - 150, - 380, - 390, - 391 - ], - "score": 1.0, - "content": "audio plays if either of these sensors is activated.", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 149, - 393, - 492, - 405 - ], - "spans": [ - { - "bbox": [ - 149, - 393, - 492, - 405 - ], - "score": 1.0, - "content": "The system should only play if another audio system, S, is not playing.", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 148, - 406, - 510, - 420 - ], - "spans": [ - { - "bbox": [ - 148, - 406, - 510, - 420 - ], - "score": 1.0, - "content": "The output from the circuit, for whether the advert should play or not, is Q.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 8.5 - }, - { - "type": "text", - "bbox": [ - 113, - 431, - 315, - 445 - ], - "lines": [ - { - "bbox": [ - 115, - 433, - 314, - 444 - ], - "spans": [ - { - "bbox": [ - 115, - 433, - 314, - 444 - ], - "score": 1.0, - "content": "Complete the logic circuit for this system.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 484, - 445, - 535, - 458 - ], - "lines": [ - { - "bbox": [ - 485, - 444, - 536, - 459 - ], - "spans": [ - { - "bbox": [ - 485, - 444, - 536, - 459 - ], - "score": 1.0, - "content": "[3 marks] ", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "image", - "bbox": [ - 101, - 468, - 535, - 766 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 101, - 468, - 535, - 766 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 101, - 468, - 535, - 766 - ], - "spans": [ - { - "bbox": [ - 101, - 468, - 535, - 766 - ], - "score": 0.408, - "type": "image", - "image_path": "10ceaa3c143dbf32bee4f3b3093ede11d1a8d38d97e4d329f4c0c2738ece031f.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 101, - 468, - 535, - 567.3333333333334 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 101, - 567.3333333333334, - 535, - 666.6666666666667 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 101, - 666.6666666666667, - 535, - 766.0000000000001 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 14 - } - ], - "layout_bboxes": [], - "page_idx": 17, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 101, - 468, - 535, - 766 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 101, - 468, - 535, - 766 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 101, - 468, - 535, - 766 - ], - "spans": [ - { - "bbox": [ - 101, - 468, - 535, - 766 - ], - "score": 0.408, - "type": "image", - "image_path": "10ceaa3c143dbf32bee4f3b3093ede11d1a8d38d97e4d329f4c0c2738ece031f.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 101, - 468, - 535, - 567.3333333333334 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 101, - 567.3333333333334, - 535, - 666.6666666666667 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 101, - 666.6666666666667, - 535, - 766.0000000000001 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 14 - } - ], - "tables": [ - { - "type": "table", - "bbox": [ - 195, - 117, - 454, - 263 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 195, - 117, - 454, - 263 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 195, - 117, - 454, - 263 - ], - "spans": [ - { - "bbox": [ - 195, - 117, - 454, - 263 - ], - "score": 0.979, - "html": "
ABA AND B
00
01
10
11
", - "type": "table", - "image_path": "960399d4e891a964880d9cf05be9e750b128387430faeaa16f9d0a3f1cd091ee.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 195, - 117, - 454, - 165.66666666666666 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 195, - 165.66666666666666, - 454, - 214.33333333333331 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 195, - 214.33333333333331, - 454, - 263.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 45, - 325, - 105, - 343 - ], - "lines": [ - { - "bbox": [ - 50, - 326, - 102, - 341 - ], - "spans": [ - { - "bbox": [ - 50, - 326, - 102, - 341 - ], - "score": 1.0, - "content": "0 8 . 2 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 77, - 105, - 95 - ], - "lines": [ - { - "bbox": [ - 50, - 80, - 99, - 92 - ], - "spans": [ - { - "bbox": [ - 50, - 80, - 65, - 92 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 67, - 81, - 78, - 91 - ], - "score": 1.0, - "content": "8 ", - "type": "text" - }, - { - "bbox": [ - 89, - 81, - 99, - 91 - ], - "score": 1.0, - "content": "1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 543, - 55, - 582, - 80 - ], - "lines": [ - { - "bbox": [ - 543, - 55, - 582, - 65 - ], - "spans": [ - { - "bbox": [ - 543, - 55, - 582, - 65 - ], - "score": 1.0, - "content": "Do not write", - "type": "text" - } - ] - }, - { - "bbox": [ - 544, - 64, - 581, - 73 - ], - "spans": [ - { - "bbox": [ - 544, - 64, - 581, - 73 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 556, - 72, - 571, - 81 - ], - "spans": [ - { - "bbox": [ - 556, - 72, - 571, - 81 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 283, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "18 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 78, - 347, - 93 - ], - "lines": [ - { - "bbox": [ - 114, - 79, - 345, - 92 - ], - "spans": [ - { - "bbox": [ - 114, - 79, - 345, - 92 - ], - "score": 1.0, - "content": "Complete the truth table for the AND logic gate.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_17", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 79, - 345, - 92 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 92, - 535, - 106 - ], - "lines": [ - { - "bbox": [ - 490, - 92, - 536, - 106 - ], - "spans": [ - { - "bbox": [ - 490, - 92, - 536, - 106 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_17", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 490, - 92, - 536, - 106 - ] - }, - { - "type": "table", - "bbox": [ - 195, - 117, - 454, - 263 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 195, - 117, - 454, - 263 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 195, - 117, - 454, - 263 - ], - "spans": [ - { - "bbox": [ - 195, - 117, - 454, - 263 - ], - "score": 0.979, - "html": "
ABA AND B
00
01
10
11
", - "type": "table", - "image_path": "960399d4e891a964880d9cf05be9e750b128387430faeaa16f9d0a3f1cd091ee.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 195, - 117, - 454, - 165.66666666666666 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 195, - 165.66666666666666, - 454, - 214.33333333333331 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 195, - 214.33333333333331, - 454, - 263.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3, - "page_num": "page_17", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 110, - 326, - 538, - 353 - ], - "lines": [ - { - "bbox": [ - 114, - 327, - 534, - 340 - ], - "spans": [ - { - "bbox": [ - 114, - 327, - 534, - 340 - ], - "score": 1.0, - "content": "A logic circuit is being developed for an audio advert in a shop that plays automatically", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 113, - 340, - 273, - 353 - ], - "spans": [ - { - "bbox": [ - 113, - 340, - 273, - 353 - ], - "score": 1.0, - "content": "if a customer is detected nearby.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5.5, - "page_num": "page_17", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 327, - 534, - 353 - ] - }, - { - "type": "text", - "bbox": [ - 131, - 365, - 530, - 419 - ], - "lines": [ - { - "bbox": [ - 149, - 366, - 528, - 378 - ], - "spans": [ - { - "bbox": [ - 149, - 366, - 294, - 378 - ], - "score": 1.0, - "content": "The system has two sensors,", - "type": "text" - }, - { - "bbox": [ - 295, - 366, - 308, - 378 - ], - "score": 0.76, - "content": "\\mathsf{A}_{1}", - "type": "inline_equation", - "height": 12, - "width": 13 - }, - { - "bbox": [ - 308, - 366, - 330, - 378 - ], - "score": 1.0, - "content": " and", - "type": "text" - }, - { - "bbox": [ - 330, - 366, - 344, - 378 - ], - "score": 0.79, - "content": "\\mathsf{A}_{2}", - "type": "inline_equation", - "height": 12, - "width": 14 - }, - { - "bbox": [ - 344, - 366, - 528, - 378 - ], - "score": 1.0, - "content": ", that detect if a customer is near. The", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 150, - 380, - 390, - 391 - ], - "spans": [ - { - "bbox": [ - 150, - 380, - 390, - 391 - ], - "score": 1.0, - "content": "audio plays if either of these sensors is activated.", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 149, - 393, - 492, - 405 - ], - "spans": [ - { - "bbox": [ - 149, - 393, - 492, - 405 - ], - "score": 1.0, - "content": "The system should only play if another audio system, S, is not playing.", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 148, - 406, - 510, - 420 - ], - "spans": [ - { - "bbox": [ - 148, - 406, - 510, - 420 - ], - "score": 1.0, - "content": "The output from the circuit, for whether the advert should play or not, is Q.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 8.5, - "page_num": "page_17", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 148, - 366, - 528, - 420 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 431, - 315, - 445 - ], - "lines": [ - { - "bbox": [ - 115, - 433, - 314, - 444 - ], - "spans": [ - { - "bbox": [ - 115, - 433, - 314, - 444 - ], - "score": 1.0, - "content": "Complete the logic circuit for this system.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_17", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 115, - 433, - 314, - 444 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 445, - 535, - 458 - ], - "lines": [ - { - "bbox": [ - 485, - 444, - 536, - 459 - ], - "spans": [ - { - "bbox": [ - 485, - 444, - 536, - 459 - ], - "score": 1.0, - "content": "[3 marks] ", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_17", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 485, - 444, - 536, - 459 - ] - }, - { - "type": "image", - "bbox": [ - 101, - 468, - 535, - 766 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 101, - 468, - 535, - 766 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 101, - 468, - 535, - 766 - ], - "spans": [ - { - "bbox": [ - 101, - 468, - 535, - 766 - ], - "score": 0.408, - "type": "image", - "image_path": "10ceaa3c143dbf32bee4f3b3093ede11d1a8d38d97e4d329f4c0c2738ece031f.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 101, - 468, - 535, - 567.3333333333334 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 101, - 567.3333333333334, - 535, - 666.6666666666667 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 101, - 666.6666666666667, - 535, - 766.0000000000001 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 14, - "page_num": "page_17", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "image", - "bbox": [ - 39, - 44, - 539, - 764 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 39, - 44, - 539, - 764 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 39, - 44, - 539, - 764 - ], - "spans": [ - { - "bbox": [ - 39, - 44, - 539, - 764 - ], - "score": 0.742, - "type": "image", - "image_path": "2b09f88e4798039f7c0dc725a7432b3c6074d0e8af21b11f153de211beb736b3.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 39, - 44, - 539, - 284.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 39, - 284.0, - 539, - 524.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 39, - 524.0, - 539, - 764.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 18, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 39, - 44, - 539, - 764 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 39, - 44, - 539, - 764 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 39, - 44, - 539, - 764 - ], - "spans": [ - { - "bbox": [ - 39, - 44, - 539, - 764 - ], - "score": 0.742, - "type": "image", - "image_path": "2b09f88e4798039f7c0dc725a7432b3c6074d0e8af21b11f153de211beb736b3.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 39, - 44, - 539, - 284.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 39, - 284.0, - 539, - 524.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 39, - 524.0, - 539, - 764.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 283, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "19 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 464, - 774, - 530, - 786 - ], - "lines": [ - { - "bbox": [ - 464, - 775, - 519, - 785 - ], - "spans": [ - { - "bbox": [ - 464, - 775, - 519, - 785 - ], - "score": 0.9168607592582703, - "content": "Turn over.", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 542, - 55, - 581, - 81 - ], - "lines": [ - { - "bbox": [ - 542, - 56, - 581, - 65 - ], - "spans": [ - { - "bbox": [ - 542, - 56, - 581, - 65 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 543, - 64, - 580, - 73 - ], - "spans": [ - { - "bbox": [ - 543, - 64, - 580, - 73 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 554, - 73, - 569, - 81 - ], - "spans": [ - { - "bbox": [ - 554, - 73, - 569, - 81 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "image", - "bbox": [ - 39, - 44, - 539, - 764 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 39, - 44, - 539, - 764 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 39, - 44, - 539, - 764 - ], - "spans": [ - { - "bbox": [ - 39, - 44, - 539, - 764 - ], - "score": 0.742, - "type": "image", - "image_path": "2b09f88e4798039f7c0dc725a7432b3c6074d0e8af21b11f153de211beb736b3.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 39, - 44, - 539, - 284.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 39, - 284.0, - 539, - 524.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 39, - 524.0, - 539, - 764.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_18", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 114, - 68, - 536, - 107 - ], - "lines": [ - { - "bbox": [ - 113, - 69, - 536, - 81 - ], - "spans": [ - { - "bbox": [ - 113, - 69, - 536, - 81 - ], - "score": 1.0, - "content": "A relational database is being developed to store information about the games that are", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 83, - 530, - 95 - ], - "spans": [ - { - "bbox": [ - 114, - 83, - 530, - 95 - ], - "score": 1.0, - "content": "available to play at a games café and the advance bookings that have been made for", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 114, - 96, - 343, - 107 - ], - "spans": [ - { - "bbox": [ - 114, - 96, - 343, - 107 - ], - "score": 1.0, - "content": "those games. Each game has a unique name.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 114, - 124, - 387, - 137 - ], - "lines": [ - { - "bbox": [ - 113, - 123, - 387, - 138 - ], - "spans": [ - { - "bbox": [ - 113, - 123, - 387, - 138 - ], - "score": 1.0, - "content": "The database contains two tables: Game and Booking.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 114, - 154, - 515, - 181 - ], - "lines": [ - { - "bbox": [ - 114, - 155, - 512, - 167 - ], - "spans": [ - { - "bbox": [ - 114, - 155, - 512, - 167 - ], - "score": 1.0, - "content": "The database is currently being tested by the person who has developed it so the", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 114, - 168, - 512, - 181 - ], - "spans": [ - { - "bbox": [ - 114, - 168, - 512, - 181 - ], - "score": 1.0, - "content": "database tables only contain a small amount of data that is being used for testing.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5 - }, - { - "type": "text", - "bbox": [ - 114, - 196, - 357, - 211 - ], - "lines": [ - { - "bbox": [ - 114, - 198, - 355, - 209 - ], - "spans": [ - { - "bbox": [ - 114, - 198, - 355, - 209 - ], - "score": 1.0, - "content": "The contents of the tables are shown in Figure 5.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "title", - "bbox": [ - 303, - 240, - 349, - 254 - ], - "lines": [ - { - "bbox": [ - 303, - 241, - 349, - 254 - ], - "spans": [ - { - "bbox": [ - 303, - 241, - 349, - 254 - ], - "score": 1.0, - "content": "Figure 5 ", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 113, - 286, - 518, - 419 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 119, - 271, - 152, - 283 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 119, - 270, - 153, - 284 - ], - "spans": [ - { - "bbox": [ - 119, - 270, - 153, - 284 - ], - "score": 1.0, - "content": "Game ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "table_body", - "bbox": [ - 113, - 286, - 518, - 419 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 113, - 286, - 518, - 419 - ], - "spans": [ - { - "bbox": [ - 113, - 286, - 518, - 419 - ], - "score": 0.985, - "html": "
NameMinPlayersMaxPlayersLengthOfGameComplexity
Friday11252.12
Scythe15903.37
Terra Mystica251003.95
Agricola14903.31
Pandemic24452.42
", - "type": "table", - "image_path": "f20f2cf15525bc788493eb06730adf1a4265d1001aa98ad211e8bd92c23efc26.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 113, - 286, - 518, - 330.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 113, - 330.3333333333333, - 518, - 374.66666666666663 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 113, - 374.66666666666663, - 518, - 418.99999999999994 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 9.0 - }, - { - "type": "table", - "bbox": [ - 114, - 464, - 526, - 596 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 118, - 448, - 166, - 461 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 119, - 447, - 166, - 463 - ], - "spans": [ - { - "bbox": [ - 119, - 447, - 166, - 463 - ], - "score": 1.0, - "content": "Booking", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "table_body", - "bbox": [ - 114, - 464, - 526, - 596 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 114, - 464, - 526, - 596 - ], - "spans": [ - { - "bbox": [ - 114, - 464, - 526, - 596 - ], - "score": 0.981, - "html": "
GameTablelDNameDateStartTimeCustomerHours
1Friday28/05/1911Hawkins1
2Scythe28/05/1911Jemisin1
3Pandemic28/05/1915Gormally1
1Pandemic28/05/1913Van Perlo2
1Terra Mystica29/05/1915Hawkins2
", - "type": "table", - "image_path": "5601a09087e108f54341f1d688daf2dd5dfbb9b4d34f94ec568b793bcebf6f21.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 114, - 464, - 526, - 508.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 114, - 508.0, - 526, - 552.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 114, - 552.0, - 526, - 596.0 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 13.0 - }, - { - "type": "text", - "bbox": [ - 112, - 633, - 388, - 648 - ], - "lines": [ - { - "bbox": [ - 114, - 634, - 388, - 647 - ], - "spans": [ - { - "bbox": [ - 114, - 634, - 388, - 647 - ], - "score": 1.0, - "content": "State the field in the Booking table that is a foreign key.", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16 - }, - { - "type": "text", - "bbox": [ - 92, - 647, - 536, - 766 - ], - "lines": [ - { - "bbox": [ - 490, - 647, - 536, - 662 - ], - "spans": [ - { - "bbox": [ - 490, - 647, - 536, - 662 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 17 - } - ], - "layout_bboxes": [], - "page_idx": 19, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 113, - 286, - 518, - 419 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 119, - 271, - 152, - 283 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 119, - 270, - 153, - 284 - ], - "spans": [ - { - "bbox": [ - 119, - 270, - 153, - 284 - ], - "score": 1.0, - "content": "Game ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "table_body", - "bbox": [ - 113, - 286, - 518, - 419 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 113, - 286, - 518, - 419 - ], - "spans": [ - { - "bbox": [ - 113, - 286, - 518, - 419 - ], - "score": 0.985, - "html": "
NameMinPlayersMaxPlayersLengthOfGameComplexity
Friday11252.12
Scythe15903.37
Terra Mystica251003.95
Agricola14903.31
Pandemic24452.42
", - "type": "table", - "image_path": "f20f2cf15525bc788493eb06730adf1a4265d1001aa98ad211e8bd92c23efc26.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 113, - 286, - 518, - 330.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 113, - 330.3333333333333, - 518, - 374.66666666666663 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 113, - 374.66666666666663, - 518, - 418.99999999999994 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 9.0 - }, - { - "type": "table", - "bbox": [ - 114, - 464, - 526, - 596 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 118, - 448, - 166, - 461 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 119, - 447, - 166, - 463 - ], - "spans": [ - { - "bbox": [ - 119, - 447, - 166, - 463 - ], - "score": 1.0, - "content": "Booking", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "table_body", - "bbox": [ - 114, - 464, - 526, - 596 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 114, - 464, - 526, - 596 - ], - "spans": [ - { - "bbox": [ - 114, - 464, - 526, - 596 - ], - "score": 0.981, - "html": "
GameTablelDNameDateStartTimeCustomerHours
1Friday28/05/1911Hawkins1
2Scythe28/05/1911Jemisin1
3Pandemic28/05/1915Gormally1
1Pandemic28/05/1913Van Perlo2
1Terra Mystica29/05/1915Hawkins2
", - "type": "table", - "image_path": "5601a09087e108f54341f1d688daf2dd5dfbb9b4d34f94ec568b793bcebf6f21.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 114, - 464, - 526, - 508.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 114, - 508.0, - 526, - 552.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 114, - 552.0, - 526, - 596.0 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 13.0 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 543, - 55, - 581, - 80 - ], - "lines": [ - { - "bbox": [ - 543, - 55, - 582, - 65 - ], - "spans": [ - { - "bbox": [ - 543, - 55, - 582, - 65 - ], - "score": 1.0, - "content": "Do not write", - "type": "text" - } - ] - }, - { - "bbox": [ - 545, - 64, - 581, - 73 - ], - "spans": [ - { - "bbox": [ - 545, - 64, - 581, - 73 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 556, - 72, - 571, - 81 - ], - "spans": [ - { - "bbox": [ - 556, - 72, - 571, - 81 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 632, - 105, - 650 - ], - "lines": [ - { - "bbox": [ - 51, - 636, - 100, - 647 - ], - "spans": [ - { - "bbox": [ - 51, - 636, - 64, - 646 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 65, - 636, - 80, - 646 - ], - "score": 1.0, - "content": "9 ", - "type": "text" - }, - { - "bbox": [ - 82, - 636, - 100, - 647 - ], - "score": 1.0, - "content": ". 1", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 65, - 82, - 82 - ], - "lines": [ - { - "bbox": [ - 51, - 69, - 77, - 79 - ], - "spans": [ - { - "bbox": [ - 51, - 69, - 61, - 79 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 66, - 69, - 77, - 79 - ], - "score": 1.0, - "content": "9", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 280, - 27, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 280, - 27, - 298, - 42 - ], - "score": 1.0, - "content": "20 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 114, - 68, - 536, - 107 - ], - "lines": [ - { - "bbox": [ - 113, - 69, - 536, - 81 - ], - "spans": [ - { - "bbox": [ - 113, - 69, - 536, - 81 - ], - "score": 1.0, - "content": "A relational database is being developed to store information about the games that are", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 83, - 530, - 95 - ], - "spans": [ - { - "bbox": [ - 114, - 83, - 530, - 95 - ], - "score": 1.0, - "content": "available to play at a games café and the advance bookings that have been made for", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 114, - 96, - 343, - 107 - ], - "spans": [ - { - "bbox": [ - 114, - 96, - 343, - 107 - ], - "score": 1.0, - "content": "those games. Each game has a unique name.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 69, - 536, - 107 - ] - }, - { - "type": "text", - "bbox": [ - 114, - 124, - 387, - 137 - ], - "lines": [ - { - "bbox": [ - 113, - 123, - 387, - 138 - ], - "spans": [ - { - "bbox": [ - 113, - 123, - 387, - 138 - ], - "score": 1.0, - "content": "The database contains two tables: Game and Booking.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 123, - 387, - 138 - ] - }, - { - "type": "text", - "bbox": [ - 114, - 154, - 515, - 181 - ], - "lines": [ - { - "bbox": [ - 114, - 155, - 512, - 167 - ], - "spans": [ - { - "bbox": [ - 114, - 155, - 512, - 167 - ], - "score": 1.0, - "content": "The database is currently being tested by the person who has developed it so the", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 114, - 168, - 512, - 181 - ], - "spans": [ - { - "bbox": [ - 114, - 168, - 512, - 181 - ], - "score": 1.0, - "content": "database tables only contain a small amount of data that is being used for testing.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 155, - 512, - 181 - ] - }, - { - "type": "text", - "bbox": [ - 114, - 196, - 357, - 211 - ], - "lines": [ - { - "bbox": [ - 114, - 198, - 355, - 209 - ], - "spans": [ - { - "bbox": [ - 114, - 198, - 355, - 209 - ], - "score": 1.0, - "content": "The contents of the tables are shown in Figure 5.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 198, - 355, - 209 - ] - }, - { - "type": "title", - "bbox": [ - 303, - 240, - 349, - 254 - ], - "lines": [ - { - "bbox": [ - 303, - 241, - 349, - 254 - ], - "spans": [ - { - "bbox": [ - 303, - 241, - 349, - 254 - ], - "score": 1.0, - "content": "Figure 5 ", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 113, - 286, - 518, - 419 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 119, - 271, - 152, - 283 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 119, - 270, - 153, - 284 - ], - "spans": [ - { - "bbox": [ - 119, - 270, - 153, - 284 - ], - "score": 1.0, - "content": "Game ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "table_body", - "bbox": [ - 113, - 286, - 518, - 419 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 113, - 286, - 518, - 419 - ], - "spans": [ - { - "bbox": [ - 113, - 286, - 518, - 419 - ], - "score": 0.985, - "html": "
NameMinPlayersMaxPlayersLengthOfGameComplexity
Friday11252.12
Scythe15903.37
Terra Mystica251003.95
Agricola14903.31
Pandemic24452.42
", - "type": "table", - "image_path": "f20f2cf15525bc788493eb06730adf1a4265d1001aa98ad211e8bd92c23efc26.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 113, - 286, - 518, - 330.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 113, - 330.3333333333333, - 518, - 374.66666666666663 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 113, - 374.66666666666663, - 518, - 418.99999999999994 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 9.0, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 114, - 464, - 526, - 596 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 118, - 448, - 166, - 461 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 119, - 447, - 166, - 463 - ], - "spans": [ - { - "bbox": [ - 119, - 447, - 166, - 463 - ], - "score": 1.0, - "content": "Booking", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "table_body", - "bbox": [ - 114, - 464, - 526, - 596 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 114, - 464, - 526, - 596 - ], - "spans": [ - { - "bbox": [ - 114, - 464, - 526, - 596 - ], - "score": 0.981, - "html": "
GameTablelDNameDateStartTimeCustomerHours
1Friday28/05/1911Hawkins1
2Scythe28/05/1911Jemisin1
3Pandemic28/05/1915Gormally1
1Pandemic28/05/1913Van Perlo2
1Terra Mystica29/05/1915Hawkins2
", - "type": "table", - "image_path": "5601a09087e108f54341f1d688daf2dd5dfbb9b4d34f94ec568b793bcebf6f21.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 114, - 464, - 526, - 508.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 114, - 508.0, - 526, - 552.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 114, - 552.0, - 526, - 596.0 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 13.0, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 633, - 388, - 648 - ], - "lines": [ - { - "bbox": [ - 114, - 634, - 388, - 647 - ], - "spans": [ - { - "bbox": [ - 114, - 634, - 388, - 647 - ], - "score": 1.0, - "content": "State the field in the Booking table that is a foreign key.", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 634, - 388, - 647 - ] - }, - { - "type": "text", - "bbox": [ - 92, - 647, - 536, - 766 - ], - "lines": [ - { - "bbox": [ - 490, - 647, - 536, - 662 - ], - "spans": [ - { - "bbox": [ - 490, - 647, - 536, - 662 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 17, - "page_num": "page_19", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 490, - 647, - 536, - 662 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 65, - 445, - 80 - ], - "lines": [ - { - "bbox": [ - 114, - 66, - 443, - 79 - ], - "spans": [ - { - "bbox": [ - 114, - 66, - 443, - 79 - ], - "score": 1.0, - "content": "State the most suitable data type to use for the Complexity field.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 490, - 80, - 535, - 93 - ], - "lines": [ - { - "bbox": [ - 491, - 80, - 536, - 94 - ], - "spans": [ - { - "bbox": [ - 491, - 80, - 536, - 94 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 113, - 156, - 531, - 210 - ], - "lines": [ - { - "bbox": [ - 114, - 159, - 507, - 170 - ], - "spans": [ - { - "bbox": [ - 114, - 159, - 507, - 170 - ], - "score": 1.0, - "content": "Due to a change in layout at the café, the game table with an ID of 2 is no longer", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 114, - 172, - 529, - 183 - ], - "spans": [ - { - "bbox": [ - 114, - 172, - 529, - 183 - ], - "score": 1.0, - "content": "suitable for games that can have more than four players. The manager needs to find", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 114, - 185, - 531, - 196 - ], - "spans": [ - { - "bbox": [ - 114, - 185, - 531, - 196 - ], - "score": 1.0, - "content": "out the customer, date and time of all bookings made for the game table with an ID of", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 113, - 196, - 403, - 210 - ], - "spans": [ - { - "bbox": [ - 113, - 196, - 403, - 210 - ], - "score": 1.0, - "content": "2 that are for a game that can have more than four players.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 3.5 - }, - { - "type": "text", - "bbox": [ - 113, - 221, - 526, - 248 - ], - "lines": [ - { - "bbox": [ - 113, - 222, - 525, - 236 - ], - "spans": [ - { - "bbox": [ - 113, - 222, - 525, - 236 - ], - "score": 1.0, - "content": "Write an SQL query that could be used to find this information for the manager. The", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 113, - 235, - 301, - 248 - ], - "spans": [ - { - "bbox": [ - 113, - 235, - 301, - 248 - ], - "score": 1.0, - "content": "results should be shown in date order.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6.5 - }, - { - "type": "text", - "bbox": [ - 484, - 249, - 535, - 262 - ], - "lines": [ - { - "bbox": [ - 485, - 248, - 536, - 263 - ], - "spans": [ - { - "bbox": [ - 485, - 248, - 536, - 263 - ], - "score": 1.0, - "content": "[6 marks] ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "table", - "bbox": [ - 112, - 264, - 537, - 628 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 112, - 264, - 537, - 628 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 112, - 264, - 537, - 628 - ], - "spans": [ - { - "bbox": [ - 112, - 264, - 537, - 628 - ], - "score": 0.374, - "type": "table", - "image_path": "dc8ac2383017485c9a7e108096abdbaf793d0c89937cffb4a28ced50d9b0dffd.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 112, - 264, - 537, - 385.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 112, - 385.3333333333333, - 537, - 506.66666666666663 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 112, - 506.66666666666663, - 537, - 628.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - } - ], - "layout_bboxes": [], - "page_idx": 20, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 112, - 264, - 537, - 628 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 112, - 264, - 537, - 628 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 112, - 264, - 537, - 628 - ], - "spans": [ - { - "bbox": [ - 112, - 264, - 537, - 628 - ], - "score": 0.374, - "type": "table", - "image_path": "dc8ac2383017485c9a7e108096abdbaf793d0c89937cffb4a28ced50d9b0dffd.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 112, - 264, - 537, - 385.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 112, - 385.3333333333333, - 537, - 506.66666666666663 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 112, - 506.66666666666663, - 537, - 628.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 542, - 55, - 580, - 80 - ], - "lines": [ - { - "bbox": [ - 542, - 56, - 581, - 65 - ], - "spans": [ - { - "bbox": [ - 542, - 56, - 581, - 65 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 544, - 64, - 580, - 73 - ], - "spans": [ - { - "bbox": [ - 544, - 64, - 580, - 73 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 554, - 71, - 570, - 82 - ], - "spans": [ - { - "bbox": [ - 554, - 71, - 570, - 82 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 155, - 105, - 173 - ], - "lines": [ - { - "bbox": [ - 50, - 159, - 99, - 170 - ], - "spans": [ - { - "bbox": [ - 50, - 159, - 63, - 170 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 68, - 160, - 77, - 169 - ], - "score": 1.0, - "content": "9", - "type": "text" - }, - { - "bbox": [ - 89, - 159, - 99, - 170 - ], - "score": 1.0, - "content": "3", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 64, - 105, - 83 - ], - "lines": [ - { - "bbox": [ - 51, - 68, - 101, - 80 - ], - "spans": [ - { - "bbox": [ - 51, - 68, - 64, - 79 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 65, - 68, - 78, - 79 - ], - "score": 1.0, - "content": "9 ", - "type": "text" - }, - { - "bbox": [ - 81, - 68, - 101, - 80 - ], - "score": 1.0, - "content": ". 2 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 295, - 39 - ], - "lines": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "21 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 464, - 774, - 531, - 786 - ], - "lines": [ - { - "bbox": [ - 463, - 774, - 518, - 786 - ], - "spans": [ - { - "bbox": [ - 463, - 774, - 518, - 786 - ], - "score": 0.9995565414428711, - "content": "Turn over", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 112, - 65, - 445, - 80 - ], - "lines": [ - { - "bbox": [ - 114, - 66, - 443, - 79 - ], - "spans": [ - { - "bbox": [ - 114, - 66, - 443, - 79 - ], - "score": 1.0, - "content": "State the most suitable data type to use for the Complexity field.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_20", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 66, - 443, - 79 - ] - }, - { - "type": "text", - "bbox": [ - 490, - 80, - 535, - 93 - ], - "lines": [ - { - "bbox": [ - 491, - 80, - 536, - 94 - ], - "spans": [ - { - "bbox": [ - 491, - 80, - 536, - 94 - ], - "score": 1.0, - "content": "[1 mark] ", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_20", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 491, - 80, - 536, - 94 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 156, - 531, - 210 - ], - "lines": [ - { - "bbox": [ - 114, - 159, - 507, - 170 - ], - "spans": [ - { - "bbox": [ - 114, - 159, - 507, - 170 - ], - "score": 1.0, - "content": "Due to a change in layout at the café, the game table with an ID of 2 is no longer", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 114, - 172, - 529, - 183 - ], - "spans": [ - { - "bbox": [ - 114, - 172, - 529, - 183 - ], - "score": 1.0, - "content": "suitable for games that can have more than four players. The manager needs to find", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 114, - 185, - 531, - 196 - ], - "spans": [ - { - "bbox": [ - 114, - 185, - 531, - 196 - ], - "score": 1.0, - "content": "out the customer, date and time of all bookings made for the game table with an ID of", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 113, - 196, - 403, - 210 - ], - "spans": [ - { - "bbox": [ - 113, - 196, - 403, - 210 - ], - "score": 1.0, - "content": "2 that are for a game that can have more than four players.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 3.5, - "page_num": "page_20", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 159, - 531, - 210 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 221, - 526, - 248 - ], - "lines": [ - { - "bbox": [ - 113, - 222, - 525, - 236 - ], - "spans": [ - { - "bbox": [ - 113, - 222, - 525, - 236 - ], - "score": 1.0, - "content": "Write an SQL query that could be used to find this information for the manager. The", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 113, - 235, - 301, - 248 - ], - "spans": [ - { - "bbox": [ - 113, - 235, - 301, - 248 - ], - "score": 1.0, - "content": "results should be shown in date order.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6.5, - "page_num": "page_20", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 222, - 525, - 248 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 249, - 535, - 262 - ], - "lines": [ - { - "bbox": [ - 485, - 248, - 536, - 263 - ], - "spans": [ - { - "bbox": [ - 485, - 248, - 536, - 263 - ], - "score": 1.0, - "content": "[6 marks] ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_20", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 485, - 248, - 536, - 263 - ] - }, - { - "type": "table", - "bbox": [ - 112, - 264, - 537, - 628 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 112, - 264, - 537, - 628 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 112, - 264, - 537, - 628 - ], - "spans": [ - { - "bbox": [ - 112, - 264, - 537, - 628 - ], - "score": 0.374, - "type": "table", - "image_path": "dc8ac2383017485c9a7e108096abdbaf793d0c89937cffb4a28ced50d9b0dffd.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 112, - 264, - 537, - 385.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 112, - 385.3333333333333, - 537, - 506.66666666666663 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 112, - 506.66666666666663, - 537, - 628.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10, - "page_num": "page_20", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 110, - 66, - 532, - 93 - ], - "lines": [ - { - "bbox": [ - 113, - 66, - 532, - 80 - ], - "spans": [ - { - "bbox": [ - 113, - 66, - 532, - 80 - ], - "score": 1.0, - "content": "The LengthOfGame field shows the average amount of time it takes to play a game", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 81, - 168, - 92 - ], - "spans": [ - { - "bbox": [ - 113, - 81, - 168, - 92 - ], - "score": 1.0, - "content": "in minutes.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 113, - 105, - 498, - 132 - ], - "lines": [ - { - "bbox": [ - 113, - 106, - 498, - 119 - ], - "spans": [ - { - "bbox": [ - 113, - 106, - 498, - 119 - ], - "score": 1.0, - "content": "A query to add 10 minutes to the length of time taken for all games that have a ", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 114, - 119, - 387, - 131 - ], - "spans": [ - { - "bbox": [ - 114, - 119, - 387, - 131 - ], - "score": 1.0, - "content": "Complexity of more than three is shown in Figure 6.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5 - }, - { - "type": "title", - "bbox": [ - 301, - 145, - 347, - 159 - ], - "lines": [ - { - "bbox": [ - 302, - 146, - 348, - 158 - ], - "spans": [ - { - "bbox": [ - 302, - 146, - 348, - 158 - ], - "score": 1.0, - "content": "Figure 6 ", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 184, - 170, - 440, - 237 - ], - "lines": [ - { - "bbox": [ - 186, - 172, - 267, - 183 - ], - "spans": [ - { - "bbox": [ - 186, - 172, - 267, - 183 - ], - "score": 1.0, - "content": "UPDATE Game", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 186, - 198, - 439, - 209 - ], - "spans": [ - { - "bbox": [ - 186, - 198, - 306, - 209 - ], - "score": 1.0, - "content": "SET LengthOfGame ", - "type": "text" - }, - { - "bbox": [ - 306, - 199, - 318, - 208 - ], - "score": 0.76, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 12 - }, - { - "bbox": [ - 319, - 198, - 439, - 209 - ], - "score": 1.0, - "content": " LengthOfGame + 9", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 185, - 223, - 339, - 236 - ], - "spans": [ - { - "bbox": [ - 185, - 224, - 307, - 236 - ], - "score": 1.0, - "content": "WHERE Complexity ", - "type": "text" - }, - { - "bbox": [ - 307, - 223, - 339, - 235 - ], - "score": 0.43, - "content": "<=3", - "type": "inline_equation", - "height": 12, - "width": 32 - } - ], - "index": 7 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 110, - 249, - 536, - 409 - ], - "lines": [ - { - "bbox": [ - 114, - 251, - 508, - 263 - ], - "spans": [ - { - "bbox": [ - 114, - 251, - 508, - 263 - ], - "score": 1.0, - "content": "The query contains two errors. Refine the query in Figure 6 to correct the errors.", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 485, - 263, - 535, - 277 - ], - "spans": [ - { - "bbox": [ - 485, - 263, - 535, - 277 - ], - "score": 1.0, - "content": "[2 marks]", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8.5 - }, - { - "type": "text", - "bbox": [ - 114, - 431, - 403, - 446 - ], - "lines": [ - { - "bbox": [ - 114, - 433, - 402, - 444 - ], - "spans": [ - { - "bbox": [ - 114, - 433, - 402, - 444 - ], - "score": 1.0, - "content": "The games café is evaluating the security for their network.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 115, - 457, - 500, - 484 - ], - "lines": [ - { - "bbox": [ - 114, - 458, - 499, - 471 - ], - "spans": [ - { - "bbox": [ - 114, - 458, - 499, - 471 - ], - "score": 1.0, - "content": "State two reasons why using a biometric authentication measure is better than", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 113, - 472, - 324, - 484 - ], - "spans": [ - { - "bbox": [ - 113, - 472, - 324, - 484 - ], - "score": 1.0, - "content": "password authentication for staff accounts.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11.5 - }, - { - "type": "text", - "bbox": [ - 484, - 484, - 535, - 498 - ], - "lines": [ - { - "bbox": [ - 485, - 484, - 536, - 498 - ], - "spans": [ - { - "bbox": [ - 485, - 484, - 536, - 498 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "text", - "bbox": [ - 112, - 496, - 536, - 706 - ], - "lines": [ - { - "bbox": [ - 112, - 496, - 536, - 566.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 112, - 566.0, - 536, - 636.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 112, - 636.0, - 536, - 706.0 - ], - "spans": [], - "index": 16 - } - ], - "index": 15 - } - ], - "layout_bboxes": [], - "page_idx": 21, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 543, - 55, - 581, - 80 - ], - "lines": [ - { - "bbox": [ - 544, - 56, - 583, - 64 - ], - "spans": [ - { - "bbox": [ - 544, - 56, - 583, - 64 - ], - "score": 1.0, - "content": "Do not write ", - "type": "text" - } - ] - }, - { - "bbox": [ - 545, - 64, - 581, - 73 - ], - "spans": [ - { - "bbox": [ - 545, - 64, - 581, - 73 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 556, - 73, - 571, - 81 - ], - "spans": [ - { - "bbox": [ - 556, - 73, - 571, - 81 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 456, - 105, - 474 - ], - "lines": [ - { - "bbox": [ - 48, - 457, - 103, - 473 - ], - "spans": [ - { - "bbox": [ - 48, - 457, - 103, - 473 - ], - "score": 1.0, - "content": "1 0 . 1 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 64, - 105, - 83 - ], - "lines": [ - { - "bbox": [ - 51, - 69, - 98, - 79 - ], - "spans": [ - { - "bbox": [ - 51, - 69, - 61, - 79 - ], - "score": 1.0, - "content": "0 ", - "type": "text" - }, - { - "bbox": [ - 68, - 69, - 77, - 78 - ], - "score": 1.0, - "content": "9", - "type": "text" - }, - { - "bbox": [ - 92, - 71, - 98, - 77 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 45, - 430, - 82, - 448 - ], - "lines": [ - { - "bbox": [ - 50, - 433, - 77, - 446 - ], - "spans": [ - { - "bbox": [ - 50, - 433, - 77, - 446 - ], - "score": 1.0, - "content": "1 0", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 280, - 27, - 299, - 43 - ], - "spans": [ - { - "bbox": [ - 280, - 27, - 299, - 43 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 16, - "width": 19 - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 110, - 66, - 532, - 93 - ], - "lines": [ - { - "bbox": [ - 113, - 66, - 532, - 80 - ], - "spans": [ - { - "bbox": [ - 113, - 66, - 532, - 80 - ], - "score": 1.0, - "content": "The LengthOfGame field shows the average amount of time it takes to play a game", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 113, - 81, - 168, - 92 - ], - "spans": [ - { - "bbox": [ - 113, - 81, - 168, - 92 - ], - "score": 1.0, - "content": "in minutes.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_21", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 66, - 532, - 92 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 105, - 498, - 132 - ], - "lines": [ - { - "bbox": [ - 113, - 106, - 498, - 119 - ], - "spans": [ - { - "bbox": [ - 113, - 106, - 498, - 119 - ], - "score": 1.0, - "content": "A query to add 10 minutes to the length of time taken for all games that have a ", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 114, - 119, - 387, - 131 - ], - "spans": [ - { - "bbox": [ - 114, - 119, - 387, - 131 - ], - "score": 1.0, - "content": "Complexity of more than three is shown in Figure 6.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5, - "page_num": "page_21", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 106, - 498, - 131 - ] - }, - { - "type": "title", - "bbox": [ - 301, - 145, - 347, - 159 - ], - "lines": [ - { - "bbox": [ - 302, - 146, - 348, - 158 - ], - "spans": [ - { - "bbox": [ - 302, - 146, - 348, - 158 - ], - "score": 1.0, - "content": "Figure 6 ", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_21", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "list", - "bbox": [ - 184, - 170, - 440, - 237 - ], - "lines": [ - { - "bbox": [ - 186, - 172, - 267, - 183 - ], - "spans": [ - { - "bbox": [ - 186, - 172, - 267, - 183 - ], - "score": 1.0, - "content": "UPDATE Game", - "type": "text" - } - ], - "index": 5, - "is_list_start_line": true - }, - { - "bbox": [ - 186, - 198, - 439, - 209 - ], - "spans": [ - { - "bbox": [ - 186, - 198, - 306, - 209 - ], - "score": 1.0, - "content": "SET LengthOfGame ", - "type": "text" - }, - { - "bbox": [ - 306, - 199, - 318, - 208 - ], - "score": 0.76, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 12 - }, - { - "bbox": [ - 319, - 198, - 439, - 209 - ], - "score": 1.0, - "content": " LengthOfGame + 9", - "type": "text" - } - ], - "index": 6, - "is_list_start_line": true - }, - { - "bbox": [ - 185, - 223, - 339, - 236 - ], - "spans": [ - { - "bbox": [ - 185, - 224, - 307, - 236 - ], - "score": 1.0, - "content": "WHERE Complexity ", - "type": "text" - }, - { - "bbox": [ - 307, - 223, - 339, - 235 - ], - "score": 0.43, - "content": "<=3", - "type": "inline_equation", - "height": 12, - "width": 32 - } - ], - "index": 7, - "is_list_start_line": true - } - ], - "index": 6, - "page_num": "page_21", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 185, - 172, - 439, - 236 - ] - }, - { - "type": "text", - "bbox": [ - 110, - 249, - 536, - 409 - ], - "lines": [ - { - "bbox": [ - 114, - 251, - 508, - 263 - ], - "spans": [ - { - "bbox": [ - 114, - 251, - 508, - 263 - ], - "score": 1.0, - "content": "The query contains two errors. Refine the query in Figure 6 to correct the errors.", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 485, - 263, - 535, - 277 - ], - "spans": [ - { - "bbox": [ - 485, - 263, - 535, - 277 - ], - "score": 1.0, - "content": "[2 marks]", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8.5, - "page_num": "page_21", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 251, - 535, - 277 - ] - }, - { - "type": "text", - "bbox": [ - 114, - 431, - 403, - 446 - ], - "lines": [ - { - "bbox": [ - 114, - 433, - 402, - 444 - ], - "spans": [ - { - "bbox": [ - 114, - 433, - 402, - 444 - ], - "score": 1.0, - "content": "The games café is evaluating the security for their network.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_21", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 433, - 402, - 444 - ] - }, - { - "type": "text", - "bbox": [ - 115, - 457, - 500, - 484 - ], - "lines": [ - { - "bbox": [ - 114, - 458, - 499, - 471 - ], - "spans": [ - { - "bbox": [ - 114, - 458, - 499, - 471 - ], - "score": 1.0, - "content": "State two reasons why using a biometric authentication measure is better than", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 113, - 472, - 324, - 484 - ], - "spans": [ - { - "bbox": [ - 113, - 472, - 324, - 484 - ], - "score": 1.0, - "content": "password authentication for staff accounts.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11.5, - "page_num": "page_21", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 113, - 458, - 499, - 484 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 484, - 535, - 498 - ], - "lines": [ - { - "bbox": [ - 485, - 484, - 536, - 498 - ], - "spans": [ - { - "bbox": [ - 485, - 484, - 536, - 498 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_21", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 485, - 484, - 536, - 498 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 496, - 536, - 706 - ], - "lines": [ - { - "bbox": [ - 112, - 496, - 536, - 566.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 112, - 566.0, - 536, - 636.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 112, - 636.0, - 536, - 706.0 - ], - "spans": [], - "index": 16 - } - ], - "index": 15, - "page_num": "page_21", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 112, - 496, - 536, - 706.0 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 111, - 66, - 523, - 92 - ], - "lines": [ - { - "bbox": [ - 114, - 66, - 522, - 80 - ], - "spans": [ - { - "bbox": [ - 114, - 66, - 522, - 80 - ], - "score": 1.0, - "content": "Explain why it would not be appropriate for the café to use MAC address filtering on", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 81, - 223, - 92 - ], - "spans": [ - { - "bbox": [ - 114, - 81, - 223, - 92 - ], - "score": 1.0, - "content": "their wireless network.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 112, - 91, - 536, - 340 - ], - "lines": [ - { - "bbox": [ - 485, - 92, - 536, - 107 - ], - "spans": [ - { - "bbox": [ - 485, - 92, - 536, - 107 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 230, - 400, - 348, - 414 - ], - "lines": [ - { - "bbox": [ - 231, - 401, - 347, - 412 - ], - "spans": [ - { - "bbox": [ - 231, - 401, - 347, - 412 - ], - "score": 1.0, - "content": "END OF QUESTIONS", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - } - ], - "layout_bboxes": [], - "page_idx": 22, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 45, - 64, - 105, - 83 - ], - "lines": [ - { - "bbox": [ - 48, - 66, - 103, - 82 - ], - "spans": [ - { - "bbox": [ - 48, - 66, - 103, - 82 - ], - "score": 1.0, - "content": "1 0 . 2 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 543, - 56, - 580, - 81 - ], - "lines": [ - { - "bbox": [ - 542, - 56, - 580, - 65 - ], - "spans": [ - { - "bbox": [ - 542, - 56, - 580, - 65 - ], - "score": 1.0, - "content": "Do not write", - "type": "text" - } - ] - }, - { - "bbox": [ - 543, - 64, - 580, - 73 - ], - "spans": [ - { - "bbox": [ - 543, - 64, - 580, - 73 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 554, - 72, - 569, - 82 - ], - "spans": [ - { - "bbox": [ - 554, - 72, - 569, - 82 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 282, - 29, - 296, - 39 - ], - "lines": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 280, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "23 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 464, - 774, - 531, - 786 - ], - "lines": [ - { - "bbox": [ - 463, - 774, - 518, - 786 - ], - "spans": [ - { - "bbox": [ - 463, - 774, - 518, - 786 - ], - "score": 0.9995565414428711, - "content": "Turn over", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 111, - 66, - 523, - 92 - ], - "lines": [ - { - "bbox": [ - 114, - 66, - 522, - 80 - ], - "spans": [ - { - "bbox": [ - 114, - 66, - 522, - 80 - ], - "score": 1.0, - "content": "Explain why it would not be appropriate for the café to use MAC address filtering on", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 114, - 81, - 223, - 92 - ], - "spans": [ - { - "bbox": [ - 114, - 81, - 223, - 92 - ], - "score": 1.0, - "content": "their wireless network.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_22", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 114, - 66, - 522, - 92 - ] - }, - { - "type": "text", - "bbox": [ - 112, - 91, - 536, - 340 - ], - "lines": [ - { - "bbox": [ - 485, - 92, - 536, - 107 - ], - "spans": [ - { - "bbox": [ - 485, - 92, - 536, - 107 - ], - "score": 1.0, - "content": "[2 marks] ", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_22", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 485, - 92, - 536, - 107 - ] - }, - { - "type": "text", - "bbox": [ - 230, - 400, - 348, - 414 - ], - "lines": [ - { - "bbox": [ - 231, - 401, - 347, - 412 - ], - "spans": [ - { - "bbox": [ - 231, - 401, - 347, - 412 - ], - "score": 1.0, - "content": "END OF QUESTIONS", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_22", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 231, - 401, - 347, - 412 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "image", - "bbox": [ - 39, - 49, - 539, - 673 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 39, - 49, - 539, - 673 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 39, - 49, - 539, - 673 - ], - "spans": [ - { - "bbox": [ - 39, - 49, - 539, - 673 - ], - "score": 0.759, - "type": "image", - "image_path": "ebcc00357b30be9bfde27b90bb35b0e6e4d7c48a10db773ef397fc7ba3f52a74.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 39, - 49, - 539, - 257.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 39, - 257.0, - 539, - 465.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 39, - 465.0, - 539, - 673.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "title", - "bbox": [ - 44, - 676, - 124, - 686 - ], - "lines": [ - { - "bbox": [ - 44, - 677, - 126, - 686 - ], - "spans": [ - { - "bbox": [ - 44, - 677, - 126, - 686 - ], - "score": 1.0, - "content": "Copyright information ", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 43, - 693, - 517, - 711 - ], - "lines": [ - { - "bbox": [ - 43, - 693, - 513, - 703 - ], - "spans": [ - { - "bbox": [ - 43, - 693, - 513, - 703 - ], - "score": 1.0, - "content": "For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after ", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 44, - 702, - 309, - 711 - ], - "spans": [ - { - "bbox": [ - 44, - 702, - 309, - 711 - ], - "score": 1.0, - "content": "each live examination series and is available for free download from www.aqa.org.uk.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5 - }, - { - "type": "text", - "bbox": [ - 42, - 717, - 521, - 735 - ], - "lines": [ - { - "bbox": [ - 45, - 719, - 522, - 726 - ], - "spans": [ - { - "bbox": [ - 45, - 719, - 522, - 726 - ], - "score": 1.0, - "content": "Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and ", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 44, - 726, - 439, - 736 - ], - "spans": [ - { - "bbox": [ - 44, - 726, - 439, - 736 - ], - "score": 1.0, - "content": "AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team. ", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6.5 - }, - { - "type": "text", - "bbox": [ - 44, - 741, - 233, - 751 - ], - "lines": [ - { - "bbox": [ - 44, - 742, - 233, - 751 - ], - "spans": [ - { - "bbox": [ - 44, - 742, - 75, - 751 - ], - "score": 1.0, - "content": "Copyright", - "type": "text" - }, - { - "bbox": [ - 76, - 742, - 83, - 750 - ], - "score": 0.53, - "content": "\\copyright", - "type": "inline_equation", - "height": 8, - "width": 7 - }, - { - "bbox": [ - 83, - 742, - 233, - 751 - ], - "score": 1.0, - "content": " 2019 AQA and its licensors. All rights reserved.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - } - ], - "layout_bboxes": [], - "page_idx": 23, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 39, - 49, - 539, - 673 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 39, - 49, - 539, - 673 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 39, - 49, - 539, - 673 - ], - "spans": [ - { - "bbox": [ - 39, - 49, - 539, - 673 - ], - "score": 0.759, - "type": "image", - "image_path": "ebcc00357b30be9bfde27b90bb35b0e6e4d7c48a10db773ef397fc7ba3f52a74.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 39, - 49, - 539, - 257.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 39, - 257.0, - 539, - 465.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 39, - 465.0, - 539, - 673.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 282, - 29, - 295, - 39 - ], - "lines": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "spans": [ - { - "bbox": [ - 281, - 28, - 298, - 42 - ], - "score": 1.0, - "content": "24 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 543, - 55, - 582, - 80 - ], - "lines": [ - { - "bbox": [ - 544, - 56, - 582, - 64 - ], - "spans": [ - { - "bbox": [ - 544, - 56, - 582, - 64 - ], - "score": 1.0, - "content": "Do not write", - "type": "text" - } - ] - }, - { - "bbox": [ - 544, - 64, - 581, - 73 - ], - "spans": [ - { - "bbox": [ - 544, - 64, - 581, - 73 - ], - "score": 1.0, - "content": "outside the ", - "type": "text" - } - ] - }, - { - "bbox": [ - 555, - 71, - 571, - 82 - ], - "spans": [ - { - "bbox": [ - 555, - 71, - 571, - 82 - ], - "score": 1.0, - "content": "box ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "image", - "bbox": [ - 39, - 49, - 539, - 673 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 39, - 49, - 539, - 673 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 39, - 49, - 539, - 673 - ], - "spans": [ - { - "bbox": [ - 39, - 49, - 539, - 673 - ], - "score": 0.759, - "type": "image", - "image_path": "ebcc00357b30be9bfde27b90bb35b0e6e4d7c48a10db773ef397fc7ba3f52a74.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 39, - 49, - 539, - 257.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 39, - 257.0, - 539, - 465.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 39, - 465.0, - 539, - 673.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_23", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "title", - "bbox": [ - 44, - 676, - 124, - 686 - ], - "lines": [ - { - "bbox": [ - 44, - 677, - 126, - 686 - ], - "spans": [ - { - "bbox": [ - 44, - 677, - 126, - 686 - ], - "score": 1.0, - "content": "Copyright information ", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_23", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 43, - 693, - 517, - 711 - ], - "lines": [ - { - "bbox": [ - 43, - 693, - 513, - 703 - ], - "spans": [ - { - "bbox": [ - 43, - 693, - 513, - 703 - ], - "score": 1.0, - "content": "For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after ", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 44, - 702, - 309, - 711 - ], - "spans": [ - { - "bbox": [ - 44, - 702, - 309, - 711 - ], - "score": 1.0, - "content": "each live examination series and is available for free download from www.aqa.org.uk.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5, - "page_num": "page_23", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 43, - 693, - 513, - 711 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 717, - 521, - 735 - ], - "lines": [ - { - "bbox": [ - 45, - 719, - 522, - 726 - ], - "spans": [ - { - "bbox": [ - 45, - 719, - 522, - 726 - ], - "score": 1.0, - "content": "Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and ", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 44, - 726, - 439, - 736 - ], - "spans": [ - { - "bbox": [ - 44, - 726, - 439, - 736 - ], - "score": 1.0, - "content": "AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team. ", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6.5, - "page_num": "page_23", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 44, - 719, - 522, - 736 - ] - }, - { - "type": "text", - "bbox": [ - 44, - 741, - 233, - 751 - ], - "lines": [ - { - "bbox": [ - 44, - 742, - 233, - 751 - ], - "spans": [ - { - "bbox": [ - 44, - 742, - 75, - 751 - ], - "score": 1.0, - "content": "Copyright", - "type": "text" - }, - { - "bbox": [ - 76, - 742, - 83, - 750 - ], - "score": 0.53, - "content": "\\copyright", - "type": "inline_equation", - "height": 8, - "width": 7 - }, - { - "bbox": [ - 83, - 742, - 233, - 751 - ], - "score": 1.0, - "content": " 2019 AQA and its licensors. All rights reserved.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_23", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 44, - 742, - 233, - 751 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 39, - 25, - 173, - 75 - ], - "lines": [ - { - "bbox": [ - 40, - 30, - 173, - 73 - ], - "spans": [ - { - "bbox": [ - 40, - 36, - 139, - 73 - ], - "score": 0.9767382740974426, - "content": "AQA", - "type": "text" - }, - { - "bbox": [ - 138, - 30, - 173, - 61 - ], - "score": 0.6145317554473877, - "content": "-", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "title", - "bbox": [ - 39, - 159, - 296, - 283 - ], - "lines": [ - { - "bbox": [ - 41, - 162, - 106, - 187 - ], - "spans": [ - { - "bbox": [ - 41, - 162, - 106, - 187 - ], - "score": 1.0, - "content": "GCSE", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 43, - 203, - 292, - 223 - ], - "spans": [ - { - "bbox": [ - 43, - 203, - 292, - 223 - ], - "score": 1.0, - "content": "COMPUTER SCIENCE", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 40, - 237, - 130, - 264 - ], - "spans": [ - { - "bbox": [ - 40, - 237, - 130, - 264 - ], - "score": 1.0, - "content": "8525/2", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 39, - 268, - 192, - 283 - ], - "spans": [ - { - "bbox": [ - 39, - 268, - 192, - 283 - ], - "score": 1.0, - "content": "Paper 2 Computing concepts", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 2.5 - }, - { - "type": "text", - "bbox": [ - 39, - 304, - 202, - 335 - ], - "lines": [ - { - "bbox": [ - 40, - 305, - 122, - 319 - ], - "spans": [ - { - "bbox": [ - 40, - 305, - 122, - 319 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 41, - 322, - 200, - 334 - ], - "spans": [ - { - "bbox": [ - 41, - 322, - 200, - 334 - ], - "score": 1.0, - "content": "Specimen Assessment Materials", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5.5 - } - ], - "layout_bboxes": [], - "page_idx": 24, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 39, - 25, - 173, - 75 - ], - "lines": [ - { - "bbox": [ - 40, - 30, - 173, - 73 - ], - "spans": [ - { - "bbox": [ - 40, - 36, - 139, - 73 - ], - "score": 0.9767382740974426, - "content": "AQA", - "type": "text" - }, - { - "bbox": [ - 138, - 30, - 173, - 61 - ], - "score": 0.6145317554473877, - "content": "-", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_24", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 30, - 173, - 73 - ] - }, - { - "type": "title", - "bbox": [ - 39, - 159, - 296, - 283 - ], - "lines": [ - { - "bbox": [ - 41, - 162, - 106, - 187 - ], - "spans": [ - { - "bbox": [ - 41, - 162, - 106, - 187 - ], - "score": 1.0, - "content": "GCSE", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 43, - 203, - 292, - 223 - ], - "spans": [ - { - "bbox": [ - 43, - 203, - 292, - 223 - ], - "score": 1.0, - "content": "COMPUTER SCIENCE", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 40, - 237, - 130, - 264 - ], - "spans": [ - { - "bbox": [ - 40, - 237, - 130, - 264 - ], - "score": 1.0, - "content": "8525/2", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 39, - 268, - 192, - 283 - ], - "spans": [ - { - "bbox": [ - 39, - 268, - 192, - 283 - ], - "score": 1.0, - "content": "Paper 2 Computing concepts", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 2.5, - "page_num": "page_24", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 39, - 304, - 202, - 335 - ], - "lines": [ - { - "bbox": [ - 40, - 305, - 122, - 319 - ], - "spans": [ - { - "bbox": [ - 40, - 305, - 122, - 319 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 41, - 322, - 200, - 334 - ], - "spans": [ - { - "bbox": [ - 41, - 322, - 200, - 334 - ], - "score": 1.0, - "content": "Specimen Assessment Materials", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5.5, - "page_num": "page_24", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 305, - 200, - 334 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 42, - 84, - 546, - 201 - ], - "lines": [ - { - "bbox": [ - 41, - 84, - 546, - 98 - ], - "spans": [ - { - "bbox": [ - 41, - 84, - 546, - 98 - ], - "score": 1.0, - "content": "Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 41, - 98, - 535, - 111 - ], - "spans": [ - { - "bbox": [ - 41, - 98, - 535, - 111 - ], - "score": 1.0, - "content": "questions, by a panel of subject teachers. This mark scheme includes any amendments made at the ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 42, - 112, - 546, - 123 - ], - "spans": [ - { - "bbox": [ - 42, - 112, - 546, - 123 - ], - "score": 1.0, - "content": "standardisation events which all associates participate in and is the scheme which was used by them in", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 42, - 125, - 522, - 137 - ], - "spans": [ - { - "bbox": [ - 42, - 125, - 522, - 137 - ], - "score": 1.0, - "content": "this examination. The standardisation process ensures that the mark scheme covers the students’", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 41, - 137, - 533, - 151 - ], - "spans": [ - { - "bbox": [ - 41, - 137, - 533, - 151 - ], - "score": 1.0, - "content": "responses to questions and that every associate understands and applies it in the same correct way.", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 41, - 150, - 537, - 163 - ], - "spans": [ - { - "bbox": [ - 41, - 150, - 537, - 163 - ], - "score": 1.0, - "content": "As preparation for standardisation each associate analyses a number of students’ scripts. Alternative ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 42, - 164, - 506, - 176 - ], - "spans": [ - { - "bbox": [ - 42, - 164, - 506, - 176 - ], - "score": 1.0, - "content": "answers not already covered by the mark scheme are discussed and legislated for. If, after the", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 42, - 177, - 534, - 188 - ], - "spans": [ - { - "bbox": [ - 42, - 177, - 534, - 188 - ], - "score": 1.0, - "content": "standardisation process, associates encounter unusual answers which have not been raised they are", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 41, - 189, - 308, - 203 - ], - "spans": [ - { - "bbox": [ - 41, - 189, - 308, - 203 - ], - "score": 1.0, - "content": "required to refer these to the Lead Assessment Writer.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 42, - 214, - 541, - 280 - ], - "lines": [ - { - "bbox": [ - 42, - 215, - 535, - 227 - ], - "spans": [ - { - "bbox": [ - 42, - 215, - 535, - 227 - ], - "score": 1.0, - "content": "It must be stressed that a mark scheme is a working document, in many cases further developed and", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 42, - 229, - 524, - 241 - ], - "spans": [ - { - "bbox": [ - 42, - 229, - 524, - 241 - ], - "score": 1.0, - "content": "expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 41, - 242, - 513, - 255 - ], - "spans": [ - { - "bbox": [ - 41, - 242, - 513, - 255 - ], - "score": 1.0, - "content": "schemes on the basis of one year’s document should be avoided; whilst the guiding principles of ", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 41, - 255, - 541, - 267 - ], - "spans": [ - { - "bbox": [ - 41, - 255, - 541, - 267 - ], - "score": 1.0, - "content": "assessment remain constant, details will change, depending on the content of a particular examination", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 40, - 269, - 75, - 280 - ], - "spans": [ - { - "bbox": [ - 40, - 269, - 75, - 280 - ], - "score": 1.0, - "content": "paper.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 43, - 292, - 360, - 305 - ], - "lines": [ - { - "bbox": [ - 41, - 293, - 361, - 306 - ], - "spans": [ - { - "bbox": [ - 41, - 293, - 361, - 306 - ], - "score": 1.0, - "content": "Further copies of this mark scheme are available from aqa.org.uk", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 41, - 318, - 303, - 332 - ], - "lines": [ - { - "bbox": [ - 42, - 319, - 303, - 331 - ], - "spans": [ - { - "bbox": [ - 42, - 319, - 303, - 331 - ], - "score": 1.0, - "content": "The following annotation is used in the mark scheme:", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "text", - "bbox": [ - 39, - 344, - 536, - 551 - ], - "lines": [ - { - "bbox": [ - 42, - 345, - 181, - 357 - ], - "spans": [ - { - "bbox": [ - 42, - 352, - 46, - 357 - ], - "score": 0.6719809770584106, - "content": ",", - "type": "text" - }, - { - "bbox": [ - 76, - 345, - 181, - 357 - ], - "score": 1.0, - "content": "means a single mark", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 40, - 362, - 214, - 376 - ], - "spans": [ - { - "bbox": [ - 40, - 362, - 51, - 375 - ], - "score": 1.0, - "content": "// ", - "type": "text" - }, - { - "bbox": [ - 62, - 364, - 214, - 376 - ], - "score": 1.0, - "content": " - means alternative response", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 40, - 381, - 279, - 394 - ], - "spans": [ - { - "bbox": [ - 40, - 381, - 47, - 393 - ], - "score": 0.29, - "content": "/", - "type": "inline_equation", - "height": 12, - "width": 7 - }, - { - "bbox": [ - 47, - 381, - 49, - 394 - ], - "score": 1.0, - "content": " ", - "type": "text" - }, - { - "bbox": [ - 68, - 383, - 279, - 394 - ], - "score": 1.0, - "content": " means an alternative word or sub-phrase", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 41, - 400, - 534, - 413 - ], - "spans": [ - { - "bbox": [ - 41, - 400, - 53, - 412 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 74, - 401, - 534, - 413 - ], - "score": 1.0, - "content": " means acceptable creditworthy answer. Also used to denote a valid answer that goes beyond", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 76, - 414, - 270, - 426 - ], - "spans": [ - { - "bbox": [ - 76, - 414, - 270, - 426 - ], - "score": 1.0, - "content": "the expectations of the GCSE syllabus.", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 41, - 431, - 277, - 446 - ], - "spans": [ - { - "bbox": [ - 41, - 432, - 53, - 444 - ], - "score": 1.0, - "content": "R ", - "type": "text" - }, - { - "bbox": [ - 61, - 431, - 277, - 446 - ], - "score": 1.0, - "content": " - means reject answer as not creditworthy", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 39, - 448, - 171, - 465 - ], - "spans": [ - { - "bbox": [ - 39, - 448, - 171, - 465 - ], - "score": 1.0, - "content": "NE - means not enough", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 40, - 469, - 147, - 482 - ], - "spans": [ - { - "bbox": [ - 40, - 470, - 49, - 480 - ], - "score": 1.0, - "content": "I ", - "type": "text" - }, - { - "bbox": [ - 60, - 469, - 147, - 482 - ], - "score": 1.0, - "content": " - means ignore ", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 41, - 487, - 499, - 501 - ], - "spans": [ - { - "bbox": [ - 41, - 487, - 499, - 501 - ], - "score": 1.0, - "content": "DPT - in some questions a specific error made by a candidate, if repeated, could result in the", - "type": "text" - } - ], - "index": 24 - }, - { - "bbox": [ - 77, - 501, - 538, - 512 - ], - "spans": [ - { - "bbox": [ - 77, - 501, - 538, - 512 - ], - "score": 1.0, - "content": "candidate failing to gain more than one mark. The DPT label indicates that this mistake should", - "type": "text" - } - ], - "index": 25 - }, - { - "bbox": [ - 77, - 513, - 538, - 525 - ], - "spans": [ - { - "bbox": [ - 77, - 513, - 538, - 525 - ], - "score": 1.0, - "content": "only result in a candidate losing one mark on the first occasion that the error is made. Provided", - "type": "text" - } - ], - "index": 26 - }, - { - "bbox": [ - 76, - 524, - 537, - 539 - ], - "spans": [ - { - "bbox": [ - 76, - 524, - 537, - 539 - ], - "score": 1.0, - "content": "that the answer remains understandable, subsequent marks should be awarded as if the error ", - "type": "text" - } - ], - "index": 27 - }, - { - "bbox": [ - 76, - 539, - 196, - 551 - ], - "spans": [ - { - "bbox": [ - 76, - 539, - 196, - 551 - ], - "score": 1.0, - "content": "was not being repeated.", - "type": "text" - } - ], - "index": 28 - } - ], - "index": 22 - } - ], - "layout_bboxes": [], - "page_idx": 25, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 232, - 35, - 553, - 48 - ], - "lines": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – GCSE COMPUTER SCIENCE – 8525/2 – SAMS", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 42, - 84, - 546, - 201 - ], - "lines": [ - { - "bbox": [ - 41, - 84, - 546, - 98 - ], - "spans": [ - { - "bbox": [ - 41, - 84, - 546, - 98 - ], - "score": 1.0, - "content": "Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 41, - 98, - 535, - 111 - ], - "spans": [ - { - "bbox": [ - 41, - 98, - 535, - 111 - ], - "score": 1.0, - "content": "questions, by a panel of subject teachers. This mark scheme includes any amendments made at the ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 42, - 112, - 546, - 123 - ], - "spans": [ - { - "bbox": [ - 42, - 112, - 546, - 123 - ], - "score": 1.0, - "content": "standardisation events which all associates participate in and is the scheme which was used by them in", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 42, - 125, - 522, - 137 - ], - "spans": [ - { - "bbox": [ - 42, - 125, - 522, - 137 - ], - "score": 1.0, - "content": "this examination. The standardisation process ensures that the mark scheme covers the students’", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 41, - 137, - 533, - 151 - ], - "spans": [ - { - "bbox": [ - 41, - 137, - 533, - 151 - ], - "score": 1.0, - "content": "responses to questions and that every associate understands and applies it in the same correct way.", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 41, - 150, - 537, - 163 - ], - "spans": [ - { - "bbox": [ - 41, - 150, - 537, - 163 - ], - "score": 1.0, - "content": "As preparation for standardisation each associate analyses a number of students’ scripts. Alternative ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 42, - 164, - 506, - 176 - ], - "spans": [ - { - "bbox": [ - 42, - 164, - 506, - 176 - ], - "score": 1.0, - "content": "answers not already covered by the mark scheme are discussed and legislated for. If, after the", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 42, - 177, - 534, - 188 - ], - "spans": [ - { - "bbox": [ - 42, - 177, - 534, - 188 - ], - "score": 1.0, - "content": "standardisation process, associates encounter unusual answers which have not been raised they are", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 41, - 189, - 308, - 203 - ], - "spans": [ - { - "bbox": [ - 41, - 189, - 308, - 203 - ], - "score": 1.0, - "content": "required to refer these to the Lead Assessment Writer.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 4, - "page_num": "page_25", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 84, - 546, - 203 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 214, - 541, - 280 - ], - "lines": [ - { - "bbox": [ - 42, - 215, - 535, - 227 - ], - "spans": [ - { - "bbox": [ - 42, - 215, - 535, - 227 - ], - "score": 1.0, - "content": "It must be stressed that a mark scheme is a working document, in many cases further developed and", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 42, - 229, - 524, - 241 - ], - "spans": [ - { - "bbox": [ - 42, - 229, - 524, - 241 - ], - "score": 1.0, - "content": "expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 41, - 242, - 513, - 255 - ], - "spans": [ - { - "bbox": [ - 41, - 242, - 513, - 255 - ], - "score": 1.0, - "content": "schemes on the basis of one year’s document should be avoided; whilst the guiding principles of ", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 41, - 255, - 541, - 267 - ], - "spans": [ - { - "bbox": [ - 41, - 255, - 541, - 267 - ], - "score": 1.0, - "content": "assessment remain constant, details will change, depending on the content of a particular examination", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 40, - 269, - 75, - 280 - ], - "spans": [ - { - "bbox": [ - 40, - 269, - 75, - 280 - ], - "score": 1.0, - "content": "paper.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 11, - "page_num": "page_25", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 215, - 541, - 280 - ] - }, - { - "type": "text", - "bbox": [ - 43, - 292, - 360, - 305 - ], - "lines": [ - { - "bbox": [ - 41, - 293, - 361, - 306 - ], - "spans": [ - { - "bbox": [ - 41, - 293, - 361, - 306 - ], - "score": 1.0, - "content": "Further copies of this mark scheme are available from aqa.org.uk", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_25", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 293, - 361, - 306 - ] - }, - { - "type": "text", - "bbox": [ - 41, - 318, - 303, - 332 - ], - "lines": [ - { - "bbox": [ - 42, - 319, - 303, - 331 - ], - "spans": [ - { - "bbox": [ - 42, - 319, - 303, - 331 - ], - "score": 1.0, - "content": "The following annotation is used in the mark scheme:", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_25", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 319, - 303, - 331 - ] - }, - { - "type": "list", - "bbox": [ - 39, - 344, - 536, - 551 - ], - "lines": [ - { - "bbox": [ - 42, - 345, - 181, - 357 - ], - "spans": [ - { - "bbox": [ - 42, - 352, - 46, - 357 - ], - "score": 0.6719809770584106, - "content": ",", - "type": "text" - }, - { - "bbox": [ - 76, - 345, - 181, - 357 - ], - "score": 1.0, - "content": "means a single mark", - "type": "text" - } - ], - "index": 16, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 40, - 362, - 214, - 376 - ], - "spans": [ - { - "bbox": [ - 40, - 362, - 51, - 375 - ], - "score": 1.0, - "content": "// ", - "type": "text" - }, - { - "bbox": [ - 62, - 364, - 214, - 376 - ], - "score": 1.0, - "content": " - means alternative response", - "type": "text" - } - ], - "index": 17, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 40, - 381, - 279, - 394 - ], - "spans": [ - { - "bbox": [ - 40, - 381, - 47, - 393 - ], - "score": 0.29, - "content": "/", - "type": "inline_equation", - "height": 12, - "width": 7 - }, - { - "bbox": [ - 47, - 381, - 49, - 394 - ], - "score": 1.0, - "content": " ", - "type": "text" - }, - { - "bbox": [ - 68, - 383, - 279, - 394 - ], - "score": 1.0, - "content": " means an alternative word or sub-phrase", - "type": "text" - } - ], - "index": 18, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 41, - 400, - 534, - 413 - ], - "spans": [ - { - "bbox": [ - 41, - 400, - 53, - 412 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 74, - 401, - 534, - 413 - ], - "score": 1.0, - "content": " means acceptable creditworthy answer. Also used to denote a valid answer that goes beyond", - "type": "text" - } - ], - "index": 19, - "is_list_start_line": true - }, - { - "bbox": [ - 76, - 414, - 270, - 426 - ], - "spans": [ - { - "bbox": [ - 76, - 414, - 270, - 426 - ], - "score": 1.0, - "content": "the expectations of the GCSE syllabus.", - "type": "text" - } - ], - "index": 20, - "is_list_end_line": true - }, - { - "bbox": [ - 41, - 431, - 277, - 446 - ], - "spans": [ - { - "bbox": [ - 41, - 432, - 53, - 444 - ], - "score": 1.0, - "content": "R ", - "type": "text" - }, - { - "bbox": [ - 61, - 431, - 277, - 446 - ], - "score": 1.0, - "content": " - means reject answer as not creditworthy", - "type": "text" - } - ], - "index": 21, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 39, - 448, - 171, - 465 - ], - "spans": [ - { - "bbox": [ - 39, - 448, - 171, - 465 - ], - "score": 1.0, - "content": "NE - means not enough", - "type": "text" - } - ], - "index": 22, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 40, - 469, - 147, - 482 - ], - "spans": [ - { - "bbox": [ - 40, - 470, - 49, - 480 - ], - "score": 1.0, - "content": "I ", - "type": "text" - }, - { - "bbox": [ - 60, - 469, - 147, - 482 - ], - "score": 1.0, - "content": " - means ignore ", - "type": "text" - } - ], - "index": 23, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 41, - 487, - 499, - 501 - ], - "spans": [ - { - "bbox": [ - 41, - 487, - 499, - 501 - ], - "score": 1.0, - "content": "DPT - in some questions a specific error made by a candidate, if repeated, could result in the", - "type": "text" - } - ], - "index": 24, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 77, - 501, - 538, - 512 - ], - "spans": [ - { - "bbox": [ - 77, - 501, - 538, - 512 - ], - "score": 1.0, - "content": "candidate failing to gain more than one mark. The DPT label indicates that this mistake should", - "type": "text" - } - ], - "index": 25 - }, - { - "bbox": [ - 77, - 513, - 538, - 525 - ], - "spans": [ - { - "bbox": [ - 77, - 513, - 538, - 525 - ], - "score": 1.0, - "content": "only result in a candidate losing one mark on the first occasion that the error is made. Provided", - "type": "text" - } - ], - "index": 26 - }, - { - "bbox": [ - 76, - 524, - 537, - 539 - ], - "spans": [ - { - "bbox": [ - 76, - 524, - 537, - 539 - ], - "score": 1.0, - "content": "that the answer remains understandable, subsequent marks should be awarded as if the error ", - "type": "text" - } - ], - "index": 27 - }, - { - "bbox": [ - 76, - 539, - 196, - 551 - ], - "spans": [ - { - "bbox": [ - 76, - 539, - 196, - 551 - ], - "score": 1.0, - "content": "was not being repeated.", - "type": "text" - } - ], - "index": 28, - "is_list_end_line": true - } - ], - "index": 22, - "page_num": "page_25", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 39, - 345, - 538, - 551 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 42, - 85, - 325, - 104 - ], - "lines": [ - { - "bbox": [ - 41, - 86, - 324, - 104 - ], - "spans": [ - { - "bbox": [ - 41, - 86, - 324, - 104 - ], - "score": 1.0, - "content": "Level of response marking instructions", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 42, - 116, - 526, - 142 - ], - "lines": [ - { - "bbox": [ - 41, - 117, - 521, - 129 - ], - "spans": [ - { - "bbox": [ - 41, - 117, - 521, - 129 - ], - "score": 1.0, - "content": "Level of response mark schemes are broken down into levels, each of which has a descriptor. The", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 42, - 131, - 525, - 142 - ], - "spans": [ - { - "bbox": [ - 42, - 131, - 525, - 142 - ], - "score": 1.0, - "content": "descriptor for the level shows the average performance for the level. There are marks in each level.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5 - }, - { - "type": "text", - "bbox": [ - 41, - 155, - 540, - 182 - ], - "lines": [ - { - "bbox": [ - 42, - 155, - 537, - 170 - ], - "spans": [ - { - "bbox": [ - 42, - 155, - 537, - 170 - ], - "score": 1.0, - "content": "Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 42, - 170, - 510, - 182 - ], - "spans": [ - { - "bbox": [ - 42, - 170, - 510, - 182 - ], - "score": 1.0, - "content": "instructed) to show the qualities that are being looked for. You can then apply the mark scheme.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5 - }, - { - "type": "title", - "bbox": [ - 42, - 194, - 192, - 210 - ], - "lines": [ - { - "bbox": [ - 42, - 196, - 192, - 209 - ], - "spans": [ - { - "bbox": [ - 42, - 196, - 192, - 209 - ], - "score": 1.0, - "content": "Step 1 Determine a level", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 42, - 223, - 549, - 299 - ], - "lines": [ - { - "bbox": [ - 42, - 224, - 548, - 236 - ], - "spans": [ - { - "bbox": [ - 42, - 224, - 548, - 236 - ], - "score": 1.0, - "content": "Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 41, - 237, - 548, - 250 - ], - "spans": [ - { - "bbox": [ - 41, - 237, - 548, - 250 - ], - "score": 1.0, - "content": "descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 41, - 250, - 531, - 262 - ], - "spans": [ - { - "bbox": [ - 41, - 250, - 531, - 262 - ], - "score": 1.0, - "content": "the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it ", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 42, - 263, - 536, - 274 - ], - "spans": [ - { - "bbox": [ - 42, - 263, - 536, - 274 - ], - "score": 1.0, - "content": "meets this level, and so on, until you have a match between the level descriptor and the answer. With", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 41, - 275, - 534, - 288 - ], - "spans": [ - { - "bbox": [ - 41, - 275, - 534, - 288 - ], - "score": 1.0, - "content": "practice and familiarity you will find that for better answers you will be able to quickly skip through the", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 40, - 287, - 203, - 300 - ], - "spans": [ - { - "bbox": [ - 40, - 287, - 203, - 300 - ], - "score": 1.0, - "content": "lower levels of the mark scheme.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 8.5 - }, - { - "type": "text", - "bbox": [ - 42, - 312, - 552, - 389 - ], - "lines": [ - { - "bbox": [ - 41, - 313, - 546, - 326 - ], - "spans": [ - { - "bbox": [ - 41, - 313, - 546, - 326 - ], - "score": 1.0, - "content": "When assigning a level you should look at the overall quality of the answer and not look to pick holes in ", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 42, - 326, - 542, - 338 - ], - "spans": [ - { - "bbox": [ - 42, - 326, - 542, - 338 - ], - "score": 1.0, - "content": "small and specific parts of the answer where the student has not performed quite as well as the rest. If ", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 42, - 339, - 525, - 350 - ], - "spans": [ - { - "bbox": [ - 42, - 339, - 525, - 350 - ], - "score": 1.0, - "content": "the answer covers different aspects of different levels of the mark scheme you should use a best fit ", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 41, - 351, - 552, - 363 - ], - "spans": [ - { - "bbox": [ - 41, - 351, - 552, - 363 - ], - "score": 1.0, - "content": "approach for defining the level and then use the variability of the response to help decide the mark within", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 42, - 365, - 538, - 376 - ], - "spans": [ - { - "bbox": [ - 42, - 365, - 538, - 376 - ], - "score": 1.0, - "content": "the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 41, - 376, - 508, - 388 - ], - "spans": [ - { - "bbox": [ - 41, - 376, - 508, - 388 - ], - "score": 1.0, - "content": "placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 14.5 - }, - { - "type": "title", - "bbox": [ - 43, - 401, - 195, - 417 - ], - "lines": [ - { - "bbox": [ - 42, - 403, - 194, - 416 - ], - "spans": [ - { - "bbox": [ - 42, - 403, - 194, - 416 - ], - "score": 1.0, - "content": "Step 2 Determine a mark", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18 - }, - { - "type": "text", - "bbox": [ - 42, - 429, - 549, - 506 - ], - "lines": [ - { - "bbox": [ - 42, - 430, - 531, - 443 - ], - "spans": [ - { - "bbox": [ - 42, - 430, - 531, - 443 - ], - "score": 1.0, - "content": "Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate ", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 42, - 444, - 546, - 455 - ], - "spans": [ - { - "bbox": [ - 42, - 444, - 546, - 455 - ], - "score": 1.0, - "content": "marks can help with this. The exemplar materials used during standardisation will help. There will be an", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 41, - 457, - 535, - 468 - ], - "spans": [ - { - "bbox": [ - 41, - 457, - 535, - 468 - ], - "score": 1.0, - "content": "answer in the standardising materials which will correspond with each level of the mark scheme. This ", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 42, - 469, - 540, - 480 - ], - "spans": [ - { - "bbox": [ - 42, - 469, - 540, - 480 - ], - "score": 1.0, - "content": "answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 41, - 482, - 551, - 493 - ], - "spans": [ - { - "bbox": [ - 41, - 482, - 551, - 493 - ], - "score": 1.0, - "content": "with the example to determine if it is the same standard, better or worse than the example. You can then", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 41, - 494, - 504, - 506 - ], - "spans": [ - { - "bbox": [ - 41, - 494, - 504, - 506 - ], - "score": 1.0, - "content": "use this to allocate a mark for the answer based on the Lead Examiner’s mark on the example.", - "type": "text" - } - ], - "index": 24 - } - ], - "index": 21.5 - }, - { - "type": "text", - "bbox": [ - 40, - 518, - 548, - 545 - ], - "lines": [ - { - "bbox": [ - 42, - 518, - 549, - 533 - ], - "spans": [ - { - "bbox": [ - 42, - 518, - 549, - 533 - ], - "score": 1.0, - "content": "You may well need to read back through the answer as you apply the mark scheme to clarify points and ", - "type": "text" - } - ], - "index": 25 - }, - { - "bbox": [ - 42, - 533, - 331, - 545 - ], - "spans": [ - { - "bbox": [ - 42, - 533, - 331, - 545 - ], - "score": 1.0, - "content": "assure yourself that the level and the mark are appropriate.", - "type": "text" - } - ], - "index": 26 - } - ], - "index": 25.5 - }, - { - "type": "text", - "bbox": [ - 42, - 556, - 525, - 595 - ], - "lines": [ - { - "bbox": [ - 42, - 558, - 522, - 569 - ], - "spans": [ - { - "bbox": [ - 42, - 558, - 522, - 569 - ], - "score": 1.0, - "content": "Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be", - "type": "text" - } - ], - "index": 27 - }, - { - "bbox": [ - 42, - 571, - 511, - 582 - ], - "spans": [ - { - "bbox": [ - 42, - 571, - 511, - 582 - ], - "score": 1.0, - "content": "exhaustive and you must credit other valid points. Students do not have to cover all of the points", - "type": "text" - } - ], - "index": 28 - }, - { - "bbox": [ - 41, - 583, - 441, - 595 - ], - "spans": [ - { - "bbox": [ - 41, - 583, - 441, - 595 - ], - "score": 1.0, - "content": "mentioned in the Indicative content to reach the highest level of the mark scheme.", - "type": "text" - } - ], - "index": 29 - } - ], - "index": 28 - }, - { - "type": "text", - "bbox": [ - 41, - 607, - 486, - 620 - ], - "lines": [ - { - "bbox": [ - 42, - 609, - 485, - 620 - ], - "spans": [ - { - "bbox": [ - 42, - 609, - 485, - 620 - ], - "score": 1.0, - "content": "An answer which contains nothing of relevance to the question must be awarded no marks.", - "type": "text" - } - ], - "index": 30 - } - ], - "index": 30 - } - ], - "layout_bboxes": [], - "page_idx": 26, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 232, - 35, - 553, - 48 - ], - "lines": [ - { - "bbox": [ - 233, - 36, - 552, - 47 - ], - "spans": [ - { - "bbox": [ - 233, - 36, - 552, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – GCSE COMPUTER SCIENCE – 8525/2 – SAMS", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 547, - 797, - 554, - 805 - ], - "lines": [ - { - "bbox": [ - 547, - 797, - 555, - 807 - ], - "spans": [ - { - "bbox": [ - 547, - 797, - 555, - 807 - ], - "score": 1.0, - "content": "3 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 42, - 85, - 325, - 104 - ], - "lines": [ - { - "bbox": [ - 41, - 86, - 324, - 104 - ], - "spans": [ - { - "bbox": [ - 41, - 86, - 324, - 104 - ], - "score": 1.0, - "content": "Level of response marking instructions", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_26", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 116, - 526, - 142 - ], - "lines": [ - { - "bbox": [ - 41, - 117, - 521, - 129 - ], - "spans": [ - { - "bbox": [ - 41, - 117, - 521, - 129 - ], - "score": 1.0, - "content": "Level of response mark schemes are broken down into levels, each of which has a descriptor. The", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 42, - 131, - 525, - 142 - ], - "spans": [ - { - "bbox": [ - 42, - 131, - 525, - 142 - ], - "score": 1.0, - "content": "descriptor for the level shows the average performance for the level. There are marks in each level.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5, - "page_num": "page_26", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 117, - 525, - 142 - ] - }, - { - "type": "text", - "bbox": [ - 41, - 155, - 540, - 182 - ], - "lines": [ - { - "bbox": [ - 42, - 155, - 537, - 170 - ], - "spans": [ - { - "bbox": [ - 42, - 155, - 537, - 170 - ], - "score": 1.0, - "content": "Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 42, - 170, - 510, - 182 - ], - "spans": [ - { - "bbox": [ - 42, - 170, - 510, - 182 - ], - "score": 1.0, - "content": "instructed) to show the qualities that are being looked for. You can then apply the mark scheme.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5, - "page_num": "page_26", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 155, - 537, - 182 - ] - }, - { - "type": "title", - "bbox": [ - 42, - 194, - 192, - 210 - ], - "lines": [ - { - "bbox": [ - 42, - 196, - 192, - 209 - ], - "spans": [ - { - "bbox": [ - 42, - 196, - 192, - 209 - ], - "score": 1.0, - "content": "Step 1 Determine a level", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_26", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 223, - 549, - 299 - ], - "lines": [ - { - "bbox": [ - 42, - 224, - 548, - 236 - ], - "spans": [ - { - "bbox": [ - 42, - 224, - 548, - 236 - ], - "score": 1.0, - "content": "Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 41, - 237, - 548, - 250 - ], - "spans": [ - { - "bbox": [ - 41, - 237, - 548, - 250 - ], - "score": 1.0, - "content": "descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 41, - 250, - 531, - 262 - ], - "spans": [ - { - "bbox": [ - 41, - 250, - 531, - 262 - ], - "score": 1.0, - "content": "the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it ", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 42, - 263, - 536, - 274 - ], - "spans": [ - { - "bbox": [ - 42, - 263, - 536, - 274 - ], - "score": 1.0, - "content": "meets this level, and so on, until you have a match between the level descriptor and the answer. With", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 41, - 275, - 534, - 288 - ], - "spans": [ - { - "bbox": [ - 41, - 275, - 534, - 288 - ], - "score": 1.0, - "content": "practice and familiarity you will find that for better answers you will be able to quickly skip through the", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 40, - 287, - 203, - 300 - ], - "spans": [ - { - "bbox": [ - 40, - 287, - 203, - 300 - ], - "score": 1.0, - "content": "lower levels of the mark scheme.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 8.5, - "page_num": "page_26", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 224, - 548, - 300 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 312, - 552, - 389 - ], - "lines": [ - { - "bbox": [ - 41, - 313, - 546, - 326 - ], - "spans": [ - { - "bbox": [ - 41, - 313, - 546, - 326 - ], - "score": 1.0, - "content": "When assigning a level you should look at the overall quality of the answer and not look to pick holes in ", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 42, - 326, - 542, - 338 - ], - "spans": [ - { - "bbox": [ - 42, - 326, - 542, - 338 - ], - "score": 1.0, - "content": "small and specific parts of the answer where the student has not performed quite as well as the rest. If ", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 42, - 339, - 525, - 350 - ], - "spans": [ - { - "bbox": [ - 42, - 339, - 525, - 350 - ], - "score": 1.0, - "content": "the answer covers different aspects of different levels of the mark scheme you should use a best fit ", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 41, - 351, - 552, - 363 - ], - "spans": [ - { - "bbox": [ - 41, - 351, - 552, - 363 - ], - "score": 1.0, - "content": "approach for defining the level and then use the variability of the response to help decide the mark within", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 42, - 365, - 538, - 376 - ], - "spans": [ - { - "bbox": [ - 42, - 365, - 538, - 376 - ], - "score": 1.0, - "content": "the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 41, - 376, - 508, - 388 - ], - "spans": [ - { - "bbox": [ - 41, - 376, - 508, - 388 - ], - "score": 1.0, - "content": "placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 14.5, - "page_num": "page_26", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 313, - 552, - 388 - ] - }, - { - "type": "title", - "bbox": [ - 43, - 401, - 195, - 417 - ], - "lines": [ - { - "bbox": [ - 42, - 403, - 194, - 416 - ], - "spans": [ - { - "bbox": [ - 42, - 403, - 194, - 416 - ], - "score": 1.0, - "content": "Step 2 Determine a mark", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18, - "page_num": "page_26", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 429, - 549, - 506 - ], - "lines": [ - { - "bbox": [ - 42, - 430, - 531, - 443 - ], - "spans": [ - { - "bbox": [ - 42, - 430, - 531, - 443 - ], - "score": 1.0, - "content": "Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate ", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 42, - 444, - 546, - 455 - ], - "spans": [ - { - "bbox": [ - 42, - 444, - 546, - 455 - ], - "score": 1.0, - "content": "marks can help with this. The exemplar materials used during standardisation will help. There will be an", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 41, - 457, - 535, - 468 - ], - "spans": [ - { - "bbox": [ - 41, - 457, - 535, - 468 - ], - "score": 1.0, - "content": "answer in the standardising materials which will correspond with each level of the mark scheme. This ", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 42, - 469, - 540, - 480 - ], - "spans": [ - { - "bbox": [ - 42, - 469, - 540, - 480 - ], - "score": 1.0, - "content": "answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 41, - 482, - 551, - 493 - ], - "spans": [ - { - "bbox": [ - 41, - 482, - 551, - 493 - ], - "score": 1.0, - "content": "with the example to determine if it is the same standard, better or worse than the example. You can then", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 41, - 494, - 504, - 506 - ], - "spans": [ - { - "bbox": [ - 41, - 494, - 504, - 506 - ], - "score": 1.0, - "content": "use this to allocate a mark for the answer based on the Lead Examiner’s mark on the example.", - "type": "text" - } - ], - "index": 24 - } - ], - "index": 21.5, - "page_num": "page_26", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 430, - 551, - 506 - ] - }, - { - "type": "text", - "bbox": [ - 40, - 518, - 548, - 545 - ], - "lines": [ - { - "bbox": [ - 42, - 518, - 549, - 533 - ], - "spans": [ - { - "bbox": [ - 42, - 518, - 549, - 533 - ], - "score": 1.0, - "content": "You may well need to read back through the answer as you apply the mark scheme to clarify points and ", - "type": "text" - } - ], - "index": 25 - }, - { - "bbox": [ - 42, - 533, - 331, - 545 - ], - "spans": [ - { - "bbox": [ - 42, - 533, - 331, - 545 - ], - "score": 1.0, - "content": "assure yourself that the level and the mark are appropriate.", - "type": "text" - } - ], - "index": 26 - } - ], - "index": 25.5, - "page_num": "page_26", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 518, - 549, - 545 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 556, - 525, - 595 - ], - "lines": [ - { - "bbox": [ - 42, - 558, - 522, - 569 - ], - "spans": [ - { - "bbox": [ - 42, - 558, - 522, - 569 - ], - "score": 1.0, - "content": "Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be", - "type": "text" - } - ], - "index": 27 - }, - { - "bbox": [ - 42, - 571, - 511, - 582 - ], - "spans": [ - { - "bbox": [ - 42, - 571, - 511, - 582 - ], - "score": 1.0, - "content": "exhaustive and you must credit other valid points. Students do not have to cover all of the points", - "type": "text" - } - ], - "index": 28 - }, - { - "bbox": [ - 41, - 583, - 441, - 595 - ], - "spans": [ - { - "bbox": [ - 41, - 583, - 441, - 595 - ], - "score": 1.0, - "content": "mentioned in the Indicative content to reach the highest level of the mark scheme.", - "type": "text" - } - ], - "index": 29 - } - ], - "index": 28, - "page_num": "page_26", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 558, - 522, - 595 - ] - }, - { - "type": "text", - "bbox": [ - 41, - 607, - 486, - 620 - ], - "lines": [ - { - "bbox": [ - 42, - 609, - 485, - 620 - ], - "spans": [ - { - "bbox": [ - 42, - 609, - 485, - 620 - ], - "score": 1.0, - "content": "An answer which contains nothing of relevance to the question must be awarded no marks.", - "type": "text" - } - ], - "index": 30 - } - ], - "index": 30, - "page_num": "page_26", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 609, - 485, - 620 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 34, - 96, - 558, - 124 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 96, - 558, - 124 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 34, - 96, - 558, - 124 - ], - "spans": [ - { - "bbox": [ - 34, - 96, - 558, - 124 - ], - "score": 0.956, - "html": "
QuPartMarking guidanceTotal marks
", - "type": "table", - "image_path": "d17864221099a7d8f28181bfdaceec24e74c819819a816517bca4897520ba6cb.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 34, - 96, - 558, - 105.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 34, - 105.33333333333333, - 558, - 114.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 34, - 114.66666666666666, - 558, - 123.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 34, - 135, - 560, - 191 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 135, - 560, - 191 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 34, - 135, - 560, - 191 - ], - "spans": [ - { - "bbox": [ - 34, - 135, - 560, - 191 - ], - "score": 0.961, - "html": "
011Mark is for A02 (apply)1
78;
", - "type": "table", - "image_path": "04dbd5a8d70a2229da5ee92610a681e820b072c5f9a931eb7c8d4ce648e2fd67.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 34, - 135, - 560, - 153.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 34, - 153.66666666666666, - 560, - 172.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 34, - 172.33333333333331, - 560, - 190.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 35, - 202, - 560, - 298 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 202, - 560, - 298 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 35, - 202, - 560, - 298 - ], - "spans": [ - { - "bbox": [ - 35, - 202, - 560, - 298 - ], - "score": 0.969, - "html": "
012AllmarksAo2 (apply)2
4; (This must be the left hand digit to gain the mark)
E; (This must be the right hand digit to gain the mark)
Maximum1mark:Iffinalanswernotcorrect.
", - "type": "table", - "image_path": "a86d43692de1c5e2fb443ad9cedcab56c6f321154d9eb76b7b38f858b9cdc02d.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 35, - 202, - 560, - 234.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 35, - 234.0, - 560, - 266.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 35, - 266.0, - 560, - 298.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 35, - 310, - 561, - 391 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 310, - 561, - 391 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 35, - 310, - 561, - 391 - ], - "spans": [ - { - "bbox": [ - 35, - 310, - 561, - 391 - ], - "score": 0.971, - "html": "
013All marks Ao1 (understanding) 2
(The answer is incorrect because) the number will (still) be represented using
binary in a computer's memory;
so it will take up the same amount of memory space;
", - "type": "table", - "image_path": "0be5275c2e9e135faa737515583efff83fc9c1f0f0afd5bb535b74c1e61c4b4f.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 35, - 310, - 561, - 337.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 35, - 337.0, - 561, - 364.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 35, - 364.0, - 561, - 391.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "table", - "bbox": [ - 34, - 402, - 561, - 505 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 402, - 561, - 505 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 34, - 402, - 561, - 505 - ], - "spans": [ - { - "bbox": [ - 34, - 402, - 561, - 505 - ], - "score": 0.973, - "html": "
014All marks AO1 (understanding) 2 (Shifting the bit pattern) three places; to the left; Markasfollows:
", - "type": "table", - "image_path": "46797a43e264dd6f988a8a78e49a5527a970deea2a3c43b592235b494ff9d40c.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 34, - 402, - 561, - 436.3333333333333 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 34, - 436.3333333333333, - 561, - 470.66666666666663 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 34, - 470.66666666666663, - 561, - 504.99999999999994 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - }, - { - "type": "table", - "bbox": [ - 34, - 516, - 560, - 597 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 516, - 560, - 597 - ], - "group_id": 5, - "lines": [ - { - "bbox": [ - 34, - 516, - 560, - 597 - ], - "spans": [ - { - "bbox": [ - 34, - 516, - 560, - 597 - ], - "score": 0.972, - "html": "
015Mark is for A02 (apply)1
BF;
R. If more than one lozenge shaded
", - "type": "table", - "image_path": "6776886ddebd782c80d650845e62b4eb8184de2fcb7a55ede21cdf950f4906b0.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 34, - 516, - 560, - 543.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 34, - 543.0, - 560, - 570.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 34, - 570.0, - 560, - 597.0 - ], - "spans": [], - "index": 17 - } - ] - } - ], - "index": 16 - }, - { - "type": "table", - "bbox": [ - 35, - 609, - 560, - 755 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 609, - 560, - 755 - ], - "group_id": 6, - "lines": [ - { - "bbox": [ - 35, - 609, - 560, - 755 - ], - "spans": [ - { - "bbox": [ - 35, - 609, - 560, - 755 - ], - "score": 0.97, - "html": "
016All marks AO1 (understanding) 2
/ specialist documents;Advantages: Can represent awiderrangeof characters; Can represent characters from a wider range of languages; Can represent characters used in scientific / mathematical /technical
", - "type": "table", - "image_path": "7fc1b00d996b0f85e6d78ab88d37b3785684d63af2a09293377ab79b7856ec14.jpg" - } - ] - } - ], - "index": 19, - "virtual_lines": [ - { - "bbox": [ - 35, - 609, - 560, - 657.6666666666666 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 35, - 657.6666666666666, - 560, - 706.3333333333333 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 35, - 706.3333333333333, - 560, - 754.9999999999999 - ], - "spans": [], - "index": 20 - } - ] - } - ], - "index": 19 - } - ], - "layout_bboxes": [], - "page_idx": 27, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 34, - 96, - 558, - 124 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 96, - 558, - 124 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 34, - 96, - 558, - 124 - ], - "spans": [ - { - "bbox": [ - 34, - 96, - 558, - 124 - ], - "score": 0.956, - "html": "
QuPartMarking guidanceTotal marks
", - "type": "table", - "image_path": "d17864221099a7d8f28181bfdaceec24e74c819819a816517bca4897520ba6cb.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 34, - 96, - 558, - 105.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 34, - 105.33333333333333, - 558, - 114.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 34, - 114.66666666666666, - 558, - 123.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 34, - 135, - 560, - 191 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 135, - 560, - 191 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 34, - 135, - 560, - 191 - ], - "spans": [ - { - "bbox": [ - 34, - 135, - 560, - 191 - ], - "score": 0.961, - "html": "
011Mark is for A02 (apply)1
78;
", - "type": "table", - "image_path": "04dbd5a8d70a2229da5ee92610a681e820b072c5f9a931eb7c8d4ce648e2fd67.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 34, - 135, - 560, - 153.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 34, - 153.66666666666666, - 560, - 172.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 34, - 172.33333333333331, - 560, - 190.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 35, - 202, - 560, - 298 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 202, - 560, - 298 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 35, - 202, - 560, - 298 - ], - "spans": [ - { - "bbox": [ - 35, - 202, - 560, - 298 - ], - "score": 0.969, - "html": "
012AllmarksAo2 (apply)2
4; (This must be the left hand digit to gain the mark)
E; (This must be the right hand digit to gain the mark)
Maximum1mark:Iffinalanswernotcorrect.
", - "type": "table", - "image_path": "a86d43692de1c5e2fb443ad9cedcab56c6f321154d9eb76b7b38f858b9cdc02d.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 35, - 202, - 560, - 234.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 35, - 234.0, - 560, - 266.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 35, - 266.0, - 560, - 298.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 35, - 310, - 561, - 391 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 310, - 561, - 391 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 35, - 310, - 561, - 391 - ], - "spans": [ - { - "bbox": [ - 35, - 310, - 561, - 391 - ], - "score": 0.971, - "html": "
013All marks Ao1 (understanding) 2
(The answer is incorrect because) the number will (still) be represented using
binary in a computer's memory;
so it will take up the same amount of memory space;
", - "type": "table", - "image_path": "0be5275c2e9e135faa737515583efff83fc9c1f0f0afd5bb535b74c1e61c4b4f.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 35, - 310, - 561, - 337.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 35, - 337.0, - 561, - 364.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 35, - 364.0, - 561, - 391.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "table", - "bbox": [ - 34, - 402, - 561, - 505 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 402, - 561, - 505 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 34, - 402, - 561, - 505 - ], - "spans": [ - { - "bbox": [ - 34, - 402, - 561, - 505 - ], - "score": 0.973, - "html": "
014All marks AO1 (understanding) 2 (Shifting the bit pattern) three places; to the left; Markasfollows:
", - "type": "table", - "image_path": "46797a43e264dd6f988a8a78e49a5527a970deea2a3c43b592235b494ff9d40c.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 34, - 402, - 561, - 436.3333333333333 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 34, - 436.3333333333333, - 561, - 470.66666666666663 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 34, - 470.66666666666663, - 561, - 504.99999999999994 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - }, - { - "type": "table", - "bbox": [ - 34, - 516, - 560, - 597 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 516, - 560, - 597 - ], - "group_id": 5, - "lines": [ - { - "bbox": [ - 34, - 516, - 560, - 597 - ], - "spans": [ - { - "bbox": [ - 34, - 516, - 560, - 597 - ], - "score": 0.972, - "html": "
015Mark is for A02 (apply)1
BF;
R. If more than one lozenge shaded
", - "type": "table", - "image_path": "6776886ddebd782c80d650845e62b4eb8184de2fcb7a55ede21cdf950f4906b0.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 34, - 516, - 560, - 543.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 34, - 543.0, - 560, - 570.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 34, - 570.0, - 560, - 597.0 - ], - "spans": [], - "index": 17 - } - ] - } - ], - "index": 16 - }, - { - "type": "table", - "bbox": [ - 35, - 609, - 560, - 755 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 609, - 560, - 755 - ], - "group_id": 6, - "lines": [ - { - "bbox": [ - 35, - 609, - 560, - 755 - ], - "spans": [ - { - "bbox": [ - 35, - 609, - 560, - 755 - ], - "score": 0.97, - "html": "
016All marks AO1 (understanding) 2
/ specialist documents;Advantages: Can represent awiderrangeof characters; Can represent characters from a wider range of languages; Can represent characters used in scientific / mathematical /technical
", - "type": "table", - "image_path": "7fc1b00d996b0f85e6d78ab88d37b3785684d63af2a09293377ab79b7856ec14.jpg" - } - ] - } - ], - "index": 19, - "virtual_lines": [ - { - "bbox": [ - 35, - 609, - 560, - 657.6666666666666 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 35, - 657.6666666666666, - 560, - 706.3333333333333 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 35, - 706.3333333333333, - 560, - 754.9999999999999 - ], - "spans": [], - "index": 20 - } - ] - } - ], - "index": 19 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 230, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – GCSE COMPUTER SCIENCE – 8525/2 – SAMS", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 797, - 47, - 805 - ], - "lines": [ - { - "bbox": [ - 41, - 798, - 48, - 806 - ], - "spans": [ - { - "bbox": [ - 41, - 798, - 48, - 806 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 34, - 96, - 558, - 124 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 96, - 558, - 124 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 34, - 96, - 558, - 124 - ], - "spans": [ - { - "bbox": [ - 34, - 96, - 558, - 124 - ], - "score": 0.956, - "html": "
QuPartMarking guidanceTotal marks
", - "type": "table", - "image_path": "d17864221099a7d8f28181bfdaceec24e74c819819a816517bca4897520ba6cb.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 34, - 96, - 558, - 105.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 34, - 105.33333333333333, - 558, - 114.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 34, - 114.66666666666666, - 558, - 123.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_27", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 34, - 135, - 560, - 191 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 135, - 560, - 191 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 34, - 135, - 560, - 191 - ], - "spans": [ - { - "bbox": [ - 34, - 135, - 560, - 191 - ], - "score": 0.961, - "html": "
011Mark is for A02 (apply)1
78;
", - "type": "table", - "image_path": "04dbd5a8d70a2229da5ee92610a681e820b072c5f9a931eb7c8d4ce648e2fd67.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 34, - 135, - 560, - 153.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 34, - 153.66666666666666, - 560, - 172.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 34, - 172.33333333333331, - 560, - 190.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_27", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 35, - 202, - 560, - 298 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 202, - 560, - 298 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 35, - 202, - 560, - 298 - ], - "spans": [ - { - "bbox": [ - 35, - 202, - 560, - 298 - ], - "score": 0.969, - "html": "
012AllmarksAo2 (apply)2
4; (This must be the left hand digit to gain the mark)
E; (This must be the right hand digit to gain the mark)
Maximum1mark:Iffinalanswernotcorrect.
", - "type": "table", - "image_path": "a86d43692de1c5e2fb443ad9cedcab56c6f321154d9eb76b7b38f858b9cdc02d.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 35, - 202, - 560, - 234.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 35, - 234.0, - 560, - 266.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 35, - 266.0, - 560, - 298.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_27", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 35, - 310, - 561, - 391 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 310, - 561, - 391 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 35, - 310, - 561, - 391 - ], - "spans": [ - { - "bbox": [ - 35, - 310, - 561, - 391 - ], - "score": 0.971, - "html": "
013All marks Ao1 (understanding) 2
(The answer is incorrect because) the number will (still) be represented using
binary in a computer's memory;
so it will take up the same amount of memory space;
", - "type": "table", - "image_path": "0be5275c2e9e135faa737515583efff83fc9c1f0f0afd5bb535b74c1e61c4b4f.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 35, - 310, - 561, - 337.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 35, - 337.0, - 561, - 364.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 35, - 364.0, - 561, - 391.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10, - "page_num": "page_27", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 34, - 402, - 561, - 505 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 402, - 561, - 505 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 34, - 402, - 561, - 505 - ], - "spans": [ - { - "bbox": [ - 34, - 402, - 561, - 505 - ], - "score": 0.973, - "html": "
014All marks AO1 (understanding) 2 (Shifting the bit pattern) three places; to the left; Markasfollows:
", - "type": "table", - "image_path": "46797a43e264dd6f988a8a78e49a5527a970deea2a3c43b592235b494ff9d40c.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 34, - 402, - 561, - 436.3333333333333 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 34, - 436.3333333333333, - 561, - 470.66666666666663 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 34, - 470.66666666666663, - 561, - 504.99999999999994 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13, - "page_num": "page_27", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 34, - 516, - 560, - 597 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 516, - 560, - 597 - ], - "group_id": 5, - "lines": [ - { - "bbox": [ - 34, - 516, - 560, - 597 - ], - "spans": [ - { - "bbox": [ - 34, - 516, - 560, - 597 - ], - "score": 0.972, - "html": "
015Mark is for A02 (apply)1
BF;
R. If more than one lozenge shaded
", - "type": "table", - "image_path": "6776886ddebd782c80d650845e62b4eb8184de2fcb7a55ede21cdf950f4906b0.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 34, - 516, - 560, - 543.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 34, - 543.0, - 560, - 570.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 34, - 570.0, - 560, - 597.0 - ], - "spans": [], - "index": 17 - } - ] - } - ], - "index": 16, - "page_num": "page_27", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 35, - 609, - 560, - 755 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 609, - 560, - 755 - ], - "group_id": 6, - "lines": [ - { - "bbox": [ - 35, - 609, - 560, - 755 - ], - "spans": [ - { - "bbox": [ - 35, - 609, - 560, - 755 - ], - "score": 0.97, - "html": "
016All marks AO1 (understanding) 2
/ specialist documents;Advantages: Can represent awiderrangeof characters; Can represent characters from a wider range of languages; Can represent characters used in scientific / mathematical /technical
", - "type": "table", - "image_path": "7fc1b00d996b0f85e6d78ab88d37b3785684d63af2a09293377ab79b7856ec14.jpg" - } - ] - } - ], - "index": 19, - "virtual_lines": [ - { - "bbox": [ - 35, - 609, - 560, - 657.6666666666666 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 35, - 657.6666666666666, - 560, - 706.3333333333333 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 35, - 706.3333333333333, - 560, - 754.9999999999999 - ], - "spans": [], - "index": 20 - } - ] - } - ], - "index": 19, - "page_num": "page_27", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 35, - 83, - 561, - 112 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 83, - 561, - 112 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 35, - 83, - 561, - 112 - ], - "spans": [ - { - "bbox": [ - 35, - 83, - 561, - 112 - ], - "score": 0.94, - "html": "
QuPartMarking guidanceTotal marks
", - "type": "table", - "image_path": "985bc2bfa5641945832fe8baf603e2b4581fe2ad844a5993b9e951708e0a6326.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 35, - 83, - 561, - 92.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 35, - 92.66666666666667, - 561, - 102.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 35, - 102.33333333333334, - 561, - 112.00000000000001 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 34, - 123, - 561, - 273 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 123, - 561, - 273 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 34, - 123, - 561, - 273 - ], - "spans": [ - { - "bbox": [ - 34, - 123, - 561, - 273 - ], - "score": 0.972, - "html": "
01 7 All marks AO2 (apply)
CharacterHuffman coding
111
SPACE10
B00110
Markasfollows:
", - "type": "table", - "image_path": "2793f86e1f4b3689f5339861c0649858028e7f8579b966d91b684d4263969b72.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 34, - 123, - 561, - 173.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 34, - 173.0, - 561, - 223.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 34, - 223.0, - 561, - 273.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 35, - 286, - 561, - 542 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 286, - 561, - 542 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 35, - 286, - 561, - 542 - ], - "spans": [ - { - "bbox": [ - 35, - 286, - 561, - 542 - ], - "score": 0.964, - "html": "
0181 mark for AO1 (understanding) and 2 marks for A02 (apply) 7;*26; =182 182 - 83; = 993
", - "type": "table", - "image_path": "a6fff5e092309a705725327f9da0cee49936b2b70b4f1f3cac6cc0e8eaaefa48.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 35, - 286, - 561, - 371.3333333333333 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 35, - 371.3333333333333, - 561, - 456.66666666666663 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 35, - 456.66666666666663, - 561, - 542.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 34, - 555, - 562, - 728 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 555, - 562, - 728 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 34, - 555, - 562, - 728 - ], - "spans": [ - { - "bbox": [ - 34, - 555, - 562, - 728 - ], - "score": 0.971, - "html": "
02 11 mark for AO1 (recall) and 1 mark for A02 (apply) 2
1000× 4//4000;;x 1 mark for A01: identifying that there are 10o0 megabytes in a gigabyte;
1 mark for AO2: multiplying by 4;
A.1024 × 4 // 4096;
Maximum 1mark: If final answer not correct.
", - "type": "table", - "image_path": "c0cd36406c118653560dce1984edb6d92136c0fb550c3cc9fdc33345a3091bc7.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 34, - 555, - 562, - 612.6666666666666 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 34, - 612.6666666666666, - 562, - 670.3333333333333 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 34, - 670.3333333333333, - 562, - 727.9999999999999 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - } - ], - "layout_bboxes": [], - "page_idx": 28, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 35, - 83, - 561, - 112 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 83, - 561, - 112 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 35, - 83, - 561, - 112 - ], - "spans": [ - { - "bbox": [ - 35, - 83, - 561, - 112 - ], - "score": 0.94, - "html": "
QuPartMarking guidanceTotal marks
", - "type": "table", - "image_path": "985bc2bfa5641945832fe8baf603e2b4581fe2ad844a5993b9e951708e0a6326.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 35, - 83, - 561, - 92.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 35, - 92.66666666666667, - 561, - 102.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 35, - 102.33333333333334, - 561, - 112.00000000000001 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 34, - 123, - 561, - 273 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 123, - 561, - 273 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 34, - 123, - 561, - 273 - ], - "spans": [ - { - "bbox": [ - 34, - 123, - 561, - 273 - ], - "score": 0.972, - "html": "
01 7 All marks AO2 (apply)
CharacterHuffman coding
111
SPACE10
B00110
Markasfollows:
", - "type": "table", - "image_path": "2793f86e1f4b3689f5339861c0649858028e7f8579b966d91b684d4263969b72.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 34, - 123, - 561, - 173.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 34, - 173.0, - 561, - 223.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 34, - 223.0, - 561, - 273.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 35, - 286, - 561, - 542 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 286, - 561, - 542 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 35, - 286, - 561, - 542 - ], - "spans": [ - { - "bbox": [ - 35, - 286, - 561, - 542 - ], - "score": 0.964, - "html": "
0181 mark for AO1 (understanding) and 2 marks for A02 (apply) 7;*26; =182 182 - 83; = 993
", - "type": "table", - "image_path": "a6fff5e092309a705725327f9da0cee49936b2b70b4f1f3cac6cc0e8eaaefa48.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 35, - 286, - 561, - 371.3333333333333 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 35, - 371.3333333333333, - 561, - 456.66666666666663 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 35, - 456.66666666666663, - 561, - 542.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 34, - 555, - 562, - 728 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 555, - 562, - 728 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 34, - 555, - 562, - 728 - ], - "spans": [ - { - "bbox": [ - 34, - 555, - 562, - 728 - ], - "score": 0.971, - "html": "
02 11 mark for AO1 (recall) and 1 mark for A02 (apply) 2
1000× 4//4000;;x 1 mark for A01: identifying that there are 10o0 megabytes in a gigabyte;
1 mark for AO2: multiplying by 4;
A.1024 × 4 // 4096;
Maximum 1mark: If final answer not correct.
", - "type": "table", - "image_path": "c0cd36406c118653560dce1984edb6d92136c0fb550c3cc9fdc33345a3091bc7.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 34, - 555, - 562, - 612.6666666666666 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 34, - 612.6666666666666, - 562, - 670.3333333333333 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 34, - 670.3333333333333, - 562, - 727.9999999999999 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 547, - 797, - 554, - 806 - ], - "lines": [ - { - "bbox": [ - 547, - 797, - 555, - 807 - ], - "spans": [ - { - "bbox": [ - 547, - 797, - 555, - 807 - ], - "score": 1.0, - "content": "5 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 230, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – GCSE COMPUTER SCIENCE – 8525/2 – SAMS", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 35, - 83, - 561, - 112 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 83, - 561, - 112 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 35, - 83, - 561, - 112 - ], - "spans": [ - { - "bbox": [ - 35, - 83, - 561, - 112 - ], - "score": 0.94, - "html": "
QuPartMarking guidanceTotal marks
", - "type": "table", - "image_path": "985bc2bfa5641945832fe8baf603e2b4581fe2ad844a5993b9e951708e0a6326.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 35, - 83, - 561, - 92.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 35, - 92.66666666666667, - 561, - 102.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 35, - 102.33333333333334, - 561, - 112.00000000000001 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_28", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 34, - 123, - 561, - 273 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 123, - 561, - 273 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 34, - 123, - 561, - 273 - ], - "spans": [ - { - "bbox": [ - 34, - 123, - 561, - 273 - ], - "score": 0.972, - "html": "
01 7 All marks AO2 (apply)
CharacterHuffman coding
111
SPACE10
B00110
Markasfollows:
", - "type": "table", - "image_path": "2793f86e1f4b3689f5339861c0649858028e7f8579b966d91b684d4263969b72.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 34, - 123, - 561, - 173.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 34, - 173.0, - 561, - 223.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 34, - 223.0, - 561, - 273.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_28", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 35, - 286, - 561, - 542 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 286, - 561, - 542 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 35, - 286, - 561, - 542 - ], - "spans": [ - { - "bbox": [ - 35, - 286, - 561, - 542 - ], - "score": 0.964, - "html": "
0181 mark for AO1 (understanding) and 2 marks for A02 (apply) 7;*26; =182 182 - 83; = 993
", - "type": "table", - "image_path": "a6fff5e092309a705725327f9da0cee49936b2b70b4f1f3cac6cc0e8eaaefa48.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 35, - 286, - 561, - 371.3333333333333 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 35, - 371.3333333333333, - 561, - 456.66666666666663 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 35, - 456.66666666666663, - 561, - 542.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_28", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 34, - 555, - 562, - 728 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 555, - 562, - 728 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 34, - 555, - 562, - 728 - ], - "spans": [ - { - "bbox": [ - 34, - 555, - 562, - 728 - ], - "score": 0.971, - "html": "
02 11 mark for AO1 (recall) and 1 mark for A02 (apply) 2
1000× 4//4000;;x 1 mark for A01: identifying that there are 10o0 megabytes in a gigabyte;
1 mark for AO2: multiplying by 4;
A.1024 × 4 // 4096;
Maximum 1mark: If final answer not correct.
", - "type": "table", - "image_path": "c0cd36406c118653560dce1984edb6d92136c0fb550c3cc9fdc33345a3091bc7.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 34, - 555, - 562, - 612.6666666666666 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 34, - 612.6666666666666, - 562, - 670.3333333333333 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 34, - 670.3333333333333, - 562, - 727.9999999999999 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10, - "page_num": "page_28", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 34, - 83, - 558, - 112 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 83, - 558, - 112 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 34, - 83, - 558, - 112 - ], - "spans": [ - { - "bbox": [ - 34, - 83, - 558, - 112 - ], - "score": 0.939, - "html": "
QuPartMarking guidanceTotal marks
", - "type": "table", - "image_path": "ec363901540601fe1e0ee1f3c625a0bf0136c1c7a1001ac6b41dab52d64ce245.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 34, - 83, - 558, - 92.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 34, - 92.66666666666667, - 558, - 102.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 34, - 102.33333333333334, - 558, - 112.00000000000001 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 35, - 122, - 560, - 235 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 122, - 560, - 235 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 35, - 122, - 560, - 235 - ], - "spans": [ - { - "bbox": [ - 35, - 122, - 560, - 235 - ], - "score": 0.973, - "html": "
022All marks AO1 (understanding)2
Max2
Lighter; Smaller; Uses less power; More robust; Generates less heat; Quieter;
", - "type": "table", - "image_path": "14e79cfc8a9ffffd2cfc3ca9f1145c9b6d1d7a0dbf4e783fd7da0df2cef26bf5.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 35, - 122, - 560, - 159.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 35, - 159.66666666666666, - 560, - 197.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 35, - 197.33333333333331, - 560, - 234.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 34, - 246, - 561, - 340 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 246, - 561, - 340 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 34, - 246, - 561, - 340 - ], - "spans": [ - { - "bbox": [ - 34, - 246, - 561, - 340 - ], - "score": 0.967, - "html": "
0232 marks for Ao2 (apply) 2 Using just solid state would cost much more;
", - "type": "table", - "image_path": "399bef768c2fa3a11de2e40d67b0ec4969731a3767f25edee28f31a5d017f1c4.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 34, - 246, - 561, - 277.3333333333333 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 34, - 277.3333333333333, - 561, - 308.66666666666663 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 34, - 308.66666666666663, - 561, - 339.99999999999994 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 35, - 353, - 562, - 514 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 353, - 562, - 514 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 35, - 353, - 562, - 514 - ], - "spans": [ - { - "bbox": [ - 35, - 353, - 562, - 514 - ], - "score": 0.972, - "html": "
024All marks AO1 (understanding)4
On a hard disk binary data represented by tiny magnetised regions; where the magnetic orientation in one direction represents O, and the other direction represents 1; When reading data the read/write head is moved (to be overcorrecttrack);andtheplatter/diskspinsround; A whole sector/block read in one go (by the read/write head);
", - "type": "table", - "image_path": "a336f0b4d87064b0f793e654453d03bc5faf76b5a04d03f82d6f655472ec1769.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 35, - 353, - 562, - 406.6666666666667 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 35, - 406.6666666666667, - 562, - 460.33333333333337 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 35, - 460.33333333333337, - 562, - 514.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - } - ], - "layout_bboxes": [], - "page_idx": 29, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 34, - 83, - 558, - 112 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 83, - 558, - 112 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 34, - 83, - 558, - 112 - ], - "spans": [ - { - "bbox": [ - 34, - 83, - 558, - 112 - ], - "score": 0.939, - "html": "
QuPartMarking guidanceTotal marks
", - "type": "table", - "image_path": "ec363901540601fe1e0ee1f3c625a0bf0136c1c7a1001ac6b41dab52d64ce245.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 34, - 83, - 558, - 92.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 34, - 92.66666666666667, - 558, - 102.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 34, - 102.33333333333334, - 558, - 112.00000000000001 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 35, - 122, - 560, - 235 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 122, - 560, - 235 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 35, - 122, - 560, - 235 - ], - "spans": [ - { - "bbox": [ - 35, - 122, - 560, - 235 - ], - "score": 0.973, - "html": "
022All marks AO1 (understanding)2
Max2
Lighter; Smaller; Uses less power; More robust; Generates less heat; Quieter;
", - "type": "table", - "image_path": "14e79cfc8a9ffffd2cfc3ca9f1145c9b6d1d7a0dbf4e783fd7da0df2cef26bf5.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 35, - 122, - 560, - 159.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 35, - 159.66666666666666, - 560, - 197.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 35, - 197.33333333333331, - 560, - 234.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 34, - 246, - 561, - 340 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 246, - 561, - 340 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 34, - 246, - 561, - 340 - ], - "spans": [ - { - "bbox": [ - 34, - 246, - 561, - 340 - ], - "score": 0.967, - "html": "
0232 marks for Ao2 (apply) 2 Using just solid state would cost much more;
", - "type": "table", - "image_path": "399bef768c2fa3a11de2e40d67b0ec4969731a3767f25edee28f31a5d017f1c4.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 34, - 246, - 561, - 277.3333333333333 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 34, - 277.3333333333333, - 561, - 308.66666666666663 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 34, - 308.66666666666663, - 561, - 339.99999999999994 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 35, - 353, - 562, - 514 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 353, - 562, - 514 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 35, - 353, - 562, - 514 - ], - "spans": [ - { - "bbox": [ - 35, - 353, - 562, - 514 - ], - "score": 0.972, - "html": "
024All marks AO1 (understanding)4
On a hard disk binary data represented by tiny magnetised regions; where the magnetic orientation in one direction represents O, and the other direction represents 1; When reading data the read/write head is moved (to be overcorrecttrack);andtheplatter/diskspinsround; A whole sector/block read in one go (by the read/write head);
", - "type": "table", - "image_path": "a336f0b4d87064b0f793e654453d03bc5faf76b5a04d03f82d6f655472ec1769.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 35, - 353, - 562, - 406.6666666666667 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 35, - 406.6666666666667, - 562, - 460.33333333333337 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 35, - 460.33333333333337, - 562, - 514.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 41, - 797, - 47, - 805 - ], - "lines": [ - { - "bbox": [ - 41, - 797, - 49, - 807 - ], - "spans": [ - { - "bbox": [ - 41, - 797, - 49, - 807 - ], - "score": 1.0, - "content": "6 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 230, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – GCSE COMPUTER SCIENCE – 8525/2 – SAMS", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 34, - 83, - 558, - 112 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 83, - 558, - 112 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 34, - 83, - 558, - 112 - ], - "spans": [ - { - "bbox": [ - 34, - 83, - 558, - 112 - ], - "score": 0.939, - "html": "
QuPartMarking guidanceTotal marks
", - "type": "table", - "image_path": "ec363901540601fe1e0ee1f3c625a0bf0136c1c7a1001ac6b41dab52d64ce245.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 34, - 83, - 558, - 92.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 34, - 92.66666666666667, - 558, - 102.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 34, - 102.33333333333334, - 558, - 112.00000000000001 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_29", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 35, - 122, - 560, - 235 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 122, - 560, - 235 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 35, - 122, - 560, - 235 - ], - "spans": [ - { - "bbox": [ - 35, - 122, - 560, - 235 - ], - "score": 0.973, - "html": "
022All marks AO1 (understanding)2
Max2
Lighter; Smaller; Uses less power; More robust; Generates less heat; Quieter;
", - "type": "table", - "image_path": "14e79cfc8a9ffffd2cfc3ca9f1145c9b6d1d7a0dbf4e783fd7da0df2cef26bf5.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 35, - 122, - 560, - 159.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 35, - 159.66666666666666, - 560, - 197.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 35, - 197.33333333333331, - 560, - 234.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_29", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 34, - 246, - 561, - 340 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 246, - 561, - 340 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 34, - 246, - 561, - 340 - ], - "spans": [ - { - "bbox": [ - 34, - 246, - 561, - 340 - ], - "score": 0.967, - "html": "
0232 marks for Ao2 (apply) 2 Using just solid state would cost much more;
", - "type": "table", - "image_path": "399bef768c2fa3a11de2e40d67b0ec4969731a3767f25edee28f31a5d017f1c4.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 34, - 246, - 561, - 277.3333333333333 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 34, - 277.3333333333333, - 561, - 308.66666666666663 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 34, - 308.66666666666663, - 561, - 339.99999999999994 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_29", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 35, - 353, - 562, - 514 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 353, - 562, - 514 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 35, - 353, - 562, - 514 - ], - "spans": [ - { - "bbox": [ - 35, - 353, - 562, - 514 - ], - "score": 0.972, - "html": "
024All marks AO1 (understanding)4
On a hard disk binary data represented by tiny magnetised regions; where the magnetic orientation in one direction represents O, and the other direction represents 1; When reading data the read/write head is moved (to be overcorrecttrack);andtheplatter/diskspinsround; A whole sector/block read in one go (by the read/write head);
", - "type": "table", - "image_path": "a336f0b4d87064b0f793e654453d03bc5faf76b5a04d03f82d6f655472ec1769.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 35, - 353, - 562, - 406.6666666666667 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 35, - 406.6666666666667, - 562, - 460.33333333333337 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 35, - 460.33333333333337, - 562, - 514.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10, - "page_num": "page_29", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 35, - 83, - 561, - 112 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 83, - 561, - 112 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 35, - 83, - 561, - 112 - ], - "spans": [ - { - "bbox": [ - 35, - 83, - 561, - 112 - ], - "score": 0.902, - "html": "
QuPartTotal marks
Marking guidance
", - "type": "table", - "image_path": "b88afd9fdfeb8cf3369d76015aa3317d8f878f32eeb6ead03420fc54210c6f11.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 35, - 83, - 561, - 92.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 35, - 92.66666666666667, - 561, - 102.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 35, - 102.33333333333334, - 561, - 112.00000000000001 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 34, - 131, - 568, - 657 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 131, - 568, - 657 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 34, - 131, - 568, - 657 - ], - "spans": [ - { - "bbox": [ - 34, - 131, - 568, - 657 - ], - "score": 0.97, - "html": "
02 5All marks A02 (apply)9
Level 3Description Answer demonstrates a sustained line of reasoning with a substantiatedMark Range 7-9
2technological and social reasons. There is a logically structured consideration of the advantages and the disadvantages associated with the use of cloud storage - including relevant points covering at least two of legal, ethical and environmental issues. Answer includes an explanation for the recent large growth in the use of cloud4-6
storage that includes both technological and social reasons. There is a logically structured consideration of the advantages and the disadvantages associated with the use of cloud storage - including one or two relevant points related to legal, ethical and environmental issues.1-3
some of the reasons for the recent large growth in the use of cloud computing and/or brief consideration of the advantages and/or disadvantages associated with using cloud storage.
Nocreditworthyanswer0
", - "type": "table", - "image_path": "c5171351beaf971a9802a9698820b3ac32b5d4e4f5daedaed6f07fa62fa05586.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 34, - 131, - 568, - 306.33333333333337 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 34, - 306.33333333333337, - 568, - 481.66666666666674 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 34, - 481.66666666666674, - 568, - 657.0000000000001 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "layout_bboxes": [], - "page_idx": 30, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 35, - 83, - 561, - 112 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 83, - 561, - 112 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 35, - 83, - 561, - 112 - ], - "spans": [ - { - "bbox": [ - 35, - 83, - 561, - 112 - ], - "score": 0.902, - "html": "
QuPartTotal marks
Marking guidance
", - "type": "table", - "image_path": "b88afd9fdfeb8cf3369d76015aa3317d8f878f32eeb6ead03420fc54210c6f11.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 35, - 83, - 561, - 92.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 35, - 92.66666666666667, - 561, - 102.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 35, - 102.33333333333334, - 561, - 112.00000000000001 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 34, - 131, - 568, - 657 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 131, - 568, - 657 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 34, - 131, - 568, - 657 - ], - "spans": [ - { - "bbox": [ - 34, - 131, - 568, - 657 - ], - "score": 0.97, - "html": "
02 5All marks A02 (apply)9
Level 3Description Answer demonstrates a sustained line of reasoning with a substantiatedMark Range 7-9
2technological and social reasons. There is a logically structured consideration of the advantages and the disadvantages associated with the use of cloud storage - including relevant points covering at least two of legal, ethical and environmental issues. Answer includes an explanation for the recent large growth in the use of cloud4-6
storage that includes both technological and social reasons. There is a logically structured consideration of the advantages and the disadvantages associated with the use of cloud storage - including one or two relevant points related to legal, ethical and environmental issues.1-3
some of the reasons for the recent large growth in the use of cloud computing and/or brief consideration of the advantages and/or disadvantages associated with using cloud storage.
Nocreditworthyanswer0
", - "type": "table", - "image_path": "c5171351beaf971a9802a9698820b3ac32b5d4e4f5daedaed6f07fa62fa05586.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 34, - 131, - 568, - 306.33333333333337 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 34, - 306.33333333333337, - 568, - 481.66666666666674 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 34, - 481.66666666666674, - 568, - 657.0000000000001 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 231, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – GCSE COMPUTER SCIENCE – 8525/2 – SAMS", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 547, - 797, - 554, - 805 - ], - "lines": [ - { - "bbox": [ - 546, - 796, - 555, - 807 - ], - "spans": [ - { - "bbox": [ - 546, - 796, - 555, - 807 - ], - "score": 1.0, - "content": "7 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 35, - 83, - 561, - 112 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 83, - 561, - 112 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 35, - 83, - 561, - 112 - ], - "spans": [ - { - "bbox": [ - 35, - 83, - 561, - 112 - ], - "score": 0.902, - "html": "
QuPartTotal marks
Marking guidance
", - "type": "table", - "image_path": "b88afd9fdfeb8cf3369d76015aa3317d8f878f32eeb6ead03420fc54210c6f11.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 35, - 83, - 561, - 92.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 35, - 92.66666666666667, - 561, - 102.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 35, - 102.33333333333334, - 561, - 112.00000000000001 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_30", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 34, - 131, - 568, - 657 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 131, - 568, - 657 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 34, - 131, - 568, - 657 - ], - "spans": [ - { - "bbox": [ - 34, - 131, - 568, - 657 - ], - "score": 0.97, - "html": "
02 5All marks A02 (apply)9
Level 3Description Answer demonstrates a sustained line of reasoning with a substantiatedMark Range 7-9
2technological and social reasons. There is a logically structured consideration of the advantages and the disadvantages associated with the use of cloud storage - including relevant points covering at least two of legal, ethical and environmental issues. Answer includes an explanation for the recent large growth in the use of cloud4-6
storage that includes both technological and social reasons. There is a logically structured consideration of the advantages and the disadvantages associated with the use of cloud storage - including one or two relevant points related to legal, ethical and environmental issues.1-3
some of the reasons for the recent large growth in the use of cloud computing and/or brief consideration of the advantages and/or disadvantages associated with using cloud storage.
Nocreditworthyanswer0
", - "type": "table", - "image_path": "c5171351beaf971a9802a9698820b3ac32b5d4e4f5daedaed6f07fa62fa05586.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 34, - 131, - 568, - 306.33333333333337 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 34, - 306.33333333333337, - 568, - 481.66666666666674 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 34, - 481.66666666666674, - 568, - 657.0000000000001 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_30", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 36, - 83, - 560, - 460 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 83, - 560, - 460 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 36, - 83, - 560, - 460 - ], - "spans": [ - { - "bbox": [ - 36, - 83, - 560, - 460 - ], - "score": 0.94, - "html": "
Guidance - Indicative Response (reasons for growth) Higher bandwidth mobile networks (eg 4G); Increased availability of mobile devices; Reduction in cost of large capacity storage devices; Improvements in network security; People have a higher level of trust in cloud storage; Improvements inwebbrowser software; Increased availability of supercomputers (for cloud processing); Companies have managed to develop business models based on cloud computing that allow them to make a profit; Guidance - Indicative Response (advantages of cloud storage) Enables user to access their data from more places/devices; cloud storage publically available); Increases the amount of storage available; Reduced cost of computing devices for users as no need for as much built-in secondary storage;
", - "type": "table", - "image_path": "72b0557315f443bccfa486351e3aa1d60c6fd88184fc4859a047e5556a04d4c1.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 36, - 83, - 560, - 208.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 36, - 208.66666666666669, - 560, - 334.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 36, - 334.33333333333337, - 560, - 460.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 31, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 36, - 83, - 560, - 460 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 83, - 560, - 460 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 36, - 83, - 560, - 460 - ], - "spans": [ - { - "bbox": [ - 36, - 83, - 560, - 460 - ], - "score": 0.94, - "html": "
Guidance - Indicative Response (reasons for growth) Higher bandwidth mobile networks (eg 4G); Increased availability of mobile devices; Reduction in cost of large capacity storage devices; Improvements in network security; People have a higher level of trust in cloud storage; Improvements inwebbrowser software; Increased availability of supercomputers (for cloud processing); Companies have managed to develop business models based on cloud computing that allow them to make a profit; Guidance - Indicative Response (advantages of cloud storage) Enables user to access their data from more places/devices; cloud storage publically available); Increases the amount of storage available; Reduced cost of computing devices for users as no need for as much built-in secondary storage;
", - "type": "table", - "image_path": "72b0557315f443bccfa486351e3aa1d60c6fd88184fc4859a047e5556a04d4c1.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 36, - 83, - 560, - 208.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 36, - 208.66666666666669, - 560, - 334.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 36, - 334.33333333333337, - 560, - 460.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 231, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – GCSE COMPUTER SCIENCE – 8525/2 – SAMS", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 797, - 47, - 805 - ], - "lines": [ - { - "bbox": [ - 41, - 797, - 49, - 807 - ], - "spans": [ - { - "bbox": [ - 41, - 797, - 49, - 807 - ], - "score": 1.0, - "content": "8 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 36, - 83, - 560, - 460 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 83, - 560, - 460 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 36, - 83, - 560, - 460 - ], - "spans": [ - { - "bbox": [ - 36, - 83, - 560, - 460 - ], - "score": 0.94, - "html": "
Guidance - Indicative Response (reasons for growth) Higher bandwidth mobile networks (eg 4G); Increased availability of mobile devices; Reduction in cost of large capacity storage devices; Improvements in network security; People have a higher level of trust in cloud storage; Improvements inwebbrowser software; Increased availability of supercomputers (for cloud processing); Companies have managed to develop business models based on cloud computing that allow them to make a profit; Guidance - Indicative Response (advantages of cloud storage) Enables user to access their data from more places/devices; cloud storage publically available); Increases the amount of storage available; Reduced cost of computing devices for users as no need for as much built-in secondary storage;
", - "type": "table", - "image_path": "72b0557315f443bccfa486351e3aa1d60c6fd88184fc4859a047e5556a04d4c1.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 36, - 83, - 560, - 208.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 36, - 208.66666666666669, - 560, - 334.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 36, - 334.33333333333337, - 560, - 460.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_31", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 35, - 83, - 561, - 112 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 83, - 561, - 112 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 35, - 83, - 561, - 112 - ], - "spans": [ - { - "bbox": [ - 35, - 83, - 561, - 112 - ], - "score": 0.933, - "html": "
QuPartMarking guidanceTotal marks
", - "type": "table", - "image_path": "5b63c8560f53a2e0b03f5cc9e96d2eac5186b716617a4649d4276aa1f800c77e.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 35, - 83, - 561, - 92.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 35, - 92.66666666666667, - 561, - 102.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 35, - 102.33333333333334, - 561, - 112.00000000000001 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 35, - 123, - 561, - 459 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 123, - 561, - 459 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 35, - 123, - 561, - 459 - ], - "spans": [ - { - "bbox": [ - 35, - 123, - 561, - 459 - ], - "score": 0.965, - "html": "
031All marks Ao1 (understanding) 2
Reasons for allowing: them to plan lessons at home; travel difficulties); Reasonsfor not allowing:Teachers can access resources on the school network to allow Teachers can teach lessons from home (using videoconferencing) if they are not able to get into work (eg
network);Teachers can access electronic copies of student work so that they do not have to carry marking home; Data protection issues - schools may not want potentially sensitive student information to be accessed outside of school; To try to help teachers have a work-life balance; Increased security risks as teachers may not have fully- anti-virus software on their home computer this may cause problems when they connect their computer to the school
", - "type": "table", - "image_path": "ab33130c62e82b036c4e02c5db3517dcb56d4c845a38ca2294a752e78c148b8e.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 35, - 123, - 561, - 235.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 35, - 235.0, - 561, - 347.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 35, - 347.0, - 561, - 459.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 35, - 482, - 563, - 667 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 482, - 563, - 667 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 35, - 482, - 563, - 667 - ], - "spans": [ - { - "bbox": [ - 35, - 482, - 563, - 667 - ], - "score": 0.979, - "html": "
032 All marks AO1 (understanding) Share hardware; A. by example Sharedata/files; Easier to work collaboratively; Useofcommunicationtools3 deployment, centralised back-ups;
", - "type": "table", - "image_path": "dad2f0751fcc595859eed636a4804f6ae89a938dee6b5a35fdce6001d2b5a2b3.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 35, - 482, - 563, - 543.6666666666666 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 35, - 543.6666666666666, - 563, - 605.3333333333333 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 35, - 605.3333333333333, - 563, - 666.9999999999999 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - } - ], - "layout_bboxes": [], - "page_idx": 32, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 35, - 83, - 561, - 112 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 83, - 561, - 112 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 35, - 83, - 561, - 112 - ], - "spans": [ - { - "bbox": [ - 35, - 83, - 561, - 112 - ], - "score": 0.933, - "html": "
QuPartMarking guidanceTotal marks
", - "type": "table", - "image_path": "5b63c8560f53a2e0b03f5cc9e96d2eac5186b716617a4649d4276aa1f800c77e.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 35, - 83, - 561, - 92.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 35, - 92.66666666666667, - 561, - 102.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 35, - 102.33333333333334, - 561, - 112.00000000000001 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 35, - 123, - 561, - 459 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 123, - 561, - 459 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 35, - 123, - 561, - 459 - ], - "spans": [ - { - "bbox": [ - 35, - 123, - 561, - 459 - ], - "score": 0.965, - "html": "
031All marks Ao1 (understanding) 2
Reasons for allowing: them to plan lessons at home; travel difficulties); Reasonsfor not allowing:Teachers can access resources on the school network to allow Teachers can teach lessons from home (using videoconferencing) if they are not able to get into work (eg
network);Teachers can access electronic copies of student work so that they do not have to carry marking home; Data protection issues - schools may not want potentially sensitive student information to be accessed outside of school; To try to help teachers have a work-life balance; Increased security risks as teachers may not have fully- anti-virus software on their home computer this may cause problems when they connect their computer to the school
", - "type": "table", - "image_path": "ab33130c62e82b036c4e02c5db3517dcb56d4c845a38ca2294a752e78c148b8e.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 35, - 123, - 561, - 235.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 35, - 235.0, - 561, - 347.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 35, - 347.0, - 561, - 459.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 35, - 482, - 563, - 667 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 482, - 563, - 667 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 35, - 482, - 563, - 667 - ], - "spans": [ - { - "bbox": [ - 35, - 482, - 563, - 667 - ], - "score": 0.979, - "html": "
032 All marks AO1 (understanding) Share hardware; A. by example Sharedata/files; Easier to work collaboratively; Useofcommunicationtools3 deployment, centralised back-ups;
", - "type": "table", - "image_path": "dad2f0751fcc595859eed636a4804f6ae89a938dee6b5a35fdce6001d2b5a2b3.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 35, - 482, - 563, - 543.6666666666666 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 35, - 543.6666666666666, - 563, - 605.3333333333333 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 35, - 605.3333333333333, - 563, - 666.9999999999999 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 231, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – GCSE COMPUTER SCIENCE – 8525/2 – SAMS", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 547, - 797, - 554, - 805 - ], - "lines": [ - { - "bbox": [ - 547, - 797, - 555, - 807 - ], - "spans": [ - { - "bbox": [ - 547, - 797, - 555, - 807 - ], - "score": 1.0, - "content": "9 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 35, - 83, - 561, - 112 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 83, - 561, - 112 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 35, - 83, - 561, - 112 - ], - "spans": [ - { - "bbox": [ - 35, - 83, - 561, - 112 - ], - "score": 0.933, - "html": "
QuPartMarking guidanceTotal marks
", - "type": "table", - "image_path": "5b63c8560f53a2e0b03f5cc9e96d2eac5186b716617a4649d4276aa1f800c77e.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 35, - 83, - 561, - 92.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 35, - 92.66666666666667, - 561, - 102.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 35, - 102.33333333333334, - 561, - 112.00000000000001 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_32", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 35, - 123, - 561, - 459 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 123, - 561, - 459 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 35, - 123, - 561, - 459 - ], - "spans": [ - { - "bbox": [ - 35, - 123, - 561, - 459 - ], - "score": 0.965, - "html": "
031All marks Ao1 (understanding) 2
Reasons for allowing: them to plan lessons at home; travel difficulties); Reasonsfor not allowing:Teachers can access resources on the school network to allow Teachers can teach lessons from home (using videoconferencing) if they are not able to get into work (eg
network);Teachers can access electronic copies of student work so that they do not have to carry marking home; Data protection issues - schools may not want potentially sensitive student information to be accessed outside of school; To try to help teachers have a work-life balance; Increased security risks as teachers may not have fully- anti-virus software on their home computer this may cause problems when they connect their computer to the school
", - "type": "table", - "image_path": "ab33130c62e82b036c4e02c5db3517dcb56d4c845a38ca2294a752e78c148b8e.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 35, - 123, - 561, - 235.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 35, - 235.0, - 561, - 347.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 35, - 347.0, - 561, - 459.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_32", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 35, - 482, - 563, - 667 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 482, - 563, - 667 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 35, - 482, - 563, - 667 - ], - "spans": [ - { - "bbox": [ - 35, - 482, - 563, - 667 - ], - "score": 0.979, - "html": "
032 All marks AO1 (understanding) Share hardware; A. by example Sharedata/files; Easier to work collaboratively; Useofcommunicationtools3 deployment, centralised back-ups;
", - "type": "table", - "image_path": "dad2f0751fcc595859eed636a4804f6ae89a938dee6b5a35fdce6001d2b5a2b3.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 35, - 482, - 563, - 543.6666666666666 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 35, - 543.6666666666666, - 563, - 605.3333333333333 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 35, - 605.3333333333333, - 563, - 666.9999999999999 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_32", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 33, - 89, - 555, - 117 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 33, - 89, - 555, - 117 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 33, - 89, - 555, - 117 - ], - "spans": [ - { - "bbox": [ - 33, - 89, - 555, - 117 - ], - "score": 0.939, - "html": "
QuPartMarking guidanceTotal
marks
", - "type": "table", - "image_path": "9a2424506ded8c36c7ccbdddb4af26f8bab9f33bc422dda6d428be6af9603d35.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 33, - 89, - 555, - 98.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 33, - 98.33333333333333, - 555, - 107.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 33, - 107.66666666666666, - 555, - 116.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 35, - 129, - 559, - 275 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 129, - 559, - 275 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 35, - 129, - 559, - 275 - ], - "spans": [ - { - "bbox": [ - 35, - 129, - 559, - 275 - ], - "score": 0.977, - "html": "
0331 mark for AO1 (understanding) 1
example);PANs are centred around one person, LANs cover a limited geographical area / LANs cover a larger area; PANs have one user, LANs (normally) have more than one user; PAN uses Bluetooth, LAN uses alternative protocols / connection methods (A. by
", - "type": "table", - "image_path": "cff165aac49e81f4db2231d193a8cb3f31157734b5d7b3bf668f9fab3fe2aa8e.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 35, - 129, - 559, - 177.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 35, - 177.66666666666666, - 559, - 226.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 35, - 226.33333333333331, - 559, - 275.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 35, - 287, - 560, - 419 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 287, - 560, - 419 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 35, - 287, - 560, - 419 - ], - "spans": [ - { - "bbox": [ - 35, - 287, - 560, - 419 - ], - "score": 0.976, - "html": "
0341 mark for Ao1 (understanding) 1
Wearablecomputingdevices;
Connecting headphones to a music player;
Connecting pedometer to a mobile phone;
Max 1A.any suitable example
", - "type": "table", - "image_path": "9b6b3c4f7d85d31513bb596b4445b26ed2672efb9bf9342644dd8b14a2e62735.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 35, - 287, - 560, - 331.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 35, - 331.0, - 560, - 375.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 35, - 375.0, - 560, - 419.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 34, - 430, - 559, - 509 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 430, - 559, - 509 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 34, - 430, - 559, - 509 - ], - "spans": [ - { - "bbox": [ - 34, - 430, - 559, - 509 - ], - "score": 0.97, - "html": "
035All marks Ao1 (recall)2
a set of rules;
thatallowtwodevicestocommunicate;
", - "type": "table", - "image_path": "f05b34dfbcefe67cd8b5f40e7c9d8a38db57bc9c6ecbb4d38b47cf775942d745.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 34, - 430, - 559, - 456.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 34, - 456.3333333333333, - 559, - 482.66666666666663 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 34, - 482.66666666666663, - 559, - 508.99999999999994 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "table", - "bbox": [ - 34, - 520, - 560, - 601 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 520, - 560, - 601 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 34, - 520, - 560, - 601 - ], - "spans": [ - { - "bbox": [ - 34, - 520, - 560, - 601 - ], - "score": 0.972, - "html": "
036Mark is for AO1 (recall)1
EIMAP;
R. If more than one lozenge shaded
", - "type": "table", - "image_path": "437ceedb4162c5ec9a7e074aa55117e7e3ed1bb049f7f10c4b711ab9a9684b73.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 34, - 520, - 560, - 547.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 34, - 547.0, - 560, - 574.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 34, - 574.0, - 560, - 601.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - }, - { - "type": "table", - "bbox": [ - 34, - 613, - 559, - 694 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 613, - 559, - 694 - ], - "group_id": 5, - "lines": [ - { - "bbox": [ - 34, - 613, - 559, - 694 - ], - "spans": [ - { - "bbox": [ - 34, - 613, - 559, - 694 - ], - "score": 0.965, - "html": "
037Mark is for AO1 (recall)1
BHTTPS;
R. If more than one lozenge shaded
", - "type": "table", - "image_path": "08c7ed4e250a45c45ccd907bdab4d7a60c9b8dbda6633f5ea30a7c5bd49b38b6.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 34, - 613, - 559, - 640.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 34, - 640.0, - 559, - 667.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 34, - 667.0, - 559, - 694.0 - ], - "spans": [], - "index": 17 - } - ] - } - ], - "index": 16 - } - ], - "layout_bboxes": [], - "page_idx": 33, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 33, - 89, - 555, - 117 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 33, - 89, - 555, - 117 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 33, - 89, - 555, - 117 - ], - "spans": [ - { - "bbox": [ - 33, - 89, - 555, - 117 - ], - "score": 0.939, - "html": "
QuPartMarking guidanceTotal
marks
", - "type": "table", - "image_path": "9a2424506ded8c36c7ccbdddb4af26f8bab9f33bc422dda6d428be6af9603d35.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 33, - 89, - 555, - 98.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 33, - 98.33333333333333, - 555, - 107.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 33, - 107.66666666666666, - 555, - 116.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 35, - 129, - 559, - 275 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 129, - 559, - 275 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 35, - 129, - 559, - 275 - ], - "spans": [ - { - "bbox": [ - 35, - 129, - 559, - 275 - ], - "score": 0.977, - "html": "
0331 mark for AO1 (understanding) 1
example);PANs are centred around one person, LANs cover a limited geographical area / LANs cover a larger area; PANs have one user, LANs (normally) have more than one user; PAN uses Bluetooth, LAN uses alternative protocols / connection methods (A. by
", - "type": "table", - "image_path": "cff165aac49e81f4db2231d193a8cb3f31157734b5d7b3bf668f9fab3fe2aa8e.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 35, - 129, - 559, - 177.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 35, - 177.66666666666666, - 559, - 226.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 35, - 226.33333333333331, - 559, - 275.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 35, - 287, - 560, - 419 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 287, - 560, - 419 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 35, - 287, - 560, - 419 - ], - "spans": [ - { - "bbox": [ - 35, - 287, - 560, - 419 - ], - "score": 0.976, - "html": "
0341 mark for Ao1 (understanding) 1
Wearablecomputingdevices;
Connecting headphones to a music player;
Connecting pedometer to a mobile phone;
Max 1A.any suitable example
", - "type": "table", - "image_path": "9b6b3c4f7d85d31513bb596b4445b26ed2672efb9bf9342644dd8b14a2e62735.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 35, - 287, - 560, - 331.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 35, - 331.0, - 560, - 375.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 35, - 375.0, - 560, - 419.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 34, - 430, - 559, - 509 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 430, - 559, - 509 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 34, - 430, - 559, - 509 - ], - "spans": [ - { - "bbox": [ - 34, - 430, - 559, - 509 - ], - "score": 0.97, - "html": "
035All marks Ao1 (recall)2
a set of rules;
thatallowtwodevicestocommunicate;
", - "type": "table", - "image_path": "f05b34dfbcefe67cd8b5f40e7c9d8a38db57bc9c6ecbb4d38b47cf775942d745.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 34, - 430, - 559, - 456.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 34, - 456.3333333333333, - 559, - 482.66666666666663 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 34, - 482.66666666666663, - 559, - 508.99999999999994 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "table", - "bbox": [ - 34, - 520, - 560, - 601 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 520, - 560, - 601 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 34, - 520, - 560, - 601 - ], - "spans": [ - { - "bbox": [ - 34, - 520, - 560, - 601 - ], - "score": 0.972, - "html": "
036Mark is for AO1 (recall)1
EIMAP;
R. If more than one lozenge shaded
", - "type": "table", - "image_path": "437ceedb4162c5ec9a7e074aa55117e7e3ed1bb049f7f10c4b711ab9a9684b73.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 34, - 520, - 560, - 547.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 34, - 547.0, - 560, - 574.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 34, - 574.0, - 560, - 601.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - }, - { - "type": "table", - "bbox": [ - 34, - 613, - 559, - 694 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 613, - 559, - 694 - ], - "group_id": 5, - "lines": [ - { - "bbox": [ - 34, - 613, - 559, - 694 - ], - "spans": [ - { - "bbox": [ - 34, - 613, - 559, - 694 - ], - "score": 0.965, - "html": "
037Mark is for AO1 (recall)1
BHTTPS;
R. If more than one lozenge shaded
", - "type": "table", - "image_path": "08c7ed4e250a45c45ccd907bdab4d7a60c9b8dbda6633f5ea30a7c5bd49b38b6.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 34, - 613, - 559, - 640.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 34, - 640.0, - 559, - 667.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 34, - 667.0, - 559, - 694.0 - ], - "spans": [], - "index": 17 - } - ] - } - ], - "index": 16 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 42, - 797, - 52, - 805 - ], - "lines": [ - { - "bbox": [ - 40, - 795, - 54, - 808 - ], - "spans": [ - { - "bbox": [ - 40, - 795, - 54, - 808 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 13, - "width": 14 - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 230, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – GCSE COMPUTER SCIENCE – 8525/2 – SAMS", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 33, - 89, - 555, - 117 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 33, - 89, - 555, - 117 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 33, - 89, - 555, - 117 - ], - "spans": [ - { - "bbox": [ - 33, - 89, - 555, - 117 - ], - "score": 0.939, - "html": "
QuPartMarking guidanceTotal
marks
", - "type": "table", - "image_path": "9a2424506ded8c36c7ccbdddb4af26f8bab9f33bc422dda6d428be6af9603d35.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 33, - 89, - 555, - 98.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 33, - 98.33333333333333, - 555, - 107.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 33, - 107.66666666666666, - 555, - 116.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_33", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 35, - 129, - 559, - 275 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 129, - 559, - 275 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 35, - 129, - 559, - 275 - ], - "spans": [ - { - "bbox": [ - 35, - 129, - 559, - 275 - ], - "score": 0.977, - "html": "
0331 mark for AO1 (understanding) 1
example);PANs are centred around one person, LANs cover a limited geographical area / LANs cover a larger area; PANs have one user, LANs (normally) have more than one user; PAN uses Bluetooth, LAN uses alternative protocols / connection methods (A. by
", - "type": "table", - "image_path": "cff165aac49e81f4db2231d193a8cb3f31157734b5d7b3bf668f9fab3fe2aa8e.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 35, - 129, - 559, - 177.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 35, - 177.66666666666666, - 559, - 226.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 35, - 226.33333333333331, - 559, - 275.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_33", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 35, - 287, - 560, - 419 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 287, - 560, - 419 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 35, - 287, - 560, - 419 - ], - "spans": [ - { - "bbox": [ - 35, - 287, - 560, - 419 - ], - "score": 0.976, - "html": "
0341 mark for Ao1 (understanding) 1
Wearablecomputingdevices;
Connecting headphones to a music player;
Connecting pedometer to a mobile phone;
Max 1A.any suitable example
", - "type": "table", - "image_path": "9b6b3c4f7d85d31513bb596b4445b26ed2672efb9bf9342644dd8b14a2e62735.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 35, - 287, - 560, - 331.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 35, - 331.0, - 560, - 375.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 35, - 375.0, - 560, - 419.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_33", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 34, - 430, - 559, - 509 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 430, - 559, - 509 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 34, - 430, - 559, - 509 - ], - "spans": [ - { - "bbox": [ - 34, - 430, - 559, - 509 - ], - "score": 0.97, - "html": "
035All marks Ao1 (recall)2
a set of rules;
thatallowtwodevicestocommunicate;
", - "type": "table", - "image_path": "f05b34dfbcefe67cd8b5f40e7c9d8a38db57bc9c6ecbb4d38b47cf775942d745.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 34, - 430, - 559, - 456.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 34, - 456.3333333333333, - 559, - 482.66666666666663 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 34, - 482.66666666666663, - 559, - 508.99999999999994 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10, - "page_num": "page_33", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 34, - 520, - 560, - 601 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 520, - 560, - 601 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 34, - 520, - 560, - 601 - ], - "spans": [ - { - "bbox": [ - 34, - 520, - 560, - 601 - ], - "score": 0.972, - "html": "
036Mark is for AO1 (recall)1
EIMAP;
R. If more than one lozenge shaded
", - "type": "table", - "image_path": "437ceedb4162c5ec9a7e074aa55117e7e3ed1bb049f7f10c4b711ab9a9684b73.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 34, - 520, - 560, - 547.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 34, - 547.0, - 560, - 574.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 34, - 574.0, - 560, - 601.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13, - "page_num": "page_33", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 34, - 613, - 559, - 694 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 613, - 559, - 694 - ], - "group_id": 5, - "lines": [ - { - "bbox": [ - 34, - 613, - 559, - 694 - ], - "spans": [ - { - "bbox": [ - 34, - 613, - 559, - 694 - ], - "score": 0.965, - "html": "
037Mark is for AO1 (recall)1
BHTTPS;
R. If more than one lozenge shaded
", - "type": "table", - "image_path": "08c7ed4e250a45c45ccd907bdab4d7a60c9b8dbda6633f5ea30a7c5bd49b38b6.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 34, - 613, - 559, - 640.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 34, - 640.0, - 559, - 667.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 34, - 667.0, - 559, - 694.0 - ], - "spans": [], - "index": 17 - } - ] - } - ], - "index": 16, - "page_num": "page_33", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 36, - 89, - 559, - 117 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 89, - 559, - 117 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 36, - 89, - 559, - 117 - ], - "spans": [ - { - "bbox": [ - 36, - 89, - 559, - 117 - ], - "score": 0.936, - "html": "
QuPartTotal
Marking guidancemarks
", - "type": "table", - "image_path": "657404a5e394e658dfe18fccab1f5a1eff9e5031fbafe0538e047306932a560d.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 36, - 89, - 559, - 98.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 36, - 98.33333333333333, - 559, - 107.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 36, - 107.66666666666666, - 559, - 116.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 34, - 128, - 561, - 210 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 128, - 561, - 210 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 34, - 128, - 561, - 210 - ], - "spans": [ - { - "bbox": [ - 34, - 128, - 561, - 210 - ], - "score": 0.964, - "html": "
038Mark is for AO1 (recall)1
DSMTP;
R. If more than one lozenge shaded
", - "type": "table", - "image_path": "c54cc30b929edbc444d6afaf45aa452a2808d486e7904f69f4b8cb52a2c8c518.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 34, - 128, - 561, - 155.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 34, - 155.33333333333334, - 561, - 182.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 34, - 182.66666666666669, - 561, - 210.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 35, - 221, - 562, - 425 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 221, - 562, - 425 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 35, - 221, - 562, - 425 - ], - "spans": [ - { - "bbox": [ - 35, - 221, - 562, - 425 - ], - "score": 0.961, - "html": "
039All marks AO1 (recall)3
LayerOrder (1-4)
Transport2
Link4
Network3
Application1
Mark as follows:
1 mark: any row correct;
", - "type": "table", - "image_path": "8da72768a5fb5139de6d4883e6be878b48239f1dc070d9a9a561cc88672234e6.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 35, - 221, - 562, - 289.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 35, - 289.0, - 562, - 357.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 35, - 357.0, - 562, - 425.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - } - ], - "layout_bboxes": [], - "page_idx": 34, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 36, - 89, - 559, - 117 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 89, - 559, - 117 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 36, - 89, - 559, - 117 - ], - "spans": [ - { - "bbox": [ - 36, - 89, - 559, - 117 - ], - "score": 0.936, - "html": "
QuPartTotal
Marking guidancemarks
", - "type": "table", - "image_path": "657404a5e394e658dfe18fccab1f5a1eff9e5031fbafe0538e047306932a560d.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 36, - 89, - 559, - 98.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 36, - 98.33333333333333, - 559, - 107.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 36, - 107.66666666666666, - 559, - 116.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 34, - 128, - 561, - 210 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 128, - 561, - 210 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 34, - 128, - 561, - 210 - ], - "spans": [ - { - "bbox": [ - 34, - 128, - 561, - 210 - ], - "score": 0.964, - "html": "
038Mark is for AO1 (recall)1
DSMTP;
R. If more than one lozenge shaded
", - "type": "table", - "image_path": "c54cc30b929edbc444d6afaf45aa452a2808d486e7904f69f4b8cb52a2c8c518.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 34, - 128, - 561, - 155.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 34, - 155.33333333333334, - 561, - 182.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 34, - 182.66666666666669, - 561, - 210.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 35, - 221, - 562, - 425 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 221, - 562, - 425 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 35, - 221, - 562, - 425 - ], - "spans": [ - { - "bbox": [ - 35, - 221, - 562, - 425 - ], - "score": 0.961, - "html": "
039All marks AO1 (recall)3
LayerOrder (1-4)
Transport2
Link4
Network3
Application1
Mark as follows:
1 mark: any row correct;
", - "type": "table", - "image_path": "8da72768a5fb5139de6d4883e6be878b48239f1dc070d9a9a561cc88672234e6.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 35, - 221, - 562, - 289.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 35, - 289.0, - 562, - 357.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 35, - 357.0, - 562, - 425.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 544, - 797, - 553, - 805 - ], - "lines": [ - { - "bbox": [ - 542, - 796, - 556, - 808 - ], - "spans": [ - { - "bbox": [ - 542, - 796, - 556, - 808 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 12, - "width": 14 - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 231, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – GCSE COMPUTER SCIENCE – 8525/2 – SAMS", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 36, - 89, - 559, - 117 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 89, - 559, - 117 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 36, - 89, - 559, - 117 - ], - "spans": [ - { - "bbox": [ - 36, - 89, - 559, - 117 - ], - "score": 0.936, - "html": "
QuPartTotal
Marking guidancemarks
", - "type": "table", - "image_path": "657404a5e394e658dfe18fccab1f5a1eff9e5031fbafe0538e047306932a560d.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 36, - 89, - 559, - 98.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 36, - 98.33333333333333, - 559, - 107.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 36, - 107.66666666666666, - 559, - 116.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_34", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 34, - 128, - 561, - 210 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 128, - 561, - 210 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 34, - 128, - 561, - 210 - ], - "spans": [ - { - "bbox": [ - 34, - 128, - 561, - 210 - ], - "score": 0.964, - "html": "
038Mark is for AO1 (recall)1
DSMTP;
R. If more than one lozenge shaded
", - "type": "table", - "image_path": "c54cc30b929edbc444d6afaf45aa452a2808d486e7904f69f4b8cb52a2c8c518.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 34, - 128, - 561, - 155.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 34, - 155.33333333333334, - 561, - 182.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 34, - 182.66666666666669, - 561, - 210.00000000000003 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_34", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 35, - 221, - 562, - 425 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 221, - 562, - 425 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 35, - 221, - 562, - 425 - ], - "spans": [ - { - "bbox": [ - 35, - 221, - 562, - 425 - ], - "score": 0.961, - "html": "
039All marks AO1 (recall)3
LayerOrder (1-4)
Transport2
Link4
Network3
Application1
Mark as follows:
1 mark: any row correct;
", - "type": "table", - "image_path": "8da72768a5fb5139de6d4883e6be878b48239f1dc070d9a9a561cc88672234e6.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 35, - 221, - 562, - 289.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 35, - 289.0, - 562, - 357.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 35, - 357.0, - 562, - 425.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_34", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 33, - 83, - 556, - 111 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 33, - 83, - 556, - 111 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 33, - 83, - 556, - 111 - ], - "spans": [ - { - "bbox": [ - 33, - 83, - 556, - 111 - ], - "score": 0.83, - "html": "
QuPartMarking guidanceTotal marks
", - "type": "table", - "image_path": "088791c0fcee93fd05f88c9b0bd30adb93020460efeb061144b3241634192ec7.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 33, - 83, - 556, - 92.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 33, - 92.33333333333333, - 556, - 101.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 33, - 101.66666666666666, - 556, - 110.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 36, - 123, - 561, - 188 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 123, - 561, - 188 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 36, - 123, - 561, - 188 - ], - "spans": [ - { - "bbox": [ - 36, - 123, - 561, - 188 - ], - "score": 0.969, - "html": "
0411 marks for AO1 1 (understanding)
C Data and instructions;
R. If more than one lozenge shaded
", - "type": "table", - "image_path": "afce2b46b4fbf0612c268f70b44c61d0cb8183ddf0e382b2ed93fa21a9d39be4.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 36, - 123, - 561, - 144.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 36, - 144.66666666666666, - 561, - 166.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 36, - 166.33333333333331, - 561, - 187.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 36, - 199, - 561, - 356 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 199, - 561, - 356 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 36, - 199, - 561, - 356 - ], - "spans": [ - { - "bbox": [ - 36, - 199, - 561, - 356 - ], - "score": 0.945, - "html": "
04 23 marks for Ao1 (understanding)3
DescriptionLetter
SendsacontinuousseriesofelectronicpulsesD;
DecodesthecurrentinstructionC;
Completes calculationsB;
Markasfollows: 1 mark: one row correct;
2 marks: two rows correct; 3 marks: all rows correct;
", - "type": "table", - "image_path": "2a6b1aef9b4ddc5b843dd126eeda69a1454a6803b395fab3fce6b5ae98492e17.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 36, - 199, - 561, - 251.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 36, - 251.33333333333334, - 561, - 303.6666666666667 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 36, - 303.6666666666667, - 561, - 356.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 36, - 367, - 562, - 636 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 367, - 562, - 636 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 36, - 367, - 562, - 636 - ], - "spans": [ - { - "bbox": [ - 36, - 367, - 562, - 636 - ], - "score": 0.975, - "html": "
53 marks for AO1 (understanding) 1 mark each for describing the social engineering technique.
Blagging
This is where a victim is tricked/persuaded by a fraudster to give their details or payment information for a false reason/purpose;
Phishing Is where the victim receives and responds to a communication that appears to be from a valid or known source but is in fact fraudulent. (It allows the fraudster to
capture private information before the victim realises); This is where someone watches and records\\remembers a victim entering their
Shouldering information to gain access to a system);pin or security information such as passwords. (They can then use this
", - "type": "table", - "image_path": "7fd62f2e53350edb484e59610d3adcf103b5bebec5c1a394a0c06fb21cc5e640.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 36, - 367, - 562, - 456.6666666666667 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 36, - 456.6666666666667, - 562, - 546.3333333333334 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 36, - 546.3333333333334, - 562, - 636.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - } - ], - "layout_bboxes": [], - "page_idx": 35, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 33, - 83, - 556, - 111 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 33, - 83, - 556, - 111 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 33, - 83, - 556, - 111 - ], - "spans": [ - { - "bbox": [ - 33, - 83, - 556, - 111 - ], - "score": 0.83, - "html": "
QuPartMarking guidanceTotal marks
", - "type": "table", - "image_path": "088791c0fcee93fd05f88c9b0bd30adb93020460efeb061144b3241634192ec7.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 33, - 83, - 556, - 92.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 33, - 92.33333333333333, - 556, - 101.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 33, - 101.66666666666666, - 556, - 110.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 36, - 123, - 561, - 188 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 123, - 561, - 188 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 36, - 123, - 561, - 188 - ], - "spans": [ - { - "bbox": [ - 36, - 123, - 561, - 188 - ], - "score": 0.969, - "html": "
0411 marks for AO1 1 (understanding)
C Data and instructions;
R. If more than one lozenge shaded
", - "type": "table", - "image_path": "afce2b46b4fbf0612c268f70b44c61d0cb8183ddf0e382b2ed93fa21a9d39be4.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 36, - 123, - 561, - 144.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 36, - 144.66666666666666, - 561, - 166.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 36, - 166.33333333333331, - 561, - 187.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 36, - 199, - 561, - 356 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 199, - 561, - 356 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 36, - 199, - 561, - 356 - ], - "spans": [ - { - "bbox": [ - 36, - 199, - 561, - 356 - ], - "score": 0.945, - "html": "
04 23 marks for Ao1 (understanding)3
DescriptionLetter
SendsacontinuousseriesofelectronicpulsesD;
DecodesthecurrentinstructionC;
Completes calculationsB;
Markasfollows: 1 mark: one row correct;
2 marks: two rows correct; 3 marks: all rows correct;
", - "type": "table", - "image_path": "2a6b1aef9b4ddc5b843dd126eeda69a1454a6803b395fab3fce6b5ae98492e17.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 36, - 199, - 561, - 251.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 36, - 251.33333333333334, - 561, - 303.6666666666667 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 36, - 303.6666666666667, - 561, - 356.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 36, - 367, - 562, - 636 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 367, - 562, - 636 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 36, - 367, - 562, - 636 - ], - "spans": [ - { - "bbox": [ - 36, - 367, - 562, - 636 - ], - "score": 0.975, - "html": "
53 marks for AO1 (understanding) 1 mark each for describing the social engineering technique.
Blagging
This is where a victim is tricked/persuaded by a fraudster to give their details or payment information for a false reason/purpose;
Phishing Is where the victim receives and responds to a communication that appears to be from a valid or known source but is in fact fraudulent. (It allows the fraudster to
capture private information before the victim realises); This is where someone watches and records\\remembers a victim entering their
Shouldering information to gain access to a system);pin or security information such as passwords. (They can then use this
", - "type": "table", - "image_path": "7fd62f2e53350edb484e59610d3adcf103b5bebec5c1a394a0c06fb21cc5e640.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 36, - 367, - 562, - 456.6666666666667 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 36, - 456.6666666666667, - 562, - 546.3333333333334 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 36, - 546.3333333333334, - 562, - 636.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 42, - 797, - 52, - 805 - ], - "lines": [ - { - "bbox": [ - 40, - 796, - 53, - 808 - ], - "spans": [ - { - "bbox": [ - 40, - 796, - 53, - 808 - ], - "score": 1.0, - "content": "12 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 230, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – GCSE COMPUTER SCIENCE – 8525/2 – SAMS", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 33, - 83, - 556, - 111 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 33, - 83, - 556, - 111 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 33, - 83, - 556, - 111 - ], - "spans": [ - { - "bbox": [ - 33, - 83, - 556, - 111 - ], - "score": 0.83, - "html": "
QuPartMarking guidanceTotal marks
", - "type": "table", - "image_path": "088791c0fcee93fd05f88c9b0bd30adb93020460efeb061144b3241634192ec7.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 33, - 83, - 556, - 92.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 33, - 92.33333333333333, - 556, - 101.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 33, - 101.66666666666666, - 556, - 110.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_35", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 36, - 123, - 561, - 188 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 123, - 561, - 188 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 36, - 123, - 561, - 188 - ], - "spans": [ - { - "bbox": [ - 36, - 123, - 561, - 188 - ], - "score": 0.969, - "html": "
0411 marks for AO1 1 (understanding)
C Data and instructions;
R. If more than one lozenge shaded
", - "type": "table", - "image_path": "afce2b46b4fbf0612c268f70b44c61d0cb8183ddf0e382b2ed93fa21a9d39be4.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 36, - 123, - 561, - 144.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 36, - 144.66666666666666, - 561, - 166.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 36, - 166.33333333333331, - 561, - 187.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_35", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 36, - 199, - 561, - 356 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 199, - 561, - 356 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 36, - 199, - 561, - 356 - ], - "spans": [ - { - "bbox": [ - 36, - 199, - 561, - 356 - ], - "score": 0.945, - "html": "
04 23 marks for Ao1 (understanding)3
DescriptionLetter
SendsacontinuousseriesofelectronicpulsesD;
DecodesthecurrentinstructionC;
Completes calculationsB;
Markasfollows: 1 mark: one row correct;
2 marks: two rows correct; 3 marks: all rows correct;
", - "type": "table", - "image_path": "2a6b1aef9b4ddc5b843dd126eeda69a1454a6803b395fab3fce6b5ae98492e17.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 36, - 199, - 561, - 251.33333333333334 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 36, - 251.33333333333334, - 561, - 303.6666666666667 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 36, - 303.6666666666667, - 561, - 356.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_35", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 36, - 367, - 562, - 636 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 367, - 562, - 636 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 36, - 367, - 562, - 636 - ], - "spans": [ - { - "bbox": [ - 36, - 367, - 562, - 636 - ], - "score": 0.975, - "html": "
53 marks for AO1 (understanding) 1 mark each for describing the social engineering technique.
Blagging
This is where a victim is tricked/persuaded by a fraudster to give their details or payment information for a false reason/purpose;
Phishing Is where the victim receives and responds to a communication that appears to be from a valid or known source but is in fact fraudulent. (It allows the fraudster to
capture private information before the victim realises); This is where someone watches and records\\remembers a victim entering their
Shouldering information to gain access to a system);pin or security information such as passwords. (They can then use this
", - "type": "table", - "image_path": "7fd62f2e53350edb484e59610d3adcf103b5bebec5c1a394a0c06fb21cc5e640.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 36, - 367, - 562, - 456.6666666666667 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 36, - 456.6666666666667, - 562, - 546.3333333333334 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 36, - 546.3333333333334, - 562, - 636.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10, - "page_num": "page_35", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 35, - 83, - 561, - 112 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 83, - 561, - 112 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 35, - 83, - 561, - 112 - ], - "spans": [ - { - "bbox": [ - 35, - 83, - 561, - 112 - ], - "score": 0.953, - "html": "
QuPartMarking guidanceTotal marks
", - "type": "table", - "image_path": "810e0d328ee108aeb0f01636b0962589dd4ece3c33418530471b148d5cfd4276.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 35, - 83, - 561, - 92.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 35, - 92.66666666666667, - 561, - 102.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 35, - 102.33333333333334, - 561, - 112.00000000000001 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 36, - 135, - 561, - 227 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 135, - 561, - 227 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 36, - 135, - 561, - 227 - ], - "spans": [ - { - "bbox": [ - 36, - 135, - 561, - 227 - ], - "score": 0.966, - "html": "
0612 marks for Ao1 (understanding)2
Maximumof2from:
Computer systems use binary/ones and zeros/voltage on or off; Soundisanalogue/continuous;
Computersuse digitaldata/discretevalues;
", - "type": "table", - "image_path": "624f2dc333ef7456b17cd229367a2863cae9bee21a0860fe4ffd330e08479047.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 36, - 135, - 561, - 165.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 36, - 165.66666666666666, - 561, - 196.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 36, - 196.33333333333331, - 561, - 226.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 36, - 237, - 563, - 533 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 237, - 563, - 533 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 36, - 237, - 563, - 533 - ], - "spans": [ - { - "bbox": [ - 36, - 237, - 563, - 533 - ], - "score": 0.977, - "html": "
0624 marks for A02 (apply) 4 marks if answer is correct4
5,000 bytes/5,000B:.;
A. 5,000
If answer given is not 5,ooo bytes then award working marks as follows:
Mark A for multiplying any two of 2,0o0, 4 and 5 even if the result is incorrect; Mark B for multiplying all of 2,0o0, 4 and 5 even if the result is incorrect;
Mark C for attempting to divide the result of a multiplication by 8; Partially correct examples:
Example 1
2,000 *4 = 8,000;(Mark A)
8,000 / 8 = 1,000; (Mark C)
Example 2
2,000 * 4 * 5 = 20,000; (Mark A and Mark B, note result is incorrect)
20,000 / 8 = 2,000; (Mark C, note result is incorrect)
", - "type": "table", - "image_path": "991134e341eaade6149e76df605d2b8907d6b912586446672b08f039af016a80.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 36, - 237, - 563, - 335.6666666666667 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 36, - 335.6666666666667, - 563, - 434.33333333333337 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 36, - 434.33333333333337, - 563, - 533.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - } - ], - "layout_bboxes": [], - "page_idx": 36, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 35, - 83, - 561, - 112 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 83, - 561, - 112 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 35, - 83, - 561, - 112 - ], - "spans": [ - { - "bbox": [ - 35, - 83, - 561, - 112 - ], - "score": 0.953, - "html": "
QuPartMarking guidanceTotal marks
", - "type": "table", - "image_path": "810e0d328ee108aeb0f01636b0962589dd4ece3c33418530471b148d5cfd4276.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 35, - 83, - 561, - 92.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 35, - 92.66666666666667, - 561, - 102.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 35, - 102.33333333333334, - 561, - 112.00000000000001 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 36, - 135, - 561, - 227 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 135, - 561, - 227 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 36, - 135, - 561, - 227 - ], - "spans": [ - { - "bbox": [ - 36, - 135, - 561, - 227 - ], - "score": 0.966, - "html": "
0612 marks for Ao1 (understanding)2
Maximumof2from:
Computer systems use binary/ones and zeros/voltage on or off; Soundisanalogue/continuous;
Computersuse digitaldata/discretevalues;
", - "type": "table", - "image_path": "624f2dc333ef7456b17cd229367a2863cae9bee21a0860fe4ffd330e08479047.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 36, - 135, - 561, - 165.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 36, - 165.66666666666666, - 561, - 196.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 36, - 196.33333333333331, - 561, - 226.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 36, - 237, - 563, - 533 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 237, - 563, - 533 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 36, - 237, - 563, - 533 - ], - "spans": [ - { - "bbox": [ - 36, - 237, - 563, - 533 - ], - "score": 0.977, - "html": "
0624 marks for A02 (apply) 4 marks if answer is correct4
5,000 bytes/5,000B:.;
A. 5,000
If answer given is not 5,ooo bytes then award working marks as follows:
Mark A for multiplying any two of 2,0o0, 4 and 5 even if the result is incorrect; Mark B for multiplying all of 2,0o0, 4 and 5 even if the result is incorrect;
Mark C for attempting to divide the result of a multiplication by 8; Partially correct examples:
Example 1
2,000 *4 = 8,000;(Mark A)
8,000 / 8 = 1,000; (Mark C)
Example 2
2,000 * 4 * 5 = 20,000; (Mark A and Mark B, note result is incorrect)
20,000 / 8 = 2,000; (Mark C, note result is incorrect)
", - "type": "table", - "image_path": "991134e341eaade6149e76df605d2b8907d6b912586446672b08f039af016a80.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 36, - 237, - 563, - 335.6666666666667 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 36, - 335.6666666666667, - 563, - 434.33333333333337 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 36, - 434.33333333333337, - 563, - 533.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 544, - 797, - 553, - 805 - ], - "lines": [ - { - "bbox": [ - 542, - 796, - 555, - 807 - ], - "spans": [ - { - "bbox": [ - 542, - 796, - 555, - 807 - ], - "score": 1.0, - "content": "13 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 231, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – GCSE COMPUTER SCIENCE – 8525/2 – SAMS", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 35, - 83, - 561, - 112 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 83, - 561, - 112 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 35, - 83, - 561, - 112 - ], - "spans": [ - { - "bbox": [ - 35, - 83, - 561, - 112 - ], - "score": 0.953, - "html": "
QuPartMarking guidanceTotal marks
", - "type": "table", - "image_path": "810e0d328ee108aeb0f01636b0962589dd4ece3c33418530471b148d5cfd4276.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 35, - 83, - 561, - 92.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 35, - 92.66666666666667, - 561, - 102.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 35, - 102.33333333333334, - 561, - 112.00000000000001 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_36", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 36, - 135, - 561, - 227 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 135, - 561, - 227 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 36, - 135, - 561, - 227 - ], - "spans": [ - { - "bbox": [ - 36, - 135, - 561, - 227 - ], - "score": 0.966, - "html": "
0612 marks for Ao1 (understanding)2
Maximumof2from:
Computer systems use binary/ones and zeros/voltage on or off; Soundisanalogue/continuous;
Computersuse digitaldata/discretevalues;
", - "type": "table", - "image_path": "624f2dc333ef7456b17cd229367a2863cae9bee21a0860fe4ffd330e08479047.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 36, - 135, - 561, - 165.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 36, - 165.66666666666666, - 561, - 196.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 36, - 196.33333333333331, - 561, - 226.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_36", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 36, - 237, - 563, - 533 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 237, - 563, - 533 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 36, - 237, - 563, - 533 - ], - "spans": [ - { - "bbox": [ - 36, - 237, - 563, - 533 - ], - "score": 0.977, - "html": "
0624 marks for A02 (apply) 4 marks if answer is correct4
5,000 bytes/5,000B:.;
A. 5,000
If answer given is not 5,ooo bytes then award working marks as follows:
Mark A for multiplying any two of 2,0o0, 4 and 5 even if the result is incorrect; Mark B for multiplying all of 2,0o0, 4 and 5 even if the result is incorrect;
Mark C for attempting to divide the result of a multiplication by 8; Partially correct examples:
Example 1
2,000 *4 = 8,000;(Mark A)
8,000 / 8 = 1,000; (Mark C)
Example 2
2,000 * 4 * 5 = 20,000; (Mark A and Mark B, note result is incorrect)
20,000 / 8 = 2,000; (Mark C, note result is incorrect)
", - "type": "table", - "image_path": "991134e341eaade6149e76df605d2b8907d6b912586446672b08f039af016a80.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 36, - 237, - 563, - 335.6666666666667 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 36, - 335.6666666666667, - 563, - 434.33333333333337 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 36, - 434.33333333333337, - 563, - 533.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_36", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 34, - 96, - 559, - 124 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 96, - 559, - 124 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 34, - 96, - 559, - 124 - ], - "spans": [ - { - "bbox": [ - 34, - 96, - 559, - 124 - ], - "score": 0.959, - "html": "
QuPartMarking guidanceTotal marks
", - "type": "table", - "image_path": "3e342cd8b19fca9bf8ebf0e47ecedc7b79019b028d879b564a60f4f50e285bf0.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 34, - 96, - 559, - 105.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 34, - 105.33333333333333, - 559, - 114.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 34, - 114.66666666666666, - 559, - 123.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 36, - 135, - 562, - 201 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 135, - 562, - 201 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 36, - 135, - 562, - 201 - ], - "spans": [ - { - "bbox": [ - 36, - 135, - 562, - 201 - ], - "score": 0.967, - "html": "
063Mark is for AO2 2 (apply)1
B 5 bits;
", - "type": "table", - "image_path": "7a8716225e6f1c1649718174b625f2ac782a3d64e3523eff5f6ed9fce40cd6af.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 36, - 135, - 562, - 157.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 36, - 157.0, - 562, - 179.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 36, - 179.0, - 562, - 201.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 36, - 212, - 563, - 278 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 212, - 563, - 278 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 36, - 212, - 563, - 278 - ], - "spans": [ - { - "bbox": [ - 36, - 212, - 563, - 278 - ], - "score": 0.968, - "html": "
06 4(apply) 1
D Improves the quality of the recording a andincreases the file size; 1
", - "type": "table", - "image_path": "fb8202ea737c85ea0103c4a17f6d973b19097395da7316328f4c5b6bb0c2d496.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 36, - 212, - 563, - 234.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 36, - 234.0, - 563, - 256.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 36, - 256.0, - 563, - 278.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 36, - 288, - 562, - 355 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 288, - 562, - 355 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 36, - 288, - 562, - 355 - ], - "spans": [ - { - "bbox": [ - 36, - 288, - 562, - 355 - ], - "score": 0.959, - "html": "
07 1Mark is for AO1 (understanding) 1
C Only two of the examples of code are e inlow-level languages;
", - "type": "table", - "image_path": "e6ebbfd852d26ce3fa6b8588fecaae57d9d47d14782398d47b3853a7e5664389.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 36, - 288, - 562, - 310.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 36, - 310.3333333333333, - 562, - 332.66666666666663 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 36, - 332.66666666666663, - 562, - 354.99999999999994 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "table", - "bbox": [ - 37, - 365, - 563, - 609 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 37, - 365, - 563, - 609 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 37, - 365, - 563, - 609 - ], - "spans": [ - { - "bbox": [ - 37, - 365, - 563, - 609 - ], - "score": 0.908, - "html": "
072 Maximum four marks from:4 marks for Ao1 (understanding)4
·High-level languages have built-in functions;
High-level languages have built-in libraries; High-level languages have more support/help; High-level languages have structures (such as selection and iteration);
High-level languages can be less machine dependent/more portable;
It (usually) requires fewer lines of code to be written;
It is (usually) quicker to develop code in high-level languages; It is easier to find mistakes in code;
Thecodeiseasiertomaintain//understand;
It is easier to structure code in high-level languages; NE. references to efficiency or speed unless correctly qualified;
R. Answers relating to programmer expertise;
", - "type": "table", - "image_path": "17a19e919a03ab0722c9846676b25fca6e28c36d097b79a116b9c75478042819.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 37, - 365, - 563, - 446.3333333333333 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 37, - 446.3333333333333, - 563, - 527.6666666666666 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 37, - 527.6666666666666, - 563, - 609.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - }, - { - "type": "table", - "bbox": [ - 36, - 620, - 562, - 686 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 620, - 562, - 686 - ], - "group_id": 5, - "lines": [ - { - "bbox": [ - 36, - 620, - 562, - 686 - ], - "spans": [ - { - "bbox": [ - 36, - 620, - 562, - 686 - ], - "score": 0.961, - "html": "
0732 marks for AO1 (understanding)2
[Statement A:] compiler;
[StatementB:]assembler;
", - "type": "table", - "image_path": "ef48390f9dd95e88ffccd32fa895a3a04dcb7af443bca80402785bbccb49a783.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 36, - 620, - 562, - 642.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 36, - 642.0, - 562, - 664.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 36, - 664.0, - 562, - 686.0 - ], - "spans": [], - "index": 17 - } - ] - } - ], - "index": 16 - } - ], - "layout_bboxes": [], - "page_idx": 37, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 34, - 96, - 559, - 124 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 96, - 559, - 124 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 34, - 96, - 559, - 124 - ], - "spans": [ - { - "bbox": [ - 34, - 96, - 559, - 124 - ], - "score": 0.959, - "html": "
QuPartMarking guidanceTotal marks
", - "type": "table", - "image_path": "3e342cd8b19fca9bf8ebf0e47ecedc7b79019b028d879b564a60f4f50e285bf0.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 34, - 96, - 559, - 105.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 34, - 105.33333333333333, - 559, - 114.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 34, - 114.66666666666666, - 559, - 123.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 36, - 135, - 562, - 201 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 135, - 562, - 201 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 36, - 135, - 562, - 201 - ], - "spans": [ - { - "bbox": [ - 36, - 135, - 562, - 201 - ], - "score": 0.967, - "html": "
063Mark is for AO2 2 (apply)1
B 5 bits;
", - "type": "table", - "image_path": "7a8716225e6f1c1649718174b625f2ac782a3d64e3523eff5f6ed9fce40cd6af.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 36, - 135, - 562, - 157.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 36, - 157.0, - 562, - 179.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 36, - 179.0, - 562, - 201.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 36, - 212, - 563, - 278 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 212, - 563, - 278 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 36, - 212, - 563, - 278 - ], - "spans": [ - { - "bbox": [ - 36, - 212, - 563, - 278 - ], - "score": 0.968, - "html": "
06 4(apply) 1
D Improves the quality of the recording a andincreases the file size; 1
", - "type": "table", - "image_path": "fb8202ea737c85ea0103c4a17f6d973b19097395da7316328f4c5b6bb0c2d496.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 36, - 212, - 563, - 234.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 36, - 234.0, - 563, - 256.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 36, - 256.0, - 563, - 278.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 36, - 288, - 562, - 355 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 288, - 562, - 355 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 36, - 288, - 562, - 355 - ], - "spans": [ - { - "bbox": [ - 36, - 288, - 562, - 355 - ], - "score": 0.959, - "html": "
07 1Mark is for AO1 (understanding) 1
C Only two of the examples of code are e inlow-level languages;
", - "type": "table", - "image_path": "e6ebbfd852d26ce3fa6b8588fecaae57d9d47d14782398d47b3853a7e5664389.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 36, - 288, - 562, - 310.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 36, - 310.3333333333333, - 562, - 332.66666666666663 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 36, - 332.66666666666663, - 562, - 354.99999999999994 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "table", - "bbox": [ - 37, - 365, - 563, - 609 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 37, - 365, - 563, - 609 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 37, - 365, - 563, - 609 - ], - "spans": [ - { - "bbox": [ - 37, - 365, - 563, - 609 - ], - "score": 0.908, - "html": "
072 Maximum four marks from:4 marks for Ao1 (understanding)4
·High-level languages have built-in functions;
High-level languages have built-in libraries; High-level languages have more support/help; High-level languages have structures (such as selection and iteration);
High-level languages can be less machine dependent/more portable;
It (usually) requires fewer lines of code to be written;
It is (usually) quicker to develop code in high-level languages; It is easier to find mistakes in code;
Thecodeiseasiertomaintain//understand;
It is easier to structure code in high-level languages; NE. references to efficiency or speed unless correctly qualified;
R. Answers relating to programmer expertise;
", - "type": "table", - "image_path": "17a19e919a03ab0722c9846676b25fca6e28c36d097b79a116b9c75478042819.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 37, - 365, - 563, - 446.3333333333333 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 37, - 446.3333333333333, - 563, - 527.6666666666666 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 37, - 527.6666666666666, - 563, - 609.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - }, - { - "type": "table", - "bbox": [ - 36, - 620, - 562, - 686 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 620, - 562, - 686 - ], - "group_id": 5, - "lines": [ - { - "bbox": [ - 36, - 620, - 562, - 686 - ], - "spans": [ - { - "bbox": [ - 36, - 620, - 562, - 686 - ], - "score": 0.961, - "html": "
0732 marks for AO1 (understanding)2
[Statement A:] compiler;
[StatementB:]assembler;
", - "type": "table", - "image_path": "ef48390f9dd95e88ffccd32fa895a3a04dcb7af443bca80402785bbccb49a783.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 36, - 620, - 562, - 642.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 36, - 642.0, - 562, - 664.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 36, - 664.0, - 562, - 686.0 - ], - "spans": [], - "index": 17 - } - ] - } - ], - "index": 16 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 42, - 797, - 52, - 805 - ], - "lines": [ - { - "bbox": [ - 40, - 797, - 54, - 807 - ], - "spans": [ - { - "bbox": [ - 40, - 797, - 54, - 807 - ], - "score": 1.0, - "content": "14 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 230, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – GCSE COMPUTER SCIENCE – 8525/2 – SAMS", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 34, - 96, - 559, - 124 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 96, - 559, - 124 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 34, - 96, - 559, - 124 - ], - "spans": [ - { - "bbox": [ - 34, - 96, - 559, - 124 - ], - "score": 0.959, - "html": "
QuPartMarking guidanceTotal marks
", - "type": "table", - "image_path": "3e342cd8b19fca9bf8ebf0e47ecedc7b79019b028d879b564a60f4f50e285bf0.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 34, - 96, - 559, - 105.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 34, - 105.33333333333333, - 559, - 114.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 34, - 114.66666666666666, - 559, - 123.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_37", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 36, - 135, - 562, - 201 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 135, - 562, - 201 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 36, - 135, - 562, - 201 - ], - "spans": [ - { - "bbox": [ - 36, - 135, - 562, - 201 - ], - "score": 0.967, - "html": "
063Mark is for AO2 2 (apply)1
B 5 bits;
", - "type": "table", - "image_path": "7a8716225e6f1c1649718174b625f2ac782a3d64e3523eff5f6ed9fce40cd6af.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 36, - 135, - 562, - 157.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 36, - 157.0, - 562, - 179.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 36, - 179.0, - 562, - 201.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_37", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 36, - 212, - 563, - 278 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 212, - 563, - 278 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 36, - 212, - 563, - 278 - ], - "spans": [ - { - "bbox": [ - 36, - 212, - 563, - 278 - ], - "score": 0.968, - "html": "
06 4(apply) 1
D Improves the quality of the recording a andincreases the file size; 1
", - "type": "table", - "image_path": "fb8202ea737c85ea0103c4a17f6d973b19097395da7316328f4c5b6bb0c2d496.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 36, - 212, - 563, - 234.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 36, - 234.0, - 563, - 256.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 36, - 256.0, - 563, - 278.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_37", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 36, - 288, - 562, - 355 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 288, - 562, - 355 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 36, - 288, - 562, - 355 - ], - "spans": [ - { - "bbox": [ - 36, - 288, - 562, - 355 - ], - "score": 0.959, - "html": "
07 1Mark is for AO1 (understanding) 1
C Only two of the examples of code are e inlow-level languages;
", - "type": "table", - "image_path": "e6ebbfd852d26ce3fa6b8588fecaae57d9d47d14782398d47b3853a7e5664389.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 36, - 288, - 562, - 310.3333333333333 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 36, - 310.3333333333333, - 562, - 332.66666666666663 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 36, - 332.66666666666663, - 562, - 354.99999999999994 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10, - "page_num": "page_37", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 37, - 365, - 563, - 609 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 37, - 365, - 563, - 609 - ], - "group_id": 4, - "lines": [ - { - "bbox": [ - 37, - 365, - 563, - 609 - ], - "spans": [ - { - "bbox": [ - 37, - 365, - 563, - 609 - ], - "score": 0.908, - "html": "
072 Maximum four marks from:4 marks for Ao1 (understanding)4
·High-level languages have built-in functions;
High-level languages have built-in libraries; High-level languages have more support/help; High-level languages have structures (such as selection and iteration);
High-level languages can be less machine dependent/more portable;
It (usually) requires fewer lines of code to be written;
It is (usually) quicker to develop code in high-level languages; It is easier to find mistakes in code;
Thecodeiseasiertomaintain//understand;
It is easier to structure code in high-level languages; NE. references to efficiency or speed unless correctly qualified;
R. Answers relating to programmer expertise;
", - "type": "table", - "image_path": "17a19e919a03ab0722c9846676b25fca6e28c36d097b79a116b9c75478042819.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 37, - 365, - 563, - 446.3333333333333 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 37, - 446.3333333333333, - 563, - 527.6666666666666 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 37, - 527.6666666666666, - 563, - 609.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13, - "page_num": "page_37", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 36, - 620, - 562, - 686 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 620, - 562, - 686 - ], - "group_id": 5, - "lines": [ - { - "bbox": [ - 36, - 620, - 562, - 686 - ], - "spans": [ - { - "bbox": [ - 36, - 620, - 562, - 686 - ], - "score": 0.961, - "html": "
0732 marks for AO1 (understanding)2
[Statement A:] compiler;
[StatementB:]assembler;
", - "type": "table", - "image_path": "ef48390f9dd95e88ffccd32fa895a3a04dcb7af443bca80402785bbccb49a783.jpg" - } - ] - } - ], - "index": 16, - "virtual_lines": [ - { - "bbox": [ - 36, - 620, - 562, - 642.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 36, - 642.0, - 562, - 664.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 36, - 664.0, - 562, - 686.0 - ], - "spans": [], - "index": 17 - } - ] - } - ], - "index": 16, - "page_num": "page_37", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 36, - 83, - 562, - 111 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 83, - 562, - 111 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 36, - 83, - 562, - 111 - ], - "spans": [ - { - "bbox": [ - 36, - 83, - 562, - 111 - ], - "score": 0.94, - "html": "
QuPartTotal
Marking guidance marks
", - "type": "table", - "image_path": "02c1cadd367fa122e76ac9808a0f3ec5973c65193ac088a37a4bacfcf2761b12.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 36, - 83, - 562, - 92.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 36, - 92.33333333333333, - 562, - 101.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 36, - 101.66666666666666, - 562, - 110.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 36, - 122, - 559, - 241 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 122, - 559, - 241 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 36, - 122, - 559, - 241 - ], - "spans": [ - { - "bbox": [ - 36, - 122, - 559, - 241 - ], - "score": 0.959, - "html": "
081Mark is for Ao1 (understanding)1
Only reward if column A AND B is completely correct;
ABAANDB
000
010
100
111
", - "type": "table", - "image_path": "b7be943cd651859b63903c9bfbf7dc26b350f2293621743f8acb84876e99ddfe.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 36, - 122, - 559, - 161.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 36, - 161.66666666666666, - 559, - 201.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 36, - 201.33333333333331, - 559, - 240.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "image", - "bbox": [ - 29, - 198, - 561, - 783 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 29, - 198, - 561, - 783 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 71, - 198, - 561, - 783 - ], - "spans": [ - { - "bbox": [ - 71, - 198, - 561, - 783 - ], - "score": 0.115, - "type": "image", - "image_path": "397f42e7994bb68df175e02b4a7bf245cb07f6fdb7ec40b009165096a2b244da.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 29, - 198, - 561, - 393.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 29, - 393.0, - 561, - 588.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 29, - 588.0, - 561, - 783.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - } - ], - "layout_bboxes": [], - "page_idx": 38, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 29, - 198, - 561, - 783 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 29, - 198, - 561, - 783 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 71, - 198, - 561, - 783 - ], - "spans": [ - { - "bbox": [ - 71, - 198, - 561, - 783 - ], - "score": 0.115, - "type": "image", - "image_path": "397f42e7994bb68df175e02b4a7bf245cb07f6fdb7ec40b009165096a2b244da.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 29, - 198, - 561, - 393.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 29, - 393.0, - 561, - 588.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 29, - 588.0, - 561, - 783.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - } - ], - "tables": [ - { - "type": "table", - "bbox": [ - 36, - 83, - 562, - 111 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 83, - 562, - 111 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 36, - 83, - 562, - 111 - ], - "spans": [ - { - "bbox": [ - 36, - 83, - 562, - 111 - ], - "score": 0.94, - "html": "
QuPartTotal
Marking guidance marks
", - "type": "table", - "image_path": "02c1cadd367fa122e76ac9808a0f3ec5973c65193ac088a37a4bacfcf2761b12.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 36, - 83, - 562, - 92.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 36, - 92.33333333333333, - 562, - 101.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 36, - 101.66666666666666, - 562, - 110.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 36, - 122, - 559, - 241 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 122, - 559, - 241 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 36, - 122, - 559, - 241 - ], - "spans": [ - { - "bbox": [ - 36, - 122, - 559, - 241 - ], - "score": 0.959, - "html": "
081Mark is for Ao1 (understanding)1
Only reward if column A AND B is completely correct;
ABAANDB
000
010
100
111
", - "type": "table", - "image_path": "b7be943cd651859b63903c9bfbf7dc26b350f2293621743f8acb84876e99ddfe.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 36, - 122, - 559, - 161.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 36, - 161.66666666666666, - 559, - 201.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 36, - 201.33333333333331, - 559, - 240.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 544, - 797, - 554, - 806 - ], - "lines": [ - { - "bbox": [ - 542, - 796, - 556, - 807 - ], - "spans": [ - { - "bbox": [ - 542, - 796, - 556, - 807 - ], - "score": 1.0, - "content": "15 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 231, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – GCSE COMPUTER SCIENCE – 8525/2 – SAMS", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 36, - 83, - 562, - 111 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 83, - 562, - 111 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 36, - 83, - 562, - 111 - ], - "spans": [ - { - "bbox": [ - 36, - 83, - 562, - 111 - ], - "score": 0.94, - "html": "
QuPartTotal
Marking guidance marks
", - "type": "table", - "image_path": "02c1cadd367fa122e76ac9808a0f3ec5973c65193ac088a37a4bacfcf2761b12.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 36, - 83, - 562, - 92.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 36, - 92.33333333333333, - 562, - 101.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 36, - 101.66666666666666, - 562, - 110.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_38", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 36, - 122, - 559, - 241 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 122, - 559, - 241 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 36, - 122, - 559, - 241 - ], - "spans": [ - { - "bbox": [ - 36, - 122, - 559, - 241 - ], - "score": 0.959, - "html": "
081Mark is for Ao1 (understanding)1
Only reward if column A AND B is completely correct;
ABAANDB
000
010
100
111
", - "type": "table", - "image_path": "b7be943cd651859b63903c9bfbf7dc26b350f2293621743f8acb84876e99ddfe.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 36, - 122, - 559, - 161.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 36, - 161.66666666666666, - 559, - 201.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 36, - 201.33333333333331, - 559, - 240.99999999999997 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_38", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "image", - "bbox": [ - 29, - 198, - 561, - 783 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 29, - 198, - 561, - 783 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 71, - 198, - 561, - 783 - ], - "spans": [ - { - "bbox": [ - 71, - 198, - 561, - 783 - ], - "score": 0.115, - "type": "image", - "image_path": "397f42e7994bb68df175e02b4a7bf245cb07f6fdb7ec40b009165096a2b244da.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 29, - 198, - 561, - 393.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 29, - 393.0, - 561, - 588.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 29, - 588.0, - 561, - 783.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_38", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "image", - "bbox": [ - 0, - 59, - 561, - 772 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 0, - 59, - 561, - 772 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 77, - 59, - 561, - 772 - ], - "spans": [ - { - "bbox": [ - 77, - 59, - 561, - 772 - ], - "score": 0.426, - "type": "image", - "image_path": "4a78b89fb3cbe6efa070b85decfbb6187e65113afd742171d4fe1e85992d2b0c.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 0, - 59, - 561, - 296.66666666666663 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 0, - 296.66666666666663, - 561, - 534.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 0, - 534.3333333333333, - 561, - 771.9999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 39, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 0, - 59, - 561, - 772 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 0, - 59, - 561, - 772 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 77, - 59, - 561, - 772 - ], - "spans": [ - { - "bbox": [ - 77, - 59, - 561, - 772 - ], - "score": 0.426, - "type": "image", - "image_path": "4a78b89fb3cbe6efa070b85decfbb6187e65113afd742171d4fe1e85992d2b0c.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 0, - 59, - 561, - 296.66666666666663 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 0, - 296.66666666666663, - 561, - 534.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 0, - 534.3333333333333, - 561, - 771.9999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 231, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – GCSE COMPUTER SCIENCE – 8525/2 – SAMS", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 796, - 52, - 806 - ], - "lines": [ - { - "bbox": [ - 40, - 796, - 54, - 808 - ], - "spans": [ - { - "bbox": [ - 40, - 796, - 54, - 808 - ], - "score": 1.0, - "content": "16 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "image", - "bbox": [ - 0, - 59, - 561, - 772 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 0, - 59, - 561, - 772 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 77, - 59, - 561, - 772 - ], - "spans": [ - { - "bbox": [ - 77, - 59, - 561, - 772 - ], - "score": 0.426, - "type": "image", - "image_path": "4a78b89fb3cbe6efa070b85decfbb6187e65113afd742171d4fe1e85992d2b0c.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 0, - 59, - 561, - 296.66666666666663 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 0, - 296.66666666666663, - 561, - 534.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 0, - 534.3333333333333, - 561, - 771.9999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_39", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 36, - 83, - 561, - 112 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 83, - 561, - 112 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 36, - 83, - 561, - 112 - ], - "spans": [ - { - "bbox": [ - 36, - 83, - 561, - 112 - ], - "score": 0.93, - "html": "
QuPartMarking guidanceTotal marks
", - "type": "table", - "image_path": "0ec65725c74dbdac9376d56439a98447e8cf5086764877f8774df29057536cc0.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 36, - 83, - 561, - 92.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 36, - 92.66666666666667, - 561, - 102.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 36, - 102.33333333333334, - 561, - 112.00000000000001 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 36, - 122, - 562, - 176 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 122, - 562, - 176 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 36, - 122, - 562, - 176 - ], - "spans": [ - { - "bbox": [ - 36, - 122, - 562, - 176 - ], - "score": 0.96, - "html": "
091 mark for A02 (apply)1
Name;
", - "type": "table", - "image_path": "819feeb5d771a14dfa9425ed3a345fc1a486a0f9df38574211319bfbf2b24a7c.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 36, - 122, - 562, - 140.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 36, - 140.0, - 562, - 158.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 36, - 158.0, - 562, - 176.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 36, - 187, - 561, - 240 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 187, - 561, - 240 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 36, - 187, - 561, - 240 - ], - "spans": [ - { - "bbox": [ - 36, - 187, - 561, - 240 - ], - "score": 0.943, - "html": "
0921 mark for A02 (apply)1
Real //Float//Decimal;
", - "type": "table", - "image_path": "8066f24424a9cc3dfeb345799556792dd77c453ae83f6da5c96bed6056c3dbb8.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 36, - 187, - 561, - 204.66666666666666 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 36, - 204.66666666666666, - 561, - 222.33333333333331 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 36, - 222.33333333333331, - 561, - 239.99999999999997 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 36, - 248, - 561, - 667 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 248, - 561, - 667 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 36, - 248, - 561, - 667 - ], - "spans": [ - { - "bbox": [ - 36, - 248, - 561, - 667 - ], - "score": 0.97, - "html": "
0936 marks for A03 (program)
1 mark: correct fields in SELECT clause
1 mark: one correct table in FROM clause 1 mark: second correct table in FROM clause
1 mark: a correct condition in WHERE clause
1 mark: correct conditions and correct usage of AND in WHERE clause // correct
conditions and correct usage of AND in WHERE clause and correct usage of ON withINNERJOIN 1 mark:ORDERBY clause
Max 5 if any errors Sample answer
", - "type": "table", - "image_path": "2aa1481597518ee183a9db2935aeab47710513dae1ff1de52893c5fe9b8469af.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 36, - 248, - 561, - 387.66666666666663 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 36, - 387.66666666666663, - 561, - 527.3333333333333 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 36, - 527.3333333333333, - 561, - 666.9999999999999 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - } - ], - "layout_bboxes": [], - "page_idx": 40, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 36, - 83, - 561, - 112 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 83, - 561, - 112 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 36, - 83, - 561, - 112 - ], - "spans": [ - { - "bbox": [ - 36, - 83, - 561, - 112 - ], - "score": 0.93, - "html": "
QuPartMarking guidanceTotal marks
", - "type": "table", - "image_path": "0ec65725c74dbdac9376d56439a98447e8cf5086764877f8774df29057536cc0.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 36, - 83, - 561, - 92.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 36, - 92.66666666666667, - 561, - 102.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 36, - 102.33333333333334, - 561, - 112.00000000000001 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 36, - 122, - 562, - 176 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 122, - 562, - 176 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 36, - 122, - 562, - 176 - ], - "spans": [ - { - "bbox": [ - 36, - 122, - 562, - 176 - ], - "score": 0.96, - "html": "
091 mark for A02 (apply)1
Name;
", - "type": "table", - "image_path": "819feeb5d771a14dfa9425ed3a345fc1a486a0f9df38574211319bfbf2b24a7c.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 36, - 122, - 562, - 140.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 36, - 140.0, - 562, - 158.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 36, - 158.0, - 562, - 176.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 36, - 187, - 561, - 240 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 187, - 561, - 240 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 36, - 187, - 561, - 240 - ], - "spans": [ - { - "bbox": [ - 36, - 187, - 561, - 240 - ], - "score": 0.943, - "html": "
0921 mark for A02 (apply)1
Real //Float//Decimal;
", - "type": "table", - "image_path": "8066f24424a9cc3dfeb345799556792dd77c453ae83f6da5c96bed6056c3dbb8.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 36, - 187, - 561, - 204.66666666666666 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 36, - 204.66666666666666, - 561, - 222.33333333333331 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 36, - 222.33333333333331, - 561, - 239.99999999999997 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 36, - 248, - 561, - 667 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 248, - 561, - 667 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 36, - 248, - 561, - 667 - ], - "spans": [ - { - "bbox": [ - 36, - 248, - 561, - 667 - ], - "score": 0.97, - "html": "
0936 marks for A03 (program)
1 mark: correct fields in SELECT clause
1 mark: one correct table in FROM clause 1 mark: second correct table in FROM clause
1 mark: a correct condition in WHERE clause
1 mark: correct conditions and correct usage of AND in WHERE clause // correct
conditions and correct usage of AND in WHERE clause and correct usage of ON withINNERJOIN 1 mark:ORDERBY clause
Max 5 if any errors Sample answer
", - "type": "table", - "image_path": "2aa1481597518ee183a9db2935aeab47710513dae1ff1de52893c5fe9b8469af.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 36, - 248, - 561, - 387.66666666666663 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 36, - 387.66666666666663, - 561, - 527.3333333333333 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 36, - 527.3333333333333, - 561, - 666.9999999999999 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 544, - 797, - 553, - 805 - ], - "lines": [ - { - "bbox": [ - 542, - 796, - 555, - 808 - ], - "spans": [ - { - "bbox": [ - 542, - 796, - 555, - 808 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 12, - "width": 13 - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 231, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – GCSE COMPUTER SCIENCE – 8525/2 – SAMS", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 36, - 83, - 561, - 112 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 83, - 561, - 112 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 36, - 83, - 561, - 112 - ], - "spans": [ - { - "bbox": [ - 36, - 83, - 561, - 112 - ], - "score": 0.93, - "html": "
QuPartMarking guidanceTotal marks
", - "type": "table", - "image_path": "0ec65725c74dbdac9376d56439a98447e8cf5086764877f8774df29057536cc0.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 36, - 83, - 561, - 92.66666666666667 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 36, - 92.66666666666667, - 561, - 102.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 36, - 102.33333333333334, - 561, - 112.00000000000001 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_40", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 36, - 122, - 562, - 176 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 122, - 562, - 176 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 36, - 122, - 562, - 176 - ], - "spans": [ - { - "bbox": [ - 36, - 122, - 562, - 176 - ], - "score": 0.96, - "html": "
091 mark for A02 (apply)1
Name;
", - "type": "table", - "image_path": "819feeb5d771a14dfa9425ed3a345fc1a486a0f9df38574211319bfbf2b24a7c.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 36, - 122, - 562, - 140.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 36, - 140.0, - 562, - 158.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 36, - 158.0, - 562, - 176.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_40", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 36, - 187, - 561, - 240 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 187, - 561, - 240 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 36, - 187, - 561, - 240 - ], - "spans": [ - { - "bbox": [ - 36, - 187, - 561, - 240 - ], - "score": 0.943, - "html": "
0921 mark for A02 (apply)1
Real //Float//Decimal;
", - "type": "table", - "image_path": "8066f24424a9cc3dfeb345799556792dd77c453ae83f6da5c96bed6056c3dbb8.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 36, - 187, - 561, - 204.66666666666666 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 36, - 204.66666666666666, - 561, - 222.33333333333331 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 36, - 222.33333333333331, - 561, - 239.99999999999997 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_40", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 36, - 248, - 561, - 667 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 248, - 561, - 667 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 36, - 248, - 561, - 667 - ], - "spans": [ - { - "bbox": [ - 36, - 248, - 561, - 667 - ], - "score": 0.97, - "html": "
0936 marks for A03 (program)
1 mark: correct fields in SELECT clause
1 mark: one correct table in FROM clause 1 mark: second correct table in FROM clause
1 mark: a correct condition in WHERE clause
1 mark: correct conditions and correct usage of AND in WHERE clause // correct
conditions and correct usage of AND in WHERE clause and correct usage of ON withINNERJOIN 1 mark:ORDERBY clause
Max 5 if any errors Sample answer
", - "type": "table", - "image_path": "2aa1481597518ee183a9db2935aeab47710513dae1ff1de52893c5fe9b8469af.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 36, - 248, - 561, - 387.66666666666663 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 36, - 387.66666666666663, - 561, - 527.3333333333333 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 36, - 527.3333333333333, - 561, - 666.9999999999999 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10, - "page_num": "page_40", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 35, - 83, - 559, - 111 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 83, - 559, - 111 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 35, - 83, - 559, - 111 - ], - "spans": [ - { - "bbox": [ - 35, - 83, - 559, - 111 - ], - "score": 0.806, - "html": "
QuPartMarking guidanceTotal marks
", - "type": "table", - "image_path": "01f46cbd6cc34152652d38ea03c3f0b96b5e2028910cd7c9c146d98663b3f873.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 35, - 83, - 559, - 92.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 35, - 92.33333333333333, - 559, - 101.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 35, - 101.66666666666666, - 559, - 110.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 36, - 123, - 562, - 266 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 123, - 562, - 266 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 36, - 123, - 562, - 266 - ], - "spans": [ - { - "bbox": [ - 36, - 123, - 562, - 266 - ], - "score": 0.975, - "html": "
094 2 marks for Ao3 (refine)
1 mark: changing +9 to +10;
1 mark: changing <=3 to >3
UPDATE Game
SET LengthOfGame = LengthOfGame + 10
WHERE Complexity
", - "type": "table", - "image_path": "efb604da99242a75029c4acf4106fce705f52c36628b92519fd4529e0f39bbfc.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 36, - 123, - 562, - 170.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 36, - 170.66666666666666, - 562, - 218.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 36, - 218.33333333333331, - 562, - 266.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 35, - 278, - 559, - 401 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 278, - 559, - 401 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 35, - 278, - 559, - 401 - ], - "spans": [ - { - "bbox": [ - 35, - 278, - 559, - 401 - ], - "score": 0.972, - "html": "
101AllmarksAo2(apply) 2
Staff could forget their password // staff can't forget biometric measure; Shouldering risk when staff entering their password // no risk of shouldering when using biometric data;
Lower risk of hacking; Max 2
", - "type": "table", - "image_path": "6e57acc728cff5a795cb8856ee562c6f957ab0110c43e2d310db6ff4a0c1b4d1.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 35, - 278, - 559, - 319.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 35, - 319.0, - 559, - 360.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 35, - 360.0, - 559, - 401.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 34, - 413, - 559, - 494 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 413, - 559, - 494 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 34, - 413, - 559, - 494 - ], - "spans": [ - { - "bbox": [ - 34, - 413, - 559, - 494 - ], - "score": 0.964, - "html": "
102AllmarksAo2 (apply)2
Network is made available to members of the public; Won't know the MAC addresses for (most) of the devices connecting to the network;
", - "type": "table", - "image_path": "268d9a7b93a4d42a756f68e0cdb73b9809b4337811ff353b47d0d1b2bf83d778.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 34, - 413, - 559, - 440.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 34, - 440.0, - 559, - 467.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 34, - 467.0, - 559, - 494.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 42, - 734, - 109, - 743 - ], - "lines": [ - { - "bbox": [ - 41, - 735, - 110, - 744 - ], - "spans": [ - { - "bbox": [ - 41, - 735, - 110, - 744 - ], - "score": 1.0, - "content": "Copyright information", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 39, - 750, - 552, - 775 - ], - "lines": [ - { - "bbox": [ - 42, - 750, - 552, - 760 - ], - "spans": [ - { - "bbox": [ - 42, - 750, - 552, - 760 - ], - "score": 1.0, - "content": "AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal ", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 42, - 759, - 551, - 767 - ], - "spans": [ - { - "bbox": [ - 42, - 759, - 551, - 767 - ], - "score": 1.0, - "content": "use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 40, - 766, - 134, - 777 - ], - "spans": [ - { - "bbox": [ - 40, - 766, - 134, - 777 - ], - "score": 1.0, - "content": "internal use within the centre.", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 14 - } - ], - "layout_bboxes": [], - "page_idx": 41, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 35, - 83, - 559, - 111 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 83, - 559, - 111 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 35, - 83, - 559, - 111 - ], - "spans": [ - { - "bbox": [ - 35, - 83, - 559, - 111 - ], - "score": 0.806, - "html": "
QuPartMarking guidanceTotal marks
", - "type": "table", - "image_path": "01f46cbd6cc34152652d38ea03c3f0b96b5e2028910cd7c9c146d98663b3f873.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 35, - 83, - 559, - 92.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 35, - 92.33333333333333, - 559, - 101.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 35, - 101.66666666666666, - 559, - 110.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 36, - 123, - 562, - 266 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 123, - 562, - 266 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 36, - 123, - 562, - 266 - ], - "spans": [ - { - "bbox": [ - 36, - 123, - 562, - 266 - ], - "score": 0.975, - "html": "
094 2 marks for Ao3 (refine)
1 mark: changing +9 to +10;
1 mark: changing <=3 to >3
UPDATE Game
SET LengthOfGame = LengthOfGame + 10
WHERE Complexity
", - "type": "table", - "image_path": "efb604da99242a75029c4acf4106fce705f52c36628b92519fd4529e0f39bbfc.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 36, - 123, - 562, - 170.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 36, - 170.66666666666666, - 562, - 218.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 36, - 218.33333333333331, - 562, - 266.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - }, - { - "type": "table", - "bbox": [ - 35, - 278, - 559, - 401 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 278, - 559, - 401 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 35, - 278, - 559, - 401 - ], - "spans": [ - { - "bbox": [ - 35, - 278, - 559, - 401 - ], - "score": 0.972, - "html": "
101AllmarksAo2(apply) 2
Staff could forget their password // staff can't forget biometric measure; Shouldering risk when staff entering their password // no risk of shouldering when using biometric data;
Lower risk of hacking; Max 2
", - "type": "table", - "image_path": "6e57acc728cff5a795cb8856ee562c6f957ab0110c43e2d310db6ff4a0c1b4d1.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 35, - 278, - 559, - 319.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 35, - 319.0, - 559, - 360.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 35, - 360.0, - 559, - 401.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7 - }, - { - "type": "table", - "bbox": [ - 34, - 413, - 559, - 494 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 413, - 559, - 494 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 34, - 413, - 559, - 494 - ], - "spans": [ - { - "bbox": [ - 34, - 413, - 559, - 494 - ], - "score": 0.964, - "html": "
102AllmarksAo2 (apply)2
Network is made available to members of the public; Won't know the MAC addresses for (most) of the devices connecting to the network;
", - "type": "table", - "image_path": "268d9a7b93a4d42a756f68e0cdb73b9809b4337811ff353b47d0d1b2bf83d778.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 34, - 413, - 559, - 440.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 34, - 440.0, - 559, - 467.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 34, - 467.0, - 559, - 494.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 42, - 797, - 51, - 805 - ], - "lines": [ - { - "bbox": [ - 40, - 796, - 54, - 807 - ], - "spans": [ - { - "bbox": [ - 40, - 796, - 54, - 807 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 11, - "width": 14 - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 231, - 35, - 554, - 49 - ], - "lines": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "spans": [ - { - "bbox": [ - 233, - 36, - 553, - 47 - ], - "score": 1.0, - "content": "MARK SCHEME – GCSE COMPUTER SCIENCE – 8525/2 – SAMS", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 35, - 83, - 559, - 111 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 83, - 559, - 111 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 35, - 83, - 559, - 111 - ], - "spans": [ - { - "bbox": [ - 35, - 83, - 559, - 111 - ], - "score": 0.806, - "html": "
QuPartMarking guidanceTotal marks
", - "type": "table", - "image_path": "01f46cbd6cc34152652d38ea03c3f0b96b5e2028910cd7c9c146d98663b3f873.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 35, - 83, - 559, - 92.33333333333333 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 35, - 92.33333333333333, - 559, - 101.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 35, - 101.66666666666666, - 559, - 110.99999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_41", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 36, - 123, - 562, - 266 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 123, - 562, - 266 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 36, - 123, - 562, - 266 - ], - "spans": [ - { - "bbox": [ - 36, - 123, - 562, - 266 - ], - "score": 0.975, - "html": "
094 2 marks for Ao3 (refine)
1 mark: changing +9 to +10;
1 mark: changing <=3 to >3
UPDATE Game
SET LengthOfGame = LengthOfGame + 10
WHERE Complexity
", - "type": "table", - "image_path": "efb604da99242a75029c4acf4106fce705f52c36628b92519fd4529e0f39bbfc.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 36, - 123, - 562, - 170.66666666666666 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 36, - 170.66666666666666, - 562, - 218.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 36, - 218.33333333333331, - 562, - 266.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_41", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 35, - 278, - 559, - 401 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 278, - 559, - 401 - ], - "group_id": 2, - "lines": [ - { - "bbox": [ - 35, - 278, - 559, - 401 - ], - "spans": [ - { - "bbox": [ - 35, - 278, - 559, - 401 - ], - "score": 0.972, - "html": "
101AllmarksAo2(apply) 2
Staff could forget their password // staff can't forget biometric measure; Shouldering risk when staff entering their password // no risk of shouldering when using biometric data;
Lower risk of hacking; Max 2
", - "type": "table", - "image_path": "6e57acc728cff5a795cb8856ee562c6f957ab0110c43e2d310db6ff4a0c1b4d1.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 35, - 278, - 559, - 319.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 35, - 319.0, - 559, - 360.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 35, - 360.0, - 559, - 401.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 7, - "page_num": "page_41", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "table", - "bbox": [ - 34, - 413, - 559, - 494 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 413, - 559, - 494 - ], - "group_id": 3, - "lines": [ - { - "bbox": [ - 34, - 413, - 559, - 494 - ], - "spans": [ - { - "bbox": [ - 34, - 413, - 559, - 494 - ], - "score": 0.964, - "html": "
102AllmarksAo2 (apply)2
Network is made available to members of the public; Won't know the MAC addresses for (most) of the devices connecting to the network;
", - "type": "table", - "image_path": "268d9a7b93a4d42a756f68e0cdb73b9809b4337811ff353b47d0d1b2bf83d778.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 34, - 413, - 559, - 440.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 34, - 440.0, - 559, - 467.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 34, - 467.0, - 559, - 494.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 10, - "page_num": "page_41", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 734, - 109, - 743 - ], - "lines": [ - { - "bbox": [ - 41, - 735, - 110, - 744 - ], - "spans": [ - { - "bbox": [ - 41, - 735, - 110, - 744 - ], - "score": 1.0, - "content": "Copyright information", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_41", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 735, - 110, - 744 - ] - }, - { - "type": "text", - "bbox": [ - 39, - 750, - 552, - 775 - ], - "lines": [ - { - "bbox": [ - 42, - 750, - 552, - 760 - ], - "spans": [ - { - "bbox": [ - 42, - 750, - 552, - 760 - ], - "score": 1.0, - "content": "AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal ", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 42, - 759, - 551, - 767 - ], - "spans": [ - { - "bbox": [ - 42, - 759, - 551, - 767 - ], - "score": 1.0, - "content": "use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 40, - 766, - 134, - 777 - ], - "spans": [ - { - "bbox": [ - 40, - 766, - 134, - 777 - ], - "score": 1.0, - "content": "internal use within the centre.", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 14, - "page_num": "page_41", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 750, - 552, - 777 - ] - } - ] - } - ], - "_parse_type": "txt", - "_version_name": "1.1.0", - "lang": "en" -} \ No newline at end of file diff --git a/pdf_output/8525_2_1739552314/auto/8525_2_1739552314_model.json b/pdf_output/8525_2_1739552314/auto/8525_2_1739552314_model.json deleted file mode 100644 index e38291b4814cb143030a7c3ea79eaeb3a6f8edf3..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/8525_2_1739552314_model.json +++ /dev/null @@ -1,19726 +0,0 @@ -[ - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 107, - 1472, - 1026, - 1472, - 1026, - 1655, - 107, - 1655 - ], - "score": 0.97 - }, - { - "category_id": 1, - "poly": [ - 107, - 1289, - 905, - 1289, - 905, - 1360, - 107, - 1360 - ], - "score": 0.935 - }, - { - "category_id": 0, - "poly": [ - 108, - 1435, - 302, - 1435, - 302, - 1469, - 108, - 1469 - ], - "score": 0.924 - }, - { - "category_id": 0, - "poly": [ - 109, - 1251, - 257, - 1251, - 257, - 1285, - 109, - 1285 - ], - "score": 0.915 - }, - { - "category_id": 1, - "poly": [ - 106, - 1749, - 899, - 1749, - 899, - 1785, - 106, - 1785 - ], - "score": 0.911 - }, - { - "category_id": 0, - "poly": [ - 108, - 1712, - 296, - 1712, - 296, - 1745, - 108, - 1745 - ], - "score": 0.904 - }, - { - "category_id": 0, - "poly": [ - 117, - 1822, - 231, - 1822, - 231, - 1857, - 117, - 1857 - ], - "score": 0.901 - }, - { - "category_id": 1, - "poly": [ - 112, - 994, - 710, - 994, - 710, - 1047, - 112, - 1047 - ], - "score": 0.899 - }, - { - "category_id": 1, - "poly": [ - 157, - 320, - 653, - 320, - 653, - 359, - 157, - 359 - ], - "score": 0.867 - }, - { - "category_id": 2, - "poly": [ - 1334, - 2240, - 1517, - 2240, - 1517, - 2298, - 1334, - 2298 - ], - "score": 0.853 - }, - { - "category_id": 0, - "poly": [ - 112, - 793, - 821, - 793, - 821, - 968, - 112, - 968 - ], - "score": 0.823 - }, - { - "category_id": 3, - "poly": [ - 958, - 1242, - 1084, - 1242, - 1084, - 1399, - 958, - 1399 - ], - "score": 0.799 - }, - { - "category_id": 1, - "poly": [ - 128, - 1891, - 1453, - 1891, - 1453, - 1929, - 128, - 1929 - ], - "score": 0.735 - }, - { - "category_id": 2, - "poly": [ - 1306, - 1986, - 1377, - 1986, - 1377, - 2036, - 1306, - 2036 - ], - "score": 0.713 - }, - { - "category_id": 0, - "poly": [ - 109, - 1145, - 1286, - 1145, - 1286, - 1196, - 109, - 1196 - ], - "score": 0.659 - }, - { - "category_id": 1, - "poly": [ - 134, - 1998, - 1317, - 1998, - 1317, - 2037, - 134, - 2037 - ], - "score": 0.646 - }, - { - "category_id": 2, - "poly": [ - 107, - 121, - 472, - 121, - 472, - 256, - 107, - 256 - ], - "score": 0.646 - }, - { - "category_id": 1, - "poly": [ - 153, - 388, - 784, - 388, - 784, - 476, - 153, - 476 - ], - "score": 0.583 - }, - { - "category_id": 3, - "poly": [ - 289, - 2087, - 366, - 2087, - 366, - 2140, - 289, - 2140 - ], - "score": 0.499 - }, - { - "category_id": 1, - "poly": [ - 864, - 426, - 1122, - 426, - 1122, - 460, - 864, - 460 - ], - "score": 0.44 - }, - { - "category_id": 1, - "poly": [ - 135, - 2052, - 1400, - 2052, - 1400, - 2089, - 135, - 2089 - ], - "score": 0.41 - }, - { - "category_id": 1, - "poly": [ - 135, - 1890, - 1464, - 1890, - 1464, - 1982, - 135, - 1982 - ], - "score": 0.37 - }, - { - "category_id": 0, - "poly": [ - 112, - 886, - 820, - 886, - 820, - 967, - 112, - 967 - ], - "score": 0.355 - }, - { - "category_id": 1, - "poly": [ - 109, - 1145, - 1286, - 1145, - 1286, - 1196, - 109, - 1196 - ], - "score": 0.321 - }, - { - "category_id": 1, - "poly": [ - 143, - 524, - 1467, - 524, - 1467, - 572, - 143, - 572 - ], - "score": 0.302 - }, - { - "category_id": 0, - "poly": [ - 107, - 121, - 472, - 121, - 472, - 256, - 107, - 256 - ], - "score": 0.236 - }, - { - "category_id": 1, - "poly": [ - 142, - 601, - 1465, - 601, - 1465, - 641, - 142, - 641 - ], - "score": 0.201 - }, - { - "category_id": 1, - "poly": [ - 132, - 2008, - 1477, - 2008, - 1477, - 2141, - 132, - 2141 - ], - "score": 0.2 - }, - { - "category_id": 3, - "poly": [ - 153, - 388, - 784, - 388, - 784, - 476, - 153, - 476 - ], - "score": 0.195 - }, - { - "category_id": 3, - "poly": [ - 1306, - 1986, - 1377, - 1986, - 1377, - 2036, - 1306, - 2036 - ], - "score": 0.19 - }, - { - "category_id": 1, - "poly": [ - 150, - 521, - 1473, - 521, - 1473, - 750, - 150, - 750 - ], - "score": 0.186 - }, - { - "category_id": 5, - "poly": [ - 1148, - 391, - 1466, - 391, - 1466, - 474, - 1148, - 474 - ], - "score": 0.142 - }, - { - "category_id": 5, - "poly": [ - 860, - 1936, - 1092, - 1936, - 1092, - 1980, - 860, - 1980 - ], - "score": 0.128 - }, - { - "category_id": 1, - "poly": [ - 664, - 1936, - 850, - 1936, - 850, - 1976, - 664, - 1976 - ], - "score": 0.127 - }, - { - "category_id": 2, - "poly": [ - 289, - 2087, - 366, - 2087, - 366, - 2140, - 289, - 2140 - ], - "score": 0.108 - }, - { - "category_id": 1, - "poly": [ - 138, - 2052, - 1466, - 2052, - 1466, - 2133, - 138, - 2133 - ], - "score": 0.102 - }, - { - "category_id": 13, - "poly": [ - 934, - 1947, - 963, - 1947, - 963, - 1969, - 934, - 1969 - ], - "score": 0.69, - "latex": "\\textcircled{6}" - }, - { - "category_id": 13, - "poly": [ - 874, - 1946, - 903, - 1946, - 903, - 1971, - 874, - 1971 - ], - "score": 0.55, - "latex": "\\mathbf{\\pi}^{\\infty}" - }, - { - "category_id": 13, - "poly": [ - 1052, - 1938, - 1082, - 1938, - 1082, - 1972, - 1052, - 1972 - ], - "score": 0.45, - "latex": "\\nmid" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 1471.0, - 1022.0, - 1471.0, - 1022.0, - 1509.0, - 114.0, - 1509.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 1509.0, - 435.0, - 1509.0, - 435.0, - 1543.0, - 115.0, - 1543.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 110.0, - 1546.0, - 891.0, - 1546.0, - 891.0, - 1580.0, - 110.0, - 1580.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 109.0, - 1580.0, - 554.0, - 1580.0, - 554.0, - 1615.0, - 109.0, - 1615.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 109.0, - 1619.0, - 886.0, - 1619.0, - 886.0, - 1653.0, - 109.0, - 1653.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 123.0, - 1290.0, - 905.0, - 1290.0, - 905.0, - 1323.0, - 123.0, - 1323.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 123.0, - 1326.0, - 560.0, - 1326.0, - 560.0, - 1359.0, - 123.0, - 1359.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 107.0, - 1434.0, - 302.0, - 1434.0, - 302.0, - 1470.0, - 107.0, - 1470.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 109.0, - 1252.0, - 257.0, - 1252.0, - 257.0, - 1286.0, - 109.0, - 1286.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 1750.0, - 895.0, - 1750.0, - 895.0, - 1782.0, - 118.0, - 1782.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 108.0, - 1712.0, - 296.0, - 1712.0, - 296.0, - 1745.0, - 108.0, - 1745.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1821.0, - 232.0, - 1821.0, - 232.0, - 1858.0, - 117.0, - 1858.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 997.0, - 707.0, - 997.0, - 707.0, - 1044.0, - 112.0, - 1044.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 322.0, - 651.0, - 322.0, - 651.0, - 358.0, - 155.0, - 358.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1336.0, - 2243.0, - 1516.0, - 2243.0, - 1516.0, - 2296.0, - 1336.0, - 2296.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 798.0, - 295.0, - 798.0, - 295.0, - 866.0, - 116.0, - 866.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 898.0, - 811.0, - 898.0, - 811.0, - 955.0, - 120.0, - 955.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 1894.0, - 1457.0, - 1894.0, - 1457.0, - 1930.0, - 136.0, - 1930.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 111.0, - 1152.0, - 1283.0, - 1152.0, - 1283.0, - 1192.0, - 111.0, - 1192.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 1999.0, - 1314.0, - 1999.0, - 1314.0, - 2035.0, - 136.0, - 2035.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 108.0, - 150.0, - 380.0, - 150.0, - 380.0, - 252.0, - 108.0, - 252.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 389.0, - 130.0, - 464.0, - 130.0, - 464.0, - 217.0, - 389.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 156.0, - 426.0, - 364.0, - 426.0, - 364.0, - 460.0, - 156.0, - 460.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 867.0, - 428.0, - 1120.0, - 428.0, - 1120.0, - 458.0, - 867.0, - 458.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 2052.0, - 1406.0, - 2052.0, - 1406.0, - 2088.0, - 133.0, - 2088.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 1891.0, - 1459.0, - 1891.0, - 1459.0, - 1932.0, - 133.0, - 1932.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 177.0, - 1944.0, - 369.0, - 1944.0, - 369.0, - 1972.0, - 177.0, - 1972.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 664.0, - 1945.0, - 853.0, - 1945.0, - 853.0, - 1973.0, - 664.0, - 1973.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 121.0, - 899.0, - 812.0, - 899.0, - 812.0, - 956.0, - 121.0, - 956.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 111.0, - 1152.0, - 1283.0, - 1152.0, - 1283.0, - 1192.0, - 111.0, - 1192.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 531.0, - 286.0, - 531.0, - 286.0, - 566.0, - 155.0, - 566.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 108.0, - 150.0, - 380.0, - 150.0, - 380.0, - 252.0, - 108.0, - 252.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 389.0, - 130.0, - 464.0, - 130.0, - 464.0, - 217.0, - 389.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 153.0, - 596.0, - 337.0, - 596.0, - 337.0, - 642.0, - 153.0, - 642.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 2002.0, - 1370.0, - 2002.0, - 1370.0, - 2038.0, - 135.0, - 2038.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 126.0, - 2050.0, - 1479.0, - 2050.0, - 1479.0, - 2089.0, - 126.0, - 2089.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 126.0, - 2089.0, - 231.0, - 2089.0, - 231.0, - 2123.0, - 126.0, - 2123.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 153.0, - 526.0, - 287.0, - 526.0, - 287.0, - 570.0, - 153.0, - 570.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 154.0, - 599.0, - 337.0, - 599.0, - 337.0, - 640.0, - 154.0, - 640.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 674.0, - 435.0, - 674.0, - 435.0, - 710.0, - 155.0, - 710.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 668.0, - 1948.0, - 849.0, - 1948.0, - 849.0, - 1969.0, - 668.0, - 1969.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 2051.0, - 1470.0, - 2051.0, - 1470.0, - 2087.0, - 136.0, - 2087.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 130.0, - 2087.0, - 231.0, - 2087.0, - 231.0, - 2124.0, - 130.0, - 2124.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 0, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 127, - 983, - 294, - 983, - 294, - 1033, - 127, - 1033 - ], - "score": 0.913 - }, - { - "category_id": 2, - "poly": [ - 127, - 355, - 228, - 355, - 228, - 403, - 127, - 403 - ], - "score": 0.912 - }, - { - "category_id": 2, - "poly": [ - 127, - 658, - 294, - 658, - 294, - 708, - 127, - 708 - ], - "score": 0.91 - }, - { - "category_id": 2, - "poly": [ - 1509, - 154, - 1616, - 154, - 1616, - 224, - 1509, - 224 - ], - "score": 0.91 - }, - { - "category_id": 1, - "poly": [ - 313, - 986, - 1126, - 986, - 1126, - 1026, - 313, - 1026 - ], - "score": 0.891 - }, - { - "category_id": 1, - "poly": [ - 315, - 358, - 781, - 358, - 781, - 397, - 315, - 397 - ], - "score": 0.881 - }, - { - "category_id": 0, - "poly": [ - 837, - 427, - 963, - 427, - 963, - 466, - 837, - 466 - ], - "score": 0.865 - }, - { - "category_id": 2, - "poly": [ - 791, - 82, - 814, - 82, - 814, - 111, - 791, - 111 - ], - "score": 0.793 - }, - { - "category_id": 0, - "poly": [ - 780, - 535, - 1024, - 535, - 1024, - 584, - 780, - 584 - ], - "score": 0.69 - }, - { - "category_id": 1, - "poly": [ - 1360, - 699, - 1486, - 699, - 1486, - 738, - 1360, - 738 - ], - "score": 0.685 - }, - { - "category_id": 1, - "poly": [ - 1344, - 1059, - 1486, - 1059, - 1486, - 1096, - 1344, - 1096 - ], - "score": 0.682 - }, - { - "category_id": 1, - "poly": [ - 312, - 670, - 1491, - 670, - 1491, - 884, - 312, - 884 - ], - "score": 0.524 - }, - { - "category_id": 1, - "poly": [ - 654, - 218, - 951, - 218, - 951, - 255, - 654, - 255 - ], - "score": 0.512 - }, - { - "category_id": 1, - "poly": [ - 311, - 661, - 1062, - 661, - 1062, - 702, - 311, - 702 - ], - "score": 0.507 - }, - { - "category_id": 1, - "poly": [ - 310, - 1054, - 1491, - 1054, - 1491, - 1392, - 310, - 1392 - ], - "score": 0.333 - }, - { - "category_id": 0, - "poly": [ - 1344, - 1059, - 1486, - 1059, - 1486, - 1096, - 1344, - 1096 - ], - "score": 0.195 - }, - { - "category_id": 1, - "poly": [ - 785, - 1347, - 1487, - 1347, - 1487, - 1387, - 785, - 1387 - ], - "score": 0.139 - }, - { - "category_id": 1, - "poly": [ - 780, - 535, - 1024, - 535, - 1024, - 584, - 780, - 584 - ], - "score": 0.123 - }, - { - "category_id": 1, - "poly": [ - 313, - 1055, - 1491, - 1055, - 1491, - 1323, - 313, - 1323 - ], - "score": 0.101 - }, - { - "category_id": 15, - "poly": [ - 134.0, - 986.0, - 287.0, - 986.0, - 287.0, - 1032.0, - 134.0, - 1032.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 362.0, - 213.0, - 362.0, - 213.0, - 397.0, - 141.0, - 397.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 662.0, - 285.0, - 662.0, - 285.0, - 706.0, - 135.0, - 706.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1510.0, - 157.0, - 1616.0, - 157.0, - 1616.0, - 180.0, - 1510.0, - 180.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1512.0, - 179.0, - 1614.0, - 179.0, - 1614.0, - 203.0, - 1512.0, - 203.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1542.0, - 199.0, - 1586.0, - 199.0, - 1586.0, - 228.0, - 1542.0, - 228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 991.0, - 1123.0, - 991.0, - 1123.0, - 1021.0, - 319.0, - 1021.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 362.0, - 779.0, - 362.0, - 779.0, - 393.0, - 318.0, - 393.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 840.0, - 430.0, - 965.0, - 430.0, - 965.0, - 466.0, - 840.0, - 466.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 788.0, - 78.0, - 818.0, - 78.0, - 818.0, - 120.0, - 788.0, - 120.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 786.0, - 541.0, - 1019.0, - 541.0, - 1019.0, - 579.0, - 786.0, - 579.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 700.0, - 1489.0, - 700.0, - 1489.0, - 739.0, - 1362.0, - 739.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1057.0, - 1488.0, - 1057.0, - 1488.0, - 1098.0, - 1346.0, - 1098.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 666.0, - 1056.0, - 666.0, - 1056.0, - 697.0, - 319.0, - 697.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1361.0, - 698.0, - 1490.0, - 698.0, - 1490.0, - 741.0, - 1361.0, - 741.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 657.0, - 220.0, - 948.0, - 220.0, - 948.0, - 254.0, - 657.0, - 254.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 664.0, - 1060.0, - 664.0, - 1060.0, - 699.0, - 318.0, - 699.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1059.0, - 1490.0, - 1059.0, - 1490.0, - 1098.0, - 1346.0, - 1098.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 787.0, - 1346.0, - 909.0, - 1346.0, - 909.0, - 1388.0, - 787.0, - 1388.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1057.0, - 1488.0, - 1057.0, - 1488.0, - 1098.0, - 1346.0, - 1098.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 790.0, - 1349.0, - 906.0, - 1349.0, - 906.0, - 1385.0, - 790.0, - 1385.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 786.0, - 541.0, - 1019.0, - 541.0, - 1019.0, - 579.0, - 786.0, - 579.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1347.0, - 1060.0, - 1489.0, - 1060.0, - 1489.0, - 1097.0, - 1347.0, - 1097.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 1, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 307, - 1343, - 1464, - 1343, - 1464, - 1455, - 307, - 1455 - ], - "score": 0.966 - }, - { - "category_id": 1, - "poly": [ - 312, - 184, - 1375, - 184, - 1375, - 260, - 312, - 260 - ], - "score": 0.936 - }, - { - "category_id": 2, - "poly": [ - 1506, - 155, - 1612, - 155, - 1612, - 225, - 1506, - 225 - ], - "score": 0.932 - }, - { - "category_id": 1, - "poly": [ - 311, - 1490, - 1450, - 1490, - 1450, - 1561, - 311, - 1561 - ], - "score": 0.928 - }, - { - "category_id": 2, - "poly": [ - 127, - 1486, - 293, - 1486, - 293, - 1537, - 127, - 1537 - ], - "score": 0.911 - }, - { - "category_id": 2, - "poly": [ - 127, - 943, - 295, - 943, - 295, - 993, - 127, - 993 - ], - "score": 0.91 - }, - { - "category_id": 1, - "poly": [ - 654, - 1633, - 760, - 1633, - 760, - 1961, - 654, - 1961 - ], - "score": 0.908 - }, - { - "category_id": 1, - "poly": [ - 1340, - 985, - 1482, - 985, - 1482, - 1022, - 1340, - 1022 - ], - "score": 0.88 - }, - { - "category_id": 1, - "poly": [ - 1362, - 1566, - 1486, - 1566, - 1486, - 1603, - 1362, - 1603 - ], - "score": 0.876 - }, - { - "category_id": 2, - "poly": [ - 127, - 181, - 294, - 181, - 294, - 232, - 127, - 232 - ], - "score": 0.873 - }, - { - "category_id": 1, - "poly": [ - 1344, - 587, - 1486, - 587, - 1486, - 626, - 1344, - 626 - ], - "score": 0.857 - }, - { - "category_id": 2, - "poly": [ - 1288, - 2151, - 1473, - 2151, - 1473, - 2185, - 1288, - 2185 - ], - "score": 0.854 - }, - { - "category_id": 0, - "poly": [ - 837, - 293, - 965, - 293, - 965, - 332, - 837, - 332 - ], - "score": 0.823 - }, - { - "category_id": 1, - "poly": [ - 316, - 946, - 1231, - 946, - 1231, - 988, - 316, - 988 - ], - "score": 0.821 - }, - { - "category_id": 1, - "poly": [ - 315, - 549, - 938, - 549, - 938, - 588, - 315, - 588 - ], - "score": 0.809 - }, - { - "category_id": 2, - "poly": [ - 792, - 83, - 814, - 83, - 814, - 111, - 792, - 111 - ], - "score": 0.806 - }, - { - "category_id": 3, - "poly": [ - 1066, - 1630, - 1149, - 1630, - 1149, - 1970, - 1066, - 1970 - ], - "score": 0.674 - }, - { - "category_id": 1, - "poly": [ - 332, - 437, - 1397, - 437, - 1397, - 480, - 332, - 480 - ], - "score": 0.475 - }, - { - "category_id": 3, - "poly": [ - 314, - 1066, - 1488, - 1066, - 1488, - 1312, - 314, - 1312 - ], - "score": 0.314 - }, - { - "category_id": 1, - "poly": [ - 314, - 587, - 1489, - 587, - 1489, - 911, - 314, - 911 - ], - "score": 0.305 - }, - { - "category_id": 3, - "poly": [ - 315, - 669, - 1487, - 669, - 1487, - 915, - 315, - 915 - ], - "score": 0.251 - }, - { - "category_id": 1, - "poly": [ - 313, - 980, - 1491, - 980, - 1491, - 1310, - 313, - 1310 - ], - "score": 0.249 - }, - { - "category_id": 1, - "poly": [ - 313, - 588, - 1490, - 588, - 1490, - 915, - 313, - 915 - ], - "score": 0.243 - }, - { - "category_id": 1, - "poly": [ - 323, - 402, - 1421, - 402, - 1421, - 516, - 323, - 516 - ], - "score": 0.16 - }, - { - "category_id": 13, - "poly": [ - 1092, - 1868, - 1124, - 1868, - 1124, - 1881, - 1092, - 1881 - ], - "score": 0.77, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 1092, - 1796, - 1124, - 1796, - 1124, - 1809, - 1092, - 1809 - ], - "score": 0.75, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 1092, - 1723, - 1125, - 1723, - 1125, - 1737, - 1092, - 1737 - ], - "score": 0.35, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 1092, - 1940, - 1125, - 1940, - 1125, - 1954, - 1092, - 1954 - ], - "score": 0.33, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 15, - "poly": [ - 309.0, - 1346.0, - 1460.0, - 1346.0, - 1460.0, - 1382.0, - 309.0, - 1382.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 305.0, - 1380.0, - 1450.0, - 1380.0, - 1450.0, - 1419.0, - 305.0, - 1419.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 307.0, - 1422.0, - 546.0, - 1422.0, - 546.0, - 1455.0, - 307.0, - 1455.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 190.0, - 1373.0, - 190.0, - 1373.0, - 221.0, - 318.0, - 221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 225.0, - 727.0, - 225.0, - 727.0, - 259.0, - 317.0, - 259.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1506.0, - 158.0, - 1614.0, - 158.0, - 1614.0, - 181.0, - 1506.0, - 181.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1510.0, - 180.0, - 1610.0, - 180.0, - 1610.0, - 204.0, - 1510.0, - 204.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1539.0, - 200.0, - 1582.0, - 200.0, - 1582.0, - 230.0, - 1539.0, - 230.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 1493.0, - 1443.0, - 1493.0, - 1443.0, - 1527.0, - 319.0, - 1527.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 314.0, - 1527.0, - 368.0, - 1527.0, - 368.0, - 1566.0, - 314.0, - 1566.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 1492.0, - 285.0, - 1492.0, - 285.0, - 1532.0, - 136.0, - 1532.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 137.0, - 948.0, - 285.0, - 948.0, - 285.0, - 989.0, - 137.0, - 989.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 658.0, - 1637.0, - 693.0, - 1637.0, - 693.0, - 1674.0, - 658.0, - 1674.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 726.0, - 1637.0, - 760.0, - 1637.0, - 760.0, - 1673.0, - 726.0, - 1673.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 658.0, - 1709.0, - 692.0, - 1709.0, - 692.0, - 1747.0, - 658.0, - 1747.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 726.0, - 1709.0, - 760.0, - 1709.0, - 760.0, - 1745.0, - 726.0, - 1745.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 658.0, - 1780.0, - 692.0, - 1780.0, - 692.0, - 1820.0, - 658.0, - 1820.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 728.0, - 1780.0, - 757.0, - 1780.0, - 757.0, - 1817.0, - 728.0, - 1817.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 658.0, - 1854.0, - 692.0, - 1854.0, - 692.0, - 1891.0, - 658.0, - 1891.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 731.0, - 1851.0, - 758.0, - 1851.0, - 758.0, - 1888.0, - 731.0, - 1888.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 658.0, - 1925.0, - 691.0, - 1925.0, - 691.0, - 1964.0, - 658.0, - 1964.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 728.0, - 1930.0, - 758.0, - 1930.0, - 758.0, - 1963.0, - 728.0, - 1963.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1342.0, - 983.0, - 1484.0, - 983.0, - 1484.0, - 1024.0, - 1342.0, - 1024.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1361.0, - 1562.0, - 1487.0, - 1562.0, - 1487.0, - 1604.0, - 1361.0, - 1604.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 145.0, - 192.0, - 175.0, - 192.0, - 175.0, - 223.0, - 145.0, - 223.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 195.0, - 276.0, - 195.0, - 276.0, - 221.0, - 251.0, - 221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 586.0, - 1488.0, - 586.0, - 1488.0, - 627.0, - 1346.0, - 627.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1288.0, - 2153.0, - 1441.0, - 2153.0, - 1441.0, - 2186.0, - 1288.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 840.0, - 296.0, - 966.0, - 296.0, - 966.0, - 332.0, - 840.0, - 332.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 951.0, - 1225.0, - 951.0, - 1225.0, - 986.0, - 319.0, - 986.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 553.0, - 936.0, - 553.0, - 936.0, - 587.0, - 319.0, - 587.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 791.0, - 80.0, - 817.0, - 80.0, - 817.0, - 114.0, - 791.0, - 114.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 332.0, - 441.0, - 1394.0, - 441.0, - 1394.0, - 479.0, - 332.0, - 479.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 586.0, - 1491.0, - 586.0, - 1491.0, - 628.0, - 1345.0, - 628.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1341.0, - 985.0, - 1485.0, - 985.0, - 1485.0, - 1024.0, - 1341.0, - 1024.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1344.0, - 586.0, - 1492.0, - 586.0, - 1492.0, - 629.0, - 1344.0, - 629.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 332.0, - 439.0, - 1395.0, - 439.0, - 1395.0, - 480.0, - 332.0, - 480.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 2, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 292, - 742, - 1436, - 742, - 1436, - 889, - 292, - 889 - ], - "score": 0.975 - }, - { - "category_id": 3, - "poly": [ - 304, - 1116, - 1453, - 1116, - 1453, - 2109, - 304, - 2109 - ], - "score": 0.961 - }, - { - "category_id": 1, - "poly": [ - 290, - 923, - 1348, - 923, - 1348, - 999, - 290, - 999 - ], - "score": 0.937 - }, - { - "category_id": 2, - "poly": [ - 1509, - 154, - 1615, - 154, - 1615, - 224, - 1509, - 224 - ], - "score": 0.931 - }, - { - "category_id": 1, - "poly": [ - 315, - 184, - 1040, - 184, - 1040, - 224, - 315, - 224 - ], - "score": 0.89 - }, - { - "category_id": 2, - "poly": [ - 127, - 181, - 294, - 181, - 294, - 232, - 127, - 232 - ], - "score": 0.877 - }, - { - "category_id": 4, - "poly": [ - 821, - 1032, - 949, - 1032, - 949, - 1071, - 821, - 1071 - ], - "score": 0.821 - }, - { - "category_id": 2, - "poly": [ - 792, - 83, - 813, - 83, - 813, - 109, - 792, - 109 - ], - "score": 0.782 - }, - { - "category_id": 1, - "poly": [ - 316, - 256, - 1410, - 256, - 1410, - 329, - 316, - 329 - ], - "score": 0.547 - }, - { - "category_id": 1, - "poly": [ - 318, - 257, - 1411, - 257, - 1411, - 329, - 318, - 329 - ], - "score": 0.524 - }, - { - "category_id": 1, - "poly": [ - 1345, - 332, - 1486, - 332, - 1486, - 369, - 1345, - 369 - ], - "score": 0.511 - }, - { - "category_id": 2, - "poly": [ - 1345, - 332, - 1486, - 332, - 1486, - 369, - 1345, - 369 - ], - "score": 0.419 - }, - { - "category_id": 1, - "poly": [ - 312, - 336, - 1490, - 336, - 1490, - 660, - 312, - 660 - ], - "score": 0.244 - }, - { - "category_id": 15, - "poly": [ - 294.0, - 746.0, - 1420.0, - 746.0, - 1420.0, - 778.0, - 294.0, - 778.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 291.0, - 782.0, - 1398.0, - 782.0, - 1398.0, - 818.0, - 291.0, - 818.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 293.0, - 821.0, - 1434.0, - 821.0, - 1434.0, - 853.0, - 293.0, - 853.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 294.0, - 857.0, - 1058.0, - 857.0, - 1058.0, - 889.0, - 294.0, - 889.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 292.0, - 926.0, - 1343.0, - 926.0, - 1343.0, - 958.0, - 292.0, - 958.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 292.0, - 963.0, - 425.0, - 963.0, - 425.0, - 999.0, - 292.0, - 999.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1509.0, - 157.0, - 1617.0, - 157.0, - 1617.0, - 180.0, - 1509.0, - 180.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1513.0, - 179.0, - 1613.0, - 179.0, - 1613.0, - 203.0, - 1513.0, - 203.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1543.0, - 203.0, - 1585.0, - 203.0, - 1585.0, - 227.0, - 1543.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 186.0, - 1039.0, - 186.0, - 1039.0, - 223.0, - 318.0, - 223.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 144.0, - 194.0, - 170.0, - 194.0, - 170.0, - 221.0, - 144.0, - 221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 196.0, - 276.0, - 196.0, - 276.0, - 220.0, - 257.0, - 220.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 823.0, - 1035.0, - 949.0, - 1035.0, - 949.0, - 1071.0, - 823.0, - 1071.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 791.0, - 81.0, - 817.0, - 81.0, - 817.0, - 114.0, - 791.0, - 114.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 257.0, - 1402.0, - 257.0, - 1402.0, - 298.0, - 316.0, - 298.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 295.0, - 413.0, - 295.0, - 413.0, - 332.0, - 315.0, - 332.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 257.0, - 1401.0, - 257.0, - 1401.0, - 297.0, - 315.0, - 297.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 314.0, - 294.0, - 412.0, - 294.0, - 412.0, - 331.0, - 314.0, - 331.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 330.0, - 1488.0, - 330.0, - 1488.0, - 371.0, - 1346.0, - 371.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 330.0, - 1488.0, - 330.0, - 1488.0, - 371.0, - 1346.0, - 371.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 332.0, - 1491.0, - 332.0, - 1491.0, - 371.0, - 1346.0, - 371.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 3, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 621, - 654, - 1181, - 654, - 1181, - 949, - 621, - 949 - ], - "score": 0.974, - "html": "
CharacterHuffman coding
O
SPACE
B
" - }, - { - "category_id": 1, - "poly": [ - 295, - 185, - 1464, - 185, - 1464, - 293, - 295, - 293 - ], - "score": 0.96 - }, - { - "category_id": 1, - "poly": [ - 291, - 329, - 1460, - 329, - 1460, - 405, - 291, - 405 - ], - "score": 0.941 - }, - { - "category_id": 1, - "poly": [ - 307, - 510, - 1480, - 510, - 1480, - 583, - 307, - 583 - ], - "score": 0.939 - }, - { - "category_id": 2, - "poly": [ - 1506, - 154, - 1612, - 154, - 1612, - 225, - 1506, - 225 - ], - "score": 0.936 - }, - { - "category_id": 1, - "poly": [ - 310, - 1020, - 1465, - 1020, - 1465, - 1092, - 310, - 1092 - ], - "score": 0.93 - }, - { - "category_id": 2, - "poly": [ - 127, - 1015, - 293, - 1015, - 293, - 1065, - 127, - 1065 - ], - "score": 0.91 - }, - { - "category_id": 2, - "poly": [ - 127, - 505, - 294, - 505, - 294, - 556, - 127, - 556 - ], - "score": 0.898 - }, - { - "category_id": 1, - "poly": [ - 313, - 1128, - 1476, - 1128, - 1476, - 1205, - 313, - 1205 - ], - "score": 0.875 - }, - { - "category_id": 2, - "poly": [ - 1288, - 2151, - 1474, - 2151, - 1474, - 2185, - 1288, - 2185 - ], - "score": 0.851 - }, - { - "category_id": 2, - "poly": [ - 792, - 82, - 814, - 82, - 814, - 110, - 792, - 110 - ], - "score": 0.806 - }, - { - "category_id": 1, - "poly": [ - 312, - 1241, - 1490, - 1241, - 1490, - 1637, - 312, - 1637 - ], - "score": 0.213 - }, - { - "category_id": 15, - "poly": [ - 298.0, - 190.0, - 1384.0, - 190.0, - 1384.0, - 222.0, - 298.0, - 222.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 294.0, - 225.0, - 1465.0, - 225.0, - 1465.0, - 258.0, - 294.0, - 258.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 291.0, - 257.0, - 352.0, - 257.0, - 352.0, - 295.0, - 291.0, - 295.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 295.0, - 331.0, - 1457.0, - 331.0, - 1457.0, - 367.0, - 295.0, - 367.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 297.0, - 370.0, - 813.0, - 370.0, - 813.0, - 404.0, - 297.0, - 404.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 510.0, - 1465.0, - 510.0, - 1465.0, - 549.0, - 315.0, - 549.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 546.0, - 802.0, - 546.0, - 802.0, - 583.0, - 315.0, - 583.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1343.0, - 548.0, - 1488.0, - 548.0, - 1488.0, - 587.0, - 1343.0, - 587.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1505.0, - 156.0, - 1614.0, - 156.0, - 1614.0, - 183.0, - 1505.0, - 183.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1509.0, - 181.0, - 1610.0, - 181.0, - 1610.0, - 204.0, - 1509.0, - 204.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1540.0, - 203.0, - 1582.0, - 203.0, - 1582.0, - 228.0, - 1540.0, - 228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 1022.0, - 1463.0, - 1022.0, - 1463.0, - 1056.0, - 319.0, - 1056.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 1057.0, - 452.0, - 1057.0, - 452.0, - 1092.0, - 315.0, - 1092.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 1025.0, - 176.0, - 1025.0, - 176.0, - 1056.0, - 141.0, - 1056.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 194.0, - 1032.0, - 212.0, - 1032.0, - 212.0, - 1048.0, - 194.0, - 1048.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1027.0, - 278.0, - 1027.0, - 278.0, - 1054.0, - 253.0, - 1054.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 509.0, - 287.0, - 509.0, - 287.0, - 555.0, - 134.0, - 555.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1126.0, - 1456.0, - 1126.0, - 1456.0, - 1169.0, - 316.0, - 1169.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1166.0, - 692.0, - 1166.0, - 692.0, - 1204.0, - 316.0, - 1204.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1340.0, - 1166.0, - 1483.0, - 1166.0, - 1483.0, - 1207.0, - 1340.0, - 1207.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1288.0, - 2153.0, - 1439.0, - 2153.0, - 1439.0, - 2186.0, - 1288.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 790.0, - 79.0, - 818.0, - 79.0, - 818.0, - 116.0, - 790.0, - 116.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 4, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1509, - 154, - 1615, - 154, - 1615, - 224, - 1509, - 224 - ], - "score": 0.934 - }, - { - "category_id": 2, - "poly": [ - 128, - 723, - 294, - 723, - 294, - 773, - 128, - 773 - ], - "score": 0.915 - }, - { - "category_id": 2, - "poly": [ - 127, - 290, - 293, - 290, - 293, - 339, - 127, - 339 - ], - "score": 0.912 - }, - { - "category_id": 2, - "poly": [ - 128, - 183, - 228, - 183, - 228, - 231, - 128, - 231 - ], - "score": 0.888 - }, - { - "category_id": 1, - "poly": [ - 1345, - 839, - 1486, - 839, - 1486, - 875, - 1345, - 875 - ], - "score": 0.874 - }, - { - "category_id": 1, - "poly": [ - 314, - 291, - 1281, - 291, - 1281, - 334, - 314, - 334 - ], - "score": 0.865 - }, - { - "category_id": 1, - "poly": [ - 313, - 184, - 1322, - 184, - 1322, - 226, - 313, - 226 - ], - "score": 0.845 - }, - { - "category_id": 1, - "poly": [ - 313, - 727, - 899, - 727, - 899, - 766, - 313, - 766 - ], - "score": 0.809 - }, - { - "category_id": 2, - "poly": [ - 790, - 82, - 814, - 82, - 814, - 111, - 790, - 111 - ], - "score": 0.806 - }, - { - "category_id": 1, - "poly": [ - 1344, - 368, - 1486, - 368, - 1486, - 405, - 1344, - 405 - ], - "score": 0.648 - }, - { - "category_id": 1, - "poly": [ - 313, - 368, - 1493, - 368, - 1493, - 696, - 313, - 696 - ], - "score": 0.57 - }, - { - "category_id": 1, - "poly": [ - 312, - 834, - 1492, - 834, - 1492, - 1167, - 312, - 1167 - ], - "score": 0.381 - }, - { - "category_id": 1, - "poly": [ - 319, - 798, - 1341, - 798, - 1341, - 839, - 319, - 839 - ], - "score": 0.363 - }, - { - "category_id": 2, - "poly": [ - 1344, - 368, - 1486, - 368, - 1486, - 405, - 1344, - 405 - ], - "score": 0.322 - }, - { - "category_id": 1, - "poly": [ - 314, - 456, - 1488, - 456, - 1488, - 696, - 314, - 696 - ], - "score": 0.116 - }, - { - "category_id": 1, - "poly": [ - 315, - 926, - 1487, - 926, - 1487, - 1167, - 315, - 1167 - ], - "score": 0.104 - }, - { - "category_id": 15, - "poly": [ - 1509.0, - 157.0, - 1617.0, - 157.0, - 1617.0, - 180.0, - 1509.0, - 180.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1513.0, - 179.0, - 1613.0, - 179.0, - 1613.0, - 203.0, - 1513.0, - 203.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1543.0, - 203.0, - 1585.0, - 203.0, - 1585.0, - 227.0, - 1543.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 727.0, - 286.0, - 727.0, - 286.0, - 771.0, - 136.0, - 771.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 294.0, - 285.0, - 294.0, - 285.0, - 337.0, - 135.0, - 337.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 185.0, - 221.0, - 185.0, - 221.0, - 230.0, - 138.0, - 230.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 838.0, - 1487.0, - 838.0, - 1487.0, - 876.0, - 1346.0, - 876.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 293.0, - 1273.0, - 293.0, - 1273.0, - 334.0, - 316.0, - 334.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 189.0, - 1321.0, - 189.0, - 1321.0, - 223.0, - 318.0, - 223.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 729.0, - 899.0, - 729.0, - 899.0, - 765.0, - 316.0, - 765.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 790.0, - 79.0, - 817.0, - 79.0, - 817.0, - 115.0, - 790.0, - 115.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 366.0, - 1488.0, - 366.0, - 1488.0, - 407.0, - 1346.0, - 407.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1344.0, - 366.0, - 1491.0, - 366.0, - 1491.0, - 409.0, - 1344.0, - 409.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 834.0, - 1489.0, - 834.0, - 1489.0, - 878.0, - 1345.0, - 878.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 801.0, - 1338.0, - 801.0, - 1338.0, - 838.0, - 317.0, - 838.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 366.0, - 1488.0, - 366.0, - 1488.0, - 407.0, - 1346.0, - 407.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 5, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1506, - 155, - 1612, - 155, - 1612, - 225, - 1506, - 225 - ], - "score": 0.917 - }, - { - "category_id": 2, - "poly": [ - 127, - 723, - 294, - 723, - 294, - 773, - 127, - 773 - ], - "score": 0.911 - }, - { - "category_id": 1, - "poly": [ - 316, - 293, - 1423, - 293, - 1423, - 369, - 316, - 369 - ], - "score": 0.901 - }, - { - "category_id": 2, - "poly": [ - 127, - 182, - 293, - 182, - 293, - 232, - 127, - 232 - ], - "score": 0.882 - }, - { - "category_id": 2, - "poly": [ - 1288, - 2151, - 1474, - 2151, - 1474, - 2185, - 1288, - 2185 - ], - "score": 0.843 - }, - { - "category_id": 1, - "poly": [ - 1344, - 766, - 1486, - 766, - 1486, - 803, - 1344, - 803 - ], - "score": 0.834 - }, - { - "category_id": 1, - "poly": [ - 306, - 186, - 1477, - 186, - 1477, - 258, - 306, - 258 - ], - "score": 0.831 - }, - { - "category_id": 1, - "poly": [ - 575, - 1702, - 1033, - 1702, - 1033, - 1739, - 575, - 1739 - ], - "score": 0.829 - }, - { - "category_id": 1, - "poly": [ - 315, - 726, - 1258, - 726, - 1258, - 767, - 315, - 767 - ], - "score": 0.803 - }, - { - "category_id": 2, - "poly": [ - 792, - 82, - 813, - 82, - 813, - 109, - 792, - 109 - ], - "score": 0.764 - }, - { - "category_id": 1, - "poly": [ - 1344, - 369, - 1486, - 369, - 1486, - 405, - 1344, - 405 - ], - "score": 0.733 - }, - { - "category_id": 1, - "poly": [ - 313, - 375, - 1490, - 375, - 1490, - 697, - 313, - 697 - ], - "score": 0.629 - }, - { - "category_id": 1, - "poly": [ - 312, - 789, - 1490, - 789, - 1490, - 1384, - 312, - 1384 - ], - "score": 0.409 - }, - { - "category_id": 2, - "poly": [ - 1344, - 369, - 1486, - 369, - 1486, - 405, - 1344, - 405 - ], - "score": 0.173 - }, - { - "category_id": 15, - "poly": [ - 1506.0, - 158.0, - 1614.0, - 158.0, - 1614.0, - 181.0, - 1506.0, - 181.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1510.0, - 180.0, - 1610.0, - 180.0, - 1610.0, - 204.0, - 1510.0, - 204.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1539.0, - 200.0, - 1582.0, - 200.0, - 1582.0, - 230.0, - 1539.0, - 230.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 137.0, - 729.0, - 241.0, - 729.0, - 241.0, - 767.0, - 137.0, - 767.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 249.0, - 735.0, - 278.0, - 735.0, - 278.0, - 762.0, - 249.0, - 762.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 295.0, - 1416.0, - 295.0, - 1416.0, - 330.0, - 319.0, - 330.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 332.0, - 1081.0, - 332.0, - 1081.0, - 367.0, - 318.0, - 367.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 186.0, - 286.0, - 186.0, - 286.0, - 230.0, - 135.0, - 230.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1288.0, - 2153.0, - 1439.0, - 2153.0, - 1439.0, - 2186.0, - 1288.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 764.0, - 1488.0, - 764.0, - 1488.0, - 805.0, - 1345.0, - 805.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 188.0, - 1478.0, - 188.0, - 1478.0, - 222.0, - 317.0, - 222.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 222.0, - 414.0, - 222.0, - 414.0, - 261.0, - 315.0, - 261.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 576.0, - 1704.0, - 1030.0, - 1704.0, - 1030.0, - 1737.0, - 576.0, - 1737.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 730.0, - 1252.0, - 730.0, - 1252.0, - 763.0, - 317.0, - 763.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 788.0, - 80.0, - 818.0, - 80.0, - 818.0, - 116.0, - 788.0, - 116.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 368.0, - 1487.0, - 368.0, - 1487.0, - 406.0, - 1346.0, - 406.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1344.0, - 367.0, - 1492.0, - 367.0, - 1492.0, - 409.0, - 1344.0, - 409.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 368.0, - 1487.0, - 368.0, - 1487.0, - 406.0, - 1346.0, - 406.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 6, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1509, - 154, - 1615, - 154, - 1615, - 224, - 1509, - 224 - ], - "score": 0.933 - }, - { - "category_id": 1, - "poly": [ - 313, - 185, - 1319, - 185, - 1319, - 225, - 313, - 225 - ], - "score": 0.881 - }, - { - "category_id": 1, - "poly": [ - 316, - 257, - 1228, - 257, - 1228, - 296, - 316, - 296 - ], - "score": 0.876 - }, - { - "category_id": 2, - "poly": [ - 127, - 181, - 293, - 181, - 293, - 232, - 127, - 232 - ], - "score": 0.837 - }, - { - "category_id": 2, - "poly": [ - 791, - 83, - 814, - 83, - 814, - 110, - 791, - 110 - ], - "score": 0.796 - }, - { - "category_id": 1, - "poly": [ - 314, - 330, - 1481, - 330, - 1481, - 442, - 314, - 442 - ], - "score": 0.757 - }, - { - "category_id": 5, - "poly": [ - 312, - 422, - 1489, - 422, - 1489, - 1756, - 312, - 1756 - ], - "score": 0.401, - "html": "
use Or cloud storage. [sypu 6]
" - }, - { - "category_id": 1, - "poly": [ - 1341, - 405, - 1481, - 405, - 1481, - 441, - 1341, - 441 - ], - "score": 0.192 - }, - { - "category_id": 1, - "poly": [ - 312, - 422, - 1489, - 422, - 1489, - 1756, - 312, - 1756 - ], - "score": 0.18 - }, - { - "category_id": 15, - "poly": [ - 1509.0, - 157.0, - 1617.0, - 157.0, - 1617.0, - 180.0, - 1509.0, - 180.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1513.0, - 179.0, - 1613.0, - 179.0, - 1613.0, - 203.0, - 1513.0, - 203.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1543.0, - 203.0, - 1585.0, - 203.0, - 1585.0, - 227.0, - 1543.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 187.0, - 1319.0, - 187.0, - 1319.0, - 224.0, - 317.0, - 224.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 259.0, - 1224.0, - 259.0, - 1224.0, - 295.0, - 317.0, - 295.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 137.0, - 188.0, - 285.0, - 188.0, - 285.0, - 227.0, - 137.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 789.0, - 80.0, - 818.0, - 80.0, - 818.0, - 116.0, - 789.0, - 116.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 314.0, - 333.0, - 1465.0, - 333.0, - 1465.0, - 369.0, - 314.0, - 369.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 314.0, - 370.0, - 1485.0, - 370.0, - 1485.0, - 402.0, - 314.0, - 402.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 403.0, - 605.0, - 403.0, - 605.0, - 442.0, - 316.0, - 442.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1341.0, - 405.0, - 1487.0, - 405.0, - 1487.0, - 443.0, - 1341.0, - 443.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1342.0, - 402.0, - 1484.0, - 402.0, - 1484.0, - 442.0, - 1342.0, - 442.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 414.0, - 603.0, - 414.0, - 603.0, - 442.0, - 318.0, - 442.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1338.0, - 411.0, - 1484.0, - 411.0, - 1484.0, - 444.0, - 1338.0, - 444.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 7, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1506, - 154, - 1612, - 154, - 1612, - 225, - 1506, - 225 - ], - "score": 0.933 - }, - { - "category_id": 1, - "poly": [ - 311, - 326, - 1343, - 326, - 1343, - 400, - 311, - 400 - ], - "score": 0.928 - }, - { - "category_id": 1, - "poly": [ - 314, - 434, - 1474, - 434, - 1474, - 507, - 314, - 507 - ], - "score": 0.927 - }, - { - "category_id": 2, - "poly": [ - 128, - 1824, - 293, - 1824, - 293, - 1872, - 128, - 1872 - ], - "score": 0.922 - }, - { - "category_id": 2, - "poly": [ - 127, - 1539, - 294, - 1539, - 294, - 1588, - 127, - 1588 - ], - "score": 0.912 - }, - { - "category_id": 2, - "poly": [ - 127, - 322, - 293, - 322, - 293, - 372, - 127, - 372 - ], - "score": 0.902 - }, - { - "category_id": 1, - "poly": [ - 306, - 1474, - 1002, - 1474, - 1002, - 1513, - 306, - 1513 - ], - "score": 0.895 - }, - { - "category_id": 2, - "poly": [ - 127, - 896, - 294, - 896, - 294, - 945, - 127, - 945 - ], - "score": 0.891 - }, - { - "category_id": 1, - "poly": [ - 316, - 186, - 858, - 186, - 858, - 224, - 316, - 224 - ], - "score": 0.884 - }, - { - "category_id": 2, - "poly": [ - 127, - 183, - 228, - 183, - 228, - 231, - 127, - 231 - ], - "score": 0.883 - }, - { - "category_id": 2, - "poly": [ - 790, - 82, - 814, - 82, - 814, - 111, - 790, - 111 - ], - "score": 0.802 - }, - { - "category_id": 1, - "poly": [ - 1337, - 936, - 1479, - 936, - 1479, - 974, - 1337, - 974 - ], - "score": 0.76 - }, - { - "category_id": 1, - "poly": [ - 1360, - 1580, - 1486, - 1580, - 1486, - 1619, - 1360, - 1619 - ], - "score": 0.712 - }, - { - "category_id": 1, - "poly": [ - 301, - 1856, - 1489, - 1856, - 1489, - 2130, - 301, - 2130 - ], - "score": 0.679 - }, - { - "category_id": 1, - "poly": [ - 313, - 578, - 1489, - 578, - 1489, - 838, - 313, - 838 - ], - "score": 0.674 - }, - { - "category_id": 1, - "poly": [ - 313, - 1571, - 1491, - 1571, - 1491, - 1763, - 313, - 1763 - ], - "score": 0.664 - }, - { - "category_id": 1, - "poly": [ - 1344, - 509, - 1486, - 509, - 1486, - 546, - 1344, - 546 - ], - "score": 0.658 - }, - { - "category_id": 1, - "poly": [ - 311, - 929, - 1490, - 929, - 1490, - 1411, - 311, - 1411 - ], - "score": 0.638 - }, - { - "category_id": 1, - "poly": [ - 310, - 1543, - 1031, - 1543, - 1031, - 1582, - 310, - 1582 - ], - "score": 0.514 - }, - { - "category_id": 0, - "poly": [ - 1361, - 1865, - 1486, - 1865, - 1486, - 1904, - 1361, - 1904 - ], - "score": 0.512 - }, - { - "category_id": 2, - "poly": [ - 1289, - 2151, - 1473, - 2151, - 1473, - 2186, - 1289, - 2186 - ], - "score": 0.501 - }, - { - "category_id": 1, - "poly": [ - 313, - 1827, - 1002, - 1827, - 1002, - 1866, - 313, - 1866 - ], - "score": 0.443 - }, - { - "category_id": 1, - "poly": [ - 312, - 899, - 1045, - 899, - 1045, - 939, - 312, - 939 - ], - "score": 0.417 - }, - { - "category_id": 1, - "poly": [ - 1289, - 2151, - 1473, - 2151, - 1473, - 2186, - 1289, - 2186 - ], - "score": 0.388 - }, - { - "category_id": 1, - "poly": [ - 1361, - 1865, - 1486, - 1865, - 1486, - 1904, - 1361, - 1904 - ], - "score": 0.354 - }, - { - "category_id": 2, - "poly": [ - 1344, - 509, - 1486, - 509, - 1486, - 546, - 1344, - 546 - ], - "score": 0.288 - }, - { - "category_id": 0, - "poly": [ - 1360, - 1580, - 1486, - 1580, - 1486, - 1619, - 1360, - 1619 - ], - "score": 0.168 - }, - { - "category_id": 0, - "poly": [ - 1337, - 936, - 1479, - 936, - 1479, - 974, - 1337, - 974 - ], - "score": 0.123 - }, - { - "category_id": 15, - "poly": [ - 1505.0, - 156.0, - 1614.0, - 156.0, - 1614.0, - 183.0, - 1505.0, - 183.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1509.0, - 181.0, - 1610.0, - 181.0, - 1610.0, - 204.0, - 1509.0, - 204.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1540.0, - 203.0, - 1582.0, - 203.0, - 1582.0, - 228.0, - 1540.0, - 228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 330.0, - 1339.0, - 330.0, - 1339.0, - 361.0, - 319.0, - 361.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 366.0, - 473.0, - 366.0, - 473.0, - 401.0, - 316.0, - 401.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 434.0, - 1468.0, - 434.0, - 1468.0, - 473.0, - 315.0, - 473.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 473.0, - 506.0, - 473.0, - 506.0, - 507.0, - 315.0, - 507.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 1831.0, - 218.0, - 1831.0, - 218.0, - 1866.0, - 140.0, - 1866.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 250.0, - 1838.0, - 276.0, - 1838.0, - 276.0, - 1861.0, - 250.0, - 1861.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 1547.0, - 223.0, - 1547.0, - 223.0, - 1582.0, - 139.0, - 1582.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 250.0, - 1551.0, - 276.0, - 1551.0, - 276.0, - 1577.0, - 250.0, - 1577.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 326.0, - 285.0, - 326.0, - 285.0, - 370.0, - 135.0, - 370.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 309.0, - 1476.0, - 996.0, - 1476.0, - 996.0, - 1510.0, - 309.0, - 1510.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 900.0, - 286.0, - 900.0, - 286.0, - 943.0, - 135.0, - 943.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 189.0, - 858.0, - 189.0, - 858.0, - 221.0, - 317.0, - 221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 190.0, - 180.0, - 190.0, - 180.0, - 225.0, - 141.0, - 225.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 182.0, - 192.0, - 215.0, - 192.0, - 215.0, - 225.0, - 182.0, - 225.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 790.0, - 80.0, - 817.0, - 80.0, - 817.0, - 115.0, - 790.0, - 115.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1338.0, - 935.0, - 1481.0, - 935.0, - 1481.0, - 976.0, - 1338.0, - 976.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 1579.0, - 1489.0, - 1579.0, - 1489.0, - 1620.0, - 1362.0, - 1620.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 1866.0, - 1488.0, - 1866.0, - 1488.0, - 1905.0, - 1362.0, - 1905.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 580.0, - 481.0, - 580.0, - 481.0, - 617.0, - 316.0, - 617.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 726.0, - 543.0, - 726.0, - 543.0, - 760.0, - 316.0, - 760.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 1581.0, - 1488.0, - 1581.0, - 1488.0, - 1620.0, - 1363.0, - 1620.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 507.0, - 1488.0, - 507.0, - 1488.0, - 548.0, - 1346.0, - 548.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1337.0, - 936.0, - 1483.0, - 936.0, - 1483.0, - 978.0, - 1337.0, - 978.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 320.0, - 1547.0, - 1028.0, - 1547.0, - 1028.0, - 1578.0, - 320.0, - 1578.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 1864.0, - 1488.0, - 1864.0, - 1488.0, - 1905.0, - 1362.0, - 1905.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1288.0, - 2154.0, - 1441.0, - 2154.0, - 1441.0, - 2184.0, - 1288.0, - 2184.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1830.0, - 1000.0, - 1830.0, - 1000.0, - 1864.0, - 318.0, - 1864.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 900.0, - 1040.0, - 900.0, - 1040.0, - 938.0, - 317.0, - 938.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1288.0, - 2154.0, - 1441.0, - 2154.0, - 1441.0, - 2184.0, - 1288.0, - 2184.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 1864.0, - 1488.0, - 1864.0, - 1488.0, - 1905.0, - 1362.0, - 1905.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 507.0, - 1488.0, - 507.0, - 1488.0, - 548.0, - 1346.0, - 548.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 1579.0, - 1489.0, - 1579.0, - 1489.0, - 1620.0, - 1362.0, - 1620.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1338.0, - 935.0, - 1481.0, - 935.0, - 1481.0, - 976.0, - 1338.0, - 976.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 8, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 324, - 750, - 1427, - 750, - 1427, - 834, - 324, - 834 - ], - "score": 0.925 - }, - { - "category_id": 1, - "poly": [ - 324, - 1006, - 507, - 1006, - 507, - 1336, - 324, - 1336 - ], - "score": 0.921 - }, - { - "category_id": 1, - "poly": [ - 324, - 1618, - 506, - 1618, - 506, - 1949, - 324, - 1949 - ], - "score": 0.914 - }, - { - "category_id": 1, - "poly": [ - 308, - 217, - 1482, - 217, - 1482, - 291, - 308, - 291 - ], - "score": 0.91 - }, - { - "category_id": 2, - "poly": [ - 127, - 214, - 292, - 214, - 292, - 264, - 127, - 264 - ], - "score": 0.901 - }, - { - "category_id": 1, - "poly": [ - 310, - 1512, - 1322, - 1512, - 1322, - 1552, - 310, - 1552 - ], - "score": 0.891 - }, - { - "category_id": 2, - "poly": [ - 1509, - 155, - 1616, - 155, - 1616, - 224, - 1509, - 224 - ], - "score": 0.888 - }, - { - "category_id": 2, - "poly": [ - 127, - 895, - 293, - 895, - 293, - 945, - 127, - 945 - ], - "score": 0.886 - }, - { - "category_id": 2, - "poly": [ - 127, - 1507, - 293, - 1507, - 293, - 1557, - 127, - 1557 - ], - "score": 0.875 - }, - { - "category_id": 2, - "poly": [ - 786, - 82, - 823, - 82, - 823, - 111, - 786, - 111 - ], - "score": 0.855 - }, - { - "category_id": 1, - "poly": [ - 1361, - 936, - 1486, - 936, - 1486, - 975, - 1361, - 975 - ], - "score": 0.85 - }, - { - "category_id": 3, - "poly": [ - 312, - 367, - 1490, - 367, - 1490, - 693, - 312, - 693 - ], - "score": 0.791 - }, - { - "category_id": 1, - "poly": [ - 1362, - 1550, - 1486, - 1550, - 1486, - 1587, - 1362, - 1587 - ], - "score": 0.768 - }, - { - "category_id": 1, - "poly": [ - 317, - 327, - 772, - 327, - 772, - 365, - 317, - 365 - ], - "score": 0.764 - }, - { - "category_id": 3, - "poly": [ - 977, - 1613, - 1059, - 1613, - 1059, - 1956, - 977, - 1956 - ], - "score": 0.747 - }, - { - "category_id": 3, - "poly": [ - 977, - 1000, - 1059, - 1000, - 1059, - 1343, - 977, - 1343 - ], - "score": 0.689 - }, - { - "category_id": 1, - "poly": [ - 313, - 898, - 875, - 898, - 875, - 938, - 313, - 938 - ], - "score": 0.573 - }, - { - "category_id": 2, - "poly": [ - 1344, - 363, - 1486, - 363, - 1486, - 401, - 1344, - 401 - ], - "score": 0.538 - }, - { - "category_id": 1, - "poly": [ - 1344, - 363, - 1486, - 363, - 1486, - 401, - 1344, - 401 - ], - "score": 0.46 - }, - { - "category_id": 1, - "poly": [ - 319, - 898, - 874, - 898, - 874, - 938, - 319, - 938 - ], - "score": 0.436 - }, - { - "category_id": 13, - "poly": [ - 1003, - 1854, - 1034, - 1854, - 1034, - 1867, - 1003, - 1867 - ], - "score": 0.8, - "latex": "\\subset" - }, - { - "category_id": 13, - "poly": [ - 1003, - 1241, - 1035, - 1241, - 1035, - 1254, - 1003, - 1254 - ], - "score": 0.73, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 1003, - 1170, - 1035, - 1170, - 1035, - 1182, - 1003, - 1182 - ], - "score": 0.63, - "latex": "\\smile" - }, - { - "category_id": 13, - "poly": [ - 1003, - 1926, - 1035, - 1926, - 1035, - 1939, - 1003, - 1939 - ], - "score": 0.62, - "latex": "\\subset" - }, - { - "category_id": 13, - "poly": [ - 1003, - 1782, - 1035, - 1782, - 1035, - 1795, - 1003, - 1795 - ], - "score": 0.6, - "latex": "\\subset" - }, - { - "category_id": 13, - "poly": [ - 1003, - 1097, - 1035, - 1097, - 1035, - 1110, - 1003, - 1110 - ], - "score": 0.46, - "latex": "\\subset" - }, - { - "category_id": 15, - "poly": [ - 325.0, - 760.0, - 631.0, - 760.0, - 631.0, - 793.0, - 325.0, - 793.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 657.0, - 762.0, - 698.0, - 762.0, - 698.0, - 789.0, - 657.0, - 789.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 715.0, - 767.0, - 745.0, - 767.0, - 745.0, - 787.0, - 715.0, - 787.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 766.0, - 761.0, - 869.0, - 761.0, - 869.0, - 791.0, - 766.0, - 791.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 904.0, - 764.0, - 932.0, - 764.0, - 932.0, - 787.0, - 904.0, - 787.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 955.0, - 760.0, - 1422.0, - 760.0, - 1422.0, - 793.0, - 955.0, - 793.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 324.0, - 799.0, - 1073.0, - 799.0, - 1073.0, - 829.0, - 324.0, - 829.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 328.0, - 1009.0, - 361.0, - 1009.0, - 361.0, - 1045.0, - 328.0, - 1045.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 399.0, - 1010.0, - 488.0, - 1010.0, - 488.0, - 1044.0, - 399.0, - 1044.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 328.0, - 1081.0, - 361.0, - 1081.0, - 361.0, - 1117.0, - 328.0, - 1117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 399.0, - 1082.0, - 507.0, - 1082.0, - 507.0, - 1115.0, - 399.0, - 1115.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 330.0, - 1151.0, - 361.0, - 1151.0, - 361.0, - 1191.0, - 330.0, - 1191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 398.0, - 1152.0, - 466.0, - 1152.0, - 466.0, - 1189.0, - 398.0, - 1189.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 328.0, - 1225.0, - 361.0, - 1225.0, - 361.0, - 1261.0, - 328.0, - 1261.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 399.0, - 1225.0, - 491.0, - 1225.0, - 491.0, - 1259.0, - 399.0, - 1259.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 328.0, - 1298.0, - 360.0, - 1298.0, - 360.0, - 1334.0, - 328.0, - 1334.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 399.0, - 1298.0, - 482.0, - 1298.0, - 482.0, - 1333.0, - 399.0, - 1333.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 327.0, - 1620.0, - 363.0, - 1620.0, - 363.0, - 1658.0, - 327.0, - 1658.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 398.0, - 1622.0, - 487.0, - 1622.0, - 487.0, - 1656.0, - 398.0, - 1656.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 330.0, - 1693.0, - 361.0, - 1693.0, - 361.0, - 1730.0, - 330.0, - 1730.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 397.0, - 1693.0, - 507.0, - 1693.0, - 507.0, - 1726.0, - 397.0, - 1726.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 330.0, - 1765.0, - 361.0, - 1765.0, - 361.0, - 1804.0, - 330.0, - 1804.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 397.0, - 1766.0, - 465.0, - 1766.0, - 465.0, - 1800.0, - 397.0, - 1800.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 328.0, - 1838.0, - 361.0, - 1838.0, - 361.0, - 1875.0, - 328.0, - 1875.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 399.0, - 1837.0, - 492.0, - 1837.0, - 492.0, - 1875.0, - 399.0, - 1875.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 328.0, - 1911.0, - 360.0, - 1911.0, - 360.0, - 1947.0, - 328.0, - 1947.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 399.0, - 1910.0, - 482.0, - 1910.0, - 482.0, - 1945.0, - 399.0, - 1945.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 219.0, - 1483.0, - 219.0, - 1483.0, - 254.0, - 316.0, - 254.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 258.0, - 522.0, - 258.0, - 522.0, - 291.0, - 315.0, - 291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 219.0, - 279.0, - 219.0, - 279.0, - 260.0, - 136.0, - 260.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1516.0, - 1321.0, - 1516.0, - 1321.0, - 1550.0, - 318.0, - 1550.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1509.0, - 154.0, - 1617.0, - 154.0, - 1617.0, - 181.0, - 1509.0, - 181.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1512.0, - 180.0, - 1614.0, - 180.0, - 1614.0, - 203.0, - 1512.0, - 203.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1543.0, - 202.0, - 1585.0, - 202.0, - 1585.0, - 226.0, - 1543.0, - 226.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 904.0, - 186.0, - 904.0, - 186.0, - 937.0, - 140.0, - 937.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 187.0, - 907.0, - 218.0, - 907.0, - 218.0, - 935.0, - 187.0, - 935.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 907.0, - 278.0, - 907.0, - 278.0, - 934.0, - 253.0, - 934.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 1516.0, - 280.0, - 1516.0, - 280.0, - 1552.0, - 140.0, - 1552.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 828.0, - 78.0, - 828.0, - 118.0, - 780.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 937.0, - 1487.0, - 937.0, - 1487.0, - 976.0, - 1362.0, - 976.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 1550.0, - 1488.0, - 1550.0, - 1488.0, - 1589.0, - 1363.0, - 1589.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 329.0, - 769.0, - 329.0, - 769.0, - 362.0, - 318.0, - 362.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 902.0, - 875.0, - 902.0, - 875.0, - 934.0, - 318.0, - 934.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 365.0, - 1488.0, - 365.0, - 1488.0, - 402.0, - 1345.0, - 402.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 365.0, - 1488.0, - 365.0, - 1488.0, - 402.0, - 1345.0, - 402.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 903.0, - 875.0, - 903.0, - 875.0, - 934.0, - 317.0, - 934.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 9, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 579, - 976, - 1220, - 976, - 1220, - 1264, - 579, - 1264 - ], - "score": 0.976, - "html": "
LayerOrder(1-4)
Transport
Link
Internet
Application
" - }, - { - "category_id": 1, - "poly": [ - 313, - 1540, - 1481, - 1540, - 1481, - 1652, - 313, - 1652 - ], - "score": 0.971 - }, - { - "category_id": 1, - "poly": [ - 317, - 833, - 1410, - 833, - 1410, - 909, - 317, - 909 - ], - "score": 0.922 - }, - { - "category_id": 1, - "poly": [ - 316, - 220, - 1183, - 220, - 1183, - 260, - 316, - 260 - ], - "score": 0.916 - }, - { - "category_id": 1, - "poly": [ - 313, - 1401, - 1036, - 1401, - 1036, - 1439, - 313, - 1439 - ], - "score": 0.912 - }, - { - "category_id": 2, - "poly": [ - 127, - 1536, - 293, - 1536, - 293, - 1587, - 127, - 1587 - ], - "score": 0.91 - }, - { - "category_id": 1, - "poly": [ - 325, - 326, - 506, - 326, - 506, - 658, - 325, - 658 - ], - "score": 0.906 - }, - { - "category_id": 1, - "poly": [ - 327, - 1707, - 847, - 1707, - 847, - 1985, - 327, - 1985 - ], - "score": 0.906 - }, - { - "category_id": 2, - "poly": [ - 127, - 758, - 294, - 758, - 294, - 808, - 127, - 808 - ], - "score": 0.905 - }, - { - "category_id": 2, - "poly": [ - 127, - 1398, - 228, - 1398, - 228, - 1446, - 127, - 1446 - ], - "score": 0.901 - }, - { - "category_id": 2, - "poly": [ - 127, - 216, - 292, - 216, - 292, - 265, - 127, - 265 - ], - "score": 0.899 - }, - { - "category_id": 1, - "poly": [ - 309, - 760, - 1410, - 760, - 1410, - 802, - 309, - 802 - ], - "score": 0.871 - }, - { - "category_id": 2, - "poly": [ - 1506, - 155, - 1612, - 155, - 1612, - 225, - 1506, - 225 - ], - "score": 0.857 - }, - { - "category_id": 2, - "poly": [ - 786, - 82, - 819, - 82, - 819, - 110, - 786, - 110 - ], - "score": 0.851 - }, - { - "category_id": 2, - "poly": [ - 1288, - 2151, - 1472, - 2151, - 1472, - 2185, - 1288, - 2185 - ], - "score": 0.85 - }, - { - "category_id": 1, - "poly": [ - 1344, - 909, - 1486, - 909, - 1486, - 946, - 1344, - 946 - ], - "score": 0.819 - }, - { - "category_id": 1, - "poly": [ - 1361, - 259, - 1486, - 259, - 1486, - 296, - 1361, - 296 - ], - "score": 0.807 - }, - { - "category_id": 3, - "poly": [ - 977, - 323, - 1059, - 323, - 1059, - 665, - 977, - 665 - ], - "score": 0.757 - }, - { - "category_id": 3, - "poly": [ - 1222, - 1698, - 1303, - 1698, - 1303, - 1986, - 1222, - 1986 - ], - "score": 0.75 - }, - { - "category_id": 1, - "poly": [ - 1362, - 1652, - 1486, - 1652, - 1486, - 1689, - 1362, - 1689 - ], - "score": 0.723 - }, - { - "category_id": 13, - "poly": [ - 1003, - 563, - 1035, - 563, - 1035, - 576, - 1003, - 576 - ], - "score": 0.41, - "latex": "\\smile" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1546.0, - 1457.0, - 1546.0, - 1457.0, - 1579.0, - 318.0, - 1579.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 1581.0, - 1477.0, - 1581.0, - 1477.0, - 1615.0, - 317.0, - 1615.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1616.0, - 962.0, - 1616.0, - 962.0, - 1653.0, - 316.0, - 1653.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 835.0, - 1409.0, - 835.0, - 1409.0, - 874.0, - 318.0, - 874.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 877.0, - 988.0, - 877.0, - 988.0, - 907.0, - 318.0, - 907.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 222.0, - 1183.0, - 222.0, - 1183.0, - 255.0, - 318.0, - 255.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1405.0, - 1035.0, - 1405.0, - 1035.0, - 1438.0, - 318.0, - 1438.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 1546.0, - 178.0, - 1546.0, - 178.0, - 1578.0, - 141.0, - 1578.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 185.0, - 1545.0, - 281.0, - 1545.0, - 281.0, - 1580.0, - 185.0, - 1580.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 328.0, - 330.0, - 363.0, - 330.0, - 363.0, - 367.0, - 328.0, - 367.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 398.0, - 330.0, - 489.0, - 330.0, - 489.0, - 365.0, - 398.0, - 365.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 330.0, - 402.0, - 361.0, - 402.0, - 361.0, - 437.0, - 330.0, - 437.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 400.0, - 404.0, - 506.0, - 404.0, - 506.0, - 436.0, - 400.0, - 436.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 328.0, - 473.0, - 362.0, - 473.0, - 362.0, - 512.0, - 328.0, - 512.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 396.0, - 474.0, - 467.0, - 474.0, - 467.0, - 510.0, - 396.0, - 510.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 329.0, - 547.0, - 361.0, - 547.0, - 361.0, - 582.0, - 329.0, - 582.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 399.0, - 546.0, - 493.0, - 546.0, - 493.0, - 582.0, - 399.0, - 582.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 329.0, - 619.0, - 361.0, - 619.0, - 361.0, - 655.0, - 329.0, - 655.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 398.0, - 619.0, - 482.0, - 619.0, - 482.0, - 655.0, - 398.0, - 655.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 329.0, - 1708.0, - 363.0, - 1708.0, - 363.0, - 1744.0, - 329.0, - 1744.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 395.0, - 1706.0, - 471.0, - 1706.0, - 471.0, - 1746.0, - 395.0, - 1746.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 329.0, - 1787.0, - 362.0, - 1787.0, - 362.0, - 1823.0, - 329.0, - 1823.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 398.0, - 1790.0, - 559.0, - 1790.0, - 559.0, - 1821.0, - 398.0, - 1821.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 328.0, - 1863.0, - 364.0, - 1863.0, - 364.0, - 1902.0, - 328.0, - 1902.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 398.0, - 1868.0, - 689.0, - 1868.0, - 689.0, - 1898.0, - 398.0, - 1898.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 329.0, - 1944.0, - 363.0, - 1944.0, - 363.0, - 1979.0, - 329.0, - 1979.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 399.0, - 1947.0, - 844.0, - 1947.0, - 844.0, - 1978.0, - 399.0, - 1978.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 767.0, - 182.0, - 767.0, - 182.0, - 800.0, - 141.0, - 800.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 185.0, - 770.0, - 215.0, - 770.0, - 215.0, - 797.0, - 185.0, - 797.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 773.0, - 274.0, - 773.0, - 274.0, - 795.0, - 254.0, - 795.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 142.0, - 1406.0, - 177.0, - 1406.0, - 177.0, - 1438.0, - 142.0, - 1438.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 183.0, - 1409.0, - 214.0, - 1409.0, - 214.0, - 1437.0, - 183.0, - 1437.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 142.0, - 227.0, - 172.0, - 227.0, - 172.0, - 256.0, - 142.0, - 256.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 190.0, - 228.0, - 216.0, - 228.0, - 216.0, - 254.0, - 190.0, - 254.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 227.0, - 277.0, - 227.0, - 277.0, - 255.0, - 254.0, - 255.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 763.0, - 1409.0, - 763.0, - 1409.0, - 799.0, - 315.0, - 799.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1506.0, - 158.0, - 1614.0, - 158.0, - 1614.0, - 181.0, - 1506.0, - 181.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1510.0, - 180.0, - 1610.0, - 180.0, - 1610.0, - 204.0, - 1510.0, - 204.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1539.0, - 200.0, - 1582.0, - 200.0, - 1582.0, - 230.0, - 1539.0, - 230.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 782.0, - 80.0, - 825.0, - 80.0, - 825.0, - 116.0, - 782.0, - 116.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1289.0, - 2155.0, - 1443.0, - 2155.0, - 1443.0, - 2183.0, - 1289.0, - 2183.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 907.0, - 1489.0, - 907.0, - 1489.0, - 948.0, - 1346.0, - 948.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 256.0, - 1488.0, - 256.0, - 1488.0, - 298.0, - 1362.0, - 298.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 1649.0, - 1488.0, - 1649.0, - 1488.0, - 1691.0, - 1362.0, - 1691.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 10, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 449, - 758, - 1352, - 758, - 1352, - 1127, - 449, - 1127 - ], - "score": 0.981, - "html": "
DescriptionLetter
Sendsacontinuousseriesofelectronicpulses
Decodesthecurrentinstruction
Completescalculations
" - }, - { - "category_id": 1, - "poly": [ - 313, - 403, - 652, - 403, - 652, - 584, - 313, - 584 - ], - "score": 0.972 - }, - { - "category_id": 2, - "poly": [ - 1509, - 154, - 1615, - 154, - 1615, - 224, - 1509, - 224 - ], - "score": 0.935 - }, - { - "category_id": 1, - "poly": [ - 314, - 220, - 1420, - 220, - 1420, - 295, - 314, - 295 - ], - "score": 0.919 - }, - { - "category_id": 2, - "poly": [ - 127, - 216, - 293, - 216, - 293, - 266, - 127, - 266 - ], - "score": 0.915 - }, - { - "category_id": 1, - "poly": [ - 315, - 329, - 915, - 329, - 915, - 367, - 315, - 367 - ], - "score": 0.888 - }, - { - "category_id": 2, - "poly": [ - 787, - 82, - 822, - 82, - 822, - 110, - 787, - 110 - ], - "score": 0.855 - }, - { - "category_id": 6, - "poly": [ - 847, - 691, - 955, - 691, - 955, - 726, - 847, - 726 - ], - "score": 0.659 - }, - { - "category_id": 1, - "poly": [ - 1344, - 583, - 1486, - 583, - 1486, - 622, - 1344, - 622 - ], - "score": 0.602 - }, - { - "category_id": 2, - "poly": [ - 1344, - 583, - 1486, - 583, - 1486, - 622, - 1344, - 622 - ], - "score": 0.282 - }, - { - "category_id": 6, - "poly": [ - 847, - 691, - 956, - 691, - 956, - 726, - 847, - 726 - ], - "score": 0.168 - }, - { - "category_id": 0, - "poly": [ - 847, - 691, - 955, - 691, - 955, - 726, - 847, - 726 - ], - "score": 0.154 - }, - { - "category_id": 15, - "poly": [ - 314.0, - 401.0, - 424.0, - 401.0, - 424.0, - 438.0, - 314.0, - 438.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 439.0, - 651.0, - 439.0, - 651.0, - 475.0, - 315.0, - 475.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 474.0, - 534.0, - 474.0, - 534.0, - 510.0, - 315.0, - 510.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 510.0, - 447.0, - 510.0, - 447.0, - 544.0, - 315.0, - 544.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 547.0, - 483.0, - 547.0, - 483.0, - 584.0, - 315.0, - 584.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1509.0, - 157.0, - 1617.0, - 157.0, - 1617.0, - 180.0, - 1509.0, - 180.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1513.0, - 179.0, - 1613.0, - 179.0, - 1613.0, - 203.0, - 1513.0, - 203.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1543.0, - 203.0, - 1585.0, - 203.0, - 1585.0, - 227.0, - 1543.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 223.0, - 1417.0, - 223.0, - 1417.0, - 258.0, - 318.0, - 258.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 259.0, - 1039.0, - 259.0, - 1039.0, - 294.0, - 316.0, - 294.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 226.0, - 178.0, - 226.0, - 178.0, - 257.0, - 141.0, - 257.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 189.0, - 228.0, - 222.0, - 228.0, - 222.0, - 255.0, - 189.0, - 255.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 242.0, - 226.0, - 279.0, - 226.0, - 279.0, - 258.0, - 242.0, - 258.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 333.0, - 915.0, - 333.0, - 915.0, - 364.0, - 317.0, - 364.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 79.0, - 828.0, - 79.0, - 828.0, - 118.0, - 780.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 846.0, - 694.0, - 957.0, - 694.0, - 957.0, - 725.0, - 846.0, - 725.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 582.0, - 1489.0, - 582.0, - 1489.0, - 623.0, - 1345.0, - 623.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 582.0, - 1489.0, - 582.0, - 1489.0, - 623.0, - 1345.0, - 623.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 846.0, - 693.0, - 958.0, - 693.0, - 958.0, - 726.0, - 846.0, - 726.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 846.0, - 694.0, - 957.0, - 694.0, - 957.0, - 725.0, - 846.0, - 725.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 11, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 315, - 218, - 1462, - 218, - 1462, - 325, - 315, - 325 - ], - "score": 0.952 - }, - { - "category_id": 2, - "poly": [ - 1507, - 155, - 1612, - 155, - 1612, - 225, - 1507, - 225 - ], - "score": 0.938 - }, - { - "category_id": 2, - "poly": [ - 127, - 214, - 228, - 214, - 228, - 263, - 127, - 263 - ], - "score": 0.905 - }, - { - "category_id": 2, - "poly": [ - 787, - 83, - 822, - 83, - 822, - 111, - 787, - 111 - ], - "score": 0.844 - }, - { - "category_id": 2, - "poly": [ - 1289, - 2152, - 1475, - 2152, - 1475, - 2185, - 1289, - 2185 - ], - "score": 0.832 - }, - { - "category_id": 1, - "poly": [ - 575, - 1620, - 1032, - 1620, - 1032, - 1657, - 575, - 1657 - ], - "score": 0.793 - }, - { - "category_id": 0, - "poly": [ - 316, - 684, - 460, - 684, - 460, - 721, - 316, - 721 - ], - "score": 0.74 - }, - { - "category_id": 0, - "poly": [ - 317, - 971, - 511, - 971, - 511, - 1009, - 317, - 1009 - ], - "score": 0.736 - }, - { - "category_id": 0, - "poly": [ - 316, - 396, - 462, - 396, - 462, - 435, - 316, - 435 - ], - "score": 0.713 - }, - { - "category_id": 1, - "poly": [ - 1345, - 325, - 1485, - 325, - 1485, - 361, - 1345, - 361 - ], - "score": 0.658 - }, - { - "category_id": 1, - "poly": [ - 314, - 397, - 1489, - 397, - 1489, - 651, - 314, - 651 - ], - "score": 0.578 - }, - { - "category_id": 1, - "poly": [ - 315, - 682, - 1488, - 682, - 1488, - 938, - 315, - 938 - ], - "score": 0.292 - }, - { - "category_id": 2, - "poly": [ - 1345, - 325, - 1485, - 325, - 1485, - 361, - 1345, - 361 - ], - "score": 0.26 - }, - { - "category_id": 1, - "poly": [ - 329, - 686, - 1490, - 686, - 1490, - 724, - 329, - 724 - ], - "score": 0.246 - }, - { - "category_id": 1, - "poly": [ - 314, - 971, - 1488, - 971, - 1488, - 1227, - 314, - 1227 - ], - "score": 0.216 - }, - { - "category_id": 1, - "poly": [ - 318, - 971, - 1488, - 971, - 1488, - 1013, - 318, - 1013 - ], - "score": 0.175 - }, - { - "category_id": 15, - "poly": [ - 317.0, - 218.0, - 1461.0, - 218.0, - 1461.0, - 257.0, - 317.0, - 257.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 257.0, - 1390.0, - 257.0, - 1390.0, - 290.0, - 317.0, - 290.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 293.0, - 643.0, - 293.0, - 643.0, - 326.0, - 318.0, - 326.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1506.0, - 158.0, - 1614.0, - 158.0, - 1614.0, - 181.0, - 1506.0, - 181.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1509.0, - 180.0, - 1611.0, - 180.0, - 1611.0, - 204.0, - 1509.0, - 204.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1540.0, - 200.0, - 1583.0, - 200.0, - 1583.0, - 229.0, - 1540.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 223.0, - 214.0, - 223.0, - 214.0, - 255.0, - 141.0, - 255.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 828.0, - 78.0, - 828.0, - 117.0, - 780.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1288.0, - 2154.0, - 1443.0, - 2154.0, - 1443.0, - 2184.0, - 1288.0, - 2184.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 576.0, - 1622.0, - 1030.0, - 1622.0, - 1030.0, - 1655.0, - 576.0, - 1655.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 684.0, - 462.0, - 684.0, - 462.0, - 723.0, - 316.0, - 723.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 971.0, - 510.0, - 971.0, - 510.0, - 1010.0, - 317.0, - 1010.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 394.0, - 463.0, - 394.0, - 463.0, - 439.0, - 318.0, - 439.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1347.0, - 326.0, - 1489.0, - 326.0, - 1489.0, - 363.0, - 1347.0, - 363.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 394.0, - 462.0, - 394.0, - 462.0, - 439.0, - 316.0, - 439.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 680.0, - 464.0, - 680.0, - 464.0, - 726.0, - 315.0, - 726.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1347.0, - 326.0, - 1489.0, - 326.0, - 1489.0, - 363.0, - 1347.0, - 363.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 323.0, - 680.0, - 466.0, - 680.0, - 466.0, - 727.0, - 323.0, - 727.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 969.0, - 512.0, - 969.0, - 512.0, - 1012.0, - 315.0, - 1012.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 970.0, - 512.0, - 970.0, - 512.0, - 1013.0, - 317.0, - 1013.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 12, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 314, - 694, - 1478, - 694, - 1478, - 805, - 314, - 805 - ], - "score": 0.953 - }, - { - "category_id": 2, - "poly": [ - 1509, - 154, - 1615, - 154, - 1615, - 224, - 1509, - 224 - ], - "score": 0.933 - }, - { - "category_id": 2, - "poly": [ - 127, - 258, - 293, - 258, - 293, - 307, - 127, - 307 - ], - "score": 0.917 - }, - { - "category_id": 2, - "poly": [ - 127, - 690, - 293, - 690, - 293, - 740, - 127, - 740 - ], - "score": 0.908 - }, - { - "category_id": 2, - "poly": [ - 128, - 182, - 229, - 182, - 229, - 230, - 128, - 230 - ], - "score": 0.897 - }, - { - "category_id": 1, - "poly": [ - 313, - 262, - 1468, - 262, - 1468, - 335, - 313, - 335 - ], - "score": 0.896 - }, - { - "category_id": 1, - "poly": [ - 318, - 185, - 852, - 185, - 852, - 224, - 318, - 224 - ], - "score": 0.88 - }, - { - "category_id": 2, - "poly": [ - 786, - 82, - 822, - 82, - 822, - 110, - 786, - 110 - ], - "score": 0.836 - }, - { - "category_id": 1, - "poly": [ - 1345, - 877, - 1485, - 877, - 1485, - 915, - 1345, - 915 - ], - "score": 0.827 - }, - { - "category_id": 1, - "poly": [ - 317, - 840, - 744, - 840, - 744, - 878, - 317, - 878 - ], - "score": 0.749 - }, - { - "category_id": 1, - "poly": [ - 1344, - 336, - 1485, - 336, - 1485, - 373, - 1344, - 373 - ], - "score": 0.674 - }, - { - "category_id": 1, - "poly": [ - 313, - 342, - 1488, - 342, - 1488, - 662, - 313, - 662 - ], - "score": 0.415 - }, - { - "category_id": 1, - "poly": [ - 312, - 917, - 1490, - 917, - 1490, - 1495, - 312, - 1495 - ], - "score": 0.292 - }, - { - "category_id": 2, - "poly": [ - 1344, - 336, - 1485, - 336, - 1485, - 373, - 1344, - 373 - ], - "score": 0.265 - }, - { - "category_id": 1, - "poly": [ - 315, - 416, - 1488, - 416, - 1488, - 663, - 315, - 663 - ], - "score": 0.173 - }, - { - "category_id": 5, - "poly": [ - 312, - 917, - 1490, - 917, - 1490, - 1495, - 312, - 1495 - ], - "score": 0.123 - }, - { - "category_id": 2, - "poly": [ - 1345, - 877, - 1485, - 877, - 1485, - 915, - 1345, - 915 - ], - "score": 0.102 - }, - { - "category_id": 13, - "poly": [ - 961, - 695, - 1080, - 695, - 1080, - 730, - 961, - 730 - ], - "score": 0.61, - "latex": "2000\\mathsf{H z}" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 698.0, - 960.0, - 698.0, - 960.0, - 731.0, - 318.0, - 731.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1081.0, - 698.0, - 1471.0, - 698.0, - 1471.0, - 731.0, - 1081.0, - 731.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 734.0, - 1458.0, - 734.0, - 1458.0, - 767.0, - 317.0, - 767.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 314.0, - 771.0, - 523.0, - 771.0, - 523.0, - 806.0, - 314.0, - 806.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1509.0, - 157.0, - 1617.0, - 157.0, - 1617.0, - 180.0, - 1509.0, - 180.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1513.0, - 179.0, - 1613.0, - 179.0, - 1613.0, - 203.0, - 1513.0, - 203.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1543.0, - 203.0, - 1585.0, - 203.0, - 1585.0, - 227.0, - 1543.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 143.0, - 266.0, - 179.0, - 266.0, - 179.0, - 300.0, - 143.0, - 300.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 190.0, - 270.0, - 216.0, - 270.0, - 216.0, - 296.0, - 190.0, - 296.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 249.0, - 270.0, - 275.0, - 270.0, - 275.0, - 295.0, - 249.0, - 295.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 695.0, - 284.0, - 695.0, - 284.0, - 737.0, - 140.0, - 737.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 143.0, - 191.0, - 170.0, - 191.0, - 170.0, - 222.0, - 143.0, - 222.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 190.0, - 193.0, - 213.0, - 193.0, - 213.0, - 221.0, - 190.0, - 221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 321.0, - 267.0, - 1462.0, - 267.0, - 1462.0, - 297.0, - 321.0, - 297.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 304.0, - 630.0, - 304.0, - 630.0, - 338.0, - 318.0, - 338.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 187.0, - 852.0, - 187.0, - 852.0, - 223.0, - 318.0, - 223.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 79.0, - 828.0, - 79.0, - 828.0, - 117.0, - 780.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 878.0, - 1487.0, - 878.0, - 1487.0, - 915.0, - 1346.0, - 915.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 841.0, - 741.0, - 841.0, - 741.0, - 877.0, - 317.0, - 877.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 334.0, - 1489.0, - 334.0, - 1489.0, - 375.0, - 1346.0, - 375.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 337.0, - 1490.0, - 337.0, - 1490.0, - 375.0, - 1345.0, - 375.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 334.0, - 1489.0, - 334.0, - 1489.0, - 375.0, - 1346.0, - 375.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 878.0, - 1487.0, - 878.0, - 1487.0, - 915.0, - 1346.0, - 915.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 13, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 328, - 952, - 1348, - 952, - 1348, - 1233, - 328, - 1233 - ], - "score": 0.968 - }, - { - "category_id": 1, - "poly": [ - 123, - 150, - 1464, - 150, - 1464, - 297, - 123, - 297 - ], - "score": 0.965 - }, - { - "category_id": 1, - "poly": [ - 320, - 787, - 1404, - 787, - 1404, - 863, - 320, - 863 - ], - "score": 0.943 - }, - { - "category_id": 1, - "poly": [ - 326, - 424, - 498, - 424, - 498, - 699, - 326, - 699 - ], - "score": 0.921 - }, - { - "category_id": 2, - "poly": [ - 127, - 784, - 294, - 784, - 294, - 833, - 127, - 833 - ], - "score": 0.914 - }, - { - "category_id": 2, - "poly": [ - 1507, - 155, - 1612, - 155, - 1612, - 225, - 1507, - 225 - ], - "score": 0.898 - }, - { - "category_id": 2, - "poly": [ - 786, - 82, - 823, - 82, - 823, - 111, - 786, - 111 - ], - "score": 0.858 - }, - { - "category_id": 2, - "poly": [ - 1288, - 2151, - 1475, - 2151, - 1475, - 2185, - 1288, - 2185 - ], - "score": 0.853 - }, - { - "category_id": 1, - "poly": [ - 575, - 1707, - 1032, - 1707, - 1032, - 1744, - 575, - 1744 - ], - "score": 0.848 - }, - { - "category_id": 1, - "poly": [ - 1363, - 297, - 1485, - 297, - 1485, - 333, - 1363, - 333 - ], - "score": 0.744 - }, - { - "category_id": 3, - "poly": [ - 1222, - 413, - 1303, - 413, - 1303, - 704, - 1222, - 704 - ], - "score": 0.63 - }, - { - "category_id": 2, - "poly": [ - 126, - 147, - 290, - 147, - 290, - 195, - 126, - 195 - ], - "score": 0.617 - }, - { - "category_id": 1, - "poly": [ - 1362, - 862, - 1486, - 862, - 1486, - 899, - 1362, - 899 - ], - "score": 0.588 - }, - { - "category_id": 3, - "poly": [ - 1223, - 413, - 1304, - 413, - 1304, - 703, - 1223, - 703 - ], - "score": 0.241 - }, - { - "category_id": 2, - "poly": [ - 1362, - 862, - 1486, - 862, - 1486, - 899, - 1362, - 899 - ], - "score": 0.199 - }, - { - "category_id": 3, - "poly": [ - 1380, - 944, - 1456, - 944, - 1456, - 1232, - 1380, - 1232 - ], - "score": 0.176 - }, - { - "category_id": 2, - "poly": [ - 1363, - 297, - 1485, - 297, - 1485, - 333, - 1363, - 333 - ], - "score": 0.152 - }, - { - "category_id": 2, - "poly": [ - 1384, - 1185, - 1450, - 1185, - 1450, - 1230, - 1384, - 1230 - ], - "score": 0.149 - }, - { - "category_id": 13, - "poly": [ - 1400, - 1037, - 1435, - 1037, - 1435, - 1061, - 1400, - 1061 - ], - "score": 0.29, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 13, - "poly": [ - 1247, - 513, - 1280, - 513, - 1280, - 530, - 1247, - 530 - ], - "score": 0.25, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 15, - "poly": [ - 332.0, - 956.0, - 361.0, - 956.0, - 361.0, - 988.0, - 332.0, - 988.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 398.0, - 953.0, - 1206.0, - 953.0, - 1206.0, - 991.0, - 398.0, - 991.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 329.0, - 1032.0, - 363.0, - 1032.0, - 363.0, - 1070.0, - 329.0, - 1070.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 397.0, - 1034.0, - 1191.0, - 1034.0, - 1191.0, - 1071.0, - 397.0, - 1071.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 328.0, - 1109.0, - 364.0, - 1109.0, - 364.0, - 1152.0, - 328.0, - 1152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 398.0, - 1112.0, - 1346.0, - 1112.0, - 1346.0, - 1152.0, - 398.0, - 1152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 329.0, - 1191.0, - 363.0, - 1191.0, - 363.0, - 1229.0, - 329.0, - 1229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 399.0, - 1193.0, - 1258.0, - 1193.0, - 1258.0, - 1229.0, - 399.0, - 1229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 154.0, - 1410.0, - 154.0, - 1410.0, - 188.0, - 319.0, - 188.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 190.0, - 1425.0, - 190.0, - 1425.0, - 224.0, - 318.0, - 224.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 227.0, - 1461.0, - 227.0, - 1461.0, - 261.0, - 318.0, - 261.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 262.0, - 1419.0, - 262.0, - 1419.0, - 296.0, - 316.0, - 296.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 789.0, - 1402.0, - 789.0, - 1402.0, - 828.0, - 317.0, - 828.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 826.0, - 712.0, - 826.0, - 712.0, - 864.0, - 316.0, - 864.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 329.0, - 425.0, - 364.0, - 425.0, - 364.0, - 461.0, - 329.0, - 461.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 395.0, - 425.0, - 480.0, - 425.0, - 480.0, - 461.0, - 395.0, - 461.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 329.0, - 505.0, - 363.0, - 505.0, - 363.0, - 539.0, - 329.0, - 539.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 395.0, - 503.0, - 480.0, - 503.0, - 480.0, - 539.0, - 395.0, - 539.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 329.0, - 581.0, - 363.0, - 581.0, - 363.0, - 618.0, - 329.0, - 618.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 395.0, - 582.0, - 480.0, - 582.0, - 480.0, - 618.0, - 395.0, - 618.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 328.0, - 662.0, - 363.0, - 662.0, - 363.0, - 696.0, - 328.0, - 696.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 397.0, - 661.0, - 496.0, - 661.0, - 496.0, - 697.0, - 397.0, - 697.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 142.0, - 795.0, - 178.0, - 795.0, - 178.0, - 824.0, - 142.0, - 824.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 190.0, - 797.0, - 214.0, - 797.0, - 214.0, - 822.0, - 190.0, - 822.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 250.0, - 797.0, - 277.0, - 797.0, - 277.0, - 822.0, - 250.0, - 822.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1506.0, - 158.0, - 1614.0, - 158.0, - 1614.0, - 181.0, - 1506.0, - 181.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1509.0, - 180.0, - 1611.0, - 180.0, - 1611.0, - 204.0, - 1509.0, - 204.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1540.0, - 200.0, - 1583.0, - 200.0, - 1583.0, - 229.0, - 1540.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 828.0, - 78.0, - 828.0, - 118.0, - 780.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1290.0, - 2155.0, - 1441.0, - 2155.0, - 1441.0, - 2183.0, - 1290.0, - 2183.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 576.0, - 1709.0, - 1030.0, - 1709.0, - 1030.0, - 1742.0, - 576.0, - 1742.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 296.0, - 1487.0, - 296.0, - 1487.0, - 334.0, - 1363.0, - 334.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 150.0, - 284.0, - 150.0, - 284.0, - 192.0, - 135.0, - 192.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 862.0, - 1488.0, - 862.0, - 1488.0, - 901.0, - 1363.0, - 901.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 862.0, - 1488.0, - 862.0, - 1488.0, - 901.0, - 1363.0, - 901.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 296.0, - 1487.0, - 296.0, - 1487.0, - 334.0, - 1363.0, - 334.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 14, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 351, - 323, - 1407, - 323, - 1407, - 676, - 351, - 676 - ], - "score": 0.968, - "html": "
Example 1Example 2Example3
a←4 b13 IF a=b THEN C ↑a+b ENDIFMOV RO,#4 MOV R1,#3 CMP RO,1 R1 BNE end ADD R2, RO,Rl end: 11111001 0000 0100 1001 0001 0011 0100 0000 0001 1010 0101 0000 1100 0010 00000000 0000 0000 0000 0001 0000
" - }, - { - "category_id": 1, - "poly": [ - 341, - 1248, - 1483, - 1248, - 1483, - 1325, - 341, - 1325 - ], - "score": 0.942 - }, - { - "category_id": 2, - "poly": [ - 113, - 1245, - 283, - 1245, - 283, - 1297, - 113, - 1297 - ], - "score": 0.929 - }, - { - "category_id": 1, - "poly": [ - 359, - 873, - 1255, - 873, - 1255, - 1153, - 359, - 1153 - ], - "score": 0.92 - }, - { - "category_id": 2, - "poly": [ - 113, - 704, - 281, - 704, - 281, - 756, - 113, - 756 - ], - "score": 0.919 - }, - { - "category_id": 2, - "poly": [ - 112, - 182, - 215, - 182, - 215, - 230, - 112, - 230 - ], - "score": 0.899 - }, - { - "category_id": 2, - "poly": [ - 1508, - 155, - 1616, - 155, - 1616, - 224, - 1508, - 224 - ], - "score": 0.892 - }, - { - "category_id": 1, - "poly": [ - 344, - 184, - 1449, - 184, - 1449, - 225, - 344, - 225 - ], - "score": 0.891 - }, - { - "category_id": 1, - "poly": [ - 1349, - 1324, - 1490, - 1324, - 1490, - 1360, - 1349, - 1360 - ], - "score": 0.876 - }, - { - "category_id": 2, - "poly": [ - 787, - 82, - 822, - 82, - 822, - 111, - 787, - 111 - ], - "score": 0.862 - }, - { - "category_id": 6, - "poly": [ - 742, - 256, - 869, - 256, - 869, - 294, - 742, - 294 - ], - "score": 0.835 - }, - { - "category_id": 1, - "poly": [ - 1349, - 747, - 1475, - 747, - 1475, - 785, - 1349, - 785 - ], - "score": 0.741 - }, - { - "category_id": 6, - "poly": [ - 349, - 709, - 1298, - 709, - 1298, - 749, - 349, - 749 - ], - "score": 0.577 - }, - { - "category_id": 5, - "poly": [ - 336, - 1341, - 1496, - 1341, - 1496, - 2129, - 336, - 2129 - ], - "score": 0.508, - "html": "
[syeuu +]
" - }, - { - "category_id": 1, - "poly": [ - 349, - 709, - 1298, - 709, - 1298, - 749, - 349, - 749 - ], - "score": 0.266 - }, - { - "category_id": 2, - "poly": [ - 1386, - 870, - 1456, - 870, - 1456, - 916, - 1386, - 916 - ], - "score": 0.264 - }, - { - "category_id": 3, - "poly": [ - 1383, - 866, - 1460, - 866, - 1460, - 1154, - 1383, - 1154 - ], - "score": 0.198 - }, - { - "category_id": 3, - "poly": [ - 343, - 868, - 1465, - 868, - 1465, - 1156, - 343, - 1156 - ], - "score": 0.186 - }, - { - "category_id": 2, - "poly": [ - 1349, - 747, - 1475, - 747, - 1475, - 785, - 1349, - 785 - ], - "score": 0.133 - }, - { - "category_id": 2, - "poly": [ - 1388, - 1108, - 1455, - 1108, - 1455, - 1152, - 1388, - 1152 - ], - "score": 0.101 - }, - { - "category_id": 13, - "poly": [ - 426, - 485, - 533, - 485, - 533, - 518, - 426, - 518 - ], - "score": 0.66, - "latex": "a=b" - }, - { - "category_id": 13, - "poly": [ - 368, - 410, - 471, - 410, - 471, - 441, - 368, - 441 - ], - "score": 0.62, - "latex": "a\\gets4" - }, - { - "category_id": 13, - "poly": [ - 365, - 447, - 473, - 447, - 473, - 481, - 365, - 481 - ], - "score": 0.57, - "latex": "b\\leftarrow3" - }, - { - "category_id": 13, - "poly": [ - 425, - 524, - 616, - 524, - 616, - 557, - 425, - 557 - ], - "score": 0.51, - "latex": "\\texttt{c\\leftarrow a+b}" - }, - { - "category_id": 13, - "poly": [ - 1405, - 1042, - 1438, - 1042, - 1438, - 1059, - 1405, - 1059 - ], - "score": 0.27, - "latex": "\\Longleftrightarrow" - }, - { - "category_id": 15, - "poly": [ - 342.0, - 1249.0, - 1481.0, - 1249.0, - 1481.0, - 1291.0, - 342.0, - 1291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 341.0, - 1291.0, - 1220.0, - 1291.0, - 1220.0, - 1325.0, - 341.0, - 1325.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 121.0, - 1250.0, - 275.0, - 1250.0, - 275.0, - 1294.0, - 121.0, - 1294.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 360.0, - 876.0, - 395.0, - 876.0, - 395.0, - 913.0, - 360.0, - 913.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 428.0, - 877.0, - 1194.0, - 877.0, - 1194.0, - 913.0, - 428.0, - 913.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 361.0, - 955.0, - 393.0, - 955.0, - 393.0, - 992.0, - 361.0, - 992.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 430.0, - 956.0, - 1244.0, - 956.0, - 1244.0, - 993.0, - 430.0, - 993.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 361.0, - 1031.0, - 394.0, - 1031.0, - 394.0, - 1071.0, - 361.0, - 1071.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 429.0, - 1035.0, - 1251.0, - 1035.0, - 1251.0, - 1070.0, - 429.0, - 1070.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 360.0, - 1111.0, - 394.0, - 1111.0, - 394.0, - 1148.0, - 360.0, - 1148.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 428.0, - 1113.0, - 1247.0, - 1113.0, - 1247.0, - 1149.0, - 428.0, - 1149.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 708.0, - 275.0, - 708.0, - 275.0, - 754.0, - 118.0, - 754.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 131.0, - 188.0, - 202.0, - 188.0, - 202.0, - 224.0, - 131.0, - 224.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1508.0, - 154.0, - 1616.0, - 154.0, - 1616.0, - 181.0, - 1508.0, - 181.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1512.0, - 180.0, - 1614.0, - 180.0, - 1614.0, - 203.0, - 1512.0, - 203.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1544.0, - 202.0, - 1584.0, - 202.0, - 1584.0, - 225.0, - 1544.0, - 225.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 353.0, - 187.0, - 1446.0, - 187.0, - 1446.0, - 222.0, - 353.0, - 222.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1351.0, - 1323.0, - 1492.0, - 1323.0, - 1492.0, - 1361.0, - 1351.0, - 1361.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 828.0, - 78.0, - 828.0, - 118.0, - 780.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 742.0, - 255.0, - 871.0, - 255.0, - 871.0, - 297.0, - 742.0, - 297.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1349.0, - 747.0, - 1476.0, - 747.0, - 1476.0, - 785.0, - 1349.0, - 785.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 350.0, - 714.0, - 1296.0, - 714.0, - 1296.0, - 744.0, - 350.0, - 744.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 350.0, - 714.0, - 1296.0, - 714.0, - 1296.0, - 744.0, - 350.0, - 744.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1349.0, - 747.0, - 1476.0, - 747.0, - 1476.0, - 785.0, - 1349.0, - 785.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 15, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 354, - 254, - 1432, - 254, - 1432, - 396, - 354, - 396 - ], - "score": 0.971 - }, - { - "category_id": 2, - "poly": [ - 1506, - 154, - 1611, - 154, - 1611, - 224, - 1506, - 224 - ], - "score": 0.939 - }, - { - "category_id": 1, - "poly": [ - 351, - 431, - 1286, - 431, - 1286, - 503, - 351, - 503 - ], - "score": 0.93 - }, - { - "category_id": 2, - "poly": [ - 113, - 179, - 282, - 179, - 282, - 231, - 113, - 231 - ], - "score": 0.913 - }, - { - "category_id": 1, - "poly": [ - 351, - 183, - 1294, - 183, - 1294, - 222, - 351, - 222 - ], - "score": 0.907 - }, - { - "category_id": 1, - "poly": [ - 351, - 534, - 1319, - 534, - 1319, - 574, - 351, - 574 - ], - "score": 0.899 - }, - { - "category_id": 2, - "poly": [ - 1288, - 2152, - 1476, - 2152, - 1476, - 2184, - 1288, - 2184 - ], - "score": 0.838 - }, - { - "category_id": 2, - "poly": [ - 787, - 83, - 820, - 83, - 820, - 110, - 787, - 110 - ], - "score": 0.837 - }, - { - "category_id": 1, - "poly": [ - 575, - 1459, - 1032, - 1459, - 1032, - 1495, - 575, - 1495 - ], - "score": 0.814 - }, - { - "category_id": 1, - "poly": [ - 1338, - 608, - 1480, - 608, - 1480, - 646, - 1338, - 646 - ], - "score": 0.701 - }, - { - "category_id": 1, - "poly": [ - 360, - 854, - 1483, - 854, - 1483, - 970, - 360, - 970 - ], - "score": 0.289 - }, - { - "category_id": 2, - "poly": [ - 1338, - 608, - 1480, - 608, - 1480, - 646, - 1338, - 646 - ], - "score": 0.239 - }, - { - "category_id": 1, - "poly": [ - 357, - 674, - 1488, - 674, - 1488, - 970, - 357, - 970 - ], - "score": 0.199 - }, - { - "category_id": 1, - "poly": [ - 348, - 678, - 1480, - 678, - 1480, - 720, - 348, - 720 - ], - "score": 0.161 - }, - { - "category_id": 1, - "poly": [ - 359, - 678, - 1481, - 678, - 1481, - 790, - 359, - 790 - ], - "score": 0.159 - }, - { - "category_id": 15, - "poly": [ - 352.0, - 256.0, - 1435.0, - 256.0, - 1435.0, - 295.0, - 352.0, - 295.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 352.0, - 295.0, - 1376.0, - 295.0, - 1376.0, - 326.0, - 352.0, - 326.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 353.0, - 328.0, - 1390.0, - 328.0, - 1390.0, - 363.0, - 353.0, - 363.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 353.0, - 365.0, - 879.0, - 365.0, - 879.0, - 394.0, - 353.0, - 394.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1505.0, - 156.0, - 1613.0, - 156.0, - 1613.0, - 183.0, - 1505.0, - 183.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1509.0, - 180.0, - 1611.0, - 180.0, - 1611.0, - 204.0, - 1509.0, - 204.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1538.0, - 200.0, - 1583.0, - 200.0, - 1583.0, - 229.0, - 1538.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 353.0, - 433.0, - 1285.0, - 433.0, - 1285.0, - 467.0, - 353.0, - 467.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 354.0, - 468.0, - 1024.0, - 468.0, - 1024.0, - 501.0, - 354.0, - 501.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 126.0, - 189.0, - 233.0, - 189.0, - 233.0, - 223.0, - 126.0, - 223.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 213.75, - 191.0, - 273.75, - 191.0, - 273.75, - 225.5, - 213.75, - 225.5 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 353.0, - 187.0, - 1292.0, - 187.0, - 1292.0, - 220.0, - 353.0, - 220.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 354.0, - 539.0, - 1320.0, - 539.0, - 1320.0, - 573.0, - 354.0, - 573.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1289.0, - 2154.0, - 1439.0, - 2154.0, - 1439.0, - 2183.0, - 1289.0, - 2183.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 781.0, - 78.0, - 827.0, - 78.0, - 827.0, - 117.0, - 781.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 576.0, - 1461.0, - 1030.0, - 1461.0, - 1030.0, - 1493.0, - 576.0, - 1493.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1339.0, - 606.0, - 1482.0, - 606.0, - 1482.0, - 647.0, - 1339.0, - 647.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 361.0, - 859.0, - 546.0, - 859.0, - 546.0, - 893.0, - 361.0, - 893.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1339.0, - 606.0, - 1482.0, - 606.0, - 1482.0, - 647.0, - 1339.0, - 647.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 361.0, - 681.0, - 544.0, - 681.0, - 544.0, - 713.0, - 361.0, - 713.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 361.0, - 860.0, - 544.0, - 860.0, - 544.0, - 891.0, - 361.0, - 891.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 361.0, - 677.0, - 544.0, - 677.0, - 544.0, - 714.0, - 361.0, - 714.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 360.0, - 678.0, - 546.0, - 678.0, - 546.0, - 716.0, - 360.0, - 716.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 16, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 543, - 326, - 1260, - 326, - 1260, - 732, - 543, - 732 - ], - "score": 0.979, - "html": "
ABA AND B
00
01
10
11
" - }, - { - "category_id": 1, - "poly": [ - 365, - 1016, - 1471, - 1016, - 1471, - 1166, - 365, - 1166 - ], - "score": 0.958 - }, - { - "category_id": 1, - "poly": [ - 308, - 906, - 1494, - 906, - 1494, - 982, - 308, - 982 - ], - "score": 0.936 - }, - { - "category_id": 1, - "poly": [ - 316, - 1200, - 876, - 1200, - 876, - 1238, - 316, - 1238 - ], - "score": 0.905 - }, - { - "category_id": 2, - "poly": [ - 127, - 903, - 293, - 903, - 293, - 953, - 127, - 953 - ], - "score": 0.894 - }, - { - "category_id": 1, - "poly": [ - 313, - 219, - 964, - 219, - 964, - 260, - 313, - 260 - ], - "score": 0.894 - }, - { - "category_id": 2, - "poly": [ - 127, - 216, - 293, - 216, - 293, - 265, - 127, - 265 - ], - "score": 0.885 - }, - { - "category_id": 1, - "poly": [ - 1345, - 1237, - 1486, - 1237, - 1486, - 1274, - 1345, - 1274 - ], - "score": 0.866 - }, - { - "category_id": 2, - "poly": [ - 1509, - 155, - 1616, - 155, - 1616, - 224, - 1509, - 224 - ], - "score": 0.864 - }, - { - "category_id": 2, - "poly": [ - 786, - 82, - 822, - 82, - 822, - 111, - 786, - 111 - ], - "score": 0.864 - }, - { - "category_id": 1, - "poly": [ - 1361, - 258, - 1486, - 258, - 1486, - 295, - 1361, - 295 - ], - "score": 0.851 - }, - { - "category_id": 3, - "poly": [ - 289, - 1304, - 1486, - 1304, - 1486, - 1961, - 289, - 1961 - ], - "score": 0.824 - }, - { - "category_id": 3, - "poly": [ - 281, - 1301, - 1487, - 1301, - 1487, - 2130, - 281, - 2130 - ], - "score": 0.408 - }, - { - "category_id": 13, - "poly": [ - 918, - 1019, - 955, - 1019, - 955, - 1052, - 918, - 1052 - ], - "score": 0.79, - "latex": "\\mathsf{A}_{2}" - }, - { - "category_id": 13, - "poly": [ - 819, - 1019, - 856, - 1019, - 856, - 1052, - 819, - 1052 - ], - "score": 0.76, - "latex": "\\mathsf{A}_{1}" - }, - { - "category_id": 15, - "poly": [ - 415.0, - 1019.0, - 818.0, - 1019.0, - 818.0, - 1052.0, - 415.0, - 1052.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 857.0, - 1019.0, - 917.0, - 1019.0, - 917.0, - 1052.0, - 857.0, - 1052.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 956.0, - 1019.0, - 1467.0, - 1019.0, - 1467.0, - 1052.0, - 956.0, - 1052.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 418.0, - 1056.0, - 1085.0, - 1056.0, - 1085.0, - 1088.0, - 418.0, - 1088.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 416.0, - 1092.0, - 1368.0, - 1092.0, - 1368.0, - 1127.0, - 416.0, - 1127.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 413.0, - 1130.0, - 1417.0, - 1130.0, - 1417.0, - 1167.0, - 413.0, - 1167.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 911.0, - 1484.0, - 911.0, - 1484.0, - 945.0, - 317.0, - 945.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 314.0, - 945.0, - 760.0, - 945.0, - 760.0, - 983.0, - 314.0, - 983.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 320.0, - 1205.0, - 874.0, - 1205.0, - 874.0, - 1235.0, - 320.0, - 1235.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 908.0, - 284.0, - 908.0, - 284.0, - 950.0, - 139.0, - 950.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 222.0, - 960.0, - 222.0, - 960.0, - 258.0, - 318.0, - 258.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 225.0, - 182.0, - 225.0, - 182.0, - 257.0, - 140.0, - 257.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 187.0, - 227.0, - 217.0, - 227.0, - 217.0, - 255.0, - 187.0, - 255.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 249.0, - 227.0, - 275.0, - 227.0, - 275.0, - 254.0, - 249.0, - 254.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1235.0, - 1488.0, - 1235.0, - 1488.0, - 1276.0, - 1346.0, - 1276.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1509.0, - 154.0, - 1617.0, - 154.0, - 1617.0, - 181.0, - 1509.0, - 181.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1512.0, - 180.0, - 1614.0, - 180.0, - 1614.0, - 203.0, - 1512.0, - 203.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1543.0, - 202.0, - 1585.0, - 202.0, - 1585.0, - 226.0, - 1543.0, - 226.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 78.0, - 827.0, - 78.0, - 827.0, - 118.0, - 780.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 258.0, - 1488.0, - 258.0, - 1488.0, - 297.0, - 1362.0, - 297.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 17, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 787, - 83, - 822, - 83, - 822, - 110, - 787, - 110 - ], - "score": 0.838 - }, - { - "category_id": 2, - "poly": [ - 1289, - 2152, - 1473, - 2152, - 1473, - 2184, - 1289, - 2184 - ], - "score": 0.821 - }, - { - "category_id": 3, - "poly": [ - 109, - 124, - 1496, - 124, - 1496, - 2123, - 109, - 2123 - ], - "score": 0.742 - }, - { - "category_id": 2, - "poly": [ - 1506, - 154, - 1613, - 154, - 1613, - 226, - 1506, - 226 - ], - "score": 0.155 - }, - { - "category_id": 15, - "poly": [ - 780.0, - 79.0, - 828.0, - 79.0, - 828.0, - 117.0, - 780.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1288.0, - 2154.0, - 1441.0, - 2154.0, - 1441.0, - 2183.0, - 1288.0, - 2183.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1506.0, - 158.0, - 1613.0, - 158.0, - 1613.0, - 181.0, - 1506.0, - 181.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1509.0, - 180.0, - 1610.0, - 180.0, - 1610.0, - 204.0, - 1509.0, - 204.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1540.0, - 203.0, - 1580.0, - 203.0, - 1580.0, - 227.0, - 1540.0, - 227.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 18, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 315, - 796, - 1440, - 796, - 1440, - 1164, - 315, - 1164 - ], - "score": 0.985, - "html": "
NameMinPlayersMaxPlayersLengthOfGameComplexity
Friday11252.12
Scythe15903.37
Terra Mystica251003.95
Agricola14903.31
Pandemic24452.42
" - }, - { - "category_id": 5, - "poly": [ - 317, - 1291, - 1461, - 1291, - 1461, - 1658, - 317, - 1658 - ], - "score": 0.981, - "html": "
GameTablelDNameDateStartTimeCustomerHours
1Friday28/05/1911Hawkins1
2Scythe28/05/1911Jemisin1
3Pandemic28/05/1915Gormally1
1Pandemic28/05/1913Van Perlo2
1Terra Mystica29/05/1915Hawkins2
" - }, - { - "category_id": 1, - "poly": [ - 317, - 191, - 1489, - 191, - 1489, - 300, - 317, - 300 - ], - "score": 0.961 - }, - { - "category_id": 1, - "poly": [ - 317, - 429, - 1430, - 429, - 1430, - 503, - 317, - 503 - ], - "score": 0.944 - }, - { - "category_id": 2, - "poly": [ - 1509, - 155, - 1615, - 155, - 1615, - 224, - 1509, - 224 - ], - "score": 0.937 - }, - { - "category_id": 1, - "poly": [ - 318, - 547, - 991, - 547, - 991, - 587, - 318, - 587 - ], - "score": 0.923 - }, - { - "category_id": 1, - "poly": [ - 319, - 345, - 1076, - 345, - 1076, - 382, - 319, - 382 - ], - "score": 0.919 - }, - { - "category_id": 2, - "poly": [ - 127, - 1757, - 294, - 1757, - 294, - 1806, - 127, - 1806 - ], - "score": 0.912 - }, - { - "category_id": 2, - "poly": [ - 126, - 181, - 230, - 181, - 230, - 229, - 126, - 229 - ], - "score": 0.896 - }, - { - "category_id": 2, - "poly": [ - 784, - 82, - 822, - 82, - 822, - 111, - 784, - 111 - ], - "score": 0.863 - }, - { - "category_id": 1, - "poly": [ - 312, - 1760, - 1079, - 1760, - 1079, - 1801, - 312, - 1801 - ], - "score": 0.798 - }, - { - "category_id": 6, - "poly": [ - 331, - 754, - 423, - 754, - 423, - 787, - 331, - 787 - ], - "score": 0.773 - }, - { - "category_id": 6, - "poly": [ - 329, - 1247, - 461, - 1247, - 461, - 1283, - 329, - 1283 - ], - "score": 0.64 - }, - { - "category_id": 0, - "poly": [ - 841, - 668, - 970, - 668, - 970, - 707, - 841, - 707 - ], - "score": 0.581 - }, - { - "category_id": 1, - "poly": [ - 1361, - 1799, - 1486, - 1799, - 1486, - 1838, - 1361, - 1838 - ], - "score": 0.542 - }, - { - "category_id": 0, - "poly": [ - 329, - 1247, - 461, - 1247, - 461, - 1283, - 329, - 1283 - ], - "score": 0.359 - }, - { - "category_id": 1, - "poly": [ - 257, - 1805, - 1490, - 1805, - 1490, - 2128, - 257, - 2128 - ], - "score": 0.204 - }, - { - "category_id": 0, - "poly": [ - 1361, - 1799, - 1486, - 1799, - 1486, - 1838, - 1361, - 1838 - ], - "score": 0.178 - }, - { - "category_id": 0, - "poly": [ - 331, - 754, - 423, - 754, - 423, - 787, - 331, - 787 - ], - "score": 0.131 - }, - { - "category_id": 1, - "poly": [ - 159, - 1802, - 1493, - 1802, - 1493, - 2131, - 159, - 2131 - ], - "score": 0.112 - }, - { - "category_id": 15, - "poly": [ - 316.0, - 192.0, - 1490.0, - 192.0, - 1490.0, - 227.0, - 316.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 231.0, - 1473.0, - 231.0, - 1473.0, - 264.0, - 317.0, - 264.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 268.0, - 953.0, - 268.0, - 953.0, - 300.0, - 317.0, - 300.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 431.0, - 1421.0, - 431.0, - 1421.0, - 466.0, - 318.0, - 466.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 467.0, - 1422.0, - 467.0, - 1422.0, - 504.0, - 318.0, - 504.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1509.0, - 154.0, - 1617.0, - 154.0, - 1617.0, - 181.0, - 1509.0, - 181.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1513.0, - 180.0, - 1615.0, - 180.0, - 1615.0, - 203.0, - 1513.0, - 203.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1543.0, - 202.0, - 1585.0, - 202.0, - 1585.0, - 226.0, - 1543.0, - 226.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 551.0, - 987.0, - 551.0, - 987.0, - 583.0, - 318.0, - 583.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 343.0, - 1076.0, - 343.0, - 1076.0, - 385.0, - 316.0, - 385.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 142.0, - 1768.0, - 178.0, - 1768.0, - 178.0, - 1797.0, - 142.0, - 1797.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 181.0, - 1768.0, - 224.0, - 1768.0, - 224.0, - 1796.0, - 181.0, - 1796.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 230.0, - 1767.0, - 279.0, - 1767.0, - 279.0, - 1798.0, - 230.0, - 1798.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 144.0, - 193.0, - 170.0, - 193.0, - 170.0, - 221.0, - 144.0, - 221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 184.0, - 193.0, - 214.0, - 193.0, - 214.0, - 221.0, - 184.0, - 221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 77.0, - 828.0, - 77.0, - 828.0, - 118.0, - 779.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 1762.0, - 1077.0, - 1762.0, - 1077.0, - 1800.0, - 317.0, - 1800.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 332.0, - 752.0, - 425.0, - 752.0, - 425.0, - 791.0, - 332.0, - 791.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 332.0, - 1243.0, - 462.0, - 1243.0, - 462.0, - 1287.0, - 332.0, - 1287.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 843.0, - 671.0, - 970.0, - 671.0, - 970.0, - 707.0, - 843.0, - 707.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 1798.0, - 1488.0, - 1798.0, - 1488.0, - 1839.0, - 1362.0, - 1839.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 332.0, - 1243.0, - 462.0, - 1243.0, - 462.0, - 1287.0, - 332.0, - 1287.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1361.0, - 1800.0, - 1490.0, - 1800.0, - 1490.0, - 1840.0, - 1361.0, - 1840.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 1798.0, - 1488.0, - 1798.0, - 1488.0, - 1839.0, - 1362.0, - 1839.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 332.0, - 752.0, - 425.0, - 752.0, - 425.0, - 791.0, - 332.0, - 791.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 1800.0, - 1489.0, - 1800.0, - 1489.0, - 1838.0, - 1362.0, - 1838.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 19, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 315, - 436, - 1476, - 436, - 1476, - 584, - 315, - 584 - ], - "score": 0.968 - }, - { - "category_id": 2, - "poly": [ - 1506, - 155, - 1612, - 155, - 1612, - 225, - 1506, - 225 - ], - "score": 0.925 - }, - { - "category_id": 1, - "poly": [ - 314, - 616, - 1461, - 616, - 1461, - 691, - 314, - 691 - ], - "score": 0.923 - }, - { - "category_id": 2, - "poly": [ - 126, - 433, - 293, - 433, - 293, - 483, - 126, - 483 - ], - "score": 0.894 - }, - { - "category_id": 2, - "poly": [ - 127, - 180, - 294, - 180, - 294, - 231, - 127, - 231 - ], - "score": 0.861 - }, - { - "category_id": 2, - "poly": [ - 783, - 82, - 819, - 82, - 819, - 111, - 783, - 111 - ], - "score": 0.853 - }, - { - "category_id": 2, - "poly": [ - 1289, - 2151, - 1474, - 2151, - 1474, - 2185, - 1289, - 2185 - ], - "score": 0.844 - }, - { - "category_id": 1, - "poly": [ - 1345, - 692, - 1486, - 692, - 1486, - 729, - 1345, - 729 - ], - "score": 0.834 - }, - { - "category_id": 1, - "poly": [ - 312, - 183, - 1235, - 183, - 1235, - 224, - 312, - 224 - ], - "score": 0.806 - }, - { - "category_id": 1, - "poly": [ - 1361, - 223, - 1485, - 223, - 1485, - 260, - 1361, - 260 - ], - "score": 0.612 - }, - { - "category_id": 5, - "poly": [ - 312, - 736, - 1491, - 736, - 1491, - 1746, - 312, - 1746 - ], - "score": 0.374 - }, - { - "category_id": 2, - "poly": [ - 1361, - 223, - 1485, - 223, - 1485, - 260, - 1361, - 260 - ], - "score": 0.334 - }, - { - "category_id": 1, - "poly": [ - 312, - 736, - 1491, - 736, - 1491, - 1746, - 312, - 1746 - ], - "score": 0.131 - }, - { - "category_id": 15, - "poly": [ - 319.0, - 442.0, - 1409.0, - 442.0, - 1409.0, - 474.0, - 319.0, - 474.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 478.0, - 1469.0, - 478.0, - 1469.0, - 510.0, - 318.0, - 510.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 514.0, - 1476.0, - 514.0, - 1476.0, - 546.0, - 318.0, - 546.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 314.0, - 546.0, - 1119.0, - 546.0, - 1119.0, - 585.0, - 314.0, - 585.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1506.0, - 158.0, - 1614.0, - 158.0, - 1614.0, - 181.0, - 1506.0, - 181.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1510.0, - 180.0, - 1610.0, - 180.0, - 1610.0, - 204.0, - 1510.0, - 204.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1539.0, - 200.0, - 1582.0, - 200.0, - 1582.0, - 230.0, - 1539.0, - 230.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 617.0, - 1459.0, - 617.0, - 1459.0, - 656.0, - 315.0, - 656.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 655.0, - 838.0, - 655.0, - 838.0, - 690.0, - 316.0, - 690.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 443.0, - 176.0, - 443.0, - 176.0, - 473.0, - 141.0, - 473.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 190.0, - 446.0, - 216.0, - 446.0, - 216.0, - 471.0, - 190.0, - 471.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 248.0, - 444.0, - 277.0, - 444.0, - 277.0, - 473.0, - 248.0, - 473.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 142.0, - 191.0, - 179.0, - 191.0, - 179.0, - 222.0, - 142.0, - 222.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 182.0, - 191.0, - 219.0, - 191.0, - 219.0, - 221.0, - 182.0, - 221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 225.0, - 189.0, - 281.0, - 189.0, - 281.0, - 224.0, - 225.0, - 224.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 78.0, - 827.0, - 78.0, - 827.0, - 119.0, - 779.0, - 119.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1287.0, - 2152.0, - 1439.0, - 2152.0, - 1439.0, - 2185.0, - 1287.0, - 2185.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 690.0, - 1488.0, - 690.0, - 1488.0, - 731.0, - 1346.0, - 731.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 186.0, - 1231.0, - 186.0, - 1231.0, - 222.0, - 317.0, - 222.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 223.0, - 1488.0, - 223.0, - 1488.0, - 262.0, - 1363.0, - 262.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 223.0, - 1488.0, - 223.0, - 1488.0, - 262.0, - 1363.0, - 262.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 20, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1508, - 154, - 1615, - 154, - 1615, - 224, - 1508, - 224 - ], - "score": 0.935 - }, - { - "category_id": 1, - "poly": [ - 316, - 292, - 1383, - 292, - 1383, - 367, - 316, - 367 - ], - "score": 0.934 - }, - { - "category_id": 1, - "poly": [ - 320, - 1271, - 1388, - 1271, - 1388, - 1346, - 320, - 1346 - ], - "score": 0.918 - }, - { - "category_id": 2, - "poly": [ - 127, - 1268, - 293, - 1268, - 293, - 1319, - 127, - 1319 - ], - "score": 0.909 - }, - { - "category_id": 1, - "poly": [ - 318, - 1199, - 1120, - 1199, - 1120, - 1239, - 318, - 1239 - ], - "score": 0.903 - }, - { - "category_id": 2, - "poly": [ - 126, - 180, - 293, - 180, - 293, - 231, - 126, - 231 - ], - "score": 0.901 - }, - { - "category_id": 1, - "poly": [ - 306, - 184, - 1477, - 184, - 1477, - 259, - 306, - 259 - ], - "score": 0.888 - }, - { - "category_id": 2, - "poly": [ - 127, - 1197, - 230, - 1197, - 230, - 1245, - 127, - 1245 - ], - "score": 0.887 - }, - { - "category_id": 1, - "poly": [ - 1344, - 1346, - 1486, - 1346, - 1486, - 1384, - 1344, - 1384 - ], - "score": 0.874 - }, - { - "category_id": 0, - "poly": [ - 838, - 404, - 965, - 404, - 965, - 442, - 838, - 442 - ], - "score": 0.86 - }, - { - "category_id": 2, - "poly": [ - 783, - 82, - 822, - 82, - 822, - 111, - 783, - 111 - ], - "score": 0.859 - }, - { - "category_id": 1, - "poly": [ - 1345, - 734, - 1486, - 734, - 1486, - 770, - 1345, - 770 - ], - "score": 0.852 - }, - { - "category_id": 1, - "poly": [ - 512, - 475, - 1223, - 475, - 1223, - 660, - 512, - 660 - ], - "score": 0.72 - }, - { - "category_id": 1, - "poly": [ - 317, - 694, - 1407, - 694, - 1407, - 734, - 317, - 734 - ], - "score": 0.644 - }, - { - "category_id": 1, - "poly": [ - 312, - 1380, - 1490, - 1380, - 1490, - 1962, - 312, - 1962 - ], - "score": 0.273 - }, - { - "category_id": 1, - "poly": [ - 314, - 813, - 1489, - 813, - 1489, - 1135, - 314, - 1135 - ], - "score": 0.234 - }, - { - "category_id": 1, - "poly": [ - 514, - 477, - 743, - 477, - 743, - 513, - 514, - 513 - ], - "score": 0.164 - }, - { - "category_id": 1, - "poly": [ - 314, - 699, - 1489, - 699, - 1489, - 1137, - 314, - 1137 - ], - "score": 0.16 - }, - { - "category_id": 1, - "poly": [ - 306, - 694, - 1419, - 694, - 1419, - 773, - 306, - 773 - ], - "score": 0.131 - }, - { - "category_id": 13, - "poly": [ - 851, - 554, - 885, - 554, - 885, - 580, - 851, - 580 - ], - "score": 0.76, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 854, - 621, - 941, - 621, - 941, - 655, - 854, - 655 - ], - "score": 0.43, - "latex": "<=3" - }, - { - "category_id": 15, - "poly": [ - 1510.0, - 157.0, - 1618.0, - 157.0, - 1618.0, - 180.0, - 1510.0, - 180.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1513.0, - 179.0, - 1613.0, - 179.0, - 1613.0, - 203.0, - 1513.0, - 203.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1543.0, - 203.0, - 1585.0, - 203.0, - 1585.0, - 227.0, - 1543.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 295.0, - 1383.0, - 295.0, - 1383.0, - 332.0, - 316.0, - 332.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 332.0, - 1074.0, - 332.0, - 1074.0, - 366.0, - 318.0, - 366.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 1274.0, - 1386.0, - 1274.0, - 1386.0, - 1309.0, - 319.0, - 1309.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1313.0, - 900.0, - 1313.0, - 900.0, - 1345.0, - 316.0, - 1345.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 1272.0, - 286.0, - 1272.0, - 286.0, - 1315.0, - 135.0, - 1315.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1205.0, - 1117.0, - 1205.0, - 1117.0, - 1235.0, - 318.0, - 1235.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 143.0, - 192.0, - 172.0, - 192.0, - 172.0, - 220.0, - 143.0, - 220.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 190.0, - 194.0, - 214.0, - 194.0, - 214.0, - 219.0, - 190.0, - 219.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 200.0, - 273.0, - 200.0, - 273.0, - 216.0, - 256.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 314.0, - 185.0, - 1478.0, - 185.0, - 1478.0, - 224.0, - 314.0, - 224.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 226.0, - 467.0, - 226.0, - 467.0, - 257.0, - 316.0, - 257.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 140.0, - 1203.0, - 214.0, - 1203.0, - 214.0, - 1239.0, - 140.0, - 1239.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 1347.0, - 1488.0, - 1347.0, - 1488.0, - 1384.0, - 1346.0, - 1384.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 840.0, - 406.0, - 966.0, - 406.0, - 966.0, - 441.0, - 840.0, - 441.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 778.0, - 77.0, - 830.0, - 77.0, - 830.0, - 122.0, - 778.0, - 122.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 733.0, - 1487.0, - 733.0, - 1487.0, - 771.0, - 1346.0, - 771.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 517.0, - 478.0, - 741.0, - 478.0, - 741.0, - 511.0, - 517.0, - 511.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 518.0, - 552.0, - 850.0, - 552.0, - 850.0, - 583.0, - 518.0, - 583.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 886.0, - 552.0, - 1221.0, - 552.0, - 1221.0, - 583.0, - 886.0, - 583.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 516.0, - 623.0, - 853.0, - 623.0, - 853.0, - 656.0, - 516.0, - 656.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 942.0, - 623.0, - 942.0, - 623.0, - 942.0, - 656.0, - 942.0, - 656.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 699.0, - 1411.0, - 699.0, - 1411.0, - 733.0, - 318.0, - 733.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 517.0, - 479.0, - 742.0, - 479.0, - 742.0, - 511.0, - 517.0, - 511.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 698.0, - 1406.0, - 698.0, - 1406.0, - 734.0, - 317.0, - 734.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1345.0, - 734.0, - 1490.0, - 734.0, - 1490.0, - 772.0, - 1345.0, - 772.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 699.0, - 1411.0, - 699.0, - 1411.0, - 734.0, - 319.0, - 734.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1343.0, - 732.0, - 1429.0, - 732.0, - 1429.0, - 775.0, - 1343.0, - 775.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 21, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 127, - 180, - 294, - 180, - 294, - 232, - 127, - 232 - ], - "score": 0.887 - }, - { - "category_id": 2, - "poly": [ - 1507, - 156, - 1612, - 156, - 1612, - 226, - 1507, - 226 - ], - "score": 0.872 - }, - { - "category_id": 2, - "poly": [ - 783, - 82, - 822, - 82, - 822, - 111, - 783, - 111 - ], - "score": 0.845 - }, - { - "category_id": 2, - "poly": [ - 1289, - 2152, - 1474, - 2152, - 1474, - 2184, - 1289, - 2184 - ], - "score": 0.833 - }, - { - "category_id": 1, - "poly": [ - 310, - 185, - 1453, - 185, - 1453, - 258, - 310, - 258 - ], - "score": 0.749 - }, - { - "category_id": 1, - "poly": [ - 639, - 1112, - 968, - 1112, - 968, - 1151, - 639, - 1151 - ], - "score": 0.549 - }, - { - "category_id": 1, - "poly": [ - 1345, - 259, - 1485, - 259, - 1485, - 296, - 1345, - 296 - ], - "score": 0.449 - }, - { - "category_id": 1, - "poly": [ - 311, - 253, - 1490, - 253, - 1490, - 946, - 311, - 946 - ], - "score": 0.409 - }, - { - "category_id": 0, - "poly": [ - 1345, - 259, - 1485, - 259, - 1485, - 296, - 1345, - 296 - ], - "score": 0.226 - }, - { - "category_id": 2, - "poly": [ - 639, - 1112, - 968, - 1112, - 968, - 1151, - 639, - 1151 - ], - "score": 0.217 - }, - { - "category_id": 5, - "poly": [ - 311, - 253, - 1490, - 253, - 1490, - 946, - 311, - 946 - ], - "score": 0.188, - "html": "
[2 marks]
" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 185.0, - 286.0, - 185.0, - 286.0, - 229.0, - 135.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1506.0, - 158.0, - 1612.0, - 158.0, - 1612.0, - 181.0, - 1506.0, - 181.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1509.0, - 180.0, - 1611.0, - 180.0, - 1611.0, - 204.0, - 1509.0, - 204.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1539.0, - 202.0, - 1581.0, - 202.0, - 1581.0, - 228.0, - 1539.0, - 228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 779.0, - 78.0, - 827.0, - 78.0, - 827.0, - 118.0, - 779.0, - 118.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1287.0, - 2152.0, - 1439.0, - 2152.0, - 1439.0, - 2185.0, - 1287.0, - 2185.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 186.0, - 1450.0, - 186.0, - 1450.0, - 224.0, - 318.0, - 224.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 227.0, - 621.0, - 227.0, - 621.0, - 257.0, - 317.0, - 257.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 642.0, - 1116.0, - 965.0, - 1116.0, - 965.0, - 1147.0, - 642.0, - 1147.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 257.0, - 1488.0, - 257.0, - 1488.0, - 298.0, - 1346.0, - 298.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1344.0, - 258.0, - 1491.0, - 258.0, - 1491.0, - 300.0, - 1344.0, - 300.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 257.0, - 1488.0, - 257.0, - 1488.0, - 298.0, - 1346.0, - 298.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 642.0, - 1116.0, - 965.0, - 1116.0, - 965.0, - 1147.0, - 642.0, - 1147.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 22, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 119, - 1994, - 1448, - 1994, - 1448, - 2044, - 119, - 2044 - ], - "score": 0.937 - }, - { - "category_id": 1, - "poly": [ - 121, - 1927, - 1435, - 1927, - 1435, - 1976, - 121, - 1976 - ], - "score": 0.932 - }, - { - "category_id": 0, - "poly": [ - 123, - 1879, - 346, - 1879, - 346, - 1906, - 123, - 1906 - ], - "score": 0.914 - }, - { - "category_id": 1, - "poly": [ - 124, - 2061, - 647, - 2061, - 647, - 2087, - 124, - 2087 - ], - "score": 0.887 - }, - { - "category_id": 2, - "poly": [ - 784, - 83, - 821, - 83, - 821, - 110, - 784, - 110 - ], - "score": 0.847 - }, - { - "category_id": 3, - "poly": [ - 110, - 137, - 1496, - 137, - 1496, - 1871, - 110, - 1871 - ], - "score": 0.759 - }, - { - "category_id": 2, - "poly": [ - 1509, - 154, - 1616, - 154, - 1616, - 224, - 1509, - 224 - ], - "score": 0.478 - }, - { - "category_id": 13, - "poly": [ - 211, - 2063, - 231, - 2063, - 231, - 2084, - 211, - 2084 - ], - "score": 0.53, - "latex": "\\copyright" - }, - { - "category_id": 15, - "poly": [ - 126.0, - 1999.0, - 1449.0, - 1999.0, - 1449.0, - 2019.0, - 126.0, - 2019.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 123.0, - 2017.0, - 1220.0, - 2017.0, - 1220.0, - 2047.0, - 123.0, - 2047.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 121.0, - 1927.0, - 1426.0, - 1927.0, - 1426.0, - 1955.0, - 121.0, - 1955.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 124.0, - 1951.0, - 860.0, - 1951.0, - 860.0, - 1976.0, - 124.0, - 1976.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 124.0, - 1881.0, - 350.0, - 1881.0, - 350.0, - 1908.0, - 124.0, - 1908.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 124.0, - 2063.0, - 210.0, - 2063.0, - 210.0, - 2088.0, - 124.0, - 2088.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 232.0, - 2063.0, - 647.0, - 2063.0, - 647.0, - 2088.0, - 232.0, - 2088.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 780.0, - 79.0, - 827.0, - 79.0, - 827.0, - 117.0, - 780.0, - 117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1510.0, - 157.0, - 1616.0, - 157.0, - 1616.0, - 180.0, - 1510.0, - 180.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1512.0, - 179.0, - 1614.0, - 179.0, - 1614.0, - 203.0, - 1512.0, - 203.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1542.0, - 199.0, - 1586.0, - 199.0, - 1586.0, - 228.0, - 1542.0, - 228.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 23, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 110, - 846, - 562, - 846, - 562, - 932, - 110, - 932 - ], - "score": 0.929 - }, - { - "category_id": 0, - "poly": [ - 109, - 443, - 822, - 443, - 822, - 788, - 109, - 788 - ], - "score": 0.742 - }, - { - "category_id": 1, - "poly": [ - 110, - 72, - 481, - 72, - 481, - 210, - 110, - 210 - ], - "score": 0.492 - }, - { - "category_id": 2, - "poly": [ - 110, - 72, - 481, - 72, - 481, - 210, - 110, - 210 - ], - "score": 0.161 - }, - { - "category_id": 1, - "poly": [ - 112, - 743, - 537, - 743, - 537, - 786, - 112, - 786 - ], - "score": 0.142 - }, - { - "category_id": 1, - "poly": [ - 110, - 654, - 539, - 654, - 539, - 787, - 110, - 787 - ], - "score": 0.105 - }, - { - "category_id": 1, - "poly": [ - 109, - 443, - 822, - 443, - 822, - 788, - 109, - 788 - ], - "score": 0.104 - }, - { - "category_id": 15, - "poly": [ - 113.0, - 849.0, - 341.0, - 849.0, - 341.0, - 888.0, - 113.0, - 888.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 897.0, - 557.0, - 897.0, - 557.0, - 928.0, - 116.0, - 928.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 451.0, - 296.0, - 451.0, - 296.0, - 521.0, - 116.0, - 521.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 121.0, - 564.0, - 813.0, - 564.0, - 813.0, - 620.0, - 121.0, - 620.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 659.0, - 362.0, - 659.0, - 362.0, - 734.0, - 113.0, - 734.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 748.0, - 533.0, - 748.0, - 533.0, - 784.0, - 112.0, - 784.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 101.0, - 387.0, - 101.0, - 387.0, - 205.0, - 113.0, - 205.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 384.0, - 84.0, - 481.0, - 84.0, - 481.0, - 170.0, - 384.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 101.0, - 387.0, - 101.0, - 387.0, - 205.0, - 113.0, - 205.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 384.0, - 84.0, - 481.0, - 84.0, - 481.0, - 170.0, - 384.0, - 170.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 111.0, - 745.0, - 533.0, - 745.0, - 533.0, - 787.0, - 111.0, - 787.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 659.0, - 359.0, - 659.0, - 359.0, - 734.0, - 114.0, - 734.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 745.0, - 535.0, - 745.0, - 535.0, - 786.0, - 112.0, - 786.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 451.0, - 296.0, - 451.0, - 296.0, - 521.0, - 116.0, - 521.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 121.0, - 564.0, - 813.0, - 564.0, - 813.0, - 620.0, - 121.0, - 620.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 659.0, - 362.0, - 659.0, - 362.0, - 734.0, - 113.0, - 734.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 748.0, - 533.0, - 748.0, - 533.0, - 784.0, - 112.0, - 784.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 24, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 119, - 597, - 1503, - 597, - 1503, - 778, - 119, - 778 - ], - "score": 0.969 - }, - { - "category_id": 1, - "poly": [ - 117, - 235, - 1516, - 235, - 1516, - 560, - 117, - 560 - ], - "score": 0.95 - }, - { - "category_id": 1, - "poly": [ - 115, - 885, - 841, - 885, - 841, - 923, - 115, - 923 - ], - "score": 0.91 - }, - { - "category_id": 1, - "poly": [ - 121, - 813, - 1001, - 813, - 1001, - 850, - 121, - 850 - ], - "score": 0.904 - }, - { - "category_id": 2, - "poly": [ - 645, - 100, - 1536, - 100, - 1536, - 136, - 645, - 136 - ], - "score": 0.881 - }, - { - "category_id": 1, - "poly": [ - 110, - 957, - 1490, - 957, - 1490, - 1532, - 110, - 1532 - ], - "score": 0.863 - }, - { - "category_id": 1, - "poly": [ - 113, - 957, - 777, - 957, - 777, - 1098, - 113, - 1098 - ], - "score": 0.135 - }, - { - "category_id": 1, - "poly": [ - 117, - 1303, - 406, - 1303, - 406, - 1339, - 117, - 1339 - ], - "score": 0.101 - }, - { - "category_id": 13, - "poly": [ - 112, - 1061, - 131, - 1061, - 131, - 1094, - 112, - 1094 - ], - "score": 0.29, - "latex": "/" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 600.0, - 1485.0, - 600.0, - 1485.0, - 632.0, - 117.0, - 632.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 638.0, - 1456.0, - 638.0, - 1456.0, - 670.0, - 117.0, - 670.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 673.0, - 1426.0, - 673.0, - 1426.0, - 709.0, - 115.0, - 709.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 711.0, - 1502.0, - 711.0, - 1502.0, - 743.0, - 115.0, - 743.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 748.0, - 209.0, - 748.0, - 209.0, - 779.0, - 112.0, - 779.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 235.0, - 1518.0, - 235.0, - 1518.0, - 273.0, - 114.0, - 273.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 275.0, - 1486.0, - 275.0, - 1486.0, - 311.0, - 115.0, - 311.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 313.0, - 1518.0, - 313.0, - 1518.0, - 344.0, - 117.0, - 344.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 349.0, - 1449.0, - 349.0, - 1449.0, - 381.0, - 117.0, - 381.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 383.0, - 1480.0, - 383.0, - 1480.0, - 421.0, - 114.0, - 421.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 419.0, - 1491.0, - 419.0, - 1491.0, - 454.0, - 114.0, - 454.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 457.0, - 1407.0, - 457.0, - 1407.0, - 489.0, - 117.0, - 489.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 492.0, - 1483.0, - 492.0, - 1483.0, - 524.0, - 117.0, - 524.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 527.0, - 857.0, - 527.0, - 857.0, - 564.0, - 114.0, - 564.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 887.0, - 841.0, - 887.0, - 841.0, - 922.0, - 117.0, - 922.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 815.0, - 1002.0, - 815.0, - 1002.0, - 851.0, - 116.0, - 851.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 647.0, - 102.0, - 1535.0, - 102.0, - 1535.0, - 132.0, - 647.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 211.0, - 960.0, - 504.0, - 960.0, - 504.0, - 993.0, - 211.0, - 993.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 1008.0, - 143.0, - 1008.0, - 143.0, - 1043.0, - 112.0, - 1043.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 173.0, - 1012.0, - 596.0, - 1012.0, - 596.0, - 1046.0, - 173.0, - 1046.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 132.0, - 1062.0, - 136.0, - 1062.0, - 136.0, - 1092.0, - 132.0, - 1092.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 191.0, - 1064.0, - 775.0, - 1064.0, - 775.0, - 1097.0, - 191.0, - 1097.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 1113.0, - 148.0, - 1113.0, - 148.0, - 1147.0, - 114.0, - 1147.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 208.0, - 1115.0, - 1484.0, - 1115.0, - 1484.0, - 1148.0, - 208.0, - 1148.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 213.0, - 1151.0, - 751.0, - 1151.0, - 751.0, - 1184.0, - 213.0, - 1184.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 1201.0, - 148.0, - 1201.0, - 148.0, - 1234.0, - 114.0, - 1234.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 1198.0, - 769.0, - 1198.0, - 769.0, - 1239.0, - 170.0, - 1239.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 111.0, - 1247.0, - 476.0, - 1247.0, - 476.0, - 1293.0, - 111.0, - 1293.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 1306.0, - 136.0, - 1306.0, - 136.0, - 1335.0, - 112.0, - 1335.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 168.0, - 1303.0, - 408.0, - 1303.0, - 408.0, - 1341.0, - 168.0, - 1341.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 1353.0, - 1387.0, - 1353.0, - 1387.0, - 1392.0, - 114.0, - 1392.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 214.0, - 1392.0, - 1494.0, - 1392.0, - 1494.0, - 1424.0, - 214.0, - 1424.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 216.0, - 1427.0, - 1495.0, - 1427.0, - 1495.0, - 1460.0, - 216.0, - 1460.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 211.0, - 1458.0, - 1491.0, - 1458.0, - 1491.0, - 1498.0, - 211.0, - 1498.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 213.0, - 1499.0, - 544.0, - 1499.0, - 544.0, - 1532.0, - 213.0, - 1532.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 978.0, - 129.0, - 978.0, - 129.0, - 993.0, - 117.0, - 993.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 211.0, - 960.0, - 504.0, - 960.0, - 504.0, - 991.0, - 211.0, - 991.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 1009.0, - 143.0, - 1009.0, - 143.0, - 1044.0, - 112.0, - 1044.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 211.0, - 1011.0, - 595.0, - 1011.0, - 595.0, - 1043.0, - 211.0, - 1043.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 132.0, - 1060.0, - 137.0, - 1060.0, - 137.0, - 1095.0, - 132.0, - 1095.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 211.0, - 1063.0, - 774.0, - 1063.0, - 774.0, - 1094.0, - 211.0, - 1094.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 1304.0, - 135.0, - 1304.0, - 135.0, - 1336.0, - 113.0, - 1336.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 181.0, - 1307.0, - 404.0, - 1307.0, - 404.0, - 1337.0, - 181.0, - 1337.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 25, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 117, - 1194, - 1526, - 1194, - 1526, - 1407, - 117, - 1407 - ], - "score": 0.979 - }, - { - "category_id": 1, - "poly": [ - 117, - 621, - 1524, - 621, - 1524, - 833, - 117, - 833 - ], - "score": 0.979 - }, - { - "category_id": 1, - "poly": [ - 117, - 868, - 1532, - 868, - 1532, - 1081, - 117, - 1081 - ], - "score": 0.978 - }, - { - "category_id": 1, - "poly": [ - 119, - 1546, - 1457, - 1546, - 1457, - 1653, - 119, - 1653 - ], - "score": 0.969 - }, - { - "category_id": 1, - "poly": [ - 112, - 1440, - 1523, - 1440, - 1523, - 1514, - 112, - 1514 - ], - "score": 0.948 - }, - { - "category_id": 0, - "poly": [ - 117, - 237, - 902, - 237, - 902, - 289, - 117, - 289 - ], - "score": 0.945 - }, - { - "category_id": 1, - "poly": [ - 114, - 433, - 1499, - 433, - 1499, - 506, - 114, - 506 - ], - "score": 0.939 - }, - { - "category_id": 1, - "poly": [ - 118, - 325, - 1460, - 325, - 1460, - 397, - 118, - 397 - ], - "score": 0.938 - }, - { - "category_id": 1, - "poly": [ - 114, - 1688, - 1351, - 1688, - 1351, - 1725, - 114, - 1725 - ], - "score": 0.909 - }, - { - "category_id": 0, - "poly": [ - 121, - 1115, - 543, - 1115, - 543, - 1159, - 121, - 1159 - ], - "score": 0.904 - }, - { - "category_id": 0, - "poly": [ - 118, - 540, - 533, - 540, - 533, - 585, - 118, - 585 - ], - "score": 0.887 - }, - { - "category_id": 2, - "poly": [ - 644, - 100, - 1537, - 100, - 1537, - 136, - 644, - 136 - ], - "score": 0.874 - }, - { - "category_id": 2, - "poly": [ - 1520, - 2215, - 1538, - 2215, - 1538, - 2237, - 1520, - 2237 - ], - "score": 0.579 - }, - { - "category_id": 2, - "poly": [ - 1520, - 2215, - 1537, - 2215, - 1537, - 2237, - 1520, - 2237 - ], - "score": 0.548 - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1196.0, - 1474.0, - 1196.0, - 1474.0, - 1232.0, - 117.0, - 1232.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1235.0, - 1518.0, - 1235.0, - 1518.0, - 1266.0, - 117.0, - 1266.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 1271.0, - 1485.0, - 1271.0, - 1485.0, - 1302.0, - 116.0, - 1302.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1305.0, - 1501.0, - 1305.0, - 1501.0, - 1336.0, - 117.0, - 1336.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 1341.0, - 1530.0, - 1341.0, - 1530.0, - 1372.0, - 116.0, - 1372.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 1375.0, - 1400.0, - 1375.0, - 1400.0, - 1406.0, - 116.0, - 1406.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 623.0, - 1522.0, - 623.0, - 1522.0, - 657.0, - 117.0, - 657.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 659.0, - 1522.0, - 659.0, - 1522.0, - 695.0, - 116.0, - 695.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 695.0, - 1475.0, - 695.0, - 1475.0, - 730.0, - 116.0, - 730.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 732.0, - 1488.0, - 732.0, - 1488.0, - 763.0, - 117.0, - 763.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 766.0, - 1483.0, - 766.0, - 1483.0, - 802.0, - 116.0, - 802.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 798.0, - 565.0, - 798.0, - 565.0, - 836.0, - 113.0, - 836.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 870.0, - 1516.0, - 870.0, - 1516.0, - 906.0, - 116.0, - 906.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 908.0, - 1505.0, - 908.0, - 1505.0, - 939.0, - 118.0, - 939.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 942.0, - 1459.0, - 942.0, - 1459.0, - 973.0, - 118.0, - 973.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 976.0, - 1533.0, - 976.0, - 1533.0, - 1009.0, - 114.0, - 1009.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 1014.0, - 1494.0, - 1014.0, - 1494.0, - 1045.0, - 118.0, - 1045.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 1045.0, - 1410.0, - 1045.0, - 1410.0, - 1080.0, - 116.0, - 1080.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1551.0, - 1450.0, - 1551.0, - 1450.0, - 1582.0, - 117.0, - 1582.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1587.0, - 1419.0, - 1587.0, - 1419.0, - 1617.0, - 117.0, - 1617.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 1622.0, - 1225.0, - 1622.0, - 1225.0, - 1653.0, - 115.0, - 1653.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1441.0, - 1524.0, - 1441.0, - 1524.0, - 1481.0, - 117.0, - 1481.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1481.0, - 920.0, - 1481.0, - 920.0, - 1515.0, - 117.0, - 1515.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 240.0, - 900.0, - 240.0, - 900.0, - 290.0, - 116.0, - 290.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 433.0, - 1493.0, - 433.0, - 1493.0, - 473.0, - 117.0, - 473.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 473.0, - 1416.0, - 473.0, - 1416.0, - 507.0, - 117.0, - 507.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 326.0, - 1447.0, - 326.0, - 1447.0, - 360.0, - 116.0, - 360.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 364.0, - 1459.0, - 364.0, - 1459.0, - 397.0, - 118.0, - 397.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1692.0, - 1348.0, - 1692.0, - 1348.0, - 1724.0, - 117.0, - 1724.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 1120.0, - 541.0, - 1120.0, - 541.0, - 1156.0, - 119.0, - 1156.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 546.0, - 534.0, - 546.0, - 534.0, - 583.0, - 117.0, - 583.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 647.0, - 102.0, - 1534.0, - 102.0, - 1534.0, - 132.0, - 647.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1519.0, - 2215.0, - 1541.0, - 2215.0, - 1541.0, - 2243.0, - 1519.0, - 2243.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1519.0, - 2215.0, - 1541.0, - 2215.0, - 1541.0, - 2243.0, - 1519.0, - 2243.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 26, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 97, - 1119, - 1557, - 1119, - 1557, - 1403, - 97, - 1403 - ], - "score": 0.973, - "html": "
014All marks AO1 (understanding) 2 (Shifting the bit pattern) three places; to the left; Markasfollows:
" - }, - { - "category_id": 5, - "poly": [ - 96, - 1435, - 1555, - 1435, - 1555, - 1661, - 96, - 1661 - ], - "score": 0.972, - "html": "
015Mark is for A02 (apply)1
BF;
R. If more than one lozenge shaded
" - }, - { - "category_id": 5, - "poly": [ - 98, - 862, - 1558, - 862, - 1558, - 1087, - 98, - 1087 - ], - "score": 0.971, - "html": "
013All marks Ao1 (understanding) 2
(The answer is incorrect because) the number will (still) be represented using
binary in a computer's memory;
so it will take up the same amount of memory space;
" - }, - { - "category_id": 5, - "poly": [ - 99, - 1693, - 1555, - 1693, - 1555, - 2100, - 99, - 2100 - ], - "score": 0.97, - "html": "
016All marks AO1 (understanding) 2
/ specialist documents;Advantages: Can represent awiderrangeof characters; Can represent characters from a wider range of languages; Can represent characters used in scientific / mathematical /technical
" - }, - { - "category_id": 5, - "poly": [ - 98, - 563, - 1555, - 563, - 1555, - 830, - 98, - 830 - ], - "score": 0.969, - "html": "
012AllmarksAo2 (apply)2
4; (This must be the left hand digit to gain the mark)
E; (This must be the right hand digit to gain the mark)
Maximum1mark:Iffinalanswernotcorrect.
" - }, - { - "category_id": 5, - "poly": [ - 97, - 376, - 1555, - 376, - 1555, - 531, - 97, - 531 - ], - "score": 0.961, - "html": "
011Mark is for A02 (apply)1
78;
" - }, - { - "category_id": 5, - "poly": [ - 96, - 268, - 1551, - 268, - 1551, - 347, - 96, - 347 - ], - "score": 0.956, - "html": "
QuPartMarking guidanceTotal marks
" - }, - { - "category_id": 2, - "poly": [ - 641, - 98, - 1539, - 98, - 1539, - 137, - 641, - 137 - ], - "score": 0.775 - }, - { - "category_id": 2, - "poly": [ - 114, - 2215, - 133, - 2215, - 133, - 2238, - 114, - 2238 - ], - "score": 0.772 - }, - { - "category_id": 15, - "poly": [ - 647.0, - 102.0, - 1536.0, - 102.0, - 1536.0, - 133.0, - 647.0, - 133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 2218.0, - 135.0, - 2218.0, - 135.0, - 2240.0, - 116.0, - 2240.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 27, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 97, - 342, - 1558, - 342, - 1558, - 761, - 97, - 761 - ], - "score": 0.972, - "html": "
01 7 All marks AO2 (apply)
CharacterHuffman coding
111
SPACE10
B00110
Markasfollows:
" - }, - { - "category_id": 5, - "poly": [ - 97, - 1543, - 1561, - 1543, - 1561, - 2025, - 97, - 2025 - ], - "score": 0.971, - "html": "
02 11 mark for AO1 (recall) and 1 mark for A02 (apply) 2
1000× 4//4000;;x 1 mark for A01: identifying that there are 10o0 megabytes in a gigabyte;
1 mark for AO2: multiplying by 4;
A.1024 × 4 // 4096;
Maximum 1mark: If final answer not correct.
" - }, - { - "category_id": 5, - "poly": [ - 99, - 795, - 1558, - 795, - 1558, - 1508, - 99, - 1508 - ], - "score": 0.964, - "html": "
0181 mark for AO1 (understanding) and 2 marks for A02 (apply) 7;*26; =182 182 - 83; = 993
" - }, - { - "category_id": 5, - "poly": [ - 99, - 231, - 1559, - 231, - 1559, - 312, - 99, - 312 - ], - "score": 0.94, - "html": "
QuPartMarking guidanceTotal marks
" - }, - { - "category_id": 2, - "poly": [ - 1519, - 2214, - 1539, - 2214, - 1539, - 2239, - 1519, - 2239 - ], - "score": 0.745 - }, - { - "category_id": 2, - "poly": [ - 641, - 98, - 1540, - 98, - 1540, - 137, - 641, - 137 - ], - "score": 0.545 - }, - { - "category_id": 2, - "poly": [ - 1519, - 2214, - 1538, - 2214, - 1538, - 2239, - 1519, - 2239 - ], - "score": 0.438 - }, - { - "category_id": 0, - "poly": [ - 641, - 98, - 1540, - 98, - 1540, - 137, - 641, - 137 - ], - "score": 0.253 - }, - { - "category_id": 15, - "poly": [ - 1520.0, - 2214.0, - 1541.0, - 2214.0, - 1541.0, - 2242.0, - 1520.0, - 2242.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 647.0, - 102.0, - 1536.0, - 102.0, - 1536.0, - 133.0, - 647.0, - 133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1519.0, - 2214.0, - 1542.0, - 2214.0, - 1542.0, - 2243.0, - 1519.0, - 2243.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 647.0, - 102.0, - 1536.0, - 102.0, - 1536.0, - 133.0, - 647.0, - 133.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 28, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 98, - 341, - 1555, - 341, - 1555, - 653, - 98, - 653 - ], - "score": 0.973, - "html": "
022All marks AO1 (understanding)2
Max2
Lighter; Smaller; Uses less power; More robust; Generates less heat; Quieter;
" - }, - { - "category_id": 5, - "poly": [ - 99, - 981, - 1560, - 981, - 1560, - 1429, - 99, - 1429 - ], - "score": 0.972, - "html": "
024All marks AO1 (understanding)4
On a hard disk binary data represented by tiny magnetised regions; where the magnetic orientation in one direction represents O, and the other direction represents 1; When reading data the read/write head is moved (to be overcorrecttrack);andtheplatter/diskspinsround; A whole sector/block read in one go (by the read/write head);
" - }, - { - "category_id": 5, - "poly": [ - 97, - 685, - 1557, - 685, - 1557, - 947, - 97, - 947 - ], - "score": 0.967, - "html": "
0232 marks for Ao2 (apply) 2 Using just solid state would cost much more;
" - }, - { - "category_id": 5, - "poly": [ - 96, - 231, - 1550, - 231, - 1550, - 312, - 96, - 312 - ], - "score": 0.939, - "html": "
QuPartMarking guidanceTotal marks
" - }, - { - "category_id": 2, - "poly": [ - 114, - 2215, - 133, - 2215, - 133, - 2238, - 114, - 2238 - ], - "score": 0.802 - }, - { - "category_id": 2, - "poly": [ - 641, - 98, - 1540, - 98, - 1540, - 138, - 641, - 138 - ], - "score": 0.538 - }, - { - "category_id": 0, - "poly": [ - 641, - 98, - 1540, - 98, - 1540, - 138, - 641, - 138 - ], - "score": 0.247 - }, - { - "category_id": 15, - "poly": [ - 114.0, - 2214.0, - 136.0, - 2214.0, - 136.0, - 2243.0, - 114.0, - 2243.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 647.0, - 102.0, - 1536.0, - 102.0, - 1536.0, - 132.0, - 647.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 647.0, - 102.0, - 1536.0, - 102.0, - 1536.0, - 132.0, - 647.0, - 132.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 29, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 96, - 364, - 1578, - 364, - 1578, - 1827, - 96, - 1827 - ], - "score": 0.97, - "html": "
02 5All marks A02 (apply)9
Level 3Description Answer demonstrates a sustained line of reasoning with a substantiatedMark Range 7-9
2technological and social reasons. There is a logically structured consideration of the advantages and the disadvantages associated with the use of cloud storage - including relevant points covering at least two of legal, ethical and environmental issues. Answer includes an explanation for the recent large growth in the use of cloud4-6
storage that includes both technological and social reasons. There is a logically structured consideration of the advantages and the disadvantages associated with the use of cloud storage - including one or two relevant points related to legal, ethical and environmental issues.1-3
some of the reasons for the recent large growth in the use of cloud computing and/or brief consideration of the advantages and/or disadvantages associated with using cloud storage.
Nocreditworthyanswer0
" - }, - { - "category_id": 5, - "poly": [ - 99, - 232, - 1559, - 232, - 1559, - 312, - 99, - 312 - ], - "score": 0.902, - "html": "
QuPartTotal marks
Marking guidance
" - }, - { - "category_id": 2, - "poly": [ - 642, - 98, - 1539, - 98, - 1539, - 137, - 642, - 137 - ], - "score": 0.828 - }, - { - "category_id": 2, - "poly": [ - 1520, - 2214, - 1538, - 2214, - 1538, - 2237, - 1520, - 2237 - ], - "score": 0.697 - }, - { - "category_id": 2, - "poly": [ - 1520, - 2214, - 1538, - 2214, - 1538, - 2237, - 1520, - 2237 - ], - "score": 0.39 - }, - { - "category_id": 5, - "poly": [ - 99, - 231, - 1557, - 231, - 1557, - 312, - 99, - 312 - ], - "score": 0.105, - "html": "
QuPartMarking guidanceTotal marks
" - }, - { - "category_id": 15, - "poly": [ - 647.0, - 102.0, - 1536.0, - 102.0, - 1536.0, - 133.0, - 647.0, - 133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 2213.0, - 1542.0, - 2213.0, - 1542.0, - 2244.0, - 1517.0, - 2244.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1517.0, - 2213.0, - 1542.0, - 2213.0, - 1542.0, - 2244.0, - 1517.0, - 2244.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 30, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 101, - 232, - 1556, - 232, - 1556, - 1278, - 101, - 1278 - ], - "score": 0.94, - "html": "
Guidance - Indicative Response (reasons for growth) Higher bandwidth mobile networks (eg 4G); Increased availability of mobile devices; Reduction in cost of large capacity storage devices; Improvements in network security; People have a higher level of trust in cloud storage; Improvements inwebbrowser software; Increased availability of supercomputers (for cloud processing); Companies have managed to develop business models based on cloud computing that allow them to make a profit; Guidance - Indicative Response (advantages of cloud storage) Enables user to access their data from more places/devices; cloud storage publically available); Increases the amount of storage available; Reduced cost of computing devices for users as no need for as much built-in secondary storage;
" - }, - { - "category_id": 2, - "poly": [ - 642, - 99, - 1539, - 99, - 1539, - 137, - 642, - 137 - ], - "score": 0.869 - }, - { - "category_id": 2, - "poly": [ - 115, - 2215, - 133, - 2215, - 133, - 2238, - 115, - 2238 - ], - "score": 0.798 - }, - { - "category_id": 15, - "poly": [ - 647.0, - 102.0, - 1536.0, - 102.0, - 1536.0, - 132.0, - 647.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 2215.0, - 136.0, - 2215.0, - 136.0, - 2243.0, - 114.0, - 2243.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 31, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 98, - 1341, - 1563, - 1341, - 1563, - 1854, - 98, - 1854 - ], - "score": 0.979, - "html": "
032 All marks AO1 (understanding) Share hardware; A. by example Sharedata/files; Easier to work collaboratively; Useofcommunicationtools3 deployment, centralised back-ups;
" - }, - { - "category_id": 5, - "poly": [ - 99, - 344, - 1559, - 344, - 1559, - 1276, - 99, - 1276 - ], - "score": 0.965, - "html": "
031All marks Ao1 (understanding) 2
Reasons for allowing: them to plan lessons at home; travel difficulties); Reasonsfor not allowing:Teachers can access resources on the school network to allow Teachers can teach lessons from home (using videoconferencing) if they are not able to get into work (eg
network);Teachers can access electronic copies of student work so that they do not have to carry marking home; Data protection issues - schools may not want potentially sensitive student information to be accessed outside of school; To try to help teachers have a work-life balance; Increased security risks as teachers may not have fully- anti-virus software on their home computer this may cause problems when they connect their computer to the school
" - }, - { - "category_id": 5, - "poly": [ - 99, - 231, - 1559, - 231, - 1559, - 312, - 99, - 312 - ], - "score": 0.933, - "html": "
QuPartMarking guidanceTotal marks
" - }, - { - "category_id": 2, - "poly": [ - 642, - 98, - 1539, - 98, - 1539, - 137, - 642, - 137 - ], - "score": 0.72 - }, - { - "category_id": 2, - "poly": [ - 1519, - 2215, - 1539, - 2215, - 1539, - 2238, - 1519, - 2238 - ], - "score": 0.677 - }, - { - "category_id": 2, - "poly": [ - 1519, - 2215, - 1538, - 2215, - 1538, - 2238, - 1519, - 2238 - ], - "score": 0.56 - }, - { - "category_id": 0, - "poly": [ - 642, - 98, - 1539, - 98, - 1539, - 137, - 642, - 137 - ], - "score": 0.132 - }, - { - "category_id": 15, - "poly": [ - 647.0, - 102.0, - 1536.0, - 102.0, - 1536.0, - 133.0, - 647.0, - 133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1519.0, - 2215.0, - 1540.0, - 2215.0, - 1540.0, - 2243.0, - 1519.0, - 2243.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1519.0, - 2214.0, - 1541.0, - 2214.0, - 1541.0, - 2243.0, - 1519.0, - 2243.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 647.0, - 102.0, - 1536.0, - 102.0, - 1536.0, - 133.0, - 647.0, - 133.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 32, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 99, - 359, - 1554, - 359, - 1554, - 766, - 99, - 766 - ], - "score": 0.977, - "html": "
0331 mark for AO1 (understanding) 1
example);PANs are centred around one person, LANs cover a limited geographical area / LANs cover a larger area; PANs have one user, LANs (normally) have more than one user; PAN uses Bluetooth, LAN uses alternative protocols / connection methods (A. by
" - }, - { - "category_id": 5, - "poly": [ - 98, - 798, - 1556, - 798, - 1556, - 1166, - 98, - 1166 - ], - "score": 0.976, - "html": "
0341 mark for Ao1 (understanding) 1
Wearablecomputingdevices;
Connecting headphones to a music player;
Connecting pedometer to a mobile phone;
Max 1A.any suitable example
" - }, - { - "category_id": 5, - "poly": [ - 96, - 1445, - 1555, - 1445, - 1555, - 1671, - 96, - 1671 - ], - "score": 0.972, - "html": "
036Mark is for AO1 (recall)1
EIMAP;
R. If more than one lozenge shaded
" - }, - { - "category_id": 5, - "poly": [ - 96, - 1197, - 1554, - 1197, - 1554, - 1414, - 96, - 1414 - ], - "score": 0.97, - "html": "
035All marks Ao1 (recall)2
a set of rules;
thatallowtwodevicestocommunicate;
" - }, - { - "category_id": 5, - "poly": [ - 97, - 1703, - 1554, - 1703, - 1554, - 1930, - 97, - 1930 - ], - "score": 0.965, - "html": "
037Mark is for AO1 (recall)1
BHTTPS;
R. If more than one lozenge shaded
" - }, - { - "category_id": 5, - "poly": [ - 92, - 249, - 1542, - 249, - 1542, - 326, - 92, - 326 - ], - "score": 0.939, - "html": "
QuPartMarking guidanceTotal
marks
" - }, - { - "category_id": 2, - "poly": [ - 117, - 2214, - 146, - 2214, - 146, - 2238, - 117, - 2238 - ], - "score": 0.867 - }, - { - "category_id": 2, - "poly": [ - 641, - 98, - 1540, - 98, - 1540, - 138, - 641, - 138 - ], - "score": 0.709 - }, - { - "category_id": 0, - "poly": [ - 641, - 98, - 1540, - 98, - 1540, - 138, - 641, - 138 - ], - "score": 0.127 - }, - { - "category_id": 15, - "poly": [ - 112.0, - 2211.0, - 151.0, - 2211.0, - 151.0, - 2247.0, - 112.0, - 2247.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 647.0, - 102.0, - 1536.0, - 102.0, - 1536.0, - 132.0, - 647.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 647.0, - 102.0, - 1536.0, - 102.0, - 1536.0, - 132.0, - 647.0, - 132.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 33, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 97, - 358, - 1557, - 358, - 1557, - 585, - 97, - 585 - ], - "score": 0.964, - "html": "
038Mark is for AO1 (recall)1
DSMTP;
R. If more than one lozenge shaded
" - }, - { - "category_id": 5, - "poly": [ - 98, - 614, - 1560, - 614, - 1560, - 1183, - 98, - 1183 - ], - "score": 0.961, - "html": "
039All marks AO1 (recall)3
LayerOrder (1-4)
Transport2
Link4
Network3
Application1
Mark as follows:
1 mark: any row correct;
" - }, - { - "category_id": 5, - "poly": [ - 101, - 249, - 1554, - 249, - 1554, - 326, - 101, - 326 - ], - "score": 0.936, - "html": "
QuPartTotal
Marking guidancemarks
" - }, - { - "category_id": 2, - "poly": [ - 1510, - 2215, - 1535, - 2215, - 1535, - 2237, - 1510, - 2237 - ], - "score": 0.834 - }, - { - "category_id": 2, - "poly": [ - 642, - 98, - 1540, - 98, - 1540, - 137, - 642, - 137 - ], - "score": 0.814 - }, - { - "category_id": 15, - "poly": [ - 1505.0, - 2212.0, - 1543.0, - 2212.0, - 1543.0, - 2246.0, - 1505.0, - 2246.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 647.0, - 102.0, - 1536.0, - 102.0, - 1536.0, - 133.0, - 647.0, - 133.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 34, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 100, - 1021, - 1560, - 1021, - 1560, - 1767, - 100, - 1767 - ], - "score": 0.975, - "html": "
53 marks for AO1 (understanding) 1 mark each for describing the social engineering technique.
Blagging
This is where a victim is tricked/persuaded by a fraudster to give their details or payment information for a false reason/purpose;
Phishing Is where the victim receives and responds to a communication that appears to be from a valid or known source but is in fact fraudulent. (It allows the fraudster to
capture private information before the victim realises); This is where someone watches and records\\remembers a victim entering their
Shouldering information to gain access to a system);pin or security information such as passwords. (They can then use this
" - }, - { - "category_id": 5, - "poly": [ - 101, - 342, - 1557, - 342, - 1557, - 525, - 101, - 525 - ], - "score": 0.969, - "html": "
0411 marks for AO1 1 (understanding)
C Data and instructions;
R. If more than one lozenge shaded
" - }, - { - "category_id": 5, - "poly": [ - 102, - 555, - 1558, - 555, - 1558, - 991, - 102, - 991 - ], - "score": 0.945, - "html": "
04 23 marks for Ao1 (understanding)3
DescriptionLetter
SendsacontinuousseriesofelectronicpulsesD;
DecodesthecurrentinstructionC;
Completes calculationsB;
Markasfollows: 1 mark: one row correct;
2 marks: two rows correct; 3 marks: all rows correct;
" - }, - { - "category_id": 2, - "poly": [ - 118, - 2215, - 145, - 2215, - 145, - 2238, - 118, - 2238 - ], - "score": 0.854 - }, - { - "category_id": 5, - "poly": [ - 94, - 232, - 1543, - 232, - 1543, - 311, - 94, - 311 - ], - "score": 0.83, - "html": "
QuPartMarking guidanceTotal marks
" - }, - { - "category_id": 5, - "poly": [ - 98, - 231, - 1550, - 231, - 1550, - 312, - 98, - 312 - ], - "score": 0.642, - "html": "
QuPartMarking guidanceTotal marks
" - }, - { - "category_id": 2, - "poly": [ - 641, - 98, - 1540, - 98, - 1540, - 137, - 641, - 137 - ], - "score": 0.608 - }, - { - "category_id": 0, - "poly": [ - 641, - 98, - 1540, - 98, - 1540, - 137, - 641, - 137 - ], - "score": 0.207 - }, - { - "category_id": 15, - "poly": [ - 113.0, - 2213.0, - 149.0, - 2213.0, - 149.0, - 2245.0, - 113.0, - 2245.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 647.0, - 102.0, - 1536.0, - 102.0, - 1536.0, - 133.0, - 647.0, - 133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 647.0, - 102.0, - 1536.0, - 102.0, - 1536.0, - 133.0, - 647.0, - 133.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 35, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 101, - 660, - 1563, - 660, - 1563, - 1482, - 101, - 1482 - ], - "score": 0.977, - "html": "
0624 marks for A02 (apply) 4 marks if answer is correct4
5,000 bytes/5,000B:.;
A. 5,000
If answer given is not 5,ooo bytes then award working marks as follows:
Mark A for multiplying any two of 2,0o0, 4 and 5 even if the result is incorrect; Mark B for multiplying all of 2,0o0, 4 and 5 even if the result is incorrect;
Mark C for attempting to divide the result of a multiplication by 8; Partially correct examples:
Example 1
2,000 *4 = 8,000;(Mark A)
8,000 / 8 = 1,000; (Mark C)
Example 2
2,000 * 4 * 5 = 20,000; (Mark A and Mark B, note result is incorrect)
20,000 / 8 = 2,000; (Mark C, note result is incorrect)
" - }, - { - "category_id": 5, - "poly": [ - 101, - 376, - 1559, - 376, - 1559, - 631, - 101, - 631 - ], - "score": 0.966, - "html": "
0612 marks for Ao1 (understanding)2
Maximumof2from:
Computer systems use binary/ones and zeros/voltage on or off; Soundisanalogue/continuous;
Computersuse digitaldata/discretevalues;
" - }, - { - "category_id": 5, - "poly": [ - 99, - 231, - 1558, - 231, - 1558, - 313, - 99, - 313 - ], - "score": 0.953, - "html": "
QuPartMarking guidanceTotal marks
" - }, - { - "category_id": 2, - "poly": [ - 1511, - 2215, - 1537, - 2215, - 1537, - 2238, - 1511, - 2238 - ], - "score": 0.847 - }, - { - "category_id": 2, - "poly": [ - 642, - 98, - 1540, - 98, - 1540, - 137, - 642, - 137 - ], - "score": 0.693 - }, - { - "category_id": 0, - "poly": [ - 642, - 98, - 1540, - 98, - 1540, - 137, - 642, - 137 - ], - "score": 0.154 - }, - { - "category_id": 13, - "poly": [ - 267, - 1263, - 506, - 1263, - 506, - 1295, - 267, - 1295 - ], - "score": 0.79, - "latex": "2,000^{\\star}4=8,000" - }, - { - "category_id": 13, - "poly": [ - 266, - 1403, - 574, - 1403, - 574, - 1436, - 266, - 1436 - ], - "score": 0.75, - "latex": "2,000^{\\star}4^{\\star}5=20,000;" - }, - { - "category_id": 13, - "poly": [ - 269, - 1438, - 520, - 1438, - 520, - 1472, - 269, - 1472 - ], - "score": 0.32, - "latex": "20,000/8=2,000" - }, - { - "category_id": 13, - "poly": [ - 266, - 1298, - 606, - 1298, - 606, - 1334, - 266, - 1334 - ], - "score": 0.28, - "latex": "8,000/8=1,000;(\\mathsf{M a r k}" - }, - { - "category_id": 15, - "poly": [ - 1506.0, - 2213.0, - 1542.0, - 2213.0, - 1542.0, - 2244.0, - 1506.0, - 2244.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 647.0, - 102.0, - 1536.0, - 102.0, - 1536.0, - 133.0, - 647.0, - 133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 647.0, - 102.0, - 1536.0, - 102.0, - 1536.0, - 133.0, - 647.0, - 133.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 36, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 100, - 590, - 1563, - 590, - 1563, - 774, - 100, - 774 - ], - "score": 0.968, - "html": "
06 4(apply) 1
D Improves the quality of the recording a andincreases the file size; 1
" - }, - { - "category_id": 5, - "poly": [ - 100, - 377, - 1560, - 377, - 1560, - 560, - 100, - 560 - ], - "score": 0.967, - "html": "
063Mark is for AO2 2 (apply)1
B 5 bits;
" - }, - { - "category_id": 5, - "poly": [ - 100, - 1724, - 1560, - 1724, - 1560, - 1906, - 100, - 1906 - ], - "score": 0.961, - "html": "
0732 marks for AO1 (understanding)2
[Statement A:] compiler;
[StatementB:]assembler;
" - }, - { - "category_id": 5, - "poly": [ - 97, - 269, - 1552, - 269, - 1552, - 347, - 97, - 347 - ], - "score": 0.959, - "html": "
QuPartMarking guidanceTotal marks
" - }, - { - "category_id": 5, - "poly": [ - 100, - 802, - 1561, - 802, - 1561, - 988, - 100, - 988 - ], - "score": 0.959, - "html": "
07 1Mark is for AO1 (understanding) 1
C Only two of the examples of code are e inlow-level languages;
" - }, - { - "category_id": 5, - "poly": [ - 105, - 1016, - 1564, - 1016, - 1564, - 1693, - 105, - 1693 - ], - "score": 0.908, - "html": "
072 Maximum four marks from:4 marks for Ao1 (understanding)4
·High-level languages have built-in functions;
High-level languages have built-in libraries; High-level languages have more support/help; High-level languages have structures (such as selection and iteration);
High-level languages can be less machine dependent/more portable;
It (usually) requires fewer lines of code to be written;
It is (usually) quicker to develop code in high-level languages; It is easier to find mistakes in code;
Thecodeiseasiertomaintain//understand;
It is easier to structure code in high-level languages; NE. references to efficiency or speed unless correctly qualified;
R. Answers relating to programmer expertise;
" - }, - { - "category_id": 2, - "poly": [ - 117, - 2215, - 145, - 2215, - 145, - 2237, - 117, - 2237 - ], - "score": 0.861 - }, - { - "category_id": 2, - "poly": [ - 641, - 98, - 1539, - 98, - 1539, - 137, - 641, - 137 - ], - "score": 0.823 - }, - { - "category_id": 5, - "poly": [ - 107, - 1020, - 1567, - 1020, - 1567, - 1692, - 107, - 1692 - ], - "score": 0.732, - "html": "
072 4 marks for Ao1 (understanding) 4 Maximum four marks from:
" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 2214.0, - 150.0, - 2214.0, - 150.0, - 2242.0, - 113.0, - 2242.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 647.0, - 102.0, - 1536.0, - 102.0, - 1536.0, - 133.0, - 647.0, - 133.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 37, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 102, - 341, - 1554, - 341, - 1554, - 672, - 102, - 672 - ], - "score": 0.959, - "html": "
081Mark is for Ao1 (understanding)1
Only reward if column A AND B is completely correct;
ABAANDB
000
010
100
111
" - }, - { - "category_id": 5, - "poly": [ - 100, - 232, - 1560, - 232, - 1560, - 311, - 100, - 311 - ], - "score": 0.94, - "html": "
QuPartTotal
Marking guidance marks
" - }, - { - "category_id": 2, - "poly": [ - 1510, - 2214, - 1539, - 2214, - 1539, - 2239, - 1510, - 2239 - ], - "score": 0.846 - }, - { - "category_id": 2, - "poly": [ - 642, - 98, - 1540, - 98, - 1540, - 137, - 642, - 137 - ], - "score": 0.796 - }, - { - "category_id": 3, - "poly": [ - 257, - 642, - 1558, - 642, - 1558, - 2163, - 257, - 2163 - ], - "score": 0.338 - }, - { - "category_id": 5, - "poly": [ - 102, - 232, - 1559, - 232, - 1559, - 311, - 102, - 311 - ], - "score": 0.217, - "html": "
QuPartTotal
Marking guidancemarks
" - }, - { - "category_id": 3, - "poly": [ - 288, - 1115, - 1134, - 1115, - 1134, - 1567, - 288, - 1567 - ], - "score": 0.165 - }, - { - "category_id": 3, - "poly": [ - 83, - 673, - 1147, - 673, - 1147, - 2146, - 83, - 2146 - ], - "score": 0.134 - }, - { - "category_id": 1, - "poly": [ - 1454, - 710, - 1480, - 710, - 1480, - 742, - 1454, - 742 - ], - "score": 0.117 - }, - { - "category_id": 3, - "poly": [ - 198, - 551, - 1558, - 551, - 1558, - 2176, - 198, - 2176 - ], - "score": 0.115 - }, - { - "category_id": 5, - "poly": [ - 103, - 710, - 1488, - 710, - 1488, - 1668, - 103, - 1668 - ], - "score": 0.102, - "html": "
0823 marks for A02 (apply) Max 2 marks if not fully correct (the fully correct answer is given in example 1).
Mark A if A1 and A2 are the inputs to an OR gate;
Mark B if S is the input to a NOT gate; Mark C if the output from an AND gate is Q;
Example 1 (Fully correct answer)
S
" - }, - { - "category_id": 13, - "poly": [ - 495, - 851, - 533, - 851, - 533, - 884, - 495, - 884 - ], - "score": 0.75, - "latex": "\\mathsf{A}_{2}" - }, - { - "category_id": 13, - "poly": [ - 396, - 851, - 433, - 851, - 433, - 883, - 396, - 883 - ], - "score": 0.68, - "latex": "\\mathsf{A}_{1}" - }, - { - "category_id": 15, - "poly": [ - 1505.0, - 2213.0, - 1543.0, - 2213.0, - 1543.0, - 2244.0, - 1505.0, - 2244.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 647.0, - 102.0, - 1536.0, - 102.0, - 1536.0, - 133.0, - 647.0, - 133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1454.0, - 708.0, - 1482.0, - 708.0, - 1482.0, - 744.0, - 1454.0, - 744.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 38, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 642, - 99, - 1539, - 99, - 1539, - 137, - 642, - 137 - ], - "score": 0.884 - }, - { - "category_id": 2, - "poly": [ - 116, - 2213, - 147, - 2213, - 147, - 2240, - 116, - 2240 - ], - "score": 0.828 - }, - { - "category_id": 3, - "poly": [ - 215, - 165, - 1559, - 165, - 1559, - 2145, - 215, - 2145 - ], - "score": 0.426 - }, - { - "category_id": 3, - "poly": [ - 246, - 146, - 1281, - 146, - 1281, - 2148, - 246, - 2148 - ], - "score": 0.325 - }, - { - "category_id": 3, - "poly": [ - 227, - 158, - 1547, - 158, - 1547, - 2148, - 227, - 2148 - ], - "score": 0.276 - }, - { - "category_id": 3, - "poly": [ - 0, - 235, - 1371, - 235, - 1371, - 2145, - 0, - 2145 - ], - "score": 0.127 - }, - { - "category_id": 15, - "poly": [ - 647.0, - 102.0, - 1536.0, - 102.0, - 1536.0, - 132.0, - 647.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 2213.0, - 150.0, - 2213.0, - 150.0, - 2245.0, - 113.0, - 2245.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 39, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 100, - 691, - 1559, - 691, - 1559, - 1853, - 100, - 1853 - ], - "score": 0.97, - "html": "
0936 marks for A03 (program)
1 mark: correct fields in SELECT clause
1 mark: one correct table in FROM clause 1 mark: second correct table in FROM clause
1 mark: a correct condition in WHERE clause
1 mark: correct conditions and correct usage of AND in WHERE clause // correct
conditions and correct usage of AND in WHERE clause and correct usage of ON withINNERJOIN 1 mark:ORDERBY clause
Max 5 if any errors Sample answer
" - }, - { - "category_id": 5, - "poly": [ - 100, - 341, - 1561, - 341, - 1561, - 489, - 100, - 489 - ], - "score": 0.96, - "html": "
091 mark for A02 (apply)1
Name;
" - }, - { - "category_id": 5, - "poly": [ - 100, - 520, - 1559, - 520, - 1559, - 667, - 100, - 667 - ], - "score": 0.943, - "html": "
0921 mark for A02 (apply)1
Real //Float//Decimal;
" - }, - { - "category_id": 5, - "poly": [ - 100, - 231, - 1558, - 231, - 1558, - 312, - 100, - 312 - ], - "score": 0.93, - "html": "
QuPartMarking guidanceTotal marks
" - }, - { - "category_id": 2, - "poly": [ - 1510, - 2214, - 1537, - 2214, - 1537, - 2238, - 1510, - 2238 - ], - "score": 0.852 - }, - { - "category_id": 2, - "poly": [ - 642, - 98, - 1540, - 98, - 1540, - 138, - 642, - 138 - ], - "score": 0.614 - }, - { - "category_id": 5, - "poly": [ - 104, - 232, - 1555, - 232, - 1555, - 311, - 104, - 311 - ], - "score": 0.377, - "html": "
QuPartMarking guidanceTotal marks
" - }, - { - "category_id": 0, - "poly": [ - 642, - 98, - 1540, - 98, - 1540, - 138, - 642, - 138 - ], - "score": 0.215 - }, - { - "category_id": 13, - "poly": [ - 613, - 1303, - 644, - 1303, - 644, - 1326, - 613, - 1326 - ], - "score": 0.78, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 576, - 1683, - 656, - 1683, - 656, - 1711, - 576, - 1711 - ], - "score": 0.78, - "latex": ">=~4" - }, - { - "category_id": 13, - "poly": [ - 1090, - 1652, - 1121, - 1652, - 1121, - 1676, - 1090, - 1676 - ], - "score": 0.72, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 541, - 1335, - 621, - 1335, - 621, - 1363, - 541, - 1363 - ], - "score": 0.63, - "latex": ">=~4" - }, - { - "category_id": 13, - "poly": [ - 558, - 1719, - 588, - 1719, - 588, - 1745, - 558, - 1745 - ], - "score": 0.62, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 558, - 1370, - 587, - 1370, - 587, - 1397, - 558, - 1397 - ], - "score": 0.41, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 557, - 1369, - 623, - 1369, - 623, - 1398, - 557, - 1398 - ], - "score": 0.33, - "latex": "=~2" - }, - { - "category_id": 15, - "poly": [ - 1506.0, - 2213.0, - 1541.0, - 2213.0, - 1541.0, - 2245.0, - 1506.0, - 2245.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 647.0, - 102.0, - 1536.0, - 102.0, - 1536.0, - 132.0, - 647.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 647.0, - 102.0, - 1536.0, - 102.0, - 1536.0, - 132.0, - 647.0, - 132.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 40, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 101, - 342, - 1560, - 342, - 1560, - 741, - 101, - 741 - ], - "score": 0.975, - "html": "
094 2 marks for Ao3 (refine)
1 mark: changing +9 to +10;
1 mark: changing <=3 to >3
UPDATE Game
SET LengthOfGame = LengthOfGame + 10
WHERE Complexity
" - }, - { - "category_id": 5, - "poly": [ - 99, - 774, - 1554, - 774, - 1554, - 1116, - 99, - 1116 - ], - "score": 0.972, - "html": "
101AllmarksAo2(apply) 2
Staff could forget their password // staff can't forget biometric measure; Shouldering risk when staff entering their password // no risk of shouldering when using biometric data;
Lower risk of hacking; Max 2
" - }, - { - "category_id": 5, - "poly": [ - 97, - 1149, - 1554, - 1149, - 1554, - 1375, - 97, - 1375 - ], - "score": 0.964, - "html": "
102AllmarksAo2 (apply)2
Network is made available to members of the public; Won't know the MAC addresses for (most) of the devices connecting to the network;
" - }, - { - "category_id": 2, - "poly": [ - 118, - 2216, - 144, - 2216, - 144, - 2237, - 118, - 2237 - ], - "score": 0.842 - }, - { - "category_id": 5, - "poly": [ - 99, - 231, - 1553, - 231, - 1553, - 311, - 99, - 311 - ], - "score": 0.806, - "html": "
QuPartMarking guidanceTotal marks
" - }, - { - "category_id": 5, - "poly": [ - 89, - 231, - 1539, - 231, - 1539, - 311, - 89, - 311 - ], - "score": 0.731, - "html": "
QuPartMarking guidanceTotal marks
" - }, - { - "category_id": 1, - "poly": [ - 110, - 2084, - 1534, - 2084, - 1534, - 2155, - 110, - 2155 - ], - "score": 0.72 - }, - { - "category_id": 1, - "poly": [ - 118, - 2040, - 303, - 2040, - 303, - 2064, - 118, - 2064 - ], - "score": 0.497 - }, - { - "category_id": 2, - "poly": [ - 642, - 98, - 1539, - 98, - 1539, - 137, - 642, - 137 - ], - "score": 0.438 - }, - { - "category_id": 0, - "poly": [ - 642, - 98, - 1539, - 98, - 1539, - 137, - 642, - 137 - ], - "score": 0.356 - }, - { - "category_id": 0, - "poly": [ - 118, - 2040, - 303, - 2040, - 303, - 2064, - 118, - 2064 - ], - "score": 0.335 - }, - { - "category_id": 2, - "poly": [ - 110, - 2084, - 1534, - 2084, - 1534, - 2155, - 110, - 2155 - ], - "score": 0.287 - }, - { - "category_id": 13, - "poly": [ - 517, - 454, - 576, - 454, - 576, - 485, - 517, - 485 - ], - "score": 0.85, - "latex": "\\mathtt{<}=3" - }, - { - "category_id": 13, - "poly": [ - 594, - 417, - 651, - 417, - 651, - 449, - 594, - 449 - ], - "score": 0.83, - "latex": "+10" - }, - { - "category_id": 13, - "poly": [ - 517, - 418, - 559, - 418, - 559, - 449, - 517, - 449 - ], - "score": 0.82, - "latex": "^{+9}" - }, - { - "category_id": 13, - "poly": [ - 611, - 454, - 654, - 454, - 654, - 485, - 611, - 485 - ], - "score": 0.75, - "latex": "{>}3" - }, - { - "category_id": 13, - "poly": [ - 602, - 600, - 637, - 600, - 637, - 627, - 602, - 627 - ], - "score": 0.63, - "latex": "=" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 2213.0, - 150.0, - 2213.0, - 150.0, - 2244.0, - 113.0, - 2244.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 2084.0, - 1533.0, - 2084.0, - 1533.0, - 2112.0, - 117.0, - 2112.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 2109.0, - 1530.0, - 2109.0, - 1530.0, - 2132.0, - 117.0, - 2132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 2128.0, - 373.0, - 2128.0, - 373.0, - 2159.0, - 112.0, - 2159.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 2042.0, - 306.0, - 2042.0, - 306.0, - 2067.0, - 116.0, - 2067.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 647.0, - 102.0, - 1536.0, - 102.0, - 1536.0, - 133.0, - 647.0, - 133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 647.0, - 102.0, - 1536.0, - 102.0, - 1536.0, - 133.0, - 647.0, - 133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 2042.0, - 306.0, - 2042.0, - 306.0, - 2067.0, - 116.0, - 2067.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 2084.0, - 1533.0, - 2084.0, - 1533.0, - 2112.0, - 117.0, - 2112.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 2109.0, - 1530.0, - 2109.0, - 1530.0, - 2132.0, - 117.0, - 2132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 2128.0, - 373.0, - 2128.0, - 373.0, - 2159.0, - 112.0, - 2159.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 41, - "height": 2339, - "width": 1654 - } - } -] \ No newline at end of file diff --git a/pdf_output/8525_2_1739552314/auto/8525_2_1739552314_spans.pdf b/pdf_output/8525_2_1739552314/auto/8525_2_1739552314_spans.pdf deleted file mode 100644 index fe4ea4f989af961afecb6255d1ed93fe0cd7bf98..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/8525_2_1739552314_spans.pdf +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0a06cb63f75936a5576d3c244db991a08d416d02981873b5298ab704ffca89c1 -size 796158 diff --git a/pdf_output/8525_2_1739552314/auto/images/01f46cbd6cc34152652d38ea03c3f0b96b5e2028910cd7c9c146d98663b3f873.jpg b/pdf_output/8525_2_1739552314/auto/images/01f46cbd6cc34152652d38ea03c3f0b96b5e2028910cd7c9c146d98663b3f873.jpg deleted file mode 100644 index 3a22841e3a587e6696bac95f8aacee559030b00f..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/01f46cbd6cc34152652d38ea03c3f0b96b5e2028910cd7c9c146d98663b3f873.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:01fe47be60ae70ee0c810624c1a7471b2755cd4c594d5ffc0926db0944ef91d7 -size 18030 diff --git a/pdf_output/8525_2_1739552314/auto/images/02c1cadd367fa122e76ac9808a0f3ec5973c65193ac088a37a4bacfcf2761b12.jpg b/pdf_output/8525_2_1739552314/auto/images/02c1cadd367fa122e76ac9808a0f3ec5973c65193ac088a37a4bacfcf2761b12.jpg deleted file mode 100644 index f510f1c4cadd33b2954fafd452a321769b6ec9b3..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/02c1cadd367fa122e76ac9808a0f3ec5973c65193ac088a37a4bacfcf2761b12.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dafab8950757cc0f7957c26ddc1b43568a6525cbf5a94906c312d69c1789fa8e -size 18159 diff --git a/pdf_output/8525_2_1739552314/auto/images/04dbd5a8d70a2229da5ee92610a681e820b072c5f9a931eb7c8d4ce648e2fd67.jpg b/pdf_output/8525_2_1739552314/auto/images/04dbd5a8d70a2229da5ee92610a681e820b072c5f9a931eb7c8d4ce648e2fd67.jpg deleted file mode 100644 index d94ea30aa9f901ff1f358065cb79713e897c5f59..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/04dbd5a8d70a2229da5ee92610a681e820b072c5f9a931eb7c8d4ce648e2fd67.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9fa539ad2b1cc4b8ddf75b439eb883fe86673401cae84f5a46a4a7e7cdbc4dfd -size 19007 diff --git a/pdf_output/8525_2_1739552314/auto/images/088791c0fcee93fd05f88c9b0bd30adb93020460efeb061144b3241634192ec7.jpg b/pdf_output/8525_2_1739552314/auto/images/088791c0fcee93fd05f88c9b0bd30adb93020460efeb061144b3241634192ec7.jpg deleted file mode 100644 index 545dd10dd15b259fb24e4ed7495bd60291161164..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/088791c0fcee93fd05f88c9b0bd30adb93020460efeb061144b3241634192ec7.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2cda69e163792090fe3cb2fd4a48f846fde7adece28ddf0ebf9bcdb2061f2a4a -size 17917 diff --git a/pdf_output/8525_2_1739552314/auto/images/08c7ed4e250a45c45ccd907bdab4d7a60c9b8dbda6633f5ea30a7c5bd49b38b6.jpg b/pdf_output/8525_2_1739552314/auto/images/08c7ed4e250a45c45ccd907bdab4d7a60c9b8dbda6633f5ea30a7c5bd49b38b6.jpg deleted file mode 100644 index 85efd7b19e121586caae06df989b4b23fa2e69a9..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/08c7ed4e250a45c45ccd907bdab4d7a60c9b8dbda6633f5ea30a7c5bd49b38b6.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f829ef9262b572ac96968c5dbac28ce061978f6c3798f693b3b9119d93f0c4ca -size 31268 diff --git a/pdf_output/8525_2_1739552314/auto/images/0be5275c2e9e135faa737515583efff83fc9c1f0f0afd5bb535b74c1e61c4b4f.jpg b/pdf_output/8525_2_1739552314/auto/images/0be5275c2e9e135faa737515583efff83fc9c1f0f0afd5bb535b74c1e61c4b4f.jpg deleted file mode 100644 index 936267cbf32bf29593e23331772e7f1eaf07783f..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/0be5275c2e9e135faa737515583efff83fc9c1f0f0afd5bb535b74c1e61c4b4f.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:613920d353eab9bc89a381cb5045da50974f6d19b5683109c41a1145a899b88b -size 63155 diff --git a/pdf_output/8525_2_1739552314/auto/images/0ec65725c74dbdac9376d56439a98447e8cf5086764877f8774df29057536cc0.jpg b/pdf_output/8525_2_1739552314/auto/images/0ec65725c74dbdac9376d56439a98447e8cf5086764877f8774df29057536cc0.jpg deleted file mode 100644 index e7e55d41f463c540f89a940fa444fa79fd2d185a..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/0ec65725c74dbdac9376d56439a98447e8cf5086764877f8774df29057536cc0.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ad2236efff037788978b10b0430d2ecb0161f4609f36742b179768096ff6c1ef -size 18225 diff --git a/pdf_output/8525_2_1739552314/auto/images/109e42de42b05477c98efdddb7ff5b384443346f802c2302d0a164177dca46a1.jpg b/pdf_output/8525_2_1739552314/auto/images/109e42de42b05477c98efdddb7ff5b384443346f802c2302d0a164177dca46a1.jpg deleted file mode 100644 index e5d1de6c074ad488f9d1c001412398ba2bdb0c75..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/109e42de42b05477c98efdddb7ff5b384443346f802c2302d0a164177dca46a1.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:07fd9214ac0ca36873247bd855e53840f42700447adf5e83d5f966b44ad517f2 -size 3162 diff --git a/pdf_output/8525_2_1739552314/auto/images/10ceaa3c143dbf32bee4f3b3093ede11d1a8d38d97e4d329f4c0c2738ece031f.jpg b/pdf_output/8525_2_1739552314/auto/images/10ceaa3c143dbf32bee4f3b3093ede11d1a8d38d97e4d329f4c0c2738ece031f.jpg deleted file mode 100644 index 904fabd48fb692d153d62fdd8d11870b770716dc..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/10ceaa3c143dbf32bee4f3b3093ede11d1a8d38d97e4d329f4c0c2738ece031f.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7027ff93d60fe6ffed477db7997e688f3f8cad0bbeafc779825cc0cccb873b5e -size 26699 diff --git a/pdf_output/8525_2_1739552314/auto/images/14e79cfc8a9ffffd2cfc3ca9f1145c9b6d1d7a0dbf4e783fd7da0df2cef26bf5.jpg b/pdf_output/8525_2_1739552314/auto/images/14e79cfc8a9ffffd2cfc3ca9f1145c9b6d1d7a0dbf4e783fd7da0df2cef26bf5.jpg deleted file mode 100644 index 01acc2658cb974385f2b30b8bc93431677f844b7..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/14e79cfc8a9ffffd2cfc3ca9f1145c9b6d1d7a0dbf4e783fd7da0df2cef26bf5.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a372749a79ca84fa9369a9b89bae007fa829e8631b1fb4d93f41681f22eb2c45 -size 48415 diff --git a/pdf_output/8525_2_1739552314/auto/images/17a19e919a03ab0722c9846676b25fca6e28c36d097b79a116b9c75478042819.jpg b/pdf_output/8525_2_1739552314/auto/images/17a19e919a03ab0722c9846676b25fca6e28c36d097b79a116b9c75478042819.jpg deleted file mode 100644 index 4ce4d64b1b08ec5674363a3ecc378d3f25adb9a6..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/17a19e919a03ab0722c9846676b25fca6e28c36d097b79a116b9c75478042819.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:91957ac8b96f0f832c0a08a8932b7b6c50aedcbf258e2fbdb65321a54bff46e3 -size 224784 diff --git a/pdf_output/8525_2_1739552314/auto/images/268d9a7b93a4d42a756f68e0cdb73b9809b4337811ff353b47d0d1b2bf83d778.jpg b/pdf_output/8525_2_1739552314/auto/images/268d9a7b93a4d42a756f68e0cdb73b9809b4337811ff353b47d0d1b2bf83d778.jpg deleted file mode 100644 index 1fb39b688f2ab6ce83961463cc3881de558694eb..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/268d9a7b93a4d42a756f68e0cdb73b9809b4337811ff353b47d0d1b2bf83d778.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:92c058d3b80fc15b7ea24414c16dd84574f2184c24495e2cc90d60064fab0000 -size 52349 diff --git a/pdf_output/8525_2_1739552314/auto/images/2793f86e1f4b3689f5339861c0649858028e7f8579b966d91b684d4263969b72.jpg b/pdf_output/8525_2_1739552314/auto/images/2793f86e1f4b3689f5339861c0649858028e7f8579b966d91b684d4263969b72.jpg deleted file mode 100644 index fe93217b67e30be3c444c899ef4081a44e934429..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/2793f86e1f4b3689f5339861c0649858028e7f8579b966d91b684d4263969b72.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d1fe14bfcd977ed6b297a5c8a1042df271dbc9e1c1c4ec31ed596362aef7c7c5 -size 54630 diff --git a/pdf_output/8525_2_1739552314/auto/images/2a6b1aef9b4ddc5b843dd126eeda69a1454a6803b395fab3fce6b5ae98492e17.jpg b/pdf_output/8525_2_1739552314/auto/images/2a6b1aef9b4ddc5b843dd126eeda69a1454a6803b395fab3fce6b5ae98492e17.jpg deleted file mode 100644 index a491d486bd0bdd00a4cdcf7e43ced11a97c11b68..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/2a6b1aef9b4ddc5b843dd126eeda69a1454a6803b395fab3fce6b5ae98492e17.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:543d5c990f112d363911cd65b9ba33573d52b203af40e21c76519a5d98f5d04e -size 98017 diff --git a/pdf_output/8525_2_1739552314/auto/images/2aa1481597518ee183a9db2935aeab47710513dae1ff1de52893c5fe9b8469af.jpg b/pdf_output/8525_2_1739552314/auto/images/2aa1481597518ee183a9db2935aeab47710513dae1ff1de52893c5fe9b8469af.jpg deleted file mode 100644 index 835b12cb13c4305095b7bad13a6fa149538646ed..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/2aa1481597518ee183a9db2935aeab47710513dae1ff1de52893c5fe9b8469af.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6eb003246032ba181f08b810f16f0a6fe6e40cf2a6580acde1341eb0d3176a63 -size 245450 diff --git a/pdf_output/8525_2_1739552314/auto/images/2b09f88e4798039f7c0dc725a7432b3c6074d0e8af21b11f153de211beb736b3.jpg b/pdf_output/8525_2_1739552314/auto/images/2b09f88e4798039f7c0dc725a7432b3c6074d0e8af21b11f153de211beb736b3.jpg deleted file mode 100644 index db169dd3777c27a21553ffda5e101b5a7bf02b49..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/2b09f88e4798039f7c0dc725a7432b3c6074d0e8af21b11f153de211beb736b3.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:65f0742c3bf32ab6ecae45ea698187d76cd54ceb6db7d43f26a7ef02686e7f8e -size 101342 diff --git a/pdf_output/8525_2_1739552314/auto/images/397f42e7994bb68df175e02b4a7bf245cb07f6fdb7ec40b009165096a2b244da.jpg b/pdf_output/8525_2_1739552314/auto/images/397f42e7994bb68df175e02b4a7bf245cb07f6fdb7ec40b009165096a2b244da.jpg deleted file mode 100644 index 806adf8764eae20c9be3da80bde96f109f1ba05a..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/397f42e7994bb68df175e02b4a7bf245cb07f6fdb7ec40b009165096a2b244da.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c407df46fcb855b14448b35b568394e4f6eb7e4dba68866b87def240e2476cd4 -size 161290 diff --git a/pdf_output/8525_2_1739552314/auto/images/399bef768c2fa3a11de2e40d67b0ec4969731a3767f25edee28f31a5d017f1c4.jpg b/pdf_output/8525_2_1739552314/auto/images/399bef768c2fa3a11de2e40d67b0ec4969731a3767f25edee28f31a5d017f1c4.jpg deleted file mode 100644 index f63037995265daa178774963caa19e1d2537cce2..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/399bef768c2fa3a11de2e40d67b0ec4969731a3767f25edee28f31a5d017f1c4.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:94d8f3311ad329e650c7f92e36f5cd81d72acfc51340935d1b2df7d8c4c74ce7 -size 49050 diff --git a/pdf_output/8525_2_1739552314/auto/images/3e342cd8b19fca9bf8ebf0e47ecedc7b79019b028d879b564a60f4f50e285bf0.jpg b/pdf_output/8525_2_1739552314/auto/images/3e342cd8b19fca9bf8ebf0e47ecedc7b79019b028d879b564a60f4f50e285bf0.jpg deleted file mode 100644 index 56efe29736c8a5597abef52253b2aa68d027b5f5..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/3e342cd8b19fca9bf8ebf0e47ecedc7b79019b028d879b564a60f4f50e285bf0.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a6e848c1db87ba3a9ba68f356602cfadceb28e330d27c2a8da03fbfe105868db -size 18765 diff --git a/pdf_output/8525_2_1739552314/auto/images/4045db713ae31b5bc3347bbd491291a0ea95ec4f92bd597e34a82b72646ccd9d.jpg b/pdf_output/8525_2_1739552314/auto/images/4045db713ae31b5bc3347bbd491291a0ea95ec4f92bd597e34a82b72646ccd9d.jpg deleted file mode 100644 index 6a0c093e0c015f111474bb198dc25ee64de6c94e..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/4045db713ae31b5bc3347bbd491291a0ea95ec4f92bd597e34a82b72646ccd9d.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:92f36500062462739e2901dab4618c40a6d2abf08e07974c48d71030003df1cd -size 83479 diff --git a/pdf_output/8525_2_1739552314/auto/images/40843124807eab8c7beadf8d790ac6447f01002ee7051047ce9007f986a3b2ef.jpg b/pdf_output/8525_2_1739552314/auto/images/40843124807eab8c7beadf8d790ac6447f01002ee7051047ce9007f986a3b2ef.jpg deleted file mode 100644 index a1d9f5d424ca1ef7dd8935a90550e5a27e794402..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/40843124807eab8c7beadf8d790ac6447f01002ee7051047ce9007f986a3b2ef.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9ecf59f460a7d4e14669ebbf1019e0800fc39d2b4e2c833c6e4a492e74a273e7 -size 4828 diff --git a/pdf_output/8525_2_1739552314/auto/images/437ceedb4162c5ec9a7e074aa55117e7e3ed1bb049f7f10c4b711ab9a9684b73.jpg b/pdf_output/8525_2_1739552314/auto/images/437ceedb4162c5ec9a7e074aa55117e7e3ed1bb049f7f10c4b711ab9a9684b73.jpg deleted file mode 100644 index 6dfbf968aaedf8efcc84fb7c26484a014a00c530..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/437ceedb4162c5ec9a7e074aa55117e7e3ed1bb049f7f10c4b711ab9a9684b73.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a49e61a9d33208027fe8e9e80dde9898384fedf812942242835484218d490cfc -size 31518 diff --git a/pdf_output/8525_2_1739552314/auto/images/46797a43e264dd6f988a8a78e49a5527a970deea2a3c43b592235b494ff9d40c.jpg b/pdf_output/8525_2_1739552314/auto/images/46797a43e264dd6f988a8a78e49a5527a970deea2a3c43b592235b494ff9d40c.jpg deleted file mode 100644 index 55a23db8117e582b01c7e531789c2857cc2b9d1a..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/46797a43e264dd6f988a8a78e49a5527a970deea2a3c43b592235b494ff9d40c.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f7d6dbfab2284d699626e9f4bbbafb2509a1d5663dcc60a456082460bc3a7f27 -size 60605 diff --git a/pdf_output/8525_2_1739552314/auto/images/4867dc150e137e28e85607b61bff55f1fe31cd32199d713100bbf7e7bea7fd96.jpg b/pdf_output/8525_2_1739552314/auto/images/4867dc150e137e28e85607b61bff55f1fe31cd32199d713100bbf7e7bea7fd96.jpg deleted file mode 100644 index 8987b12f75aa1ebaa9fc516f52c34dede1d6a9a1..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/4867dc150e137e28e85607b61bff55f1fe31cd32199d713100bbf7e7bea7fd96.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b03bbafb9c7288020ffa53348c094df6fd34d8db6dd7283f25833de55174c42a -size 84589 diff --git a/pdf_output/8525_2_1739552314/auto/images/4a78b89fb3cbe6efa070b85decfbb6187e65113afd742171d4fe1e85992d2b0c.jpg b/pdf_output/8525_2_1739552314/auto/images/4a78b89fb3cbe6efa070b85decfbb6187e65113afd742171d4fe1e85992d2b0c.jpg deleted file mode 100644 index dbb7b65ac32ec263d1874be55ca1f8fd32ba9474..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/4a78b89fb3cbe6efa070b85decfbb6187e65113afd742171d4fe1e85992d2b0c.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ba6290087f24dfd54c70678ffb9dbd8b4e039cbe9c687a276c9e093078246093 -size 142988 diff --git a/pdf_output/8525_2_1739552314/auto/images/5601a09087e108f54341f1d688daf2dd5dfbb9b4d34f94ec568b793bcebf6f21.jpg b/pdf_output/8525_2_1739552314/auto/images/5601a09087e108f54341f1d688daf2dd5dfbb9b4d34f94ec568b793bcebf6f21.jpg deleted file mode 100644 index 21d32283bcb39966c6cba3654711782b0a53e96b..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/5601a09087e108f54341f1d688daf2dd5dfbb9b4d34f94ec568b793bcebf6f21.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f33d9b8af9603b34101bd6d66ce7a26db545ba7658796eb80862bee216cb33a -size 90389 diff --git a/pdf_output/8525_2_1739552314/auto/images/5b63c8560f53a2e0b03f5cc9e96d2eac5186b716617a4649d4276aa1f800c77e.jpg b/pdf_output/8525_2_1739552314/auto/images/5b63c8560f53a2e0b03f5cc9e96d2eac5186b716617a4649d4276aa1f800c77e.jpg deleted file mode 100644 index 42e14ffa8df8d81b203ea787faf5e671c0d519da..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/5b63c8560f53a2e0b03f5cc9e96d2eac5186b716617a4649d4276aa1f800c77e.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f2edd51ca153b2dccf8107bc79a45d4907e7f881a9c7edb47e2ce1cf372d537 -size 18316 diff --git a/pdf_output/8525_2_1739552314/auto/images/624f2dc333ef7456b17cd229367a2863cae9bee21a0860fe4ffd330e08479047.jpg b/pdf_output/8525_2_1739552314/auto/images/624f2dc333ef7456b17cd229367a2863cae9bee21a0860fe4ffd330e08479047.jpg deleted file mode 100644 index 1f5f0fe369f14a0abaa27381c50c6caaa31d1469..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/624f2dc333ef7456b17cd229367a2863cae9bee21a0860fe4ffd330e08479047.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0d702feff1150cc9fc65f6ca5f980e0521f8d82eb573f9bfe2314dbe57f916f0 -size 66540 diff --git a/pdf_output/8525_2_1739552314/auto/images/657404a5e394e658dfe18fccab1f5a1eff9e5031fbafe0538e047306932a560d.jpg b/pdf_output/8525_2_1739552314/auto/images/657404a5e394e658dfe18fccab1f5a1eff9e5031fbafe0538e047306932a560d.jpg deleted file mode 100644 index 05655a1becc7ef31574913e4673827c208091c56..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/657404a5e394e658dfe18fccab1f5a1eff9e5031fbafe0538e047306932a560d.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9aafbbaee8d2dcb13690a79499fbcc18478f924d2b667c50cd993fd343182a8e -size 18812 diff --git a/pdf_output/8525_2_1739552314/auto/images/66db834f2ec0495259ed6fda461062687a8c6bd5dc85739b134b93efdf8545f5.jpg b/pdf_output/8525_2_1739552314/auto/images/66db834f2ec0495259ed6fda461062687a8c6bd5dc85739b134b93efdf8545f5.jpg deleted file mode 100644 index 593de714bcbd6be78f3d5b55f3be356dc5b9983f..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/66db834f2ec0495259ed6fda461062687a8c6bd5dc85739b134b93efdf8545f5.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eebca62b86cebbbd874202c1163051136c0b01a559667b7a967d3a3b5b60b12a -size 6075 diff --git a/pdf_output/8525_2_1739552314/auto/images/6776886ddebd782c80d650845e62b4eb8184de2fcb7a55ede21cdf950f4906b0.jpg b/pdf_output/8525_2_1739552314/auto/images/6776886ddebd782c80d650845e62b4eb8184de2fcb7a55ede21cdf950f4906b0.jpg deleted file mode 100644 index 5a922153669bab8305ac9166def301edea9c32a3..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/6776886ddebd782c80d650845e62b4eb8184de2fcb7a55ede21cdf950f4906b0.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7c2a08bc4e1ff2edc0a3d4c425ba9ab8e72a18dd4c5b9e59e699490ff3792322 -size 29197 diff --git a/pdf_output/8525_2_1739552314/auto/images/67b41e21ceb6b3a9e01c5367c7310cd3cc25e7afa9673c0856370ce6295b93a7.jpg b/pdf_output/8525_2_1739552314/auto/images/67b41e21ceb6b3a9e01c5367c7310cd3cc25e7afa9673c0856370ce6295b93a7.jpg deleted file mode 100644 index 1b4e33db2d22ad94c048c6b0b0c8266e6e0ff8ed..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/67b41e21ceb6b3a9e01c5367c7310cd3cc25e7afa9673c0856370ce6295b93a7.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5b7f9ee16af230bd3861f986b9f42f14d6ec959403913aaf683546e43a2adf64 -size 36792 diff --git a/pdf_output/8525_2_1739552314/auto/images/6989c268ffff85e3d801fa7b22b088b05aa8009598116a2fb95ce457493865be.jpg b/pdf_output/8525_2_1739552314/auto/images/6989c268ffff85e3d801fa7b22b088b05aa8009598116a2fb95ce457493865be.jpg deleted file mode 100644 index b62c28b21ea50a7a20a2e358decd2f8e1e7d39d7..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/6989c268ffff85e3d801fa7b22b088b05aa8009598116a2fb95ce457493865be.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:786a232ddda58567a57de7bc1a641f525ecad2d516cf2f1e80eb2d0445a62958 -size 6016 diff --git a/pdf_output/8525_2_1739552314/auto/images/6e57acc728cff5a795cb8856ee562c6f957ab0110c43e2d310db6ff4a0c1b4d1.jpg b/pdf_output/8525_2_1739552314/auto/images/6e57acc728cff5a795cb8856ee562c6f957ab0110c43e2d310db6ff4a0c1b4d1.jpg deleted file mode 100644 index 7b83984caa38258a644d730a57da4a63d9345ba8..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/6e57acc728cff5a795cb8856ee562c6f957ab0110c43e2d310db6ff4a0c1b4d1.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:241d0a843a3375f290b47fc4016e60baef11a83d4a40b7148c296f51da234117 -size 74470 diff --git a/pdf_output/8525_2_1739552314/auto/images/72b0557315f443bccfa486351e3aa1d60c6fd88184fc4859a047e5556a04d4c1.jpg b/pdf_output/8525_2_1739552314/auto/images/72b0557315f443bccfa486351e3aa1d60c6fd88184fc4859a047e5556a04d4c1.jpg deleted file mode 100644 index ca5860fb7cbacd2ce0916a6c0752480371ff84ff..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/72b0557315f443bccfa486351e3aa1d60c6fd88184fc4859a047e5556a04d4c1.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:facb378cbf84889a79c7cfe613fe9e0ae386ad824cf735bb2db61d306602ef61 -size 345805 diff --git a/pdf_output/8525_2_1739552314/auto/images/7616d4ea5ca5360828a1abd1e11cc5efa22f44ead1d7e627f6db521bb225e7f1.jpg b/pdf_output/8525_2_1739552314/auto/images/7616d4ea5ca5360828a1abd1e11cc5efa22f44ead1d7e627f6db521bb225e7f1.jpg deleted file mode 100644 index c9ff7ac7bff56c8c283ebe58652b3faef312fea7..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/7616d4ea5ca5360828a1abd1e11cc5efa22f44ead1d7e627f6db521bb225e7f1.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:23e6058ccf1016bbf7bff3a8dac6c9b2527968359fd860dc5774a2019fdc88d1 -size 15600 diff --git a/pdf_output/8525_2_1739552314/auto/images/7a8716225e6f1c1649718174b625f2ac782a3d64e3523eff5f6ed9fce40cd6af.jpg b/pdf_output/8525_2_1739552314/auto/images/7a8716225e6f1c1649718174b625f2ac782a3d64e3523eff5f6ed9fce40cd6af.jpg deleted file mode 100644 index cf6173f6c213232e70ea26a006efc9584f66cf2f..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/7a8716225e6f1c1649718174b625f2ac782a3d64e3523eff5f6ed9fce40cd6af.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8f0125add0476e28c24d41f0b9eb88194ec00def9831ead785b43948fdf2a35d -size 31386 diff --git a/pdf_output/8525_2_1739552314/auto/images/7fc1b00d996b0f85e6d78ab88d37b3785684d63af2a09293377ab79b7856ec14.jpg b/pdf_output/8525_2_1739552314/auto/images/7fc1b00d996b0f85e6d78ab88d37b3785684d63af2a09293377ab79b7856ec14.jpg deleted file mode 100644 index 6ae99527183c0000690c7f476e6fd54fbd855631..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/7fc1b00d996b0f85e6d78ab88d37b3785684d63af2a09293377ab79b7856ec14.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f03b998e4352e007b97d161da4b1618d1a6a6e276ab5195d32f9e7aa4349f2be -size 80223 diff --git a/pdf_output/8525_2_1739552314/auto/images/7fd62f2e53350edb484e59610d3adcf103b5bebec5c1a394a0c06fb21cc5e640.jpg b/pdf_output/8525_2_1739552314/auto/images/7fd62f2e53350edb484e59610d3adcf103b5bebec5c1a394a0c06fb21cc5e640.jpg deleted file mode 100644 index 2e79882d56af8b832bb35f5eb79aea522e9b77de..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/7fd62f2e53350edb484e59610d3adcf103b5bebec5c1a394a0c06fb21cc5e640.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dd15bd302ac54609b91bf0d12a1e02e79d710d88b525b2a06fe4d7f8467102ef -size 198020 diff --git a/pdf_output/8525_2_1739552314/auto/images/8066f24424a9cc3dfeb345799556792dd77c453ae83f6da5c96bed6056c3dbb8.jpg b/pdf_output/8525_2_1739552314/auto/images/8066f24424a9cc3dfeb345799556792dd77c453ae83f6da5c96bed6056c3dbb8.jpg deleted file mode 100644 index db9a7eda4ab38b32b638e04598a154de5617ccf1..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/8066f24424a9cc3dfeb345799556792dd77c453ae83f6da5c96bed6056c3dbb8.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:03db8bab3e60be4f6c4c9e1876555baf4fa06f6acad6110d75302c555c270f68 -size 23639 diff --git a/pdf_output/8525_2_1739552314/auto/images/810e0d328ee108aeb0f01636b0962589dd4ece3c33418530471b148d5cfd4276.jpg b/pdf_output/8525_2_1739552314/auto/images/810e0d328ee108aeb0f01636b0962589dd4ece3c33418530471b148d5cfd4276.jpg deleted file mode 100644 index 42e14ffa8df8d81b203ea787faf5e671c0d519da..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/810e0d328ee108aeb0f01636b0962589dd4ece3c33418530471b148d5cfd4276.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f2edd51ca153b2dccf8107bc79a45d4907e7f881a9c7edb47e2ce1cf372d537 -size 18316 diff --git a/pdf_output/8525_2_1739552314/auto/images/819feeb5d771a14dfa9425ed3a345fc1a486a0f9df38574211319bfbf2b24a7c.jpg b/pdf_output/8525_2_1739552314/auto/images/819feeb5d771a14dfa9425ed3a345fc1a486a0f9df38574211319bfbf2b24a7c.jpg deleted file mode 100644 index a7ddecf91e474d67ccbd41315c22e33282286150..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/819feeb5d771a14dfa9425ed3a345fc1a486a0f9df38574211319bfbf2b24a7c.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3488d7e56567d33693303adaa7ebb6cec3d384e1ae63436c22701bccbc3374f4 -size 21772 diff --git a/pdf_output/8525_2_1739552314/auto/images/8da72768a5fb5139de6d4883e6be878b48239f1dc070d9a9a561cc88672234e6.jpg b/pdf_output/8525_2_1739552314/auto/images/8da72768a5fb5139de6d4883e6be878b48239f1dc070d9a9a561cc88672234e6.jpg deleted file mode 100644 index 5c3dd297f1eed400240039d1a7e355f1c7485e73..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/8da72768a5fb5139de6d4883e6be878b48239f1dc070d9a9a561cc88672234e6.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a9c945ecaae865d33d6b557910d33c7dadd50e07363dacefb1c09d807335ccb5 -size 82951 diff --git a/pdf_output/8525_2_1739552314/auto/images/960399d4e891a964880d9cf05be9e750b128387430faeaa16f9d0a3f1cd091ee.jpg b/pdf_output/8525_2_1739552314/auto/images/960399d4e891a964880d9cf05be9e750b128387430faeaa16f9d0a3f1cd091ee.jpg deleted file mode 100644 index 410b96243f218de0292f55dfb6305ba018758883..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/960399d4e891a964880d9cf05be9e750b128387430faeaa16f9d0a3f1cd091ee.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3234110fd0f7d624359ad33c2eb41dc21c49575f9b917fb0e76ca8422eedc3a9 -size 22772 diff --git a/pdf_output/8525_2_1739552314/auto/images/985bc2bfa5641945832fe8baf603e2b4581fe2ad844a5993b9e951708e0a6326.jpg b/pdf_output/8525_2_1739552314/auto/images/985bc2bfa5641945832fe8baf603e2b4581fe2ad844a5993b9e951708e0a6326.jpg deleted file mode 100644 index 42e14ffa8df8d81b203ea787faf5e671c0d519da..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/985bc2bfa5641945832fe8baf603e2b4581fe2ad844a5993b9e951708e0a6326.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f2edd51ca153b2dccf8107bc79a45d4907e7f881a9c7edb47e2ce1cf372d537 -size 18316 diff --git a/pdf_output/8525_2_1739552314/auto/images/991134e341eaade6149e76df605d2b8907d6b912586446672b08f039af016a80.jpg b/pdf_output/8525_2_1739552314/auto/images/991134e341eaade6149e76df605d2b8907d6b912586446672b08f039af016a80.jpg deleted file mode 100644 index 26b3d92e96659bb93c954453471ec23ae6eac9b8..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/991134e341eaade6149e76df605d2b8907d6b912586446672b08f039af016a80.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f6d0d053c7eec5fb2a92f7ad4686fdc01f3f35c9a6e4fb69b54461e58aa195d8 -size 189587 diff --git a/pdf_output/8525_2_1739552314/auto/images/9a2424506ded8c36c7ccbdddb4af26f8bab9f33bc422dda6d428be6af9603d35.jpg b/pdf_output/8525_2_1739552314/auto/images/9a2424506ded8c36c7ccbdddb4af26f8bab9f33bc422dda6d428be6af9603d35.jpg deleted file mode 100644 index 97b0194ac04d561d4989125fd591936eb500dbb9..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/9a2424506ded8c36c7ccbdddb4af26f8bab9f33bc422dda6d428be6af9603d35.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a1178718b40c108b088f8716c0aafef29a1878df367b24b015970133da5b53de -size 18555 diff --git a/pdf_output/8525_2_1739552314/auto/images/9b6b3c4f7d85d31513bb596b4445b26ed2672efb9bf9342644dd8b14a2e62735.jpg b/pdf_output/8525_2_1739552314/auto/images/9b6b3c4f7d85d31513bb596b4445b26ed2672efb9bf9342644dd8b14a2e62735.jpg deleted file mode 100644 index 3e25c26f270828fb5276585b9aff05708e91ec0b..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/9b6b3c4f7d85d31513bb596b4445b26ed2672efb9bf9342644dd8b14a2e62735.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:33f5d6469ade96ef7cb01bec1f83f568704c5e9677b0e2f0d73be9bff9ed9d73 -size 65963 diff --git a/pdf_output/8525_2_1739552314/auto/images/a336f0b4d87064b0f793e654453d03bc5faf76b5a04d03f82d6f655472ec1769.jpg b/pdf_output/8525_2_1739552314/auto/images/a336f0b4d87064b0f793e654453d03bc5faf76b5a04d03f82d6f655472ec1769.jpg deleted file mode 100644 index 723bd4b657222971971670b45250e8a19c6a5fc8..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/a336f0b4d87064b0f793e654453d03bc5faf76b5a04d03f82d6f655472ec1769.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fb7470bd4835e817d6b6e96b8425386922ac88b9a51e586f42ebe92010912e5f -size 116417 diff --git a/pdf_output/8525_2_1739552314/auto/images/a604ee0ebcc7cc047bf5f8a26c4358794f523676642ee04a1de334558c98b3ff.jpg b/pdf_output/8525_2_1739552314/auto/images/a604ee0ebcc7cc047bf5f8a26c4358794f523676642ee04a1de334558c98b3ff.jpg deleted file mode 100644 index 1bdd020c0d375a5dadae47d18a90fcf599adb885..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/a604ee0ebcc7cc047bf5f8a26c4358794f523676642ee04a1de334558c98b3ff.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:31649bb9890eff5508798de333220ae7cbc96ce2f192770b3e8cb2c9af99c0b2 -size 71539 diff --git a/pdf_output/8525_2_1739552314/auto/images/a6fff5e092309a705725327f9da0cee49936b2b70b4f1f3cac6cc0e8eaaefa48.jpg b/pdf_output/8525_2_1739552314/auto/images/a6fff5e092309a705725327f9da0cee49936b2b70b4f1f3cac6cc0e8eaaefa48.jpg deleted file mode 100644 index da6791201311e9b16e3a9bac0ff99555719369ab..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/a6fff5e092309a705725327f9da0cee49936b2b70b4f1f3cac6cc0e8eaaefa48.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d192b9e6a60f65cd3f42f02610e9471936d9fe8366ac48c92e0b041e9df4af25 -size 144661 diff --git a/pdf_output/8525_2_1739552314/auto/images/a86d43692de1c5e2fb443ad9cedcab56c6f321154d9eb76b7b38f858b9cdc02d.jpg b/pdf_output/8525_2_1739552314/auto/images/a86d43692de1c5e2fb443ad9cedcab56c6f321154d9eb76b7b38f858b9cdc02d.jpg deleted file mode 100644 index c98fc206b66ad42a0d613eec322251b3b114d37e..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/a86d43692de1c5e2fb443ad9cedcab56c6f321154d9eb76b7b38f858b9cdc02d.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1369a3dc9000f278cb163951c8c432234c20a9d5199cc99357e31c2fc1eda625 -size 57103 diff --git a/pdf_output/8525_2_1739552314/auto/images/ab33130c62e82b036c4e02c5db3517dcb56d4c845a38ca2294a752e78c148b8e.jpg b/pdf_output/8525_2_1739552314/auto/images/ab33130c62e82b036c4e02c5db3517dcb56d4c845a38ca2294a752e78c148b8e.jpg deleted file mode 100644 index 9541d6417d7f4468b587d77c37aed77206d06d3d..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/ab33130c62e82b036c4e02c5db3517dcb56d4c845a38ca2294a752e78c148b8e.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e100e12c22da1b97afa594887dfdf733048e8de45f540d1d6fb9e0c362b49ffd -size 274385 diff --git a/pdf_output/8525_2_1739552314/auto/images/afce2b46b4fbf0612c268f70b44c61d0cb8183ddf0e382b2ed93fa21a9d39be4.jpg b/pdf_output/8525_2_1739552314/auto/images/afce2b46b4fbf0612c268f70b44c61d0cb8183ddf0e382b2ed93fa21a9d39be4.jpg deleted file mode 100644 index 4d8ad3477c65812fa08d83a099ee753c41b03f0f..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/afce2b46b4fbf0612c268f70b44c61d0cb8183ddf0e382b2ed93fa21a9d39be4.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:23f3e5997abfecf2438ee80f348ed409127ba88d3d6b75b90eea834bcf6550eb -size 36353 diff --git a/pdf_output/8525_2_1739552314/auto/images/b28e048d0ee3999de27c64482bc7d7d51dc2059da636ac82d6540664af879df4.jpg b/pdf_output/8525_2_1739552314/auto/images/b28e048d0ee3999de27c64482bc7d7d51dc2059da636ac82d6540664af879df4.jpg deleted file mode 100644 index 1dcd9e8c1f7f8e7c3e543f815c67e3295ca87cf6..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/b28e048d0ee3999de27c64482bc7d7d51dc2059da636ac82d6540664af879df4.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7d3fd7dc78247abe89bca36d3f7d71790cd0fab71f707f9055a5ea5e75e5fdf3 -size 6105 diff --git a/pdf_output/8525_2_1739552314/auto/images/b7be943cd651859b63903c9bfbf7dc26b350f2293621743f8acb84876e99ddfe.jpg b/pdf_output/8525_2_1739552314/auto/images/b7be943cd651859b63903c9bfbf7dc26b350f2293621743f8acb84876e99ddfe.jpg deleted file mode 100644 index 799760460959f76289b380c5056774f99218d3b6..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/b7be943cd651859b63903c9bfbf7dc26b350f2293621743f8acb84876e99ddfe.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5bbbaa7d0bc16a4962c4c2cc781a928fa1dfc995b83e024974671ba7c1b63b12 -size 52907 diff --git a/pdf_output/8525_2_1739552314/auto/images/b88afd9fdfeb8cf3369d76015aa3317d8f878f32eeb6ead03420fc54210c6f11.jpg b/pdf_output/8525_2_1739552314/auto/images/b88afd9fdfeb8cf3369d76015aa3317d8f878f32eeb6ead03420fc54210c6f11.jpg deleted file mode 100644 index 42e14ffa8df8d81b203ea787faf5e671c0d519da..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/b88afd9fdfeb8cf3369d76015aa3317d8f878f32eeb6ead03420fc54210c6f11.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f2edd51ca153b2dccf8107bc79a45d4907e7f881a9c7edb47e2ce1cf372d537 -size 18316 diff --git a/pdf_output/8525_2_1739552314/auto/images/bb20470f62e08855b68c29b8bec4fad7163ccac0351ee46ff08117dd95d93440.jpg b/pdf_output/8525_2_1739552314/auto/images/bb20470f62e08855b68c29b8bec4fad7163ccac0351ee46ff08117dd95d93440.jpg deleted file mode 100644 index 02696501189b776dfed90d608386c185d86c1b8d..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/bb20470f62e08855b68c29b8bec4fad7163ccac0351ee46ff08117dd95d93440.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0b04d746ed4f359547f16ce135cfd68cf53edd3c28ba0e220d3c3c4ac4a05128 -size 4848 diff --git a/pdf_output/8525_2_1739552314/auto/images/c0cd36406c118653560dce1984edb6d92136c0fb550c3cc9fdc33345a3091bc7.jpg b/pdf_output/8525_2_1739552314/auto/images/c0cd36406c118653560dce1984edb6d92136c0fb550c3cc9fdc33345a3091bc7.jpg deleted file mode 100644 index 87d447570ae6ade320db4cbcfd8e98c941549b5a..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/c0cd36406c118653560dce1984edb6d92136c0fb550c3cc9fdc33345a3091bc7.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ef5a792841fe89d5334be149f199ed9f69622182eac0dc43fee04abb449cc1d2 -size 81887 diff --git a/pdf_output/8525_2_1739552314/auto/images/c19f1600f83e1949bb24ccda1f07759d6395e726760f7200dc1baacd09c980fd.jpg b/pdf_output/8525_2_1739552314/auto/images/c19f1600f83e1949bb24ccda1f07759d6395e726760f7200dc1baacd09c980fd.jpg deleted file mode 100644 index f9196f917984c88e55a6ae25e9a15ab59b31b026..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/c19f1600f83e1949bb24ccda1f07759d6395e726760f7200dc1baacd09c980fd.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:626a708950a1df08e6ebd5e1b87e4c421faf50081325da58be2a33e266599abb -size 19922 diff --git a/pdf_output/8525_2_1739552314/auto/images/c5171351beaf971a9802a9698820b3ac32b5d4e4f5daedaed6f07fa62fa05586.jpg b/pdf_output/8525_2_1739552314/auto/images/c5171351beaf971a9802a9698820b3ac32b5d4e4f5daedaed6f07fa62fa05586.jpg deleted file mode 100644 index 53542bdc33b313569e6b078e34df1b1cd24c02de..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/c5171351beaf971a9802a9698820b3ac32b5d4e4f5daedaed6f07fa62fa05586.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:91a7da6af867e54ba607e1f0b6b7efbbd1ed917888a2117fb28673f0983b067a -size 351864 diff --git a/pdf_output/8525_2_1739552314/auto/images/c54cc30b929edbc444d6afaf45aa452a2808d486e7904f69f4b8cb52a2c8c518.jpg b/pdf_output/8525_2_1739552314/auto/images/c54cc30b929edbc444d6afaf45aa452a2808d486e7904f69f4b8cb52a2c8c518.jpg deleted file mode 100644 index 8afad11f25c9258dbdf8098701c967494bcacc4d..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/c54cc30b929edbc444d6afaf45aa452a2808d486e7904f69f4b8cb52a2c8c518.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:af16ee152453697690d3e219354be06a833fdcc92e8bd2625dd2053a76a42697 -size 31934 diff --git a/pdf_output/8525_2_1739552314/auto/images/ce7523814b245ce58050b7c51fca17f896772359b7ef56c8afc633b88e92dc84.jpg b/pdf_output/8525_2_1739552314/auto/images/ce7523814b245ce58050b7c51fca17f896772359b7ef56c8afc633b88e92dc84.jpg deleted file mode 100644 index b73aed6f15cba62b33244c90b912c5ef71bdefc0..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/ce7523814b245ce58050b7c51fca17f896772359b7ef56c8afc633b88e92dc84.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4778993b452e391ab8f601018e4950ccc0d185198814d7470e974299f9a322e8 -size 8126 diff --git a/pdf_output/8525_2_1739552314/auto/images/cff165aac49e81f4db2231d193a8cb3f31157734b5d7b3bf668f9fab3fe2aa8e.jpg b/pdf_output/8525_2_1739552314/auto/images/cff165aac49e81f4db2231d193a8cb3f31157734b5d7b3bf668f9fab3fe2aa8e.jpg deleted file mode 100644 index 5ca0d1070065ad38b4698a3ab2098b414b7034a2..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/cff165aac49e81f4db2231d193a8cb3f31157734b5d7b3bf668f9fab3fe2aa8e.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:11215169d8cb504a31de2f6d0f3c90cad838824c9eb108d8b74aea1c6f2ea346 -size 108444 diff --git a/pdf_output/8525_2_1739552314/auto/images/d17864221099a7d8f28181bfdaceec24e74c819819a816517bca4897520ba6cb.jpg b/pdf_output/8525_2_1739552314/auto/images/d17864221099a7d8f28181bfdaceec24e74c819819a816517bca4897520ba6cb.jpg deleted file mode 100644 index 02a9cd75f564d1c0373518d737a833fc279e024e..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/d17864221099a7d8f28181bfdaceec24e74c819819a816517bca4897520ba6cb.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d8c7183b86be5f6fd5ef6071f115acfdf3026684a58bb661107c0e4a57d61032 -size 18765 diff --git a/pdf_output/8525_2_1739552314/auto/images/dad2f0751fcc595859eed636a4804f6ae89a938dee6b5a35fdce6001d2b5a2b3.jpg b/pdf_output/8525_2_1739552314/auto/images/dad2f0751fcc595859eed636a4804f6ae89a938dee6b5a35fdce6001d2b5a2b3.jpg deleted file mode 100644 index 759db6e730fc8c2715ac3eaea1d3eae0ac93c20d..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/dad2f0751fcc595859eed636a4804f6ae89a938dee6b5a35fdce6001d2b5a2b3.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eab55ed1d1ad6836eb9a53406de7f693ac38280bee7b0244b0dd5e780ad25359 -size 125583 diff --git a/pdf_output/8525_2_1739552314/auto/images/dc8ac2383017485c9a7e108096abdbaf793d0c89937cffb4a28ced50d9b0dffd.jpg b/pdf_output/8525_2_1739552314/auto/images/dc8ac2383017485c9a7e108096abdbaf793d0c89937cffb4a28ced50d9b0dffd.jpg deleted file mode 100644 index 15e1dc42a0b2f2543ab08d6d2b5bff1d8be70ccb..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/dc8ac2383017485c9a7e108096abdbaf793d0c89937cffb4a28ced50d9b0dffd.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:90b7f2178702590c19b58d1392121c9ed42ae03f130aec6bd776bc5cecef78d4 -size 45140 diff --git a/pdf_output/8525_2_1739552314/auto/images/dd2926eae2834c6fc73b97a12d9e8c3c25ba0aaccecbcba103d1350f11b9a751.jpg b/pdf_output/8525_2_1739552314/auto/images/dd2926eae2834c6fc73b97a12d9e8c3c25ba0aaccecbcba103d1350f11b9a751.jpg deleted file mode 100644 index b410f260b3919d23a2e809ee3e82006953caff3e..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/dd2926eae2834c6fc73b97a12d9e8c3c25ba0aaccecbcba103d1350f11b9a751.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:16e86e5ab3fcb24f5b94a63574cc187a2a0cd5e460b166c704ee8df50f890dc5 -size 25701 diff --git a/pdf_output/8525_2_1739552314/auto/images/e6ebbfd852d26ce3fa6b8588fecaae57d9d47d14782398d47b3853a7e5664389.jpg b/pdf_output/8525_2_1739552314/auto/images/e6ebbfd852d26ce3fa6b8588fecaae57d9d47d14782398d47b3853a7e5664389.jpg deleted file mode 100644 index 6db56ff405265cda2c5a08fe62259e04c8061510..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/e6ebbfd852d26ce3fa6b8588fecaae57d9d47d14782398d47b3853a7e5664389.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7631e1599fea748583efa905187fbdd704ce172bb580b824b9f5146c2b486f7e -size 47103 diff --git a/pdf_output/8525_2_1739552314/auto/images/ebcc00357b30be9bfde27b90bb35b0e6e4d7c48a10db773ef397fc7ba3f52a74.jpg b/pdf_output/8525_2_1739552314/auto/images/ebcc00357b30be9bfde27b90bb35b0e6e4d7c48a10db773ef397fc7ba3f52a74.jpg deleted file mode 100644 index 7a4c86ffa1ffd797924e9e7c237b6e454e8a9a73..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/ebcc00357b30be9bfde27b90bb35b0e6e4d7c48a10db773ef397fc7ba3f52a74.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c30c9e07ca846e22af0591174ef069417431148faffd1cee55f346abf2390d42 -size 84609 diff --git a/pdf_output/8525_2_1739552314/auto/images/ec363901540601fe1e0ee1f3c625a0bf0136c1c7a1001ac6b41dab52d64ce245.jpg b/pdf_output/8525_2_1739552314/auto/images/ec363901540601fe1e0ee1f3c625a0bf0136c1c7a1001ac6b41dab52d64ce245.jpg deleted file mode 100644 index a585e070f3c1ee8905a503c69c1ba47dc8d9fd4d..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/ec363901540601fe1e0ee1f3c625a0bf0136c1c7a1001ac6b41dab52d64ce245.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8de3aa3f156b950b0056b9ad7c5c326b2597b2e9e0dc3ef537cbc921a21af8fa -size 18318 diff --git a/pdf_output/8525_2_1739552314/auto/images/ee030c20fa412019264203c879fb1e96bf55afaf39bb8da82fccd3f9acb4bfff.jpg b/pdf_output/8525_2_1739552314/auto/images/ee030c20fa412019264203c879fb1e96bf55afaf39bb8da82fccd3f9acb4bfff.jpg deleted file mode 100644 index 34be13f912b432bfe8c5b744474788a7db89f7ec..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/ee030c20fa412019264203c879fb1e96bf55afaf39bb8da82fccd3f9acb4bfff.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5d02d5b8883058bf41e99692e38a45df3672784b3b6dcefb2c96d3e5168a5cb9 -size 49148 diff --git a/pdf_output/8525_2_1739552314/auto/images/ef48390f9dd95e88ffccd32fa895a3a04dcb7af443bca80402785bbccb49a783.jpg b/pdf_output/8525_2_1739552314/auto/images/ef48390f9dd95e88ffccd32fa895a3a04dcb7af443bca80402785bbccb49a783.jpg deleted file mode 100644 index ca13c8f9e87b6e4d34be9efeeb33bf0cf66198bd..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/ef48390f9dd95e88ffccd32fa895a3a04dcb7af443bca80402785bbccb49a783.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8699f17de57d042d3f324abb7562cd8855660dcd184edc05a90589b4c8fef9ad -size 36517 diff --git a/pdf_output/8525_2_1739552314/auto/images/efb604da99242a75029c4acf4106fce705f52c36628b92519fd4529e0f39bbfc.jpg b/pdf_output/8525_2_1739552314/auto/images/efb604da99242a75029c4acf4106fce705f52c36628b92519fd4529e0f39bbfc.jpg deleted file mode 100644 index 479d526ad330eabf304b0582fa297f275bac3da4..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/efb604da99242a75029c4acf4106fce705f52c36628b92519fd4529e0f39bbfc.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f9bebe1814f3a97b3da22dee830248ece76d0ddb346203f5dc168909de5f9a5e -size 64246 diff --git a/pdf_output/8525_2_1739552314/auto/images/f05b34dfbcefe67cd8b5f40e7c9d8a38db57bc9c6ecbb4d38b47cf775942d745.jpg b/pdf_output/8525_2_1739552314/auto/images/f05b34dfbcefe67cd8b5f40e7c9d8a38db57bc9c6ecbb4d38b47cf775942d745.jpg deleted file mode 100644 index e5fc40a507e1789134b34cda26406760b2bdc10c..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/f05b34dfbcefe67cd8b5f40e7c9d8a38db57bc9c6ecbb4d38b47cf775942d745.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:33c5e845820002b4d12852b6b30795dda06925867ccb09d56086b4d3c6a1c66e -size 32908 diff --git a/pdf_output/8525_2_1739552314/auto/images/f20f2cf15525bc788493eb06730adf1a4265d1001aa98ad211e8bd92c23efc26.jpg b/pdf_output/8525_2_1739552314/auto/images/f20f2cf15525bc788493eb06730adf1a4265d1001aa98ad211e8bd92c23efc26.jpg deleted file mode 100644 index 7acb691ccd237ee10d4bcd177b00df7c0df28938..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/f20f2cf15525bc788493eb06730adf1a4265d1001aa98ad211e8bd92c23efc26.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dc910e7a3075f47c95d894c40dd5f53eb250b86d2ad547d90f3fef0029f5301b -size 70193 diff --git a/pdf_output/8525_2_1739552314/auto/images/f4f24c76021a0c0c42d5c3a22c11f8f9f4ecf01dc19fdfcb0a203ede55cd9dc6.jpg b/pdf_output/8525_2_1739552314/auto/images/f4f24c76021a0c0c42d5c3a22c11f8f9f4ecf01dc19fdfcb0a203ede55cd9dc6.jpg deleted file mode 100644 index af11cdebc068f36e32f1d86929e54a543c29b7d3..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/f4f24c76021a0c0c42d5c3a22c11f8f9f4ecf01dc19fdfcb0a203ede55cd9dc6.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:28a73d34c416424d25c5423d61d49cb6525a9fe7f73120594d36e6334ed8c8ea -size 56338 diff --git a/pdf_output/8525_2_1739552314/auto/images/f95eeb7928e931242cfc911d362061023c8b6e3e1e3044530f63745bbccdd772.jpg b/pdf_output/8525_2_1739552314/auto/images/f95eeb7928e931242cfc911d362061023c8b6e3e1e3044530f63745bbccdd772.jpg deleted file mode 100644 index 9087986bb0b65be096d08fa540f98f019ed2d7f3..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/f95eeb7928e931242cfc911d362061023c8b6e3e1e3044530f63745bbccdd772.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e53440ed61c4cdeaeb223421175135be016975c83f3981c78c14ed2db806f0f4 -size 4742 diff --git a/pdf_output/8525_2_1739552314/auto/images/f9f17426e116156d0aeafcba2a9eac0bee147deadcbf4e6e527096222ca138e9.jpg b/pdf_output/8525_2_1739552314/auto/images/f9f17426e116156d0aeafcba2a9eac0bee147deadcbf4e6e527096222ca138e9.jpg deleted file mode 100644 index 360492e8a7bb583c9f25b6a597f77a6981474dc0..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/f9f17426e116156d0aeafcba2a9eac0bee147deadcbf4e6e527096222ca138e9.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8e83a916a0fbf00cae84e4db547513dd4cba680ea9fec04b505823bd9030c463 -size 5601 diff --git a/pdf_output/8525_2_1739552314/auto/images/fb8202ea737c85ea0103c4a17f6d973b19097395da7316328f4c5b6bb0c2d496.jpg b/pdf_output/8525_2_1739552314/auto/images/fb8202ea737c85ea0103c4a17f6d973b19097395da7316328f4c5b6bb0c2d496.jpg deleted file mode 100644 index f13c9470b1217465ee5f9403dac9c210cf492adc..0000000000000000000000000000000000000000 --- a/pdf_output/8525_2_1739552314/auto/images/fb8202ea737c85ea0103c4a17f6d973b19097395da7316328f4c5b6bb0c2d496.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4485e0c8be8d7cf7a52be6bdf16320ac2a80a675570c9c561b8d376c8b34a2d7 -size 46704 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/H156_01_24_May_2016_1739552446.md b/pdf_output/H156_01_24_May_2016_1739552446/auto/H156_01_24_May_2016_1739552446.md deleted file mode 100644 index 218262c273fb6788946f1857891ce62a4dfedfb4..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/H156_01_24_May_2016_1739552446.md +++ /dev/null @@ -1,1152 +0,0 @@ -# AS Level Physics A H156/01 Breadth in physics - -# Tuesday 24 May 2016 – Morning Time allowed: 1 hour 30 minutes - -# You must have: - -• the Data, Formulae and Relationships Booklet (sent with general stationery) - -You may use: • a scientific calculator • a ruler (cm/mm) - -
Firstname
Last name
Centre numberCandidate number
- -# INSTRUCTIONS - -Use black ink. HB pencil may be used for graphs and diagrams. -Complete the boxes above with your name, centre number and candidate number. Answer all the questions. -Write your answer to each question in the space provided. If additional space is required, you should use the lined page(s) at the end of this booklet. The question number(s) must be clearly shown. -Do not write in the barcodes. - -# INFORMATION - -The total mark for this paper is 70. -The marks for each question are shown in brackets [ ]. -This document consists of 28 pages. - -# SECTION A - -You should spend a maximum of 25 minutes on this section. - -Answer all the questions. - -Write your answer to each question in the box provided. - -1 The watt is the SI unit for power. Which is the correct definition for the watt? A watt is ... - -A the rate of work done. -B the work done per second. -C a joule per second. -D a joule per unit time. - -Your answer - -2 A crane is used to lift a load directly from point X to point Y. - -![images/2f2e5923e79ba2dec9ac4893989998778f71d28c3828c44fea54df613bf7197e.jpg]() - -The weight of the load is W. -$p,q$ and $r$ are distances between points $\pmb{\times}$ , Y and Z as shown in the diagram. - -What is the work done against the weight? - -A Wp -B Wq -C Wr -D W(q + r ) - -Your answer - -3 A student views the display of a laptop screen through a polarising filter. The intensity of the light changes when the filter is rotated. - -Which property of light is demonstrated in this experiment? - -A It has wavelength of about $5\times10^{-7}\mathrm{m}$ . -B It travels at the speed of light. -C It is a transverse wave. -D It is a longitudinal wave. - -Your answer - -4 Electrons travelling through a thin film of carbon are diffracted. Which statement is correct? The electrons behave like .. - -A photons and are deflected by the carbon atoms. -B photons and change direction as their speed changes. -C waves and are refracted by the holes in the carbon film. -D waves of wavelength similar to the spacing between carbon atoms. - -Your answer - -5 In which region of the electromagnetic spectrum is radiation of wavelength $50\upmu\mathrm{m}?$ - -A visible B infra-red C microwave D radio - -Your answer - -6 The graph shows the resultant force on a football as it is kicked. - -![images/954e65bf25f3c05465ea62bce785a475734ce23740d52af30d19ca9fecb4cc16.jpg]() - -Which of the following graphs relating to this kick would have the same shape as the graph above? - -A acceleration of the ball against time B kinetic energy of the ball against time C momentum of the ball against time D velocity of the ball against time - -Your answer - -7 A block of wood is at rest on a ramp. The weight of the block is W and the frictional force on the block is $F$ - -![images/539d5ed47b3443f2ea5abbc5bfea2d768a40385a2e377d562e29f4eb185d7523.jpg]() - -A triangle of forces diagram can be used to determine the magnitude and the direction of the normal contact force N. - -Which is the correct diagram for this triangle? - -![images/110fe86f2ce536d9a157db1ef23083e839fa9ae612238b9d6fbe5c5870050f58.jpg]() - -Your answer - -8 The top ends of two springs, $\mathsf{s}_{1}$ and $\mathsf{s}_{2}$ , are attached to a rod. - -![images/60db3b4d1c7583e9afe708943a09a2d519f4fdf981d9aa03dc95c68585f2119d.jpg]() - -A mass is hung from the bottom end of $\mathsf{s}_{1}$ . The extension of $\mathsf{s}_{1}$ is $x.$ The elastic potential energy in the spring is $E.$ The same mass is hung from the bottom end of ${\mathsf{s}}_{2}$ . The extension of $\mathsf{S}_{2}\mathrm{i}\mathsf{s}\frac{x}{3}$ - -What is the elastic potential energy in the spring $\mathsf{s}_{2}^{\mathsf{\Pi}}$ ? - -A E 9 -B E 3 -C 3E -D 9E - -Your answer - -9 A 9 V battery is connected to two resistors as shown. The terminals $\pmb{\times}$ and $\pmb{\upgamma}$ are connected to another circuit that draws a current of 1 mA. The current from the battery is $3\mathsf{m A}$ . - -![images/60bb3f1d52fd6c94c403f957b4cce3527a510ae31164897011cf7b1fe4d82506.jpg]() - -What is the power supplied to the circuit connected between $\pmb{\times}$ and Y? - -A 6 mW B 12 mW C 18 mW D 27 mW - -Your answer - -10 A trolley M collides head-on with a trolley L. The mass of trolley M is greater than the mass of trolley L. The trolleys join together after the collision. - -![images/f2f059b778c067ac4280f0129a141a0c7dfcd204a67514b930ad6be1a0fc8902.jpg]() - -Which statement is correct? - -A The momentum of each trolley is conserved. -B Trolley M experiences a greater force than trolley L during the collision. -C The total force acting on the two-trolley system during the collision is zero. -D Kinetic energy is conserved. - -Your answer - -11 Two batteries are connected in a circuit with a lamp as shown. - -![images/64acc2a87d1e10ccc30190e18b446b2bfe0eae1c14620329e1194a5c4743b14f.jpg]() - -The batteries have e.m.f. 5.0 V and 3.0 V. Which row is correct? - -
DirectionofconventionalcurrentMagnitude of current
Aclockwisegreater at Y than at X
Bclockwisesame atY and X
Canticlockwisegreater at X than at Y
Danticlockwisesame at X and Y
- -Your answer - -12 The diagram shows the conventional currents entering and leaving a junction in an electric circuit. $I_{1},I_{2},I_{3}$ and $I_{4}$ are all positive. - -![images/1044891fa1892b2d1f2342e4caefeebf5afcabae6a99728935bb049219ebedcc.jpg]() - -Which statement is always true? - -A $I_{1}+I_{2}=I_{3}+I_{4}$ B $I_{1}-I_{2}+I_{3}-I_{4}=0$ C I1 = I2 and $I_{3}=I_{4}$ D $I_{1}+I_{2}+I_{3}+I_{4}=0$ - -Your answer - -13 A student determines the resistance $R$ of a filament lamp by measuring the potential difference V across it and the current $I$ in it. The values recorded by the student are: - -$V=(5.00\pm0.20)\lor$ and $I=(40.0\pm1.0)\Omega$ A. - -What is the percentage uncertainty in the value of R ? - -A $1.5\%$ B $1.6\%$ C $6.5\%$ D 20% - -Your answer - -14 A golf ball is dropped from rest onto a hard floor. The graph shows how the velocity of the ball varies with time as it bounces, from the time of release. - -At which point does the ball reach its maximum height after the first bounce? - -![images/66a324a6e2287e131efe2c00ac3811e863771ba3d162a69cfce813c3bbd0e3ea.jpg]() - -Your answer - -15 An electron gun is used to accelerate electrons from rest through a voltage V. The electrons emerge with a speed u. - -![images/5d59fc0e036b924018b5ec46a687e23898feb49163f70fbe4b29f96fe3459ceb.jpg]() - -The voltage in the gun is halved to $\frac{V}{2}$ At what speed do the electrons emerge? - -A u 4 -B u 2 -C $\frac{u}{\sqrt{2}}$ -D $u\sqrt2$ - -Your answer - -16 Photons of energy $4.8\times10^{-19}\mathrm{J}$ are incident on the surface of a clean metal plate of work function $3.2\times10^{-19}\mathrm{J}$ . - -What is the maximum speed of emitted electrons? - -A $5.9\times10^{5}\mathrm{m}s^{-1}$ B $8.4\times10^{5}\mathrm{m}s^{-1}$ C 1.0 × 106 m s–1 D 1.3 × 106 m s–1 - -Your answer - -17 Two guitar strings of equal length, but of different thickness, are under the same tension. The strings are made of the same material. - -The thinner string has a diameter of $0.20\mathsf{m m}$ and the thicker string has a diameter of $0.80\mathrm{mm}$ . elastic potential energy in the thinner string -What is the value of the ratio elastic potential energy in the thicker string - -A 0.125 -B 0.25 -C 4.0 -D 16 - -Your answer - -18 A ball is thrown at an angle of ${\mathfrak{30}}^{\circ}$ to the horizontal. The initial kinetic energy of the ball is $K.$ Air resistance has negligible effect on the motion of the ball. - -![images/db55862eee091ed45882894d34289e2cc148b09d99e5f464a66726056908cfca.jpg]() - -What is the kinetic energy of the ball at the maximum height? - -A 0 B 0.25 K C 0.75 K D 0.87 K - -Your answer - -19 A resistor of resistance $R$ is connected in parallel with a resistor of resistance 2R. The combination of resistors is connected to a cell. - -![images/1b6f3d6ccbfcc1b05b01301802fde8c92591db380a22245c4f8b78ad65ac57fe.jpg]() - -power dissipated in resistor of resistance R What is the ratio power dissipated in resistor of resistance $_{2R}$ - -1 -A 4 1 -B 2 -C 1 -D 2 - -Your answer - -20 The speed of light in air is $3.0\times10^{8}\mathrm{m}s^{-1}$ and the speed of light in glass is $2.0\times10^{8}\mathrm{m}s^{-1}$ . A ray of monochromatic light in glass strikes the glass-air boundary at an angle of ${80^{\circ}}$ to the boundary. - -![images/0ae7e9629a22c026e7c45c5e99cfebe294445c273ff317a0b689c559a6e78b6a.jpg]() - -What is the angle made to the normal by the ray of light leaving the boundary? - -A 6.6° B 15° C 41° D 49° - -Your answer - -# 13 - -# SECTION B - -Answer all the questions. - -21 (a) Physical quantities can be added together. Velocity and mass are examples of two different types of physical quantities. Discuss how the addition of two velocities differs from the addition of two masses. [2] (b) Fig. 21 shows a stationary trolley on a smooth ramp. - -![images/feba7e126e58c78f737a5123c38a9658eec0b965c617f175bcbc48f54c6513af.jpg]() -Fig. 21 - -A short length of string is attached between the end of the trolley and the top of the ramp. Assume that the frictional force acting on the trolley is negligible when it is stationary or when it is moving. - -(i) Other than the normal contact force, there are two other forces acting on the stationary trolley. On Fig. 21, draw arrows to show these two forces. You do not need to name these forces. -(ii) The string is cut at time $t=0$ . The trolley travels down the ramp with a constant acceleration of $3.0\mathsf{m}\mathsf{s}^{-2}$ . Calculate the time $t$ taken by the trolley to travel a distance of $0.80\m m$ down the ramp. - -22 A group of engineers are testing a new car. They are investigating how the braking distance $x$ of the car varies with its initial speed $u$ when a constant braking force is applied. Fig. 22 shows the data points plotted on a $u^{2}$ against $x$ graph. The straight line of best fit has been drawn through the data points. - -![images/180a3a373f25614bf39677e7e8f3f4958abaf7654fd4d7aa094b7b8a9ebfded3.jpg]() -Fig. 22 - -The theoretical relationship between $u$ and $x$ for the car is - -$$ -U^{2}=2a x -$$ - -where a is the magnitude of the deceleration of the car. - -(a) Fig. 22 shows that the straight line does not pass through the origin because of a systematic error in the measurement of the braking distance $x.$ The $u^{2}$ values are accurate. Suggest why a systematic error in $x$ does not introduce any difference between the actual value and the experimental value for the deceleration of the car. - -[1] (b) The mass of the car is $920\mathsf{k g}$ Use the gradient of the line drawn in Fig. 22 to determine the braking force $F$ acting on the car. - -F = N [3] - -3 (a) Fig. 23.1 shows a metal cylinder of diameter of about 5 cm placed on a horizontal tabl - -![images/e9d1c42f2298d6862122ca8ee400964ae9c1a0b4770b4a3e0d440d9707fde33d.jpg]() -Fig. 23.1 - -Describe how you can use instruments available in a physics laboratory to determine the pressure exerted by the cylinder on the table. State how you would make your results as precise as possible. - -.. [4] - -(b) (i) State Archimedes’ principle. - -[1] ii) Fig. 23.2 shows the metal cylinder from (a) hung from a newtonmete - -![images/fa3181d7e3d6df2514d248cbd09b1f8fb7b2cb6af00095983635d4357f428b4a.jpg]() -Fig. 23.2 - -The reading on the newtonmeter is $9.0\mathsf{N}$ - -The cylinder is slowly lowered into water in a beaker until it is completely submerged. The cylinder does not touch the side or the bottom of the beaker. The newtonmeter reading now is $7.8\mathsf{N}$ . The density of water is $1000\mathsf{k g}\mathsf{m}^{-3}$ . -Calculate the density $\rho$ of the metal of the cylinder. - -$\rho=$ kg m–3 [3] - -24 (a) State Newton’s second law. - -[1] (b) A comet makes an inelastic collision with a small asteroid in space. - -(i) State two physical quantities conserved in this collision. 1 2 - -(ii) Fig. 24.1 shows how the force $F$ acting on the comet varies with time t during the collision. - -![images/7c20c5b6e3fd0f61ed1163350073e5aa88303c7126de83071f9f7ddf2b54e63a.jpg]() -Fig. 24.1 - -Describe and explain how the force acting on the asteroid varies with time during this collision. You may sketch a suitable graph on Fig. 24.1 to support your answer. - -[2] (c) A hydrogen atom travelling at $500\mathsf{m}\mathsf{s}^{-1}$ makes a head-on collision with a stationary carbon atom. The collision is perfectly elastic. After the collision the hydrogen atom bounces back with a speed of $420\mathsf{m}\mathsf{s}^{-1}$ . Fig. 24.2 shows the atoms before and after the collision. - -![images/ef197c6dd1495e29a3fd1244f57ee8bb4da3c03684eb01aa922f263438b7287a.jpg]() -Fig. 24.2 - -The mass of the hydrogen atom is $1.7\times10^{-27}\mathrm{kg}$ and the mass of the carbon atom is $2.0\times10^{-26}\mathrm{kg}$ . -Calculate the speed $V$ of the carbon atom after the collision. - -v = $m\mathtt{s}^{-1}$ [3] - -25 (a) A chemical cell is connected across a resistor. - -(i) The terms electromotive force (e.m.f.) and potential difference (p.d.) are terms associated with the circuit. State one similarity and one difference between e.m.f. and p.d. similarity: difference: [2] (ii) The resistor is cylindrical in shape. It has cross-sectional area $1.2\times10^{-6}\mathsf{m}^{2}$ and length $6.0\times10^{-3}\mathrm{m}$ . In this resistor there are $9.6\times10^{16}$ free electrons. Calculate the mean drift velocity $V$ of the electrons when the current in the resistor is $3.0\mathsf{m A}$ . - -v = $m\mathtt{s}^{-1}$ [3] - -(b) A student is given a chemical cell, an ammeter, a voltmeter, a variable resistor and a number of connecting wires. Design a laboratory experiment to determine the internal resistance $r$ of the chemical cell using a graph. Start with a circuit diagram. In your description pay particular attention to • the circuit used the measurements taken how the data is analysed using a graph. - -[4] - -26 (a) Fig. 26.1 shows the variation of displacement y with position $x$ of a progressive transverse wave on a stretched string at a particular instant. - -![images/288e566eff169ddcb7bedda698de48fdbb163c75006474bf95bbcdcbf8dea31b.jpg]() -Fig. 26.1 - -The motions of particles A and B of the string is analysed over a short period of time. The distance between the positions of A and B is half a wavelength of the wave. The particles A and B have the same speed. - -(i) State one difference between the motions of these particles. [1] -(ii) The particle A oscillates with frequency $75\mathsf{H z}$ . The distance between the positions of A and B is $(40.0\pm2.0)\mathsf{c m}$ . Calculate the speed $V$ of the transverse wave on the string and the absolute uncertainty in this value. - -v m s–1 [3] - -(b) A stretched rubber cord has its ends fixed at points $\pmb{\times}$ and Y. The middle of the cord is lifted vertically and then released. A stationary wave pattern with one loop is formed by the vibrating cord, see Fig. 26.2. - -![images/93fd740b25714b5f886fddf99a0e8fdbf64d5ce7f1157d548b0a085ef042cac4.jpg]() -Fig. 26.2 - -(i) Explain how a stationary wave pattern is produced in this arrangement. - -. [2] (ii) The stationary wave pattern shown in Fig. 26.2 is produced in the laboratory. Describe how the wavelength of the transverse wave on the stretched cord can be determined. - -[1] (a) Describe and justify the variation of resistance $R$ of the LED as the potential difference V across the LED is increased from - -![images/88f240f841d9fa36cf6b0fe648606faf176f4f861d4ad8be6a9505c2cac86137.jpg]() -27 Fig. 27.1 shows the I-V characteristic of an LED designed to emit blue light. -Fig. 27.1 - -–1.0 V to 2.6 V - -2.6 V to 3.0 V - -3.0 V to 3.4 V. - -![images/fd7806cdf314bd6fe67dd8bcfdae097200c0e305f1f4323652e840ca2d30662a.jpg]() - -(b) A student uses the LED with the characteristic shown in Fig. 27.1 to construct the circuit shown in Fig. 27.2. - -![images/a2b9f5608aefc8b2b64e6592ce217b39ea28535fe3fbf8fd957b83bf3aa17e0f.jpg]() -Fig. 27.2 - -A suitable resistor R is used in the circuit. The cell has electromotive force (e.m.f.) of $1.5\lor$ and negligible internal resistance. - -The LED fails to emit any light when the switch S is closed. -Explain why the circuit does not work and modify the design of the circuit so that the LED is lit when S is closed. - -[3] (c) The wavelength of light from the LED is $480\mathsf{n m}$ . The radiant power emitted from the LED is 1.2 mW. Calculate the number of photons $N$ emitted from the LED per second. - -# ADDITIONAL ANSWER SPACE - -If additional space is required, you should use the following lined page(s). The question number(s) must be clearly shown in the margin(s). - -![images/aadb899c6b3cec615a10e1ed72c6c54495e616ad50f992d56e2fe213ac8f47be.jpg]() - -![images/9886600270ff0c79d601e923bc61ccd8cb06978790ac35bd3339c6345077723b.jpg]() - -# OCR - -Oxford Cambridge and RSA - -# Copyright Information - -OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. - -If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. - -For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE. - -OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. - -$\circledcirc$ OCR 2016 - -# Wednesday 18 May 2022 – Morning AS Level Physics A - -H156/01 Breadth in physics - -Time allowed: 1 hour 30 minutes - -You must have: $\bullet$ the Data, Formulae and Relationships Booklet - -You can use: -• a scientific or graphical calculator -• a ruler $\left(\mathsf{c m}/\mathsf{m m}\right)$ - -![images/e13ba473e1c4a5ee55519e2fc6f8728e3f90dc2938f57f4a70f123d9177bd5f1.jpg]() - -![images/fa78cbba2e5837afe0d41bbb370018e994b402fe0392f4454e0044cb38956b2e.jpg]() - -# INSTRUCTIONS - -Use black ink. You can use an HB pencil, but only for graphs and diagrams. -• Write your answer to each question in the space provided. If you need extra space use the lined pages at the end of this booklet. The question numbers must be clearly shown. -Answer all the questions. -• Where appropriate, your answer should be supported with working. Marks might be given for using a correct method, even if your answer is wrong. - -# INFORMATION - -The total mark for this paper is 70. -The marks for each question are shown in brackets [ ]. -This document has 28 pages. - -# ADVICE - -Read each question carefully before you start your answer. - -# 2 - -# SECTION A - -You should spend a maximum of 25 minutes on this section. - -Answer all the questions. - -Write your answer to each question in the box provided. - -1 Which of the following could be the wavelength of ultraviolet radiation? - -A 3 × 10–5 m B 1 × 10–10 m C 4 × 102 m D 2 × 10–7 m - -Your answer - -[1] - -2 Which term is not used in either of Kirchhoff’s two laws? - -A charge -B current -C electromotive force D potential difference - -Your answer - -[1] - -3 The diagram below shows the refraction of light at the boundary between two transparent materials $\pmb{\chi}$ and Y. - -![images/0910735679979ad7850c8f6a7c57f5e6ef6bc894ea5d4375755d54bbaf964fdd.jpg]() - -The refractive index of material $\pmb{\mathrm{x}}$ is 1.5 and the refractive index of material $\pmb{\upgamma}$ is $n$ . - -Which of the following expressions is correct? - -A $n\times\sin70^{\circ}=1.5\times\sin50^{\circ}$ B $n\times\sin20^{\circ}=1.5\times\sin40^{\circ}$ C $1.5\times\sin70^{\circ}=n\times\sin50^{\circ}$ D 1.5 × sin 20° = n × sin 40° - -Your answer - -4 A student is carrying out the Young double-slit experiment using visible light. The distance between the slits and the screen is kept constant. The wavelength of light is λ and the separation of the slits is a. - -The following results are collected by the student. - -
入/nma/mm
A4500.20
B5100.15
C5500.25
D6100.30
- -Which combination of $\lambda$ and $a$ will give the largest separation between the adjacent bright fringes? - -![images/64a6115ffbee9b67e051c1bc3fde99c48f14ba1f77329c7167adbf0d360e33b3.jpg]() - -5 A car of mass $1000\mathsf{k g}$ is travelling on a straight and horizontal road. The driver applies the brakes. The speed of the car decreases from $20\mathsf{m}\mathsf{s}^{-1}$ to $15\mathsf{m}\mathsf{s}^{-1}$ in $_{2.4\S}$ . What is the average power dissipated by the brakes? - -A $1.0\times10^{3}\mathsf{W}$ B $5.2\times10^{3}\mathsf{W}$ C 3.6 × 104 W D 8.3 × 104 W - -Your answer - -6 Two coherent waves are emitted from the sources X and Y. - -![images/b1c3f7863de169f33197cc957a623c06f012e82a2aa0a7befe98ca76ab97c44e.jpg]() - -The diagram is not to scale. -The waves at $\pmb{\chi}$ and Y are in phase. -The waves have wavelength $4.0\mathsf{c m}$ . -The phase difference of the two waves meeting at point $\mathsf{\textbf{P}}$ is ${}^{270^{\circ}}$ . - -Which row gives possible distances for a and b? - -
a/cmb/cm
A20.026.0
B20.022.0
C15.018.0
D10.014.0
- -Your answer - -7 A resistor of resistance $12\Omega$ is connected in parallel with another resistor of resistance R. The total resistance of the circuit is $4.0\Omega$ . - -What is the value of R? - -A 0.17 Ω B 6.0 Ω C 8.0 Ω D 16 Ω - -Your answer - -8 A cell of electromotive force (e.m.f.) $1.2\lor$ is connected to a wire of resistance $6.0\Omega$ . - -![images/2b08edd34263e502c6efede43667aa1c15931fa27efbfb6e1e29bc2128040448.jpg]() - -The potential difference across the wire is $0.90\vee.$ What is the internal resistance $r$ of the cell? - -A 0.15 Ω B 0.30 Ω C 2.0 Ω D 8.0 Ω - -Your answer - -9 A thin metal plate is free to rotate in the vertical plane about the point P. Four forces A, B, C and D act at the same point on the plate, as shown below. - -![images/e0f088531d62ab5540281a2fc2e625feb527d32c2290e9c51b47acce9675c8d4.jpg]() - -The diagram above is drawn to scale. -All the forces are in the vertical plane. -The forces have the same magnitude but act in different directions. - -Which force will produce the greatest moment about point P? - -Your answer - -10 A total of $3.8\times10^{7}$ electrons flow through a wire in a time of $1.2\upmu\mathrm{s}$ . What is the current in the wire? - -A $6.1\times10^{-12}{\mathsf{A}}$ B $7.3\times10^{-12}\mathsf{A}$ C 5.1 × 10–6 A D 3.2 × 1013 A - -Your answer - -11 An electric motor is used to lift a weight of $4.0\mathsf{N}$ through a vertical height of $0.90\m m$ in $1.8\mathfrak{s}$ . The efficiency of the motor is $20\%$ . - -What is the electrical power supplied to the motor? - -A 0.40 W B 2.0 W C 3.6 W D 10 W - -Your answer - -12 Plane polarised light is incident perpendicular to a vertical polarising filter. The polarising filter is rotated about the horizontal axis. - -Which property of the transmitted light changes as the filter is rotated? - -A frequency B intensity C speed D wavelength - -Your answer - -13 A load is suspended from two wires $\mathsf{\textbf{P}}$ and Q as shown below. - -![images/ea4ddc2d92328235451c8d6a5b8eca8c0546627346f73846e88ac96980211816.jpg]() - -Both wires have the same diameter. - -The table below shows some data for these two wires. - -
Original length of wireYoungr modulus of wire'smaterialExtensionofwire/mm
PLE4.0
Q1.5 L3.0E
- -What is the extension of the wire Q? - -A 2.0 mm B 4.0 mm C 6.0 mm D 8.0 mm - -Your answer - -14 Which graph best represents the way in which the resistance $R$ of a negative temperature coefficient (NTC) thermistor depends on its temperature $\theta$ in ${}^{\circ}\mathrm{C}^{\prime}$ ? - -![images/a1078131086f257375fa52abc18814e6c5674f49a5698dfcd789ab629a0ef6bd.jpg]() - -15 A student balances a uniform metal rod horizontally. - -![images/bbb75f5d2b0006a7ff44334419cbd33193da0ca962f888f049327ad04dced260.jpg]() - -The rod is pivoted at its middle. The position of weight W is kept constant. The distance of the weight $F$ from the pivot is $X.$ The student changes $F$ and then adjusts x so that the rod remains balanced. - -Which statement is correct? - -A A graph of $F$ against $x$ will be a straight line through the origin. B The upward force at the pivot is equal to $F.$ -C The weight of W is equal to $F x.$ -D $x$ is inversely proportional to $F.$ . - -Your answer - -16 The I-V characteristics of two components R and L are shown below. - -![images/c377a1b930001a6bdfb1abb8d6ed4fed05eb68f2ec2fb76d4a0d72faf46dad2e.jpg]() - -Which statement is correct? - -A R and L are both filament lamps. -B R and L have the same resistance at $1.5\lor.$ -C The resistance of L is independent of potential difference V. -D The resistance of R increases as the potential difference V increases. - -Your answer - -17 The photoelectric effect can be demonstrated using a gold-leaf electroscope. The zinc plate of the electroscope is negatively charged. Ultraviolet radiation incident on the zinc collapses the gold leaf. - -What is removed from the zinc plate by the incident radiation? - -A electrons B ions C photons D protons - -Your answer - -8 What is the total energy $E$ gained by $N$ electrons travelling through a potential difference V - -A $E=N\times V$ -B E = V × 10–19 -C $E=V\times1.60\times10^{-19}$ -D $E=N\times V\times1.60\times10^{-19}$ - -Your answer - -19 A student is experimenting with sound waves of wavelength $3.0\mathsf{c m}$ and electromagnetic waves also of wavelength $3.0\mathsf{c m}$ . Which statement is correct about both of these waves? - -A They can be polarised. -B They can form stationary waves. -C They have the same frequency. -D They have the same speed. - -Your answer - -20 A laser emits a uniform beam of light. What two quantities alone are required to calculate the intensity of the beam of light? - -A amplitude, frequency B cross-sectional area, power C energy, time D frequency, wavelength - -Your answer - -# PLEASE DO NOT WRITE ON THIS PAGE Question 21 starts on page 12 - -# 12 SECTION B - -Answer all the questions. - -21 A person in a buggy is attached to a large parakite by a rope, as shown below. - -![images/7a677d89dbd7850d8d60ee155f59b14fc5e084b7b662630729c59cfc12a7ffde.jpg]() - -Strong wind acting on the parakite moves the buggy along horizontal ground. - -The rope makes an angle of $55^{\circ}$ to the horizontal. The total mass of the buggy and person is $150\mathsf{k g}$ . - -The velocity v against time t graph for the buggy is shown below. - -![images/6d33415e347daed1c4c7abfe4fb0f1585698a0071e38861ad56099682f0cd9ad.jpg]() - -(a) Calculate the horizontal distance travelled by the buggy from $t=0$ to $t=8.05$ . - -horizontal distance $=$ m [3] (b) At $t=1.0\mathsf{s}$ the buggy is accelerating. (i) Use the graph to show that the acceleration of the person at $t=1.05$ is $2.0\mathsf{m}\mathsf{s}^{-2}$ . - -(ii) At $t=1.0\mathsf{s}$ the tension $\tau$ in the rope is $680\mathsf{N}$ and the total horizontal resistance acting on the buggy and person is $R$ Calculate $R$ by resolving the tension in the rope horizontally. - -R = N [3] - -22 A pogo stick is a spring-based toy used by a circus clown for jumping vertically up and down. A compression spring is fixed to the bottom of the pogo stick. The upper end of the spring is attached to a movable platform. - -![images/82d54580131e9f95905bf28f4b9f3585c6e8272d31e608afe853480770dccf41.jpg]() - -The force constant of the spring is $1.7\times10^{4}\mathsf{N m}^{-1}$ . -The mass of the clown is $68\mathsf{k g}$ . -The mass of the pogo stick is negligible compared with the mass of the clown. - -The table below shows the state of the spring and the clown in three different positions. - -
Position APosition BPosition C
25 cm45 cm76 cm
State of springground fully compressedground original lengthground original length
State of clownstationaryMoving vertically upwards atstationary
Height of platform above the ground/cm25maximum speed 4576
- -(a) Describe how the force constant of the compression spring in the pogo stick can be verified in the laboratory. . [2] (b) Describe the energy changes taking place between positions B and C. . [1] (c) Calculate the maximum energy $E$ stored in the compressed spring. - -E = J [2] - -(d) A student uses the following expression to determine the maximum speed $V$ of the clown in position B: maximum energy $E$ stored in the compressed spring $\mathbf{\delta}\mathbf{\sigma}={\frac{1}{2}}\times68\times V^{2}.$ Explain why this expression is incorrect. You are not expected to do any calculations. . [1] - -23 Two objects A and B are travelling horizontally and in opposite directions. The objects collide in mid-air at a height of $120\ m$ above the horizontal ground, as shown below. - -![images/ad3e775cc40b6b0083ee91f388ecd745cb0b670238724f4ea4829ff0d1796f58.jpg]() - -The mass of A is $2.0\mathsf{k g}$ and the mass of B is $3.0\mathsf{k g}$ . - -After the collision the objects are joined together. - -The momentum $p$ against time t graphs for each object before, during and after the collision are shown below. - -![images/de9a91b1869c584ce0fcdb402cfb99a6944424d64c90bbeff21ff66cc1889627.jpg]() - -(a) Explain how the graphs demonstrate Newton’s third law during the collision. [2] (b) Use the graphs to show that momentum is conserved in the collision. - -[2] - -(c) Calculate the magnitude of the horizontal velocity v of the combined objects immediately after the collision. - -v = $m\mathtt{s}^{-1}$ [2] - -(d) Air resistance has negligible effect on the motion of the objects. Calculate the time taken for the combined objects to reach the ground after the collision. - -time taken $=$ s [3] - -Turn over - -24 (a) Stationary waves are formed on the surface of seawater in a harbour as incoming waves are reflected off the harbour wall. - -An observer is looking at these stationary waves. -State how the observer can tell that these are stationary waves. . [1] - -(b) A wire is fixed between two supports, as shown in Fig. 24. - -![images/645132a05ad83dd6e61ed607c026df252dff9a40d31b845f457519f7782b3b89.jpg]() -Fig. 24 - -The wire is plucked in the middle. A stationary wave of fundamental frequency $f$ is formed on the stretched wire. - -The tension $\tau$ in the stretched wire is given by the expression $T=4f^{2}m L$ , where $f$ is the frequency of the oscillating wire, $m$ is the mass of the wire and $L$ is the length of the wire. - -A student is performing an experiment to determine the tension $\tau$ in the wire. The measurements are shown in the table below. - -
QuantityMeasurementPercentage uncertainty
f58Hz2.5
m9.7 x 10-4kg1.0
L0.62m0.5
- -(i) Suggest how the student may have determined the fundamental frequency of the oscillating wire in the laboratory. - -. [2] - -19 - -(ii) Use the data in the table to determine 1 the wavelength of the progressive waves on the stretched wire wavelength $=$ m [1] - -2 the speed of the progressive waves on the stretched wire speed $=$ $m\mathtt{s}^{-1}$ [2] - -3 the absolute uncertainty in the tension $\tau.$ Write your answer to 2 significant figures. - -absolute uncertainty in $T=$ N [2] (a) Potential difference (p.d.) and electromotive force (e.m.f.) can both be defined in terms of transfer of energy per unit charge. State one other similarity between p.d. and e.m.f. . [1] - -(b) Fig. 25.1 shows an electrical circuit. - -![images/a84804dda1c347fcffc0102500692228139a5f9bd7c0f271b74cce52e91053c8.jpg]() -Fig. 25.1 - -The cell has e.m.f. $1.5\lor$ and negligible internal resistance. - -AB is a resistance wire of length L. The resistance of this wire is equal to the resistance $R$ of the fixed resistor. -S is a sliding contact that can be moved on the resistance wire. The distance between A and S is x. -The p.d. across the fixed resistor is $V.$ - -(i) The distance $x$ is changed by moving the slider from A to B. - -On Fig. 25.2, show the variation of $V$ with distance x. - -![images/d8cfb7d19f8dccbf4ba66c6980191fc426fadeb7935d80bfa302e5c191563c0f.jpg]() -Fig. 25.2 - -(ii) The connecting wire BC is now removed. The rest of the circuit remains unchanged. Explain the variation of V with distance $x$ as S is moved from A to B. [2] (c) A power supply of electromotive force (e.m.f.) $14.4\lor$ and negligible internal resistance is connected by two identical metal wires to two filament lamps, as shown in Fig. 25.3. - -![images/0405d3b9a885c49ae7f175d6bb98e454187c6debd810a809bcf9ff1b306b6410.jpg]() -Fig. 25.3 - -The current in the circuit is $3.0\mathsf{A}$ . -The potential difference across each lamp is $6.0\vee.$ -The total length of the metal wire is $25.0\mathsf{m}$ . The cross-sectional area of the wire is $0.54\mathrm{mm}^{2}$ . - -(i) Calculate the resistivity $\rho$ of the metal from which the wire is made. - -$\rho=$ Ω m [4] (ii) The number of electrons per unit volume $n$ in the metal wire is $8.5\times10^{28}\mathrm{m}^{-3}$ . Calculate the mean drift velocity $V$ of the electrons in the metal. - -v = $m\mathtt{s}^{-1}$ [2] - -26 (a) The table below shows the work function $\phi$ of four metals. - -
MetalABCD
p/eV3.24.13.36.4
- -Electromagnetic radiation of wavelength $380\mathsf{n m}$ is incident on all the metals. -Photoelectrons are just emitted from metal A. - -(i) Explain, in terms of the energy of photons, why metal C will not emit photoelectrons. [1] (ii) Calculate the maximum wavelength of the electromagnetic radiation in nm that will just eject photoelectrons from metal D. - -maximum wavelength $=$ nm [1] (iii) The metal B is now exposed to electromagnetic radiation of a different wavelength. The energy of each incident photon is $5.3{\tt e V}.$ Calculate the minimum de Broglie wavelength $\lambda$ of the emitted photoelectrons. - -λ = m [3] - -(b) A researcher is carrying out an experiment to determine the work function $\phi$ of a new material. The material is illuminated by electromagnetic radiation of frequency $f$ and the maximum kinetic energy $K E_{\mathrm{max}}$ of the photoelectrons is determined. - -The researcher plots the data points shown below. - -![images/60e29916eac776b4c6df2127d40e0b89ce7e8fe2f5e31f652651010aba4d77ef.jpg]() - -(i) Draw a straight line of best fit through the data points. -(ii) Use the gradient of this line, and Einstein’s photoelectric equation, to determine the work function $\phi$ of the material. - -$\phi=$ J [3] - -# ADDITIONAL ANSWER SPACE - -If additional space is required, you should use the following lined page(s). The question number(s) must be clearly shown in the margin(s). - -![images/9b142c1215ef0e56cf943a518bcb906bf2bc0a15ef5a053f1877390488ceceec.jpg]() - -![images/f697f69f4f597b907fdf9d12f49f05a9bd9923f89370366095cff7e716c734ca.jpg]() - -# OCR - -Oxford Cambridge and RSA - -# Copyright Information - -OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. - -If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possibl opportunity. - -or queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA. - -OCR is part of Cambridge University Press & Assessment, which is itself a department of the University of Cambridge. - -$\circledcirc$ OCR 2022 - -# GCE Physics A - -Unit H156/01: Breadth in physics - -Advanced Subsidiary GCE - -# Mark Scheme for June 2016 - -OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills. - -It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today’s society. - -This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners’ meeting before marking commenced. - -All examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated. - -Mark schemes should be read in conjunction with the published question papers and the report on the examination. - -OCR will not enter into any discussion or correspondence in connection with this mark scheme. - -$\circledcirc$ OCR 2016 - -# H156/01 - -# Mark Scheme - -Annotations available in RM Assessor - -
AnnotationMeaning
BODBenefit of doubt given
CONContradiction
Incorrect response
ECFError carried forward
L1Level 1
L2Level 2
L3Level 3
TETranscription error
NBODBenefit of doubt not given
POTPower of 10 error
Omissionmark
SFError in number of significant figures
Correct response
Wrong physics or equation
- -# H156/01 - -# Mark Scheme - -Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions). - -
AnnotationMeaning
alternative and acceptable answers for the same marking point
rejectAnswers which are not worthy of credit
notAnswers which are not worthy of credit
IgnoreStatementswhich areirrelevant
AllowAnswers that can be accepted
()Words which are not essential to gain credit
Underlined words must be present in answer to score a mark
ECF AWError carried forward
ORAAlternative wording
Or reverse argument
- -# CATEGORISATION OF MARKS - -The marking schemes categorise marks on the MACB scheme. - -B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate’s answers. - -C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the C-mark is given. - -M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate’s answers. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored. - -A marks: These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored. - -# Note about significant figures: - -If the data given in a question is to 2 sf, then allow to 2 or more significant figures. -If an answer is given to fewer than 2 sf, then penalise once only in the entire paper. -Any exception to this rule will be mentioned in the Guidance. - -# Mark Scheme - -# SECTION A - -
QuestionAnswerMarks Guidance
1C1
2B1
3C1
4D1
5B1
9A1
7B1
8B1
9A1
10C1
11D1
12B1
13C1
14C1
15C1
16A1
17D1
18C1
19D1
20B1
Total20
- -# Mark Scheme - -# SECTION B - -
Question 21AnswerMarksGuidance
(a) Mass is a scalar (quantity) and velocity is a vector (quantity).B1
(q) (i)(Addition of) velocity depends on direction / sign / vector triangle / resolving (ORA) An arrow from trolley to ramp along the string (for the tension) and a downwards arrow from the trolley (for theB1 B1Allow‘Velocity can be cancelled out' Not arrow for the tension parallel to the rampAllow arrows in correct directions anywhere on Fig. 21 Not arrow perpendicular to the ramp for the weight
weight). (ii) t= 0.73 (s)(s = 12 at'); 0.80 = 1%2 × 3.0 × t (Any subject)C1 A1Not two arrow heads in opposite directions along the string for the tension
Allow full credit for alternative methods, e.g: v2 = 2 × 0.80 × 3.0; v= 2.19 (m s-1) 2.19Note: Apply SF penalty if 0.7 s is on the answer line or the final answer Allow 1 mark for 0.40 (s); 9.8 m s2 used instead of 3.0 m s-2
=1 C1 3.0 t= 0.73 (s) A1
Total 5
- -# Mark Scheme - -
22 (a)QuestionAnswer The gradient remains the sameMarks B1Guidance Note: This mark is for the idea that the gradient / slope (of
the line) remains the same Allow: The line is (just) shifted (to the right) by the same amount (Aw)
(q)Gradient determined from Fig. 22 and gradient = 16C1Allow ± 0.5 for the value of the gradient Not u²/x value using the line or a data point because the
gradient is not determined Allow this mark even if gradient = a
gradient = 2a (F = ma); F= 920 × 8.0C1
F = 7.4 × 103 (N)A1Possible ECF for this A1 mark if the gradient is determined but its value is outside the range 15.5 to 16.5 and the second
C1 mark has also been scored Note: The answer to 3 SF is 7360 (N)
Total4Note: F= 920 × 16 = 14720 (N) can score the first C1 mark
- -# Mark Scheme - -
Question 23(a)MarksGuidance Note: In this question any symbols used must be defined or
previously mentioned Note: Allow full credit for alternative methods, e.g. using the equation pressure = height x density × g
pressure = weight(of cyinder) areaB1Allowforce/area
Weight (of cylinder) determined using a newtonmeterB1
or Measure mass (of cylinder) using balance / scale(s) and multiplying by g / 9.8(1 m s-²)Not 'gravity' for g
Area determined by measuring the diameter with a ruler /B1Not measure radius
vernier callipers / micrometer and then using (area =) π × 2 A sensible suggestion that reduces the % uncertainty:B1Allow other correct methods Not 'repeat readings (of diameter etc.)' because this
Use micrometer / (vernier) calipers / travelling microscope Use balance / newtonmeter with smaller division (AW)procedure improves the accuracy and not the precision Allow balance / newtonmeter with ‘high resolution'
/ air displaced (L)8:6/0:6 (= ssew) 10 (N) 8'2 - 0:6 (= 4snudn)B1
C1Note: This C1 mark for determining the upthrust (1.2 N) or the mass (0.92 kg) of the cylinder
V = (1.2/9.81) or V= 1.2(23) × 10-4 (m²) 1000C1
(9.0/9.81) 1.223×10-4
(9.0) p
8
×1000 = 7.5×10² (kg m-3)
p = 7.5 × 10² (kg m-3)
A1Allow full credit for alternative methods, e.g:
1.2
- -# Mark Scheme - -
QuestionAnswerMarksGuidance
24 (a)(Resultant) force is (directly) proportional / equal to the rate of change of momentumB1Notforce=mass× acceleration Not *force α change in momentum over time'
(q)(i)Any two from: momentum, (total) energy and massB1Not: kinetic energy
(ii)The force will have the same magnitude (at any time t) The force is in the opposite direction / has negative valueB1 B1Not 'This is because action = reaction'
Not Newton's third law Allow 1 mark for a correct graph if there is no description or explanation
(c)Method1:Momentumisconserved
1.7 × 10-27× 500 or 1.7 × 10-27 ×(-) 420 or 2.0 × 10-26 × vC1
1.7 × 10-27 × 500 = 1.7 × 10-27 × -420 + 2.0 × 10-26 × vC1
v = 78 (m s-1)A1Allow 1 mark for 6.8 (m s-1); + 420 used instead of - 420
Method 2: Kinetic energy is conserved
%2× 1.7 × 10-27 × 500² or %× 1.7 × 10-27 × 420² or 1%2 × 2.0 × 10-26 × v2C1Allow full credit for correct use of 'velocity of approach = -
1%2 × 1.7 × 10-27 × 5002 = 1%2 × 1.7 × 10-27 × 4202 + %2 × 2.0 xC1velocity of recession', e.g:
10-26 × v2 v= 79 (m s-1)'speed’ of approach = (-)'speed' of recession C1 500 = v+ 420 C1 v= 80 (m s-1) A1
TotalA1
7
- -# Mark Scheme - -
Question (i)Answer Similarity - same unit (Aw)Marks B1Guidance
25(a)Difference - For e.m.f, energy is transformed from chemical / other forms to electrical and for p.d., energy is transformedtoheat/otherformsfromelectricalB1 Allow any pair from: e.m.f. Energy (transformed) to electricalAllow *both defined as energy (transformed) per unit charge' or 'both defined as work done per unit charge' electricalp.d. Energy (transformed) from
(ii) n=9.6 ×1016 or n = 1.3(3...) × 1025 (m-3) 1.2x10-6 ×6.0x10-3C1heat /other forms Charges gain energy Work done on chargesCharges lose energy Work done by charges
(I = Anev)0.003 = 1.2 × 10-6 × 1.33... × 1025 × 1.6 × 10-19 × v
v= 1.2 × 10-3 (m s-1)C1Note Any subject for this equation
A1 Allow 1 mark for 1.6(3) × 105 (m s-1); n = 9.6 x1016 used
- -# Mark Scheme - -
(q)QuestionAnswer Circuit withcell inserieswith an ammeter and variable resistor.A voltmeter is connected across thevariableMarks B1Guidance Allow thisB1 mark for a clearly drawn circuit with correct symbols for the cell, variable resistor, voltmeter and
resistor/(terminalsofthe)cellammeter.Allow a battery symbol instead of symbol for a cell
Measure current and p.d. / voltage across variable resistor / cellB1Allow 'terminal p.d' for p.d. across the cell Allow'measure I and V if the circuit is correct Allow'measure voltmeter and ammeter readings'if the
Correct description of how to get multiple readings (of currentorp.d)B1circuit is correct Possible ECF for incorrect symbol for variable resistor
E.g.change the resistance of the variableresistor / use different value resistors, etc. (E = V+ Ir)B1
line) is equal to (-) r (AW)Total 9
- -# Mark Scheme - -
26Question (a)Answer (i) A and B move in opposite directionsMarks B1Guidance Allow A is moving up and B is moving down (or vice versa)
Allow they have a phase difference of 180(o) or π (rad) Allow they are in antiphase
(b)(i) = 0.80 (m)C1Allow 80 (cm) for this C1 mark
v= fn; v = 75× 0.80 v = 60 (m s-1) 2.0A1Allow 1 mark for 30 (m s-1) from the C1A1 marks; = 0.40 m used
absoluteuncertainty= x60 40 absolute uncertainty = 3.0 (m s-1)A1Note 60 ± 3 (m s-1) scores full marks Allow 2 marks for 6000 ± 300 (m s-1); in cm (POT error)
(i) Reflection (of progressive waves) at (fixed) end(s) / X / YB1Allow 2 marks for 30 ± 1.5 (m s-1); = 0.40 m used
Superposition (of these waves gives rise to the stationary wave)B1Allow: 'interference' instead of 'superposition'
The wavelength is twice the
length of cord / distance between X and YB1Allow = 2xY or equivalent
Total 7
- -# Mark Scheme - -
QuestionAnswerMarks B1
-1.0 V to 2.6 V: I = 0 / negligible and R = oo / (very) large (AW)
2.6 Vto3.0V:RdecreasesB1 Allow'rapid decrease in R
3.0 V to 3.4 V:R decreases
B1 Allow'slow decrease in R' Not R is constant (because it is a straight line)
Justification of a B1 point in terms of R = V/I. For example to show:B1Not R = gradient1 Ignore powers of 10 and units
R is infinite: R = 2.0/0 = ∞0Note: V and I values within ± 1 small square
R decreases: R calculated once and has R = o, or R calculated twice
(The circuit does not work because) the LED is reverse biased / incorrect polarity of the cell (AW)B1Allow: (For the circuit to work) the LED must be forward- biased / 'reverse the LED'/ 'reverse the cell'
V must be greater than 2.6 (V for the LED to be lit)B1Allow ± 0.1 V Not V must be equal to / 'at least' 2.6 V
B1Allow this mark even if the LED is reverse biased Note: This B1 mark can be scored on Fig. 27.2
(c)6.63×10-34 ×3.0×108 E= or E = 4.1(4) × 10-19 (J) 480×10-9 1.2×10-3C1Allow this mark even if the LED is reverse biased
C1
4.1(4)×10-19 N = 2.9 × 1015 (s-1)A1
Total10
- -# OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU - -OCR Customer Contact Centre - -Education and Learning -Telephone: 01223 553998 -Facsimile: 01223 552627 -Email: general.qualifications@ocr.org.uk - -www.ocr.org.uk - -Oxford Cambridge and RSA Examinations -is a Company Limited by Guarantee -Registered in England -Registered Office; 1 Hills Road, Cambridge, CB1 2EU -Registered Company Number: 3484466 -OCR is an exempt Charity -OCR (Oxford Cambridge and RSA Examinations) -Head office -Telephone: 01223 552552 -Facsimile: 01223 552553 - -$\circledcirc$ OCR 2016 - -# GCE - -# Physics A - -# H156/01: Breadth in physics - -AS Level - -# Mark Scheme for June 2022 - -OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills. - -It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today’s society. - -This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners’ meeting before marking commenced. - -All examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated. - -Mark schemes should be read in conjunction with the published question papers and the report on the examination. - -$\circledcirc$ OCR 2022 - -# H156/01 - -# Mark Scheme - -# PREPARATION FOR MARKING ON-SCREEN - -1. Make sure that you have accessed and completed the relevant training packages for on-screen marking: RM assessor Online Training and the OCR Essential Guide to Marking. -2. Make sure that you have read and understood the Instructions for On-Screen Marking and the mark scheme and the question paper for this unit. These are posted on the RM Cambridge Assessment Support Portal http://www.rm.com/support/ca -3. Log-in to RM Assessor and mark the required number of practice responses and the required number of standardisation responses. - -# MARKING INSTRUCTIONS – FOR MARKING ON-SCREEN AND FOR PAPER BASED MARKING - -1. Mark strictly to the mark scheme. -2. Marks awarded must relate directly to the marking criteria. -3. The schedule of dates is very important. It is essential that you meet the RM Assessor $50\%$ and $100\%$ deadlines. If you experience problems, you must contact your Team Leader without delay. -4. If you are in any doubt about applying the mark scheme, consult your Team Leader by telephone or the RM Assessor messaging system, or by email. - -# 5. Crossed Out Responses - -Where a candidate has crossed out a response and provided a clear alternative then the crossed out response is not marked. Where no alternative response has been provided, examiners may give candidates the benefit of the doubt and mark the crossed out response where legible. - -# Rubric Error Responses – Optional Questions - -Where candidates have a choice of question across a whole paper or a whole section and have provided more answers than required, then all responses are marked and the highest mark allowable within the rubric is given. Enter a mark for each question answered into RM assessor, which will select the highest mark from those awarded. (The underlying assumption is that the candidate has penalised themselves by attempting more questions than necessary in the time allowed.) - -# Multiple Choice Question Responses - -When a multiple choice question has only a single, correct response and a candidate provides two responses (even if one of these responses is correct), then no mark should be awarded (as it is not possible to determine which was the first response selected by the candidate). When a question requires candidates to select more than one option/multiple options, then local marking arrangements need to ensure consistency of approach. - -# Contradictory Responses - -hen a candidate provides contradictory responses, then no mark should be awarded, even if one of the answers is correct. - -Where candidates are required to provide a set number of short answer responses then only the set number of responses should be marked. The response space should be marked from left to right on each line and then line by line until the required number of responses have been considered. The remaining responses should not then be marked. Examiners will have to apply judgement as to whether a ‘second response’ on a line is a development of the ‘first response’, rather than a separate, discrete response. (The underlying assumption is that the candidate is attempting to hedge their bets and therefore getting undue benefit rather than engaging with the question and giving the most relevant/correct responses.) - -Short Answer Questions (requiring a more developed response, worth two or more marks) - -If the candidates are required to provide a description of, say, three items or factors and four items or factors are provided, then mark on a similar basis – that is downwards (as it is unlikely in this situation that a candidate will provide more than one response in each section of the response space.) - -Longer Answer Questions (requiring a developed response) - -Where candidates have provided two (or more) responses to a medium or high tariff question which only required a single (developed) response and not crossed out the first response, then only the first response should be marked. Examiners will need to apply professional judgement as to whether the second (or a subsequent) response is a ‘new start’ or simply a poorly expressed continuation of the first response. - -Always check the pages (and additional objects if present) at the end of the response in case any answers have been continued there. If the candidate has continued an answer there then add a tick to confirm that the work has been seen. - -7. Award No Response (NR) if: there is nothing written in the answer space Award Zero $\mathrm{^{6}0^{,}}$ if: anything is written in the answer space and is not worthy of credit (this includes text and symbols). - -# Mark Scheme - -Team Leaders must confirm the correct use of the NR button with their markers before live marking commences and should check this when reviewing scripts. - -8. The RM Assessor comments box is used by your team leader to explain the marking of the practice responses. Please refer to these comments when checking your practice responses. Do not use the comments box for any other reason. - -If you have any questions or comments for your team leader, use the phone, the RM Assessor messaging system, or e-mail. - -# 9. Level of response (LoR) - -Read through the whole answer from start to finish, concentrating on features that make it a stronger or weaker answer using the indicative scientific content as guidance. The indicative scientific content indicates the expected parameters for candidates’ answers, but be prepared to recognise and credit unexpected approaches where they show relevance. - -Using a ‘best-fit’ approach based on the science content of the answer, first decide which set of level descriptors, Level 1 (L1), Level 2 (L2) or Level 3 (L3), best describes the overall quality of the answer using the guidelines described in the level descriptors in the mark scheme. - -Once the level is located, award the higher or lower mark. - -The higher mark should be awarded where the level descriptor has been evidenced and all aspects of the communication statement (in italics) have been met. The lower mark should be awarded where the level descriptor has been evidenced but aspects of the communication statement (in italics) are missing. - -In summary: - -the science content determines the level the communication statement determines the mark within a level. - -10. Here are the subject specific instructions for this question paper. - -# CATEGORISATION OF MARKS - -The marking schemes categorise marks on the MACB scheme. - -# B marks - -These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate’s answers. - -# M marks - -These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate’s answers. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored. - -# C marks - -These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the C-mark is given. - -A marks These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored. - -# SIGNIFICANT FIGURES - -If the data given in a question is to 2 sf, then allow to 2 or more significant figures. -If an answer is given to fewer than 2 sf, then penalise once only in the entire paper. -Any exception to this rule will be mentioned in the Additional Guidance. - -# H156/01 - -# Mark Scheme - -11. Annotations available in RM Assessor - -
AnnotationMeaning
Correct responseUsed to indicate the point at which a mark has been awarded (one tick per mark awarded).
Incorrect responseUsed toindicate anincorrect answer or a point where a mark islost.
AEArithmetic errorECF if there arenofurther errors.
BODBenefit of doubt givenUsed to indicate a mark awarded where the candidate provides an answer that is not totally satisfactory, but the examiner feels that sufficient workhasbeen done.
BPBlank pageUse BP on additional page(s) to show that there is no additional work provided by the candidates.
CONContradictionUsed in numerical answers only, unless specified otherwise in the mark scheme. Answers to later sections of
ECFError carried forwardWithin a question, ECF can be given for AE, TE and POT errors but not for XP.
L1Level 1L1 is used to show 2 marks awarded and L1^ is used to show 1 mark awarded.
L2Level 2L2 isused to show 4 marks awarded andL2^ is used to show3 marks awarded.
L3Level 3L3 is used to show6 marks awarded and L3^ is used to show 5 marks awarded.
POTPower of 10 errorThis isusuallylinked toconversionof Sl prefixes.Donot allowthemarkwheretheerror occurs.Thenfollow through the working/calculation giving ECF for subsequent marks if there are no further errors.
SEENSeen
SFError in number of significant figuresnecessary will be considered within the mark scheme.Penalised only once in the paper.
TETranscription errorsubsequent marks.
XPWrong physics or equationUsed in numerical answers only, unless otherwise specified in the mark scheme. Use of an incorrect equation is wrong physics even if it happens to lead to the correct answer.
OmissionUsed to indicate where more is needed for a mark to be awarded (what is written is not wrong but not enough).
- -# Mark Scheme - -Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions). - - -
AnnotationMeaning
alternative and acceptable answers for the same marking point
RejectAnswerswhicharenotworthyofcredit
NotAnswers which are not worthy of credit
IgnoreStatements which are irrelevant
AllowAnswers that can be accepted
()Words which are not essential to gain credit
Underlined words must be present in answer to score a mark
ECFError carried forward
AWAlternative wording
ORAOr reverse argument
- -# Mark Scheme - -# SECTION A - -
QuestionAnswerMarksGuidance
1D1
2A1
3C1
4B1
5C1
9C1
7B1
8C1
9A1
10C1
11D1
12B1
13A1
14A1
15 D1
16 B1
17 A1
18 D1
19 B1
20 B1 20
- -# Mark Scheme - -# SECTION B - -General rule: For substitution into an equation, allow any subject - unless stated otherwise in the guidance - -
QuestionAnswerMarksGuidance
21(a)(b) (i)distance = area under the graph/suvat equationsC1Allow any attempt to calculate part of the area under the graph or suvat equations Allow any correct calculation of part of the area under the
1%2 (4.0 + 10.0) × 3.0 / 10.0 × 5.0C1 graph/suvat eqn e.g. 9, 12, 20,21, 30, 32, 50 (m)
horizontal distance = 71 (m)A1 C1
2.0 (ii)3.0A0Allow any correct gradient calculation
680cos55 / 150 × 2.0C1If both components given (vertical and horizontal) it must be clear that the 390N is the horizontal component.
680c0s55 - R = 150 × 2.0 R = 90 (N)C1
A1
Total 7
- -
Question 22 (a)Answer Add (a range of) loads/force/weights to the spring andMarks B1Guidance Allow extension for compression throughout
determine the compression (for each load)B1Allow W = mg Not length for compression
force Allow force constant = - and k = F/x (k must compression be subject)
(q)(c)KE/kinetic to gravitational PE/potentialB1AllowKEtransferredtoGPE Not elastic potential energyIgnore increase of thermal store of the surroundings
(d)E = 12 × 1.7 × 104 × (0.45 -0.25)2C1Allow gain in GPE = 68g(0.76 - 0.25) lgnore E = % Fx
E= 340 (J) The gravitational potential energy store of the person has been omitted/(elastic) potential store of the spring has beenA1 B1lgnorereferencestoenergylosses
transferred to gravitational potential energy store(of the
person)Total 6
- -H156/01 -Mark Scheme - - -
QuestionAnswerMarksGuidance
23 (a)Gradients/rate of change of momentum are opposite/ positive & negativeB1Ignore change in momentum is the same for A and B
(q)Gradients/rate of change of momentum of the graphs have the same magnitude/Force on A and B = 24000NB1Allow calculations of the gradient for 2 marks A F = (20 - (-4)/1ms = 24000N and B F = (-30 - 6)/1ms = -24000N Ignore POT
Allow 1 mark if no reference to the graph - The forces acting on each object are opposite and the (magnitude) of
the forces are the same Allowalternativeanswerof: loss of momentum of A = 24 (kg/m/s)
momentum before = 20 - 30 (= -10 kg m s-1) momentum after = -4 -6 (= -10 kg m s-1)B1 B1
(Therefore, the momentum is conserved)gain of momentum by B = 24 (kg/m/s) (Therefore, the momentum is conserved)
(c) (2.0 + 3.0) v = 10C1 Allow answer of 2 1sf, without any SF penalty
v = 2.0 (m s-1)A1 Ignore sign
C1
- -
Question 24Ignore the waves don't moveGuidance
(b)(i)Any acceptable methods e.g.B1Allow vibration generator connected to a variable
Note matched to a note produced by a speaker connected to a variable (calibrated) signal generator/ Reducebackground sound levelB1(calibrated)signal generator Allow Adjust signal generator to the fundamental
ORfrequency (whenastationarywaveisachieved)
Count the number of oscillations and divide by time
camera)taken (from a stopwatch/oscilloscope/slow motion
Take many oscillations e.g. 5 or 10/ longer time
OR
Microphone connected to oscilloscope to measure T/
period and f = 1/T/period
Reduce background sound level
OR
Use a (calibrated) strobe to determine the frequency
Dim down the lights (Aw) to get the best results
Allow 1.2(m)
(ii)1
1.24 (m)
- -# Mark Scheme - -
QuestionAnswerMarksGuidance
(ii)2(v= fn) v = 58 × 1.24 v = 72 (m s-1)C1 A1ECF from (b)(ii)1
(ii)3% uncertainty = [2 × 2.5] + 1.0 + 0.5 (= 6.5) 0.065 × [4 × 582 × 9.7 × 10-4 × 0.62] absolute uncertainty = 0.53 (N)C1 A1Answer to 2sf only Allow ECF 1 mark for %uncertainty of 4% and absolute
Total8uncertainty 0.32N 2sf
- -
Question 25(a)AnswerMarksGuidance
Bothmeasured inVolts / same unitsB1Allow V for volt
(q)(i)Graph from 1.5 V at 0/A to 0 V at L/BM1Allow they are both voltages/they are both measured with a voltmeter Allow curve of increasing gradient/straight line
(ii)Curve of decreasing gradientA1 B1
At A / x = 0, V= 1.5 V and at B / x = L, V = 0.75 V/p.d is shared/halved Total resistance increases so current decreasesB1Allow V(across R) decreases as x increases (as S moves from A to B) Allow Explanation of potential divider e.g. At B resistance
(c)(i)(as length of wire L and resistor of R are in series)C1of length of wire = resistance of R
p.d across wire = 14.4 - 12.0 = (2.4 V) (= 0.80 Ω)C1
3.0 p x 25.0 0.80 = 0.54 x 10-6C1
p= 1.7 × 10-8 (Ω m)A1ECF R = 2.8 Ω (V = 8.4 V) to give p = 6.0 × 10-8 (Ω m) for 3 marks
(ii)(/ = Anev) 3.0 = 0.54 × 10-6 × 1.60 × 10-19 × 8.5 × 1028 × VC1Do not penalise the same PoT error in 0.54 mm2 from (c)(i) again
v = 4.1 x 10-4 (m s-1)A1 Total
- -Mark Scheme - - -
QuestionAnswerMarksGuidance
26(a)(i)Energy (of photon) is less than work function/Φ (of C ) 3.3 (eV)B1Allow energy of photon / 3.2 (eV) < 3.3 (eV)/work function (of C) (so no photoelectrons)
(ii) (ii)190 (nm)B1Allow 194 (nm) from calculation E=hf
(hf = Φ + KEmax)
5.3 = 4.1 + KE(max) (KEmax =) 1.2 (eV) orC1Allow KE = 1.92 x 10-19 (J)
% × 9.11 × 10-31 × v2 = 1.2 × 1.6 × 10-19 6.63 × 10-34C1
入= 9.11 × 10-31 x 6.4924 x 105Allow v= 6.5 × 105 (m s-1) or p = 5.9 × 10-25 (kg m s-1)
(q)(i) (ii) = 1.1 × 10-9 (m)A1
Line of best fit drawnB1Not drawn through 0.5/5.0
gradient calculated and gradient = 6.2 × 10-34 (J s)C1Allow value in the range 5.8 to 6.6 × 10-34 (J s)
Correct use equation of straight line, and gradient to determine the y-intercept / Φ Φ= 2.7 × 10-19 (J)M1ECF from incorrect value of h
A1Allow value in the range 2.4 to 3.0 × 10-19 (J)
Total 9
- -# Need to get in touch? - -If you ever have any questions about OCR qualifications or services (including administration, logistics and teaching) please feel free to get in touch with our customer support centre. - -# Call us on - -01223 553998 - -Alternatively, you can email us on support@ocr.org.uk - -For more information visit - -ocr.org.uk/qualifications/resource-finder -ocr.org.uk -Twitter/ocrexams -/ocrexams -/company/ocr -/ocrexams - -# CAMBRIDGE UNIVERSITY PRESS & ASSESSMENT - -OCR is part of Cambridge University Press & Assessment, a department of the University of Cambridge. - -For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored. $\circledcirc$ OCR 2022 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England. Registered office The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA. - -Registered company number 3484466. OCR is an exempt charity. - -OCR operates academic and vocational qualifications regulated by Ofqual, Qualifications Wales and CCEA as listed in their qualifications registers including A Levels, GCSEs, Cambridge Technicals and Cambridge Nationals. - -OCR provides resources to help you deliver our qualifications. These resources do not represent any particular teaching method we expect you to use. We update our resources regularly and aim to make sure content is accurate but please check the OCR website so that you have the most up-to-date version. OCR cannot be held responsible for any errors or omissions in these resources. - -Though we make every effort to check our resources, there may be contradictions between published support and the specification, so it is important that you always use information in the latest specification. We indicate any specification changes within the document itself, change the version number and provide a summary of the changes. If you do notice a discrepancy between the specification and a resource, please contact us. - -Whether you already offer OCR qualifications, are new to OCR or are thinking about switching, you can request more information using our Expression of Interest form. - -Please get in touch if you want to discuss the accessibility of resources we offer to support you in delivering our qualifications. \ No newline at end of file diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/H156_01_24_May_2016_1739552446_content_list.json b/pdf_output/H156_01_24_May_2016_1739552446/auto/H156_01_24_May_2016_1739552446_content_list.json deleted file mode 100644 index 4a20a15281458552696871422a7e16a356d0917a..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/H156_01_24_May_2016_1739552446_content_list.json +++ /dev/null @@ -1,3028 +0,0 @@ -[ - { - "type": "text", - "text": "AS Level Physics A H156/01 Breadth in physics ", - "text_level": 1, - "page_idx": 0 - }, - { - "type": "text", - "text": "Tuesday 24 May 2016 – Morning Time allowed: 1 hour 30 minutes ", - "text_level": 1, - "page_idx": 0 - }, - { - "type": "text", - "text": "You must have: ", - "text_level": 1, - "page_idx": 0 - }, - { - "type": "text", - "text": "• the Data, Formulae and Relationships Booklet (sent with general stationery) ", - "page_idx": 0 - }, - { - "type": "text", - "text": "You may use: • a scientific calculator • a ruler (cm/mm) ", - "page_idx": 0 - }, - { - "type": "table", - "img_path": "images/107616ddeafe24853b2e23661ac26c1d16be75b8421d02eb4eb9dbc462c1128d.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Firstname
Last name
Centre numberCandidate number
\n\n", - "page_idx": 0 - }, - { - "type": "text", - "text": "INSTRUCTIONS ", - "text_level": 1, - "page_idx": 0 - }, - { - "type": "text", - "text": "Use black ink. HB pencil may be used for graphs and diagrams. \nComplete the boxes above with your name, centre number and candidate number. Answer all the questions. \nWrite your answer to each question in the space provided. If additional space is required, you should use the lined page(s) at the end of this booklet. The question number(s) must be clearly shown. \nDo not write in the barcodes. ", - "page_idx": 0 - }, - { - "type": "text", - "text": "INFORMATION ", - "text_level": 1, - "page_idx": 0 - }, - { - "type": "text", - "text": "The total mark for this paper is 70. \nThe marks for each question are shown in brackets [ ]. \nThis document consists of 28 pages. ", - "page_idx": 0 - }, - { - "type": "text", - "text": "SECTION A ", - "text_level": 1, - "page_idx": 1 - }, - { - "type": "text", - "text": "You should spend a maximum of 25 minutes on this section. ", - "page_idx": 1 - }, - { - "type": "text", - "text": "Answer all the questions. ", - "page_idx": 1 - }, - { - "type": "text", - "text": "Write your answer to each question in the box provided. ", - "page_idx": 1 - }, - { - "type": "text", - "text": "1 The watt is the SI unit for power. Which is the correct definition for the watt? A watt is ... ", - "page_idx": 1 - }, - { - "type": "text", - "text": "A the rate of work done. \nB the work done per second. \nC a joule per second. \nD a joule per unit time. ", - "page_idx": 1 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 1 - }, - { - "type": "text", - "text": "2 A crane is used to lift a load directly from point X to point Y. ", - "page_idx": 1 - }, - { - "type": "image", - "img_path": "images/2f2e5923e79ba2dec9ac4893989998778f71d28c3828c44fea54df613bf7197e.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 1 - }, - { - "type": "text", - "text": "The weight of the load is W. \n$p,q$ and $r$ are distances between points $\\pmb{\\times}$ , Y and Z as shown in the diagram. ", - "page_idx": 1 - }, - { - "type": "text", - "text": "What is the work done against the weight? ", - "page_idx": 1 - }, - { - "type": "text", - "text": "A Wp \nB Wq \nC Wr \nD W(q + r ) ", - "page_idx": 1 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 1 - }, - { - "type": "text", - "text": "3 A student views the display of a laptop screen through a polarising filter. The intensity of the light changes when the filter is rotated. ", - "page_idx": 2 - }, - { - "type": "text", - "text": "Which property of light is demonstrated in this experiment? ", - "page_idx": 2 - }, - { - "type": "text", - "text": "A It has wavelength of about $5\\times10^{-7}\\mathrm{m}$ . \nB It travels at the speed of light. \nC It is a transverse wave. \nD It is a longitudinal wave. ", - "page_idx": 2 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 2 - }, - { - "type": "text", - "text": "4 Electrons travelling through a thin film of carbon are diffracted. Which statement is correct? The electrons behave like .. ", - "page_idx": 2 - }, - { - "type": "text", - "text": "A photons and are deflected by the carbon atoms. \nB photons and change direction as their speed changes. \nC waves and are refracted by the holes in the carbon film. \nD waves of wavelength similar to the spacing between carbon atoms. ", - "page_idx": 2 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 2 - }, - { - "type": "text", - "text": "5 In which region of the electromagnetic spectrum is radiation of wavelength $50\\upmu\\mathrm{m}?$ ", - "page_idx": 2 - }, - { - "type": "text", - "text": "A visible B infra-red C microwave D radio ", - "page_idx": 2 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 2 - }, - { - "type": "text", - "text": "6 The graph shows the resultant force on a football as it is kicked. ", - "page_idx": 3 - }, - { - "type": "image", - "img_path": "images/954e65bf25f3c05465ea62bce785a475734ce23740d52af30d19ca9fecb4cc16.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 3 - }, - { - "type": "text", - "text": "Which of the following graphs relating to this kick would have the same shape as the graph above? ", - "page_idx": 3 - }, - { - "type": "text", - "text": "A acceleration of the ball against time B kinetic energy of the ball against time C momentum of the ball against time D velocity of the ball against time ", - "page_idx": 3 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 3 - }, - { - "type": "text", - "text": "7 A block of wood is at rest on a ramp. The weight of the block is W and the frictional force on the block is $F$ ", - "page_idx": 4 - }, - { - "type": "image", - "img_path": "images/539d5ed47b3443f2ea5abbc5bfea2d768a40385a2e377d562e29f4eb185d7523.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 4 - }, - { - "type": "text", - "text": "A triangle of forces diagram can be used to determine the magnitude and the direction of the normal contact force N. ", - "page_idx": 4 - }, - { - "type": "text", - "text": "Which is the correct diagram for this triangle? ", - "page_idx": 4 - }, - { - "type": "image", - "img_path": "images/110fe86f2ce536d9a157db1ef23083e839fa9ae612238b9d6fbe5c5870050f58.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 4 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 4 - }, - { - "type": "text", - "text": "8 The top ends of two springs, $\\mathsf{s}_{1}$ and $\\mathsf{s}_{2}$ , are attached to a rod. ", - "page_idx": 5 - }, - { - "type": "image", - "img_path": "images/60db3b4d1c7583e9afe708943a09a2d519f4fdf981d9aa03dc95c68585f2119d.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 5 - }, - { - "type": "text", - "text": "A mass is hung from the bottom end of $\\mathsf{s}_{1}$ . The extension of $\\mathsf{s}_{1}$ is $x.$ The elastic potential energy in the spring is $E.$ The same mass is hung from the bottom end of ${\\mathsf{s}}_{2}$ . The extension of $\\mathsf{S}_{2}\\mathrm{i}\\mathsf{s}\\frac{x}{3}$ ", - "page_idx": 5 - }, - { - "type": "text", - "text": "What is the elastic potential energy in the spring $\\mathsf{s}_{2}^{\\mathsf{\\Pi}}$ ? ", - "page_idx": 5 - }, - { - "type": "text", - "text": "A E 9 \nB E 3 \nC 3E \nD 9E ", - "page_idx": 5 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 5 - }, - { - "type": "text", - "text": "9 A 9 V battery is connected to two resistors as shown. The terminals $\\pmb{\\times}$ and $\\pmb{\\upgamma}$ are connected to another circuit that draws a current of 1 mA. The current from the battery is $3\\mathsf{m A}$ . ", - "page_idx": 6 - }, - { - "type": "image", - "img_path": "images/60bb3f1d52fd6c94c403f957b4cce3527a510ae31164897011cf7b1fe4d82506.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 6 - }, - { - "type": "text", - "text": "What is the power supplied to the circuit connected between $\\pmb{\\times}$ and Y? ", - "page_idx": 6 - }, - { - "type": "text", - "text": "A 6 mW B 12 mW C 18 mW D 27 mW ", - "page_idx": 6 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 6 - }, - { - "type": "text", - "text": "10 A trolley M collides head-on with a trolley L. The mass of trolley M is greater than the mass of trolley L. The trolleys join together after the collision. ", - "page_idx": 6 - }, - { - "type": "image", - "img_path": "images/f2f059b778c067ac4280f0129a141a0c7dfcd204a67514b930ad6be1a0fc8902.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 6 - }, - { - "type": "text", - "text": "Which statement is correct? ", - "page_idx": 6 - }, - { - "type": "text", - "text": "A The momentum of each trolley is conserved. \nB Trolley M experiences a greater force than trolley L during the collision. \nC The total force acting on the two-trolley system during the collision is zero. \nD Kinetic energy is conserved. ", - "page_idx": 6 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 6 - }, - { - "type": "text", - "text": "11 Two batteries are connected in a circuit with a lamp as shown. ", - "page_idx": 7 - }, - { - "type": "image", - "img_path": "images/64acc2a87d1e10ccc30190e18b446b2bfe0eae1c14620329e1194a5c4743b14f.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 7 - }, - { - "type": "text", - "text": "The batteries have e.m.f. 5.0 V and 3.0 V. Which row is correct? ", - "page_idx": 7 - }, - { - "type": "table", - "img_path": "images/3cb73a3427a8d7e9d0b1b21f9f9f84d96002d6726b39f14d53880d43e9abdce7.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
DirectionofconventionalcurrentMagnitude of current
Aclockwisegreater at Y than at X
Bclockwisesame atY and X
Canticlockwisegreater at X than at Y
Danticlockwisesame at X and Y
\n\n", - "page_idx": 7 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 7 - }, - { - "type": "text", - "text": "12 The diagram shows the conventional currents entering and leaving a junction in an electric circuit. $I_{1},I_{2},I_{3}$ and $I_{4}$ are all positive. ", - "page_idx": 7 - }, - { - "type": "image", - "img_path": "images/1044891fa1892b2d1f2342e4caefeebf5afcabae6a99728935bb049219ebedcc.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 7 - }, - { - "type": "text", - "text": "Which statement is always true? ", - "page_idx": 7 - }, - { - "type": "text", - "text": "A $I_{1}+I_{2}=I_{3}+I_{4}$ B $I_{1}-I_{2}+I_{3}-I_{4}=0$ C I1 = I2 and $I_{3}=I_{4}$ D $I_{1}+I_{2}+I_{3}+I_{4}=0$ ", - "page_idx": 7 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 7 - }, - { - "type": "text", - "text": "13 A student determines the resistance $R$ of a filament lamp by measuring the potential difference V across it and the current $I$ in it. The values recorded by the student are: ", - "page_idx": 8 - }, - { - "type": "text", - "text": "$V=(5.00\\pm0.20)\\lor$ and $I=(40.0\\pm1.0)\\Omega$ A. ", - "page_idx": 8 - }, - { - "type": "text", - "text": "What is the percentage uncertainty in the value of R ? ", - "page_idx": 8 - }, - { - "type": "text", - "text": "A $1.5\\%$ B $1.6\\%$ C $6.5\\%$ D 20% ", - "page_idx": 8 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 8 - }, - { - "type": "text", - "text": "14 A golf ball is dropped from rest onto a hard floor. The graph shows how the velocity of the ball varies with time as it bounces, from the time of release. ", - "page_idx": 8 - }, - { - "type": "text", - "text": "At which point does the ball reach its maximum height after the first bounce? ", - "page_idx": 8 - }, - { - "type": "image", - "img_path": "images/66a324a6e2287e131efe2c00ac3811e863771ba3d162a69cfce813c3bbd0e3ea.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 8 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 8 - }, - { - "type": "text", - "text": "15 An electron gun is used to accelerate electrons from rest through a voltage V. The electrons emerge with a speed u. ", - "page_idx": 9 - }, - { - "type": "image", - "img_path": "images/5d59fc0e036b924018b5ec46a687e23898feb49163f70fbe4b29f96fe3459ceb.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 9 - }, - { - "type": "text", - "text": "The voltage in the gun is halved to $\\frac{V}{2}$ At what speed do the electrons emerge? ", - "page_idx": 9 - }, - { - "type": "text", - "text": "A u 4 \nB u 2 \nC $\\frac{u}{\\sqrt{2}}$ \nD $u\\sqrt2$ ", - "page_idx": 9 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 9 - }, - { - "type": "text", - "text": "16 Photons of energy $4.8\\times10^{-19}\\mathrm{J}$ are incident on the surface of a clean metal plate of work function $3.2\\times10^{-19}\\mathrm{J}$ . ", - "page_idx": 9 - }, - { - "type": "text", - "text": "What is the maximum speed of emitted electrons? ", - "page_idx": 9 - }, - { - "type": "text", - "text": "A $5.9\\times10^{5}\\mathrm{m}s^{-1}$ B $8.4\\times10^{5}\\mathrm{m}s^{-1}$ C 1.0 × 106 m s–1 D 1.3 × 106 m s–1 ", - "page_idx": 9 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 9 - }, - { - "type": "text", - "text": "17 Two guitar strings of equal length, but of different thickness, are under the same tension. The strings are made of the same material. ", - "page_idx": 10 - }, - { - "type": "text", - "text": "The thinner string has a diameter of $0.20\\mathsf{m m}$ and the thicker string has a diameter of $0.80\\mathrm{mm}$ . elastic potential energy in the thinner string \nWhat is the value of the ratio elastic potential energy in the thicker string ", - "page_idx": 10 - }, - { - "type": "text", - "text": "A 0.125 \nB 0.25 \nC 4.0 \nD 16 ", - "page_idx": 10 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 10 - }, - { - "type": "text", - "text": "18 A ball is thrown at an angle of ${\\mathfrak{30}}^{\\circ}$ to the horizontal. The initial kinetic energy of the ball is $K.$ Air resistance has negligible effect on the motion of the ball. ", - "page_idx": 10 - }, - { - "type": "image", - "img_path": "images/db55862eee091ed45882894d34289e2cc148b09d99e5f464a66726056908cfca.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 10 - }, - { - "type": "text", - "text": "What is the kinetic energy of the ball at the maximum height? ", - "page_idx": 10 - }, - { - "type": "text", - "text": "A 0 B 0.25 K C 0.75 K D 0.87 K ", - "page_idx": 10 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 10 - }, - { - "type": "text", - "text": "19 A resistor of resistance $R$ is connected in parallel with a resistor of resistance 2R. The combination of resistors is connected to a cell. ", - "page_idx": 11 - }, - { - "type": "image", - "img_path": "images/1b6f3d6ccbfcc1b05b01301802fde8c92591db380a22245c4f8b78ad65ac57fe.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 11 - }, - { - "type": "text", - "text": "power dissipated in resistor of resistance R What is the ratio power dissipated in resistor of resistance $_{2R}$ ", - "page_idx": 11 - }, - { - "type": "text", - "text": "1 \nA 4 1 \nB 2 \nC 1 \nD 2 ", - "page_idx": 11 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 11 - }, - { - "type": "text", - "text": "20 The speed of light in air is $3.0\\times10^{8}\\mathrm{m}s^{-1}$ and the speed of light in glass is $2.0\\times10^{8}\\mathrm{m}s^{-1}$ . A ray of monochromatic light in glass strikes the glass-air boundary at an angle of ${80^{\\circ}}$ to the boundary. ", - "page_idx": 11 - }, - { - "type": "image", - "img_path": "images/0ae7e9629a22c026e7c45c5e99cfebe294445c273ff317a0b689c559a6e78b6a.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 11 - }, - { - "type": "text", - "text": "What is the angle made to the normal by the ray of light leaving the boundary? ", - "page_idx": 11 - }, - { - "type": "text", - "text": "A 6.6° B 15° C 41° D 49° ", - "page_idx": 11 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 11 - }, - { - "type": "text", - "text": "13 ", - "text_level": 1, - "page_idx": 12 - }, - { - "type": "text", - "text": "SECTION B ", - "text_level": 1, - "page_idx": 12 - }, - { - "type": "text", - "text": "Answer all the questions. ", - "page_idx": 12 - }, - { - "type": "text", - "text": "21 (a) Physical quantities can be added together. Velocity and mass are examples of two different types of physical quantities. Discuss how the addition of two velocities differs from the addition of two masses. [2] (b) Fig. 21 shows a stationary trolley on a smooth ramp. ", - "page_idx": 12 - }, - { - "type": "text", - "text": "", - "page_idx": 12 - }, - { - "type": "image", - "img_path": "images/feba7e126e58c78f737a5123c38a9658eec0b965c617f175bcbc48f54c6513af.jpg", - "img_caption": [ - "Fig. 21 " - ], - "img_footnote": [], - "page_idx": 12 - }, - { - "type": "text", - "text": "A short length of string is attached between the end of the trolley and the top of the ramp. Assume that the frictional force acting on the trolley is negligible when it is stationary or when it is moving. ", - "page_idx": 12 - }, - { - "type": "text", - "text": "(i) Other than the normal contact force, there are two other forces acting on the stationary trolley. On Fig. 21, draw arrows to show these two forces. You do not need to name these forces. \n(ii) The string is cut at time $t=0$ . The trolley travels down the ramp with a constant acceleration of $3.0\\mathsf{m}\\mathsf{s}^{-2}$ . Calculate the time $t$ taken by the trolley to travel a distance of $0.80\\m m$ down the ramp. ", - "page_idx": 12 - }, - { - "type": "text", - "text": "22 A group of engineers are testing a new car. They are investigating how the braking distance $x$ of the car varies with its initial speed $u$ when a constant braking force is applied. Fig. 22 shows the data points plotted on a $u^{2}$ against $x$ graph. The straight line of best fit has been drawn through the data points. ", - "page_idx": 13 - }, - { - "type": "image", - "img_path": "images/180a3a373f25614bf39677e7e8f3f4958abaf7654fd4d7aa094b7b8a9ebfded3.jpg", - "img_caption": [ - "Fig. 22 " - ], - "img_footnote": [], - "page_idx": 13 - }, - { - "type": "text", - "text": "The theoretical relationship between $u$ and $x$ for the car is ", - "page_idx": 13 - }, - { - "type": "equation", - "text": "$$\nU^{2}=2a x\n$$", - "text_format": "latex", - "page_idx": 13 - }, - { - "type": "text", - "text": "where a is the magnitude of the deceleration of the car. ", - "page_idx": 13 - }, - { - "type": "text", - "text": "(a) Fig. 22 shows that the straight line does not pass through the origin because of a systematic error in the measurement of the braking distance $x.$ The $u^{2}$ values are accurate. Suggest why a systematic error in $x$ does not introduce any difference between the actual value and the experimental value for the deceleration of the car. ", - "page_idx": 13 - }, - { - "type": "text", - "text": "[1] (b) The mass of the car is $920\\mathsf{k g}$ Use the gradient of the line drawn in Fig. 22 to determine the braking force $F$ acting on the car. ", - "page_idx": 13 - }, - { - "type": "text", - "text": "", - "page_idx": 14 - }, - { - "type": "text", - "text": "F = N [3] ", - "page_idx": 14 - }, - { - "type": "text", - "text": "3 (a) Fig. 23.1 shows a metal cylinder of diameter of about 5 cm placed on a horizontal tabl ", - "page_idx": 15 - }, - { - "type": "image", - "img_path": "images/e9d1c42f2298d6862122ca8ee400964ae9c1a0b4770b4a3e0d440d9707fde33d.jpg", - "img_caption": [ - "Fig. 23.1 " - ], - "img_footnote": [], - "page_idx": 15 - }, - { - "type": "text", - "text": "Describe how you can use instruments available in a physics laboratory to determine the pressure exerted by the cylinder on the table. State how you would make your results as precise as possible. ", - "page_idx": 15 - }, - { - "type": "text", - "text": ".. [4] ", - "page_idx": 15 - }, - { - "type": "text", - "text": "(b) (i) State Archimedes’ principle. ", - "page_idx": 15 - }, - { - "type": "text", - "text": "", - "page_idx": 15 - }, - { - "type": "text", - "text": "[1] ii) Fig. 23.2 shows the metal cylinder from (a) hung from a newtonmete ", - "page_idx": 15 - }, - { - "type": "text", - "text": "", - "page_idx": 16 - }, - { - "type": "image", - "img_path": "images/fa3181d7e3d6df2514d248cbd09b1f8fb7b2cb6af00095983635d4357f428b4a.jpg", - "img_caption": [ - "Fig. 23.2 " - ], - "img_footnote": [], - "page_idx": 16 - }, - { - "type": "text", - "text": "The reading on the newtonmeter is $9.0\\mathsf{N}$ ", - "page_idx": 16 - }, - { - "type": "text", - "text": "The cylinder is slowly lowered into water in a beaker until it is completely submerged. The cylinder does not touch the side or the bottom of the beaker. The newtonmeter reading now is $7.8\\mathsf{N}$ . The density of water is $1000\\mathsf{k g}\\mathsf{m}^{-3}$ . \nCalculate the density $\\rho$ of the metal of the cylinder. ", - "page_idx": 16 - }, - { - "type": "text", - "text": "$\\rho=$ kg m–3 [3] ", - "page_idx": 16 - }, - { - "type": "text", - "text": "24 (a) State Newton’s second law. ", - "page_idx": 17 - }, - { - "type": "text", - "text": "[1] (b) A comet makes an inelastic collision with a small asteroid in space. ", - "page_idx": 17 - }, - { - "type": "text", - "text": "", - "page_idx": 17 - }, - { - "type": "text", - "text": "(i) State two physical quantities conserved in this collision. 1 2 ", - "page_idx": 17 - }, - { - "type": "text", - "text": "(ii) Fig. 24.1 shows how the force $F$ acting on the comet varies with time t during the collision. ", - "page_idx": 17 - }, - { - "type": "image", - "img_path": "images/7c20c5b6e3fd0f61ed1163350073e5aa88303c7126de83071f9f7ddf2b54e63a.jpg", - "img_caption": [ - "Fig. 24.1 " - ], - "img_footnote": [], - "page_idx": 17 - }, - { - "type": "text", - "text": "Describe and explain how the force acting on the asteroid varies with time during this collision. You may sketch a suitable graph on Fig. 24.1 to support your answer. ", - "page_idx": 17 - }, - { - "type": "text", - "text": "[2] (c) A hydrogen atom travelling at $500\\mathsf{m}\\mathsf{s}^{-1}$ makes a head-on collision with a stationary carbon atom. The collision is perfectly elastic. After the collision the hydrogen atom bounces back with a speed of $420\\mathsf{m}\\mathsf{s}^{-1}$ . Fig. 24.2 shows the atoms before and after the collision. ", - "page_idx": 17 - }, - { - "type": "text", - "text": "", - "page_idx": 18 - }, - { - "type": "image", - "img_path": "images/ef197c6dd1495e29a3fd1244f57ee8bb4da3c03684eb01aa922f263438b7287a.jpg", - "img_caption": [ - "Fig. 24.2 " - ], - "img_footnote": [], - "page_idx": 18 - }, - { - "type": "text", - "text": "The mass of the hydrogen atom is $1.7\\times10^{-27}\\mathrm{kg}$ and the mass of the carbon atom is $2.0\\times10^{-26}\\mathrm{kg}$ . \nCalculate the speed $V$ of the carbon atom after the collision. ", - "page_idx": 18 - }, - { - "type": "text", - "text": "v = $m\\mathtt{s}^{-1}$ [3] ", - "page_idx": 18 - }, - { - "type": "text", - "text": "25 (a) A chemical cell is connected across a resistor. ", - "page_idx": 19 - }, - { - "type": "text", - "text": "(i) The terms electromotive force (e.m.f.) and potential difference (p.d.) are terms associated with the circuit. State one similarity and one difference between e.m.f. and p.d. similarity: difference: [2] (ii) The resistor is cylindrical in shape. It has cross-sectional area $1.2\\times10^{-6}\\mathsf{m}^{2}$ and length $6.0\\times10^{-3}\\mathrm{m}$ . In this resistor there are $9.6\\times10^{16}$ free electrons. Calculate the mean drift velocity $V$ of the electrons when the current in the resistor is $3.0\\mathsf{m A}$ . ", - "page_idx": 19 - }, - { - "type": "text", - "text": "", - "page_idx": 19 - }, - { - "type": "text", - "text": "v = $m\\mathtt{s}^{-1}$ [3] ", - "page_idx": 19 - }, - { - "type": "text", - "text": "(b) A student is given a chemical cell, an ammeter, a voltmeter, a variable resistor and a number of connecting wires. Design a laboratory experiment to determine the internal resistance $r$ of the chemical cell using a graph. Start with a circuit diagram. In your description pay particular attention to • the circuit used the measurements taken how the data is analysed using a graph. ", - "page_idx": 20 - }, - { - "type": "text", - "text": "[4] ", - "page_idx": 20 - }, - { - "type": "text", - "text": "26 (a) Fig. 26.1 shows the variation of displacement y with position $x$ of a progressive transverse wave on a stretched string at a particular instant. ", - "page_idx": 21 - }, - { - "type": "image", - "img_path": "images/288e566eff169ddcb7bedda698de48fdbb163c75006474bf95bbcdcbf8dea31b.jpg", - "img_caption": [ - "Fig. 26.1 " - ], - "img_footnote": [], - "page_idx": 21 - }, - { - "type": "text", - "text": "The motions of particles A and B of the string is analysed over a short period of time. The distance between the positions of A and B is half a wavelength of the wave. The particles A and B have the same speed. ", - "page_idx": 21 - }, - { - "type": "text", - "text": "(i) State one difference between the motions of these particles. [1] \n(ii) The particle A oscillates with frequency $75\\mathsf{H z}$ . The distance between the positions of A and B is $(40.0\\pm2.0)\\mathsf{c m}$ . Calculate the speed $V$ of the transverse wave on the string and the absolute uncertainty in this value. ", - "page_idx": 21 - }, - { - "type": "text", - "text": "v m s–1 [3] ", - "page_idx": 21 - }, - { - "type": "text", - "text": "(b) A stretched rubber cord has its ends fixed at points $\\pmb{\\times}$ and Y. The middle of the cord is lifted vertically and then released. A stationary wave pattern with one loop is formed by the vibrating cord, see Fig. 26.2. ", - "page_idx": 22 - }, - { - "type": "image", - "img_path": "images/93fd740b25714b5f886fddf99a0e8fdbf64d5ce7f1157d548b0a085ef042cac4.jpg", - "img_caption": [ - "Fig. 26.2 " - ], - "img_footnote": [], - "page_idx": 22 - }, - { - "type": "text", - "text": "(i) Explain how a stationary wave pattern is produced in this arrangement. ", - "page_idx": 22 - }, - { - "type": "text", - "text": ". [2] (ii) The stationary wave pattern shown in Fig. 26.2 is produced in the laboratory. Describe how the wavelength of the transverse wave on the stretched cord can be determined. ", - "page_idx": 22 - }, - { - "type": "text", - "text": "", - "page_idx": 22 - }, - { - "type": "text", - "text": "[1] (a) Describe and justify the variation of resistance $R$ of the LED as the potential difference V across the LED is increased from ", - "page_idx": 22 - }, - { - "type": "image", - "img_path": "images/88f240f841d9fa36cf6b0fe648606faf176f4f861d4ad8be6a9505c2cac86137.jpg", - "img_caption": [ - "27 Fig. 27.1 shows the I-V characteristic of an LED designed to emit blue light. ", - "Fig. 27.1 " - ], - "img_footnote": [], - "page_idx": 23 - }, - { - "type": "text", - "text": "", - "page_idx": 23 - }, - { - "type": "text", - "text": "–1.0 V to 2.6 V ", - "page_idx": 23 - }, - { - "type": "text", - "text": "2.6 V to 3.0 V ", - "page_idx": 23 - }, - { - "type": "text", - "text": "3.0 V to 3.4 V. ", - "page_idx": 23 - }, - { - "type": "image", - "img_path": "images/fd7806cdf314bd6fe67dd8bcfdae097200c0e305f1f4323652e840ca2d30662a.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 23 - }, - { - "type": "text", - "text": "(b) A student uses the LED with the characteristic shown in Fig. 27.1 to construct the circuit shown in Fig. 27.2. ", - "page_idx": 24 - }, - { - "type": "image", - "img_path": "images/a2b9f5608aefc8b2b64e6592ce217b39ea28535fe3fbf8fd957b83bf3aa17e0f.jpg", - "img_caption": [ - "Fig. 27.2 " - ], - "img_footnote": [], - "page_idx": 24 - }, - { - "type": "text", - "text": "A suitable resistor R is used in the circuit. The cell has electromotive force (e.m.f.) of $1.5\\lor$ and negligible internal resistance. ", - "page_idx": 24 - }, - { - "type": "text", - "text": "The LED fails to emit any light when the switch S is closed. \nExplain why the circuit does not work and modify the design of the circuit so that the LED is lit when S is closed. ", - "page_idx": 24 - }, - { - "type": "text", - "text": "", - "page_idx": 24 - }, - { - "type": "text", - "text": "", - "page_idx": 24 - }, - { - "type": "text", - "text": "", - "page_idx": 24 - }, - { - "type": "text", - "text": "", - "page_idx": 24 - }, - { - "type": "text", - "text": "", - "page_idx": 24 - }, - { - "type": "text", - "text": "[3] (c) The wavelength of light from the LED is $480\\mathsf{n m}$ . The radiant power emitted from the LED is 1.2 mW. Calculate the number of photons $N$ emitted from the LED per second. ", - "page_idx": 24 - }, - { - "type": "text", - "text": "", - "page_idx": 24 - }, - { - "type": "text", - "text": "ADDITIONAL ANSWER SPACE ", - "text_level": 1, - "page_idx": 25 - }, - { - "type": "text", - "text": "If additional space is required, you should use the following lined page(s). The question number(s) must be clearly shown in the margin(s). ", - "page_idx": 25 - }, - { - "type": "table", - "img_path": "images/aadb899c6b3cec615a10e1ed72c6c54495e616ad50f992d56e2fe213ac8f47be.jpg", - "table_caption": [], - "table_footnote": [], - "page_idx": 25 - }, - { - "type": "text", - "text": "", - "page_idx": 26 - }, - { - "type": "table", - "img_path": "images/9886600270ff0c79d601e923bc61ccd8cb06978790ac35bd3339c6345077723b.jpg", - "table_caption": [], - "table_footnote": [], - "page_idx": 27 - }, - { - "type": "text", - "text": "OCR ", - "text_level": 1, - "page_idx": 27 - }, - { - "type": "text", - "text": "Oxford Cambridge and RSA ", - "page_idx": 27 - }, - { - "type": "text", - "text": "Copyright Information ", - "text_level": 1, - "page_idx": 27 - }, - { - "type": "text", - "text": "OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. ", - "page_idx": 27 - }, - { - "type": "text", - "text": "If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. ", - "page_idx": 27 - }, - { - "type": "text", - "text": "For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE. ", - "page_idx": 27 - }, - { - "type": "text", - "text": "OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. ", - "page_idx": 27 - }, - { - "type": "text", - "text": "$\\circledcirc$ OCR 2016 ", - "page_idx": 27 - }, - { - "type": "text", - "text": "Wednesday 18 May 2022 – Morning AS Level Physics A ", - "text_level": 1, - "page_idx": 28 - }, - { - "type": "text", - "text": "H156/01 Breadth in physics ", - "page_idx": 28 - }, - { - "type": "text", - "text": "Time allowed: 1 hour 30 minutes ", - "page_idx": 28 - }, - { - "type": "text", - "text": "You must have: $\\bullet$ the Data, Formulae and Relationships Booklet ", - "page_idx": 28 - }, - { - "type": "text", - "text": "You can use: \n• a scientific or graphical calculator \n• a ruler $\\left(\\mathsf{c m}/\\mathsf{m m}\\right)$ ", - "page_idx": 28 - }, - { - "type": "image", - "img_path": "images/e13ba473e1c4a5ee55519e2fc6f8728e3f90dc2938f57f4a70f123d9177bd5f1.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 28 - }, - { - "type": "image", - "img_path": "images/fa78cbba2e5837afe0d41bbb370018e994b402fe0392f4454e0044cb38956b2e.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 28 - }, - { - "type": "text", - "text": "INSTRUCTIONS ", - "text_level": 1, - "page_idx": 28 - }, - { - "type": "text", - "text": "Use black ink. You can use an HB pencil, but only for graphs and diagrams. \n• Write your answer to each question in the space provided. If you need extra space use the lined pages at the end of this booklet. The question numbers must be clearly shown. \nAnswer all the questions. \n• Where appropriate, your answer should be supported with working. Marks might be given for using a correct method, even if your answer is wrong. ", - "page_idx": 28 - }, - { - "type": "text", - "text": "INFORMATION ", - "text_level": 1, - "page_idx": 28 - }, - { - "type": "text", - "text": "The total mark for this paper is 70. \nThe marks for each question are shown in brackets [ ]. \nThis document has 28 pages. ", - "page_idx": 28 - }, - { - "type": "text", - "text": "ADVICE ", - "text_level": 1, - "page_idx": 28 - }, - { - "type": "text", - "text": "Read each question carefully before you start your answer. ", - "page_idx": 28 - }, - { - "type": "text", - "text": "2 ", - "text_level": 1, - "page_idx": 29 - }, - { - "type": "text", - "text": "SECTION A ", - "text_level": 1, - "page_idx": 29 - }, - { - "type": "text", - "text": "You should spend a maximum of 25 minutes on this section. ", - "page_idx": 29 - }, - { - "type": "text", - "text": "Answer all the questions. ", - "page_idx": 29 - }, - { - "type": "text", - "text": "Write your answer to each question in the box provided. ", - "page_idx": 29 - }, - { - "type": "text", - "text": "1 Which of the following could be the wavelength of ultraviolet radiation? ", - "page_idx": 29 - }, - { - "type": "text", - "text": "A 3 × 10–5 m B 1 × 10–10 m C 4 × 102 m D 2 × 10–7 m ", - "page_idx": 29 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 29 - }, - { - "type": "text", - "text": "[1] ", - "page_idx": 29 - }, - { - "type": "text", - "text": "2 Which term is not used in either of Kirchhoff’s two laws? ", - "page_idx": 29 - }, - { - "type": "text", - "text": "A charge \nB current \nC electromotive force D potential difference ", - "page_idx": 29 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 29 - }, - { - "type": "text", - "text": "[1] ", - "page_idx": 29 - }, - { - "type": "text", - "text": "3 The diagram below shows the refraction of light at the boundary between two transparent materials $\\pmb{\\chi}$ and Y. ", - "page_idx": 30 - }, - { - "type": "image", - "img_path": "images/0910735679979ad7850c8f6a7c57f5e6ef6bc894ea5d4375755d54bbaf964fdd.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 30 - }, - { - "type": "text", - "text": "The refractive index of material $\\pmb{\\mathrm{x}}$ is 1.5 and the refractive index of material $\\pmb{\\upgamma}$ is $n$ . ", - "page_idx": 30 - }, - { - "type": "text", - "text": "Which of the following expressions is correct? ", - "page_idx": 30 - }, - { - "type": "text", - "text": "A $n\\times\\sin70^{\\circ}=1.5\\times\\sin50^{\\circ}$ B $n\\times\\sin20^{\\circ}=1.5\\times\\sin40^{\\circ}$ C $1.5\\times\\sin70^{\\circ}=n\\times\\sin50^{\\circ}$ D 1.5 × sin 20° = n × sin 40° ", - "page_idx": 30 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 30 - }, - { - "type": "text", - "text": "4 A student is carrying out the Young double-slit experiment using visible light. The distance between the slits and the screen is kept constant. The wavelength of light is λ and the separation of the slits is a. ", - "page_idx": 30 - }, - { - "type": "text", - "text": "The following results are collected by the student. ", - "page_idx": 30 - }, - { - "type": "table", - "img_path": "images/1e86329ffc2eca8ffbe0c52dfbe85e1edda831b8f8ec1c1f013cfdc8032dd9a9.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
入/nma/mm
A4500.20
B5100.15
C5500.25
D6100.30
\n\n", - "page_idx": 30 - }, - { - "type": "text", - "text": "Which combination of $\\lambda$ and $a$ will give the largest separation between the adjacent bright fringes? ", - "page_idx": 30 - }, - { - "type": "image", - "img_path": "images/64a6115ffbee9b67e051c1bc3fde99c48f14ba1f77329c7167adbf0d360e33b3.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 30 - }, - { - "type": "text", - "text": "5 A car of mass $1000\\mathsf{k g}$ is travelling on a straight and horizontal road. The driver applies the brakes. The speed of the car decreases from $20\\mathsf{m}\\mathsf{s}^{-1}$ to $15\\mathsf{m}\\mathsf{s}^{-1}$ in $_{2.4\\S}$ . What is the average power dissipated by the brakes? ", - "page_idx": 31 - }, - { - "type": "text", - "text": "A $1.0\\times10^{3}\\mathsf{W}$ B $5.2\\times10^{3}\\mathsf{W}$ C 3.6 × 104 W D 8.3 × 104 W ", - "page_idx": 31 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 31 - }, - { - "type": "text", - "text": "6 Two coherent waves are emitted from the sources X and Y. ", - "page_idx": 31 - }, - { - "type": "image", - "img_path": "images/b1c3f7863de169f33197cc957a623c06f012e82a2aa0a7befe98ca76ab97c44e.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 31 - }, - { - "type": "text", - "text": "The diagram is not to scale. \nThe waves at $\\pmb{\\chi}$ and Y are in phase. \nThe waves have wavelength $4.0\\mathsf{c m}$ . \nThe phase difference of the two waves meeting at point $\\mathsf{\\textbf{P}}$ is ${}^{270^{\\circ}}$ . ", - "page_idx": 31 - }, - { - "type": "text", - "text": "Which row gives possible distances for a and b? ", - "page_idx": 31 - }, - { - "type": "table", - "img_path": "images/32f55684a751af0623f631ef4474a33b8545811e010a8b8c081b1887a0455bcd.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
a/cmb/cm
A20.026.0
B20.022.0
C15.018.0
D10.014.0
\n\n", - "page_idx": 31 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 31 - }, - { - "type": "text", - "text": "7 A resistor of resistance $12\\Omega$ is connected in parallel with another resistor of resistance R. The total resistance of the circuit is $4.0\\Omega$ . ", - "page_idx": 32 - }, - { - "type": "text", - "text": "What is the value of R? ", - "page_idx": 32 - }, - { - "type": "text", - "text": "A 0.17 Ω B 6.0 Ω C 8.0 Ω D 16 Ω ", - "page_idx": 32 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 32 - }, - { - "type": "text", - "text": "8 A cell of electromotive force (e.m.f.) $1.2\\lor$ is connected to a wire of resistance $6.0\\Omega$ . ", - "page_idx": 32 - }, - { - "type": "image", - "img_path": "images/2b08edd34263e502c6efede43667aa1c15931fa27efbfb6e1e29bc2128040448.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 32 - }, - { - "type": "text", - "text": "The potential difference across the wire is $0.90\\vee.$ What is the internal resistance $r$ of the cell? ", - "page_idx": 32 - }, - { - "type": "text", - "text": "A 0.15 Ω B 0.30 Ω C 2.0 Ω D 8.0 Ω ", - "page_idx": 32 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 32 - }, - { - "type": "text", - "text": "9 A thin metal plate is free to rotate in the vertical plane about the point P. Four forces A, B, C and D act at the same point on the plate, as shown below. ", - "page_idx": 33 - }, - { - "type": "image", - "img_path": "images/e0f088531d62ab5540281a2fc2e625feb527d32c2290e9c51b47acce9675c8d4.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 33 - }, - { - "type": "text", - "text": "The diagram above is drawn to scale. \nAll the forces are in the vertical plane. \nThe forces have the same magnitude but act in different directions. ", - "page_idx": 33 - }, - { - "type": "text", - "text": "Which force will produce the greatest moment about point P? ", - "page_idx": 33 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 33 - }, - { - "type": "text", - "text": "10 A total of $3.8\\times10^{7}$ electrons flow through a wire in a time of $1.2\\upmu\\mathrm{s}$ . What is the current in the wire? ", - "page_idx": 33 - }, - { - "type": "text", - "text": "A $6.1\\times10^{-12}{\\mathsf{A}}$ B $7.3\\times10^{-12}\\mathsf{A}$ C 5.1 × 10–6 A D 3.2 × 1013 A ", - "page_idx": 33 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 33 - }, - { - "type": "text", - "text": "11 An electric motor is used to lift a weight of $4.0\\mathsf{N}$ through a vertical height of $0.90\\m m$ in $1.8\\mathfrak{s}$ . The efficiency of the motor is $20\\%$ . ", - "page_idx": 33 - }, - { - "type": "text", - "text": "What is the electrical power supplied to the motor? ", - "page_idx": 33 - }, - { - "type": "text", - "text": "A 0.40 W B 2.0 W C 3.6 W D 10 W ", - "page_idx": 33 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 33 - }, - { - "type": "text", - "text": "12 Plane polarised light is incident perpendicular to a vertical polarising filter. The polarising filter is rotated about the horizontal axis. ", - "page_idx": 34 - }, - { - "type": "text", - "text": "Which property of the transmitted light changes as the filter is rotated? ", - "page_idx": 34 - }, - { - "type": "text", - "text": "A frequency B intensity C speed D wavelength ", - "page_idx": 34 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 34 - }, - { - "type": "text", - "text": "13 A load is suspended from two wires $\\mathsf{\\textbf{P}}$ and Q as shown below. ", - "page_idx": 34 - }, - { - "type": "image", - "img_path": "images/ea4ddc2d92328235451c8d6a5b8eca8c0546627346f73846e88ac96980211816.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 34 - }, - { - "type": "text", - "text": "Both wires have the same diameter. ", - "page_idx": 34 - }, - { - "type": "text", - "text": "The table below shows some data for these two wires. ", - "page_idx": 34 - }, - { - "type": "table", - "img_path": "images/87dafde3b9b0b7f6b89a416c42f3ce45471c3e45abc8fea967864850217832c9.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Original length of wireYoungr modulus of wire'smaterialExtensionofwire/mm
PLE4.0
Q1.5 L3.0E
\n\n", - "page_idx": 34 - }, - { - "type": "text", - "text": "What is the extension of the wire Q? ", - "page_idx": 34 - }, - { - "type": "text", - "text": "A 2.0 mm B 4.0 mm C 6.0 mm D 8.0 mm ", - "page_idx": 34 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 34 - }, - { - "type": "text", - "text": "14 Which graph best represents the way in which the resistance $R$ of a negative temperature coefficient (NTC) thermistor depends on its temperature $\\theta$ in ${}^{\\circ}\\mathrm{C}^{\\prime}$ ? ", - "page_idx": 35 - }, - { - "type": "image", - "img_path": "images/a1078131086f257375fa52abc18814e6c5674f49a5698dfcd789ab629a0ef6bd.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 35 - }, - { - "type": "text", - "text": "15 A student balances a uniform metal rod horizontally. ", - "page_idx": 35 - }, - { - "type": "image", - "img_path": "images/bbb75f5d2b0006a7ff44334419cbd33193da0ca962f888f049327ad04dced260.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 35 - }, - { - "type": "text", - "text": "The rod is pivoted at its middle. The position of weight W is kept constant. The distance of the weight $F$ from the pivot is $X.$ The student changes $F$ and then adjusts x so that the rod remains balanced. ", - "page_idx": 35 - }, - { - "type": "text", - "text": "Which statement is correct? ", - "page_idx": 35 - }, - { - "type": "text", - "text": "A A graph of $F$ against $x$ will be a straight line through the origin. B The upward force at the pivot is equal to $F.$ \nC The weight of W is equal to $F x.$ \nD $x$ is inversely proportional to $F.$ . ", - "page_idx": 35 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 35 - }, - { - "type": "text", - "text": "16 The I-V characteristics of two components R and L are shown below. ", - "page_idx": 36 - }, - { - "type": "image", - "img_path": "images/c377a1b930001a6bdfb1abb8d6ed4fed05eb68f2ec2fb76d4a0d72faf46dad2e.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 36 - }, - { - "type": "text", - "text": "Which statement is correct? ", - "page_idx": 36 - }, - { - "type": "text", - "text": "A R and L are both filament lamps. \nB R and L have the same resistance at $1.5\\lor.$ \nC The resistance of L is independent of potential difference V. \nD The resistance of R increases as the potential difference V increases. ", - "page_idx": 36 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 36 - }, - { - "type": "text", - "text": "17 The photoelectric effect can be demonstrated using a gold-leaf electroscope. The zinc plate of the electroscope is negatively charged. Ultraviolet radiation incident on the zinc collapses the gold leaf. ", - "page_idx": 36 - }, - { - "type": "text", - "text": "What is removed from the zinc plate by the incident radiation? ", - "page_idx": 36 - }, - { - "type": "text", - "text": "A electrons B ions C photons D protons ", - "page_idx": 36 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 36 - }, - { - "type": "text", - "text": "8 What is the total energy $E$ gained by $N$ electrons travelling through a potential difference V ", - "page_idx": 37 - }, - { - "type": "text", - "text": "A $E=N\\times V$ \nB E = V × 10–19 \nC $E=V\\times1.60\\times10^{-19}$ \nD $E=N\\times V\\times1.60\\times10^{-19}$ ", - "page_idx": 37 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 37 - }, - { - "type": "text", - "text": "19 A student is experimenting with sound waves of wavelength $3.0\\mathsf{c m}$ and electromagnetic waves also of wavelength $3.0\\mathsf{c m}$ . Which statement is correct about both of these waves? ", - "page_idx": 37 - }, - { - "type": "text", - "text": "A They can be polarised. \nB They can form stationary waves. \nC They have the same frequency. \nD They have the same speed. ", - "page_idx": 37 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 37 - }, - { - "type": "text", - "text": "20 A laser emits a uniform beam of light. What two quantities alone are required to calculate the intensity of the beam of light? ", - "page_idx": 37 - }, - { - "type": "text", - "text": "A amplitude, frequency B cross-sectional area, power C energy, time D frequency, wavelength ", - "page_idx": 37 - }, - { - "type": "text", - "text": "Your answer ", - "page_idx": 37 - }, - { - "type": "text", - "text": "PLEASE DO NOT WRITE ON THIS PAGE Question 21 starts on page 12 ", - "text_level": 1, - "page_idx": 38 - }, - { - "type": "text", - "text": "12 SECTION B ", - "text_level": 1, - "page_idx": 39 - }, - { - "type": "text", - "text": "Answer all the questions. ", - "page_idx": 39 - }, - { - "type": "text", - "text": "21 A person in a buggy is attached to a large parakite by a rope, as shown below. ", - "page_idx": 39 - }, - { - "type": "image", - "img_path": "images/7a677d89dbd7850d8d60ee155f59b14fc5e084b7b662630729c59cfc12a7ffde.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 39 - }, - { - "type": "text", - "text": "Strong wind acting on the parakite moves the buggy along horizontal ground. ", - "page_idx": 39 - }, - { - "type": "text", - "text": "The rope makes an angle of $55^{\\circ}$ to the horizontal. The total mass of the buggy and person is $150\\mathsf{k g}$ . ", - "page_idx": 39 - }, - { - "type": "text", - "text": "The velocity v against time t graph for the buggy is shown below. ", - "page_idx": 39 - }, - { - "type": "image", - "img_path": "images/6d33415e347daed1c4c7abfe4fb0f1585698a0071e38861ad56099682f0cd9ad.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 39 - }, - { - "type": "text", - "text": "(a) Calculate the horizontal distance travelled by the buggy from $t=0$ to $t=8.05$ . ", - "page_idx": 39 - }, - { - "type": "text", - "text": "horizontal distance $=$ m [3] (b) At $t=1.0\\mathsf{s}$ the buggy is accelerating. (i) Use the graph to show that the acceleration of the person at $t=1.05$ is $2.0\\mathsf{m}\\mathsf{s}^{-2}$ . ", - "page_idx": 39 - }, - { - "type": "text", - "text": "", - "page_idx": 40 - }, - { - "type": "text", - "text": "(ii) At $t=1.0\\mathsf{s}$ the tension $\\tau$ in the rope is $680\\mathsf{N}$ and the total horizontal resistance acting on the buggy and person is $R$ Calculate $R$ by resolving the tension in the rope horizontally. ", - "page_idx": 40 - }, - { - "type": "text", - "text": "R = N [3] ", - "page_idx": 40 - }, - { - "type": "text", - "text": "22 A pogo stick is a spring-based toy used by a circus clown for jumping vertically up and down. A compression spring is fixed to the bottom of the pogo stick. The upper end of the spring is attached to a movable platform. ", - "page_idx": 41 - }, - { - "type": "image", - "img_path": "images/82d54580131e9f95905bf28f4b9f3585c6e8272d31e608afe853480770dccf41.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 41 - }, - { - "type": "text", - "text": "The force constant of the spring is $1.7\\times10^{4}\\mathsf{N m}^{-1}$ . \nThe mass of the clown is $68\\mathsf{k g}$ . \nThe mass of the pogo stick is negligible compared with the mass of the clown. ", - "page_idx": 41 - }, - { - "type": "text", - "text": "The table below shows the state of the spring and the clown in three different positions. ", - "page_idx": 41 - }, - { - "type": "table", - "img_path": "images/0c78c3f78fe9d4f1a8c07f43b64e7b511f66acd2b2b3c49f3c1b54dfbb7583ae.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Position APosition BPosition C
25 cm45 cm76 cm
State of springground fully compressedground original lengthground original length
State of clownstationaryMoving vertically upwards atstationary
Height of platform above the ground/cm25maximum speed 4576
\n\n", - "page_idx": 41 - }, - { - "type": "text", - "text": "(a) Describe how the force constant of the compression spring in the pogo stick can be verified in the laboratory. . [2] (b) Describe the energy changes taking place between positions B and C. . [1] (c) Calculate the maximum energy $E$ stored in the compressed spring. ", - "page_idx": 42 - }, - { - "type": "text", - "text": "", - "page_idx": 42 - }, - { - "type": "text", - "text": "", - "page_idx": 42 - }, - { - "type": "text", - "text": "E = J [2] ", - "page_idx": 42 - }, - { - "type": "text", - "text": "(d) A student uses the following expression to determine the maximum speed $V$ of the clown in position B: maximum energy $E$ stored in the compressed spring $\\mathbf{\\delta}\\mathbf{\\sigma}={\\frac{1}{2}}\\times68\\times V^{2}.$ Explain why this expression is incorrect. You are not expected to do any calculations. . [1] ", - "page_idx": 42 - }, - { - "type": "text", - "text": "23 Two objects A and B are travelling horizontally and in opposite directions. The objects collide in mid-air at a height of $120\\ m$ above the horizontal ground, as shown below. ", - "page_idx": 43 - }, - { - "type": "image", - "img_path": "images/ad3e775cc40b6b0083ee91f388ecd745cb0b670238724f4ea4829ff0d1796f58.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 43 - }, - { - "type": "text", - "text": "The mass of A is $2.0\\mathsf{k g}$ and the mass of B is $3.0\\mathsf{k g}$ . ", - "page_idx": 43 - }, - { - "type": "text", - "text": "After the collision the objects are joined together. ", - "page_idx": 43 - }, - { - "type": "text", - "text": "The momentum $p$ against time t graphs for each object before, during and after the collision are shown below. ", - "page_idx": 43 - }, - { - "type": "image", - "img_path": "images/de9a91b1869c584ce0fcdb402cfb99a6944424d64c90bbeff21ff66cc1889627.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 43 - }, - { - "type": "text", - "text": "(a) Explain how the graphs demonstrate Newton’s third law during the collision. [2] (b) Use the graphs to show that momentum is conserved in the collision. ", - "page_idx": 44 - }, - { - "type": "text", - "text": "", - "page_idx": 44 - }, - { - "type": "text", - "text": "[2] ", - "page_idx": 44 - }, - { - "type": "text", - "text": "(c) Calculate the magnitude of the horizontal velocity v of the combined objects immediately after the collision. ", - "page_idx": 44 - }, - { - "type": "text", - "text": "v = $m\\mathtt{s}^{-1}$ [2] ", - "page_idx": 44 - }, - { - "type": "text", - "text": "(d) Air resistance has negligible effect on the motion of the objects. Calculate the time taken for the combined objects to reach the ground after the collision. ", - "page_idx": 44 - }, - { - "type": "text", - "text": "time taken $=$ s [3] ", - "page_idx": 44 - }, - { - "type": "text", - "text": "Turn over ", - "page_idx": 44 - }, - { - "type": "text", - "text": "24 (a) Stationary waves are formed on the surface of seawater in a harbour as incoming waves are reflected off the harbour wall. ", - "page_idx": 45 - }, - { - "type": "text", - "text": "An observer is looking at these stationary waves. \nState how the observer can tell that these are stationary waves. . [1] ", - "page_idx": 45 - }, - { - "type": "text", - "text": "(b) A wire is fixed between two supports, as shown in Fig. 24. ", - "page_idx": 45 - }, - { - "type": "image", - "img_path": "images/645132a05ad83dd6e61ed607c026df252dff9a40d31b845f457519f7782b3b89.jpg", - "img_caption": [ - "Fig. 24 " - ], - "img_footnote": [], - "page_idx": 45 - }, - { - "type": "text", - "text": "The wire is plucked in the middle. A stationary wave of fundamental frequency $f$ is formed on the stretched wire. ", - "page_idx": 45 - }, - { - "type": "text", - "text": "The tension $\\tau$ in the stretched wire is given by the expression $T=4f^{2}m L$ , where $f$ is the frequency of the oscillating wire, $m$ is the mass of the wire and $L$ is the length of the wire. ", - "page_idx": 45 - }, - { - "type": "text", - "text": "A student is performing an experiment to determine the tension $\\tau$ in the wire. The measurements are shown in the table below. ", - "page_idx": 45 - }, - { - "type": "table", - "img_path": "images/a7436c9583f728006c718d859179d434851b1ae83b14a267da4f019758a9d140.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuantityMeasurementPercentage uncertainty
f58Hz2.5
m9.7 x 10-4kg1.0
L0.62m0.5
\n\n", - "page_idx": 45 - }, - { - "type": "text", - "text": "(i) Suggest how the student may have determined the fundamental frequency of the oscillating wire in the laboratory. ", - "page_idx": 45 - }, - { - "type": "text", - "text": "", - "page_idx": 45 - }, - { - "type": "text", - "text": "", - "page_idx": 45 - }, - { - "type": "text", - "text": ". [2] ", - "page_idx": 45 - }, - { - "type": "text", - "text": "19 ", - "page_idx": 46 - }, - { - "type": "text", - "text": "(ii) Use the data in the table to determine 1 the wavelength of the progressive waves on the stretched wire wavelength $=$ m [1] ", - "page_idx": 46 - }, - { - "type": "text", - "text": "", - "page_idx": 46 - }, - { - "type": "text", - "text": "2 the speed of the progressive waves on the stretched wire speed $=$ $m\\mathtt{s}^{-1}$ [2] ", - "page_idx": 46 - }, - { - "type": "text", - "text": "", - "page_idx": 46 - }, - { - "type": "text", - "text": "3 the absolute uncertainty in the tension $\\tau.$ Write your answer to 2 significant figures. ", - "page_idx": 46 - }, - { - "type": "text", - "text": "absolute uncertainty in $T=$ N [2] (a) Potential difference (p.d.) and electromotive force (e.m.f.) can both be defined in terms of transfer of energy per unit charge. State one other similarity between p.d. and e.m.f. . [1] ", - "page_idx": 46 - }, - { - "type": "text", - "text": "", - "page_idx": 47 - }, - { - "type": "text", - "text": "(b) Fig. 25.1 shows an electrical circuit. ", - "page_idx": 47 - }, - { - "type": "image", - "img_path": "images/a84804dda1c347fcffc0102500692228139a5f9bd7c0f271b74cce52e91053c8.jpg", - "img_caption": [ - "Fig. 25.1 " - ], - "img_footnote": [], - "page_idx": 47 - }, - { - "type": "text", - "text": "The cell has e.m.f. $1.5\\lor$ and negligible internal resistance. ", - "page_idx": 47 - }, - { - "type": "text", - "text": "AB is a resistance wire of length L. The resistance of this wire is equal to the resistance $R$ of the fixed resistor. \nS is a sliding contact that can be moved on the resistance wire. The distance between A and S is x. \nThe p.d. across the fixed resistor is $V.$ ", - "page_idx": 47 - }, - { - "type": "text", - "text": "(i) The distance $x$ is changed by moving the slider from A to B. ", - "page_idx": 47 - }, - { - "type": "text", - "text": "On Fig. 25.2, show the variation of $V$ with distance x. ", - "page_idx": 47 - }, - { - "type": "image", - "img_path": "images/d8cfb7d19f8dccbf4ba66c6980191fc426fadeb7935d80bfa302e5c191563c0f.jpg", - "img_caption": [ - "Fig. 25.2 " - ], - "img_footnote": [], - "page_idx": 47 - }, - { - "type": "text", - "text": "(ii) The connecting wire BC is now removed. The rest of the circuit remains unchanged. Explain the variation of V with distance $x$ as S is moved from A to B. [2] (c) A power supply of electromotive force (e.m.f.) $14.4\\lor$ and negligible internal resistance is connected by two identical metal wires to two filament lamps, as shown in Fig. 25.3. ", - "page_idx": 48 - }, - { - "type": "text", - "text": "", - "page_idx": 48 - }, - { - "type": "image", - "img_path": "images/0405d3b9a885c49ae7f175d6bb98e454187c6debd810a809bcf9ff1b306b6410.jpg", - "img_caption": [ - "Fig. 25.3 " - ], - "img_footnote": [], - "page_idx": 48 - }, - { - "type": "text", - "text": "The current in the circuit is $3.0\\mathsf{A}$ . \nThe potential difference across each lamp is $6.0\\vee.$ \nThe total length of the metal wire is $25.0\\mathsf{m}$ . The cross-sectional area of the wire is $0.54\\mathrm{mm}^{2}$ . ", - "page_idx": 48 - }, - { - "type": "text", - "text": "(i) Calculate the resistivity $\\rho$ of the metal from which the wire is made. ", - "page_idx": 48 - }, - { - "type": "text", - "text": "$\\rho=$ Ω m [4] (ii) The number of electrons per unit volume $n$ in the metal wire is $8.5\\times10^{28}\\mathrm{m}^{-3}$ . Calculate the mean drift velocity $V$ of the electrons in the metal. ", - "page_idx": 48 - }, - { - "type": "text", - "text": "", - "page_idx": 49 - }, - { - "type": "text", - "text": "v = $m\\mathtt{s}^{-1}$ [2] ", - "page_idx": 49 - }, - { - "type": "text", - "text": "26 (a) The table below shows the work function $\\phi$ of four metals. ", - "page_idx": 50 - }, - { - "type": "table", - "img_path": "images/ecbf0fb602de7045b16a421b4e7984ec69f52499df56770ec08351a7a3b08ace.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
MetalABCD
p/eV3.24.13.36.4
\n\n", - "page_idx": 50 - }, - { - "type": "text", - "text": "Electromagnetic radiation of wavelength $380\\mathsf{n m}$ is incident on all the metals. \nPhotoelectrons are just emitted from metal A. ", - "page_idx": 50 - }, - { - "type": "text", - "text": "(i) Explain, in terms of the energy of photons, why metal C will not emit photoelectrons. [1] (ii) Calculate the maximum wavelength of the electromagnetic radiation in nm that will just eject photoelectrons from metal D. ", - "page_idx": 50 - }, - { - "type": "text", - "text": "", - "page_idx": 50 - }, - { - "type": "text", - "text": "maximum wavelength $=$ nm [1] (iii) The metal B is now exposed to electromagnetic radiation of a different wavelength. The energy of each incident photon is $5.3{\\tt e V}.$ Calculate the minimum de Broglie wavelength $\\lambda$ of the emitted photoelectrons. ", - "page_idx": 50 - }, - { - "type": "text", - "text": "", - "page_idx": 50 - }, - { - "type": "text", - "text": "λ = m [3] ", - "page_idx": 50 - }, - { - "type": "text", - "text": "(b) A researcher is carrying out an experiment to determine the work function $\\phi$ of a new material. The material is illuminated by electromagnetic radiation of frequency $f$ and the maximum kinetic energy $K E_{\\mathrm{max}}$ of the photoelectrons is determined. ", - "page_idx": 51 - }, - { - "type": "text", - "text": "The researcher plots the data points shown below. ", - "page_idx": 51 - }, - { - "type": "image", - "img_path": "images/60e29916eac776b4c6df2127d40e0b89ce7e8fe2f5e31f652651010aba4d77ef.jpg", - "img_caption": [], - "img_footnote": [], - "page_idx": 51 - }, - { - "type": "text", - "text": "(i) Draw a straight line of best fit through the data points. \n(ii) Use the gradient of this line, and Einstein’s photoelectric equation, to determine the work function $\\phi$ of the material. ", - "page_idx": 51 - }, - { - "type": "text", - "text": "$\\phi=$ J [3] ", - "page_idx": 51 - }, - { - "type": "text", - "text": "ADDITIONAL ANSWER SPACE ", - "text_level": 1, - "page_idx": 52 - }, - { - "type": "text", - "text": "If additional space is required, you should use the following lined page(s). The question number(s) must be clearly shown in the margin(s). ", - "page_idx": 52 - }, - { - "type": "table", - "img_path": "images/9b142c1215ef0e56cf943a518bcb906bf2bc0a15ef5a053f1877390488ceceec.jpg", - "table_caption": [], - "table_footnote": [], - "page_idx": 52 - }, - { - "type": "text", - "text": "", - "page_idx": 53 - }, - { - "type": "text", - "text": "", - "page_idx": 54 - }, - { - "type": "table", - "img_path": "images/f697f69f4f597b907fdf9d12f49f05a9bd9923f89370366095cff7e716c734ca.jpg", - "table_caption": [], - "table_footnote": [], - "page_idx": 55 - }, - { - "type": "text", - "text": "OCR ", - "text_level": 1, - "page_idx": 55 - }, - { - "type": "text", - "text": "Oxford Cambridge and RSA ", - "page_idx": 55 - }, - { - "type": "text", - "text": "Copyright Information ", - "text_level": 1, - "page_idx": 55 - }, - { - "type": "text", - "text": "OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. ", - "page_idx": 55 - }, - { - "type": "text", - "text": "If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possibl opportunity. ", - "page_idx": 55 - }, - { - "type": "text", - "text": "or queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA. ", - "page_idx": 55 - }, - { - "type": "text", - "text": "OCR is part of Cambridge University Press & Assessment, which is itself a department of the University of Cambridge. ", - "page_idx": 55 - }, - { - "type": "text", - "text": "$\\circledcirc$ OCR 2022 ", - "page_idx": 55 - }, - { - "type": "text", - "text": "GCE Physics A ", - "text_level": 1, - "page_idx": 56 - }, - { - "type": "text", - "text": "Unit H156/01: Breadth in physics ", - "page_idx": 56 - }, - { - "type": "text", - "text": "Advanced Subsidiary GCE ", - "page_idx": 56 - }, - { - "type": "text", - "text": "Mark Scheme for June 2016 ", - "text_level": 1, - "page_idx": 56 - }, - { - "type": "text", - "text": "OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills. ", - "page_idx": 57 - }, - { - "type": "text", - "text": "It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today’s society. ", - "page_idx": 57 - }, - { - "type": "text", - "text": "This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners’ meeting before marking commenced. ", - "page_idx": 57 - }, - { - "type": "text", - "text": "All examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated. ", - "page_idx": 57 - }, - { - "type": "text", - "text": "Mark schemes should be read in conjunction with the published question papers and the report on the examination. ", - "page_idx": 57 - }, - { - "type": "text", - "text": "OCR will not enter into any discussion or correspondence in connection with this mark scheme. ", - "page_idx": 57 - }, - { - "type": "text", - "text": "$\\circledcirc$ OCR 2016 ", - "page_idx": 57 - }, - { - "type": "text", - "text": "H156/01 ", - "text_level": 1, - "page_idx": 58 - }, - { - "type": "text", - "text": "Mark Scheme ", - "text_level": 1, - "page_idx": 58 - }, - { - "type": "text", - "text": "Annotations available in RM Assessor ", - "page_idx": 58 - }, - { - "type": "table", - "img_path": "images/50ea7e80209d9ad5f19506f7711aa8cff2dba0eb7f370832eff2a7db057d2abc.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
AnnotationMeaning
BODBenefit of doubt given
CONContradiction
Incorrect response
ECFError carried forward
L1Level 1
L2Level 2
L3Level 3
TETranscription error
NBODBenefit of doubt not given
POTPower of 10 error
Omissionmark
SFError in number of significant figures
Correct response
Wrong physics or equation
\n\n", - "page_idx": 58 - }, - { - "type": "text", - "text": "H156/01 ", - "text_level": 1, - "page_idx": 59 - }, - { - "type": "text", - "text": "Mark Scheme ", - "text_level": 1, - "page_idx": 59 - }, - { - "type": "text", - "text": "Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions). ", - "page_idx": 59 - }, - { - "type": "table", - "img_path": "images/8510cb467750fd0402f93a539cd94eca4f6908b0fb4f4da8788658a5e721d426.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
AnnotationMeaning
alternative and acceptable answers for the same marking point
rejectAnswers which are not worthy of credit
notAnswers which are not worthy of credit
IgnoreStatementswhich areirrelevant
AllowAnswers that can be accepted
()Words which are not essential to gain credit
Underlined words must be present in answer to score a mark
ECF AWError carried forward
ORAAlternative wording
Or reverse argument
\n\n", - "page_idx": 59 - }, - { - "type": "text", - "text": "CATEGORISATION OF MARKS ", - "text_level": 1, - "page_idx": 60 - }, - { - "type": "text", - "text": "The marking schemes categorise marks on the MACB scheme. ", - "page_idx": 60 - }, - { - "type": "text", - "text": "B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate’s answers. ", - "page_idx": 60 - }, - { - "type": "text", - "text": "C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the C-mark is given. ", - "page_idx": 60 - }, - { - "type": "text", - "text": "M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate’s answers. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored. ", - "page_idx": 60 - }, - { - "type": "text", - "text": "A marks: These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored. ", - "page_idx": 60 - }, - { - "type": "text", - "text": "Note about significant figures: ", - "text_level": 1, - "page_idx": 60 - }, - { - "type": "text", - "text": "If the data given in a question is to 2 sf, then allow to 2 or more significant figures. \nIf an answer is given to fewer than 2 sf, then penalise once only in the entire paper. \nAny exception to this rule will be mentioned in the Guidance. ", - "page_idx": 60 - }, - { - "type": "text", - "text": "Mark Scheme ", - "text_level": 1, - "page_idx": 61 - }, - { - "type": "text", - "text": "SECTION A ", - "text_level": 1, - "page_idx": 61 - }, - { - "type": "table", - "img_path": "images/a7f8f3922ac8cc761f4fcebdfeb704b3d88481369642e3f95e9bc59d3e0d1517.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswerMarks Guidance
1C1
2B1
3C1
4D1
5B1
9A1
7B1
8B1
9A1
10C1
11D1
12B1
13C1
14C1
15C1
16A1
17D1
18C1
19D1
20B1
Total20
\n\n", - "page_idx": 61 - }, - { - "type": "text", - "text": "Mark Scheme ", - "text_level": 1, - "page_idx": 62 - }, - { - "type": "text", - "text": "SECTION B ", - "text_level": 1, - "page_idx": 62 - }, - { - "type": "table", - "img_path": "images/f6ac9e460d55687dbf1bdfa140f80dbc9ab4b22822b9d72e14ecc7bf7a846d76.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Question 21AnswerMarksGuidance
(a) Mass is a scalar (quantity) and velocity is a vector (quantity).B1
(q) (i)(Addition of) velocity depends on direction / sign / vector triangle / resolving (ORA) An arrow from trolley to ramp along the string (for the tension) and a downwards arrow from the trolley (for theB1 B1Allow‘Velocity can be cancelled out' Not arrow for the tension parallel to the rampAllow arrows in correct directions anywhere on Fig. 21 Not arrow perpendicular to the ramp for the weight
weight). (ii) t= 0.73 (s)(s = 12 at'); 0.80 = 1%2 × 3.0 × t (Any subject)C1 A1Not two arrow heads in opposite directions along the string for the tension
Allow full credit for alternative methods, e.g: v2 = 2 × 0.80 × 3.0; v= 2.19 (m s-1) 2.19Note: Apply SF penalty if 0.7 s is on the answer line or the final answer Allow 1 mark for 0.40 (s); 9.8 m s2 used instead of 3.0 m s-2
=1 C1 3.0 t= 0.73 (s) A1
Total 5
\n\n", - "page_idx": 62 - }, - { - "type": "text", - "text": "Mark Scheme ", - "text_level": 1, - "page_idx": 63 - }, - { - "type": "table", - "img_path": "images/42b0a6605aadd6f0622de116d198186998bf10ca88ec60e54c325d4d10de0690.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
22 (a)QuestionAnswer The gradient remains the sameMarks B1Guidance Note: This mark is for the idea that the gradient / slope (of
the line) remains the same Allow: The line is (just) shifted (to the right) by the same amount (Aw)
(q)Gradient determined from Fig. 22 and gradient = 16C1Allow ± 0.5 for the value of the gradient Not u²/x value using the line or a data point because the
gradient is not determined Allow this mark even if gradient = a
gradient = 2a (F = ma); F= 920 × 8.0C1
F = 7.4 × 103 (N)A1Possible ECF for this A1 mark if the gradient is determined but its value is outside the range 15.5 to 16.5 and the second
C1 mark has also been scored Note: The answer to 3 SF is 7360 (N)
Total4Note: F= 920 × 16 = 14720 (N) can score the first C1 mark
\n\n", - "page_idx": 63 - }, - { - "type": "text", - "text": "Mark Scheme ", - "text_level": 1, - "page_idx": 64 - }, - { - "type": "table", - "img_path": "images/f415aab86ff645a1fd0b9df8fc0219785e1ee582c0aa23822ee77008431ceaf1.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Question 23(a)MarksGuidance Note: In this question any symbols used must be defined or
previously mentioned Note: Allow full credit for alternative methods, e.g. using the equation pressure = height x density × g
pressure = weight(of cyinder) areaB1Allowforce/area
Weight (of cylinder) determined using a newtonmeterB1
or Measure mass (of cylinder) using balance / scale(s) and multiplying by g / 9.8(1 m s-²)Not 'gravity' for g
Area determined by measuring the diameter with a ruler /B1Not measure radius
vernier callipers / micrometer and then using (area =) π × 2 A sensible suggestion that reduces the % uncertainty:B1Allow other correct methods Not 'repeat readings (of diameter etc.)' because this
Use micrometer / (vernier) calipers / travelling microscope Use balance / newtonmeter with smaller division (AW)procedure improves the accuracy and not the precision Allow balance / newtonmeter with ‘high resolution'
/ air displaced (L)8:6/0:6 (= ssew) 10 (N) 8'2 - 0:6 (= 4snudn)B1
C1Note: This C1 mark for determining the upthrust (1.2 N) or the mass (0.92 kg) of the cylinder
V = (1.2/9.81) or V= 1.2(23) × 10-4 (m²) 1000C1
(9.0/9.81) 1.223×10-4
(9.0) p
8
×1000 = 7.5×10² (kg m-3)
p = 7.5 × 10² (kg m-3)
A1Allow full credit for alternative methods, e.g:
1.2
\n\n", - "page_idx": 64 - }, - { - "type": "text", - "text": "Mark Scheme ", - "text_level": 1, - "page_idx": 65 - }, - { - "type": "table", - "img_path": "images/0f1ce7dc23805e28e82d8f8de3afee9d6c9934d8abaa397800d3ed58cd4f7a1b.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswerMarksGuidance
24 (a)(Resultant) force is (directly) proportional / equal to the rate of change of momentumB1Notforce=mass× acceleration Not *force α change in momentum over time'
(q)(i)Any two from: momentum, (total) energy and massB1Not: kinetic energy
(ii)The force will have the same magnitude (at any time t) The force is in the opposite direction / has negative valueB1 B1Not 'This is because action = reaction'
Not Newton's third law Allow 1 mark for a correct graph if there is no description or explanation
(c)Method1:Momentumisconserved
1.7 × 10-27× 500 or 1.7 × 10-27 ×(-) 420 or 2.0 × 10-26 × vC1
1.7 × 10-27 × 500 = 1.7 × 10-27 × -420 + 2.0 × 10-26 × vC1
v = 78 (m s-1)A1Allow 1 mark for 6.8 (m s-1); + 420 used instead of - 420
Method 2: Kinetic energy is conserved
%2× 1.7 × 10-27 × 500² or %× 1.7 × 10-27 × 420² or 1%2 × 2.0 × 10-26 × v2C1Allow full credit for correct use of 'velocity of approach = -
1%2 × 1.7 × 10-27 × 5002 = 1%2 × 1.7 × 10-27 × 4202 + %2 × 2.0 xC1velocity of recession', e.g:
10-26 × v2 v= 79 (m s-1)'speed’ of approach = (-)'speed' of recession C1 500 = v+ 420 C1 v= 80 (m s-1) A1
TotalA1
7
\n\n", - "page_idx": 65 - }, - { - "type": "text", - "text": "Mark Scheme ", - "text_level": 1, - "page_idx": 66 - }, - { - "type": "table", - "img_path": "images/3c7cf2a3add40669ef0cc2340baa0f14d432cce84c6659171375f6b5ffcc192b.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Question (i)Answer Similarity - same unit (Aw)Marks B1Guidance
25(a)Difference - For e.m.f, energy is transformed from chemical / other forms to electrical and for p.d., energy is transformedtoheat/otherformsfromelectricalB1 Allow any pair from: e.m.f. Energy (transformed) to electricalAllow *both defined as energy (transformed) per unit charge' or 'both defined as work done per unit charge' electricalp.d. Energy (transformed) from
(ii) n=9.6 ×1016 or n = 1.3(3...) × 1025 (m-3) 1.2x10-6 ×6.0x10-3C1heat /other forms Charges gain energy Work done on chargesCharges lose energy Work done by charges
(I = Anev)0.003 = 1.2 × 10-6 × 1.33... × 1025 × 1.6 × 10-19 × v
v= 1.2 × 10-3 (m s-1)C1Note Any subject for this equation
A1 Allow 1 mark for 1.6(3) × 105 (m s-1); n = 9.6 x1016 used
\n\n", - "page_idx": 66 - }, - { - "type": "text", - "text": "Mark Scheme ", - "text_level": 1, - "page_idx": 67 - }, - { - "type": "table", - "img_path": "images/19eb8f3dd49cb948426b1519dbb0967d4166dfc4094e859f9012f850d4f812ed.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
(q)QuestionAnswer Circuit withcell inserieswith an ammeter and variable resistor.A voltmeter is connected across thevariableMarks B1Guidance Allow thisB1 mark for a clearly drawn circuit with correct symbols for the cell, variable resistor, voltmeter and
resistor/(terminalsofthe)cellammeter.Allow a battery symbol instead of symbol for a cell
Measure current and p.d. / voltage across variable resistor / cellB1Allow 'terminal p.d' for p.d. across the cell Allow'measure I and V if the circuit is correct Allow'measure voltmeter and ammeter readings'if the
Correct description of how to get multiple readings (of currentorp.d)B1circuit is correct Possible ECF for incorrect symbol for variable resistor
E.g.change the resistance of the variableresistor / use different value resistors, etc. (E = V+ Ir)B1
line) is equal to (-) r (AW)Total 9
\n\n", - "page_idx": 67 - }, - { - "type": "text", - "text": "Mark Scheme ", - "text_level": 1, - "page_idx": 68 - }, - { - "type": "table", - "img_path": "images/1a5f20b76804f23ddbca58502da5a06a8534fa105e7bc8eda75c3acf781d1d90.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
26Question (a)Answer (i) A and B move in opposite directionsMarks B1Guidance Allow A is moving up and B is moving down (or vice versa)
Allow they have a phase difference of 180(o) or π (rad) Allow they are in antiphase
(b)(i) = 0.80 (m)C1Allow 80 (cm) for this C1 mark
v= fn; v = 75× 0.80 v = 60 (m s-1) 2.0A1Allow 1 mark for 30 (m s-1) from the C1A1 marks; = 0.40 m used
absoluteuncertainty= x60 40 absolute uncertainty = 3.0 (m s-1)A1Note 60 ± 3 (m s-1) scores full marks Allow 2 marks for 6000 ± 300 (m s-1); in cm (POT error)
(i) Reflection (of progressive waves) at (fixed) end(s) / X / YB1Allow 2 marks for 30 ± 1.5 (m s-1); = 0.40 m used
Superposition (of these waves gives rise to the stationary wave)B1Allow: 'interference' instead of 'superposition'
The wavelength is twice the
length of cord / distance between X and YB1Allow = 2xY or equivalent
Total 7
\n\n", - "page_idx": 68 - }, - { - "type": "text", - "text": "Mark Scheme ", - "text_level": 1, - "page_idx": 69 - }, - { - "type": "table", - "img_path": "images/d13d0bacb2747c0caaae2c3d90d709911fe909c8ff5a04b4dab9d38913a2b177.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswerMarks B1
-1.0 V to 2.6 V: I = 0 / negligible and R = oo / (very) large (AW)
2.6 Vto3.0V:RdecreasesB1 Allow'rapid decrease in R
3.0 V to 3.4 V:R decreases
B1 Allow'slow decrease in R' Not R is constant (because it is a straight line)
Justification of a B1 point in terms of R = V/I. For example to show:B1Not R = gradient1 Ignore powers of 10 and units
R is infinite: R = 2.0/0 = ∞0Note: V and I values within ± 1 small square
R decreases: R calculated once and has R = o, or R calculated twice
(The circuit does not work because) the LED is reverse biased / incorrect polarity of the cell (AW)B1Allow: (For the circuit to work) the LED must be forward- biased / 'reverse the LED'/ 'reverse the cell'
V must be greater than 2.6 (V for the LED to be lit)B1Allow ± 0.1 V Not V must be equal to / 'at least' 2.6 V
B1Allow this mark even if the LED is reverse biased Note: This B1 mark can be scored on Fig. 27.2
(c)6.63×10-34 ×3.0×108 E= or E = 4.1(4) × 10-19 (J) 480×10-9 1.2×10-3C1Allow this mark even if the LED is reverse biased
C1
4.1(4)×10-19 N = 2.9 × 1015 (s-1)A1
Total10
\n\n", - "page_idx": 69 - }, - { - "type": "text", - "text": "OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU ", - "text_level": 1, - "page_idx": 70 - }, - { - "type": "text", - "text": "OCR Customer Contact Centre ", - "page_idx": 70 - }, - { - "type": "text", - "text": "Education and Learning \nTelephone: 01223 553998 \nFacsimile: 01223 552627 \nEmail: general.qualifications@ocr.org.uk ", - "page_idx": 70 - }, - { - "type": "text", - "text": "www.ocr.org.uk ", - "page_idx": 70 - }, - { - "type": "text", - "text": "Oxford Cambridge and RSA Examinations \nis a Company Limited by Guarantee \nRegistered in England \nRegistered Office; 1 Hills Road, Cambridge, CB1 2EU \nRegistered Company Number: 3484466 \nOCR is an exempt Charity \nOCR (Oxford Cambridge and RSA Examinations) \nHead office \nTelephone: 01223 552552 \nFacsimile: 01223 552553 ", - "page_idx": 70 - }, - { - "type": "text", - "text": "", - "page_idx": 70 - }, - { - "type": "text", - "text": "$\\circledcirc$ OCR 2016 ", - "page_idx": 70 - }, - { - "type": "text", - "text": "GCE ", - "text_level": 1, - "page_idx": 71 - }, - { - "type": "text", - "text": "Physics A ", - "text_level": 1, - "page_idx": 71 - }, - { - "type": "text", - "text": "H156/01: Breadth in physics ", - "text_level": 1, - "page_idx": 71 - }, - { - "type": "text", - "text": "AS Level ", - "page_idx": 71 - }, - { - "type": "text", - "text": "Mark Scheme for June 2022 ", - "text_level": 1, - "page_idx": 71 - }, - { - "type": "text", - "text": "OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills. ", - "page_idx": 72 - }, - { - "type": "text", - "text": "It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today’s society. ", - "page_idx": 72 - }, - { - "type": "text", - "text": "This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners’ meeting before marking commenced. ", - "page_idx": 72 - }, - { - "type": "text", - "text": "All examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated. ", - "page_idx": 72 - }, - { - "type": "text", - "text": "Mark schemes should be read in conjunction with the published question papers and the report on the examination. ", - "page_idx": 72 - }, - { - "type": "text", - "text": "$\\circledcirc$ OCR 2022 ", - "page_idx": 72 - }, - { - "type": "text", - "text": "H156/01 ", - "text_level": 1, - "page_idx": 73 - }, - { - "type": "text", - "text": "Mark Scheme ", - "text_level": 1, - "page_idx": 73 - }, - { - "type": "text", - "text": "PREPARATION FOR MARKING ON-SCREEN ", - "text_level": 1, - "page_idx": 73 - }, - { - "type": "text", - "text": "1. Make sure that you have accessed and completed the relevant training packages for on-screen marking: RM assessor Online Training and the OCR Essential Guide to Marking. \n2. Make sure that you have read and understood the Instructions for On-Screen Marking and the mark scheme and the question paper for this unit. These are posted on the RM Cambridge Assessment Support Portal http://www.rm.com/support/ca \n3. Log-in to RM Assessor and mark the required number of practice responses and the required number of standardisation responses. ", - "page_idx": 73 - }, - { - "type": "text", - "text": "MARKING INSTRUCTIONS – FOR MARKING ON-SCREEN AND FOR PAPER BASED MARKING ", - "text_level": 1, - "page_idx": 73 - }, - { - "type": "text", - "text": "1. Mark strictly to the mark scheme. \n2. Marks awarded must relate directly to the marking criteria. \n3. The schedule of dates is very important. It is essential that you meet the RM Assessor $50\\%$ and $100\\%$ deadlines. If you experience problems, you must contact your Team Leader without delay. \n4. If you are in any doubt about applying the mark scheme, consult your Team Leader by telephone or the RM Assessor messaging system, or by email. ", - "page_idx": 73 - }, - { - "type": "text", - "text": "5. Crossed Out Responses ", - "text_level": 1, - "page_idx": 73 - }, - { - "type": "text", - "text": "Where a candidate has crossed out a response and provided a clear alternative then the crossed out response is not marked. Where no alternative response has been provided, examiners may give candidates the benefit of the doubt and mark the crossed out response where legible. ", - "page_idx": 73 - }, - { - "type": "text", - "text": "Rubric Error Responses – Optional Questions ", - "text_level": 1, - "page_idx": 73 - }, - { - "type": "text", - "text": "Where candidates have a choice of question across a whole paper or a whole section and have provided more answers than required, then all responses are marked and the highest mark allowable within the rubric is given. Enter a mark for each question answered into RM assessor, which will select the highest mark from those awarded. (The underlying assumption is that the candidate has penalised themselves by attempting more questions than necessary in the time allowed.) ", - "page_idx": 73 - }, - { - "type": "text", - "text": "Multiple Choice Question Responses ", - "text_level": 1, - "page_idx": 74 - }, - { - "type": "text", - "text": "When a multiple choice question has only a single, correct response and a candidate provides two responses (even if one of these responses is correct), then no mark should be awarded (as it is not possible to determine which was the first response selected by the candidate). When a question requires candidates to select more than one option/multiple options, then local marking arrangements need to ensure consistency of approach. ", - "page_idx": 74 - }, - { - "type": "text", - "text": "Contradictory Responses ", - "text_level": 1, - "page_idx": 74 - }, - { - "type": "text", - "text": "hen a candidate provides contradictory responses, then no mark should be awarded, even if one of the answers is correct. ", - "page_idx": 74 - }, - { - "type": "text", - "text": "Where candidates are required to provide a set number of short answer responses then only the set number of responses should be marked. The response space should be marked from left to right on each line and then line by line until the required number of responses have been considered. The remaining responses should not then be marked. Examiners will have to apply judgement as to whether a ‘second response’ on a line is a development of the ‘first response’, rather than a separate, discrete response. (The underlying assumption is that the candidate is attempting to hedge their bets and therefore getting undue benefit rather than engaging with the question and giving the most relevant/correct responses.) ", - "page_idx": 74 - }, - { - "type": "text", - "text": "Short Answer Questions (requiring a more developed response, worth two or more marks) ", - "page_idx": 74 - }, - { - "type": "text", - "text": "If the candidates are required to provide a description of, say, three items or factors and four items or factors are provided, then mark on a similar basis – that is downwards (as it is unlikely in this situation that a candidate will provide more than one response in each section of the response space.) ", - "page_idx": 74 - }, - { - "type": "text", - "text": "Longer Answer Questions (requiring a developed response) ", - "page_idx": 74 - }, - { - "type": "text", - "text": "Where candidates have provided two (or more) responses to a medium or high tariff question which only required a single (developed) response and not crossed out the first response, then only the first response should be marked. Examiners will need to apply professional judgement as to whether the second (or a subsequent) response is a ‘new start’ or simply a poorly expressed continuation of the first response. ", - "page_idx": 74 - }, - { - "type": "text", - "text": "Always check the pages (and additional objects if present) at the end of the response in case any answers have been continued there. If the candidate has continued an answer there then add a tick to confirm that the work has been seen. ", - "page_idx": 74 - }, - { - "type": "text", - "text": "7. Award No Response (NR) if: there is nothing written in the answer space Award Zero $\\mathrm{^{6}0^{,}}$ if: anything is written in the answer space and is not worthy of credit (this includes text and symbols). ", - "page_idx": 74 - }, - { - "type": "text", - "text": "Mark Scheme ", - "text_level": 1, - "page_idx": 75 - }, - { - "type": "text", - "text": "Team Leaders must confirm the correct use of the NR button with their markers before live marking commences and should check this when reviewing scripts. ", - "page_idx": 75 - }, - { - "type": "text", - "text": "8. The RM Assessor comments box is used by your team leader to explain the marking of the practice responses. Please refer to these comments when checking your practice responses. Do not use the comments box for any other reason. ", - "page_idx": 75 - }, - { - "type": "text", - "text": "If you have any questions or comments for your team leader, use the phone, the RM Assessor messaging system, or e-mail. ", - "page_idx": 75 - }, - { - "type": "text", - "text": "9. Level of response (LoR) ", - "text_level": 1, - "page_idx": 75 - }, - { - "type": "text", - "text": "Read through the whole answer from start to finish, concentrating on features that make it a stronger or weaker answer using the indicative scientific content as guidance. The indicative scientific content indicates the expected parameters for candidates’ answers, but be prepared to recognise and credit unexpected approaches where they show relevance. ", - "page_idx": 75 - }, - { - "type": "text", - "text": "Using a ‘best-fit’ approach based on the science content of the answer, first decide which set of level descriptors, Level 1 (L1), Level 2 (L2) or Level 3 (L3), best describes the overall quality of the answer using the guidelines described in the level descriptors in the mark scheme. ", - "page_idx": 75 - }, - { - "type": "text", - "text": "Once the level is located, award the higher or lower mark. ", - "page_idx": 75 - }, - { - "type": "text", - "text": "The higher mark should be awarded where the level descriptor has been evidenced and all aspects of the communication statement (in italics) have been met. The lower mark should be awarded where the level descriptor has been evidenced but aspects of the communication statement (in italics) are missing. ", - "page_idx": 75 - }, - { - "type": "text", - "text": "In summary: ", - "page_idx": 75 - }, - { - "type": "text", - "text": "the science content determines the level the communication statement determines the mark within a level. ", - "page_idx": 75 - }, - { - "type": "text", - "text": "10. Here are the subject specific instructions for this question paper. ", - "page_idx": 76 - }, - { - "type": "text", - "text": "CATEGORISATION OF MARKS ", - "text_level": 1, - "page_idx": 76 - }, - { - "type": "text", - "text": "The marking schemes categorise marks on the MACB scheme. ", - "page_idx": 76 - }, - { - "type": "text", - "text": "B marks ", - "text_level": 1, - "page_idx": 76 - }, - { - "type": "text", - "text": "These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate’s answers. ", - "page_idx": 76 - }, - { - "type": "text", - "text": "M marks ", - "text_level": 1, - "page_idx": 76 - }, - { - "type": "text", - "text": "These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate’s answers. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored. ", - "page_idx": 76 - }, - { - "type": "text", - "text": "C marks ", - "text_level": 1, - "page_idx": 76 - }, - { - "type": "text", - "text": "These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the C-mark is given. ", - "page_idx": 76 - }, - { - "type": "text", - "text": "A marks These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored. ", - "page_idx": 76 - }, - { - "type": "text", - "text": "SIGNIFICANT FIGURES ", - "text_level": 1, - "page_idx": 76 - }, - { - "type": "text", - "text": "If the data given in a question is to 2 sf, then allow to 2 or more significant figures. \nIf an answer is given to fewer than 2 sf, then penalise once only in the entire paper. \nAny exception to this rule will be mentioned in the Additional Guidance. ", - "page_idx": 76 - }, - { - "type": "text", - "text": "H156/01 ", - "text_level": 1, - "page_idx": 77 - }, - { - "type": "text", - "text": "Mark Scheme ", - "text_level": 1, - "page_idx": 77 - }, - { - "type": "text", - "text": "11. Annotations available in RM Assessor ", - "page_idx": 77 - }, - { - "type": "table", - "img_path": "images/ed2dbdb2cbd0686431b9eaf8375227ca25b5eaddad4dc3bd8ad295aef3e587d0.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
AnnotationMeaning
Correct responseUsed to indicate the point at which a mark has been awarded (one tick per mark awarded).
Incorrect responseUsed toindicate anincorrect answer or a point where a mark islost.
AEArithmetic errorECF if there arenofurther errors.
BODBenefit of doubt givenUsed to indicate a mark awarded where the candidate provides an answer that is not totally satisfactory, but the examiner feels that sufficient workhasbeen done.
BPBlank pageUse BP on additional page(s) to show that there is no additional work provided by the candidates.
CONContradictionUsed in numerical answers only, unless specified otherwise in the mark scheme. Answers to later sections of
ECFError carried forwardWithin a question, ECF can be given for AE, TE and POT errors but not for XP.
L1Level 1L1 is used to show 2 marks awarded and L1^ is used to show 1 mark awarded.
L2Level 2L2 isused to show 4 marks awarded andL2^ is used to show3 marks awarded.
L3Level 3L3 is used to show6 marks awarded and L3^ is used to show 5 marks awarded.
POTPower of 10 errorThis isusuallylinked toconversionof Sl prefixes.Donot allowthemarkwheretheerror occurs.Thenfollow through the working/calculation giving ECF for subsequent marks if there are no further errors.
SEENSeen
SFError in number of significant figuresnecessary will be considered within the mark scheme.Penalised only once in the paper.
TETranscription errorsubsequent marks.
XPWrong physics or equationUsed in numerical answers only, unless otherwise specified in the mark scheme. Use of an incorrect equation is wrong physics even if it happens to lead to the correct answer.
OmissionUsed to indicate where more is needed for a mark to be awarded (what is written is not wrong but not enough).
\n\n", - "page_idx": 77 - }, - { - "type": "text", - "text": "Mark Scheme ", - "text_level": 1, - "page_idx": 78 - }, - { - "type": "table", - "img_path": "images/99a5e6a0104e575923f191780bcae50853e2a7b620ed54212346276037e2ecb8.jpg", - "table_caption": [ - "Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions). " - ], - "table_footnote": [], - "table_body": "\n\n
AnnotationMeaning
alternative and acceptable answers for the same marking point
RejectAnswerswhicharenotworthyofcredit
NotAnswers which are not worthy of credit
IgnoreStatements which are irrelevant
AllowAnswers that can be accepted
()Words which are not essential to gain credit
Underlined words must be present in answer to score a mark
ECFError carried forward
AWAlternative wording
ORAOr reverse argument
\n\n", - "page_idx": 78 - }, - { - "type": "text", - "text": "Mark Scheme ", - "text_level": 1, - "page_idx": 79 - }, - { - "type": "text", - "text": "SECTION A ", - "text_level": 1, - "page_idx": 79 - }, - { - "type": "table", - "img_path": "images/5a89028a357fa0b391ff81dbb822b99f4350e199f834f48a51e7691bd2f82340.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswerMarksGuidance
1D1
2A1
3C1
4B1
5C1
9C1
7B1
8C1
9A1
10C1
11D1
12B1
13A1
14A1
15 D1
16 B1
17 A1
18 D1
19 B1
20 B1 20
\n\n", - "page_idx": 79 - }, - { - "type": "text", - "text": "Mark Scheme ", - "text_level": 1, - "page_idx": 80 - }, - { - "type": "text", - "text": "SECTION B ", - "text_level": 1, - "page_idx": 80 - }, - { - "type": "text", - "text": "General rule: For substitution into an equation, allow any subject - unless stated otherwise in the guidance ", - "page_idx": 80 - }, - { - "type": "table", - "img_path": "images/c251b17a2619af1a1114c42aa9633ae595e95e25dc280d7c840301019fc2b12f.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswerMarksGuidance
21(a)(b) (i)distance = area under the graph/suvat equationsC1Allow any attempt to calculate part of the area under the graph or suvat equations Allow any correct calculation of part of the area under the
1%2 (4.0 + 10.0) × 3.0 / 10.0 × 5.0C1 graph/suvat eqn e.g. 9, 12, 20,21, 30, 32, 50 (m)
horizontal distance = 71 (m)A1 C1
2.0 (ii)3.0A0Allow any correct gradient calculation
680cos55 / 150 × 2.0C1If both components given (vertical and horizontal) it must be clear that the 390N is the horizontal component.
680c0s55 - R = 150 × 2.0 R = 90 (N)C1
A1
Total 7
\n\n", - "page_idx": 80 - }, - { - "type": "table", - "img_path": "images/1aa64be2021aebbf63a6c61259ae718dc8ac4ce7aa87ffe6bf6eced9bfbdcfcd.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Question 22 (a)Answer Add (a range of) loads/force/weights to the spring andMarks B1Guidance Allow extension for compression throughout
determine the compression (for each load)B1Allow W = mg Not length for compression
force Allow force constant = - and k = F/x (k must compression be subject)
(q)(c)KE/kinetic to gravitational PE/potentialB1AllowKEtransferredtoGPE Not elastic potential energyIgnore increase of thermal store of the surroundings
(d)E = 12 × 1.7 × 104 × (0.45 -0.25)2C1Allow gain in GPE = 68g(0.76 - 0.25) lgnore E = % Fx
E= 340 (J) The gravitational potential energy store of the person has been omitted/(elastic) potential store of the spring has beenA1 B1lgnorereferencestoenergylosses
transferred to gravitational potential energy store(of the
person)Total 6
\n\n", - "page_idx": 81 - }, - { - "type": "table", - "img_path": "images/3c2e653cc8c05cd228ba461dc12fbf3cfd6a141888adf692b0619572372d8020.jpg", - "table_caption": [ - "H156/01 ", - "Mark Scheme " - ], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswerMarksGuidance
23 (a)Gradients/rate of change of momentum are opposite/ positive & negativeB1Ignore change in momentum is the same for A and B
(q)Gradients/rate of change of momentum of the graphs have the same magnitude/Force on A and B = 24000NB1Allow calculations of the gradient for 2 marks A F = (20 - (-4)/1ms = 24000N and B F = (-30 - 6)/1ms = -24000N Ignore POT
Allow 1 mark if no reference to the graph - The forces acting on each object are opposite and the (magnitude) of
the forces are the same Allowalternativeanswerof: loss of momentum of A = 24 (kg/m/s)
momentum before = 20 - 30 (= -10 kg m s-1) momentum after = -4 -6 (= -10 kg m s-1)B1 B1
(Therefore, the momentum is conserved)gain of momentum by B = 24 (kg/m/s) (Therefore, the momentum is conserved)
(c) (2.0 + 3.0) v = 10C1 Allow answer of 2 1sf, without any SF penalty
v = 2.0 (m s-1)A1 Ignore sign
C1
\n\n", - "page_idx": 82 - }, - { - "type": "table", - "img_path": "images/d8142e5350cdae5d907ae6407a5ae916fcee9d32f462862f61e49d2d3f4b265a.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Question 24Ignore the waves don't moveGuidance
(b)(i)Any acceptable methods e.g.B1Allow vibration generator connected to a variable
Note matched to a note produced by a speaker connected to a variable (calibrated) signal generator/ Reducebackground sound levelB1(calibrated)signal generator Allow Adjust signal generator to the fundamental
ORfrequency (whenastationarywaveisachieved)
Count the number of oscillations and divide by time
camera)taken (from a stopwatch/oscilloscope/slow motion
Take many oscillations e.g. 5 or 10/ longer time
OR
Microphone connected to oscilloscope to measure T/
period and f = 1/T/period
Reduce background sound level
OR
Use a (calibrated) strobe to determine the frequency
Dim down the lights (Aw) to get the best results
Allow 1.2(m)
(ii)1
1.24 (m)
\n\n", - "page_idx": 83 - }, - { - "type": "text", - "text": "Mark Scheme ", - "text_level": 1, - "page_idx": 84 - }, - { - "type": "table", - "img_path": "images/a7a340909246e3d100bb4ab6b88e52ffacc34e492be12ab1af2e7c6ab51195bc.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswerMarksGuidance
(ii)2(v= fn) v = 58 × 1.24 v = 72 (m s-1)C1 A1ECF from (b)(ii)1
(ii)3% uncertainty = [2 × 2.5] + 1.0 + 0.5 (= 6.5) 0.065 × [4 × 582 × 9.7 × 10-4 × 0.62] absolute uncertainty = 0.53 (N)C1 A1Answer to 2sf only Allow ECF 1 mark for %uncertainty of 4% and absolute
Total8uncertainty 0.32N 2sf
\n\n", - "page_idx": 84 - }, - { - "type": "table", - "img_path": "images/69bcc7ab78c2418c6c58b3e6c18ab72b8ef505a549be0abf65f647811ca5d616.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Question 25(a)AnswerMarksGuidance
Bothmeasured inVolts / same unitsB1Allow V for volt
(q)(i)Graph from 1.5 V at 0/A to 0 V at L/BM1Allow they are both voltages/they are both measured with a voltmeter Allow curve of increasing gradient/straight line
(ii)Curve of decreasing gradientA1 B1
At A / x = 0, V= 1.5 V and at B / x = L, V = 0.75 V/p.d is shared/halved Total resistance increases so current decreasesB1Allow V(across R) decreases as x increases (as S moves from A to B) Allow Explanation of potential divider e.g. At B resistance
(c)(i)(as length of wire L and resistor of R are in series)C1of length of wire = resistance of R
p.d across wire = 14.4 - 12.0 = (2.4 V) (= 0.80 Ω)C1
3.0 p x 25.0 0.80 = 0.54 x 10-6C1
p= 1.7 × 10-8 (Ω m)A1ECF R = 2.8 Ω (V = 8.4 V) to give p = 6.0 × 10-8 (Ω m) for 3 marks
(ii)(/ = Anev) 3.0 = 0.54 × 10-6 × 1.60 × 10-19 × 8.5 × 1028 × VC1Do not penalise the same PoT error in 0.54 mm2 from (c)(i) again
v = 4.1 x 10-4 (m s-1)A1 Total
\n\n", - "page_idx": 85 - }, - { - "type": "table", - "img_path": "images/71c74c00974f96021992aa3ccf5ef49ab0aec4e826f6afdcd313302a289abaf5.jpg", - "table_caption": [ - "Mark Scheme " - ], - "table_footnote": [], - "table_body": "\n\n
QuestionAnswerMarksGuidance
26(a)(i)Energy (of photon) is less than work function/Φ (of C ) 3.3 (eV)B1Allow energy of photon / 3.2 (eV) < 3.3 (eV)/work function (of C) (so no photoelectrons)
(ii) (ii)190 (nm)B1Allow 194 (nm) from calculation E=hf
(hf = Φ + KEmax)
5.3 = 4.1 + KE(max) (KEmax =) 1.2 (eV) orC1Allow KE = 1.92 x 10-19 (J)
% × 9.11 × 10-31 × v2 = 1.2 × 1.6 × 10-19 6.63 × 10-34C1
入= 9.11 × 10-31 x 6.4924 x 105Allow v= 6.5 × 105 (m s-1) or p = 5.9 × 10-25 (kg m s-1)
(q)(i) (ii) = 1.1 × 10-9 (m)A1
Line of best fit drawnB1Not drawn through 0.5/5.0
gradient calculated and gradient = 6.2 × 10-34 (J s)C1Allow value in the range 5.8 to 6.6 × 10-34 (J s)
Correct use equation of straight line, and gradient to determine the y-intercept / Φ Φ= 2.7 × 10-19 (J)M1ECF from incorrect value of h
A1Allow value in the range 2.4 to 3.0 × 10-19 (J)
Total 9
\n\n", - "page_idx": 86 - }, - { - "type": "text", - "text": "Need to get in touch? ", - "text_level": 1, - "page_idx": 87 - }, - { - "type": "text", - "text": "If you ever have any questions about OCR qualifications or services (including administration, logistics and teaching) please feel free to get in touch with our customer support centre. ", - "page_idx": 87 - }, - { - "type": "text", - "text": "Call us on ", - "text_level": 1, - "page_idx": 87 - }, - { - "type": "text", - "text": "01223 553998 ", - "page_idx": 87 - }, - { - "type": "text", - "text": "Alternatively, you can email us on support@ocr.org.uk ", - "page_idx": 87 - }, - { - "type": "text", - "text": "", - "page_idx": 87 - }, - { - "type": "text", - "text": "For more information visit ", - "page_idx": 87 - }, - { - "type": "text", - "text": "ocr.org.uk/qualifications/resource-finder \nocr.org.uk \nTwitter/ocrexams \n/ocrexams \n/company/ocr \n/ocrexams ", - "page_idx": 87 - }, - { - "type": "text", - "text": "CAMBRIDGE UNIVERSITY PRESS & ASSESSMENT ", - "text_level": 1, - "page_idx": 87 - }, - { - "type": "text", - "text": "OCR is part of Cambridge University Press & Assessment, a department of the University of Cambridge. ", - "page_idx": 87 - }, - { - "type": "text", - "text": "For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored. $\\circledcirc$ OCR 2022 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England. Registered office The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA. ", - "page_idx": 87 - }, - { - "type": "text", - "text": "Registered company number 3484466. OCR is an exempt charity. ", - "page_idx": 87 - }, - { - "type": "text", - "text": "OCR operates academic and vocational qualifications regulated by Ofqual, Qualifications Wales and CCEA as listed in their qualifications registers including A Levels, GCSEs, Cambridge Technicals and Cambridge Nationals. ", - "page_idx": 87 - }, - { - "type": "text", - "text": "OCR provides resources to help you deliver our qualifications. These resources do not represent any particular teaching method we expect you to use. We update our resources regularly and aim to make sure content is accurate but please check the OCR website so that you have the most up-to-date version. OCR cannot be held responsible for any errors or omissions in these resources. ", - "page_idx": 87 - }, - { - "type": "text", - "text": "Though we make every effort to check our resources, there may be contradictions between published support and the specification, so it is important that you always use information in the latest specification. We indicate any specification changes within the document itself, change the version number and provide a summary of the changes. If you do notice a discrepancy between the specification and a resource, please contact us. ", - "page_idx": 87 - }, - { - "type": "text", - "text": "Whether you already offer OCR qualifications, are new to OCR or are thinking about switching, you can request more information using our Expression of Interest form. ", - "page_idx": 87 - }, - { - "type": "text", - "text": "Please get in touch if you want to discuss the accessibility of resources we offer to support you in delivering our qualifications. ", - "page_idx": 87 - } -] \ No newline at end of file diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/H156_01_24_May_2016_1739552446_layout.pdf b/pdf_output/H156_01_24_May_2016_1739552446/auto/H156_01_24_May_2016_1739552446_layout.pdf deleted file mode 100644 index 66fff3961d5b2820448b6ef5f0d9024385ce6ddd..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/H156_01_24_May_2016_1739552446_layout.pdf +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c301935096d8a4497591210c44fed30effec28bd8d5165a617d827241627017c -size 1314874 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/H156_01_24_May_2016_1739552446_middle.json b/pdf_output/H156_01_24_May_2016_1739552446/auto/H156_01_24_May_2016_1739552446_middle.json deleted file mode 100644 index 19f8e76ee54280f2fcd1eb8b3fbbb4e8afc20b80..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/H156_01_24_May_2016_1739552446_middle.json +++ /dev/null @@ -1,107429 +0,0 @@ -{ - "pdf_info": [ - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 94, - 107, - 291, - 150 - ], - "lines": [ - { - "bbox": [ - 95, - 109, - 279, - 128 - ], - "spans": [ - { - "bbox": [ - 95, - 109, - 279, - 128 - ], - "score": 1.0, - "content": "AS Level Physics A", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 94, - 131, - 290, - 150 - ], - "spans": [ - { - "bbox": [ - 94, - 131, - 290, - 150 - ], - "score": 1.0, - "content": "H156/01 Breadth in physics", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "title", - "bbox": [ - 94, - 165, - 399, - 208 - ], - "lines": [ - { - "bbox": [ - 94, - 166, - 398, - 188 - ], - "spans": [ - { - "bbox": [ - 94, - 166, - 398, - 188 - ], - "score": 1.0, - "content": "Tuesday 24 May 2016 – Morning", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 94, - 191, - 342, - 206 - ], - "spans": [ - { - "bbox": [ - 94, - 191, - 342, - 206 - ], - "score": 1.0, - "content": "Time allowed: 1 hour 30 minutes", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5 - }, - { - "type": "title", - "bbox": [ - 101, - 226, - 168, - 236 - ], - "lines": [ - { - "bbox": [ - 101, - 226, - 169, - 236 - ], - "spans": [ - { - "bbox": [ - 101, - 226, - 169, - 236 - ], - "score": 1.0, - "content": "You must have:", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 101, - 237, - 294, - 259 - ], - "lines": [ - { - "bbox": [ - 101, - 237, - 294, - 248 - ], - "spans": [ - { - "bbox": [ - 101, - 237, - 294, - 248 - ], - "score": 1.0, - "content": "• the Data, Formulae and Relationships Booklet", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 109, - 249, - 225, - 259 - ], - "spans": [ - { - "bbox": [ - 109, - 249, - 225, - 259 - ], - "score": 1.0, - "content": "(sent with general stationery)", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5.5 - }, - { - "type": "text", - "bbox": [ - 100, - 264, - 193, - 296 - ], - "lines": [ - { - "bbox": [ - 101, - 264, - 161, - 275 - ], - "spans": [ - { - "bbox": [ - 101, - 264, - 161, - 275 - ], - "score": 1.0, - "content": "You may use:", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 100, - 275, - 193, - 284 - ], - "spans": [ - { - "bbox": [ - 100, - 275, - 193, - 284 - ], - "score": 1.0, - "content": "• a scientific calculator", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 101, - 286, - 173, - 297 - ], - "spans": [ - { - "bbox": [ - 101, - 286, - 173, - 297 - ], - "score": 1.0, - "content": "• a ruler (cm/mm)", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8 - }, - { - "type": "table", - "bbox": [ - 95, - 365, - 537, - 453 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 95, - 365, - 537, - 453 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 95, - 365, - 537, - 453 - ], - "spans": [ - { - "bbox": [ - 95, - 365, - 537, - 453 - ], - "score": 0.964, - "html": "
Firstname
Last name
Centre numberCandidate number
", - "type": "table", - "image_path": "107616ddeafe24853b2e23661ac26c1d16be75b8421d02eb4eb9dbc462c1128d.jpg" - } - ] - } - ], - "index": 11, - "virtual_lines": [ - { - "bbox": [ - 95, - 365, - 537, - 394.3333333333333 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 95, - 394.3333333333333, - 537, - 423.66666666666663 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 95, - 423.66666666666663, - 537, - 452.99999999999994 - ], - "spans": [], - "index": 12 - } - ] - } - ], - "index": 11 - }, - { - "type": "title", - "bbox": [ - 94, - 474, - 178, - 486 - ], - "lines": [ - { - "bbox": [ - 94, - 475, - 177, - 485 - ], - "spans": [ - { - "bbox": [ - 94, - 475, - 177, - 485 - ], - "score": 1.0, - "content": "INSTRUCTIONS", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "text", - "bbox": [ - 93, - 488, - 511, - 578 - ], - "lines": [ - { - "bbox": [ - 107, - 487, - 417, - 500 - ], - "spans": [ - { - "bbox": [ - 107, - 487, - 417, - 500 - ], - "score": 1.0, - "content": "Use black ink. HB pencil may be used for graphs and diagrams.", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 107, - 501, - 510, - 513 - ], - "spans": [ - { - "bbox": [ - 107, - 501, - 510, - 513 - ], - "score": 1.0, - "content": "Complete the boxes above with your name, centre number and candidate number.", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 107, - 513, - 233, - 527 - ], - "spans": [ - { - "bbox": [ - 107, - 513, - 233, - 527 - ], - "score": 1.0, - "content": "Answer all the questions.", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 107, - 527, - 495, - 539 - ], - "spans": [ - { - "bbox": [ - 107, - 527, - 495, - 539 - ], - "score": 1.0, - "content": "Write your answer to each question in the space provided. If additional space is", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 108, - 539, - 508, - 552 - ], - "spans": [ - { - "bbox": [ - 108, - 539, - 508, - 552 - ], - "score": 1.0, - "content": "required, you should use the lined page(s) at the end of this booklet. The question", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 107, - 552, - 274, - 565 - ], - "spans": [ - { - "bbox": [ - 107, - 552, - 274, - 565 - ], - "score": 1.0, - "content": "number(s) must be clearly shown.", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 107, - 567, - 251, - 578 - ], - "spans": [ - { - "bbox": [ - 107, - 567, - 251, - 578 - ], - "score": 1.0, - "content": "Do not write in the barcodes.", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 17 - }, - { - "type": "title", - "bbox": [ - 94, - 592, - 172, - 603 - ], - "lines": [ - { - "bbox": [ - 95, - 592, - 172, - 602 - ], - "spans": [ - { - "bbox": [ - 95, - 592, - 172, - 602 - ], - "score": 1.0, - "content": "INFORMATION", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 21 - }, - { - "type": "text", - "bbox": [ - 94, - 605, - 378, - 643 - ], - "lines": [ - { - "bbox": [ - 106, - 605, - 275, - 617 - ], - "spans": [ - { - "bbox": [ - 106, - 605, - 275, - 617 - ], - "score": 1.0, - "content": "The total mark for this paper is 70.", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 106, - 617, - 378, - 631 - ], - "spans": [ - { - "bbox": [ - 106, - 617, - 378, - 631 - ], - "score": 1.0, - "content": "The marks for each question are shown in brackets [ ].", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 107, - 630, - 287, - 643 - ], - "spans": [ - { - "bbox": [ - 107, - 630, - 287, - 643 - ], - "score": 1.0, - "content": "This document consists of 28 pages.", - "type": "text" - } - ], - "index": 24 - } - ], - "index": 23 - } - ], - "layout_bboxes": [], - "page_idx": 0, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 95, - 365, - 537, - 453 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 95, - 365, - 537, - 453 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 95, - 365, - 537, - 453 - ], - "spans": [ - { - "bbox": [ - 95, - 365, - 537, - 453 - ], - "score": 0.964, - "html": "
Firstname
Last name
Centre numberCandidate number
", - "type": "table", - "image_path": "107616ddeafe24853b2e23661ac26c1d16be75b8421d02eb4eb9dbc462c1128d.jpg" - } - ] - } - ], - "index": 11, - "virtual_lines": [ - { - "bbox": [ - 95, - 365, - 537, - 394.3333333333333 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 95, - 394.3333333333333, - 537, - 423.66666666666663 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 95, - 423.66666666666663, - 537, - 452.99999999999994 - ], - "spans": [], - "index": 12 - } - ] - } - ], - "index": 11 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 80, - 761, - 178, - 781 - ], - "lines": [ - { - "bbox": [ - 80, - 762, - 177, - 771 - ], - "spans": [ - { - "bbox": [ - 80, - 762, - 89, - 770 - ], - "score": 0.44, - "content": "\\copyright", - "type": "inline_equation", - "height": 8, - "width": 9 - }, - { - "bbox": [ - 89, - 762, - 177, - 771 - ], - "score": 1.0, - "content": " OCR 2016 [601/4742/8]", - "type": "text" - } - ] - }, - { - "bbox": [ - 81, - 772, - 163, - 781 - ], - "spans": [ - { - "bbox": [ - 81, - 772, - 163, - 781 - ], - "score": 1.0, - "content": "DC (ST/SW) 122183/5", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 96, - 47, - 216, - 98 - ], - "lines": [ - { - "bbox": [ - 96, - 50, - 213, - 83 - ], - "spans": [ - { - "bbox": [ - 96, - 50, - 213, - 83 - ], - "score": 0.9843761324882507, - "content": "OCR", - "type": "text" - } - ] - }, - { - "bbox": [ - 100, - 87, - 213, - 97 - ], - "spans": [ - { - "bbox": [ - 100, - 87, - 213, - 97 - ], - "score": 1.0, - "content": "Oxford Cambridge and RSA", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 262, - 762, - 357, - 771 - ], - "lines": [ - { - "bbox": [ - 263, - 762, - 356, - 772 - ], - "spans": [ - { - "bbox": [ - 263, - 762, - 356, - 772 - ], - "score": 1.0, - "content": "OCR is an exempt Charity", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 491, - 771, - 538, - 780 - ], - "lines": [ - { - "bbox": [ - 490, - 770, - 540, - 781 - ], - "spans": [ - { - "bbox": [ - 490, - 770, - 540, - 781 - ], - "score": 1.0, - "content": "Turn over", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 19, - 222, - 50, - 336 - ], - "lines": [ - { - "bbox": [ - 22, - 224, - 26, - 231 - ], - "spans": [ - { - "bbox": [ - 22, - 224, - 26, - 231 - ], - "score": 0.5264225602149963, - "content": "*", - "type": "text" - } - ] - }, - { - "bbox": [ - 20, - 243, - 27, - 251 - ], - "spans": [ - { - "bbox": [ - 20, - 243, - 27, - 251 - ], - "score": 0.5495193600654602, - "content": "0", - "type": "text" - } - ] - }, - { - "bbox": [ - 19, - 253, - 27, - 260 - ], - "spans": [ - { - "bbox": [ - 19, - 253, - 27, - 260 - ], - "score": 0.626152515411377, - "content": "W", - "type": "text" - } - ] - }, - { - "bbox": [ - 20, - 271, - 27, - 280 - ], - "spans": [ - { - "bbox": [ - 20, - 271, - 27, - 280 - ], - "score": 0.7627735733985901, - "content": "W", - "type": "text" - } - ] - }, - { - "bbox": [ - 20, - 281, - 26, - 289 - ], - "spans": [ - { - "bbox": [ - 20, - 281, - 26, - 289 - ], - "score": 0.9136572480201721, - "content": "0", - "type": "text" - } - ] - }, - { - "bbox": [ - 20, - 291, - 27, - 299 - ], - "spans": [ - { - "bbox": [ - 20, - 291, - 27, - 299 - ], - "score": 0.7719410061836243, - "content": "0", - "type": "text" - } - ] - }, - { - "bbox": [ - 19, - 319, - 27, - 327 - ], - "spans": [ - { - "bbox": [ - 19, - 319, - 27, - 327 - ], - "score": 0.8171923160552979, - "content": "N", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 376, - 290, - 520, - 325 - ], - "lines": [ - { - "bbox": [ - 398, - 320, - 461, - 325 - ], - "spans": [ - { - "bbox": [ - 398, - 320, - 405, - 325 - ], - "score": 1.0, - "content": "H", - "type": "text" - }, - { - "bbox": [ - 417, - 320, - 423, - 325 - ], - "score": 1.0, - "content": "1", - "type": "text" - }, - { - "bbox": [ - 436, - 320, - 442, - 324 - ], - "score": 0.8584234714508057, - "content": "5", - "type": "text" - }, - { - "bbox": [ - 455, - 320, - 461, - 324 - ], - "score": 0.5820741653442383, - "content": "6", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 94, - 107, - 291, - 150 - ], - "lines": [ - { - "bbox": [ - 95, - 109, - 279, - 128 - ], - "spans": [ - { - "bbox": [ - 95, - 109, - 279, - 128 - ], - "score": 1.0, - "content": "AS Level Physics A", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 94, - 131, - 290, - 150 - ], - "spans": [ - { - "bbox": [ - 94, - 131, - 290, - 150 - ], - "score": 1.0, - "content": "H156/01 Breadth in physics", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_0", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "title", - "bbox": [ - 94, - 165, - 399, - 208 - ], - "lines": [ - { - "bbox": [ - 94, - 166, - 398, - 188 - ], - "spans": [ - { - "bbox": [ - 94, - 166, - 398, - 188 - ], - "score": 1.0, - "content": "Tuesday 24 May 2016 – Morning", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 94, - 191, - 342, - 206 - ], - "spans": [ - { - "bbox": [ - 94, - 191, - 342, - 206 - ], - "score": 1.0, - "content": "Time allowed: 1 hour 30 minutes", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5, - "page_num": "page_0", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "title", - "bbox": [ - 101, - 226, - 168, - 236 - ], - "lines": [ - { - "bbox": [ - 101, - 226, - 169, - 236 - ], - "spans": [ - { - "bbox": [ - 101, - 226, - 169, - 236 - ], - "score": 1.0, - "content": "You must have:", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_0", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 101, - 237, - 294, - 259 - ], - "lines": [ - { - "bbox": [ - 101, - 237, - 294, - 248 - ], - "spans": [ - { - "bbox": [ - 101, - 237, - 294, - 248 - ], - "score": 1.0, - "content": "• the Data, Formulae and Relationships Booklet", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 109, - 249, - 225, - 259 - ], - "spans": [ - { - "bbox": [ - 109, - 249, - 225, - 259 - ], - "score": 1.0, - "content": "(sent with general stationery)", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5.5, - "page_num": "page_0", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 101, - 237, - 294, - 259 - ] - }, - { - "type": "text", - "bbox": [ - 100, - 264, - 193, - 296 - ], - "lines": [ - { - "bbox": [ - 101, - 264, - 161, - 275 - ], - "spans": [ - { - "bbox": [ - 101, - 264, - 161, - 275 - ], - "score": 1.0, - "content": "You may use:", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 100, - 275, - 193, - 284 - ], - "spans": [ - { - "bbox": [ - 100, - 275, - 193, - 284 - ], - "score": 1.0, - "content": "• a scientific calculator", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 101, - 286, - 173, - 297 - ], - "spans": [ - { - "bbox": [ - 101, - 286, - 173, - 297 - ], - "score": 1.0, - "content": "• a ruler (cm/mm)", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8, - "page_num": "page_0", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 100, - 264, - 193, - 297 - ] - }, - { - "type": "table", - "bbox": [ - 95, - 365, - 537, - 453 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 95, - 365, - 537, - 453 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 95, - 365, - 537, - 453 - ], - "spans": [ - { - "bbox": [ - 95, - 365, - 537, - 453 - ], - "score": 0.964, - "html": "
Firstname
Last name
Centre numberCandidate number
", - "type": "table", - "image_path": "107616ddeafe24853b2e23661ac26c1d16be75b8421d02eb4eb9dbc462c1128d.jpg" - } - ] - } - ], - "index": 11, - "virtual_lines": [ - { - "bbox": [ - 95, - 365, - 537, - 394.3333333333333 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 95, - 394.3333333333333, - 537, - 423.66666666666663 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 95, - 423.66666666666663, - 537, - 452.99999999999994 - ], - "spans": [], - "index": 12 - } - ] - } - ], - "index": 11, - "page_num": "page_0", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "title", - "bbox": [ - 94, - 474, - 178, - 486 - ], - "lines": [ - { - "bbox": [ - 94, - 475, - 177, - 485 - ], - "spans": [ - { - "bbox": [ - 94, - 475, - 177, - 485 - ], - "score": 1.0, - "content": "INSTRUCTIONS", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_0", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "list", - "bbox": [ - 93, - 488, - 511, - 578 - ], - "lines": [ - { - "bbox": [ - 107, - 487, - 417, - 500 - ], - "spans": [ - { - "bbox": [ - 107, - 487, - 417, - 500 - ], - "score": 1.0, - "content": "Use black ink. HB pencil may be used for graphs and diagrams.", - "type": "text" - } - ], - "index": 14, - "is_list_end_line": true - }, - { - "bbox": [ - 107, - 501, - 510, - 513 - ], - "spans": [ - { - "bbox": [ - 107, - 501, - 510, - 513 - ], - "score": 1.0, - "content": "Complete the boxes above with your name, centre number and candidate number.", - "type": "text" - } - ], - "index": 15, - "is_list_start_line": true - }, - { - "bbox": [ - 107, - 513, - 233, - 527 - ], - "spans": [ - { - "bbox": [ - 107, - 513, - 233, - 527 - ], - "score": 1.0, - "content": "Answer all the questions.", - "type": "text" - } - ], - "index": 16, - "is_list_end_line": true - }, - { - "bbox": [ - 107, - 527, - 495, - 539 - ], - "spans": [ - { - "bbox": [ - 107, - 527, - 495, - 539 - ], - "score": 1.0, - "content": "Write your answer to each question in the space provided. If additional space is", - "type": "text" - } - ], - "index": 17, - "is_list_start_line": true - }, - { - "bbox": [ - 108, - 539, - 508, - 552 - ], - "spans": [ - { - "bbox": [ - 108, - 539, - 508, - 552 - ], - "score": 1.0, - "content": "required, you should use the lined page(s) at the end of this booklet. The question", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 107, - 552, - 274, - 565 - ], - "spans": [ - { - "bbox": [ - 107, - 552, - 274, - 565 - ], - "score": 1.0, - "content": "number(s) must be clearly shown.", - "type": "text" - } - ], - "index": 19, - "is_list_end_line": true - }, - { - "bbox": [ - 107, - 567, - 251, - 578 - ], - "spans": [ - { - "bbox": [ - 107, - 567, - 251, - 578 - ], - "score": 1.0, - "content": "Do not write in the barcodes.", - "type": "text" - } - ], - "index": 20, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 17, - "page_num": "page_0", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 107, - 487, - 510, - 578 - ] - }, - { - "type": "title", - "bbox": [ - 94, - 592, - 172, - 603 - ], - "lines": [ - { - "bbox": [ - 95, - 592, - 172, - 602 - ], - "spans": [ - { - "bbox": [ - 95, - 592, - 172, - 602 - ], - "score": 1.0, - "content": "INFORMATION", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 21, - "page_num": "page_0", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "list", - "bbox": [ - 94, - 605, - 378, - 643 - ], - "lines": [ - { - "bbox": [ - 106, - 605, - 275, - 617 - ], - "spans": [ - { - "bbox": [ - 106, - 605, - 275, - 617 - ], - "score": 1.0, - "content": "The total mark for this paper is 70.", - "type": "text" - } - ], - "index": 22, - "is_list_end_line": true - }, - { - "bbox": [ - 106, - 617, - 378, - 631 - ], - "spans": [ - { - "bbox": [ - 106, - 617, - 378, - 631 - ], - "score": 1.0, - "content": "The marks for each question are shown in brackets [ ].", - "type": "text" - } - ], - "index": 23, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 107, - 630, - 287, - 643 - ], - "spans": [ - { - "bbox": [ - 107, - 630, - 287, - 643 - ], - "score": 1.0, - "content": "This document consists of 28 pages.", - "type": "text" - } - ], - "index": 24, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 23, - "page_num": "page_0", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 106, - 605, - 378, - 643 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 266, - 62, - 328, - 76 - ], - "lines": [ - { - "bbox": [ - 267, - 63, - 328, - 75 - ], - "spans": [ - { - "bbox": [ - 267, - 63, - 328, - 75 - ], - "score": 1.0, - "content": "SECTION A", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 138, - 88, - 456, - 103 - ], - "lines": [ - { - "bbox": [ - 140, - 89, - 456, - 102 - ], - "spans": [ - { - "bbox": [ - 140, - 89, - 456, - 102 - ], - "score": 1.0, - "content": "You should spend a maximum of 25 minutes on this section.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 235, - 114, - 360, - 128 - ], - "lines": [ - { - "bbox": [ - 236, - 116, - 359, - 128 - ], - "spans": [ - { - "bbox": [ - 236, - 116, - 359, - 128 - ], - "score": 1.0, - "content": "Answer all the questions.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 160, - 140, - 434, - 154 - ], - "lines": [ - { - "bbox": [ - 162, - 142, - 433, - 154 - ], - "spans": [ - { - "bbox": [ - 162, - 142, - 433, - 154 - ], - "score": 1.0, - "content": "Write your answer to each question in the box provided.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 49, - 166, - 340, - 206 - ], - "lines": [ - { - "bbox": [ - 48, - 167, - 229, - 179 - ], - "spans": [ - { - "bbox": [ - 48, - 167, - 57, - 179 - ], - "score": 1.0, - "content": "1", - "type": "text" - }, - { - "bbox": [ - 71, - 168, - 229, - 179 - ], - "score": 1.0, - "content": "The watt is the SI unit for power.", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 72, - 194, - 335, - 205 - ], - "spans": [ - { - "bbox": [ - 72, - 194, - 335, - 205 - ], - "score": 1.0, - "content": "Which is the correct definition for the watt? A watt is ...", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5 - }, - { - "type": "text", - "bbox": [ - 69, - 218, - 225, - 311 - ], - "lines": [ - { - "bbox": [ - 69, - 219, - 200, - 231 - ], - "spans": [ - { - "bbox": [ - 69, - 219, - 81, - 231 - ], - "score": 1.0, - "content": "A", - "type": "text" - }, - { - "bbox": [ - 94, - 219, - 200, - 231 - ], - "score": 1.0, - "content": "the rate of work done.", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 70, - 245, - 224, - 258 - ], - "spans": [ - { - "bbox": [ - 70, - 245, - 82, - 258 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 246, - 224, - 257 - ], - "score": 1.0, - "content": "the work done per second.", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 70, - 269, - 188, - 285 - ], - "spans": [ - { - "bbox": [ - 70, - 269, - 83, - 285 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 272, - 188, - 284 - ], - "score": 1.0, - "content": "a joule per second.", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 70, - 297, - 194, - 311 - ], - "spans": [ - { - "bbox": [ - 70, - 297, - 82, - 311 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 94, - 298, - 194, - 310 - ], - "score": 1.0, - "content": "a joule per unit time.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 7.5 - }, - { - "type": "text", - "bbox": [ - 70, - 320, - 167, - 345 - ], - "lines": [ - { - "bbox": [ - 71, - 329, - 134, - 341 - ], - "spans": [ - { - "bbox": [ - 71, - 329, - 134, - 341 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 47, - 366, - 361, - 380 - ], - "lines": [ - { - "bbox": [ - 47, - 366, - 360, - 380 - ], - "spans": [ - { - "bbox": [ - 47, - 366, - 58, - 380 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - }, - { - "bbox": [ - 71, - 367, - 360, - 380 - ], - "score": 1.0, - "content": "A crane is used to lift a load directly from point X to point Y.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "image", - "bbox": [ - 199, - 395, - 386, - 559 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 199, - 395, - 386, - 559 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 199, - 395, - 386, - 559 - ], - "spans": [ - { - "bbox": [ - 199, - 395, - 386, - 559 - ], - "score": 0.966, - "type": "image", - "image_path": "2f2e5923e79ba2dec9ac4893989998778f71d28c3828c44fea54df613bf7197e.jpg" - } - ] - } - ], - "index": 18, - "virtual_lines": [ - { - "bbox": [ - 199, - 395, - 386, - 408.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 199, - 408.0, - 386, - 421.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 199, - 421.0, - 386, - 434.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 199, - 434.0, - 386, - 447.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 199, - 447.0, - 386, - 460.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 199, - 460.0, - 386, - 473.0 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 199, - 473.0, - 386, - 486.0 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 199, - 486.0, - 386, - 499.0 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 199, - 499.0, - 386, - 512.0 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 199, - 512.0, - 386, - 525.0 - ], - "spans": [], - "index": 21 - }, - { - "bbox": [ - 199, - 525.0, - 386, - 538.0 - ], - "spans": [], - "index": 22 - }, - { - "bbox": [ - 199, - 538.0, - 386, - 551.0 - ], - "spans": [], - "index": 23 - }, - { - "bbox": [ - 199, - 551.0, - 386, - 564.0 - ], - "spans": [], - "index": 24 - } - ] - } - ], - "index": 18 - }, - { - "type": "text", - "bbox": [ - 70, - 581, - 445, - 608 - ], - "lines": [ - { - "bbox": [ - 71, - 582, - 208, - 594 - ], - "spans": [ - { - "bbox": [ - 71, - 582, - 208, - 594 - ], - "score": 1.0, - "content": "The weight of the load is W.", - "type": "text" - } - ], - "index": 25 - }, - { - "bbox": [ - 70, - 595, - 444, - 608 - ], - "spans": [ - { - "bbox": [ - 70, - 596, - 91, - 608 - ], - "score": 0.45, - "content": "p,q", - "type": "inline_equation", - "height": 12, - "width": 21 - }, - { - "bbox": [ - 92, - 595, - 113, - 608 - ], - "score": 1.0, - "content": "and", - "type": "text" - }, - { - "bbox": [ - 113, - 596, - 120, - 606 - ], - "score": 0.56, - "content": "r", - "type": "inline_equation", - "height": 10, - "width": 7 - }, - { - "bbox": [ - 121, - 595, - 265, - 608 - ], - "score": 1.0, - "content": "are distances between points", - "type": "text" - }, - { - "bbox": [ - 265, - 595, - 274, - 606 - ], - "score": 0.32, - "content": "\\pmb{\\times}", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 275, - 595, - 444, - 608 - ], - "score": 1.0, - "content": ", Y and Z as shown in the diagram.", - "type": "text" - } - ], - "index": 26 - } - ], - "index": 25.5 - }, - { - "type": "text", - "bbox": [ - 70, - 619, - 280, - 633 - ], - "lines": [ - { - "bbox": [ - 72, - 620, - 279, - 633 - ], - "spans": [ - { - "bbox": [ - 72, - 620, - 279, - 633 - ], - "score": 1.0, - "content": "What is the work done against the weight?", - "type": "text" - } - ], - "index": 27 - } - ], - "index": 27 - }, - { - "type": "text", - "bbox": [ - 69, - 645, - 139, - 738 - ], - "lines": [ - { - "bbox": [ - 70, - 645, - 114, - 661 - ], - "spans": [ - { - "bbox": [ - 70, - 646, - 82, - 659 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 94, - 645, - 114, - 661 - ], - "score": 1.0, - "content": "Wp", - "type": "text" - } - ], - "index": 28 - }, - { - "bbox": [ - 70, - 670, - 115, - 687 - ], - "spans": [ - { - "bbox": [ - 70, - 672, - 82, - 686 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 670, - 115, - 687 - ], - "score": 1.0, - "content": "Wq ", - "type": "text" - } - ], - "index": 29 - }, - { - "bbox": [ - 70, - 698, - 112, - 711 - ], - "spans": [ - { - "bbox": [ - 70, - 698, - 82, - 711 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 94, - 698, - 112, - 711 - ], - "score": 1.0, - "content": "Wr", - "type": "text" - } - ], - "index": 30 - }, - { - "bbox": [ - 70, - 724, - 139, - 738 - ], - "spans": [ - { - "bbox": [ - 70, - 724, - 82, - 737 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 94, - 724, - 139, - 738 - ], - "score": 1.0, - "content": "W(q + r )", - "type": "text" - } - ], - "index": 31 - } - ], - "index": 29.5 - }, - { - "type": "text", - "bbox": [ - 70, - 748, - 167, - 772 - ], - "lines": [ - { - "bbox": [ - 71, - 756, - 134, - 770 - ], - "spans": [ - { - "bbox": [ - 71, - 756, - 134, - 770 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 32 - } - ], - "index": 32 - } - ], - "layout_bboxes": [], - "page_idx": 1, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 199, - 395, - 386, - 559 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 199, - 395, - 386, - 559 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 199, - 395, - 386, - 559 - ], - "spans": [ - { - "bbox": [ - 199, - 395, - 386, - 559 - ], - "score": 0.966, - "type": "image", - "image_path": "2f2e5923e79ba2dec9ac4893989998778f71d28c3828c44fea54df613bf7197e.jpg" - } - ] - } - ], - "index": 18, - "virtual_lines": [ - { - "bbox": [ - 199, - 395, - 386, - 408.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 199, - 408.0, - 386, - 421.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 199, - 421.0, - 386, - 434.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 199, - 434.0, - 386, - 447.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 199, - 447.0, - 386, - 460.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 199, - 460.0, - 386, - 473.0 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 199, - 473.0, - 386, - 486.0 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 199, - 486.0, - 386, - 499.0 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 199, - 499.0, - 386, - 512.0 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 199, - 512.0, - 386, - 525.0 - ], - "spans": [], - "index": 21 - }, - { - "bbox": [ - 199, - 525.0, - 386, - 538.0 - ], - "spans": [], - "index": 22 - }, - { - "bbox": [ - 199, - 538.0, - 386, - 551.0 - ], - "spans": [], - "index": 23 - }, - { - "bbox": [ - 199, - 551.0, - 386, - 564.0 - ], - "spans": [], - "index": 24 - } - ] - } - ], - "index": 18 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 531, - 757, - 546, - 769 - ], - "lines": [ - { - "bbox": [ - 529, - 755, - 549, - 772 - ], - "spans": [ - { - "bbox": [ - 529, - 755, - 549, - 772 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 787 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "score": 1.0, - "content": "© OCR 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 330, - 546, - 342 - ], - "lines": [ - { - "bbox": [ - 530, - 328, - 549, - 345 - ], - "spans": [ - { - "bbox": [ - 530, - 328, - 549, - 345 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 293, - 44, - 302, - 55 - ], - "lines": [ - { - "bbox": [ - 292, - 43, - 304, - 59 - ], - "spans": [ - { - "bbox": [ - 292, - 43, - 304, - 59 - ], - "score": 1.0, - "content": "2", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 266, - 62, - 328, - 76 - ], - "lines": [ - { - "bbox": [ - 267, - 63, - 328, - 75 - ], - "spans": [ - { - "bbox": [ - 267, - 63, - 328, - 75 - ], - "score": 1.0, - "content": "SECTION A", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_1", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 138, - 88, - 456, - 103 - ], - "lines": [ - { - "bbox": [ - 140, - 89, - 456, - 102 - ], - "spans": [ - { - "bbox": [ - 140, - 89, - 456, - 102 - ], - "score": 1.0, - "content": "You should spend a maximum of 25 minutes on this section.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_1", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 140, - 89, - 456, - 102 - ] - }, - { - "type": "text", - "bbox": [ - 235, - 114, - 360, - 128 - ], - "lines": [ - { - "bbox": [ - 236, - 116, - 359, - 128 - ], - "spans": [ - { - "bbox": [ - 236, - 116, - 359, - 128 - ], - "score": 1.0, - "content": "Answer all the questions.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_1", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 236, - 116, - 359, - 128 - ] - }, - { - "type": "text", - "bbox": [ - 160, - 140, - 434, - 154 - ], - "lines": [ - { - "bbox": [ - 162, - 142, - 433, - 154 - ], - "spans": [ - { - "bbox": [ - 162, - 142, - 433, - 154 - ], - "score": 1.0, - "content": "Write your answer to each question in the box provided.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_1", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 162, - 142, - 433, - 154 - ] - }, - { - "type": "text", - "bbox": [ - 49, - 166, - 340, - 206 - ], - "lines": [ - { - "bbox": [ - 48, - 167, - 229, - 179 - ], - "spans": [ - { - "bbox": [ - 48, - 167, - 57, - 179 - ], - "score": 1.0, - "content": "1", - "type": "text" - }, - { - "bbox": [ - 71, - 168, - 229, - 179 - ], - "score": 1.0, - "content": "The watt is the SI unit for power.", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 72, - 194, - 335, - 205 - ], - "spans": [ - { - "bbox": [ - 72, - 194, - 335, - 205 - ], - "score": 1.0, - "content": "Which is the correct definition for the watt? A watt is ...", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5, - "page_num": "page_1", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 48, - 167, - 335, - 205 - ] - }, - { - "type": "list", - "bbox": [ - 69, - 218, - 225, - 311 - ], - "lines": [ - { - "bbox": [ - 69, - 219, - 200, - 231 - ], - "spans": [ - { - "bbox": [ - 69, - 219, - 81, - 231 - ], - "score": 1.0, - "content": "A", - "type": "text" - }, - { - "bbox": [ - 94, - 219, - 200, - 231 - ], - "score": 1.0, - "content": "the rate of work done.", - "type": "text" - } - ], - "index": 6, - "is_list_end_line": true - }, - { - "bbox": [ - 70, - 245, - 224, - 258 - ], - "spans": [ - { - "bbox": [ - 70, - 245, - 82, - 258 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 246, - 224, - 257 - ], - "score": 1.0, - "content": "the work done per second.", - "type": "text" - } - ], - "index": 7, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 70, - 269, - 188, - 285 - ], - "spans": [ - { - "bbox": [ - 70, - 269, - 83, - 285 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 272, - 188, - 284 - ], - "score": 1.0, - "content": "a joule per second.", - "type": "text" - } - ], - "index": 8, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 70, - 297, - 194, - 311 - ], - "spans": [ - { - "bbox": [ - 70, - 297, - 82, - 311 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 94, - 298, - 194, - 310 - ], - "score": 1.0, - "content": "a joule per unit time.", - "type": "text" - } - ], - "index": 9, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 7.5, - "page_num": "page_1", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 69, - 219, - 224, - 311 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 320, - 167, - 345 - ], - "lines": [ - { - "bbox": [ - 71, - 329, - 134, - 341 - ], - "spans": [ - { - "bbox": [ - 71, - 329, - 134, - 341 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_1", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 329, - 134, - 341 - ] - }, - { - "type": "text", - "bbox": [ - 47, - 366, - 361, - 380 - ], - "lines": [ - { - "bbox": [ - 47, - 366, - 360, - 380 - ], - "spans": [ - { - "bbox": [ - 47, - 366, - 58, - 380 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - }, - { - "bbox": [ - 71, - 367, - 360, - 380 - ], - "score": 1.0, - "content": "A crane is used to lift a load directly from point X to point Y.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_1", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 366, - 360, - 380 - ] - }, - { - "type": "image", - "bbox": [ - 199, - 395, - 386, - 559 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 199, - 395, - 386, - 559 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 199, - 395, - 386, - 559 - ], - "spans": [ - { - "bbox": [ - 199, - 395, - 386, - 559 - ], - "score": 0.966, - "type": "image", - "image_path": "2f2e5923e79ba2dec9ac4893989998778f71d28c3828c44fea54df613bf7197e.jpg" - } - ] - } - ], - "index": 18, - "virtual_lines": [ - { - "bbox": [ - 199, - 395, - 386, - 408.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 199, - 408.0, - 386, - 421.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 199, - 421.0, - 386, - 434.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 199, - 434.0, - 386, - 447.0 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 199, - 447.0, - 386, - 460.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 199, - 460.0, - 386, - 473.0 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 199, - 473.0, - 386, - 486.0 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 199, - 486.0, - 386, - 499.0 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 199, - 499.0, - 386, - 512.0 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 199, - 512.0, - 386, - 525.0 - ], - "spans": [], - "index": 21 - }, - { - "bbox": [ - 199, - 525.0, - 386, - 538.0 - ], - "spans": [], - "index": 22 - }, - { - "bbox": [ - 199, - 538.0, - 386, - 551.0 - ], - "spans": [], - "index": 23 - }, - { - "bbox": [ - 199, - 551.0, - 386, - 564.0 - ], - "spans": [], - "index": 24 - } - ] - } - ], - "index": 18, - "page_num": "page_1", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "list", - "bbox": [ - 70, - 581, - 445, - 608 - ], - "lines": [ - { - "bbox": [ - 71, - 582, - 208, - 594 - ], - "spans": [ - { - "bbox": [ - 71, - 582, - 208, - 594 - ], - "score": 1.0, - "content": "The weight of the load is W.", - "type": "text" - } - ], - "index": 25, - "is_list_end_line": true - }, - { - "bbox": [ - 70, - 595, - 444, - 608 - ], - "spans": [ - { - "bbox": [ - 70, - 596, - 91, - 608 - ], - "score": 0.45, - "content": "p,q", - "type": "inline_equation", - "height": 12, - "width": 21 - }, - { - "bbox": [ - 92, - 595, - 113, - 608 - ], - "score": 1.0, - "content": "and", - "type": "text" - }, - { - "bbox": [ - 113, - 596, - 120, - 606 - ], - "score": 0.56, - "content": "r", - "type": "inline_equation", - "height": 10, - "width": 7 - }, - { - "bbox": [ - 121, - 595, - 265, - 608 - ], - "score": 1.0, - "content": "are distances between points", - "type": "text" - }, - { - "bbox": [ - 265, - 595, - 274, - 606 - ], - "score": 0.32, - "content": "\\pmb{\\times}", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 275, - 595, - 444, - 608 - ], - "score": 1.0, - "content": ", Y and Z as shown in the diagram.", - "type": "text" - } - ], - "index": 26, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 25.5, - "page_num": "page_1", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 582, - 444, - 608 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 619, - 280, - 633 - ], - "lines": [ - { - "bbox": [ - 72, - 620, - 279, - 633 - ], - "spans": [ - { - "bbox": [ - 72, - 620, - 279, - 633 - ], - "score": 1.0, - "content": "What is the work done against the weight?", - "type": "text" - } - ], - "index": 27 - } - ], - "index": 27, - "page_num": "page_1", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 620, - 279, - 633 - ] - }, - { - "type": "list", - "bbox": [ - 69, - 645, - 139, - 738 - ], - "lines": [ - { - "bbox": [ - 70, - 645, - 114, - 661 - ], - "spans": [ - { - "bbox": [ - 70, - 646, - 82, - 659 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 94, - 645, - 114, - 661 - ], - "score": 1.0, - "content": "Wp", - "type": "text" - } - ], - "index": 28, - "is_list_start_line": true - }, - { - "bbox": [ - 70, - 670, - 115, - 687 - ], - "spans": [ - { - "bbox": [ - 70, - 672, - 82, - 686 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 670, - 115, - 687 - ], - "score": 1.0, - "content": "Wq ", - "type": "text" - } - ], - "index": 29, - "is_list_start_line": true - }, - { - "bbox": [ - 70, - 698, - 112, - 711 - ], - "spans": [ - { - "bbox": [ - 70, - 698, - 82, - 711 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 94, - 698, - 112, - 711 - ], - "score": 1.0, - "content": "Wr", - "type": "text" - } - ], - "index": 30, - "is_list_start_line": true - }, - { - "bbox": [ - 70, - 724, - 139, - 738 - ], - "spans": [ - { - "bbox": [ - 70, - 724, - 82, - 737 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 94, - 724, - 139, - 738 - ], - "score": 1.0, - "content": "W(q + r )", - "type": "text" - } - ], - "index": 31, - "is_list_start_line": true - } - ], - "index": 29.5, - "page_num": "page_1", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 645, - 139, - 738 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 748, - 167, - 772 - ], - "lines": [ - { - "bbox": [ - 71, - 756, - 134, - 770 - ], - "spans": [ - { - "bbox": [ - 71, - 756, - 134, - 770 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 32 - } - ], - "index": 32, - "page_num": "page_1", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 756, - 134, - 770 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 49, - 62, - 545, - 89 - ], - "lines": [ - { - "bbox": [ - 47, - 63, - 547, - 77 - ], - "spans": [ - { - "bbox": [ - 47, - 64, - 58, - 75 - ], - "score": 1.0, - "content": "3 ", - "type": "text" - }, - { - "bbox": [ - 69, - 63, - 547, - 77 - ], - "score": 1.0, - "content": "A student views the display of a laptop screen through a polarising filter. The intensity of the light", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 71, - 77, - 238, - 89 - ], - "spans": [ - { - "bbox": [ - 71, - 77, - 238, - 89 - ], - "score": 1.0, - "content": "changes when the filter is rotated.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 70, - 101, - 360, - 116 - ], - "lines": [ - { - "bbox": [ - 72, - 103, - 358, - 115 - ], - "spans": [ - { - "bbox": [ - 72, - 103, - 358, - 115 - ], - "score": 1.0, - "content": "Which property of light is demonstrated in this experiment?", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 70, - 127, - 279, - 220 - ], - "lines": [ - { - "bbox": [ - 70, - 127, - 279, - 141 - ], - "spans": [ - { - "bbox": [ - 70, - 128, - 82, - 141 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 94, - 128, - 224, - 140 - ], - "score": 1.0, - "content": "It has wavelength of about", - "type": "text" - }, - { - "bbox": [ - 224, - 127, - 277, - 140 - ], - "score": 0.92, - "content": "5\\times10^{-7}\\mathrm{m}", - "type": "inline_equation", - "height": 13, - "width": 53 - }, - { - "bbox": [ - 277, - 128, - 279, - 140 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 70, - 154, - 238, - 168 - ], - "spans": [ - { - "bbox": [ - 70, - 154, - 82, - 167 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 154, - 238, - 168 - ], - "score": 1.0, - "content": "It travels at the speed of light.", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 70, - 179, - 206, - 193 - ], - "spans": [ - { - "bbox": [ - 70, - 179, - 82, - 193 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 94, - 181, - 206, - 193 - ], - "score": 1.0, - "content": "It is a transverse wave.", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 70, - 206, - 211, - 218 - ], - "spans": [ - { - "bbox": [ - 70, - 206, - 82, - 218 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 94, - 207, - 211, - 218 - ], - "score": 1.0, - "content": "It is a longitudinal wave.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 4.5 - }, - { - "type": "text", - "bbox": [ - 71, - 230, - 167, - 255 - ], - "lines": [ - { - "bbox": [ - 71, - 238, - 134, - 250 - ], - "spans": [ - { - "bbox": [ - 71, - 238, - 134, - 250 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 47, - 276, - 375, - 330 - ], - "lines": [ - { - "bbox": [ - 48, - 277, - 374, - 289 - ], - "spans": [ - { - "bbox": [ - 48, - 277, - 57, - 288 - ], - "score": 1.0, - "content": "4", - "type": "text" - }, - { - "bbox": [ - 72, - 277, - 374, - 289 - ], - "score": 1.0, - "content": "Electrons travelling through a thin film of carbon are diffracted.", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 72, - 290, - 208, - 302 - ], - "spans": [ - { - "bbox": [ - 72, - 290, - 208, - 302 - ], - "score": 1.0, - "content": "Which statement is correct?", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 71, - 316, - 206, - 328 - ], - "spans": [ - { - "bbox": [ - 71, - 316, - 206, - 328 - ], - "score": 1.0, - "content": "The electrons behave like ..", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 69, - 341, - 421, - 434 - ], - "lines": [ - { - "bbox": [ - 70, - 342, - 327, - 354 - ], - "spans": [ - { - "bbox": [ - 70, - 342, - 82, - 354 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 94, - 343, - 327, - 354 - ], - "score": 1.0, - "content": "photons and are deflected by the carbon atoms.", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 70, - 367, - 358, - 381 - ], - "spans": [ - { - "bbox": [ - 70, - 367, - 82, - 381 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 368, - 358, - 381 - ], - "score": 1.0, - "content": "photons and change direction as their speed changes.", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 69, - 392, - 365, - 407 - ], - "spans": [ - { - "bbox": [ - 69, - 392, - 82, - 407 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 94, - 394, - 365, - 406 - ], - "score": 1.0, - "content": "waves and are refracted by the holes in the carbon film.", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 69, - 419, - 419, - 433 - ], - "spans": [ - { - "bbox": [ - 69, - 419, - 82, - 433 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 93, - 420, - 419, - 433 - ], - "score": 1.0, - "content": "waves of wavelength similar to the spacing between carbon atoms.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 12.5 - }, - { - "type": "text", - "bbox": [ - 71, - 443, - 167, - 469 - ], - "lines": [ - { - "bbox": [ - 71, - 452, - 134, - 464 - ], - "spans": [ - { - "bbox": [ - 71, - 452, - 134, - 464 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "text", - "bbox": [ - 45, - 490, - 472, - 504 - ], - "lines": [ - { - "bbox": [ - 47, - 490, - 471, - 504 - ], - "spans": [ - { - "bbox": [ - 47, - 490, - 58, - 504 - ], - "score": 1.0, - "content": "5 ", - "type": "text" - }, - { - "bbox": [ - 72, - 492, - 433, - 503 - ], - "score": 1.0, - "content": "In which region of the electromagnetic spectrum is radiation of wavelength", - "type": "text" - }, - { - "bbox": [ - 434, - 491, - 471, - 504 - ], - "score": 0.82, - "content": "50\\upmu\\mathrm{m}?", - "type": "inline_equation", - "height": 13, - "width": 37 - } - ], - "index": 16 - } - ], - "index": 16 - }, - { - "type": "text", - "bbox": [ - 69, - 516, - 149, - 608 - ], - "lines": [ - { - "bbox": [ - 70, - 516, - 127, - 529 - ], - "spans": [ - { - "bbox": [ - 70, - 516, - 82, - 529 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 92, - 516, - 127, - 529 - ], - "score": 1.0, - "content": "visible", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 70, - 542, - 137, - 555 - ], - "spans": [ - { - "bbox": [ - 70, - 542, - 82, - 555 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 543, - 137, - 554 - ], - "score": 1.0, - "content": "infra-red", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 70, - 568, - 148, - 581 - ], - "spans": [ - { - "bbox": [ - 70, - 568, - 82, - 581 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 94, - 569, - 148, - 581 - ], - "score": 1.0, - "content": "microwave", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 70, - 594, - 121, - 608 - ], - "spans": [ - { - "bbox": [ - 70, - 594, - 82, - 607 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 92, - 594, - 121, - 608 - ], - "score": 1.0, - "content": "radio", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 18.5 - }, - { - "type": "text", - "bbox": [ - 70, - 618, - 167, - 643 - ], - "lines": [ - { - "bbox": [ - 72, - 627, - 133, - 638 - ], - "spans": [ - { - "bbox": [ - 72, - 627, - 133, - 638 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 21 - } - ], - "layout_bboxes": [], - "page_idx": 2, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 787 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 627, - 546, - 640 - ], - "lines": [ - { - "bbox": [ - 530, - 625, - 549, - 642 - ], - "spans": [ - { - "bbox": [ - 530, - 625, - 549, - 642 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 485, - 774, - 531, - 785 - ], - "lines": [ - { - "bbox": [ - 484, - 774, - 532, - 785 - ], - "spans": [ - { - "bbox": [ - 484, - 774, - 532, - 785 - ], - "score": 1.0, - "content": "Turn over", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 238, - 547, - 251 - ], - "lines": [ - { - "bbox": [ - 530, - 236, - 549, - 254 - ], - "spans": [ - { - "bbox": [ - 530, - 236, - 549, - 254 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 293, - 44, - 302, - 56 - ], - "lines": [ - { - "bbox": [ - 292, - 44, - 303, - 58 - ], - "spans": [ - { - "bbox": [ - 292, - 44, - 303, - 58 - ], - "score": 1.0, - "content": "3", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 530, - 452, - 547, - 466 - ], - "lines": [ - { - "bbox": [ - 530, - 450, - 549, - 467 - ], - "spans": [ - { - "bbox": [ - 530, - 450, - 549, - 467 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 49, - 62, - 545, - 89 - ], - "lines": [ - { - "bbox": [ - 47, - 63, - 547, - 77 - ], - "spans": [ - { - "bbox": [ - 47, - 64, - 58, - 75 - ], - "score": 1.0, - "content": "3 ", - "type": "text" - }, - { - "bbox": [ - 69, - 63, - 547, - 77 - ], - "score": 1.0, - "content": "A student views the display of a laptop screen through a polarising filter. The intensity of the light", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 71, - 77, - 238, - 89 - ], - "spans": [ - { - "bbox": [ - 71, - 77, - 238, - 89 - ], - "score": 1.0, - "content": "changes when the filter is rotated.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_2", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 63, - 547, - 89 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 101, - 360, - 116 - ], - "lines": [ - { - "bbox": [ - 72, - 103, - 358, - 115 - ], - "spans": [ - { - "bbox": [ - 72, - 103, - 358, - 115 - ], - "score": 1.0, - "content": "Which property of light is demonstrated in this experiment?", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_2", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 103, - 358, - 115 - ] - }, - { - "type": "list", - "bbox": [ - 70, - 127, - 279, - 220 - ], - "lines": [ - { - "bbox": [ - 70, - 127, - 279, - 141 - ], - "spans": [ - { - "bbox": [ - 70, - 128, - 82, - 141 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 94, - 128, - 224, - 140 - ], - "score": 1.0, - "content": "It has wavelength of about", - "type": "text" - }, - { - "bbox": [ - 224, - 127, - 277, - 140 - ], - "score": 0.92, - "content": "5\\times10^{-7}\\mathrm{m}", - "type": "inline_equation", - "height": 13, - "width": 53 - }, - { - "bbox": [ - 277, - 128, - 279, - 140 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 3, - "is_list_end_line": true - }, - { - "bbox": [ - 70, - 154, - 238, - 168 - ], - "spans": [ - { - "bbox": [ - 70, - 154, - 82, - 167 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 154, - 238, - 168 - ], - "score": 1.0, - "content": "It travels at the speed of light.", - "type": "text" - } - ], - "index": 4, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 70, - 179, - 206, - 193 - ], - "spans": [ - { - "bbox": [ - 70, - 179, - 82, - 193 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 94, - 181, - 206, - 193 - ], - "score": 1.0, - "content": "It is a transverse wave.", - "type": "text" - } - ], - "index": 5, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 70, - 206, - 211, - 218 - ], - "spans": [ - { - "bbox": [ - 70, - 206, - 82, - 218 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 94, - 207, - 211, - 218 - ], - "score": 1.0, - "content": "It is a longitudinal wave.", - "type": "text" - } - ], - "index": 6, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 4.5, - "page_num": "page_2", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 127, - 279, - 218 - ] - }, - { - "type": "text", - "bbox": [ - 71, - 230, - 167, - 255 - ], - "lines": [ - { - "bbox": [ - 71, - 238, - 134, - 250 - ], - "spans": [ - { - "bbox": [ - 71, - 238, - 134, - 250 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_2", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 238, - 134, - 250 - ] - }, - { - "type": "text", - "bbox": [ - 47, - 276, - 375, - 330 - ], - "lines": [ - { - "bbox": [ - 48, - 277, - 374, - 289 - ], - "spans": [ - { - "bbox": [ - 48, - 277, - 57, - 288 - ], - "score": 1.0, - "content": "4", - "type": "text" - }, - { - "bbox": [ - 72, - 277, - 374, - 289 - ], - "score": 1.0, - "content": "Electrons travelling through a thin film of carbon are diffracted.", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 72, - 290, - 208, - 302 - ], - "spans": [ - { - "bbox": [ - 72, - 290, - 208, - 302 - ], - "score": 1.0, - "content": "Which statement is correct?", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 71, - 316, - 206, - 328 - ], - "spans": [ - { - "bbox": [ - 71, - 316, - 206, - 328 - ], - "score": 1.0, - "content": "The electrons behave like ..", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9, - "page_num": "page_2", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 48, - 277, - 374, - 328 - ] - }, - { - "type": "list", - "bbox": [ - 69, - 341, - 421, - 434 - ], - "lines": [ - { - "bbox": [ - 70, - 342, - 327, - 354 - ], - "spans": [ - { - "bbox": [ - 70, - 342, - 82, - 354 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 94, - 343, - 327, - 354 - ], - "score": 1.0, - "content": "photons and are deflected by the carbon atoms.", - "type": "text" - } - ], - "index": 11, - "is_list_end_line": true - }, - { - "bbox": [ - 70, - 367, - 358, - 381 - ], - "spans": [ - { - "bbox": [ - 70, - 367, - 82, - 381 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 368, - 358, - 381 - ], - "score": 1.0, - "content": "photons and change direction as their speed changes.", - "type": "text" - } - ], - "index": 12, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 69, - 392, - 365, - 407 - ], - "spans": [ - { - "bbox": [ - 69, - 392, - 82, - 407 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 94, - 394, - 365, - 406 - ], - "score": 1.0, - "content": "waves and are refracted by the holes in the carbon film.", - "type": "text" - } - ], - "index": 13, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 69, - 419, - 419, - 433 - ], - "spans": [ - { - "bbox": [ - 69, - 419, - 82, - 433 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 93, - 420, - 419, - 433 - ], - "score": 1.0, - "content": "waves of wavelength similar to the spacing between carbon atoms.", - "type": "text" - } - ], - "index": 14, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 12.5, - "page_num": "page_2", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 69, - 342, - 419, - 433 - ] - }, - { - "type": "text", - "bbox": [ - 71, - 443, - 167, - 469 - ], - "lines": [ - { - "bbox": [ - 71, - 452, - 134, - 464 - ], - "spans": [ - { - "bbox": [ - 71, - 452, - 134, - 464 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_2", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 452, - 134, - 464 - ] - }, - { - "type": "text", - "bbox": [ - 45, - 490, - 472, - 504 - ], - "lines": [ - { - "bbox": [ - 47, - 490, - 471, - 504 - ], - "spans": [ - { - "bbox": [ - 47, - 490, - 58, - 504 - ], - "score": 1.0, - "content": "5 ", - "type": "text" - }, - { - "bbox": [ - 72, - 492, - 433, - 503 - ], - "score": 1.0, - "content": "In which region of the electromagnetic spectrum is radiation of wavelength", - "type": "text" - }, - { - "bbox": [ - 434, - 491, - 471, - 504 - ], - "score": 0.82, - "content": "50\\upmu\\mathrm{m}?", - "type": "inline_equation", - "height": 13, - "width": 37 - } - ], - "index": 16 - } - ], - "index": 16, - "page_num": "page_2", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 490, - 471, - 504 - ] - }, - { - "type": "text", - "bbox": [ - 69, - 516, - 149, - 608 - ], - "lines": [ - { - "bbox": [ - 70, - 516, - 127, - 529 - ], - "spans": [ - { - "bbox": [ - 70, - 516, - 82, - 529 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 92, - 516, - 127, - 529 - ], - "score": 1.0, - "content": "visible", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 70, - 542, - 137, - 555 - ], - "spans": [ - { - "bbox": [ - 70, - 542, - 82, - 555 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 543, - 137, - 554 - ], - "score": 1.0, - "content": "infra-red", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 70, - 568, - 148, - 581 - ], - "spans": [ - { - "bbox": [ - 70, - 568, - 82, - 581 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 94, - 569, - 148, - 581 - ], - "score": 1.0, - "content": "microwave", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 70, - 594, - 121, - 608 - ], - "spans": [ - { - "bbox": [ - 70, - 594, - 82, - 607 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 92, - 594, - 121, - 608 - ], - "score": 1.0, - "content": "radio", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 18.5, - "page_num": "page_2", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 516, - 148, - 608 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 618, - 167, - 643 - ], - "lines": [ - { - "bbox": [ - 72, - 627, - 133, - 638 - ], - "spans": [ - { - "bbox": [ - 72, - 627, - 133, - 638 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 21, - "page_num": "page_2", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 627, - 133, - 638 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 46, - 62, - 381, - 77 - ], - "lines": [ - { - "bbox": [ - 48, - 62, - 381, - 77 - ], - "spans": [ - { - "bbox": [ - 48, - 64, - 57, - 75 - ], - "score": 1.0, - "content": "6", - "type": "text" - }, - { - "bbox": [ - 70, - 62, - 381, - 77 - ], - "score": 1.0, - "content": "The graph shows the resultant force on a football as it is kicked.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "image", - "bbox": [ - 209, - 93, - 399, - 247 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 209, - 93, - 399, - 247 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 209, - 93, - 399, - 247 - ], - "spans": [ - { - "bbox": [ - 209, - 93, - 399, - 247 - ], - "score": 0.967, - "type": "image", - "image_path": "954e65bf25f3c05465ea62bce785a475734ce23740d52af30d19ca9fecb4cc16.jpg" - } - ] - } - ], - "index": 6.5, - "virtual_lines": [ - { - "bbox": [ - 209, - 93, - 399, - 107 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 209, - 107, - 399, - 121 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 209, - 121, - 399, - 135 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 209, - 135, - 399, - 149 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 209, - 149, - 399, - 163 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 209, - 163, - 399, - 177 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 209, - 177, - 399, - 191 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 209, - 191, - 399, - 205 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 209, - 205, - 399, - 219 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 209, - 219, - 399, - 233 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 209, - 233, - 399, - 247 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 209, - 247, - 399, - 261 - ], - "spans": [], - "index": 12 - } - ] - } - ], - "index": 6.5 - }, - { - "type": "text", - "bbox": [ - 70, - 268, - 545, - 282 - ], - "lines": [ - { - "bbox": [ - 70, - 268, - 547, - 283 - ], - "spans": [ - { - "bbox": [ - 70, - 268, - 547, - 283 - ], - "score": 1.0, - "content": "Which of the following graphs relating to this kick would have the same shape as the graph above?", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "text", - "bbox": [ - 70, - 294, - 277, - 387 - ], - "lines": [ - { - "bbox": [ - 70, - 295, - 267, - 308 - ], - "spans": [ - { - "bbox": [ - 70, - 295, - 82, - 307 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 94, - 295, - 267, - 308 - ], - "score": 1.0, - "content": "acceleration of the ball against time", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 70, - 321, - 276, - 334 - ], - "spans": [ - { - "bbox": [ - 70, - 321, - 82, - 334 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 321, - 276, - 334 - ], - "score": 1.0, - "content": "kinetic energy of the ball against time", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 70, - 346, - 263, - 360 - ], - "spans": [ - { - "bbox": [ - 70, - 346, - 82, - 360 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 94, - 348, - 263, - 359 - ], - "score": 1.0, - "content": "momentum of the ball against time", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 70, - 372, - 245, - 385 - ], - "spans": [ - { - "bbox": [ - 70, - 372, - 82, - 385 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 94, - 374, - 245, - 385 - ], - "score": 1.0, - "content": "velocity of the ball against time", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 15.5 - }, - { - "type": "text", - "bbox": [ - 70, - 397, - 167, - 421 - ], - "lines": [ - { - "bbox": [ - 71, - 404, - 134, - 418 - ], - "spans": [ - { - "bbox": [ - 71, - 404, - 134, - 418 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18 - } - ], - "layout_bboxes": [], - "page_idx": 3, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 209, - 93, - 399, - 247 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 209, - 93, - 399, - 247 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 209, - 93, - 399, - 247 - ], - "spans": [ - { - "bbox": [ - 209, - 93, - 399, - 247 - ], - "score": 0.967, - "type": "image", - "image_path": "954e65bf25f3c05465ea62bce785a475734ce23740d52af30d19ca9fecb4cc16.jpg" - } - ] - } - ], - "index": 6.5, - "virtual_lines": [ - { - "bbox": [ - 209, - 93, - 399, - 107 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 209, - 107, - 399, - 121 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 209, - 121, - 399, - 135 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 209, - 135, - 399, - 149 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 209, - 149, - 399, - 163 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 209, - 163, - 399, - 177 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 209, - 177, - 399, - 191 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 209, - 191, - 399, - 205 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 209, - 205, - 399, - 219 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 209, - 219, - 399, - 233 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 209, - 233, - 399, - 247 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 209, - 247, - 399, - 261 - ], - "spans": [], - "index": 12 - } - ] - } - ], - "index": 6.5 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "score": 1.0, - "content": "© OCR 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 405, - 547, - 418 - ], - "lines": [ - { - "bbox": [ - 530, - 404, - 548, - 420 - ], - "spans": [ - { - "bbox": [ - 530, - 404, - 548, - 420 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 293, - 45, - 301, - 55 - ], - "lines": [ - { - "bbox": [ - 292, - 44, - 303, - 57 - ], - "spans": [ - { - "bbox": [ - 292, - 44, - 303, - 57 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 46, - 62, - 381, - 77 - ], - "lines": [ - { - "bbox": [ - 48, - 62, - 381, - 77 - ], - "spans": [ - { - "bbox": [ - 48, - 64, - 57, - 75 - ], - "score": 1.0, - "content": "6", - "type": "text" - }, - { - "bbox": [ - 70, - 62, - 381, - 77 - ], - "score": 1.0, - "content": "The graph shows the resultant force on a football as it is kicked.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_3", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 48, - 62, - 381, - 77 - ] - }, - { - "type": "image", - "bbox": [ - 209, - 93, - 399, - 247 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 209, - 93, - 399, - 247 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 209, - 93, - 399, - 247 - ], - "spans": [ - { - "bbox": [ - 209, - 93, - 399, - 247 - ], - "score": 0.967, - "type": "image", - "image_path": "954e65bf25f3c05465ea62bce785a475734ce23740d52af30d19ca9fecb4cc16.jpg" - } - ] - } - ], - "index": 6.5, - "virtual_lines": [ - { - "bbox": [ - 209, - 93, - 399, - 107 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 209, - 107, - 399, - 121 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 209, - 121, - 399, - 135 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 209, - 135, - 399, - 149 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 209, - 149, - 399, - 163 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 209, - 163, - 399, - 177 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 209, - 177, - 399, - 191 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 209, - 191, - 399, - 205 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 209, - 205, - 399, - 219 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 209, - 219, - 399, - 233 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 209, - 233, - 399, - 247 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 209, - 247, - 399, - 261 - ], - "spans": [], - "index": 12 - } - ] - } - ], - "index": 6.5, - "page_num": "page_3", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 268, - 545, - 282 - ], - "lines": [ - { - "bbox": [ - 70, - 268, - 547, - 283 - ], - "spans": [ - { - "bbox": [ - 70, - 268, - 547, - 283 - ], - "score": 1.0, - "content": "Which of the following graphs relating to this kick would have the same shape as the graph above?", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_3", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 268, - 547, - 283 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 294, - 277, - 387 - ], - "lines": [ - { - "bbox": [ - 70, - 295, - 267, - 308 - ], - "spans": [ - { - "bbox": [ - 70, - 295, - 82, - 307 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 94, - 295, - 267, - 308 - ], - "score": 1.0, - "content": "acceleration of the ball against time", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 70, - 321, - 276, - 334 - ], - "spans": [ - { - "bbox": [ - 70, - 321, - 82, - 334 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 321, - 276, - 334 - ], - "score": 1.0, - "content": "kinetic energy of the ball against time", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 70, - 346, - 263, - 360 - ], - "spans": [ - { - "bbox": [ - 70, - 346, - 82, - 360 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 94, - 348, - 263, - 359 - ], - "score": 1.0, - "content": "momentum of the ball against time", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 70, - 372, - 245, - 385 - ], - "spans": [ - { - "bbox": [ - 70, - 372, - 82, - 385 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 94, - 374, - 245, - 385 - ], - "score": 1.0, - "content": "velocity of the ball against time", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 15.5, - "page_num": "page_3", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 295, - 276, - 385 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 397, - 167, - 421 - ], - "lines": [ - { - "bbox": [ - 71, - 404, - 134, - 418 - ], - "spans": [ - { - "bbox": [ - 71, - 404, - 134, - 418 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18, - "page_num": "page_3", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 404, - 134, - 418 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 49, - 63, - 407, - 89 - ], - "lines": [ - { - "bbox": [ - 48, - 62, - 249, - 76 - ], - "spans": [ - { - "bbox": [ - 48, - 62, - 58, - 76 - ], - "score": 1.0, - "content": "7 ", - "type": "text" - }, - { - "bbox": [ - 71, - 63, - 249, - 76 - ], - "score": 1.0, - "content": "A block of wood is at rest on a ramp.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 72, - 77, - 404, - 88 - ], - "spans": [ - { - "bbox": [ - 72, - 77, - 395, - 88 - ], - "score": 1.0, - "content": "The weight of the block is W and the frictional force on the block is ", - "type": "text" - }, - { - "bbox": [ - 395, - 77, - 404, - 87 - ], - "score": 0.63, - "content": "F", - "type": "inline_equation", - "height": 10, - "width": 9 - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "image", - "bbox": [ - 196, - 106, - 407, - 220 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 196, - 106, - 407, - 220 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 196, - 106, - 407, - 220 - ], - "spans": [ - { - "bbox": [ - 196, - 106, - 407, - 220 - ], - "score": 0.967, - "type": "image", - "image_path": "539d5ed47b3443f2ea5abbc5bfea2d768a40385a2e377d562e29f4eb185d7523.jpg" - } - ] - } - ], - "index": 6.5, - "virtual_lines": [ - { - "bbox": [ - 196, - 106, - 407, - 118.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 196, - 118.0, - 407, - 130.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 196, - 130.0, - 407, - 142.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 196, - 142.0, - 407, - 154.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 196, - 154.0, - 407, - 166.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 196, - 166.0, - 407, - 178.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 196, - 178.0, - 407, - 190.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 196, - 190.0, - 407, - 202.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 196, - 202.0, - 407, - 214.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 196, - 214.0, - 407, - 226.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 6.5 - }, - { - "type": "text", - "bbox": [ - 71, - 240, - 548, - 266 - ], - "lines": [ - { - "bbox": [ - 71, - 241, - 546, - 253 - ], - "spans": [ - { - "bbox": [ - 71, - 241, - 546, - 253 - ], - "score": 1.0, - "content": "A triangle of forces diagram can be used to determine the magnitude and the direction of the", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 71, - 254, - 187, - 266 - ], - "spans": [ - { - "bbox": [ - 71, - 254, - 187, - 266 - ], - "score": 1.0, - "content": "normal contact force N.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 12.5 - }, - { - "type": "text", - "bbox": [ - 70, - 279, - 294, - 293 - ], - "lines": [ - { - "bbox": [ - 72, - 280, - 293, - 292 - ], - "spans": [ - { - "bbox": [ - 72, - 280, - 293, - 292 - ], - "score": 1.0, - "content": "Which is the correct diagram for this triangle?", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "image", - "bbox": [ - 67, - 308, - 151, - 608 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 67, - 308, - 151, - 608 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 67, - 308, - 151, - 608 - ], - "spans": [ - { - "bbox": [ - 67, - 308, - 151, - 608 - ], - "score": 0.874, - "type": "image", - "image_path": "110fe86f2ce536d9a157db1ef23083e839fa9ae612238b9d6fbe5c5870050f58.jpg" - } - ] - } - ], - "index": 15, - "virtual_lines": [ - { - "bbox": [ - 67, - 308, - 151, - 608 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 15 - }, - { - "type": "text", - "bbox": [ - 70, - 627, - 167, - 653 - ], - "lines": [ - { - "bbox": [ - 72, - 636, - 133, - 648 - ], - "spans": [ - { - "bbox": [ - 72, - 636, - 133, - 648 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16 - } - ], - "layout_bboxes": [], - "page_idx": 4, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 196, - 106, - 407, - 220 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 196, - 106, - 407, - 220 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 196, - 106, - 407, - 220 - ], - "spans": [ - { - "bbox": [ - 196, - 106, - 407, - 220 - ], - "score": 0.967, - "type": "image", - "image_path": "539d5ed47b3443f2ea5abbc5bfea2d768a40385a2e377d562e29f4eb185d7523.jpg" - } - ] - } - ], - "index": 6.5, - "virtual_lines": [ - { - "bbox": [ - 196, - 106, - 407, - 118.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 196, - 118.0, - 407, - 130.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 196, - 130.0, - 407, - 142.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 196, - 142.0, - 407, - 154.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 196, - 154.0, - 407, - 166.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 196, - 166.0, - 407, - 178.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 196, - 178.0, - 407, - 190.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 196, - 190.0, - 407, - 202.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 196, - 202.0, - 407, - 214.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 196, - 214.0, - 407, - 226.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 6.5 - }, - { - "type": "image", - "bbox": [ - 67, - 308, - 151, - 608 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 67, - 308, - 151, - 608 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 67, - 308, - 151, - 608 - ], - "spans": [ - { - "bbox": [ - 67, - 308, - 151, - 608 - ], - "score": 0.874, - "type": "image", - "image_path": "110fe86f2ce536d9a157db1ef23083e839fa9ae612238b9d6fbe5c5870050f58.jpg" - } - ] - } - ], - "index": 15, - "virtual_lines": [ - { - "bbox": [ - 67, - 308, - 151, - 608 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 15 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "score": 1.0, - "content": "© OCR 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 636, - 546, - 648 - ], - "lines": [ - { - "bbox": [ - 529, - 634, - 549, - 651 - ], - "spans": [ - { - "bbox": [ - 529, - 634, - 549, - 651 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 485, - 774, - 531, - 785 - ], - "lines": [ - { - "bbox": [ - 484, - 774, - 532, - 785 - ], - "spans": [ - { - "bbox": [ - 484, - 774, - 532, - 785 - ], - "score": 1.0, - "content": "Turn over", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 293, - 45, - 301, - 55 - ], - "lines": [ - { - "bbox": [ - 292, - 43, - 303, - 59 - ], - "spans": [ - { - "bbox": [ - 292, - 43, - 303, - 59 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 16, - "width": 11 - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 49, - 63, - 407, - 89 - ], - "lines": [ - { - "bbox": [ - 48, - 62, - 249, - 76 - ], - "spans": [ - { - "bbox": [ - 48, - 62, - 58, - 76 - ], - "score": 1.0, - "content": "7 ", - "type": "text" - }, - { - "bbox": [ - 71, - 63, - 249, - 76 - ], - "score": 1.0, - "content": "A block of wood is at rest on a ramp.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 72, - 77, - 404, - 88 - ], - "spans": [ - { - "bbox": [ - 72, - 77, - 395, - 88 - ], - "score": 1.0, - "content": "The weight of the block is W and the frictional force on the block is ", - "type": "text" - }, - { - "bbox": [ - 395, - 77, - 404, - 87 - ], - "score": 0.63, - "content": "F", - "type": "inline_equation", - "height": 10, - "width": 9 - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_4", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 48, - 62, - 404, - 88 - ] - }, - { - "type": "image", - "bbox": [ - 196, - 106, - 407, - 220 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 196, - 106, - 407, - 220 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 196, - 106, - 407, - 220 - ], - "spans": [ - { - "bbox": [ - 196, - 106, - 407, - 220 - ], - "score": 0.967, - "type": "image", - "image_path": "539d5ed47b3443f2ea5abbc5bfea2d768a40385a2e377d562e29f4eb185d7523.jpg" - } - ] - } - ], - "index": 6.5, - "virtual_lines": [ - { - "bbox": [ - 196, - 106, - 407, - 118.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 196, - 118.0, - 407, - 130.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 196, - 130.0, - 407, - 142.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 196, - 142.0, - 407, - 154.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 196, - 154.0, - 407, - 166.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 196, - 166.0, - 407, - 178.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 196, - 178.0, - 407, - 190.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 196, - 190.0, - 407, - 202.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 196, - 202.0, - 407, - 214.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 196, - 214.0, - 407, - 226.0 - ], - "spans": [], - "index": 11 - } - ] - } - ], - "index": 6.5, - "page_num": "page_4", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 71, - 240, - 548, - 266 - ], - "lines": [ - { - "bbox": [ - 71, - 241, - 546, - 253 - ], - "spans": [ - { - "bbox": [ - 71, - 241, - 546, - 253 - ], - "score": 1.0, - "content": "A triangle of forces diagram can be used to determine the magnitude and the direction of the", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 71, - 254, - 187, - 266 - ], - "spans": [ - { - "bbox": [ - 71, - 254, - 187, - 266 - ], - "score": 1.0, - "content": "normal contact force N.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 12.5, - "page_num": "page_4", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 241, - 546, - 266 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 279, - 294, - 293 - ], - "lines": [ - { - "bbox": [ - 72, - 280, - 293, - 292 - ], - "spans": [ - { - "bbox": [ - 72, - 280, - 293, - 292 - ], - "score": 1.0, - "content": "Which is the correct diagram for this triangle?", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_4", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 280, - 293, - 292 - ] - }, - { - "type": "image", - "bbox": [ - 67, - 308, - 151, - 608 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 67, - 308, - 151, - 608 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 67, - 308, - 151, - 608 - ], - "spans": [ - { - "bbox": [ - 67, - 308, - 151, - 608 - ], - "score": 0.874, - "type": "image", - "image_path": "110fe86f2ce536d9a157db1ef23083e839fa9ae612238b9d6fbe5c5870050f58.jpg" - } - ] - } - ], - "index": 15, - "virtual_lines": [ - { - "bbox": [ - 67, - 308, - 151, - 608 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 15, - "page_num": "page_4", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 627, - 167, - 653 - ], - "lines": [ - { - "bbox": [ - 72, - 636, - 133, - 648 - ], - "spans": [ - { - "bbox": [ - 72, - 636, - 133, - 648 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16, - "page_num": "page_4", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 636, - 133, - 648 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 45, - 62, - 372, - 78 - ], - "lines": [ - { - "bbox": [ - 47, - 63, - 373, - 78 - ], - "spans": [ - { - "bbox": [ - 47, - 63, - 58, - 76 - ], - "score": 1.0, - "content": "8 ", - "type": "text" - }, - { - "bbox": [ - 71, - 64, - 211, - 77 - ], - "score": 1.0, - "content": "The top ends of two springs,", - "type": "text" - }, - { - "bbox": [ - 212, - 63, - 225, - 78 - ], - "score": 0.85, - "content": "\\mathsf{s}_{1}", - "type": "inline_equation", - "height": 15, - "width": 13 - }, - { - "bbox": [ - 226, - 64, - 248, - 77 - ], - "score": 1.0, - "content": " and", - "type": "text" - }, - { - "bbox": [ - 248, - 64, - 263, - 78 - ], - "score": 0.86, - "content": "\\mathsf{s}_{2}", - "type": "inline_equation", - "height": 14, - "width": 15 - }, - { - "bbox": [ - 263, - 64, - 373, - 77 - ], - "score": 1.0, - "content": ", are attached to a rod.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "image", - "bbox": [ - 221, - 93, - 377, - 264 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 221, - 93, - 377, - 264 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 221, - 93, - 377, - 264 - ], - "spans": [ - { - "bbox": [ - 221, - 93, - 377, - 264 - ], - "score": 0.966, - "type": "image", - "image_path": "60db3b4d1c7583e9afe708943a09a2d519f4fdf981d9aa03dc95c68585f2119d.jpg" - } - ] - } - ], - "index": 6.5, - "virtual_lines": [ - { - "bbox": [ - 221, - 93, - 377, - 108 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 221, - 108, - 377, - 123 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 221, - 123, - 377, - 138 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 221, - 138, - 377, - 153 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 221, - 153, - 377, - 168 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 221, - 168, - 377, - 183 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 221, - 183, - 377, - 198 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 221, - 198, - 377, - 213 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 221, - 213, - 377, - 228 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 221, - 228, - 377, - 243 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 221, - 243, - 377, - 258 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 221, - 258, - 377, - 273 - ], - "spans": [], - "index": 12 - } - ] - } - ], - "index": 6.5 - }, - { - "type": "text", - "bbox": [ - 70, - 280, - 547, - 313 - ], - "lines": [ - { - "bbox": [ - 70, - 281, - 548, - 296 - ], - "spans": [ - { - "bbox": [ - 70, - 281, - 261, - 296 - ], - "score": 1.0, - "content": "A mass is hung from the bottom end of", - "type": "text" - }, - { - "bbox": [ - 262, - 281, - 275, - 296 - ], - "score": 0.74, - "content": "\\mathsf{s}_{1}", - "type": "inline_equation", - "height": 15, - "width": 13 - }, - { - "bbox": [ - 276, - 281, - 362, - 296 - ], - "score": 1.0, - "content": ". The extension of", - "type": "text" - }, - { - "bbox": [ - 362, - 281, - 376, - 296 - ], - "score": 0.84, - "content": "\\mathsf{s}_{1}", - "type": "inline_equation", - "height": 15, - "width": 14 - }, - { - "bbox": [ - 376, - 281, - 388, - 296 - ], - "score": 1.0, - "content": " is", - "type": "text" - }, - { - "bbox": [ - 388, - 282, - 397, - 293 - ], - "score": 0.57, - "content": "x.", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 397, - 281, - 548, - 296 - ], - "score": 1.0, - "content": " The elastic potential energy in ", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 70, - 294, - 517, - 317 - ], - "spans": [ - { - "bbox": [ - 70, - 297, - 133, - 313 - ], - "score": 1.0, - "content": "the spring is", - "type": "text" - }, - { - "bbox": [ - 134, - 297, - 144, - 309 - ], - "score": 0.42, - "content": "E.", - "type": "inline_equation", - "height": 12, - "width": 10 - }, - { - "bbox": [ - 144, - 297, - 379, - 313 - ], - "score": 1.0, - "content": " The same mass is hung from the bottom end of", - "type": "text" - }, - { - "bbox": [ - 379, - 297, - 393, - 312 - ], - "score": 0.86, - "content": "{\\mathsf{s}}_{2}", - "type": "inline_equation", - "height": 15, - "width": 14 - }, - { - "bbox": [ - 393, - 297, - 479, - 313 - ], - "score": 1.0, - "content": ". The extension of", - "type": "text" - }, - { - "bbox": [ - 480, - 294, - 517, - 317 - ], - "score": 0.55, - "content": "\\mathsf{S}_{2}\\mathrm{i}\\mathsf{s}\\frac{x}{3}", - "type": "inline_equation", - "height": 23, - "width": 37 - } - ], - "index": 14 - } - ], - "index": 13.5 - }, - { - "type": "text", - "bbox": [ - 70, - 322, - 329, - 338 - ], - "lines": [ - { - "bbox": [ - 70, - 322, - 327, - 338 - ], - "spans": [ - { - "bbox": [ - 70, - 322, - 307, - 338 - ], - "score": 1.0, - "content": "What is the elastic potential energy in the spring", - "type": "text" - }, - { - "bbox": [ - 307, - 323, - 323, - 338 - ], - "score": 0.71, - "content": "\\mathsf{s}_{2}^{\\mathsf{\\Pi}}", - "type": "inline_equation", - "height": 15, - "width": 16 - }, - { - "bbox": [ - 323, - 322, - 327, - 338 - ], - "score": 1.0, - "content": "?", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "text", - "bbox": [ - 69, - 348, - 111, - 451 - ], - "lines": [ - { - "bbox": [ - 70, - 349, - 106, - 368 - ], - "spans": [ - { - "bbox": [ - 70, - 355, - 82, - 368 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 94, - 349, - 106, - 365 - ], - "score": 1.0, - "content": "E", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 95, - 362, - 105, - 377 - ], - "spans": [ - { - "bbox": [ - 95, - 362, - 105, - 377 - ], - "score": 1.0, - "content": "9", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 70, - 379, - 106, - 399 - ], - "spans": [ - { - "bbox": [ - 70, - 386, - 82, - 399 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 379, - 106, - 394 - ], - "score": 1.0, - "content": "E", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 95, - 394, - 106, - 407 - ], - "spans": [ - { - "bbox": [ - 95, - 394, - 106, - 407 - ], - "score": 1.0, - "content": "3", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 69, - 411, - 111, - 426 - ], - "spans": [ - { - "bbox": [ - 69, - 411, - 83, - 426 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 412, - 111, - 425 - ], - "score": 1.0, - "content": "3E", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 70, - 438, - 111, - 451 - ], - "spans": [ - { - "bbox": [ - 70, - 438, - 82, - 451 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 93, - 438, - 111, - 451 - ], - "score": 1.0, - "content": "9E", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 18.5 - }, - { - "type": "text", - "bbox": [ - 70, - 461, - 167, - 487 - ], - "lines": [ - { - "bbox": [ - 71, - 470, - 134, - 483 - ], - "spans": [ - { - "bbox": [ - 71, - 470, - 134, - 483 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 22 - } - ], - "layout_bboxes": [], - "page_idx": 5, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 221, - 93, - 377, - 264 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 221, - 93, - 377, - 264 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 221, - 93, - 377, - 264 - ], - "spans": [ - { - "bbox": [ - 221, - 93, - 377, - 264 - ], - "score": 0.966, - "type": "image", - "image_path": "60db3b4d1c7583e9afe708943a09a2d519f4fdf981d9aa03dc95c68585f2119d.jpg" - } - ] - } - ], - "index": 6.5, - "virtual_lines": [ - { - "bbox": [ - 221, - 93, - 377, - 108 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 221, - 108, - 377, - 123 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 221, - 123, - 377, - 138 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 221, - 138, - 377, - 153 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 221, - 153, - 377, - 168 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 221, - 168, - 377, - 183 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 221, - 183, - 377, - 198 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 221, - 198, - 377, - 213 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 221, - 213, - 377, - 228 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 221, - 228, - 377, - 243 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 221, - 243, - 377, - 258 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 221, - 258, - 377, - 273 - ], - "spans": [], - "index": 12 - } - ] - } - ], - "index": 6.5 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "score": 1.0, - "content": "© OCR 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 470, - 546, - 483 - ], - "lines": [ - { - "bbox": [ - 530, - 469, - 549, - 486 - ], - "spans": [ - { - "bbox": [ - 530, - 469, - 549, - 486 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 293, - 45, - 302, - 56 - ], - "lines": [ - { - "bbox": [ - 293, - 44, - 303, - 57 - ], - "spans": [ - { - "bbox": [ - 293, - 44, - 303, - 57 - ], - "score": 1.0, - "content": "6", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 45, - 62, - 372, - 78 - ], - "lines": [ - { - "bbox": [ - 47, - 63, - 373, - 78 - ], - "spans": [ - { - "bbox": [ - 47, - 63, - 58, - 76 - ], - "score": 1.0, - "content": "8 ", - "type": "text" - }, - { - "bbox": [ - 71, - 64, - 211, - 77 - ], - "score": 1.0, - "content": "The top ends of two springs,", - "type": "text" - }, - { - "bbox": [ - 212, - 63, - 225, - 78 - ], - "score": 0.85, - "content": "\\mathsf{s}_{1}", - "type": "inline_equation", - "height": 15, - "width": 13 - }, - { - "bbox": [ - 226, - 64, - 248, - 77 - ], - "score": 1.0, - "content": " and", - "type": "text" - }, - { - "bbox": [ - 248, - 64, - 263, - 78 - ], - "score": 0.86, - "content": "\\mathsf{s}_{2}", - "type": "inline_equation", - "height": 14, - "width": 15 - }, - { - "bbox": [ - 263, - 64, - 373, - 77 - ], - "score": 1.0, - "content": ", are attached to a rod.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_5", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 63, - 373, - 78 - ] - }, - { - "type": "image", - "bbox": [ - 221, - 93, - 377, - 264 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 221, - 93, - 377, - 264 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 221, - 93, - 377, - 264 - ], - "spans": [ - { - "bbox": [ - 221, - 93, - 377, - 264 - ], - "score": 0.966, - "type": "image", - "image_path": "60db3b4d1c7583e9afe708943a09a2d519f4fdf981d9aa03dc95c68585f2119d.jpg" - } - ] - } - ], - "index": 6.5, - "virtual_lines": [ - { - "bbox": [ - 221, - 93, - 377, - 108 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 221, - 108, - 377, - 123 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 221, - 123, - 377, - 138 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 221, - 138, - 377, - 153 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 221, - 153, - 377, - 168 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 221, - 168, - 377, - 183 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 221, - 183, - 377, - 198 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 221, - 198, - 377, - 213 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 221, - 213, - 377, - 228 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 221, - 228, - 377, - 243 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 221, - 243, - 377, - 258 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 221, - 258, - 377, - 273 - ], - "spans": [], - "index": 12 - } - ] - } - ], - "index": 6.5, - "page_num": "page_5", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 280, - 547, - 313 - ], - "lines": [ - { - "bbox": [ - 70, - 281, - 548, - 296 - ], - "spans": [ - { - "bbox": [ - 70, - 281, - 261, - 296 - ], - "score": 1.0, - "content": "A mass is hung from the bottom end of", - "type": "text" - }, - { - "bbox": [ - 262, - 281, - 275, - 296 - ], - "score": 0.74, - "content": "\\mathsf{s}_{1}", - "type": "inline_equation", - "height": 15, - "width": 13 - }, - { - "bbox": [ - 276, - 281, - 362, - 296 - ], - "score": 1.0, - "content": ". The extension of", - "type": "text" - }, - { - "bbox": [ - 362, - 281, - 376, - 296 - ], - "score": 0.84, - "content": "\\mathsf{s}_{1}", - "type": "inline_equation", - "height": 15, - "width": 14 - }, - { - "bbox": [ - 376, - 281, - 388, - 296 - ], - "score": 1.0, - "content": " is", - "type": "text" - }, - { - "bbox": [ - 388, - 282, - 397, - 293 - ], - "score": 0.57, - "content": "x.", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 397, - 281, - 548, - 296 - ], - "score": 1.0, - "content": " The elastic potential energy in ", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 70, - 294, - 517, - 317 - ], - "spans": [ - { - "bbox": [ - 70, - 297, - 133, - 313 - ], - "score": 1.0, - "content": "the spring is", - "type": "text" - }, - { - "bbox": [ - 134, - 297, - 144, - 309 - ], - "score": 0.42, - "content": "E.", - "type": "inline_equation", - "height": 12, - "width": 10 - }, - { - "bbox": [ - 144, - 297, - 379, - 313 - ], - "score": 1.0, - "content": " The same mass is hung from the bottom end of", - "type": "text" - }, - { - "bbox": [ - 379, - 297, - 393, - 312 - ], - "score": 0.86, - "content": "{\\mathsf{s}}_{2}", - "type": "inline_equation", - "height": 15, - "width": 14 - }, - { - "bbox": [ - 393, - 297, - 479, - 313 - ], - "score": 1.0, - "content": ". The extension of", - "type": "text" - }, - { - "bbox": [ - 480, - 294, - 517, - 317 - ], - "score": 0.55, - "content": "\\mathsf{S}_{2}\\mathrm{i}\\mathsf{s}\\frac{x}{3}", - "type": "inline_equation", - "height": 23, - "width": 37 - } - ], - "index": 14 - } - ], - "index": 13.5, - "page_num": "page_5", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 281, - 548, - 317 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 322, - 329, - 338 - ], - "lines": [ - { - "bbox": [ - 70, - 322, - 327, - 338 - ], - "spans": [ - { - "bbox": [ - 70, - 322, - 307, - 338 - ], - "score": 1.0, - "content": "What is the elastic potential energy in the spring", - "type": "text" - }, - { - "bbox": [ - 307, - 323, - 323, - 338 - ], - "score": 0.71, - "content": "\\mathsf{s}_{2}^{\\mathsf{\\Pi}}", - "type": "inline_equation", - "height": 15, - "width": 16 - }, - { - "bbox": [ - 323, - 322, - 327, - 338 - ], - "score": 1.0, - "content": "?", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_5", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 322, - 327, - 338 - ] - }, - { - "type": "list", - "bbox": [ - 69, - 348, - 111, - 451 - ], - "lines": [ - { - "bbox": [ - 70, - 349, - 106, - 368 - ], - "spans": [ - { - "bbox": [ - 70, - 355, - 82, - 368 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 94, - 349, - 106, - 365 - ], - "score": 1.0, - "content": "E", - "type": "text" - } - ], - "index": 16, - "is_list_start_line": true - }, - { - "bbox": [ - 95, - 362, - 105, - 377 - ], - "spans": [ - { - "bbox": [ - 95, - 362, - 105, - 377 - ], - "score": 1.0, - "content": "9", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 70, - 379, - 106, - 399 - ], - "spans": [ - { - "bbox": [ - 70, - 386, - 82, - 399 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 379, - 106, - 394 - ], - "score": 1.0, - "content": "E", - "type": "text" - } - ], - "index": 18, - "is_list_start_line": true - }, - { - "bbox": [ - 95, - 394, - 106, - 407 - ], - "spans": [ - { - "bbox": [ - 95, - 394, - 106, - 407 - ], - "score": 1.0, - "content": "3", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 69, - 411, - 111, - 426 - ], - "spans": [ - { - "bbox": [ - 69, - 411, - 83, - 426 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 412, - 111, - 425 - ], - "score": 1.0, - "content": "3E", - "type": "text" - } - ], - "index": 20, - "is_list_start_line": true - }, - { - "bbox": [ - 70, - 438, - 111, - 451 - ], - "spans": [ - { - "bbox": [ - 70, - 438, - 82, - 451 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 93, - 438, - 111, - 451 - ], - "score": 1.0, - "content": "9E", - "type": "text" - } - ], - "index": 21, - "is_list_start_line": true - } - ], - "index": 18.5, - "page_num": "page_5", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 69, - 349, - 111, - 451 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 461, - 167, - 487 - ], - "lines": [ - { - "bbox": [ - 71, - 470, - 134, - 483 - ], - "spans": [ - { - "bbox": [ - 71, - 470, - 134, - 483 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 22, - "page_num": "page_5", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 470, - 134, - 483 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 47, - 62, - 547, - 89 - ], - "lines": [ - { - "bbox": [ - 48, - 63, - 547, - 76 - ], - "spans": [ - { - "bbox": [ - 48, - 64, - 57, - 74 - ], - "score": 1.0, - "content": "9", - "type": "text" - }, - { - "bbox": [ - 70, - 64, - 413, - 76 - ], - "score": 1.0, - "content": "A 9 V battery is connected to two resistors as shown. The terminals ", - "type": "text" - }, - { - "bbox": [ - 414, - 64, - 424, - 75 - ], - "score": 0.49, - "content": "\\pmb{\\times}", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 424, - 64, - 447, - 76 - ], - "score": 1.0, - "content": " and ", - "type": "text" - }, - { - "bbox": [ - 448, - 63, - 458, - 75 - ], - "score": 0.37, - "content": "\\pmb{\\upgamma}", - "type": "inline_equation", - "height": 12, - "width": 10 - }, - { - "bbox": [ - 458, - 64, - 547, - 76 - ], - "score": 1.0, - "content": " are connected to", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 71, - 77, - 463, - 89 - ], - "spans": [ - { - "bbox": [ - 71, - 77, - 434, - 89 - ], - "score": 1.0, - "content": "another circuit that draws a current of 1 mA. The current from the battery is", - "type": "text" - }, - { - "bbox": [ - 435, - 77, - 461, - 88 - ], - "score": 0.36, - "content": "3\\mathsf{m A}", - "type": "inline_equation", - "height": 11, - "width": 26 - }, - { - "bbox": [ - 461, - 77, - 463, - 89 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "image", - "bbox": [ - 180, - 106, - 416, - 253 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 180, - 106, - 416, - 253 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 180, - 106, - 416, - 253 - ], - "spans": [ - { - "bbox": [ - 180, - 106, - 416, - 253 - ], - "score": 0.967, - "type": "image", - "image_path": "60bb3f1d52fd6c94c403f957b4cce3527a510ae31164897011cf7b1fe4d82506.jpg" - } - ] - } - ], - "index": 7.5, - "virtual_lines": [ - { - "bbox": [ - 180, - 106, - 416, - 119.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 180, - 119.0, - 416, - 132.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 180, - 132.0, - 416, - 145.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 180, - 145.0, - 416, - 158.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 180, - 158.0, - 416, - 171.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 180, - 171.0, - 416, - 184.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 180, - 184.0, - 416, - 197.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 180, - 197.0, - 416, - 210.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 180, - 210.0, - 416, - 223.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 180, - 223.0, - 416, - 236.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 180, - 236.0, - 416, - 249.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 180, - 249.0, - 416, - 262.0 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "index": 7.5 - }, - { - "type": "text", - "bbox": [ - 70, - 275, - 414, - 289 - ], - "lines": [ - { - "bbox": [ - 71, - 276, - 414, - 288 - ], - "spans": [ - { - "bbox": [ - 71, - 276, - 366, - 288 - ], - "score": 1.0, - "content": "What is the power supplied to the circuit connected between", - "type": "text" - }, - { - "bbox": [ - 366, - 276, - 376, - 287 - ], - "score": 0.32, - "content": "\\pmb{\\times}", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 376, - 276, - 414, - 288 - ], - "score": 1.0, - "content": " and Y?", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 69, - 301, - 130, - 393 - ], - "lines": [ - { - "bbox": [ - 70, - 302, - 124, - 314 - ], - "spans": [ - { - "bbox": [ - 70, - 302, - 82, - 314 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 93, - 302, - 124, - 314 - ], - "score": 1.0, - "content": "6 mW", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 70, - 327, - 130, - 340 - ], - "spans": [ - { - "bbox": [ - 70, - 327, - 82, - 340 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 93, - 327, - 130, - 340 - ], - "score": 1.0, - "content": "12 mW", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 70, - 353, - 130, - 367 - ], - "spans": [ - { - "bbox": [ - 70, - 353, - 82, - 367 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 353, - 130, - 366 - ], - "score": 1.0, - "content": "18 mW", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 70, - 379, - 129, - 392 - ], - "spans": [ - { - "bbox": [ - 70, - 379, - 82, - 392 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 93, - 380, - 129, - 392 - ], - "score": 1.0, - "content": "27 mW", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 16.5 - }, - { - "type": "text", - "bbox": [ - 70, - 403, - 167, - 428 - ], - "lines": [ - { - "bbox": [ - 72, - 412, - 134, - 425 - ], - "spans": [ - { - "bbox": [ - 72, - 412, - 134, - 425 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 19 - }, - { - "type": "text", - "bbox": [ - 47, - 449, - 547, - 477 - ], - "lines": [ - { - "bbox": [ - 49, - 451, - 548, - 464 - ], - "spans": [ - { - "bbox": [ - 49, - 451, - 548, - 464 - ], - "score": 1.0, - "content": "10 A trolley M collides head-on with a trolley L. The mass of trolley M is greater than the mass of ", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 70, - 464, - 325, - 476 - ], - "spans": [ - { - "bbox": [ - 70, - 464, - 325, - 476 - ], - "score": 1.0, - "content": "trolley L. The trolleys join together after the collision.", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 20.5 - }, - { - "type": "image", - "bbox": [ - 181, - 488, - 417, - 533 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 181, - 488, - 417, - 533 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 181, - 488, - 417, - 533 - ], - "spans": [ - { - "bbox": [ - 181, - 488, - 417, - 533 - ], - "score": 0.944, - "type": "image", - "image_path": "f2f059b778c067ac4280f0129a141a0c7dfcd204a67514b930ad6be1a0fc8902.jpg" - } - ] - } - ], - "index": 23.5, - "virtual_lines": [ - { - "bbox": [ - 181, - 488, - 417, - 501.0 - ], - "spans": [], - "index": 22 - }, - { - "bbox": [ - 181, - 501.0, - 417, - 514.0 - ], - "spans": [], - "index": 23 - }, - { - "bbox": [ - 181, - 514.0, - 417, - 527.0 - ], - "spans": [], - "index": 24 - }, - { - "bbox": [ - 181, - 527.0, - 417, - 540.0 - ], - "spans": [], - "index": 25 - } - ] - } - ], - "index": 23.5 - }, - { - "type": "text", - "bbox": [ - 71, - 548, - 209, - 563 - ], - "lines": [ - { - "bbox": [ - 72, - 550, - 208, - 561 - ], - "spans": [ - { - "bbox": [ - 72, - 550, - 208, - 561 - ], - "score": 1.0, - "content": "Which statement is correct?", - "type": "text" - } - ], - "index": 26 - } - ], - "index": 26 - }, - { - "type": "text", - "bbox": [ - 70, - 574, - 455, - 667 - ], - "lines": [ - { - "bbox": [ - 70, - 574, - 311, - 588 - ], - "spans": [ - { - "bbox": [ - 70, - 574, - 82, - 588 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 94, - 575, - 311, - 588 - ], - "score": 1.0, - "content": "The momentum of each trolley is conserved.", - "type": "text" - } - ], - "index": 27 - }, - { - "bbox": [ - 70, - 600, - 439, - 615 - ], - "spans": [ - { - "bbox": [ - 70, - 600, - 82, - 614 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 600, - 439, - 615 - ], - "score": 1.0, - "content": "Trolley M experiences a greater force than trolley L during the collision.", - "type": "text" - } - ], - "index": 28 - }, - { - "bbox": [ - 70, - 626, - 455, - 641 - ], - "spans": [ - { - "bbox": [ - 70, - 626, - 82, - 640 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 626, - 455, - 641 - ], - "score": 1.0, - "content": "The total force acting on the two-trolley system during the collision is zero.", - "type": "text" - } - ], - "index": 29 - }, - { - "bbox": [ - 70, - 653, - 233, - 666 - ], - "spans": [ - { - "bbox": [ - 70, - 653, - 82, - 666 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 94, - 654, - 233, - 666 - ], - "score": 1.0, - "content": "Kinetic energy is conserved.", - "type": "text" - } - ], - "index": 30 - } - ], - "index": 28.5 - }, - { - "type": "text", - "bbox": [ - 70, - 677, - 167, - 701 - ], - "lines": [ - { - "bbox": [ - 71, - 685, - 134, - 699 - ], - "spans": [ - { - "bbox": [ - 71, - 685, - 134, - 699 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 31 - } - ], - "index": 31 - } - ], - "layout_bboxes": [], - "page_idx": 6, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 180, - 106, - 416, - 253 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 180, - 106, - 416, - 253 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 180, - 106, - 416, - 253 - ], - "spans": [ - { - "bbox": [ - 180, - 106, - 416, - 253 - ], - "score": 0.967, - "type": "image", - "image_path": "60bb3f1d52fd6c94c403f957b4cce3527a510ae31164897011cf7b1fe4d82506.jpg" - } - ] - } - ], - "index": 7.5, - "virtual_lines": [ - { - "bbox": [ - 180, - 106, - 416, - 119.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 180, - 119.0, - 416, - 132.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 180, - 132.0, - 416, - 145.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 180, - 145.0, - 416, - 158.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 180, - 158.0, - 416, - 171.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 180, - 171.0, - 416, - 184.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 180, - 184.0, - 416, - 197.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 180, - 197.0, - 416, - 210.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 180, - 210.0, - 416, - 223.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 180, - 223.0, - 416, - 236.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 180, - 236.0, - 416, - 249.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 180, - 249.0, - 416, - 262.0 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "index": 7.5 - }, - { - "type": "image", - "bbox": [ - 181, - 488, - 417, - 533 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 181, - 488, - 417, - 533 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 181, - 488, - 417, - 533 - ], - "spans": [ - { - "bbox": [ - 181, - 488, - 417, - 533 - ], - "score": 0.944, - "type": "image", - "image_path": "f2f059b778c067ac4280f0129a141a0c7dfcd204a67514b930ad6be1a0fc8902.jpg" - } - ] - } - ], - "index": 23.5, - "virtual_lines": [ - { - "bbox": [ - 181, - 488, - 417, - 501.0 - ], - "spans": [], - "index": 22 - }, - { - "bbox": [ - 181, - 501.0, - 417, - 514.0 - ], - "spans": [], - "index": 23 - }, - { - "bbox": [ - 181, - 514.0, - 417, - 527.0 - ], - "spans": [], - "index": 24 - }, - { - "bbox": [ - 181, - 527.0, - 417, - 540.0 - ], - "spans": [], - "index": 25 - } - ] - } - ], - "index": 23.5 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 60, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 60, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 685, - 546, - 698 - ], - "lines": [ - { - "bbox": [ - 530, - 684, - 549, - 701 - ], - "spans": [ - { - "bbox": [ - 530, - 684, - 549, - 701 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 485, - 775, - 531, - 785 - ], - "lines": [ - { - "bbox": [ - 484, - 774, - 532, - 786 - ], - "spans": [ - { - "bbox": [ - 484, - 774, - 532, - 786 - ], - "score": 1.0, - "content": "Turn over", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 412, - 546, - 425 - ], - "lines": [ - { - "bbox": [ - 529, - 410, - 549, - 427 - ], - "spans": [ - { - "bbox": [ - 529, - 410, - 549, - 427 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 293, - 44, - 301, - 55 - ], - "lines": [ - { - "bbox": [ - 291, - 43, - 304, - 59 - ], - "spans": [ - { - "bbox": [ - 291, - 43, - 304, - 59 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 16, - "width": 13 - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 47, - 62, - 547, - 89 - ], - "lines": [ - { - "bbox": [ - 48, - 63, - 547, - 76 - ], - "spans": [ - { - "bbox": [ - 48, - 64, - 57, - 74 - ], - "score": 1.0, - "content": "9", - "type": "text" - }, - { - "bbox": [ - 70, - 64, - 413, - 76 - ], - "score": 1.0, - "content": "A 9 V battery is connected to two resistors as shown. The terminals ", - "type": "text" - }, - { - "bbox": [ - 414, - 64, - 424, - 75 - ], - "score": 0.49, - "content": "\\pmb{\\times}", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 424, - 64, - 447, - 76 - ], - "score": 1.0, - "content": " and ", - "type": "text" - }, - { - "bbox": [ - 448, - 63, - 458, - 75 - ], - "score": 0.37, - "content": "\\pmb{\\upgamma}", - "type": "inline_equation", - "height": 12, - "width": 10 - }, - { - "bbox": [ - 458, - 64, - 547, - 76 - ], - "score": 1.0, - "content": " are connected to", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 71, - 77, - 463, - 89 - ], - "spans": [ - { - "bbox": [ - 71, - 77, - 434, - 89 - ], - "score": 1.0, - "content": "another circuit that draws a current of 1 mA. The current from the battery is", - "type": "text" - }, - { - "bbox": [ - 435, - 77, - 461, - 88 - ], - "score": 0.36, - "content": "3\\mathsf{m A}", - "type": "inline_equation", - "height": 11, - "width": 26 - }, - { - "bbox": [ - 461, - 77, - 463, - 89 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_6", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 48, - 63, - 547, - 89 - ] - }, - { - "type": "image", - "bbox": [ - 180, - 106, - 416, - 253 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 180, - 106, - 416, - 253 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 180, - 106, - 416, - 253 - ], - "spans": [ - { - "bbox": [ - 180, - 106, - 416, - 253 - ], - "score": 0.967, - "type": "image", - "image_path": "60bb3f1d52fd6c94c403f957b4cce3527a510ae31164897011cf7b1fe4d82506.jpg" - } - ] - } - ], - "index": 7.5, - "virtual_lines": [ - { - "bbox": [ - 180, - 106, - 416, - 119.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 180, - 119.0, - 416, - 132.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 180, - 132.0, - 416, - 145.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 180, - 145.0, - 416, - 158.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 180, - 158.0, - 416, - 171.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 180, - 171.0, - 416, - 184.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 180, - 184.0, - 416, - 197.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 180, - 197.0, - 416, - 210.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 180, - 210.0, - 416, - 223.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 180, - 223.0, - 416, - 236.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 180, - 236.0, - 416, - 249.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 180, - 249.0, - 416, - 262.0 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "index": 7.5, - "page_num": "page_6", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 275, - 414, - 289 - ], - "lines": [ - { - "bbox": [ - 71, - 276, - 414, - 288 - ], - "spans": [ - { - "bbox": [ - 71, - 276, - 366, - 288 - ], - "score": 1.0, - "content": "What is the power supplied to the circuit connected between", - "type": "text" - }, - { - "bbox": [ - 366, - 276, - 376, - 287 - ], - "score": 0.32, - "content": "\\pmb{\\times}", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 376, - 276, - 414, - 288 - ], - "score": 1.0, - "content": " and Y?", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_6", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 276, - 414, - 288 - ] - }, - { - "type": "text", - "bbox": [ - 69, - 301, - 130, - 393 - ], - "lines": [ - { - "bbox": [ - 70, - 302, - 124, - 314 - ], - "spans": [ - { - "bbox": [ - 70, - 302, - 82, - 314 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 93, - 302, - 124, - 314 - ], - "score": 1.0, - "content": "6 mW", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 70, - 327, - 130, - 340 - ], - "spans": [ - { - "bbox": [ - 70, - 327, - 82, - 340 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 93, - 327, - 130, - 340 - ], - "score": 1.0, - "content": "12 mW", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 70, - 353, - 130, - 367 - ], - "spans": [ - { - "bbox": [ - 70, - 353, - 82, - 367 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 353, - 130, - 366 - ], - "score": 1.0, - "content": "18 mW", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 70, - 379, - 129, - 392 - ], - "spans": [ - { - "bbox": [ - 70, - 379, - 82, - 392 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 93, - 380, - 129, - 392 - ], - "score": 1.0, - "content": "27 mW", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 16.5, - "page_num": "page_6", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 302, - 130, - 392 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 403, - 167, - 428 - ], - "lines": [ - { - "bbox": [ - 72, - 412, - 134, - 425 - ], - "spans": [ - { - "bbox": [ - 72, - 412, - 134, - 425 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 19, - "page_num": "page_6", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 412, - 134, - 425 - ] - }, - { - "type": "text", - "bbox": [ - 47, - 449, - 547, - 477 - ], - "lines": [ - { - "bbox": [ - 49, - 451, - 548, - 464 - ], - "spans": [ - { - "bbox": [ - 49, - 451, - 548, - 464 - ], - "score": 1.0, - "content": "10 A trolley M collides head-on with a trolley L. The mass of trolley M is greater than the mass of ", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 70, - 464, - 325, - 476 - ], - "spans": [ - { - "bbox": [ - 70, - 464, - 325, - 476 - ], - "score": 1.0, - "content": "trolley L. The trolleys join together after the collision.", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 20.5, - "page_num": "page_6", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 49, - 451, - 548, - 476 - ] - }, - { - "type": "image", - "bbox": [ - 181, - 488, - 417, - 533 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 181, - 488, - 417, - 533 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 181, - 488, - 417, - 533 - ], - "spans": [ - { - "bbox": [ - 181, - 488, - 417, - 533 - ], - "score": 0.944, - "type": "image", - "image_path": "f2f059b778c067ac4280f0129a141a0c7dfcd204a67514b930ad6be1a0fc8902.jpg" - } - ] - } - ], - "index": 23.5, - "virtual_lines": [ - { - "bbox": [ - 181, - 488, - 417, - 501.0 - ], - "spans": [], - "index": 22 - }, - { - "bbox": [ - 181, - 501.0, - 417, - 514.0 - ], - "spans": [], - "index": 23 - }, - { - "bbox": [ - 181, - 514.0, - 417, - 527.0 - ], - "spans": [], - "index": 24 - }, - { - "bbox": [ - 181, - 527.0, - 417, - 540.0 - ], - "spans": [], - "index": 25 - } - ] - } - ], - "index": 23.5, - "page_num": "page_6", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 71, - 548, - 209, - 563 - ], - "lines": [ - { - "bbox": [ - 72, - 550, - 208, - 561 - ], - "spans": [ - { - "bbox": [ - 72, - 550, - 208, - 561 - ], - "score": 1.0, - "content": "Which statement is correct?", - "type": "text" - } - ], - "index": 26 - } - ], - "index": 26, - "page_num": "page_6", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 550, - 208, - 561 - ] - }, - { - "type": "list", - "bbox": [ - 70, - 574, - 455, - 667 - ], - "lines": [ - { - "bbox": [ - 70, - 574, - 311, - 588 - ], - "spans": [ - { - "bbox": [ - 70, - 574, - 82, - 588 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 94, - 575, - 311, - 588 - ], - "score": 1.0, - "content": "The momentum of each trolley is conserved.", - "type": "text" - } - ], - "index": 27, - "is_list_end_line": true - }, - { - "bbox": [ - 70, - 600, - 439, - 615 - ], - "spans": [ - { - "bbox": [ - 70, - 600, - 82, - 614 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 600, - 439, - 615 - ], - "score": 1.0, - "content": "Trolley M experiences a greater force than trolley L during the collision.", - "type": "text" - } - ], - "index": 28, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 70, - 626, - 455, - 641 - ], - "spans": [ - { - "bbox": [ - 70, - 626, - 82, - 640 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 626, - 455, - 641 - ], - "score": 1.0, - "content": "The total force acting on the two-trolley system during the collision is zero.", - "type": "text" - } - ], - "index": 29, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 70, - 653, - 233, - 666 - ], - "spans": [ - { - "bbox": [ - 70, - 653, - 82, - 666 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 94, - 654, - 233, - 666 - ], - "score": 1.0, - "content": "Kinetic energy is conserved.", - "type": "text" - } - ], - "index": 30, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 28.5, - "page_num": "page_6", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 574, - 455, - 666 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 677, - 167, - 701 - ], - "lines": [ - { - "bbox": [ - 71, - 685, - 134, - 699 - ], - "spans": [ - { - "bbox": [ - 71, - 685, - 134, - 699 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 31 - } - ], - "index": 31, - "page_num": "page_6", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 685, - 134, - 699 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 47, - 62, - 373, - 77 - ], - "lines": [ - { - "bbox": [ - 49, - 63, - 374, - 75 - ], - "spans": [ - { - "bbox": [ - 49, - 63, - 374, - 75 - ], - "score": 1.0, - "content": "11 Two batteries are connected in a circuit with a lamp as shown.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "image", - "bbox": [ - 203, - 88, - 391, - 197 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 203, - 88, - 391, - 197 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 203, - 88, - 391, - 197 - ], - "spans": [ - { - "bbox": [ - 203, - 88, - 391, - 197 - ], - "score": 0.964, - "type": "image", - "image_path": "64acc2a87d1e10ccc30190e18b446b2bfe0eae1c14620329e1194a5c4743b14f.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 203, - 88, - 391, - 101.5 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 203, - 101.5, - 391, - 115.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 203, - 115.0, - 391, - 128.5 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 203, - 128.5, - 391, - 142.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 203, - 142.0, - 391, - 155.5 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 203, - 155.5, - 391, - 169.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 203, - 169.0, - 391, - 182.5 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 203, - 182.5, - 391, - 196.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 203, - 196.0, - 391, - 209.5 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 70, - 220, - 270, - 246 - ], - "lines": [ - { - "bbox": [ - 72, - 221, - 269, - 232 - ], - "spans": [ - { - "bbox": [ - 72, - 221, - 269, - 232 - ], - "score": 1.0, - "content": "The batteries have e.m.f. 5.0 V and 3.0 V.", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 71, - 234, - 178, - 246 - ], - "spans": [ - { - "bbox": [ - 71, - 234, - 178, - 246 - ], - "score": 1.0, - "content": "Which row is correct?", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5 - }, - { - "type": "table", - "bbox": [ - 71, - 255, - 434, - 364 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 71, - 255, - 434, - 364 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 71, - 255, - 434, - 364 - ], - "spans": [ - { - "bbox": [ - 71, - 255, - 434, - 364 - ], - "score": 0.98, - "html": "
DirectionofconventionalcurrentMagnitude of current
Aclockwisegreater at Y than at X
Bclockwisesame atY and X
Canticlockwisegreater at X than at Y
Danticlockwisesame at X and Y
", - "type": "table", - "image_path": "3cb73a3427a8d7e9d0b1b21f9f9f84d96002d6726b39f14d53880d43e9abdce7.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 71, - 255, - 434, - 291.3333333333333 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 71, - 291.3333333333333, - 434, - 327.66666666666663 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 71, - 327.66666666666663, - 434, - 363.99999999999994 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - }, - { - "type": "text", - "bbox": [ - 70, - 371, - 167, - 395 - ], - "lines": [ - { - "bbox": [ - 72, - 379, - 133, - 392 - ], - "spans": [ - { - "bbox": [ - 72, - 379, - 133, - 392 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "text", - "bbox": [ - 46, - 413, - 544, - 440 - ], - "lines": [ - { - "bbox": [ - 48, - 414, - 545, - 427 - ], - "spans": [ - { - "bbox": [ - 48, - 414, - 545, - 427 - ], - "score": 1.0, - "content": "12 The diagram shows the conventional currents entering and leaving a junction in an electric circuit.", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 70, - 427, - 218, - 442 - ], - "spans": [ - { - "bbox": [ - 70, - 427, - 110, - 442 - ], - "score": 0.91, - "content": "I_{1},I_{2},I_{3}", - "type": "inline_equation", - "height": 15, - "width": 40 - }, - { - "bbox": [ - 110, - 428, - 131, - 440 - ], - "score": 1.0, - "content": " and", - "type": "text" - }, - { - "bbox": [ - 131, - 428, - 143, - 442 - ], - "score": 0.87, - "content": "I_{4}", - "type": "inline_equation", - "height": 14, - "width": 12 - }, - { - "bbox": [ - 143, - 428, - 218, - 440 - ], - "score": 1.0, - "content": " are all positive.", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 16.5 - }, - { - "type": "image", - "bbox": [ - 200, - 445, - 395, - 579 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 200, - 445, - 395, - 579 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 200, - 445, - 395, - 579 - ], - "spans": [ - { - "bbox": [ - 200, - 445, - 395, - 579 - ], - "score": 0.969, - "type": "image", - "image_path": "1044891fa1892b2d1f2342e4caefeebf5afcabae6a99728935bb049219ebedcc.jpg" - } - ] - } - ], - "index": 22.5, - "virtual_lines": [ - { - "bbox": [ - 200, - 445, - 395, - 458.5 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 200, - 458.5, - 395, - 472.0 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 200, - 472.0, - 395, - 485.5 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 200, - 485.5, - 395, - 499.0 - ], - "spans": [], - "index": 21 - }, - { - "bbox": [ - 200, - 499.0, - 395, - 512.5 - ], - "spans": [], - "index": 22 - }, - { - "bbox": [ - 200, - 512.5, - 395, - 526.0 - ], - "spans": [], - "index": 23 - }, - { - "bbox": [ - 200, - 526.0, - 395, - 539.5 - ], - "spans": [], - "index": 24 - }, - { - "bbox": [ - 200, - 539.5, - 395, - 553.0 - ], - "spans": [], - "index": 25 - }, - { - "bbox": [ - 200, - 553.0, - 395, - 566.5 - ], - "spans": [], - "index": 26 - }, - { - "bbox": [ - 200, - 566.5, - 395, - 580.0 - ], - "spans": [], - "index": 27 - } - ] - } - ], - "index": 22.5 - }, - { - "type": "text", - "bbox": [ - 71, - 599, - 230, - 613 - ], - "lines": [ - { - "bbox": [ - 72, - 600, - 229, - 611 - ], - "spans": [ - { - "bbox": [ - 72, - 600, - 229, - 611 - ], - "score": 1.0, - "content": "Which statement is always true?", - "type": "text" - } - ], - "index": 28 - } - ], - "index": 28 - }, - { - "type": "text", - "bbox": [ - 69, - 624, - 187, - 719 - ], - "lines": [ - { - "bbox": [ - 71, - 625, - 167, - 641 - ], - "spans": [ - { - "bbox": [ - 71, - 626, - 82, - 638 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 91, - 625, - 167, - 641 - ], - "score": 0.54, - "content": "I_{1}+I_{2}=I_{3}+I_{4}", - "type": "inline_equation" - } - ], - "index": 29 - }, - { - "bbox": [ - 70, - 651, - 185, - 668 - ], - "spans": [ - { - "bbox": [ - 70, - 651, - 82, - 665 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 92, - 651, - 185, - 668 - ], - "score": 0.38, - "content": "I_{1}-I_{2}+I_{3}-I_{4}=0", - "type": "inline_equation" - } - ], - "index": 30 - }, - { - "bbox": [ - 70, - 677, - 179, - 693 - ], - "spans": [ - { - "bbox": [ - 70, - 677, - 82, - 691 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 678, - 146, - 693 - ], - "score": 1.0, - "content": "I1 = I2 and", - "type": "text" - }, - { - "bbox": [ - 146, - 677, - 179, - 693 - ], - "score": 0.33, - "content": "I_{3}=I_{4}", - "type": "inline_equation", - "height": 16, - "width": 33 - } - ], - "index": 31 - }, - { - "bbox": [ - 70, - 703, - 186, - 719 - ], - "spans": [ - { - "bbox": [ - 70, - 704, - 82, - 717 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 92, - 703, - 186, - 719 - ], - "score": 0.62, - "content": "I_{1}+I_{2}+I_{3}+I_{4}=0", - "type": "inline_equation" - } - ], - "index": 32 - } - ], - "index": 30.5 - }, - { - "type": "text", - "bbox": [ - 70, - 723, - 167, - 748 - ], - "lines": [ - { - "bbox": [ - 71, - 731, - 134, - 745 - ], - "spans": [ - { - "bbox": [ - 71, - 731, - 134, - 745 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 33 - } - ], - "index": 33 - } - ], - "layout_bboxes": [], - "page_idx": 7, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 203, - 88, - 391, - 197 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 203, - 88, - 391, - 197 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 203, - 88, - 391, - 197 - ], - "spans": [ - { - "bbox": [ - 203, - 88, - 391, - 197 - ], - "score": 0.964, - "type": "image", - "image_path": "64acc2a87d1e10ccc30190e18b446b2bfe0eae1c14620329e1194a5c4743b14f.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 203, - 88, - 391, - 101.5 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 203, - 101.5, - 391, - 115.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 203, - 115.0, - 391, - 128.5 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 203, - 128.5, - 391, - 142.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 203, - 142.0, - 391, - 155.5 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 203, - 155.5, - 391, - 169.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 203, - 169.0, - 391, - 182.5 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 203, - 182.5, - 391, - 196.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 203, - 196.0, - 391, - 209.5 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 5 - }, - { - "type": "image", - "bbox": [ - 200, - 445, - 395, - 579 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 200, - 445, - 395, - 579 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 200, - 445, - 395, - 579 - ], - "spans": [ - { - "bbox": [ - 200, - 445, - 395, - 579 - ], - "score": 0.969, - "type": "image", - "image_path": "1044891fa1892b2d1f2342e4caefeebf5afcabae6a99728935bb049219ebedcc.jpg" - } - ] - } - ], - "index": 22.5, - "virtual_lines": [ - { - "bbox": [ - 200, - 445, - 395, - 458.5 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 200, - 458.5, - 395, - 472.0 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 200, - 472.0, - 395, - 485.5 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 200, - 485.5, - 395, - 499.0 - ], - "spans": [], - "index": 21 - }, - { - "bbox": [ - 200, - 499.0, - 395, - 512.5 - ], - "spans": [], - "index": 22 - }, - { - "bbox": [ - 200, - 512.5, - 395, - 526.0 - ], - "spans": [], - "index": 23 - }, - { - "bbox": [ - 200, - 526.0, - 395, - 539.5 - ], - "spans": [], - "index": 24 - }, - { - "bbox": [ - 200, - 539.5, - 395, - 553.0 - ], - "spans": [], - "index": 25 - }, - { - "bbox": [ - 200, - 553.0, - 395, - 566.5 - ], - "spans": [], - "index": 26 - }, - { - "bbox": [ - 200, - 566.5, - 395, - 580.0 - ], - "spans": [], - "index": 27 - } - ] - } - ], - "index": 22.5 - } - ], - "tables": [ - { - "type": "table", - "bbox": [ - 71, - 255, - 434, - 364 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 71, - 255, - 434, - 364 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 71, - 255, - 434, - 364 - ], - "spans": [ - { - "bbox": [ - 71, - 255, - 434, - 364 - ], - "score": 0.98, - "html": "
DirectionofconventionalcurrentMagnitude of current
Aclockwisegreater at Y than at X
Bclockwisesame atY and X
Canticlockwisegreater at X than at Y
Danticlockwisesame at X and Y
", - "type": "table", - "image_path": "3cb73a3427a8d7e9d0b1b21f9f9f84d96002d6726b39f14d53880d43e9abdce7.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 71, - 255, - 434, - 291.3333333333333 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 71, - 291.3333333333333, - 434, - 327.66666666666663 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 71, - 327.66666666666663, - 434, - 363.99999999999994 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 787 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 732, - 546, - 744 - ], - "lines": [ - { - "bbox": [ - 530, - 730, - 549, - 747 - ], - "spans": [ - { - "bbox": [ - 530, - 730, - 549, - 747 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 379, - 546, - 392 - ], - "lines": [ - { - "bbox": [ - 529, - 377, - 549, - 394 - ], - "spans": [ - { - "bbox": [ - 529, - 377, - 549, - 394 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 293, - 45, - 301, - 56 - ], - "lines": [ - { - "bbox": [ - 292, - 44, - 303, - 58 - ], - "spans": [ - { - "bbox": [ - 292, - 44, - 303, - 58 - ], - "score": 1.0, - "content": "8", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 47, - 62, - 373, - 77 - ], - "lines": [ - { - "bbox": [ - 49, - 63, - 374, - 75 - ], - "spans": [ - { - "bbox": [ - 49, - 63, - 374, - 75 - ], - "score": 1.0, - "content": "11 Two batteries are connected in a circuit with a lamp as shown.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_7", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 49, - 63, - 374, - 75 - ] - }, - { - "type": "image", - "bbox": [ - 203, - 88, - 391, - 197 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 203, - 88, - 391, - 197 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 203, - 88, - 391, - 197 - ], - "spans": [ - { - "bbox": [ - 203, - 88, - 391, - 197 - ], - "score": 0.964, - "type": "image", - "image_path": "64acc2a87d1e10ccc30190e18b446b2bfe0eae1c14620329e1194a5c4743b14f.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 203, - 88, - 391, - 101.5 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 203, - 101.5, - 391, - 115.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 203, - 115.0, - 391, - 128.5 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 203, - 128.5, - 391, - 142.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 203, - 142.0, - 391, - 155.5 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 203, - 155.5, - 391, - 169.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 203, - 169.0, - 391, - 182.5 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 203, - 182.5, - 391, - 196.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 203, - 196.0, - 391, - 209.5 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 5, - "page_num": "page_7", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 220, - 270, - 246 - ], - "lines": [ - { - "bbox": [ - 72, - 221, - 269, - 232 - ], - "spans": [ - { - "bbox": [ - 72, - 221, - 269, - 232 - ], - "score": 1.0, - "content": "The batteries have e.m.f. 5.0 V and 3.0 V.", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 71, - 234, - 178, - 246 - ], - "spans": [ - { - "bbox": [ - 71, - 234, - 178, - 246 - ], - "score": 1.0, - "content": "Which row is correct?", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5, - "page_num": "page_7", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 221, - 269, - 246 - ] - }, - { - "type": "table", - "bbox": [ - 71, - 255, - 434, - 364 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 71, - 255, - 434, - 364 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 71, - 255, - 434, - 364 - ], - "spans": [ - { - "bbox": [ - 71, - 255, - 434, - 364 - ], - "score": 0.98, - "html": "
DirectionofconventionalcurrentMagnitude of current
Aclockwisegreater at Y than at X
Bclockwisesame atY and X
Canticlockwisegreater at X than at Y
Danticlockwisesame at X and Y
", - "type": "table", - "image_path": "3cb73a3427a8d7e9d0b1b21f9f9f84d96002d6726b39f14d53880d43e9abdce7.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 71, - 255, - 434, - 291.3333333333333 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 71, - 291.3333333333333, - 434, - 327.66666666666663 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 71, - 327.66666666666663, - 434, - 363.99999999999994 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13, - "page_num": "page_7", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 371, - 167, - 395 - ], - "lines": [ - { - "bbox": [ - 72, - 379, - 133, - 392 - ], - "spans": [ - { - "bbox": [ - 72, - 379, - 133, - 392 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_7", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 379, - 133, - 392 - ] - }, - { - "type": "text", - "bbox": [ - 46, - 413, - 544, - 440 - ], - "lines": [ - { - "bbox": [ - 48, - 414, - 545, - 427 - ], - "spans": [ - { - "bbox": [ - 48, - 414, - 545, - 427 - ], - "score": 1.0, - "content": "12 The diagram shows the conventional currents entering and leaving a junction in an electric circuit.", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 70, - 427, - 218, - 442 - ], - "spans": [ - { - "bbox": [ - 70, - 427, - 110, - 442 - ], - "score": 0.91, - "content": "I_{1},I_{2},I_{3}", - "type": "inline_equation", - "height": 15, - "width": 40 - }, - { - "bbox": [ - 110, - 428, - 131, - 440 - ], - "score": 1.0, - "content": " and", - "type": "text" - }, - { - "bbox": [ - 131, - 428, - 143, - 442 - ], - "score": 0.87, - "content": "I_{4}", - "type": "inline_equation", - "height": 14, - "width": 12 - }, - { - "bbox": [ - 143, - 428, - 218, - 440 - ], - "score": 1.0, - "content": " are all positive.", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 16.5, - "page_num": "page_7", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 48, - 414, - 545, - 442 - ] - }, - { - "type": "image", - "bbox": [ - 200, - 445, - 395, - 579 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 200, - 445, - 395, - 579 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 200, - 445, - 395, - 579 - ], - "spans": [ - { - "bbox": [ - 200, - 445, - 395, - 579 - ], - "score": 0.969, - "type": "image", - "image_path": "1044891fa1892b2d1f2342e4caefeebf5afcabae6a99728935bb049219ebedcc.jpg" - } - ] - } - ], - "index": 22.5, - "virtual_lines": [ - { - "bbox": [ - 200, - 445, - 395, - 458.5 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 200, - 458.5, - 395, - 472.0 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 200, - 472.0, - 395, - 485.5 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 200, - 485.5, - 395, - 499.0 - ], - "spans": [], - "index": 21 - }, - { - "bbox": [ - 200, - 499.0, - 395, - 512.5 - ], - "spans": [], - "index": 22 - }, - { - "bbox": [ - 200, - 512.5, - 395, - 526.0 - ], - "spans": [], - "index": 23 - }, - { - "bbox": [ - 200, - 526.0, - 395, - 539.5 - ], - "spans": [], - "index": 24 - }, - { - "bbox": [ - 200, - 539.5, - 395, - 553.0 - ], - "spans": [], - "index": 25 - }, - { - "bbox": [ - 200, - 553.0, - 395, - 566.5 - ], - "spans": [], - "index": 26 - }, - { - "bbox": [ - 200, - 566.5, - 395, - 580.0 - ], - "spans": [], - "index": 27 - } - ] - } - ], - "index": 22.5, - "page_num": "page_7", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 71, - 599, - 230, - 613 - ], - "lines": [ - { - "bbox": [ - 72, - 600, - 229, - 611 - ], - "spans": [ - { - "bbox": [ - 72, - 600, - 229, - 611 - ], - "score": 1.0, - "content": "Which statement is always true?", - "type": "text" - } - ], - "index": 28 - } - ], - "index": 28, - "page_num": "page_7", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 600, - 229, - 611 - ] - }, - { - "type": "text", - "bbox": [ - 69, - 624, - 187, - 719 - ], - "lines": [ - { - "bbox": [ - 71, - 625, - 167, - 641 - ], - "spans": [ - { - "bbox": [ - 71, - 626, - 82, - 638 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 91, - 625, - 167, - 641 - ], - "score": 0.54, - "content": "I_{1}+I_{2}=I_{3}+I_{4}", - "type": "inline_equation" - } - ], - "index": 29 - }, - { - "bbox": [ - 70, - 651, - 185, - 668 - ], - "spans": [ - { - "bbox": [ - 70, - 651, - 82, - 665 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 92, - 651, - 185, - 668 - ], - "score": 0.38, - "content": "I_{1}-I_{2}+I_{3}-I_{4}=0", - "type": "inline_equation" - } - ], - "index": 30 - }, - { - "bbox": [ - 70, - 677, - 179, - 693 - ], - "spans": [ - { - "bbox": [ - 70, - 677, - 82, - 691 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 678, - 146, - 693 - ], - "score": 1.0, - "content": "I1 = I2 and", - "type": "text" - }, - { - "bbox": [ - 146, - 677, - 179, - 693 - ], - "score": 0.33, - "content": "I_{3}=I_{4}", - "type": "inline_equation", - "height": 16, - "width": 33 - } - ], - "index": 31 - }, - { - "bbox": [ - 70, - 703, - 186, - 719 - ], - "spans": [ - { - "bbox": [ - 70, - 704, - 82, - 717 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 92, - 703, - 186, - 719 - ], - "score": 0.62, - "content": "I_{1}+I_{2}+I_{3}+I_{4}=0", - "type": "inline_equation" - } - ], - "index": 32 - } - ], - "index": 30.5, - "page_num": "page_7", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 625, - 186, - 719 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 723, - 167, - 748 - ], - "lines": [ - { - "bbox": [ - 71, - 731, - 134, - 745 - ], - "spans": [ - { - "bbox": [ - 71, - 731, - 134, - 745 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 33 - } - ], - "index": 33, - "page_num": "page_7", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 731, - 134, - 745 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 48, - 62, - 548, - 89 - ], - "lines": [ - { - "bbox": [ - 49, - 64, - 549, - 76 - ], - "spans": [ - { - "bbox": [ - 49, - 64, - 250, - 76 - ], - "score": 1.0, - "content": "13 A student determines the resistance", - "type": "text" - }, - { - "bbox": [ - 251, - 64, - 261, - 75 - ], - "score": 0.61, - "content": "R", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 262, - 64, - 549, - 76 - ], - "score": 1.0, - "content": "of a filament lamp by measuring the potential difference V ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 70, - 77, - 420, - 89 - ], - "spans": [ - { - "bbox": [ - 70, - 77, - 191, - 89 - ], - "score": 1.0, - "content": "across it and the current", - "type": "text" - }, - { - "bbox": [ - 192, - 77, - 199, - 88 - ], - "score": 0.65, - "content": "I", - "type": "inline_equation", - "height": 11, - "width": 7 - }, - { - "bbox": [ - 199, - 77, - 420, - 89 - ], - "score": 1.0, - "content": " in it. The values recorded by the student are:", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 71, - 101, - 288, - 115 - ], - "lines": [ - { - "bbox": [ - 72, - 101, - 287, - 115 - ], - "spans": [ - { - "bbox": [ - 72, - 101, - 165, - 115 - ], - "score": 0.82, - "content": "V=(5.00\\pm0.20)\\lor", - "type": "inline_equation", - "height": 14, - "width": 93 - }, - { - "bbox": [ - 165, - 103, - 186, - 115 - ], - "score": 1.0, - "content": " and", - "type": "text" - }, - { - "bbox": [ - 187, - 102, - 274, - 115 - ], - "score": 0.84, - "content": "I=(40.0\\pm1.0)\\Omega", - "type": "inline_equation", - "height": 13, - "width": 87 - }, - { - "bbox": [ - 275, - 103, - 287, - 115 - ], - "score": 1.0, - "content": "A.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 71, - 127, - 334, - 141 - ], - "lines": [ - { - "bbox": [ - 72, - 128, - 333, - 141 - ], - "spans": [ - { - "bbox": [ - 72, - 128, - 333, - 141 - ], - "score": 1.0, - "content": "What is the percentage uncertainty in the value of R ?", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 69, - 153, - 122, - 245 - ], - "lines": [ - { - "bbox": [ - 70, - 154, - 121, - 167 - ], - "spans": [ - { - "bbox": [ - 70, - 154, - 82, - 167 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 94, - 154, - 121, - 167 - ], - "score": 0.59, - "content": "1.5\\%", - "type": "inline_equation", - "height": 13, - "width": 27 - } - ], - "index": 4 - }, - { - "bbox": [ - 70, - 179, - 121, - 193 - ], - "spans": [ - { - "bbox": [ - 70, - 179, - 82, - 193 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 179, - 121, - 193 - ], - "score": 0.42, - "content": "1.6\\%", - "type": "inline_equation", - "height": 14, - "width": 27 - } - ], - "index": 5 - }, - { - "bbox": [ - 70, - 205, - 121, - 219 - ], - "spans": [ - { - "bbox": [ - 70, - 205, - 82, - 219 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 205, - 121, - 219 - ], - "score": 0.25, - "content": "6.5\\%", - "type": "inline_equation", - "height": 14, - "width": 28 - } - ], - "index": 6 - }, - { - "bbox": [ - 70, - 231, - 118, - 245 - ], - "spans": [ - { - "bbox": [ - 70, - 232, - 82, - 245 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 92, - 231, - 118, - 245 - ], - "score": 1.0, - "content": "20%", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 5.5 - }, - { - "type": "text", - "bbox": [ - 70, - 255, - 167, - 281 - ], - "lines": [ - { - "bbox": [ - 72, - 264, - 134, - 276 - ], - "spans": [ - { - "bbox": [ - 72, - 264, - 134, - 276 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 48, - 303, - 549, - 341 - ], - "lines": [ - { - "bbox": [ - 47, - 302, - 307, - 317 - ], - "spans": [ - { - "bbox": [ - 47, - 302, - 307, - 317 - ], - "score": 1.0, - "content": "14 A golf ball is dropped from rest onto a hard floor.", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 70, - 315, - 548, - 331 - ], - "spans": [ - { - "bbox": [ - 70, - 315, - 548, - 331 - ], - "score": 1.0, - "content": "The graph shows how the velocity of the ball varies with time as it bounces, from the time of ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 71, - 330, - 112, - 342 - ], - "spans": [ - { - "bbox": [ - 71, - 330, - 112, - 342 - ], - "score": 1.0, - "content": "release.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 70, - 354, - 445, - 368 - ], - "lines": [ - { - "bbox": [ - 71, - 356, - 444, - 367 - ], - "spans": [ - { - "bbox": [ - 71, - 356, - 444, - 367 - ], - "score": 1.0, - "content": "At which point does the ball reach its maximum height after the first bounce?", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "image", - "bbox": [ - 132, - 387, - 464, - 550 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 132, - 387, - 464, - 550 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 132, - 387, - 464, - 550 - ], - "spans": [ - { - "bbox": [ - 132, - 387, - 464, - 550 - ], - "score": 0.956, - "type": "image", - "image_path": "66a324a6e2287e131efe2c00ac3811e863771ba3d162a69cfce813c3bbd0e3ea.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 132, - 387, - 464, - 441.3333333333333 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 132, - 441.3333333333333, - 464, - 495.66666666666663 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 132, - 495.66666666666663, - 464, - 550.0 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 71, - 581, - 133, - 593 - ], - "lines": [ - { - "bbox": [ - 71, - 580, - 134, - 593 - ], - "spans": [ - { - "bbox": [ - 71, - 580, - 134, - 593 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16 - } - ], - "layout_bboxes": [], - "page_idx": 8, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 132, - 387, - 464, - 550 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 132, - 387, - 464, - 550 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 132, - 387, - 464, - 550 - ], - "spans": [ - { - "bbox": [ - 132, - 387, - 464, - 550 - ], - "score": 0.956, - "type": "image", - "image_path": "66a324a6e2287e131efe2c00ac3811e863771ba3d162a69cfce813c3bbd0e3ea.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 132, - 387, - 464, - 441.3333333333333 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 132, - 441.3333333333333, - 464, - 495.66666666666663 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 132, - 495.66666666666663, - 464, - 550.0 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 14 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 581, - 546, - 593 - ], - "lines": [ - { - "bbox": [ - 530, - 579, - 549, - 596 - ], - "spans": [ - { - "bbox": [ - 530, - 579, - 549, - 596 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 264, - 546, - 277 - ], - "lines": [ - { - "bbox": [ - 529, - 263, - 549, - 280 - ], - "spans": [ - { - "bbox": [ - 529, - 263, - 549, - 280 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 485, - 774, - 531, - 785 - ], - "lines": [ - { - "bbox": [ - 484, - 774, - 532, - 785 - ], - "spans": [ - { - "bbox": [ - 484, - 774, - 532, - 785 - ], - "score": 1.0, - "content": "Turn over", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 293, - 44, - 302, - 56 - ], - "lines": [ - { - "bbox": [ - 292, - 44, - 303, - 58 - ], - "spans": [ - { - "bbox": [ - 292, - 44, - 303, - 58 - ], - "score": 1.0, - "content": "9", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 48, - 62, - 548, - 89 - ], - "lines": [ - { - "bbox": [ - 49, - 64, - 549, - 76 - ], - "spans": [ - { - "bbox": [ - 49, - 64, - 250, - 76 - ], - "score": 1.0, - "content": "13 A student determines the resistance", - "type": "text" - }, - { - "bbox": [ - 251, - 64, - 261, - 75 - ], - "score": 0.61, - "content": "R", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 262, - 64, - 549, - 76 - ], - "score": 1.0, - "content": "of a filament lamp by measuring the potential difference V ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 70, - 77, - 420, - 89 - ], - "spans": [ - { - "bbox": [ - 70, - 77, - 191, - 89 - ], - "score": 1.0, - "content": "across it and the current", - "type": "text" - }, - { - "bbox": [ - 192, - 77, - 199, - 88 - ], - "score": 0.65, - "content": "I", - "type": "inline_equation", - "height": 11, - "width": 7 - }, - { - "bbox": [ - 199, - 77, - 420, - 89 - ], - "score": 1.0, - "content": " in it. The values recorded by the student are:", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_8", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 49, - 64, - 549, - 89 - ] - }, - { - "type": "text", - "bbox": [ - 71, - 101, - 288, - 115 - ], - "lines": [ - { - "bbox": [ - 72, - 101, - 287, - 115 - ], - "spans": [ - { - "bbox": [ - 72, - 101, - 165, - 115 - ], - "score": 0.82, - "content": "V=(5.00\\pm0.20)\\lor", - "type": "inline_equation", - "height": 14, - "width": 93 - }, - { - "bbox": [ - 165, - 103, - 186, - 115 - ], - "score": 1.0, - "content": " and", - "type": "text" - }, - { - "bbox": [ - 187, - 102, - 274, - 115 - ], - "score": 0.84, - "content": "I=(40.0\\pm1.0)\\Omega", - "type": "inline_equation", - "height": 13, - "width": 87 - }, - { - "bbox": [ - 275, - 103, - 287, - 115 - ], - "score": 1.0, - "content": "A.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_8", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 101, - 287, - 115 - ] - }, - { - "type": "text", - "bbox": [ - 71, - 127, - 334, - 141 - ], - "lines": [ - { - "bbox": [ - 72, - 128, - 333, - 141 - ], - "spans": [ - { - "bbox": [ - 72, - 128, - 333, - 141 - ], - "score": 1.0, - "content": "What is the percentage uncertainty in the value of R ?", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_8", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 128, - 333, - 141 - ] - }, - { - "type": "text", - "bbox": [ - 69, - 153, - 122, - 245 - ], - "lines": [ - { - "bbox": [ - 70, - 154, - 121, - 167 - ], - "spans": [ - { - "bbox": [ - 70, - 154, - 82, - 167 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 94, - 154, - 121, - 167 - ], - "score": 0.59, - "content": "1.5\\%", - "type": "inline_equation", - "height": 13, - "width": 27 - } - ], - "index": 4 - }, - { - "bbox": [ - 70, - 179, - 121, - 193 - ], - "spans": [ - { - "bbox": [ - 70, - 179, - 82, - 193 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 179, - 121, - 193 - ], - "score": 0.42, - "content": "1.6\\%", - "type": "inline_equation", - "height": 14, - "width": 27 - } - ], - "index": 5 - }, - { - "bbox": [ - 70, - 205, - 121, - 219 - ], - "spans": [ - { - "bbox": [ - 70, - 205, - 82, - 219 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 205, - 121, - 219 - ], - "score": 0.25, - "content": "6.5\\%", - "type": "inline_equation", - "height": 14, - "width": 28 - } - ], - "index": 6 - }, - { - "bbox": [ - 70, - 231, - 118, - 245 - ], - "spans": [ - { - "bbox": [ - 70, - 232, - 82, - 245 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 92, - 231, - 118, - 245 - ], - "score": 1.0, - "content": "20%", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 5.5, - "page_num": "page_8", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 154, - 121, - 245 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 255, - 167, - 281 - ], - "lines": [ - { - "bbox": [ - 72, - 264, - 134, - 276 - ], - "spans": [ - { - "bbox": [ - 72, - 264, - 134, - 276 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_8", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 264, - 134, - 276 - ] - }, - { - "type": "text", - "bbox": [ - 48, - 303, - 549, - 341 - ], - "lines": [ - { - "bbox": [ - 47, - 302, - 307, - 317 - ], - "spans": [ - { - "bbox": [ - 47, - 302, - 307, - 317 - ], - "score": 1.0, - "content": "14 A golf ball is dropped from rest onto a hard floor.", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 70, - 315, - 548, - 331 - ], - "spans": [ - { - "bbox": [ - 70, - 315, - 548, - 331 - ], - "score": 1.0, - "content": "The graph shows how the velocity of the ball varies with time as it bounces, from the time of ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 71, - 330, - 112, - 342 - ], - "spans": [ - { - "bbox": [ - 71, - 330, - 112, - 342 - ], - "score": 1.0, - "content": "release.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10, - "page_num": "page_8", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 302, - 548, - 342 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 354, - 445, - 368 - ], - "lines": [ - { - "bbox": [ - 71, - 356, - 444, - 367 - ], - "spans": [ - { - "bbox": [ - 71, - 356, - 444, - 367 - ], - "score": 1.0, - "content": "At which point does the ball reach its maximum height after the first bounce?", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_8", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 356, - 444, - 367 - ] - }, - { - "type": "image", - "bbox": [ - 132, - 387, - 464, - 550 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 132, - 387, - 464, - 550 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 132, - 387, - 464, - 550 - ], - "spans": [ - { - "bbox": [ - 132, - 387, - 464, - 550 - ], - "score": 0.956, - "type": "image", - "image_path": "66a324a6e2287e131efe2c00ac3811e863771ba3d162a69cfce813c3bbd0e3ea.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 132, - 387, - 464, - 441.3333333333333 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 132, - 441.3333333333333, - 464, - 495.66666666666663 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 132, - 495.66666666666663, - 464, - 550.0 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 14, - "page_num": "page_8", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 71, - 581, - 133, - 593 - ], - "lines": [ - { - "bbox": [ - 71, - 580, - 134, - 593 - ], - "spans": [ - { - "bbox": [ - 71, - 580, - 134, - 593 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16, - "page_num": "page_8", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 580, - 134, - 593 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 47, - 62, - 543, - 90 - ], - "lines": [ - { - "bbox": [ - 47, - 62, - 546, - 77 - ], - "spans": [ - { - "bbox": [ - 47, - 62, - 546, - 77 - ], - "score": 1.0, - "content": "15 An electron gun is used to accelerate electrons from rest through a voltage V. The electrons", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 70, - 77, - 187, - 89 - ], - "spans": [ - { - "bbox": [ - 70, - 77, - 187, - 89 - ], - "score": 1.0, - "content": "emerge with a speed u.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "image", - "bbox": [ - 178, - 106, - 400, - 255 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 178, - 106, - 400, - 255 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 178, - 106, - 400, - 255 - ], - "spans": [ - { - "bbox": [ - 178, - 106, - 400, - 255 - ], - "score": 0.962, - "type": "image", - "image_path": "5d59fc0e036b924018b5ec46a687e23898feb49163f70fbe4b29f96fe3459ceb.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 178, - 106, - 400, - 120.5 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 178, - 120.5, - 400, - 135.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 178, - 135.0, - 400, - 149.5 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 178, - 149.5, - 400, - 164.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 178, - 164.0, - 400, - 178.5 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 178, - 178.5, - 400, - 193.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 178, - 193.0, - 400, - 207.5 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 178, - 207.5, - 400, - 222.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 178, - 222.0, - 400, - 236.5 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 178, - 236.5, - 400, - 251.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 178, - 251.0, - 400, - 265.5 - ], - "spans": [], - "index": 12 - } - ] - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 70, - 284, - 457, - 310 - ], - "lines": [ - { - "bbox": [ - 72, - 284, - 457, - 311 - ], - "spans": [ - { - "bbox": [ - 72, - 291, - 240, - 303 - ], - "score": 1.0, - "content": "The voltage in the gun is halved to", - "type": "text" - }, - { - "bbox": [ - 241, - 284, - 254, - 311 - ], - "score": 0.84, - "content": "\\frac{V}{2}", - "type": "inline_equation", - "height": 27, - "width": 13 - }, - { - "bbox": [ - 258, - 290, - 457, - 304 - ], - "score": 1.0, - "content": "At what speed do the electrons emerge?", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "text", - "bbox": [ - 69, - 312, - 118, - 428 - ], - "lines": [ - { - "bbox": [ - 70, - 312, - 105, - 330 - ], - "spans": [ - { - "bbox": [ - 70, - 316, - 82, - 330 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 95, - 312, - 105, - 323 - ], - "score": 1.0, - "content": "u", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 94, - 324, - 105, - 338 - ], - "spans": [ - { - "bbox": [ - 94, - 324, - 105, - 338 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 70, - 343, - 106, - 361 - ], - "spans": [ - { - "bbox": [ - 70, - 348, - 82, - 361 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 93, - 343, - 106, - 360 - ], - "score": 1.0, - "content": "u", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 94, - 356, - 106, - 371 - ], - "spans": [ - { - "bbox": [ - 94, - 356, - 106, - 371 - ], - "score": 1.0, - "content": "2", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 70, - 374, - 113, - 404 - ], - "spans": [ - { - "bbox": [ - 70, - 379, - 82, - 393 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 94, - 374, - 113, - 404 - ], - "score": 0.4, - "content": "\\frac{u}{\\sqrt{2}}", - "type": "inline_equation", - "height": 30, - "width": 19 - } - ], - "index": 18 - }, - { - "bbox": [ - 70, - 410, - 118, - 428 - ], - "spans": [ - { - "bbox": [ - 70, - 414, - 82, - 427 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 94, - 410, - 118, - 428 - ], - "score": 0.32, - "content": "u\\sqrt2", - "type": "inline_equation", - "height": 18, - "width": 24 - } - ], - "index": 19 - } - ], - "index": 16.5 - }, - { - "type": "text", - "bbox": [ - 70, - 437, - 167, - 463 - ], - "lines": [ - { - "bbox": [ - 71, - 446, - 134, - 460 - ], - "spans": [ - { - "bbox": [ - 71, - 446, - 134, - 460 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 20 - }, - { - "type": "text", - "bbox": [ - 47, - 483, - 546, - 511 - ], - "lines": [ - { - "bbox": [ - 49, - 484, - 547, - 498 - ], - "spans": [ - { - "bbox": [ - 49, - 484, - 163, - 498 - ], - "score": 1.0, - "content": "16 Photons of energy", - "type": "text" - }, - { - "bbox": [ - 163, - 484, - 226, - 497 - ], - "score": 0.91, - "content": "4.8\\times10^{-19}\\mathrm{J}", - "type": "inline_equation", - "height": 13, - "width": 63 - }, - { - "bbox": [ - 226, - 484, - 547, - 498 - ], - "score": 1.0, - "content": " are incident on the surface of a clean metal plate of work function", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 70, - 497, - 138, - 510 - ], - "spans": [ - { - "bbox": [ - 70, - 497, - 133, - 510 - ], - "score": 0.9, - "content": "3.2\\times10^{-19}\\mathrm{J}", - "type": "inline_equation", - "height": 13, - "width": 63 - }, - { - "bbox": [ - 133, - 497, - 138, - 510 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 21.5 - }, - { - "type": "text", - "bbox": [ - 70, - 523, - 318, - 538 - ], - "lines": [ - { - "bbox": [ - 72, - 525, - 316, - 536 - ], - "spans": [ - { - "bbox": [ - 72, - 525, - 316, - 536 - ], - "score": 1.0, - "content": "What is the maximum speed of emitted electrons?", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 23 - }, - { - "type": "text", - "bbox": [ - 69, - 548, - 167, - 642 - ], - "lines": [ - { - "bbox": [ - 70, - 548, - 167, - 563 - ], - "spans": [ - { - "bbox": [ - 70, - 549, - 82, - 563 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 93, - 548, - 167, - 563 - ], - "score": 0.45, - "content": "5.9\\times10^{5}\\mathrm{m}s^{-1}", - "type": "inline_equation", - "height": 15, - "width": 74 - } - ], - "index": 24 - }, - { - "bbox": [ - 70, - 574, - 167, - 589 - ], - "spans": [ - { - "bbox": [ - 70, - 575, - 82, - 588 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 93, - 574, - 167, - 589 - ], - "score": 0.35, - "content": "8.4\\times10^{5}\\mathrm{m}s^{-1}", - "type": "inline_equation", - "height": 15, - "width": 74 - } - ], - "index": 25 - }, - { - "bbox": [ - 70, - 601, - 166, - 615 - ], - "spans": [ - { - "bbox": [ - 70, - 601, - 82, - 615 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 94, - 601, - 166, - 613 - ], - "score": 1.0, - "content": "1.0 × 106 m s–1", - "type": "text" - } - ], - "index": 26 - }, - { - "bbox": [ - 70, - 627, - 166, - 641 - ], - "spans": [ - { - "bbox": [ - 70, - 628, - 82, - 641 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 93, - 627, - 166, - 639 - ], - "score": 1.0, - "content": "1.3 × 106 m s–1", - "type": "text" - } - ], - "index": 27 - } - ], - "index": 25.5 - }, - { - "type": "text", - "bbox": [ - 70, - 651, - 167, - 677 - ], - "lines": [ - { - "bbox": [ - 71, - 659, - 134, - 673 - ], - "spans": [ - { - "bbox": [ - 71, - 659, - 134, - 673 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 28 - } - ], - "index": 28 - } - ], - "layout_bboxes": [], - "page_idx": 9, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 178, - 106, - 400, - 255 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 178, - 106, - 400, - 255 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 178, - 106, - 400, - 255 - ], - "spans": [ - { - "bbox": [ - 178, - 106, - 400, - 255 - ], - "score": 0.962, - "type": "image", - "image_path": "5d59fc0e036b924018b5ec46a687e23898feb49163f70fbe4b29f96fe3459ceb.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 178, - 106, - 400, - 120.5 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 178, - 120.5, - 400, - 135.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 178, - 135.0, - 400, - 149.5 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 178, - 149.5, - 400, - 164.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 178, - 164.0, - 400, - 178.5 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 178, - 178.5, - 400, - 193.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 178, - 193.0, - 400, - 207.5 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 178, - 207.5, - 400, - 222.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 178, - 222.0, - 400, - 236.5 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 178, - 236.5, - 400, - 251.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 178, - 251.0, - 400, - 265.5 - ], - "spans": [], - "index": 12 - } - ] - } - ], - "index": 7 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 787 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 660, - 546, - 673 - ], - "lines": [ - { - "bbox": [ - 530, - 658, - 549, - 676 - ], - "spans": [ - { - "bbox": [ - 530, - 658, - 549, - 676 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 291, - 44, - 305, - 56 - ], - "lines": [ - { - "bbox": [ - 289, - 44, - 307, - 59 - ], - "spans": [ - { - "bbox": [ - 289, - 44, - 307, - 59 - ], - "score": 1.0, - "content": "10", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 446, - 546, - 459 - ], - "lines": [ - { - "bbox": [ - 530, - 445, - 549, - 462 - ], - "spans": [ - { - "bbox": [ - 530, - 445, - 549, - 462 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 47, - 62, - 543, - 90 - ], - "lines": [ - { - "bbox": [ - 47, - 62, - 546, - 77 - ], - "spans": [ - { - "bbox": [ - 47, - 62, - 546, - 77 - ], - "score": 1.0, - "content": "15 An electron gun is used to accelerate electrons from rest through a voltage V. The electrons", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 70, - 77, - 187, - 89 - ], - "spans": [ - { - "bbox": [ - 70, - 77, - 187, - 89 - ], - "score": 1.0, - "content": "emerge with a speed u.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_9", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 62, - 546, - 89 - ] - }, - { - "type": "image", - "bbox": [ - 178, - 106, - 400, - 255 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 178, - 106, - 400, - 255 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 178, - 106, - 400, - 255 - ], - "spans": [ - { - "bbox": [ - 178, - 106, - 400, - 255 - ], - "score": 0.962, - "type": "image", - "image_path": "5d59fc0e036b924018b5ec46a687e23898feb49163f70fbe4b29f96fe3459ceb.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 178, - 106, - 400, - 120.5 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 178, - 120.5, - 400, - 135.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 178, - 135.0, - 400, - 149.5 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 178, - 149.5, - 400, - 164.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 178, - 164.0, - 400, - 178.5 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 178, - 178.5, - 400, - 193.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 178, - 193.0, - 400, - 207.5 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 178, - 207.5, - 400, - 222.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 178, - 222.0, - 400, - 236.5 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 178, - 236.5, - 400, - 251.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 178, - 251.0, - 400, - 265.5 - ], - "spans": [], - "index": 12 - } - ] - } - ], - "index": 7, - "page_num": "page_9", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 284, - 457, - 310 - ], - "lines": [ - { - "bbox": [ - 72, - 284, - 457, - 311 - ], - "spans": [ - { - "bbox": [ - 72, - 291, - 240, - 303 - ], - "score": 1.0, - "content": "The voltage in the gun is halved to", - "type": "text" - }, - { - "bbox": [ - 241, - 284, - 254, - 311 - ], - "score": 0.84, - "content": "\\frac{V}{2}", - "type": "inline_equation", - "height": 27, - "width": 13 - }, - { - "bbox": [ - 258, - 290, - 457, - 304 - ], - "score": 1.0, - "content": "At what speed do the electrons emerge?", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_9", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 284, - 457, - 311 - ] - }, - { - "type": "list", - "bbox": [ - 69, - 312, - 118, - 428 - ], - "lines": [ - { - "bbox": [ - 70, - 312, - 105, - 330 - ], - "spans": [ - { - "bbox": [ - 70, - 316, - 82, - 330 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 95, - 312, - 105, - 323 - ], - "score": 1.0, - "content": "u", - "type": "text" - } - ], - "index": 14, - "is_list_start_line": true - }, - { - "bbox": [ - 94, - 324, - 105, - 338 - ], - "spans": [ - { - "bbox": [ - 94, - 324, - 105, - 338 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 70, - 343, - 106, - 361 - ], - "spans": [ - { - "bbox": [ - 70, - 348, - 82, - 361 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 93, - 343, - 106, - 360 - ], - "score": 1.0, - "content": "u", - "type": "text" - } - ], - "index": 16, - "is_list_start_line": true - }, - { - "bbox": [ - 94, - 356, - 106, - 371 - ], - "spans": [ - { - "bbox": [ - 94, - 356, - 106, - 371 - ], - "score": 1.0, - "content": "2", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 70, - 374, - 113, - 404 - ], - "spans": [ - { - "bbox": [ - 70, - 379, - 82, - 393 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 94, - 374, - 113, - 404 - ], - "score": 0.4, - "content": "\\frac{u}{\\sqrt{2}}", - "type": "inline_equation", - "height": 30, - "width": 19 - } - ], - "index": 18, - "is_list_start_line": true - }, - { - "bbox": [ - 70, - 410, - 118, - 428 - ], - "spans": [ - { - "bbox": [ - 70, - 414, - 82, - 427 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 94, - 410, - 118, - 428 - ], - "score": 0.32, - "content": "u\\sqrt2", - "type": "inline_equation", - "height": 18, - "width": 24 - } - ], - "index": 19, - "is_list_start_line": true - } - ], - "index": 16.5, - "page_num": "page_9", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 312, - 118, - 428 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 437, - 167, - 463 - ], - "lines": [ - { - "bbox": [ - 71, - 446, - 134, - 460 - ], - "spans": [ - { - "bbox": [ - 71, - 446, - 134, - 460 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 20, - "page_num": "page_9", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 446, - 134, - 460 - ] - }, - { - "type": "text", - "bbox": [ - 47, - 483, - 546, - 511 - ], - "lines": [ - { - "bbox": [ - 49, - 484, - 547, - 498 - ], - "spans": [ - { - "bbox": [ - 49, - 484, - 163, - 498 - ], - "score": 1.0, - "content": "16 Photons of energy", - "type": "text" - }, - { - "bbox": [ - 163, - 484, - 226, - 497 - ], - "score": 0.91, - "content": "4.8\\times10^{-19}\\mathrm{J}", - "type": "inline_equation", - "height": 13, - "width": 63 - }, - { - "bbox": [ - 226, - 484, - 547, - 498 - ], - "score": 1.0, - "content": " are incident on the surface of a clean metal plate of work function", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 70, - 497, - 138, - 510 - ], - "spans": [ - { - "bbox": [ - 70, - 497, - 133, - 510 - ], - "score": 0.9, - "content": "3.2\\times10^{-19}\\mathrm{J}", - "type": "inline_equation", - "height": 13, - "width": 63 - }, - { - "bbox": [ - 133, - 497, - 138, - 510 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 21.5, - "page_num": "page_9", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 49, - 484, - 547, - 510 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 523, - 318, - 538 - ], - "lines": [ - { - "bbox": [ - 72, - 525, - 316, - 536 - ], - "spans": [ - { - "bbox": [ - 72, - 525, - 316, - 536 - ], - "score": 1.0, - "content": "What is the maximum speed of emitted electrons?", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 23, - "page_num": "page_9", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 525, - 316, - 536 - ] - }, - { - "type": "text", - "bbox": [ - 69, - 548, - 167, - 642 - ], - "lines": [ - { - "bbox": [ - 70, - 548, - 167, - 563 - ], - "spans": [ - { - "bbox": [ - 70, - 549, - 82, - 563 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 93, - 548, - 167, - 563 - ], - "score": 0.45, - "content": "5.9\\times10^{5}\\mathrm{m}s^{-1}", - "type": "inline_equation", - "height": 15, - "width": 74 - } - ], - "index": 24 - }, - { - "bbox": [ - 70, - 574, - 167, - 589 - ], - "spans": [ - { - "bbox": [ - 70, - 575, - 82, - 588 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 93, - 574, - 167, - 589 - ], - "score": 0.35, - "content": "8.4\\times10^{5}\\mathrm{m}s^{-1}", - "type": "inline_equation", - "height": 15, - "width": 74 - } - ], - "index": 25 - }, - { - "bbox": [ - 70, - 601, - 166, - 615 - ], - "spans": [ - { - "bbox": [ - 70, - 601, - 82, - 615 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 94, - 601, - 166, - 613 - ], - "score": 1.0, - "content": "1.0 × 106 m s–1", - "type": "text" - } - ], - "index": 26 - }, - { - "bbox": [ - 70, - 627, - 166, - 641 - ], - "spans": [ - { - "bbox": [ - 70, - 628, - 82, - 641 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 93, - 627, - 166, - 639 - ], - "score": 1.0, - "content": "1.3 × 106 m s–1", - "type": "text" - } - ], - "index": 27 - } - ], - "index": 25.5, - "page_num": "page_9", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 548, - 167, - 641 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 651, - 167, - 677 - ], - "lines": [ - { - "bbox": [ - 71, - 659, - 134, - 673 - ], - "spans": [ - { - "bbox": [ - 71, - 659, - 134, - 673 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 28 - } - ], - "index": 28, - "page_num": "page_9", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 659, - 134, - 673 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 49, - 62, - 543, - 89 - ], - "lines": [ - { - "bbox": [ - 47, - 62, - 546, - 77 - ], - "spans": [ - { - "bbox": [ - 47, - 62, - 546, - 77 - ], - "score": 1.0, - "content": "17 Two guitar strings of equal length, but of different thickness, are under the same tension. The", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 72, - 77, - 261, - 89 - ], - "spans": [ - { - "bbox": [ - 72, - 77, - 261, - 89 - ], - "score": 1.0, - "content": "strings are made of the same material.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 70, - 101, - 534, - 156 - ], - "lines": [ - { - "bbox": [ - 71, - 102, - 531, - 115 - ], - "spans": [ - { - "bbox": [ - 71, - 103, - 247, - 115 - ], - "score": 1.0, - "content": "The thinner string has a diameter of", - "type": "text" - }, - { - "bbox": [ - 248, - 102, - 291, - 115 - ], - "score": 0.41, - "content": "0.20\\mathsf{m m}", - "type": "inline_equation", - "height": 13, - "width": 43 - }, - { - "bbox": [ - 291, - 103, - 485, - 115 - ], - "score": 1.0, - "content": " and the thicker string has a diameter of ", - "type": "text" - }, - { - "bbox": [ - 485, - 102, - 528, - 115 - ], - "score": 0.49, - "content": "0.80\\mathrm{mm}", - "type": "inline_equation", - "height": 13, - "width": 43 - }, - { - "bbox": [ - 528, - 103, - 531, - 115 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 213, - 124, - 428, - 141 - ], - "spans": [ - { - "bbox": [ - 213, - 124, - 428, - 141 - ], - "score": 1.0, - "content": "elastic potential energy in the thinner string", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 71, - 135, - 212, - 146 - ], - "spans": [ - { - "bbox": [ - 71, - 135, - 212, - 146 - ], - "score": 1.0, - "content": "What is the value of the ratio", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 214, - 141, - 425, - 156 - ], - "spans": [ - { - "bbox": [ - 214, - 141, - 425, - 156 - ], - "score": 1.0, - "content": "elastic potential energy in the thicker string", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 3.5 - }, - { - "type": "text", - "bbox": [ - 69, - 173, - 124, - 265 - ], - "lines": [ - { - "bbox": [ - 69, - 173, - 124, - 187 - ], - "spans": [ - { - "bbox": [ - 69, - 173, - 82, - 187 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 93, - 174, - 124, - 186 - ], - "score": 1.0, - "content": "0.125", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 70, - 199, - 118, - 213 - ], - "spans": [ - { - "bbox": [ - 70, - 199, - 82, - 213 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 93, - 200, - 118, - 213 - ], - "score": 1.0, - "content": "0.25", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 70, - 224, - 113, - 239 - ], - "spans": [ - { - "bbox": [ - 70, - 224, - 82, - 239 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 225, - 113, - 239 - ], - "score": 1.0, - "content": "4.0", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 70, - 251, - 109, - 265 - ], - "spans": [ - { - "bbox": [ - 70, - 252, - 82, - 264 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 93, - 251, - 109, - 265 - ], - "score": 1.0, - "content": "16", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 7.5 - }, - { - "type": "text", - "bbox": [ - 70, - 275, - 167, - 300 - ], - "lines": [ - { - "bbox": [ - 72, - 284, - 134, - 296 - ], - "spans": [ - { - "bbox": [ - 72, - 284, - 134, - 296 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 49, - 322, - 517, - 349 - ], - "lines": [ - { - "bbox": [ - 48, - 322, - 514, - 336 - ], - "spans": [ - { - "bbox": [ - 48, - 322, - 218, - 336 - ], - "score": 1.0, - "content": "18 A ball is thrown at an angle of ", - "type": "text" - }, - { - "bbox": [ - 218, - 323, - 237, - 335 - ], - "score": 0.89, - "content": "{\\mathfrak{30}}^{\\circ}", - "type": "inline_equation", - "height": 12, - "width": 19 - }, - { - "bbox": [ - 237, - 322, - 504, - 336 - ], - "score": 1.0, - "content": " to the horizontal. The initial kinetic energy of the ball is ", - "type": "text" - }, - { - "bbox": [ - 504, - 323, - 514, - 334 - ], - "score": 0.4, - "content": "K.", - "type": "inline_equation", - "height": 11, - "width": 10 - } - ], - "index": 11 - }, - { - "bbox": [ - 72, - 337, - 362, - 348 - ], - "spans": [ - { - "bbox": [ - 72, - 337, - 362, - 348 - ], - "score": 1.0, - "content": "Air resistance has negligible effect on the motion of the ball.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11.5 - }, - { - "type": "image", - "bbox": [ - 85, - 365, - 500, - 438 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 85, - 365, - 500, - 438 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 85, - 365, - 500, - 438 - ], - "spans": [ - { - "bbox": [ - 85, - 365, - 500, - 438 - ], - "score": 0.907, - "type": "image", - "image_path": "db55862eee091ed45882894d34289e2cc148b09d99e5f464a66726056908cfca.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 85, - 365, - 500, - 389.3333333333333 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 85, - 389.3333333333333, - 500, - 413.66666666666663 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 85, - 413.66666666666663, - 500, - 437.99999999999994 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 70, - 455, - 371, - 470 - ], - "lines": [ - { - "bbox": [ - 71, - 457, - 370, - 469 - ], - "spans": [ - { - "bbox": [ - 71, - 457, - 370, - 469 - ], - "score": 1.0, - "content": "What is the kinetic energy of the ball at the maximum height?", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16 - }, - { - "type": "text", - "bbox": [ - 69, - 482, - 129, - 573 - ], - "lines": [ - { - "bbox": [ - 70, - 482, - 103, - 495 - ], - "spans": [ - { - "bbox": [ - 70, - 482, - 82, - 495 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 92, - 482, - 103, - 495 - ], - "score": 1.0, - "content": "0", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 70, - 507, - 128, - 520 - ], - "spans": [ - { - "bbox": [ - 70, - 508, - 82, - 520 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 93, - 507, - 128, - 520 - ], - "score": 1.0, - "content": "0.25 K", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 70, - 534, - 129, - 547 - ], - "spans": [ - { - "bbox": [ - 70, - 534, - 82, - 547 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 534, - 129, - 547 - ], - "score": 1.0, - "content": "0.75 K", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 70, - 560, - 128, - 573 - ], - "spans": [ - { - "bbox": [ - 70, - 560, - 82, - 573 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 93, - 560, - 128, - 573 - ], - "score": 1.0, - "content": "0.87 K", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 18.5 - }, - { - "type": "text", - "bbox": [ - 70, - 584, - 167, - 609 - ], - "lines": [ - { - "bbox": [ - 71, - 592, - 134, - 606 - ], - "spans": [ - { - "bbox": [ - 71, - 592, - 134, - 606 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 21 - } - ], - "layout_bboxes": [], - "page_idx": 10, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 85, - 365, - 500, - 438 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 85, - 365, - 500, - 438 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 85, - 365, - 500, - 438 - ], - "spans": [ - { - "bbox": [ - 85, - 365, - 500, - 438 - ], - "score": 0.907, - "type": "image", - "image_path": "db55862eee091ed45882894d34289e2cc148b09d99e5f464a66726056908cfca.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 85, - 365, - 500, - 389.3333333333333 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 85, - 389.3333333333333, - 500, - 413.66666666666663 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 85, - 413.66666666666663, - 500, - 437.99999999999994 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 14 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 593, - 546, - 605 - ], - "lines": [ - { - "bbox": [ - 530, - 591, - 549, - 608 - ], - "spans": [ - { - "bbox": [ - 530, - 591, - 549, - 608 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 284, - 546, - 297 - ], - "lines": [ - { - "bbox": [ - 530, - 282, - 549, - 299 - ], - "spans": [ - { - "bbox": [ - 530, - 282, - 549, - 299 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 485, - 774, - 531, - 785 - ], - "lines": [ - { - "bbox": [ - 484, - 774, - 532, - 785 - ], - "spans": [ - { - "bbox": [ - 484, - 774, - 532, - 785 - ], - "score": 1.0, - "content": "Turn over", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 291, - 44, - 304, - 56 - ], - "lines": [ - { - "bbox": [ - 289, - 43, - 306, - 58 - ], - "spans": [ - { - "bbox": [ - 289, - 43, - 306, - 58 - ], - "score": 1.0, - "content": "11", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 49, - 62, - 543, - 89 - ], - "lines": [ - { - "bbox": [ - 47, - 62, - 546, - 77 - ], - "spans": [ - { - "bbox": [ - 47, - 62, - 546, - 77 - ], - "score": 1.0, - "content": "17 Two guitar strings of equal length, but of different thickness, are under the same tension. The", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 72, - 77, - 261, - 89 - ], - "spans": [ - { - "bbox": [ - 72, - 77, - 261, - 89 - ], - "score": 1.0, - "content": "strings are made of the same material.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_10", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 62, - 546, - 89 - ] - }, - { - "type": "list", - "bbox": [ - 70, - 101, - 534, - 156 - ], - "lines": [ - { - "bbox": [ - 71, - 102, - 531, - 115 - ], - "spans": [ - { - "bbox": [ - 71, - 103, - 247, - 115 - ], - "score": 1.0, - "content": "The thinner string has a diameter of", - "type": "text" - }, - { - "bbox": [ - 248, - 102, - 291, - 115 - ], - "score": 0.41, - "content": "0.20\\mathsf{m m}", - "type": "inline_equation", - "height": 13, - "width": 43 - }, - { - "bbox": [ - 291, - 103, - 485, - 115 - ], - "score": 1.0, - "content": " and the thicker string has a diameter of ", - "type": "text" - }, - { - "bbox": [ - 485, - 102, - 528, - 115 - ], - "score": 0.49, - "content": "0.80\\mathrm{mm}", - "type": "inline_equation", - "height": 13, - "width": 43 - }, - { - "bbox": [ - 528, - 103, - 531, - 115 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 2, - "is_list_start_line": true - }, - { - "bbox": [ - 213, - 124, - 428, - 141 - ], - "spans": [ - { - "bbox": [ - 213, - 124, - 428, - 141 - ], - "score": 1.0, - "content": "elastic potential energy in the thinner string", - "type": "text" - } - ], - "index": 4, - "is_list_end_line": true - }, - { - "bbox": [ - 71, - 135, - 212, - 146 - ], - "spans": [ - { - "bbox": [ - 71, - 135, - 212, - 146 - ], - "score": 1.0, - "content": "What is the value of the ratio", - "type": "text" - } - ], - "index": 3, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 214, - 141, - 425, - 156 - ], - "spans": [ - { - "bbox": [ - 214, - 141, - 425, - 156 - ], - "score": 1.0, - "content": "elastic potential energy in the thicker string", - "type": "text" - } - ], - "index": 5, - "is_list_end_line": true - } - ], - "index": 3.5, - "page_num": "page_10", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 102, - 531, - 156 - ] - }, - { - "type": "index", - "bbox": [ - 69, - 173, - 124, - 265 - ], - "lines": [ - { - "bbox": [ - 69, - 173, - 124, - 187 - ], - "spans": [ - { - "bbox": [ - 69, - 173, - 82, - 187 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 93, - 174, - 124, - 186 - ], - "score": 1.0, - "content": "0.125", - "type": "text" - } - ], - "index": 6, - "is_list_start_line": true - }, - { - "bbox": [ - 70, - 199, - 118, - 213 - ], - "spans": [ - { - "bbox": [ - 70, - 199, - 82, - 213 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 93, - 200, - 118, - 213 - ], - "score": 1.0, - "content": "0.25", - "type": "text" - } - ], - "index": 7, - "is_list_start_line": true - }, - { - "bbox": [ - 70, - 224, - 113, - 239 - ], - "spans": [ - { - "bbox": [ - 70, - 224, - 82, - 239 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 225, - 113, - 239 - ], - "score": 1.0, - "content": "4.0", - "type": "text" - } - ], - "index": 8, - "is_list_start_line": true - }, - { - "bbox": [ - 70, - 251, - 109, - 265 - ], - "spans": [ - { - "bbox": [ - 70, - 252, - 82, - 264 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 93, - 251, - 109, - 265 - ], - "score": 1.0, - "content": "16", - "type": "text" - } - ], - "index": 9, - "is_list_start_line": true - } - ], - "index": 7.5, - "page_num": "page_10", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 69, - 173, - 124, - 265 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 275, - 167, - 300 - ], - "lines": [ - { - "bbox": [ - 72, - 284, - 134, - 296 - ], - "spans": [ - { - "bbox": [ - 72, - 284, - 134, - 296 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_10", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 284, - 134, - 296 - ] - }, - { - "type": "text", - "bbox": [ - 49, - 322, - 517, - 349 - ], - "lines": [ - { - "bbox": [ - 48, - 322, - 514, - 336 - ], - "spans": [ - { - "bbox": [ - 48, - 322, - 218, - 336 - ], - "score": 1.0, - "content": "18 A ball is thrown at an angle of ", - "type": "text" - }, - { - "bbox": [ - 218, - 323, - 237, - 335 - ], - "score": 0.89, - "content": "{\\mathfrak{30}}^{\\circ}", - "type": "inline_equation", - "height": 12, - "width": 19 - }, - { - "bbox": [ - 237, - 322, - 504, - 336 - ], - "score": 1.0, - "content": " to the horizontal. The initial kinetic energy of the ball is ", - "type": "text" - }, - { - "bbox": [ - 504, - 323, - 514, - 334 - ], - "score": 0.4, - "content": "K.", - "type": "inline_equation", - "height": 11, - "width": 10 - } - ], - "index": 11 - }, - { - "bbox": [ - 72, - 337, - 362, - 348 - ], - "spans": [ - { - "bbox": [ - 72, - 337, - 362, - 348 - ], - "score": 1.0, - "content": "Air resistance has negligible effect on the motion of the ball.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11.5, - "page_num": "page_10", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 48, - 322, - 514, - 348 - ] - }, - { - "type": "image", - "bbox": [ - 85, - 365, - 500, - 438 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 85, - 365, - 500, - 438 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 85, - 365, - 500, - 438 - ], - "spans": [ - { - "bbox": [ - 85, - 365, - 500, - 438 - ], - "score": 0.907, - "type": "image", - "image_path": "db55862eee091ed45882894d34289e2cc148b09d99e5f464a66726056908cfca.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 85, - 365, - 500, - 389.3333333333333 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 85, - 389.3333333333333, - 500, - 413.66666666666663 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 85, - 413.66666666666663, - 500, - 437.99999999999994 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 14, - "page_num": "page_10", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 455, - 371, - 470 - ], - "lines": [ - { - "bbox": [ - 71, - 457, - 370, - 469 - ], - "spans": [ - { - "bbox": [ - 71, - 457, - 370, - 469 - ], - "score": 1.0, - "content": "What is the kinetic energy of the ball at the maximum height?", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16, - "page_num": "page_10", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 457, - 370, - 469 - ] - }, - { - "type": "text", - "bbox": [ - 69, - 482, - 129, - 573 - ], - "lines": [ - { - "bbox": [ - 70, - 482, - 103, - 495 - ], - "spans": [ - { - "bbox": [ - 70, - 482, - 82, - 495 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 92, - 482, - 103, - 495 - ], - "score": 1.0, - "content": "0", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 70, - 507, - 128, - 520 - ], - "spans": [ - { - "bbox": [ - 70, - 508, - 82, - 520 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 93, - 507, - 128, - 520 - ], - "score": 1.0, - "content": "0.25 K", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 70, - 534, - 129, - 547 - ], - "spans": [ - { - "bbox": [ - 70, - 534, - 82, - 547 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 534, - 129, - 547 - ], - "score": 1.0, - "content": "0.75 K", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 70, - 560, - 128, - 573 - ], - "spans": [ - { - "bbox": [ - 70, - 560, - 82, - 573 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 93, - 560, - 128, - 573 - ], - "score": 1.0, - "content": "0.87 K", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 18.5, - "page_num": "page_10", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 482, - 129, - 573 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 584, - 167, - 609 - ], - "lines": [ - { - "bbox": [ - 71, - 592, - 134, - 606 - ], - "spans": [ - { - "bbox": [ - 71, - 592, - 134, - 606 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 21, - "page_num": "page_10", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 592, - 134, - 606 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 47, - 62, - 543, - 89 - ], - "lines": [ - { - "bbox": [ - 49, - 64, - 544, - 76 - ], - "spans": [ - { - "bbox": [ - 49, - 64, - 184, - 76 - ], - "score": 1.0, - "content": "19 A resistor of resistance", - "type": "text" - }, - { - "bbox": [ - 185, - 64, - 195, - 75 - ], - "score": 0.37, - "content": "R", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 196, - 64, - 544, - 76 - ], - "score": 1.0, - "content": "is connected in parallel with a resistor of resistance 2R. The combination", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 71, - 77, - 235, - 88 - ], - "spans": [ - { - "bbox": [ - 71, - 77, - 235, - 88 - ], - "score": 1.0, - "content": "of resistors is connected to a cell.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "image", - "bbox": [ - 204, - 100, - 383, - 193 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 204, - 100, - 383, - 193 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 204, - 100, - 383, - 193 - ], - "spans": [ - { - "bbox": [ - 204, - 100, - 383, - 193 - ], - "score": 0.965, - "type": "image", - "image_path": "1b6f3d6ccbfcc1b05b01301802fde8c92591db380a22245c4f8b78ad65ac57fe.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 204, - 100, - 383, - 114.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 204, - 114.0, - 383, - 128.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 204, - 128.0, - 383, - 142.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 204, - 142.0, - 383, - 156.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 204, - 156.0, - 383, - 170.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 204, - 170.0, - 383, - 184.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 204, - 184.0, - 383, - 198.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 70, - 218, - 383, - 248 - ], - "lines": [ - { - "bbox": [ - 158, - 221, - 370, - 230 - ], - "spans": [ - { - "bbox": [ - 158, - 221, - 370, - 230 - ], - "score": 1.0, - "content": "power dissipated in resistor of resistance R", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 72, - 229, - 152, - 239 - ], - "spans": [ - { - "bbox": [ - 72, - 229, - 152, - 239 - ], - "score": 1.0, - "content": "What is the ratio", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 154, - 235, - 374, - 247 - ], - "spans": [ - { - "bbox": [ - 154, - 236, - 355, - 246 - ], - "score": 1.0, - "content": "power dissipated in resistor of resistance", - "type": "text" - }, - { - "bbox": [ - 356, - 235, - 374, - 247 - ], - "score": 0.28, - "content": "_{2R}", - "type": "inline_equation", - "height": 12, - "width": 18 - } - ], - "index": 11 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 69, - 250, - 107, - 346 - ], - "lines": [ - { - "bbox": [ - 94, - 249, - 105, - 264 - ], - "spans": [ - { - "bbox": [ - 94, - 249, - 105, - 264 - ], - "score": 1.0, - "content": "1", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 70, - 256, - 82, - 270 - ], - "spans": [ - { - "bbox": [ - 70, - 256, - 82, - 270 - ], - "score": 1.0, - "content": "A ", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 94, - 263, - 105, - 278 - ], - "spans": [ - { - "bbox": [ - 94, - 263, - 105, - 278 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 94, - 278, - 105, - 293 - ], - "spans": [ - { - "bbox": [ - 94, - 278, - 105, - 293 - ], - "score": 1.0, - "content": "1", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 70, - 285, - 82, - 300 - ], - "spans": [ - { - "bbox": [ - 70, - 285, - 82, - 300 - ], - "score": 1.0, - "content": "B ", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 93, - 292, - 106, - 309 - ], - "spans": [ - { - "bbox": [ - 93, - 292, - 106, - 309 - ], - "score": 1.0, - "content": "2", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 70, - 308, - 104, - 324 - ], - "spans": [ - { - "bbox": [ - 70, - 308, - 83, - 324 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 94, - 309, - 104, - 323 - ], - "score": 1.0, - "content": " 1", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 69, - 333, - 105, - 348 - ], - "spans": [ - { - "bbox": [ - 69, - 333, - 83, - 348 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 93, - 333, - 105, - 348 - ], - "score": 1.0, - "content": " 2", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 15.5 - }, - { - "type": "text", - "bbox": [ - 70, - 357, - 167, - 382 - ], - "lines": [ - { - "bbox": [ - 72, - 366, - 133, - 377 - ], - "spans": [ - { - "bbox": [ - 72, - 366, - 133, - 377 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 20 - }, - { - "type": "text", - "bbox": [ - 48, - 402, - 549, - 431 - ], - "lines": [ - { - "bbox": [ - 48, - 403, - 548, - 418 - ], - "spans": [ - { - "bbox": [ - 48, - 404, - 198, - 418 - ], - "score": 1.0, - "content": "20 The speed of light in air is", - "type": "text" - }, - { - "bbox": [ - 198, - 403, - 271, - 416 - ], - "score": 0.92, - "content": "3.0\\times10^{8}\\mathrm{m}s^{-1}", - "type": "inline_equation", - "height": 13, - "width": 73 - }, - { - "bbox": [ - 271, - 404, - 430, - 418 - ], - "score": 1.0, - "content": " and the speed of light in glass is", - "type": "text" - }, - { - "bbox": [ - 431, - 403, - 504, - 416 - ], - "score": 0.91, - "content": "2.0\\times10^{8}\\mathrm{m}s^{-1}", - "type": "inline_equation", - "height": 13, - "width": 73 - }, - { - "bbox": [ - 504, - 404, - 548, - 418 - ], - "score": 1.0, - "content": ". A ray of ", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 70, - 416, - 531, - 431 - ], - "spans": [ - { - "bbox": [ - 70, - 416, - 429, - 431 - ], - "score": 1.0, - "content": "monochromatic light in glass strikes the glass-air boundary at an angle of", - "type": "text" - }, - { - "bbox": [ - 429, - 417, - 448, - 429 - ], - "score": 0.86, - "content": "{80^{\\circ}}", - "type": "inline_equation", - "height": 12, - "width": 19 - }, - { - "bbox": [ - 448, - 416, - 531, - 431 - ], - "score": 1.0, - "content": " to the boundary.", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 21.5 - }, - { - "type": "image", - "bbox": [ - 228, - 445, - 357, - 584 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 228, - 445, - 357, - 584 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 228, - 445, - 357, - 584 - ], - "spans": [ - { - "bbox": [ - 228, - 445, - 357, - 584 - ], - "score": 0.95, - "type": "image", - "image_path": "0ae7e9629a22c026e7c45c5e99cfebe294445c273ff317a0b689c559a6e78b6a.jpg" - } - ] - } - ], - "index": 23.5, - "virtual_lines": [ - { - "bbox": [ - 228, - 445, - 357, - 514.5 - ], - "spans": [], - "index": 23 - }, - { - "bbox": [ - 228, - 514.5, - 357, - 584.0 - ], - "spans": [], - "index": 24 - } - ] - } - ], - "index": 23.5 - }, - { - "type": "text", - "bbox": [ - 70, - 600, - 454, - 615 - ], - "lines": [ - { - "bbox": [ - 71, - 601, - 453, - 615 - ], - "spans": [ - { - "bbox": [ - 71, - 601, - 453, - 615 - ], - "score": 1.0, - "content": "What is the angle made to the normal by the ray of light leaving the boundary?", - "type": "text" - } - ], - "index": 25 - } - ], - "index": 25 - }, - { - "type": "text", - "bbox": [ - 69, - 626, - 114, - 711 - ], - "lines": [ - { - "bbox": [ - 70, - 626, - 117, - 639 - ], - "spans": [ - { - "bbox": [ - 70, - 627, - 82, - 639 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 92, - 626, - 117, - 639 - ], - "score": 1.0, - "content": "6.6°", - "type": "text" - } - ], - "index": 26 - }, - { - "bbox": [ - 70, - 650, - 113, - 663 - ], - "spans": [ - { - "bbox": [ - 70, - 650, - 82, - 663 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 92, - 650, - 113, - 663 - ], - "score": 1.0, - "content": "15°", - "type": "text" - } - ], - "index": 27 - }, - { - "bbox": [ - 70, - 673, - 114, - 688 - ], - "spans": [ - { - "bbox": [ - 70, - 673, - 82, - 688 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 92, - 673, - 114, - 687 - ], - "score": 1.0, - "content": "41°", - "type": "text" - } - ], - "index": 28 - }, - { - "bbox": [ - 70, - 698, - 114, - 712 - ], - "spans": [ - { - "bbox": [ - 70, - 699, - 82, - 711 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 92, - 698, - 114, - 712 - ], - "score": 1.0, - "content": "49°", - "type": "text" - } - ], - "index": 29 - } - ], - "index": 27.5 - }, - { - "type": "text", - "bbox": [ - 71, - 722, - 167, - 747 - ], - "lines": [ - { - "bbox": [ - 71, - 731, - 134, - 743 - ], - "spans": [ - { - "bbox": [ - 71, - 731, - 134, - 743 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 30 - } - ], - "index": 30 - } - ], - "layout_bboxes": [], - "page_idx": 11, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 204, - 100, - 383, - 193 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 204, - 100, - 383, - 193 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 204, - 100, - 383, - 193 - ], - "spans": [ - { - "bbox": [ - 204, - 100, - 383, - 193 - ], - "score": 0.965, - "type": "image", - "image_path": "1b6f3d6ccbfcc1b05b01301802fde8c92591db380a22245c4f8b78ad65ac57fe.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 204, - 100, - 383, - 114.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 204, - 114.0, - 383, - 128.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 204, - 128.0, - 383, - 142.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 204, - 142.0, - 383, - 156.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 204, - 156.0, - 383, - 170.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 204, - 170.0, - 383, - 184.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 204, - 184.0, - 383, - 198.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 5 - }, - { - "type": "image", - "bbox": [ - 228, - 445, - 357, - 584 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 228, - 445, - 357, - 584 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 228, - 445, - 357, - 584 - ], - "spans": [ - { - "bbox": [ - 228, - 445, - 357, - 584 - ], - "score": 0.95, - "type": "image", - "image_path": "0ae7e9629a22c026e7c45c5e99cfebe294445c273ff317a0b689c559a6e78b6a.jpg" - } - ] - } - ], - "index": 23.5, - "virtual_lines": [ - { - "bbox": [ - 228, - 445, - 357, - 514.5 - ], - "spans": [], - "index": 23 - }, - { - "bbox": [ - 228, - 514.5, - 357, - 584.0 - ], - "spans": [], - "index": 24 - } - ] - } - ], - "index": 23.5 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 777, - 96, - 787 - ], - "lines": [ - { - "bbox": [ - 60, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 60, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 731, - 546, - 744 - ], - "lines": [ - { - "bbox": [ - 530, - 729, - 549, - 746 - ], - "spans": [ - { - "bbox": [ - 530, - 729, - 549, - 746 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 366, - 546, - 379 - ], - "lines": [ - { - "bbox": [ - 529, - 364, - 549, - 381 - ], - "spans": [ - { - "bbox": [ - 529, - 364, - 549, - 381 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 291, - 44, - 305, - 56 - ], - "lines": [ - { - "bbox": [ - 288, - 43, - 307, - 60 - ], - "spans": [ - { - "bbox": [ - 288, - 43, - 307, - 60 - ], - "score": 1.0, - "content": "12", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 47, - 62, - 543, - 89 - ], - "lines": [ - { - "bbox": [ - 49, - 64, - 544, - 76 - ], - "spans": [ - { - "bbox": [ - 49, - 64, - 184, - 76 - ], - "score": 1.0, - "content": "19 A resistor of resistance", - "type": "text" - }, - { - "bbox": [ - 185, - 64, - 195, - 75 - ], - "score": 0.37, - "content": "R", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 196, - 64, - 544, - 76 - ], - "score": 1.0, - "content": "is connected in parallel with a resistor of resistance 2R. The combination", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 71, - 77, - 235, - 88 - ], - "spans": [ - { - "bbox": [ - 71, - 77, - 235, - 88 - ], - "score": 1.0, - "content": "of resistors is connected to a cell.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_11", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 49, - 64, - 544, - 88 - ] - }, - { - "type": "image", - "bbox": [ - 204, - 100, - 383, - 193 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 204, - 100, - 383, - 193 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 204, - 100, - 383, - 193 - ], - "spans": [ - { - "bbox": [ - 204, - 100, - 383, - 193 - ], - "score": 0.965, - "type": "image", - "image_path": "1b6f3d6ccbfcc1b05b01301802fde8c92591db380a22245c4f8b78ad65ac57fe.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 204, - 100, - 383, - 114.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 204, - 114.0, - 383, - 128.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 204, - 128.0, - 383, - 142.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 204, - 142.0, - 383, - 156.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 204, - 156.0, - 383, - 170.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 204, - 170.0, - 383, - 184.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 204, - 184.0, - 383, - 198.0 - ], - "spans": [], - "index": 8 - } - ] - } - ], - "index": 5, - "page_num": "page_11", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 218, - 383, - 248 - ], - "lines": [ - { - "bbox": [ - 158, - 221, - 370, - 230 - ], - "spans": [ - { - "bbox": [ - 158, - 221, - 370, - 230 - ], - "score": 1.0, - "content": "power dissipated in resistor of resistance R", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 72, - 229, - 152, - 239 - ], - "spans": [ - { - "bbox": [ - 72, - 229, - 152, - 239 - ], - "score": 1.0, - "content": "What is the ratio", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 154, - 235, - 374, - 247 - ], - "spans": [ - { - "bbox": [ - 154, - 236, - 355, - 246 - ], - "score": 1.0, - "content": "power dissipated in resistor of resistance", - "type": "text" - }, - { - "bbox": [ - 356, - 235, - 374, - 247 - ], - "score": 0.28, - "content": "_{2R}", - "type": "inline_equation", - "height": 12, - "width": 18 - } - ], - "index": 11 - } - ], - "index": 10, - "page_num": "page_11", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 221, - 374, - 247 - ] - }, - { - "type": "list", - "bbox": [ - 69, - 250, - 107, - 346 - ], - "lines": [ - { - "bbox": [ - 94, - 249, - 105, - 264 - ], - "spans": [ - { - "bbox": [ - 94, - 249, - 105, - 264 - ], - "score": 1.0, - "content": "1", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 70, - 256, - 82, - 270 - ], - "spans": [ - { - "bbox": [ - 70, - 256, - 82, - 270 - ], - "score": 1.0, - "content": "A ", - "type": "text" - } - ], - "index": 12, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 94, - 263, - 105, - 278 - ], - "spans": [ - { - "bbox": [ - 94, - 263, - 105, - 278 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 94, - 278, - 105, - 293 - ], - "spans": [ - { - "bbox": [ - 94, - 278, - 105, - 293 - ], - "score": 1.0, - "content": "1", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 70, - 285, - 82, - 300 - ], - "spans": [ - { - "bbox": [ - 70, - 285, - 82, - 300 - ], - "score": 1.0, - "content": "B ", - "type": "text" - } - ], - "index": 15, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 93, - 292, - 106, - 309 - ], - "spans": [ - { - "bbox": [ - 93, - 292, - 106, - 309 - ], - "score": 1.0, - "content": "2", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 70, - 308, - 104, - 324 - ], - "spans": [ - { - "bbox": [ - 70, - 308, - 83, - 324 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 94, - 309, - 104, - 323 - ], - "score": 1.0, - "content": " 1", - "type": "text" - } - ], - "index": 18, - "is_list_start_line": true - }, - { - "bbox": [ - 69, - 333, - 105, - 348 - ], - "spans": [ - { - "bbox": [ - 69, - 333, - 83, - 348 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 93, - 333, - 105, - 348 - ], - "score": 1.0, - "content": " 2", - "type": "text" - } - ], - "index": 19, - "is_list_start_line": true - } - ], - "index": 15.5, - "page_num": "page_11", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 69, - 249, - 106, - 348 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 357, - 167, - 382 - ], - "lines": [ - { - "bbox": [ - 72, - 366, - 133, - 377 - ], - "spans": [ - { - "bbox": [ - 72, - 366, - 133, - 377 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 20, - "page_num": "page_11", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 366, - 133, - 377 - ] - }, - { - "type": "text", - "bbox": [ - 48, - 402, - 549, - 431 - ], - "lines": [ - { - "bbox": [ - 48, - 403, - 548, - 418 - ], - "spans": [ - { - "bbox": [ - 48, - 404, - 198, - 418 - ], - "score": 1.0, - "content": "20 The speed of light in air is", - "type": "text" - }, - { - "bbox": [ - 198, - 403, - 271, - 416 - ], - "score": 0.92, - "content": "3.0\\times10^{8}\\mathrm{m}s^{-1}", - "type": "inline_equation", - "height": 13, - "width": 73 - }, - { - "bbox": [ - 271, - 404, - 430, - 418 - ], - "score": 1.0, - "content": " and the speed of light in glass is", - "type": "text" - }, - { - "bbox": [ - 431, - 403, - 504, - 416 - ], - "score": 0.91, - "content": "2.0\\times10^{8}\\mathrm{m}s^{-1}", - "type": "inline_equation", - "height": 13, - "width": 73 - }, - { - "bbox": [ - 504, - 404, - 548, - 418 - ], - "score": 1.0, - "content": ". A ray of ", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 70, - 416, - 531, - 431 - ], - "spans": [ - { - "bbox": [ - 70, - 416, - 429, - 431 - ], - "score": 1.0, - "content": "monochromatic light in glass strikes the glass-air boundary at an angle of", - "type": "text" - }, - { - "bbox": [ - 429, - 417, - 448, - 429 - ], - "score": 0.86, - "content": "{80^{\\circ}}", - "type": "inline_equation", - "height": 12, - "width": 19 - }, - { - "bbox": [ - 448, - 416, - 531, - 431 - ], - "score": 1.0, - "content": " to the boundary.", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 21.5, - "page_num": "page_11", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 48, - 403, - 548, - 431 - ] - }, - { - "type": "image", - "bbox": [ - 228, - 445, - 357, - 584 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 228, - 445, - 357, - 584 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 228, - 445, - 357, - 584 - ], - "spans": [ - { - "bbox": [ - 228, - 445, - 357, - 584 - ], - "score": 0.95, - "type": "image", - "image_path": "0ae7e9629a22c026e7c45c5e99cfebe294445c273ff317a0b689c559a6e78b6a.jpg" - } - ] - } - ], - "index": 23.5, - "virtual_lines": [ - { - "bbox": [ - 228, - 445, - 357, - 514.5 - ], - "spans": [], - "index": 23 - }, - { - "bbox": [ - 228, - 514.5, - 357, - 584.0 - ], - "spans": [], - "index": 24 - } - ] - } - ], - "index": 23.5, - "page_num": "page_11", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 600, - 454, - 615 - ], - "lines": [ - { - "bbox": [ - 71, - 601, - 453, - 615 - ], - "spans": [ - { - "bbox": [ - 71, - 601, - 453, - 615 - ], - "score": 1.0, - "content": "What is the angle made to the normal by the ray of light leaving the boundary?", - "type": "text" - } - ], - "index": 25 - } - ], - "index": 25, - "page_num": "page_11", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 601, - 453, - 615 - ] - }, - { - "type": "text", - "bbox": [ - 69, - 626, - 114, - 711 - ], - "lines": [ - { - "bbox": [ - 70, - 626, - 117, - 639 - ], - "spans": [ - { - "bbox": [ - 70, - 627, - 82, - 639 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 92, - 626, - 117, - 639 - ], - "score": 1.0, - "content": "6.6°", - "type": "text" - } - ], - "index": 26 - }, - { - "bbox": [ - 70, - 650, - 113, - 663 - ], - "spans": [ - { - "bbox": [ - 70, - 650, - 82, - 663 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 92, - 650, - 113, - 663 - ], - "score": 1.0, - "content": "15°", - "type": "text" - } - ], - "index": 27 - }, - { - "bbox": [ - 70, - 673, - 114, - 688 - ], - "spans": [ - { - "bbox": [ - 70, - 673, - 82, - 688 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 92, - 673, - 114, - 687 - ], - "score": 1.0, - "content": "41°", - "type": "text" - } - ], - "index": 28 - }, - { - "bbox": [ - 70, - 698, - 114, - 712 - ], - "spans": [ - { - "bbox": [ - 70, - 699, - 82, - 711 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 92, - 698, - 114, - 712 - ], - "score": 1.0, - "content": "49°", - "type": "text" - } - ], - "index": 29 - } - ], - "index": 27.5, - "page_num": "page_11", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 626, - 117, - 712 - ] - }, - { - "type": "text", - "bbox": [ - 71, - 722, - 167, - 747 - ], - "lines": [ - { - "bbox": [ - 71, - 731, - 134, - 743 - ], - "spans": [ - { - "bbox": [ - 71, - 731, - 134, - 743 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 30 - } - ], - "index": 30, - "page_num": "page_11", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 731, - 134, - 743 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 291, - 44, - 305, - 56 - ], - "lines": [ - { - "bbox": [ - 289, - 44, - 306, - 57 - ], - "spans": [ - { - "bbox": [ - 289, - 44, - 306, - 57 - ], - "score": 1.0, - "content": "13", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "title", - "bbox": [ - 266, - 62, - 328, - 76 - ], - "lines": [ - { - "bbox": [ - 268, - 64, - 328, - 74 - ], - "spans": [ - { - "bbox": [ - 268, - 64, - 328, - 74 - ], - "score": 1.0, - "content": "SECTION B", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 236, - 86, - 359, - 100 - ], - "lines": [ - { - "bbox": [ - 236, - 88, - 359, - 100 - ], - "spans": [ - { - "bbox": [ - 236, - 88, - 359, - 100 - ], - "score": 1.0, - "content": "Answer all the questions.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 47, - 109, - 549, - 255 - ], - "lines": [ - { - "bbox": [ - 46, - 108, - 548, - 126 - ], - "spans": [ - { - "bbox": [ - 46, - 108, - 548, - 126 - ], - "score": 1.0, - "content": "21 (a) Physical quantities can be added together. Velocity and mass are examples of two different ", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 94, - 125, - 229, - 137 - ], - "spans": [ - { - "bbox": [ - 94, - 125, - 229, - 137 - ], - "score": 1.0, - "content": "types of physical quantities.", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 94, - 137, - 492, - 150 - ], - "spans": [ - { - "bbox": [ - 94, - 137, - 492, - 150 - ], - "score": 1.0, - "content": "Discuss how the addition of two velocities differs from the addition of two masses.", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 529, - 241, - 548, - 255 - ], - "spans": [ - { - "bbox": [ - 529, - 241, - 548, - 255 - ], - "score": 1.0, - "content": " [2]", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 4.5 - }, - { - "type": "text", - "bbox": [ - 69, - 266, - 350, - 281 - ], - "lines": [ - { - "bbox": [ - 72, - 267, - 349, - 281 - ], - "spans": [ - { - "bbox": [ - 72, - 267, - 349, - 281 - ], - "score": 1.0, - "content": "(b) Fig. 21 shows a stationary trolley on a smooth ramp.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "image", - "bbox": [ - 203, - 297, - 400, - 382 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 203, - 297, - 400, - 382 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 203, - 297, - 400, - 382 - ], - "spans": [ - { - "bbox": [ - 203, - 297, - 400, - 382 - ], - "score": 0.967, - "type": "image", - "image_path": "feba7e126e58c78f737a5123c38a9658eec0b965c617f175bcbc48f54c6513af.jpg" - } - ] - } - ], - "index": 11, - "virtual_lines": [ - { - "bbox": [ - 203, - 297, - 400, - 311.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 203, - 311.0, - 400, - 325.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 203, - 325.0, - 400, - 339.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 203, - 339.0, - 400, - 353.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 203, - 353.0, - 400, - 367.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 203, - 367.0, - 400, - 381.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 203, - 381.0, - 400, - 395.0 - ], - "spans": [], - "index": 14 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 279, - 395, - 315, - 409 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 278, - 396, - 315, - 410 - ], - "spans": [ - { - "bbox": [ - 278, - 396, - 315, - 410 - ], - "score": 1.0, - "content": "Fig. 21", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - } - ], - "index": 13.0 - }, - { - "type": "text", - "bbox": [ - 93, - 421, - 547, - 461 - ], - "lines": [ - { - "bbox": [ - 94, - 421, - 528, - 435 - ], - "spans": [ - { - "bbox": [ - 94, - 421, - 528, - 435 - ], - "score": 1.0, - "content": "A short length of string is attached between the end of the trolley and the top of the ramp.", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 93, - 435, - 547, - 449 - ], - "spans": [ - { - "bbox": [ - 93, - 435, - 547, - 449 - ], - "score": 1.0, - "content": "Assume that the frictional force acting on the trolley is negligible when it is stationary or when", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 92, - 447, - 154, - 462 - ], - "spans": [ - { - "bbox": [ - 92, - 447, - 154, - 462 - ], - "score": 1.0, - "content": "it is moving.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 17 - }, - { - "type": "text", - "bbox": [ - 91, - 473, - 549, - 579 - ], - "lines": [ - { - "bbox": [ - 95, - 472, - 547, - 488 - ], - "spans": [ - { - "bbox": [ - 95, - 472, - 547, - 488 - ], - "score": 1.0, - "content": "(i) Other than the normal contact force, there are two other forces acting on the stationary", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 115, - 486, - 151, - 501 - ], - "spans": [ - { - "bbox": [ - 115, - 486, - 151, - 501 - ], - "score": 1.0, - "content": "trolley. ", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 117, - 500, - 545, - 512 - ], - "spans": [ - { - "bbox": [ - 117, - 500, - 545, - 512 - ], - "score": 1.0, - "content": "On Fig. 21, draw arrows to show these two forces. You do not need to name these forces.", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 91, - 538, - 548, - 554 - ], - "spans": [ - { - "bbox": [ - 91, - 538, - 251, - 554 - ], - "score": 1.0, - "content": "(ii) The string is cut at time ", - "type": "text" - }, - { - "bbox": [ - 252, - 540, - 275, - 551 - ], - "score": 0.87, - "content": "t=0", - "type": "inline_equation", - "height": 11, - "width": 23 - }, - { - "bbox": [ - 276, - 538, - 548, - 554 - ], - "score": 1.0, - "content": ". The trolley travels down the ramp with a constant ", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 116, - 551, - 237, - 564 - ], - "spans": [ - { - "bbox": [ - 116, - 553, - 190, - 564 - ], - "score": 1.0, - "content": "acceleration of", - "type": "text" - }, - { - "bbox": [ - 190, - 551, - 234, - 564 - ], - "score": 0.9, - "content": "3.0\\mathsf{m}\\mathsf{s}^{-2}", - "type": "inline_equation", - "height": 13, - "width": 44 - }, - { - "bbox": [ - 234, - 553, - 237, - 564 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 116, - 564, - 527, - 579 - ], - "spans": [ - { - "bbox": [ - 116, - 564, - 207, - 579 - ], - "score": 1.0, - "content": "Calculate the time", - "type": "text" - }, - { - "bbox": [ - 207, - 566, - 214, - 577 - ], - "score": 0.41, - "content": "t", - "type": "inline_equation", - "height": 11, - "width": 7 - }, - { - "bbox": [ - 214, - 564, - 415, - 579 - ], - "score": 1.0, - "content": "taken by the trolley to travel a distance of", - "type": "text" - }, - { - "bbox": [ - 415, - 565, - 449, - 578 - ], - "score": 0.7, - "content": "0.80\\m m", - "type": "inline_equation", - "height": 13, - "width": 34 - }, - { - "bbox": [ - 450, - 564, - 527, - 579 - ], - "score": 1.0, - "content": " down the ramp.", - "type": "text" - } - ], - "index": 24 - } - ], - "index": 21.5 - } - ], - "layout_bboxes": [], - "page_idx": 12, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 203, - 297, - 400, - 382 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 203, - 297, - 400, - 382 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 203, - 297, - 400, - 382 - ], - "spans": [ - { - "bbox": [ - 203, - 297, - 400, - 382 - ], - "score": 0.967, - "type": "image", - "image_path": "feba7e126e58c78f737a5123c38a9658eec0b965c617f175bcbc48f54c6513af.jpg" - } - ] - } - ], - "index": 11, - "virtual_lines": [ - { - "bbox": [ - 203, - 297, - 400, - 311.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 203, - 311.0, - 400, - 325.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 203, - 325.0, - 400, - 339.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 203, - 339.0, - 400, - 353.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 203, - 353.0, - 400, - 367.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 203, - 367.0, - 400, - 381.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 203, - 381.0, - 400, - 395.0 - ], - "spans": [], - "index": 14 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 279, - 395, - 315, - 409 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 278, - 396, - 315, - 410 - ], - "spans": [ - { - "bbox": [ - 278, - 396, - 315, - 410 - ], - "score": 1.0, - "content": "Fig. 21", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - } - ], - "index": 13.0 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "score": 1.0, - "content": "© OCR 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 333, - 759, - 547, - 785 - ], - "lines": [ - { - "bbox": [ - 335, - 760, - 547, - 773 - ], - "spans": [ - { - "bbox": [ - 335, - 763, - 348, - 771 - ], - "score": 0.28, - "content": "t=", - "type": "inline_equation", - "height": 8, - "width": 13 - }, - { - "bbox": [ - 521, - 760, - 547, - 773 - ], - "score": 1.0, - "content": " s [2]", - "type": "text" - } - ] - }, - { - "bbox": [ - 485, - 775, - 531, - 785 - ], - "spans": [ - { - "bbox": [ - 485, - 775, - 531, - 785 - ], - "score": 1.0, - "content": "Turn over", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 514, - 546, - 527 - ], - "lines": [ - { - "bbox": [ - 530, - 512, - 549, - 529 - ], - "spans": [ - { - "bbox": [ - 530, - 512, - 549, - 529 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 291, - 44, - 305, - 56 - ], - "lines": [ - { - "bbox": [ - 289, - 44, - 306, - 57 - ], - "spans": [ - { - "bbox": [ - 289, - 44, - 306, - 57 - ], - "score": 1.0, - "content": "13", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_12", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "title", - "bbox": [ - 266, - 62, - 328, - 76 - ], - "lines": [ - { - "bbox": [ - 268, - 64, - 328, - 74 - ], - "spans": [ - { - "bbox": [ - 268, - 64, - 328, - 74 - ], - "score": 1.0, - "content": "SECTION B", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_12", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 236, - 86, - 359, - 100 - ], - "lines": [ - { - "bbox": [ - 236, - 88, - 359, - 100 - ], - "spans": [ - { - "bbox": [ - 236, - 88, - 359, - 100 - ], - "score": 1.0, - "content": "Answer all the questions.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_12", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 236, - 88, - 359, - 100 - ] - }, - { - "type": "text", - "bbox": [ - 47, - 109, - 549, - 255 - ], - "lines": [ - { - "bbox": [ - 46, - 108, - 548, - 126 - ], - "spans": [ - { - "bbox": [ - 46, - 108, - 548, - 126 - ], - "score": 1.0, - "content": "21 (a) Physical quantities can be added together. Velocity and mass are examples of two different ", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 94, - 125, - 229, - 137 - ], - "spans": [ - { - "bbox": [ - 94, - 125, - 229, - 137 - ], - "score": 1.0, - "content": "types of physical quantities.", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 94, - 137, - 492, - 150 - ], - "spans": [ - { - "bbox": [ - 94, - 137, - 492, - 150 - ], - "score": 1.0, - "content": "Discuss how the addition of two velocities differs from the addition of two masses.", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 529, - 241, - 548, - 255 - ], - "spans": [ - { - "bbox": [ - 529, - 241, - 548, - 255 - ], - "score": 1.0, - "content": " [2]", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 72, - 267, - 349, - 281 - ], - "spans": [ - { - "bbox": [ - 72, - 267, - 349, - 281 - ], - "score": 1.0, - "content": "(b) Fig. 21 shows a stationary trolley on a smooth ramp.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 4.5, - "page_num": "page_12", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 46, - 108, - 548, - 255 - ] - }, - { - "type": "text", - "bbox": [ - 69, - 266, - 350, - 281 - ], - "lines": [], - "index": 7, - "page_num": "page_12", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 267, - 349, - 281 - ], - "lines_deleted": true - }, - { - "type": "image", - "bbox": [ - 203, - 297, - 400, - 382 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 203, - 297, - 400, - 382 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 203, - 297, - 400, - 382 - ], - "spans": [ - { - "bbox": [ - 203, - 297, - 400, - 382 - ], - "score": 0.967, - "type": "image", - "image_path": "feba7e126e58c78f737a5123c38a9658eec0b965c617f175bcbc48f54c6513af.jpg" - } - ] - } - ], - "index": 11, - "virtual_lines": [ - { - "bbox": [ - 203, - 297, - 400, - 311.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 203, - 311.0, - 400, - 325.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 203, - 325.0, - 400, - 339.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 203, - 339.0, - 400, - 353.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 203, - 353.0, - 400, - 367.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 203, - 367.0, - 400, - 381.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 203, - 381.0, - 400, - 395.0 - ], - "spans": [], - "index": 14 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 279, - 395, - 315, - 409 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 278, - 396, - 315, - 410 - ], - "spans": [ - { - "bbox": [ - 278, - 396, - 315, - 410 - ], - "score": 1.0, - "content": "Fig. 21", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - } - ], - "index": 13.0, - "page_num": "page_12", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 93, - 421, - 547, - 461 - ], - "lines": [ - { - "bbox": [ - 94, - 421, - 528, - 435 - ], - "spans": [ - { - "bbox": [ - 94, - 421, - 528, - 435 - ], - "score": 1.0, - "content": "A short length of string is attached between the end of the trolley and the top of the ramp.", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 93, - 435, - 547, - 449 - ], - "spans": [ - { - "bbox": [ - 93, - 435, - 547, - 449 - ], - "score": 1.0, - "content": "Assume that the frictional force acting on the trolley is negligible when it is stationary or when", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 92, - 447, - 154, - 462 - ], - "spans": [ - { - "bbox": [ - 92, - 447, - 154, - 462 - ], - "score": 1.0, - "content": "it is moving.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 17, - "page_num": "page_12", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 92, - 421, - 547, - 462 - ] - }, - { - "type": "list", - "bbox": [ - 91, - 473, - 549, - 579 - ], - "lines": [ - { - "bbox": [ - 95, - 472, - 547, - 488 - ], - "spans": [ - { - "bbox": [ - 95, - 472, - 547, - 488 - ], - "score": 1.0, - "content": "(i) Other than the normal contact force, there are two other forces acting on the stationary", - "type": "text" - } - ], - "index": 19, - "is_list_start_line": true - }, - { - "bbox": [ - 115, - 486, - 151, - 501 - ], - "spans": [ - { - "bbox": [ - 115, - 486, - 151, - 501 - ], - "score": 1.0, - "content": "trolley. ", - "type": "text" - } - ], - "index": 20, - "is_list_end_line": true - }, - { - "bbox": [ - 117, - 500, - 545, - 512 - ], - "spans": [ - { - "bbox": [ - 117, - 500, - 545, - 512 - ], - "score": 1.0, - "content": "On Fig. 21, draw arrows to show these two forces. You do not need to name these forces.", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 91, - 538, - 548, - 554 - ], - "spans": [ - { - "bbox": [ - 91, - 538, - 251, - 554 - ], - "score": 1.0, - "content": "(ii) The string is cut at time ", - "type": "text" - }, - { - "bbox": [ - 252, - 540, - 275, - 551 - ], - "score": 0.87, - "content": "t=0", - "type": "inline_equation", - "height": 11, - "width": 23 - }, - { - "bbox": [ - 276, - 538, - 548, - 554 - ], - "score": 1.0, - "content": ". The trolley travels down the ramp with a constant ", - "type": "text" - } - ], - "index": 22, - "is_list_start_line": true - }, - { - "bbox": [ - 116, - 551, - 237, - 564 - ], - "spans": [ - { - "bbox": [ - 116, - 553, - 190, - 564 - ], - "score": 1.0, - "content": "acceleration of", - "type": "text" - }, - { - "bbox": [ - 190, - 551, - 234, - 564 - ], - "score": 0.9, - "content": "3.0\\mathsf{m}\\mathsf{s}^{-2}", - "type": "inline_equation", - "height": 13, - "width": 44 - }, - { - "bbox": [ - 234, - 553, - 237, - 564 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 23, - "is_list_end_line": true - }, - { - "bbox": [ - 116, - 564, - 527, - 579 - ], - "spans": [ - { - "bbox": [ - 116, - 564, - 207, - 579 - ], - "score": 1.0, - "content": "Calculate the time", - "type": "text" - }, - { - "bbox": [ - 207, - 566, - 214, - 577 - ], - "score": 0.41, - "content": "t", - "type": "inline_equation", - "height": 11, - "width": 7 - }, - { - "bbox": [ - 214, - 564, - 415, - 579 - ], - "score": 1.0, - "content": "taken by the trolley to travel a distance of", - "type": "text" - }, - { - "bbox": [ - 415, - 565, - 449, - 578 - ], - "score": 0.7, - "content": "0.80\\m m", - "type": "inline_equation", - "height": 13, - "width": 34 - }, - { - "bbox": [ - 450, - 564, - 527, - 579 - ], - "score": 1.0, - "content": " down the ramp.", - "type": "text" - } - ], - "index": 24, - "is_list_end_line": true - } - ], - "index": 21.5, - "page_num": "page_12", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 91, - 472, - 548, - 579 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 48, - 63, - 548, - 115 - ], - "lines": [ - { - "bbox": [ - 48, - 63, - 548, - 77 - ], - "spans": [ - { - "bbox": [ - 48, - 63, - 526, - 77 - ], - "score": 1.0, - "content": "22 A group of engineers are testing a new car. They are investigating how the braking distance ", - "type": "text" - }, - { - "bbox": [ - 526, - 65, - 535, - 75 - ], - "score": 0.44, - "content": "x", - "type": "inline_equation", - "height": 10, - "width": 9 - }, - { - "bbox": [ - 535, - 63, - 548, - 77 - ], - "score": 1.0, - "content": "of ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 70, - 77, - 448, - 89 - ], - "spans": [ - { - "bbox": [ - 70, - 77, - 238, - 89 - ], - "score": 1.0, - "content": "the car varies with its initial speed ", - "type": "text" - }, - { - "bbox": [ - 238, - 78, - 246, - 88 - ], - "score": 0.48, - "content": "u", - "type": "inline_equation", - "height": 10, - "width": 8 - }, - { - "bbox": [ - 247, - 77, - 448, - 89 - ], - "score": 1.0, - "content": "when a constant braking force is applied. ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 70, - 88, - 548, - 103 - ], - "spans": [ - { - "bbox": [ - 70, - 89, - 276, - 103 - ], - "score": 1.0, - "content": "Fig. 22 shows the data points plotted on a ", - "type": "text" - }, - { - "bbox": [ - 277, - 88, - 290, - 101 - ], - "score": 0.87, - "content": "u^{2}", - "type": "inline_equation", - "height": 13, - "width": 13 - }, - { - "bbox": [ - 291, - 89, - 329, - 103 - ], - "score": 1.0, - "content": "against", - "type": "text" - }, - { - "bbox": [ - 329, - 91, - 338, - 101 - ], - "score": 0.71, - "content": "x", - "type": "inline_equation", - "height": 10, - "width": 9 - }, - { - "bbox": [ - 338, - 89, - 548, - 103 - ], - "score": 1.0, - "content": "graph. The straight line of best fit has been ", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 72, - 103, - 220, - 115 - ], - "spans": [ - { - "bbox": [ - 72, - 103, - 220, - 115 - ], - "score": 1.0, - "content": "drawn through the data points.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 1.5 - }, - { - "type": "image", - "bbox": [ - 115, - 131, - 479, - 390 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 115, - 131, - 479, - 390 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 115, - 131, - 479, - 390 - ], - "spans": [ - { - "bbox": [ - 115, - 131, - 479, - 390 - ], - "score": 0.973, - "type": "image", - "image_path": "180a3a373f25614bf39677e7e8f3f4958abaf7654fd4d7aa094b7b8a9ebfded3.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 115, - 131, - 479, - 217.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 115, - 217.33333333333331, - 479, - 303.66666666666663 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 115, - 303.66666666666663, - 479, - 389.99999999999994 - ], - "spans": [], - "index": 6 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 279, - 412, - 316, - 426 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 279, - 413, - 317, - 427 - ], - "spans": [ - { - "bbox": [ - 279, - 413, - 317, - 427 - ], - "score": 1.0, - "content": "Fig. 22", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - } - ], - "index": 6.0 - }, - { - "type": "text", - "bbox": [ - 71, - 438, - 353, - 452 - ], - "lines": [ - { - "bbox": [ - 72, - 439, - 352, - 451 - ], - "spans": [ - { - "bbox": [ - 72, - 439, - 251, - 451 - ], - "score": 1.0, - "content": "The theoretical relationship between ", - "type": "text" - }, - { - "bbox": [ - 251, - 441, - 259, - 450 - ], - "score": 0.7, - "content": "u", - "type": "inline_equation", - "height": 9, - "width": 8 - }, - { - "bbox": [ - 260, - 439, - 281, - 451 - ], - "score": 1.0, - "content": "and ", - "type": "text" - }, - { - "bbox": [ - 281, - 441, - 290, - 450 - ], - "score": 0.76, - "content": "x", - "type": "inline_equation", - "height": 9, - "width": 9 - }, - { - "bbox": [ - 290, - 439, - 352, - 451 - ], - "score": 1.0, - "content": "for the car is", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "interline_equation", - "bbox": [ - 276, - 463, - 322, - 478 - ], - "lines": [ - { - "bbox": [ - 276, - 463, - 322, - 478 - ], - "spans": [ - { - "bbox": [ - 276, - 463, - 322, - 478 - ], - "score": 0.89, - "content": "U^{2}=2a x", - "type": "interline_equation" - } - ] - } - ], - "index": 9, - "virtual_lines": [ - { - "bbox": [ - 276, - 463, - 322, - 478 - ], - "spans": [], - "index": 9 - } - ] - }, - { - "type": "text", - "bbox": [ - 71, - 490, - 340, - 504 - ], - "lines": [ - { - "bbox": [ - 72, - 491, - 340, - 503 - ], - "spans": [ - { - "bbox": [ - 72, - 491, - 340, - 503 - ], - "score": 1.0, - "content": "where a is the magnitude of the deceleration of the car.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 71, - 516, - 548, - 569 - ], - "lines": [ - { - "bbox": [ - 71, - 517, - 547, - 530 - ], - "spans": [ - { - "bbox": [ - 71, - 517, - 547, - 530 - ], - "score": 1.0, - "content": "(a) Fig. 22 shows that the straight line does not pass through the origin because of a systematic", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 93, - 529, - 482, - 544 - ], - "spans": [ - { - "bbox": [ - 93, - 529, - 333, - 544 - ], - "score": 1.0, - "content": "error in the measurement of the braking distance", - "type": "text" - }, - { - "bbox": [ - 334, - 532, - 342, - 542 - ], - "score": 0.53, - "content": "x.", - "type": "inline_equation", - "height": 10, - "width": 8 - }, - { - "bbox": [ - 343, - 529, - 366, - 544 - ], - "score": 1.0, - "content": " The", - "type": "text" - }, - { - "bbox": [ - 367, - 529, - 380, - 542 - ], - "score": 0.87, - "content": "u^{2}", - "type": "inline_equation", - "height": 13, - "width": 13 - }, - { - "bbox": [ - 381, - 529, - 482, - 544 - ], - "score": 1.0, - "content": " values are accurate.", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 94, - 544, - 547, - 556 - ], - "spans": [ - { - "bbox": [ - 94, - 544, - 268, - 556 - ], - "score": 1.0, - "content": "Suggest why a systematic error in ", - "type": "text" - }, - { - "bbox": [ - 268, - 545, - 278, - 555 - ], - "score": 0.59, - "content": "x", - "type": "inline_equation", - "height": 10, - "width": 10 - }, - { - "bbox": [ - 278, - 544, - 547, - 556 - ], - "score": 1.0, - "content": "does not introduce any difference between the actual", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 94, - 558, - 405, - 568 - ], - "spans": [ - { - "bbox": [ - 94, - 558, - 405, - 568 - ], - "score": 1.0, - "content": "value and the experimental value for the deceleration of the car.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 12.5 - }, - { - "type": "text", - "bbox": [ - 86, - 633, - 547, - 647 - ], - "lines": [ - { - "bbox": [ - 528, - 634, - 548, - 647 - ], - "spans": [ - { - "bbox": [ - 528, - 634, - 548, - 647 - ], - "score": 1.0, - "content": " [1]", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - } - ], - "layout_bboxes": [], - "page_idx": 13, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 115, - 131, - 479, - 390 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 115, - 131, - 479, - 390 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 115, - 131, - 479, - 390 - ], - "spans": [ - { - "bbox": [ - 115, - 131, - 479, - 390 - ], - "score": 0.973, - "type": "image", - "image_path": "180a3a373f25614bf39677e7e8f3f4958abaf7654fd4d7aa094b7b8a9ebfded3.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 115, - 131, - 479, - 217.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 115, - 217.33333333333331, - 479, - 303.66666666666663 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 115, - 303.66666666666663, - 479, - 389.99999999999994 - ], - "spans": [], - "index": 6 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 279, - 412, - 316, - 426 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 279, - 413, - 317, - 427 - ], - "spans": [ - { - "bbox": [ - 279, - 413, - 317, - 427 - ], - "score": 1.0, - "content": "Fig. 22", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - } - ], - "index": 6.0 - } - ], - "tables": [], - "interline_equations": [ - { - "type": "interline_equation", - "bbox": [ - 276, - 463, - 322, - 478 - ], - "lines": [ - { - "bbox": [ - 276, - 463, - 322, - 478 - ], - "spans": [ - { - "bbox": [ - 276, - 463, - 322, - 478 - ], - "score": 0.89, - "content": "U^{2}=2a x", - "type": "interline_equation" - } - ] - } - ], - "index": 9, - "virtual_lines": [ - { - "bbox": [ - 276, - 463, - 322, - 478 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "score": 1.0, - "content": "© OCR 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 291, - 45, - 304, - 55 - ], - "lines": [ - { - "bbox": [ - 289, - 44, - 307, - 57 - ], - "spans": [ - { - "bbox": [ - 289, - 44, - 307, - 57 - ], - "score": 1.0, - "content": "14", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 48, - 63, - 548, - 115 - ], - "lines": [ - { - "bbox": [ - 48, - 63, - 548, - 77 - ], - "spans": [ - { - "bbox": [ - 48, - 63, - 526, - 77 - ], - "score": 1.0, - "content": "22 A group of engineers are testing a new car. They are investigating how the braking distance ", - "type": "text" - }, - { - "bbox": [ - 526, - 65, - 535, - 75 - ], - "score": 0.44, - "content": "x", - "type": "inline_equation", - "height": 10, - "width": 9 - }, - { - "bbox": [ - 535, - 63, - 548, - 77 - ], - "score": 1.0, - "content": "of ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 70, - 77, - 448, - 89 - ], - "spans": [ - { - "bbox": [ - 70, - 77, - 238, - 89 - ], - "score": 1.0, - "content": "the car varies with its initial speed ", - "type": "text" - }, - { - "bbox": [ - 238, - 78, - 246, - 88 - ], - "score": 0.48, - "content": "u", - "type": "inline_equation", - "height": 10, - "width": 8 - }, - { - "bbox": [ - 247, - 77, - 448, - 89 - ], - "score": 1.0, - "content": "when a constant braking force is applied. ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 70, - 88, - 548, - 103 - ], - "spans": [ - { - "bbox": [ - 70, - 89, - 276, - 103 - ], - "score": 1.0, - "content": "Fig. 22 shows the data points plotted on a ", - "type": "text" - }, - { - "bbox": [ - 277, - 88, - 290, - 101 - ], - "score": 0.87, - "content": "u^{2}", - "type": "inline_equation", - "height": 13, - "width": 13 - }, - { - "bbox": [ - 291, - 89, - 329, - 103 - ], - "score": 1.0, - "content": "against", - "type": "text" - }, - { - "bbox": [ - 329, - 91, - 338, - 101 - ], - "score": 0.71, - "content": "x", - "type": "inline_equation", - "height": 10, - "width": 9 - }, - { - "bbox": [ - 338, - 89, - 548, - 103 - ], - "score": 1.0, - "content": "graph. The straight line of best fit has been ", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 72, - 103, - 220, - 115 - ], - "spans": [ - { - "bbox": [ - 72, - 103, - 220, - 115 - ], - "score": 1.0, - "content": "drawn through the data points.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 1.5, - "page_num": "page_13", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 48, - 63, - 548, - 115 - ] - }, - { - "type": "image", - "bbox": [ - 115, - 131, - 479, - 390 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 115, - 131, - 479, - 390 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 115, - 131, - 479, - 390 - ], - "spans": [ - { - "bbox": [ - 115, - 131, - 479, - 390 - ], - "score": 0.973, - "type": "image", - "image_path": "180a3a373f25614bf39677e7e8f3f4958abaf7654fd4d7aa094b7b8a9ebfded3.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 115, - 131, - 479, - 217.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 115, - 217.33333333333331, - 479, - 303.66666666666663 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 115, - 303.66666666666663, - 479, - 389.99999999999994 - ], - "spans": [], - "index": 6 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 279, - 412, - 316, - 426 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 279, - 413, - 317, - 427 - ], - "spans": [ - { - "bbox": [ - 279, - 413, - 317, - 427 - ], - "score": 1.0, - "content": "Fig. 22", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - } - ], - "index": 6.0, - "page_num": "page_13", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 71, - 438, - 353, - 452 - ], - "lines": [ - { - "bbox": [ - 72, - 439, - 352, - 451 - ], - "spans": [ - { - "bbox": [ - 72, - 439, - 251, - 451 - ], - "score": 1.0, - "content": "The theoretical relationship between ", - "type": "text" - }, - { - "bbox": [ - 251, - 441, - 259, - 450 - ], - "score": 0.7, - "content": "u", - "type": "inline_equation", - "height": 9, - "width": 8 - }, - { - "bbox": [ - 260, - 439, - 281, - 451 - ], - "score": 1.0, - "content": "and ", - "type": "text" - }, - { - "bbox": [ - 281, - 441, - 290, - 450 - ], - "score": 0.76, - "content": "x", - "type": "inline_equation", - "height": 9, - "width": 9 - }, - { - "bbox": [ - 290, - 439, - 352, - 451 - ], - "score": 1.0, - "content": "for the car is", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_13", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 439, - 352, - 451 - ] - }, - { - "type": "interline_equation", - "bbox": [ - 276, - 463, - 322, - 478 - ], - "lines": [ - { - "bbox": [ - 276, - 463, - 322, - 478 - ], - "spans": [ - { - "bbox": [ - 276, - 463, - 322, - 478 - ], - "score": 0.89, - "content": "U^{2}=2a x", - "type": "interline_equation" - } - ] - } - ], - "index": 9, - "virtual_lines": [ - { - "bbox": [ - 276, - 463, - 322, - 478 - ], - "spans": [], - "index": 9 - } - ], - "page_num": "page_13", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 71, - 490, - 340, - 504 - ], - "lines": [ - { - "bbox": [ - 72, - 491, - 340, - 503 - ], - "spans": [ - { - "bbox": [ - 72, - 491, - 340, - 503 - ], - "score": 1.0, - "content": "where a is the magnitude of the deceleration of the car.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_13", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 491, - 340, - 503 - ] - }, - { - "type": "text", - "bbox": [ - 71, - 516, - 548, - 569 - ], - "lines": [ - { - "bbox": [ - 71, - 517, - 547, - 530 - ], - "spans": [ - { - "bbox": [ - 71, - 517, - 547, - 530 - ], - "score": 1.0, - "content": "(a) Fig. 22 shows that the straight line does not pass through the origin because of a systematic", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 93, - 529, - 482, - 544 - ], - "spans": [ - { - "bbox": [ - 93, - 529, - 333, - 544 - ], - "score": 1.0, - "content": "error in the measurement of the braking distance", - "type": "text" - }, - { - "bbox": [ - 334, - 532, - 342, - 542 - ], - "score": 0.53, - "content": "x.", - "type": "inline_equation", - "height": 10, - "width": 8 - }, - { - "bbox": [ - 343, - 529, - 366, - 544 - ], - "score": 1.0, - "content": " The", - "type": "text" - }, - { - "bbox": [ - 367, - 529, - 380, - 542 - ], - "score": 0.87, - "content": "u^{2}", - "type": "inline_equation", - "height": 13, - "width": 13 - }, - { - "bbox": [ - 381, - 529, - 482, - 544 - ], - "score": 1.0, - "content": " values are accurate.", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 94, - 544, - 547, - 556 - ], - "spans": [ - { - "bbox": [ - 94, - 544, - 268, - 556 - ], - "score": 1.0, - "content": "Suggest why a systematic error in ", - "type": "text" - }, - { - "bbox": [ - 268, - 545, - 278, - 555 - ], - "score": 0.59, - "content": "x", - "type": "inline_equation", - "height": 10, - "width": 10 - }, - { - "bbox": [ - 278, - 544, - 547, - 556 - ], - "score": 1.0, - "content": "does not introduce any difference between the actual", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 94, - 558, - 405, - 568 - ], - "spans": [ - { - "bbox": [ - 94, - 558, - 405, - 568 - ], - "score": 1.0, - "content": "value and the experimental value for the deceleration of the car.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 12.5, - "page_num": "page_13", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 517, - 547, - 568 - ] - }, - { - "type": "text", - "bbox": [ - 86, - 633, - 547, - 647 - ], - "lines": [ - { - "bbox": [ - 528, - 634, - 548, - 647 - ], - "spans": [ - { - "bbox": [ - 528, - 634, - 548, - 647 - ], - "score": 1.0, - "content": " [1]", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 72, - 63, - 237, - 77 - ], - "spans": [ - { - "bbox": [ - 72, - 64, - 204, - 77 - ], - "score": 1.0, - "content": "(b) The mass of the car is", - "type": "text", - "cross_page": true - }, - { - "bbox": [ - 205, - 63, - 237, - 77 - ], - "score": 0.29, - "content": "920\\mathsf{k g}", - "type": "inline_equation", - "height": 14, - "width": 32, - "cross_page": true - } - ], - "index": 0 - }, - { - "bbox": [ - 92, - 75, - 547, - 91 - ], - "spans": [ - { - "bbox": [ - 92, - 75, - 486, - 91 - ], - "score": 1.0, - "content": "Use the gradient of the line drawn in Fig. 22 to determine the braking force ", - "type": "text", - "cross_page": true - }, - { - "bbox": [ - 486, - 77, - 496, - 88 - ], - "score": 0.77, - "content": "F", - "type": "inline_equation", - "height": 11, - "width": 10, - "cross_page": true - }, - { - "bbox": [ - 497, - 75, - 547, - 91 - ], - "score": 1.0, - "content": "acting on", - "type": "text", - "cross_page": true - } - ], - "index": 1 - }, - { - "bbox": [ - 92, - 88, - 132, - 103 - ], - "spans": [ - { - "bbox": [ - 92, - 88, - 132, - 103 - ], - "score": 1.0, - "content": "the car.", - "type": "text", - "cross_page": true - } - ], - "index": 2 - } - ], - "index": 15, - "page_num": "page_13", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 528, - 634, - 548, - 647 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 71, - 63, - 548, - 102 - ], - "lines": [ - { - "bbox": [ - 72, - 63, - 237, - 77 - ], - "spans": [ - { - "bbox": [ - 72, - 64, - 204, - 77 - ], - "score": 1.0, - "content": "(b) The mass of the car is", - "type": "text" - }, - { - "bbox": [ - 205, - 63, - 237, - 77 - ], - "score": 0.29, - "content": "920\\mathsf{k g}", - "type": "inline_equation", - "height": 14, - "width": 32 - } - ], - "index": 0 - }, - { - "bbox": [ - 92, - 75, - 547, - 91 - ], - "spans": [ - { - "bbox": [ - 92, - 75, - 486, - 91 - ], - "score": 1.0, - "content": "Use the gradient of the line drawn in Fig. 22 to determine the braking force ", - "type": "text" - }, - { - "bbox": [ - 486, - 77, - 496, - 88 - ], - "score": 0.77, - "content": "F", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 497, - 75, - 547, - 91 - ], - "score": 1.0, - "content": "acting on", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 92, - 88, - 132, - 103 - ], - "spans": [ - { - "bbox": [ - 92, - 88, - 132, - 103 - ], - "score": 1.0, - "content": "the car.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 329, - 309, - 547, - 324 - ], - "lines": [ - { - "bbox": [ - 331, - 310, - 547, - 324 - ], - "spans": [ - { - "bbox": [ - 331, - 311, - 347, - 321 - ], - "score": 1.0, - "content": "F =", - "type": "text" - }, - { - "bbox": [ - 519, - 310, - 547, - 324 - ], - "score": 1.0, - "content": " N [3]", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - } - ], - "layout_bboxes": [], - "page_idx": 14, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 779, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 60, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 60, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 485, - 775, - 531, - 785 - ], - "lines": [ - { - "bbox": [ - 484, - 774, - 532, - 786 - ], - "spans": [ - { - "bbox": [ - 484, - 774, - 532, - 786 - ], - "score": 1.0, - "content": "Turn over", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 291, - 45, - 305, - 56 - ], - "lines": [ - { - "bbox": [ - 289, - 44, - 307, - 58 - ], - "spans": [ - { - "bbox": [ - 289, - 44, - 307, - 58 - ], - "score": 1.0, - "content": "15", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 71, - 63, - 548, - 102 - ], - "lines": [], - "index": 1, - "page_num": "page_14", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 63, - 547, - 103 - ], - "lines_deleted": true - }, - { - "type": "text", - "bbox": [ - 329, - 309, - 547, - 324 - ], - "lines": [ - { - "bbox": [ - 331, - 310, - 547, - 324 - ], - "spans": [ - { - "bbox": [ - 331, - 311, - 347, - 321 - ], - "score": 1.0, - "content": "F =", - "type": "text" - }, - { - "bbox": [ - 519, - 310, - 547, - 324 - ], - "score": 1.0, - "content": " N [3]", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_14", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 331, - 310, - 547, - 324 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 56, - 62, - 508, - 77 - ], - "lines": [ - { - "bbox": [ - 54, - 63, - 510, - 78 - ], - "spans": [ - { - "bbox": [ - 54, - 63, - 510, - 78 - ], - "score": 1.0, - "content": "3 (a) Fig. 23.1 shows a metal cylinder of diameter of about 5 cm placed on a horizontal tabl", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "image", - "bbox": [ - 203, - 91, - 401, - 220 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 203, - 91, - 401, - 220 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 203, - 91, - 401, - 220 - ], - "spans": [ - { - "bbox": [ - 203, - 91, - 401, - 220 - ], - "score": 0.97, - "type": "image", - "image_path": "e9d1c42f2298d6862122ca8ee400964ae9c1a0b4770b4a3e0d440d9707fde33d.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 203, - 91, - 401, - 105.5 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 203, - 105.5, - 401, - 120.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 203, - 120.0, - 401, - 134.5 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 203, - 134.5, - 401, - 149.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 203, - 149.0, - 401, - 163.5 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 203, - 163.5, - 401, - 178.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 203, - 178.0, - 401, - 192.5 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 203, - 192.5, - 401, - 207.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 203, - 207.0, - 401, - 221.5 - ], - "spans": [], - "index": 9 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 274, - 235, - 320, - 249 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 274, - 235, - 321, - 249 - ], - "spans": [ - { - "bbox": [ - 274, - 235, - 321, - 249 - ], - "score": 1.0, - "content": "Fig. 23.1", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - } - ], - "index": 7.5 - }, - { - "type": "text", - "bbox": [ - 93, - 261, - 547, - 300 - ], - "lines": [ - { - "bbox": [ - 94, - 262, - 546, - 274 - ], - "spans": [ - { - "bbox": [ - 94, - 262, - 546, - 274 - ], - "score": 1.0, - "content": "Describe how you can use instruments available in a physics laboratory to determine the", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 93, - 275, - 547, - 288 - ], - "spans": [ - { - "bbox": [ - 93, - 275, - 547, - 288 - ], - "score": 1.0, - "content": "pressure exerted by the cylinder on the table. State how you would make your results as", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 94, - 289, - 192, - 300 - ], - "spans": [ - { - "bbox": [ - 94, - 289, - 192, - 300 - ], - "score": 1.0, - "content": "precise as possible.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 90, - 314, - 548, - 563 - ], - "lines": [ - { - "bbox": [ - 525, - 545, - 549, - 563 - ], - "spans": [ - { - "bbox": [ - 525, - 545, - 549, - 563 - ], - "score": 1.0, - "content": ".. [4]", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 70, - 573, - 254, - 587 - ], - "lines": [ - { - "bbox": [ - 71, - 573, - 252, - 588 - ], - "spans": [ - { - "bbox": [ - 71, - 573, - 108, - 588 - ], - "score": 1.0, - "content": "(b) (i) ", - "type": "text" - }, - { - "bbox": [ - 115, - 573, - 252, - 586 - ], - "score": 1.0, - "content": "State Archimedes’ principle.", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "text", - "bbox": [ - 114, - 625, - 547, - 639 - ], - "lines": [ - { - "bbox": [ - 114, - 625, - 547, - 639 - ], - "spans": [], - "index": 16 - } - ], - "index": 16 - }, - { - "type": "text", - "bbox": [ - 114, - 650, - 547, - 665 - ], - "lines": [ - { - "bbox": [ - 528, - 651, - 548, - 666 - ], - "spans": [ - { - "bbox": [ - 528, - 651, - 548, - 666 - ], - "score": 1.0, - "content": " [1]", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 17 - } - ], - "layout_bboxes": [], - "page_idx": 15, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 203, - 91, - 401, - 220 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 203, - 91, - 401, - 220 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 203, - 91, - 401, - 220 - ], - "spans": [ - { - "bbox": [ - 203, - 91, - 401, - 220 - ], - "score": 0.97, - "type": "image", - "image_path": "e9d1c42f2298d6862122ca8ee400964ae9c1a0b4770b4a3e0d440d9707fde33d.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 203, - 91, - 401, - 105.5 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 203, - 105.5, - 401, - 120.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 203, - 120.0, - 401, - 134.5 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 203, - 134.5, - 401, - 149.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 203, - 149.0, - 401, - 163.5 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 203, - 163.5, - 401, - 178.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 203, - 178.0, - 401, - 192.5 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 203, - 192.5, - 401, - 207.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 203, - 207.0, - 401, - 221.5 - ], - "spans": [], - "index": 9 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 274, - 235, - 320, - 249 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 274, - 235, - 321, - 249 - ], - "spans": [ - { - "bbox": [ - 274, - 235, - 321, - 249 - ], - "score": 1.0, - "content": "Fig. 23.1", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - } - ], - "index": 7.5 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "score": 1.0, - "content": "© OCR 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 291, - 45, - 304, - 56 - ], - "lines": [ - { - "bbox": [ - 289, - 44, - 306, - 58 - ], - "spans": [ - { - "bbox": [ - 289, - 44, - 306, - 58 - ], - "score": 1.0, - "content": "16", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 56, - 62, - 508, - 77 - ], - "lines": [ - { - "bbox": [ - 54, - 63, - 510, - 78 - ], - "spans": [ - { - "bbox": [ - 54, - 63, - 510, - 78 - ], - "score": 1.0, - "content": "3 (a) Fig. 23.1 shows a metal cylinder of diameter of about 5 cm placed on a horizontal tabl", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_15", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 54, - 63, - 510, - 78 - ] - }, - { - "type": "image", - "bbox": [ - 203, - 91, - 401, - 220 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 203, - 91, - 401, - 220 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 203, - 91, - 401, - 220 - ], - "spans": [ - { - "bbox": [ - 203, - 91, - 401, - 220 - ], - "score": 0.97, - "type": "image", - "image_path": "e9d1c42f2298d6862122ca8ee400964ae9c1a0b4770b4a3e0d440d9707fde33d.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 203, - 91, - 401, - 105.5 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 203, - 105.5, - 401, - 120.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 203, - 120.0, - 401, - 134.5 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 203, - 134.5, - 401, - 149.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 203, - 149.0, - 401, - 163.5 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 203, - 163.5, - 401, - 178.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 203, - 178.0, - 401, - 192.5 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 203, - 192.5, - 401, - 207.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 203, - 207.0, - 401, - 221.5 - ], - "spans": [], - "index": 9 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 274, - 235, - 320, - 249 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 274, - 235, - 321, - 249 - ], - "spans": [ - { - "bbox": [ - 274, - 235, - 321, - 249 - ], - "score": 1.0, - "content": "Fig. 23.1", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - } - ], - "index": 7.5, - "page_num": "page_15", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 93, - 261, - 547, - 300 - ], - "lines": [ - { - "bbox": [ - 94, - 262, - 546, - 274 - ], - "spans": [ - { - "bbox": [ - 94, - 262, - 546, - 274 - ], - "score": 1.0, - "content": "Describe how you can use instruments available in a physics laboratory to determine the", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 93, - 275, - 547, - 288 - ], - "spans": [ - { - "bbox": [ - 93, - 275, - 547, - 288 - ], - "score": 1.0, - "content": "pressure exerted by the cylinder on the table. State how you would make your results as", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 94, - 289, - 192, - 300 - ], - "spans": [ - { - "bbox": [ - 94, - 289, - 192, - 300 - ], - "score": 1.0, - "content": "precise as possible.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 12, - "page_num": "page_15", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 93, - 262, - 547, - 300 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 314, - 548, - 563 - ], - "lines": [ - { - "bbox": [ - 525, - 545, - 549, - 563 - ], - "spans": [ - { - "bbox": [ - 525, - 545, - 549, - 563 - ], - "score": 1.0, - "content": ".. [4]", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_15", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 525, - 545, - 549, - 563 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 573, - 254, - 587 - ], - "lines": [ - { - "bbox": [ - 71, - 573, - 252, - 588 - ], - "spans": [ - { - "bbox": [ - 71, - 573, - 108, - 588 - ], - "score": 1.0, - "content": "(b) (i) ", - "type": "text" - }, - { - "bbox": [ - 115, - 573, - 252, - 586 - ], - "score": 1.0, - "content": "State Archimedes’ principle.", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_15", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 573, - 252, - 588 - ] - }, - { - "type": "text", - "bbox": [ - 114, - 625, - 547, - 639 - ], - "lines": [ - { - "bbox": [ - 114, - 625, - 547, - 639 - ], - "spans": [], - "index": 16 - } - ], - "index": 16, - "page_num": "page_15", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 114, - 625, - 547, - 639 - ] - }, - { - "type": "text", - "bbox": [ - 114, - 650, - 547, - 665 - ], - "lines": [ - { - "bbox": [ - 528, - 651, - 548, - 666 - ], - "spans": [ - { - "bbox": [ - 528, - 651, - 548, - 666 - ], - "score": 1.0, - "content": " [1]", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 98, - 63, - 448, - 77 - ], - "spans": [ - { - "bbox": [ - 98, - 63, - 448, - 77 - ], - "score": 1.0, - "content": "ii) Fig. 23.2 shows the metal cylinder from (a) hung from a newtonmete", - "type": "text", - "cross_page": true - } - ], - "index": 0 - } - ], - "index": 17, - "page_num": "page_15", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 528, - 651, - 548, - 666 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 100, - 62, - 446, - 77 - ], - "lines": [ - { - "bbox": [ - 98, - 63, - 448, - 77 - ], - "spans": [ - { - "bbox": [ - 98, - 63, - 448, - 77 - ], - "score": 1.0, - "content": "ii) Fig. 23.2 shows the metal cylinder from (a) hung from a newtonmete", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "image", - "bbox": [ - 182, - 93, - 413, - 280 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 182, - 93, - 413, - 280 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 182, - 93, - 413, - 280 - ], - "spans": [ - { - "bbox": [ - 182, - 93, - 413, - 280 - ], - "score": 0.956, - "type": "image", - "image_path": "fa3181d7e3d6df2514d248cbd09b1f8fb7b2cb6af00095983635d4357f428b4a.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 182, - 93, - 413, - 106.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 182, - 106.0, - 413, - 119.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 182, - 119.0, - 413, - 132.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 182, - 132.0, - 413, - 145.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 182, - 145.0, - 413, - 158.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 182, - 158.0, - 413, - 171.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 182, - 171.0, - 413, - 184.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 182, - 184.0, - 413, - 197.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 182, - 197.0, - 413, - 210.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 182, - 210.0, - 413, - 223.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 182, - 223.0, - 413, - 236.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 182, - 236.0, - 413, - 249.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 182, - 249.0, - 413, - 262.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 182, - 262.0, - 413, - 275.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 182, - 275.0, - 413, - 288.0 - ], - "spans": [], - "index": 15 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 274, - 300, - 321, - 314 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 275, - 301, - 321, - 314 - ], - "spans": [ - { - "bbox": [ - 275, - 301, - 321, - 314 - ], - "score": 1.0, - "content": "Fig. 23.2", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16 - } - ], - "index": 12.0 - }, - { - "type": "text", - "bbox": [ - 117, - 327, - 317, - 340 - ], - "lines": [ - { - "bbox": [ - 117, - 327, - 315, - 339 - ], - "spans": [ - { - "bbox": [ - 117, - 328, - 288, - 339 - ], - "score": 1.0, - "content": "The reading on the newtonmeter is", - "type": "text" - }, - { - "bbox": [ - 289, - 327, - 315, - 339 - ], - "score": 0.58, - "content": "9.0\\mathsf{N}", - "type": "inline_equation", - "height": 12, - "width": 26 - } - ], - "index": 17 - } - ], - "index": 17 - }, - { - "type": "text", - "bbox": [ - 117, - 340, - 547, - 393 - ], - "lines": [ - { - "bbox": [ - 118, - 341, - 545, - 352 - ], - "spans": [ - { - "bbox": [ - 118, - 341, - 545, - 352 - ], - "score": 1.0, - "content": "The cylinder is slowly lowered into water in a beaker until it is completely submerged.", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 118, - 354, - 547, - 365 - ], - "spans": [ - { - "bbox": [ - 118, - 354, - 547, - 365 - ], - "score": 1.0, - "content": "The cylinder does not touch the side or the bottom of the beaker. The newtonmeter", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 118, - 365, - 396, - 379 - ], - "spans": [ - { - "bbox": [ - 118, - 366, - 189, - 379 - ], - "score": 1.0, - "content": "reading now is", - "type": "text" - }, - { - "bbox": [ - 190, - 366, - 216, - 378 - ], - "score": 0.27, - "content": "7.8\\mathsf{N}", - "type": "inline_equation", - "height": 12, - "width": 26 - }, - { - "bbox": [ - 217, - 366, - 333, - 379 - ], - "score": 1.0, - "content": ". The density of water is ", - "type": "text" - }, - { - "bbox": [ - 334, - 365, - 391, - 379 - ], - "score": 0.9, - "content": "1000\\mathsf{k g}\\mathsf{m}^{-3}", - "type": "inline_equation", - "height": 14, - "width": 57 - }, - { - "bbox": [ - 392, - 366, - 396, - 379 - ], - "score": 1.0, - "content": ". ", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 117, - 379, - 363, - 392 - ], - "spans": [ - { - "bbox": [ - 117, - 379, - 221, - 392 - ], - "score": 1.0, - "content": "Calculate the density", - "type": "text" - }, - { - "bbox": [ - 221, - 380, - 230, - 392 - ], - "score": 0.81, - "content": "\\rho", - "type": "inline_equation", - "height": 12, - "width": 9 - }, - { - "bbox": [ - 230, - 379, - 363, - 392 - ], - "score": 1.0, - "content": " of the metal of the cylinder.", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 19.5 - }, - { - "type": "text", - "bbox": [ - 329, - 677, - 547, - 692 - ], - "lines": [ - { - "bbox": [ - 331, - 678, - 547, - 692 - ], - "spans": [ - { - "bbox": [ - 331, - 683, - 348, - 691 - ], - "score": 0.61, - "content": "\\rho=", - "type": "inline_equation", - "height": 8, - "width": 17 - }, - { - "bbox": [ - 494, - 678, - 547, - 692 - ], - "score": 1.0, - "content": " kg m–3 [3]", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 22 - } - ], - "layout_bboxes": [], - "page_idx": 16, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 182, - 93, - 413, - 280 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 182, - 93, - 413, - 280 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 182, - 93, - 413, - 280 - ], - "spans": [ - { - "bbox": [ - 182, - 93, - 413, - 280 - ], - "score": 0.956, - "type": "image", - "image_path": "fa3181d7e3d6df2514d248cbd09b1f8fb7b2cb6af00095983635d4357f428b4a.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 182, - 93, - 413, - 106.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 182, - 106.0, - 413, - 119.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 182, - 119.0, - 413, - 132.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 182, - 132.0, - 413, - 145.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 182, - 145.0, - 413, - 158.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 182, - 158.0, - 413, - 171.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 182, - 171.0, - 413, - 184.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 182, - 184.0, - 413, - 197.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 182, - 197.0, - 413, - 210.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 182, - 210.0, - 413, - 223.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 182, - 223.0, - 413, - 236.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 182, - 236.0, - 413, - 249.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 182, - 249.0, - 413, - 262.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 182, - 262.0, - 413, - 275.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 182, - 275.0, - 413, - 288.0 - ], - "spans": [], - "index": 15 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 274, - 300, - 321, - 314 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 275, - 301, - 321, - 314 - ], - "spans": [ - { - "bbox": [ - 275, - 301, - 321, - 314 - ], - "score": 1.0, - "content": "Fig. 23.2", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16 - } - ], - "index": 12.0 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "score": 1.0, - "content": "© OCR 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 485, - 774, - 531, - 785 - ], - "lines": [ - { - "bbox": [ - 484, - 774, - 532, - 785 - ], - "spans": [ - { - "bbox": [ - 484, - 774, - 532, - 785 - ], - "score": 1.0, - "content": "Turn over", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 291, - 45, - 304, - 55 - ], - "lines": [ - { - "bbox": [ - 289, - 43, - 306, - 59 - ], - "spans": [ - { - "bbox": [ - 289, - 43, - 306, - 59 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 16, - "width": 17 - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 100, - 62, - 446, - 77 - ], - "lines": [], - "index": 0, - "page_num": "page_16", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 98, - 63, - 448, - 77 - ], - "lines_deleted": true - }, - { - "type": "image", - "bbox": [ - 182, - 93, - 413, - 280 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 182, - 93, - 413, - 280 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 182, - 93, - 413, - 280 - ], - "spans": [ - { - "bbox": [ - 182, - 93, - 413, - 280 - ], - "score": 0.956, - "type": "image", - "image_path": "fa3181d7e3d6df2514d248cbd09b1f8fb7b2cb6af00095983635d4357f428b4a.jpg" - } - ] - } - ], - "index": 8, - "virtual_lines": [ - { - "bbox": [ - 182, - 93, - 413, - 106.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 182, - 106.0, - 413, - 119.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 182, - 119.0, - 413, - 132.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 182, - 132.0, - 413, - 145.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 182, - 145.0, - 413, - 158.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 182, - 158.0, - 413, - 171.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 182, - 171.0, - 413, - 184.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 182, - 184.0, - 413, - 197.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 182, - 197.0, - 413, - 210.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 182, - 210.0, - 413, - 223.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 182, - 223.0, - 413, - 236.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 182, - 236.0, - 413, - 249.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 182, - 249.0, - 413, - 262.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 182, - 262.0, - 413, - 275.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 182, - 275.0, - 413, - 288.0 - ], - "spans": [], - "index": 15 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 274, - 300, - 321, - 314 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 275, - 301, - 321, - 314 - ], - "spans": [ - { - "bbox": [ - 275, - 301, - 321, - 314 - ], - "score": 1.0, - "content": "Fig. 23.2", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16 - } - ], - "index": 12.0, - "page_num": "page_16", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 117, - 327, - 317, - 340 - ], - "lines": [ - { - "bbox": [ - 117, - 327, - 315, - 339 - ], - "spans": [ - { - "bbox": [ - 117, - 328, - 288, - 339 - ], - "score": 1.0, - "content": "The reading on the newtonmeter is", - "type": "text" - }, - { - "bbox": [ - 289, - 327, - 315, - 339 - ], - "score": 0.58, - "content": "9.0\\mathsf{N}", - "type": "inline_equation", - "height": 12, - "width": 26 - } - ], - "index": 17 - } - ], - "index": 17, - "page_num": "page_16", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 117, - 327, - 315, - 339 - ] - }, - { - "type": "list", - "bbox": [ - 117, - 340, - 547, - 393 - ], - "lines": [ - { - "bbox": [ - 118, - 341, - 545, - 352 - ], - "spans": [ - { - "bbox": [ - 118, - 341, - 545, - 352 - ], - "score": 1.0, - "content": "The cylinder is slowly lowered into water in a beaker until it is completely submerged.", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 118, - 354, - 547, - 365 - ], - "spans": [ - { - "bbox": [ - 118, - 354, - 547, - 365 - ], - "score": 1.0, - "content": "The cylinder does not touch the side or the bottom of the beaker. The newtonmeter", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 118, - 365, - 396, - 379 - ], - "spans": [ - { - "bbox": [ - 118, - 366, - 189, - 379 - ], - "score": 1.0, - "content": "reading now is", - "type": "text" - }, - { - "bbox": [ - 190, - 366, - 216, - 378 - ], - "score": 0.27, - "content": "7.8\\mathsf{N}", - "type": "inline_equation", - "height": 12, - "width": 26 - }, - { - "bbox": [ - 217, - 366, - 333, - 379 - ], - "score": 1.0, - "content": ". The density of water is ", - "type": "text" - }, - { - "bbox": [ - 334, - 365, - 391, - 379 - ], - "score": 0.9, - "content": "1000\\mathsf{k g}\\mathsf{m}^{-3}", - "type": "inline_equation", - "height": 14, - "width": 57 - }, - { - "bbox": [ - 392, - 366, - 396, - 379 - ], - "score": 1.0, - "content": ". ", - "type": "text" - } - ], - "index": 20, - "is_list_end_line": true - }, - { - "bbox": [ - 117, - 379, - 363, - 392 - ], - "spans": [ - { - "bbox": [ - 117, - 379, - 221, - 392 - ], - "score": 1.0, - "content": "Calculate the density", - "type": "text" - }, - { - "bbox": [ - 221, - 380, - 230, - 392 - ], - "score": 0.81, - "content": "\\rho", - "type": "inline_equation", - "height": 12, - "width": 9 - }, - { - "bbox": [ - 230, - 379, - 363, - 392 - ], - "score": 1.0, - "content": " of the metal of the cylinder.", - "type": "text" - } - ], - "index": 21, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 19.5, - "page_num": "page_16", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 117, - 341, - 547, - 392 - ] - }, - { - "type": "text", - "bbox": [ - 329, - 677, - 547, - 692 - ], - "lines": [ - { - "bbox": [ - 331, - 678, - 547, - 692 - ], - "spans": [ - { - "bbox": [ - 331, - 683, - 348, - 691 - ], - "score": 0.61, - "content": "\\rho=", - "type": "inline_equation", - "height": 8, - "width": 17 - }, - { - "bbox": [ - 494, - 678, - 547, - 692 - ], - "score": 1.0, - "content": " kg m–3 [3]", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 22, - "page_num": "page_16", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 331, - 678, - 547, - 692 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 48, - 62, - 229, - 77 - ], - "lines": [ - { - "bbox": [ - 47, - 62, - 230, - 78 - ], - "spans": [ - { - "bbox": [ - 47, - 62, - 230, - 78 - ], - "score": 1.0, - "content": "24 (a) State Newton’s second law.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 80, - 63, - 549, - 155 - ], - "lines": [ - { - "bbox": [ - 529, - 141, - 547, - 155 - ], - "spans": [ - { - "bbox": [ - 529, - 141, - 547, - 155 - ], - "score": 1.0, - "content": " [1]", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 69, - 166, - 422, - 181 - ], - "lines": [ - { - "bbox": [ - 72, - 168, - 421, - 180 - ], - "spans": [ - { - "bbox": [ - 72, - 168, - 421, - 180 - ], - "score": 1.0, - "content": "(b) A comet makes an inelastic collision with a small asteroid in space.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 93, - 192, - 548, - 263 - ], - "lines": [ - { - "bbox": [ - 94, - 193, - 389, - 207 - ], - "spans": [ - { - "bbox": [ - 94, - 193, - 108, - 207 - ], - "score": 1.0, - "content": "(i) ", - "type": "text" - }, - { - "bbox": [ - 117, - 194, - 389, - 206 - ], - "score": 1.0, - "content": "State two physical quantities conserved in this collision.", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 117, - 220, - 124, - 230 - ], - "spans": [ - { - "bbox": [ - 117, - 220, - 124, - 230 - ], - "score": 1.0, - "content": "1", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 117, - 246, - 126, - 257 - ], - "spans": [ - { - "bbox": [ - 117, - 246, - 126, - 257 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 87, - 283, - 545, - 298 - ], - "lines": [ - { - "bbox": [ - 91, - 284, - 547, - 299 - ], - "spans": [ - { - "bbox": [ - 91, - 284, - 260, - 299 - ], - "score": 1.0, - "content": "(ii) Fig. 24.1 shows how the force", - "type": "text" - }, - { - "bbox": [ - 260, - 285, - 270, - 296 - ], - "score": 0.62, - "content": "F", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 270, - 284, - 547, - 299 - ], - "score": 1.0, - "content": " acting on the comet varies with time t during the collision.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "image", - "bbox": [ - 197, - 309, - 401, - 496 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 197, - 309, - 401, - 496 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 197, - 309, - 401, - 496 - ], - "spans": [ - { - "bbox": [ - 197, - 309, - 401, - 496 - ], - "score": 0.969, - "type": "image", - "image_path": "7c20c5b6e3fd0f61ed1163350073e5aa88303c7126de83071f9f7ddf2b54e63a.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 197, - 309, - 401, - 322 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 197, - 322, - 401, - 335 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 197, - 335, - 401, - 348 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 197, - 348, - 401, - 361 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 197, - 361, - 401, - 374 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 197, - 374, - 401, - 387 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 197, - 387, - 401, - 400 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 197, - 400, - 401, - 413 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 197, - 413, - 401, - 426 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 197, - 426, - 401, - 439 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 197, - 439, - 401, - 452 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 197, - 452, - 401, - 465 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 197, - 465, - 401, - 478 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 197, - 478, - 401, - 491 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 197, - 491, - 401, - 504 - ], - "spans": [], - "index": 21 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 274, - 512, - 320, - 527 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 274, - 512, - 321, - 527 - ], - "spans": [ - { - "bbox": [ - 274, - 512, - 321, - 527 - ], - "score": 1.0, - "content": "Fig. 24.1", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 22 - } - ], - "index": 18.0 - }, - { - "type": "text", - "bbox": [ - 115, - 539, - 547, - 566 - ], - "lines": [ - { - "bbox": [ - 117, - 540, - 547, - 552 - ], - "spans": [ - { - "bbox": [ - 117, - 540, - 547, - 552 - ], - "score": 1.0, - "content": "Describe and explain how the force acting on the asteroid varies with time during this", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 117, - 554, - 498, - 566 - ], - "spans": [ - { - "bbox": [ - 117, - 554, - 498, - 566 - ], - "score": 1.0, - "content": "collision. You may sketch a suitable graph on Fig. 24.1 to support your answer.", - "type": "text" - } - ], - "index": 24 - } - ], - "index": 23.5 - }, - { - "type": "text", - "bbox": [ - 115, - 579, - 548, - 671 - ], - "lines": [ - { - "bbox": [ - 528, - 657, - 547, - 670 - ], - "spans": [ - { - "bbox": [ - 528, - 657, - 547, - 670 - ], - "score": 1.0, - "content": " [2]", - "type": "text" - } - ], - "index": 25 - } - ], - "index": 25 - } - ], - "layout_bboxes": [], - "page_idx": 17, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 197, - 309, - 401, - 496 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 197, - 309, - 401, - 496 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 197, - 309, - 401, - 496 - ], - "spans": [ - { - "bbox": [ - 197, - 309, - 401, - 496 - ], - "score": 0.969, - "type": "image", - "image_path": "7c20c5b6e3fd0f61ed1163350073e5aa88303c7126de83071f9f7ddf2b54e63a.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 197, - 309, - 401, - 322 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 197, - 322, - 401, - 335 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 197, - 335, - 401, - 348 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 197, - 348, - 401, - 361 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 197, - 361, - 401, - 374 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 197, - 374, - 401, - 387 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 197, - 387, - 401, - 400 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 197, - 400, - 401, - 413 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 197, - 413, - 401, - 426 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 197, - 426, - 401, - 439 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 197, - 439, - 401, - 452 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 197, - 452, - 401, - 465 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 197, - 465, - 401, - 478 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 197, - 478, - 401, - 491 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 197, - 491, - 401, - 504 - ], - "spans": [], - "index": 21 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 274, - 512, - 320, - 527 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 274, - 512, - 321, - 527 - ], - "spans": [ - { - "bbox": [ - 274, - 512, - 321, - 527 - ], - "score": 1.0, - "content": "Fig. 24.1", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 22 - } - ], - "index": 18.0 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 291, - 44, - 305, - 56 - ], - "lines": [ - { - "bbox": [ - 288, - 44, - 307, - 59 - ], - "spans": [ - { - "bbox": [ - 288, - 44, - 307, - 59 - ], - "score": 1.0, - "content": "18", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 259, - 546, - 272 - ], - "lines": [ - { - "bbox": [ - 530, - 257, - 549, - 275 - ], - "spans": [ - { - "bbox": [ - 530, - 257, - 549, - 275 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 48, - 62, - 229, - 77 - ], - "lines": [ - { - "bbox": [ - 47, - 62, - 230, - 78 - ], - "spans": [ - { - "bbox": [ - 47, - 62, - 230, - 78 - ], - "score": 1.0, - "content": "24 (a) State Newton’s second law.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_17", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 62, - 230, - 78 - ] - }, - { - "type": "text", - "bbox": [ - 80, - 63, - 549, - 155 - ], - "lines": [ - { - "bbox": [ - 529, - 141, - 547, - 155 - ], - "spans": [ - { - "bbox": [ - 529, - 141, - 547, - 155 - ], - "score": 1.0, - "content": " [1]", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 72, - 168, - 421, - 180 - ], - "spans": [ - { - "bbox": [ - 72, - 168, - 421, - 180 - ], - "score": 1.0, - "content": "(b) A comet makes an inelastic collision with a small asteroid in space.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1, - "page_num": "page_17", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 529, - 141, - 547, - 155 - ] - }, - { - "type": "text", - "bbox": [ - 69, - 166, - 422, - 181 - ], - "lines": [], - "index": 2, - "page_num": "page_17", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 168, - 421, - 180 - ], - "lines_deleted": true - }, - { - "type": "text", - "bbox": [ - 93, - 192, - 548, - 263 - ], - "lines": [ - { - "bbox": [ - 94, - 193, - 389, - 207 - ], - "spans": [ - { - "bbox": [ - 94, - 193, - 108, - 207 - ], - "score": 1.0, - "content": "(i) ", - "type": "text" - }, - { - "bbox": [ - 117, - 194, - 389, - 206 - ], - "score": 1.0, - "content": "State two physical quantities conserved in this collision.", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 117, - 220, - 124, - 230 - ], - "spans": [ - { - "bbox": [ - 117, - 220, - 124, - 230 - ], - "score": 1.0, - "content": "1", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 117, - 246, - 126, - 257 - ], - "spans": [ - { - "bbox": [ - 117, - 246, - 126, - 257 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4, - "page_num": "page_17", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 94, - 193, - 389, - 257 - ] - }, - { - "type": "text", - "bbox": [ - 87, - 283, - 545, - 298 - ], - "lines": [ - { - "bbox": [ - 91, - 284, - 547, - 299 - ], - "spans": [ - { - "bbox": [ - 91, - 284, - 260, - 299 - ], - "score": 1.0, - "content": "(ii) Fig. 24.1 shows how the force", - "type": "text" - }, - { - "bbox": [ - 260, - 285, - 270, - 296 - ], - "score": 0.62, - "content": "F", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 270, - 284, - 547, - 299 - ], - "score": 1.0, - "content": " acting on the comet varies with time t during the collision.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_17", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 91, - 284, - 547, - 299 - ] - }, - { - "type": "image", - "bbox": [ - 197, - 309, - 401, - 496 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 197, - 309, - 401, - 496 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 197, - 309, - 401, - 496 - ], - "spans": [ - { - "bbox": [ - 197, - 309, - 401, - 496 - ], - "score": 0.969, - "type": "image", - "image_path": "7c20c5b6e3fd0f61ed1163350073e5aa88303c7126de83071f9f7ddf2b54e63a.jpg" - } - ] - } - ], - "index": 14, - "virtual_lines": [ - { - "bbox": [ - 197, - 309, - 401, - 322 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 197, - 322, - 401, - 335 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 197, - 335, - 401, - 348 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 197, - 348, - 401, - 361 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 197, - 361, - 401, - 374 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 197, - 374, - 401, - 387 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 197, - 387, - 401, - 400 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 197, - 400, - 401, - 413 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 197, - 413, - 401, - 426 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 197, - 426, - 401, - 439 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 197, - 439, - 401, - 452 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 197, - 452, - 401, - 465 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 197, - 465, - 401, - 478 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 197, - 478, - 401, - 491 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 197, - 491, - 401, - 504 - ], - "spans": [], - "index": 21 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 274, - 512, - 320, - 527 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 274, - 512, - 321, - 527 - ], - "spans": [ - { - "bbox": [ - 274, - 512, - 321, - 527 - ], - "score": 1.0, - "content": "Fig. 24.1", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 22 - } - ], - "index": 18.0, - "page_num": "page_17", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 115, - 539, - 547, - 566 - ], - "lines": [ - { - "bbox": [ - 117, - 540, - 547, - 552 - ], - "spans": [ - { - "bbox": [ - 117, - 540, - 547, - 552 - ], - "score": 1.0, - "content": "Describe and explain how the force acting on the asteroid varies with time during this", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 117, - 554, - 498, - 566 - ], - "spans": [ - { - "bbox": [ - 117, - 554, - 498, - 566 - ], - "score": 1.0, - "content": "collision. You may sketch a suitable graph on Fig. 24.1 to support your answer.", - "type": "text" - } - ], - "index": 24 - } - ], - "index": 23.5, - "page_num": "page_17", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 117, - 540, - 547, - 566 - ] - }, - { - "type": "text", - "bbox": [ - 115, - 579, - 548, - 671 - ], - "lines": [ - { - "bbox": [ - 528, - 657, - 547, - 670 - ], - "spans": [ - { - "bbox": [ - 528, - 657, - 547, - 670 - ], - "score": 1.0, - "content": " [2]", - "type": "text" - } - ], - "index": 25 - }, - { - "bbox": [ - 70, - 62, - 547, - 77 - ], - "spans": [ - { - "bbox": [ - 70, - 62, - 243, - 77 - ], - "score": 1.0, - "content": "(c) A hydrogen atom travelling at ", - "type": "text", - "cross_page": true - }, - { - "bbox": [ - 243, - 62, - 290, - 75 - ], - "score": 0.9, - "content": "500\\mathsf{m}\\mathsf{s}^{-1}", - "type": "inline_equation", - "height": 13, - "width": 47, - "cross_page": true - }, - { - "bbox": [ - 290, - 62, - 547, - 77 - ], - "score": 1.0, - "content": " makes a head-on collision with a stationary carbon", - "type": "text", - "cross_page": true - } - ], - "index": 0 - }, - { - "bbox": [ - 94, - 78, - 547, - 89 - ], - "spans": [ - { - "bbox": [ - 94, - 78, - 547, - 89 - ], - "score": 1.0, - "content": "atom. The collision is perfectly elastic. After the collision the hydrogen atom bounces back", - "type": "text", - "cross_page": true - } - ], - "index": 1 - }, - { - "bbox": [ - 93, - 89, - 493, - 102 - ], - "spans": [ - { - "bbox": [ - 93, - 89, - 171, - 102 - ], - "score": 1.0, - "content": "with a speed of ", - "type": "text", - "cross_page": true - }, - { - "bbox": [ - 171, - 89, - 216, - 101 - ], - "score": 0.88, - "content": "420\\mathsf{m}\\mathsf{s}^{-1}", - "type": "inline_equation", - "height": 12, - "width": 45, - "cross_page": true - }, - { - "bbox": [ - 217, - 89, - 493, - 102 - ], - "score": 1.0, - "content": ". Fig. 24.2 shows the atoms before and after the collision.", - "type": "text", - "cross_page": true - } - ], - "index": 2 - } - ], - "index": 25, - "page_num": "page_17", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 528, - 657, - 547, - 670 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 71, - 62, - 547, - 102 - ], - "lines": [ - { - "bbox": [ - 70, - 62, - 547, - 77 - ], - "spans": [ - { - "bbox": [ - 70, - 62, - 243, - 77 - ], - "score": 1.0, - "content": "(c) A hydrogen atom travelling at ", - "type": "text" - }, - { - "bbox": [ - 243, - 62, - 290, - 75 - ], - "score": 0.9, - "content": "500\\mathsf{m}\\mathsf{s}^{-1}", - "type": "inline_equation", - "height": 13, - "width": 47 - }, - { - "bbox": [ - 290, - 62, - 547, - 77 - ], - "score": 1.0, - "content": " makes a head-on collision with a stationary carbon", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 94, - 78, - 547, - 89 - ], - "spans": [ - { - "bbox": [ - 94, - 78, - 547, - 89 - ], - "score": 1.0, - "content": "atom. The collision is perfectly elastic. After the collision the hydrogen atom bounces back", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 93, - 89, - 493, - 102 - ], - "spans": [ - { - "bbox": [ - 93, - 89, - 171, - 102 - ], - "score": 1.0, - "content": "with a speed of ", - "type": "text" - }, - { - "bbox": [ - 171, - 89, - 216, - 101 - ], - "score": 0.88, - "content": "420\\mathsf{m}\\mathsf{s}^{-1}", - "type": "inline_equation", - "height": 12, - "width": 45 - }, - { - "bbox": [ - 217, - 89, - 493, - 102 - ], - "score": 1.0, - "content": ". Fig. 24.2 shows the atoms before and after the collision.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1 - }, - { - "type": "image", - "bbox": [ - 90, - 119, - 507, - 257 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 90, - 119, - 507, - 257 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 90, - 119, - 507, - 257 - ], - "spans": [ - { - "bbox": [ - 90, - 119, - 507, - 257 - ], - "score": 0.956, - "type": "image", - "image_path": "ef197c6dd1495e29a3fd1244f57ee8bb4da3c03684eb01aa922f263438b7287a.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 90, - 119, - 507, - 165.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 90, - 165.0, - 507, - 211.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 90, - 211.0, - 507, - 257.0 - ], - "spans": [], - "index": 5 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 274, - 274, - 321, - 288 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 275, - 276, - 321, - 289 - ], - "spans": [ - { - "bbox": [ - 275, - 276, - 321, - 289 - ], - "score": 1.0, - "content": "Fig. 24.2", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - } - ], - "index": 5.0 - }, - { - "type": "text", - "bbox": [ - 90, - 300, - 547, - 340 - ], - "lines": [ - { - "bbox": [ - 93, - 300, - 548, - 315 - ], - "spans": [ - { - "bbox": [ - 93, - 300, - 281, - 315 - ], - "score": 1.0, - "content": "The mass of the hydrogen atom is ", - "type": "text" - }, - { - "bbox": [ - 281, - 300, - 350, - 314 - ], - "score": 0.91, - "content": "1.7\\times10^{-27}\\mathrm{kg}", - "type": "inline_equation", - "height": 14, - "width": 69 - }, - { - "bbox": [ - 351, - 300, - 548, - 315 - ], - "score": 1.0, - "content": "and the mass of the carbon atom is ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 93, - 311, - 166, - 329 - ], - "spans": [ - { - "bbox": [ - 93, - 313, - 162, - 327 - ], - "score": 0.9, - "content": "2.0\\times10^{-26}\\mathrm{kg}", - "type": "inline_equation", - "height": 14, - "width": 69 - }, - { - "bbox": [ - 162, - 311, - 166, - 329 - ], - "score": 1.0, - "content": ". ", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 94, - 327, - 384, - 340 - ], - "spans": [ - { - "bbox": [ - 94, - 327, - 194, - 340 - ], - "score": 1.0, - "content": "Calculate the speed ", - "type": "text" - }, - { - "bbox": [ - 194, - 329, - 202, - 338 - ], - "score": 0.48, - "content": "V", - "type": "inline_equation", - "height": 9, - "width": 8 - }, - { - "bbox": [ - 203, - 327, - 384, - 340 - ], - "score": 1.0, - "content": "of the carbon atom after the collision.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 331, - 573, - 547, - 588 - ], - "lines": [ - { - "bbox": [ - 332, - 572, - 547, - 588 - ], - "spans": [ - { - "bbox": [ - 332, - 577, - 347, - 585 - ], - "score": 1.0, - "content": "v =", - "type": "text" - }, - { - "bbox": [ - 502, - 573, - 529, - 586 - ], - "score": 0.37, - "content": "m\\mathtt{s}^{-1}", - "type": "inline_equation", - "height": 13, - "width": 27 - }, - { - "bbox": [ - 530, - 572, - 547, - 588 - ], - "score": 1.0, - "content": " [3]", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - } - ], - "layout_bboxes": [], - "page_idx": 18, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 90, - 119, - 507, - 257 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 90, - 119, - 507, - 257 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 90, - 119, - 507, - 257 - ], - "spans": [ - { - "bbox": [ - 90, - 119, - 507, - 257 - ], - "score": 0.956, - "type": "image", - "image_path": "ef197c6dd1495e29a3fd1244f57ee8bb4da3c03684eb01aa922f263438b7287a.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 90, - 119, - 507, - 165.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 90, - 165.0, - 507, - 211.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 90, - 211.0, - 507, - 257.0 - ], - "spans": [], - "index": 5 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 274, - 274, - 321, - 288 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 275, - 276, - 321, - 289 - ], - "spans": [ - { - "bbox": [ - 275, - 276, - 321, - 289 - ], - "score": 1.0, - "content": "Fig. 24.2", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - } - ], - "index": 5.0 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "score": 1.0, - "content": "© OCR 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 485, - 775, - 531, - 785 - ], - "lines": [ - { - "bbox": [ - 484, - 774, - 532, - 786 - ], - "spans": [ - { - "bbox": [ - 484, - 774, - 532, - 786 - ], - "score": 1.0, - "content": "Turn over", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 291, - 45, - 304, - 55 - ], - "lines": [ - { - "bbox": [ - 289, - 43, - 306, - 59 - ], - "spans": [ - { - "bbox": [ - 289, - 43, - 306, - 59 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 16, - "width": 17 - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 71, - 62, - 547, - 102 - ], - "lines": [], - "index": 1, - "page_num": "page_18", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 62, - 547, - 102 - ], - "lines_deleted": true - }, - { - "type": "image", - "bbox": [ - 90, - 119, - 507, - 257 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 90, - 119, - 507, - 257 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 90, - 119, - 507, - 257 - ], - "spans": [ - { - "bbox": [ - 90, - 119, - 507, - 257 - ], - "score": 0.956, - "type": "image", - "image_path": "ef197c6dd1495e29a3fd1244f57ee8bb4da3c03684eb01aa922f263438b7287a.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 90, - 119, - 507, - 165.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 90, - 165.0, - 507, - 211.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 90, - 211.0, - 507, - 257.0 - ], - "spans": [], - "index": 5 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 274, - 274, - 321, - 288 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 275, - 276, - 321, - 289 - ], - "spans": [ - { - "bbox": [ - 275, - 276, - 321, - 289 - ], - "score": 1.0, - "content": "Fig. 24.2", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - } - ], - "index": 5.0, - "page_num": "page_18", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "list", - "bbox": [ - 90, - 300, - 547, - 340 - ], - "lines": [ - { - "bbox": [ - 93, - 300, - 548, - 315 - ], - "spans": [ - { - "bbox": [ - 93, - 300, - 281, - 315 - ], - "score": 1.0, - "content": "The mass of the hydrogen atom is ", - "type": "text" - }, - { - "bbox": [ - 281, - 300, - 350, - 314 - ], - "score": 0.91, - "content": "1.7\\times10^{-27}\\mathrm{kg}", - "type": "inline_equation", - "height": 14, - "width": 69 - }, - { - "bbox": [ - 351, - 300, - 548, - 315 - ], - "score": 1.0, - "content": "and the mass of the carbon atom is ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 93, - 311, - 166, - 329 - ], - "spans": [ - { - "bbox": [ - 93, - 313, - 162, - 327 - ], - "score": 0.9, - "content": "2.0\\times10^{-26}\\mathrm{kg}", - "type": "inline_equation", - "height": 14, - "width": 69 - }, - { - "bbox": [ - 162, - 311, - 166, - 329 - ], - "score": 1.0, - "content": ". ", - "type": "text" - } - ], - "index": 8, - "is_list_end_line": true - }, - { - "bbox": [ - 94, - 327, - 384, - 340 - ], - "spans": [ - { - "bbox": [ - 94, - 327, - 194, - 340 - ], - "score": 1.0, - "content": "Calculate the speed ", - "type": "text" - }, - { - "bbox": [ - 194, - 329, - 202, - 338 - ], - "score": 0.48, - "content": "V", - "type": "inline_equation", - "height": 9, - "width": 8 - }, - { - "bbox": [ - 203, - 327, - 384, - 340 - ], - "score": 1.0, - "content": "of the carbon atom after the collision.", - "type": "text" - } - ], - "index": 9, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 8, - "page_num": "page_18", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 93, - 300, - 548, - 340 - ] - }, - { - "type": "text", - "bbox": [ - 331, - 573, - 547, - 588 - ], - "lines": [ - { - "bbox": [ - 332, - 572, - 547, - 588 - ], - "spans": [ - { - "bbox": [ - 332, - 577, - 347, - 585 - ], - "score": 1.0, - "content": "v =", - "type": "text" - }, - { - "bbox": [ - 502, - 573, - 529, - 586 - ], - "score": 0.37, - "content": "m\\mathtt{s}^{-1}", - "type": "inline_equation", - "height": 13, - "width": 27 - }, - { - "bbox": [ - 530, - 572, - 547, - 588 - ], - "score": 1.0, - "content": " [3]", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_18", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 332, - 572, - 547, - 588 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 48, - 62, - 319, - 76 - ], - "lines": [ - { - "bbox": [ - 47, - 61, - 321, - 78 - ], - "spans": [ - { - "bbox": [ - 47, - 61, - 321, - 78 - ], - "score": 1.0, - "content": "25 (a) A chemical cell is connected across a resistor.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 94, - 87, - 548, - 325 - ], - "lines": [ - { - "bbox": [ - 95, - 89, - 546, - 102 - ], - "spans": [ - { - "bbox": [ - 95, - 90, - 108, - 102 - ], - "score": 1.0, - "content": "(i) ", - "type": "text" - }, - { - "bbox": [ - 113, - 89, - 546, - 102 - ], - "score": 1.0, - "content": "The terms electromotive force (e.m.f.) and potential difference (p.d.) are terms associated", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 116, - 102, - 191, - 115 - ], - "spans": [ - { - "bbox": [ - 116, - 102, - 191, - 115 - ], - "score": 1.0, - "content": "with the circuit.", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 117, - 128, - 424, - 141 - ], - "spans": [ - { - "bbox": [ - 117, - 128, - 424, - 141 - ], - "score": 1.0, - "content": "State one similarity and one difference between e.m.f. and p.d.", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 115, - 153, - 165, - 169 - ], - "spans": [ - { - "bbox": [ - 115, - 153, - 165, - 169 - ], - "score": 1.0, - "content": "similarity: ", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 116, - 232, - 170, - 245 - ], - "spans": [ - { - "bbox": [ - 116, - 232, - 170, - 245 - ], - "score": 1.0, - "content": "difference: ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 530, - 310, - 547, - 324 - ], - "spans": [ - { - "bbox": [ - 530, - 310, - 547, - 324 - ], - "score": 1.0, - "content": " [2]", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 3.5 - }, - { - "type": "text", - "bbox": [ - 91, - 335, - 547, - 388 - ], - "lines": [ - { - "bbox": [ - 92, - 334, - 547, - 350 - ], - "spans": [ - { - "bbox": [ - 92, - 336, - 109, - 349 - ], - "score": 1.0, - "content": "(ii) ", - "type": "text" - }, - { - "bbox": [ - 113, - 334, - 424, - 350 - ], - "score": 1.0, - "content": "The resistor is cylindrical in shape. It has cross-sectional area ", - "type": "text" - }, - { - "bbox": [ - 425, - 335, - 491, - 348 - ], - "score": 0.92, - "content": "1.2\\times10^{-6}\\mathsf{m}^{2}", - "type": "inline_equation", - "height": 13, - "width": 66 - }, - { - "bbox": [ - 491, - 334, - 547, - 350 - ], - "score": 1.0, - "content": " and length", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 116, - 348, - 424, - 363 - ], - "spans": [ - { - "bbox": [ - 116, - 348, - 178, - 361 - ], - "score": 0.91, - "content": "6.0\\times10^{-3}\\mathrm{m}", - "type": "inline_equation", - "height": 13, - "width": 62 - }, - { - "bbox": [ - 178, - 348, - 300, - 363 - ], - "score": 1.0, - "content": ". In this resistor there are ", - "type": "text" - }, - { - "bbox": [ - 300, - 348, - 351, - 361 - ], - "score": 0.91, - "content": "9.6\\times10^{16}", - "type": "inline_equation", - "height": 13, - "width": 51 - }, - { - "bbox": [ - 352, - 348, - 424, - 363 - ], - "score": 1.0, - "content": " free electrons.", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 116, - 361, - 548, - 376 - ], - "spans": [ - { - "bbox": [ - 116, - 361, - 282, - 376 - ], - "score": 1.0, - "content": "Calculate the mean drift velocity ", - "type": "text" - }, - { - "bbox": [ - 282, - 363, - 291, - 374 - ], - "score": 0.6, - "content": "V", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 291, - 361, - 548, - 376 - ], - "score": 1.0, - "content": "of the electrons when the current in the resistor is ", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 116, - 375, - 155, - 388 - ], - "spans": [ - { - "bbox": [ - 116, - 375, - 151, - 388 - ], - "score": 0.64, - "content": "3.0\\mathsf{m A}", - "type": "inline_equation", - "height": 13, - "width": 35 - }, - { - "bbox": [ - 151, - 375, - 155, - 388 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 8.5 - }, - { - "type": "text", - "bbox": [ - 331, - 621, - 547, - 636 - ], - "lines": [ - { - "bbox": [ - 332, - 620, - 547, - 637 - ], - "spans": [ - { - "bbox": [ - 332, - 625, - 347, - 633 - ], - "score": 1.0, - "content": "v =", - "type": "text" - }, - { - "bbox": [ - 502, - 621, - 529, - 635 - ], - "score": 0.33, - "content": "m\\mathtt{s}^{-1}", - "type": "inline_equation", - "height": 14, - "width": 27 - }, - { - "bbox": [ - 530, - 620, - 547, - 637 - ], - "score": 1.0, - "content": " [3]", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - } - ], - "layout_bboxes": [], - "page_idx": 19, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "score": 1.0, - "content": "© OCR 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 290, - 44, - 305, - 56 - ], - "lines": [ - { - "bbox": [ - 288, - 43, - 307, - 60 - ], - "spans": [ - { - "bbox": [ - 288, - 43, - 307, - 60 - ], - "score": 1.0, - "content": "20", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 48, - 62, - 319, - 76 - ], - "lines": [ - { - "bbox": [ - 47, - 61, - 321, - 78 - ], - "spans": [ - { - "bbox": [ - 47, - 61, - 321, - 78 - ], - "score": 1.0, - "content": "25 (a) A chemical cell is connected across a resistor.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_19", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 61, - 321, - 78 - ] - }, - { - "type": "text", - "bbox": [ - 94, - 87, - 548, - 325 - ], - "lines": [ - { - "bbox": [ - 95, - 89, - 546, - 102 - ], - "spans": [ - { - "bbox": [ - 95, - 90, - 108, - 102 - ], - "score": 1.0, - "content": "(i) ", - "type": "text" - }, - { - "bbox": [ - 113, - 89, - 546, - 102 - ], - "score": 1.0, - "content": "The terms electromotive force (e.m.f.) and potential difference (p.d.) are terms associated", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 116, - 102, - 191, - 115 - ], - "spans": [ - { - "bbox": [ - 116, - 102, - 191, - 115 - ], - "score": 1.0, - "content": "with the circuit.", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 117, - 128, - 424, - 141 - ], - "spans": [ - { - "bbox": [ - 117, - 128, - 424, - 141 - ], - "score": 1.0, - "content": "State one similarity and one difference between e.m.f. and p.d.", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 115, - 153, - 165, - 169 - ], - "spans": [ - { - "bbox": [ - 115, - 153, - 165, - 169 - ], - "score": 1.0, - "content": "similarity: ", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 116, - 232, - 170, - 245 - ], - "spans": [ - { - "bbox": [ - 116, - 232, - 170, - 245 - ], - "score": 1.0, - "content": "difference: ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 530, - 310, - 547, - 324 - ], - "spans": [ - { - "bbox": [ - 530, - 310, - 547, - 324 - ], - "score": 1.0, - "content": " [2]", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 92, - 334, - 547, - 350 - ], - "spans": [ - { - "bbox": [ - 92, - 336, - 109, - 349 - ], - "score": 1.0, - "content": "(ii) ", - "type": "text" - }, - { - "bbox": [ - 113, - 334, - 424, - 350 - ], - "score": 1.0, - "content": "The resistor is cylindrical in shape. It has cross-sectional area ", - "type": "text" - }, - { - "bbox": [ - 425, - 335, - 491, - 348 - ], - "score": 0.92, - "content": "1.2\\times10^{-6}\\mathsf{m}^{2}", - "type": "inline_equation", - "height": 13, - "width": 66 - }, - { - "bbox": [ - 491, - 334, - 547, - 350 - ], - "score": 1.0, - "content": " and length", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 116, - 348, - 424, - 363 - ], - "spans": [ - { - "bbox": [ - 116, - 348, - 178, - 361 - ], - "score": 0.91, - "content": "6.0\\times10^{-3}\\mathrm{m}", - "type": "inline_equation", - "height": 13, - "width": 62 - }, - { - "bbox": [ - 178, - 348, - 300, - 363 - ], - "score": 1.0, - "content": ". In this resistor there are ", - "type": "text" - }, - { - "bbox": [ - 300, - 348, - 351, - 361 - ], - "score": 0.91, - "content": "9.6\\times10^{16}", - "type": "inline_equation", - "height": 13, - "width": 51 - }, - { - "bbox": [ - 352, - 348, - 424, - 363 - ], - "score": 1.0, - "content": " free electrons.", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 116, - 361, - 548, - 376 - ], - "spans": [ - { - "bbox": [ - 116, - 361, - 282, - 376 - ], - "score": 1.0, - "content": "Calculate the mean drift velocity ", - "type": "text" - }, - { - "bbox": [ - 282, - 363, - 291, - 374 - ], - "score": 0.6, - "content": "V", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 291, - 361, - 548, - 376 - ], - "score": 1.0, - "content": "of the electrons when the current in the resistor is ", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 116, - 375, - 155, - 388 - ], - "spans": [ - { - "bbox": [ - 116, - 375, - 151, - 388 - ], - "score": 0.64, - "content": "3.0\\mathsf{m A}", - "type": "inline_equation", - "height": 13, - "width": 35 - }, - { - "bbox": [ - 151, - 375, - 155, - 388 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 3.5, - "page_num": "page_19", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 95, - 89, - 547, - 324 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 335, - 547, - 388 - ], - "lines": [], - "index": 8.5, - "page_num": "page_19", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 92, - 334, - 548, - 388 - ], - "lines_deleted": true - }, - { - "type": "text", - "bbox": [ - 331, - 621, - 547, - 636 - ], - "lines": [ - { - "bbox": [ - 332, - 620, - 547, - 637 - ], - "spans": [ - { - "bbox": [ - 332, - 625, - 347, - 633 - ], - "score": 1.0, - "content": "v =", - "type": "text" - }, - { - "bbox": [ - 502, - 621, - 529, - 635 - ], - "score": 0.33, - "content": "m\\mathtt{s}^{-1}", - "type": "inline_equation", - "height": 14, - "width": 27 - }, - { - "bbox": [ - 530, - 620, - 547, - 637 - ], - "score": 1.0, - "content": " [3]", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_19", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 332, - 620, - 547, - 637 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 68, - 62, - 549, - 169 - ], - "lines": [ - { - "bbox": [ - 71, - 63, - 547, - 77 - ], - "spans": [ - { - "bbox": [ - 71, - 63, - 547, - 77 - ], - "score": 1.0, - "content": "(b) A student is given a chemical cell, an ammeter, a voltmeter, a variable resistor and a number", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 94, - 77, - 193, - 89 - ], - "spans": [ - { - "bbox": [ - 94, - 77, - 193, - 89 - ], - "score": 1.0, - "content": "of connecting wires. ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 94, - 90, - 547, - 102 - ], - "spans": [ - { - "bbox": [ - 94, - 90, - 438, - 102 - ], - "score": 1.0, - "content": "Design a laboratory experiment to determine the internal resistance ", - "type": "text" - }, - { - "bbox": [ - 438, - 91, - 446, - 101 - ], - "score": 0.47, - "content": "r", - "type": "inline_equation", - "height": 10, - "width": 8 - }, - { - "bbox": [ - 446, - 90, - 547, - 102 - ], - "score": 1.0, - "content": "of the chemical cell", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 93, - 102, - 301, - 116 - ], - "spans": [ - { - "bbox": [ - 93, - 102, - 301, - 116 - ], - "score": 1.0, - "content": "using a graph. Start with a circuit diagram.", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 93, - 115, - 313, - 129 - ], - "spans": [ - { - "bbox": [ - 93, - 115, - 313, - 129 - ], - "score": 1.0, - "content": "In your description pay particular attention to", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 95, - 128, - 193, - 140 - ], - "spans": [ - { - "bbox": [ - 95, - 132, - 99, - 137 - ], - "score": 1.0, - "content": "•", - "type": "text" - }, - { - "bbox": [ - 116, - 128, - 193, - 140 - ], - "score": 1.0, - "content": "the circuit used", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 116, - 141, - 240, - 154 - ], - "spans": [ - { - "bbox": [ - 116, - 141, - 240, - 154 - ], - "score": 1.0, - "content": "the measurements taken", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 114, - 154, - 311, - 168 - ], - "spans": [ - { - "bbox": [ - 114, - 154, - 311, - 168 - ], - "score": 1.0, - "content": "how the data is analysed using a graph.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 3.5 - }, - { - "type": "text", - "bbox": [ - 91, - 388, - 549, - 561 - ], - "lines": [ - { - "bbox": [ - 529, - 544, - 548, - 558 - ], - "spans": [ - { - "bbox": [ - 529, - 544, - 548, - 558 - ], - "score": 1.0, - "content": " [4]", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - } - ], - "layout_bboxes": [], - "page_idx": 20, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "score": 1.0, - "content": "© OCR 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 485, - 774, - 531, - 785 - ], - "lines": [ - { - "bbox": [ - 484, - 774, - 532, - 785 - ], - "spans": [ - { - "bbox": [ - 484, - 774, - 532, - 785 - ], - "score": 1.0, - "content": "Turn over", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 290, - 44, - 304, - 56 - ], - "lines": [ - { - "bbox": [ - 288, - 44, - 306, - 59 - ], - "spans": [ - { - "bbox": [ - 288, - 44, - 306, - 59 - ], - "score": 1.0, - "content": "21", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 68, - 62, - 549, - 169 - ], - "lines": [ - { - "bbox": [ - 71, - 63, - 547, - 77 - ], - "spans": [ - { - "bbox": [ - 71, - 63, - 547, - 77 - ], - "score": 1.0, - "content": "(b) A student is given a chemical cell, an ammeter, a voltmeter, a variable resistor and a number", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 94, - 77, - 193, - 89 - ], - "spans": [ - { - "bbox": [ - 94, - 77, - 193, - 89 - ], - "score": 1.0, - "content": "of connecting wires. ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 94, - 90, - 547, - 102 - ], - "spans": [ - { - "bbox": [ - 94, - 90, - 438, - 102 - ], - "score": 1.0, - "content": "Design a laboratory experiment to determine the internal resistance ", - "type": "text" - }, - { - "bbox": [ - 438, - 91, - 446, - 101 - ], - "score": 0.47, - "content": "r", - "type": "inline_equation", - "height": 10, - "width": 8 - }, - { - "bbox": [ - 446, - 90, - 547, - 102 - ], - "score": 1.0, - "content": "of the chemical cell", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 93, - 102, - 301, - 116 - ], - "spans": [ - { - "bbox": [ - 93, - 102, - 301, - 116 - ], - "score": 1.0, - "content": "using a graph. Start with a circuit diagram.", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 93, - 115, - 313, - 129 - ], - "spans": [ - { - "bbox": [ - 93, - 115, - 313, - 129 - ], - "score": 1.0, - "content": "In your description pay particular attention to", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 95, - 128, - 193, - 140 - ], - "spans": [ - { - "bbox": [ - 95, - 132, - 99, - 137 - ], - "score": 1.0, - "content": "•", - "type": "text" - }, - { - "bbox": [ - 116, - 128, - 193, - 140 - ], - "score": 1.0, - "content": "the circuit used", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 116, - 141, - 240, - 154 - ], - "spans": [ - { - "bbox": [ - 116, - 141, - 240, - 154 - ], - "score": 1.0, - "content": "the measurements taken", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 114, - 154, - 311, - 168 - ], - "spans": [ - { - "bbox": [ - 114, - 154, - 311, - 168 - ], - "score": 1.0, - "content": "how the data is analysed using a graph.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 3.5, - "page_num": "page_20", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 63, - 547, - 168 - ] - }, - { - "type": "text", - "bbox": [ - 91, - 388, - 549, - 561 - ], - "lines": [ - { - "bbox": [ - 529, - 544, - 548, - 558 - ], - "spans": [ - { - "bbox": [ - 529, - 544, - 548, - 558 - ], - "score": 1.0, - "content": " [4]", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_20", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 529, - 544, - 548, - 558 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 48, - 63, - 542, - 89 - ], - "lines": [ - { - "bbox": [ - 47, - 62, - 544, - 78 - ], - "spans": [ - { - "bbox": [ - 47, - 62, - 399, - 78 - ], - "score": 1.0, - "content": "26 (a) Fig. 26.1 shows the variation of displacement y with position ", - "type": "text" - }, - { - "bbox": [ - 399, - 65, - 408, - 75 - ], - "score": 0.58, - "content": "x", - "type": "inline_equation", - "height": 10, - "width": 9 - }, - { - "bbox": [ - 408, - 62, - 544, - 78 - ], - "score": 1.0, - "content": "of a progressive transverse", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 92, - 77, - 332, - 89 - ], - "spans": [ - { - "bbox": [ - 92, - 77, - 332, - 89 - ], - "score": 1.0, - "content": "wave on a stretched string at a particular instant.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "image", - "bbox": [ - 85, - 100, - 510, - 268 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 85, - 100, - 510, - 268 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 85, - 100, - 510, - 268 - ], - "spans": [ - { - "bbox": [ - 85, - 100, - 510, - 268 - ], - "score": 0.97, - "type": "image", - "image_path": "288e566eff169ddcb7bedda698de48fdbb163c75006474bf95bbcdcbf8dea31b.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 85, - 100, - 510, - 156.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 85, - 156.0, - 510, - 212.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 85, - 212.0, - 510, - 268.0 - ], - "spans": [], - "index": 4 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 274, - 285, - 319, - 299 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 274, - 285, - 321, - 299 - ], - "spans": [ - { - "bbox": [ - 274, - 285, - 321, - 299 - ], - "score": 1.0, - "content": "Fig. 26.1", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - } - ], - "index": 4.0 - }, - { - "type": "text", - "bbox": [ - 94, - 311, - 547, - 350 - ], - "lines": [ - { - "bbox": [ - 94, - 312, - 546, - 325 - ], - "spans": [ - { - "bbox": [ - 94, - 312, - 546, - 325 - ], - "score": 1.0, - "content": "The motions of particles A and B of the string is analysed over a short period of time. The", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 94, - 326, - 547, - 337 - ], - "spans": [ - { - "bbox": [ - 94, - 326, - 547, - 337 - ], - "score": 1.0, - "content": "distance between the positions of A and B is half a wavelength of the wave. The particles", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 94, - 338, - 246, - 350 - ], - "spans": [ - { - "bbox": [ - 94, - 338, - 246, - 350 - ], - "score": 1.0, - "content": "A and B have the same speed.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 88, - 363, - 548, - 494 - ], - "lines": [ - { - "bbox": [ - 95, - 365, - 410, - 377 - ], - "spans": [ - { - "bbox": [ - 95, - 365, - 109, - 377 - ], - "score": 1.0, - "content": "(i) ", - "type": "text" - }, - { - "bbox": [ - 115, - 365, - 410, - 376 - ], - "score": 1.0, - "content": "State one difference between the motions of these particles.", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 529, - 416, - 548, - 430 - ], - "spans": [ - { - "bbox": [ - 529, - 416, - 548, - 430 - ], - "score": 1.0, - "content": " [1]", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 92, - 442, - 342, - 456 - ], - "spans": [ - { - "bbox": [ - 92, - 442, - 107, - 456 - ], - "score": 1.0, - "content": "(ii)", - "type": "text" - }, - { - "bbox": [ - 116, - 442, - 310, - 454 - ], - "score": 1.0, - "content": "The particle A oscillates with frequency", - "type": "text" - }, - { - "bbox": [ - 310, - 442, - 339, - 453 - ], - "score": 0.73, - "content": "75\\mathsf{H z}", - "type": "inline_equation", - "height": 11, - "width": 29 - }, - { - "bbox": [ - 340, - 442, - 342, - 455 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 117, - 455, - 436, - 468 - ], - "spans": [ - { - "bbox": [ - 117, - 455, - 359, - 467 - ], - "score": 1.0, - "content": "The distance between the positions of A and B is ", - "type": "text" - }, - { - "bbox": [ - 359, - 455, - 434, - 468 - ], - "score": 0.84, - "content": "(40.0\\pm2.0)\\mathsf{c m}", - "type": "inline_equation", - "height": 13, - "width": 75 - }, - { - "bbox": [ - 434, - 455, - 436, - 467 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 116, - 467, - 547, - 482 - ], - "spans": [ - { - "bbox": [ - 116, - 467, - 217, - 482 - ], - "score": 1.0, - "content": "Calculate the speed", - "type": "text" - }, - { - "bbox": [ - 218, - 469, - 226, - 479 - ], - "score": 0.28, - "content": "V", - "type": "inline_equation", - "height": 10, - "width": 8 - }, - { - "bbox": [ - 227, - 467, - 547, - 482 - ], - "score": 1.0, - "content": "of the transverse wave on the string and the absolute uncertainty", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 115, - 481, - 179, - 495 - ], - "spans": [ - { - "bbox": [ - 115, - 481, - 179, - 495 - ], - "score": 1.0, - "content": "in this value.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 11.5 - }, - { - "type": "text", - "bbox": [ - 361, - 740, - 547, - 754 - ], - "lines": [ - { - "bbox": [ - 363, - 741, - 546, - 754 - ], - "spans": [ - { - "bbox": [ - 363, - 745, - 371, - 750 - ], - "score": 1.0, - "content": "v ", - "type": "text" - }, - { - "bbox": [ - 503, - 741, - 546, - 754 - ], - "score": 1.0, - "content": " m s–1 [3]", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - } - ], - "layout_bboxes": [], - "page_idx": 21, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 85, - 100, - 510, - 268 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 85, - 100, - 510, - 268 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 85, - 100, - 510, - 268 - ], - "spans": [ - { - "bbox": [ - 85, - 100, - 510, - 268 - ], - "score": 0.97, - "type": "image", - "image_path": "288e566eff169ddcb7bedda698de48fdbb163c75006474bf95bbcdcbf8dea31b.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 85, - 100, - 510, - 156.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 85, - 156.0, - 510, - 212.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 85, - 212.0, - 510, - 268.0 - ], - "spans": [], - "index": 4 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 274, - 285, - 319, - 299 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 274, - 285, - 321, - 299 - ], - "spans": [ - { - "bbox": [ - 274, - 285, - 321, - 299 - ], - "score": 1.0, - "content": "Fig. 26.1", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - } - ], - "index": 4.0 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "score": 1.0, - "content": "© OCR 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 291, - 45, - 304, - 55 - ], - "lines": [ - { - "bbox": [ - 288, - 43, - 307, - 59 - ], - "spans": [ - { - "bbox": [ - 288, - 43, - 307, - 59 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 16, - "width": 19 - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 48, - 63, - 542, - 89 - ], - "lines": [ - { - "bbox": [ - 47, - 62, - 544, - 78 - ], - "spans": [ - { - "bbox": [ - 47, - 62, - 399, - 78 - ], - "score": 1.0, - "content": "26 (a) Fig. 26.1 shows the variation of displacement y with position ", - "type": "text" - }, - { - "bbox": [ - 399, - 65, - 408, - 75 - ], - "score": 0.58, - "content": "x", - "type": "inline_equation", - "height": 10, - "width": 9 - }, - { - "bbox": [ - 408, - 62, - 544, - 78 - ], - "score": 1.0, - "content": "of a progressive transverse", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 92, - 77, - 332, - 89 - ], - "spans": [ - { - "bbox": [ - 92, - 77, - 332, - 89 - ], - "score": 1.0, - "content": "wave on a stretched string at a particular instant.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_21", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 62, - 544, - 89 - ] - }, - { - "type": "image", - "bbox": [ - 85, - 100, - 510, - 268 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 85, - 100, - 510, - 268 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 85, - 100, - 510, - 268 - ], - "spans": [ - { - "bbox": [ - 85, - 100, - 510, - 268 - ], - "score": 0.97, - "type": "image", - "image_path": "288e566eff169ddcb7bedda698de48fdbb163c75006474bf95bbcdcbf8dea31b.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 85, - 100, - 510, - 156.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 85, - 156.0, - 510, - 212.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 85, - 212.0, - 510, - 268.0 - ], - "spans": [], - "index": 4 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 274, - 285, - 319, - 299 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 274, - 285, - 321, - 299 - ], - "spans": [ - { - "bbox": [ - 274, - 285, - 321, - 299 - ], - "score": 1.0, - "content": "Fig. 26.1", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - } - ], - "index": 4.0, - "page_num": "page_21", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 94, - 311, - 547, - 350 - ], - "lines": [ - { - "bbox": [ - 94, - 312, - 546, - 325 - ], - "spans": [ - { - "bbox": [ - 94, - 312, - 546, - 325 - ], - "score": 1.0, - "content": "The motions of particles A and B of the string is analysed over a short period of time. The", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 94, - 326, - 547, - 337 - ], - "spans": [ - { - "bbox": [ - 94, - 326, - 547, - 337 - ], - "score": 1.0, - "content": "distance between the positions of A and B is half a wavelength of the wave. The particles", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 94, - 338, - 246, - 350 - ], - "spans": [ - { - "bbox": [ - 94, - 338, - 246, - 350 - ], - "score": 1.0, - "content": "A and B have the same speed.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7, - "page_num": "page_21", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 94, - 312, - 547, - 350 - ] - }, - { - "type": "list", - "bbox": [ - 88, - 363, - 548, - 494 - ], - "lines": [ - { - "bbox": [ - 95, - 365, - 410, - 377 - ], - "spans": [ - { - "bbox": [ - 95, - 365, - 109, - 377 - ], - "score": 1.0, - "content": "(i) ", - "type": "text" - }, - { - "bbox": [ - 115, - 365, - 410, - 376 - ], - "score": 1.0, - "content": "State one difference between the motions of these particles.", - "type": "text" - } - ], - "index": 9, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 529, - 416, - 548, - 430 - ], - "spans": [ - { - "bbox": [ - 529, - 416, - 548, - 430 - ], - "score": 1.0, - "content": " [1]", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 92, - 442, - 342, - 456 - ], - "spans": [ - { - "bbox": [ - 92, - 442, - 107, - 456 - ], - "score": 1.0, - "content": "(ii)", - "type": "text" - }, - { - "bbox": [ - 116, - 442, - 310, - 454 - ], - "score": 1.0, - "content": "The particle A oscillates with frequency", - "type": "text" - }, - { - "bbox": [ - 310, - 442, - 339, - 453 - ], - "score": 0.73, - "content": "75\\mathsf{H z}", - "type": "inline_equation", - "height": 11, - "width": 29 - }, - { - "bbox": [ - 340, - 442, - 342, - 455 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 11, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 117, - 455, - 436, - 468 - ], - "spans": [ - { - "bbox": [ - 117, - 455, - 359, - 467 - ], - "score": 1.0, - "content": "The distance between the positions of A and B is ", - "type": "text" - }, - { - "bbox": [ - 359, - 455, - 434, - 468 - ], - "score": 0.84, - "content": "(40.0\\pm2.0)\\mathsf{c m}", - "type": "inline_equation", - "height": 13, - "width": 75 - }, - { - "bbox": [ - 434, - 455, - 436, - 467 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 12, - "is_list_end_line": true - }, - { - "bbox": [ - 116, - 467, - 547, - 482 - ], - "spans": [ - { - "bbox": [ - 116, - 467, - 217, - 482 - ], - "score": 1.0, - "content": "Calculate the speed", - "type": "text" - }, - { - "bbox": [ - 218, - 469, - 226, - 479 - ], - "score": 0.28, - "content": "V", - "type": "inline_equation", - "height": 10, - "width": 8 - }, - { - "bbox": [ - 227, - 467, - 547, - 482 - ], - "score": 1.0, - "content": "of the transverse wave on the string and the absolute uncertainty", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 115, - 481, - 179, - 495 - ], - "spans": [ - { - "bbox": [ - 115, - 481, - 179, - 495 - ], - "score": 1.0, - "content": "in this value.", - "type": "text" - } - ], - "index": 14, - "is_list_end_line": true - } - ], - "index": 11.5, - "page_num": "page_21", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 92, - 365, - 548, - 495 - ] - }, - { - "type": "text", - "bbox": [ - 361, - 740, - 547, - 754 - ], - "lines": [ - { - "bbox": [ - 363, - 741, - 546, - 754 - ], - "spans": [ - { - "bbox": [ - 363, - 745, - 371, - 750 - ], - "score": 1.0, - "content": "v ", - "type": "text" - }, - { - "bbox": [ - 503, - 741, - 546, - 754 - ], - "score": 1.0, - "content": " m s–1 [3]", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_21", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 363, - 741, - 546, - 754 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 71, - 62, - 547, - 102 - ], - "lines": [ - { - "bbox": [ - 71, - 64, - 547, - 77 - ], - "spans": [ - { - "bbox": [ - 71, - 64, - 348, - 77 - ], - "score": 1.0, - "content": "(b) A stretched rubber cord has its ends fixed at points", - "type": "text" - }, - { - "bbox": [ - 349, - 64, - 359, - 75 - ], - "score": 0.31, - "content": "\\pmb{\\times}", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 359, - 64, - 547, - 77 - ], - "score": 1.0, - "content": " and Y. The middle of the cord is lifted", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 93, - 75, - 547, - 91 - ], - "spans": [ - { - "bbox": [ - 93, - 75, - 547, - 91 - ], - "score": 1.0, - "content": "vertically and then released. A stationary wave pattern with one loop is formed by the vibrating", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 94, - 89, - 188, - 103 - ], - "spans": [ - { - "bbox": [ - 94, - 89, - 188, - 103 - ], - "score": 1.0, - "content": "cord, see Fig. 26.2.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1 - }, - { - "type": "image", - "bbox": [ - 178, - 115, - 416, - 175 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 178, - 115, - 416, - 175 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 178, - 115, - 416, - 175 - ], - "spans": [ - { - "bbox": [ - 178, - 115, - 416, - 175 - ], - "score": 0.964, - "type": "image", - "image_path": "93fd740b25714b5f886fddf99a0e8fdbf64d5ce7f1157d548b0a085ef042cac4.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 178, - 115, - 416, - 128 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 178, - 128, - 416, - 141 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 178, - 141, - 416, - 154 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 178, - 154, - 416, - 167 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 178, - 167, - 416, - 180 - ], - "spans": [], - "index": 7 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 274, - 195, - 321, - 209 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 275, - 197, - 321, - 209 - ], - "spans": [ - { - "bbox": [ - 275, - 197, - 321, - 209 - ], - "score": 1.0, - "content": "Fig. 26.2", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - } - ], - "index": 6.5 - }, - { - "type": "text", - "bbox": [ - 92, - 221, - 466, - 236 - ], - "lines": [ - { - "bbox": [ - 95, - 222, - 465, - 235 - ], - "spans": [ - { - "bbox": [ - 95, - 223, - 108, - 235 - ], - "score": 1.0, - "content": "(i) ", - "type": "text" - }, - { - "bbox": [ - 114, - 222, - 465, - 235 - ], - "score": 1.0, - "content": "Explain how a stationary wave pattern is produced in this arrangement.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 110, - 325, - 546, - 339 - ], - "lines": [ - { - "bbox": [ - 527, - 325, - 548, - 340 - ], - "spans": [ - { - "bbox": [ - 527, - 325, - 548, - 340 - ], - "score": 1.0, - "content": ". [2]", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 89, - 351, - 546, - 379 - ], - "lines": [ - { - "bbox": [ - 92, - 352, - 546, - 365 - ], - "spans": [ - { - "bbox": [ - 92, - 352, - 109, - 365 - ], - "score": 1.0, - "content": "(ii) ", - "type": "text" - }, - { - "bbox": [ - 113, - 352, - 546, - 365 - ], - "score": 1.0, - "content": "The stationary wave pattern shown in Fig. 26.2 is produced in the laboratory. Describe", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 116, - 366, - 530, - 377 - ], - "spans": [ - { - "bbox": [ - 116, - 366, - 530, - 377 - ], - "score": 1.0, - "content": "how the wavelength of the transverse wave on the stretched cord can be determined.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11.5 - }, - { - "type": "text", - "bbox": [ - 114, - 442, - 547, - 457 - ], - "lines": [ - { - "bbox": [ - 528, - 443, - 547, - 457 - ], - "spans": [ - { - "bbox": [ - 528, - 443, - 547, - 457 - ], - "score": 1.0, - "content": " [1]", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - } - ], - "layout_bboxes": [], - "page_idx": 22, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 178, - 115, - 416, - 175 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 178, - 115, - 416, - 175 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 178, - 115, - 416, - 175 - ], - "spans": [ - { - "bbox": [ - 178, - 115, - 416, - 175 - ], - "score": 0.964, - "type": "image", - "image_path": "93fd740b25714b5f886fddf99a0e8fdbf64d5ce7f1157d548b0a085ef042cac4.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 178, - 115, - 416, - 128 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 178, - 128, - 416, - 141 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 178, - 141, - 416, - 154 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 178, - 154, - 416, - 167 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 178, - 167, - 416, - 180 - ], - "spans": [], - "index": 7 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 274, - 195, - 321, - 209 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 275, - 197, - 321, - 209 - ], - "spans": [ - { - "bbox": [ - 275, - 197, - 321, - 209 - ], - "score": 1.0, - "content": "Fig. 26.2", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - } - ], - "index": 6.5 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "score": 1.0, - "content": "© OCR 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 290, - 45, - 304, - 56 - ], - "lines": [ - { - "bbox": [ - 289, - 44, - 307, - 59 - ], - "spans": [ - { - "bbox": [ - 289, - 44, - 307, - 59 - ], - "score": 1.0, - "content": "23", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 485, - 774, - 531, - 785 - ], - "lines": [ - { - "bbox": [ - 484, - 774, - 532, - 785 - ], - "spans": [ - { - "bbox": [ - 484, - 774, - 532, - 785 - ], - "score": 1.0, - "content": "Turn over", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 71, - 62, - 547, - 102 - ], - "lines": [ - { - "bbox": [ - 71, - 64, - 547, - 77 - ], - "spans": [ - { - "bbox": [ - 71, - 64, - 348, - 77 - ], - "score": 1.0, - "content": "(b) A stretched rubber cord has its ends fixed at points", - "type": "text" - }, - { - "bbox": [ - 349, - 64, - 359, - 75 - ], - "score": 0.31, - "content": "\\pmb{\\times}", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 359, - 64, - 547, - 77 - ], - "score": 1.0, - "content": " and Y. The middle of the cord is lifted", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 93, - 75, - 547, - 91 - ], - "spans": [ - { - "bbox": [ - 93, - 75, - 547, - 91 - ], - "score": 1.0, - "content": "vertically and then released. A stationary wave pattern with one loop is formed by the vibrating", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 94, - 89, - 188, - 103 - ], - "spans": [ - { - "bbox": [ - 94, - 89, - 188, - 103 - ], - "score": 1.0, - "content": "cord, see Fig. 26.2.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1, - "page_num": "page_22", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 64, - 547, - 103 - ] - }, - { - "type": "image", - "bbox": [ - 178, - 115, - 416, - 175 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 178, - 115, - 416, - 175 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 178, - 115, - 416, - 175 - ], - "spans": [ - { - "bbox": [ - 178, - 115, - 416, - 175 - ], - "score": 0.964, - "type": "image", - "image_path": "93fd740b25714b5f886fddf99a0e8fdbf64d5ce7f1157d548b0a085ef042cac4.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 178, - 115, - 416, - 128 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 178, - 128, - 416, - 141 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 178, - 141, - 416, - 154 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 178, - 154, - 416, - 167 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 178, - 167, - 416, - 180 - ], - "spans": [], - "index": 7 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 274, - 195, - 321, - 209 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 275, - 197, - 321, - 209 - ], - "spans": [ - { - "bbox": [ - 275, - 197, - 321, - 209 - ], - "score": 1.0, - "content": "Fig. 26.2", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - } - ], - "index": 6.5, - "page_num": "page_22", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 92, - 221, - 466, - 236 - ], - "lines": [ - { - "bbox": [ - 95, - 222, - 465, - 235 - ], - "spans": [ - { - "bbox": [ - 95, - 223, - 108, - 235 - ], - "score": 1.0, - "content": "(i) ", - "type": "text" - }, - { - "bbox": [ - 114, - 222, - 465, - 235 - ], - "score": 1.0, - "content": "Explain how a stationary wave pattern is produced in this arrangement.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_22", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 95, - 222, - 465, - 235 - ] - }, - { - "type": "text", - "bbox": [ - 110, - 325, - 546, - 339 - ], - "lines": [ - { - "bbox": [ - 527, - 325, - 548, - 340 - ], - "spans": [ - { - "bbox": [ - 527, - 325, - 548, - 340 - ], - "score": 1.0, - "content": ". [2]", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 92, - 352, - 546, - 365 - ], - "spans": [ - { - "bbox": [ - 92, - 352, - 109, - 365 - ], - "score": 1.0, - "content": "(ii) ", - "type": "text" - }, - { - "bbox": [ - 113, - 352, - 546, - 365 - ], - "score": 1.0, - "content": "The stationary wave pattern shown in Fig. 26.2 is produced in the laboratory. Describe", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 116, - 366, - 530, - 377 - ], - "spans": [ - { - "bbox": [ - 116, - 366, - 530, - 377 - ], - "score": 1.0, - "content": "how the wavelength of the transverse wave on the stretched cord can be determined.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 10, - "page_num": "page_22", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 527, - 325, - 548, - 340 - ] - }, - { - "type": "text", - "bbox": [ - 89, - 351, - 546, - 379 - ], - "lines": [], - "index": 11.5, - "page_num": "page_22", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 92, - 352, - 546, - 377 - ], - "lines_deleted": true - }, - { - "type": "text", - "bbox": [ - 114, - 442, - 547, - 457 - ], - "lines": [ - { - "bbox": [ - 528, - 443, - 547, - 457 - ], - "spans": [ - { - "bbox": [ - 528, - 443, - 547, - 457 - ], - "score": 1.0, - "content": " [1]", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 71, - 348, - 548, - 360 - ], - "spans": [ - { - "bbox": [ - 71, - 348, - 331, - 360 - ], - "score": 1.0, - "content": "(a) Describe and justify the variation of resistance ", - "type": "text", - "cross_page": true - }, - { - "bbox": [ - 331, - 348, - 342, - 359 - ], - "score": 0.31, - "content": "R", - "type": "inline_equation", - "height": 11, - "width": 11, - "cross_page": true - }, - { - "bbox": [ - 342, - 348, - 548, - 360 - ], - "score": 1.0, - "content": "of the LED as the potential difference V ", - "type": "text", - "cross_page": true - } - ], - "index": 5 - }, - { - "bbox": [ - 94, - 362, - 258, - 373 - ], - "spans": [ - { - "bbox": [ - 94, - 362, - 258, - 373 - ], - "score": 1.0, - "content": "across the LED is increased from", - "type": "text", - "cross_page": true - } - ], - "index": 6 - } - ], - "index": 13, - "page_num": "page_22", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 528, - 443, - 547, - 457 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "image", - "bbox": [ - 131, - 92, - 458, - 300 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 43, - 62, - 439, - 77 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 47, - 62, - 438, - 77 - ], - "spans": [ - { - "bbox": [ - 47, - 62, - 438, - 77 - ], - "score": 1.0, - "content": "27 Fig. 27.1 shows the I-V characteristic of an LED designed to emit blue light.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "image_body", - "bbox": [ - 131, - 92, - 458, - 300 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 131, - 92, - 458, - 300 - ], - "spans": [ - { - "bbox": [ - 131, - 92, - 458, - 300 - ], - "score": 0.968, - "type": "image", - "image_path": "88f240f841d9fa36cf6b0fe648606faf176f4f861d4ad8be6a9505c2cac86137.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 131, - 92, - 458, - 161.33333333333331 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 131, - 161.33333333333331, - 458, - 230.66666666666663 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 131, - 230.66666666666663, - 458, - 299.99999999999994 - ], - "spans": [], - "index": 3 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 274, - 320, - 320, - 335 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 275, - 322, - 320, - 335 - ], - "spans": [ - { - "bbox": [ - 275, - 322, - 320, - 335 - ], - "score": 1.0, - "content": "Fig. 27.1", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 68, - 346, - 549, - 374 - ], - "lines": [ - { - "bbox": [ - 71, - 348, - 548, - 360 - ], - "spans": [ - { - "bbox": [ - 71, - 348, - 331, - 360 - ], - "score": 1.0, - "content": "(a) Describe and justify the variation of resistance ", - "type": "text" - }, - { - "bbox": [ - 331, - 348, - 342, - 359 - ], - "score": 0.31, - "content": "R", - "type": "inline_equation", - "height": 11, - "width": 11 - }, - { - "bbox": [ - 342, - 348, - 548, - 360 - ], - "score": 1.0, - "content": "of the LED as the potential difference V ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 94, - 362, - 258, - 373 - ], - "spans": [ - { - "bbox": [ - 94, - 362, - 258, - 373 - ], - "score": 1.0, - "content": "across the LED is increased from", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5.5 - }, - { - "type": "text", - "bbox": [ - 94, - 386, - 179, - 399 - ], - "lines": [ - { - "bbox": [ - 105, - 387, - 179, - 398 - ], - "spans": [ - { - "bbox": [ - 105, - 387, - 179, - 398 - ], - "score": 1.0, - "content": "–1.0 V to 2.6 V", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 94, - 490, - 173, - 503 - ], - "lines": [ - { - "bbox": [ - 108, - 492, - 172, - 502 - ], - "spans": [ - { - "bbox": [ - 108, - 492, - 172, - 502 - ], - "score": 1.0, - "content": "2.6 V to 3.0 V", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 93, - 595, - 175, - 607 - ], - "lines": [ - { - "bbox": [ - 107, - 595, - 174, - 606 - ], - "spans": [ - { - "bbox": [ - 107, - 595, - 174, - 606 - ], - "score": 1.0, - "content": "3.0 V to 3.4 V.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "image", - "bbox": [ - 91, - 647, - 547, - 660 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 91, - 647, - 547, - 660 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 91, - 647, - 547, - 660 - ], - "spans": [ - { - "bbox": [ - 91, - 647, - 547, - 660 - ], - "score": 0.14, - "type": "image", - "image_path": "fd7806cdf314bd6fe67dd8bcfdae097200c0e305f1f4323652e840ca2d30662a.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 91, - 647, - 547, - 660 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 10 - } - ], - "layout_bboxes": [], - "page_idx": 23, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 131, - 92, - 458, - 300 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 43, - 62, - 439, - 77 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 47, - 62, - 438, - 77 - ], - "spans": [ - { - "bbox": [ - 47, - 62, - 438, - 77 - ], - "score": 1.0, - "content": "27 Fig. 27.1 shows the I-V characteristic of an LED designed to emit blue light.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "image_body", - "bbox": [ - 131, - 92, - 458, - 300 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 131, - 92, - 458, - 300 - ], - "spans": [ - { - "bbox": [ - 131, - 92, - 458, - 300 - ], - "score": 0.968, - "type": "image", - "image_path": "88f240f841d9fa36cf6b0fe648606faf176f4f861d4ad8be6a9505c2cac86137.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 131, - 92, - 458, - 161.33333333333331 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 131, - 161.33333333333331, - 458, - 230.66666666666663 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 131, - 230.66666666666663, - 458, - 299.99999999999994 - ], - "spans": [], - "index": 3 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 274, - 320, - 320, - 335 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 275, - 322, - 320, - 335 - ], - "spans": [ - { - "bbox": [ - 275, - 322, - 320, - 335 - ], - "score": 1.0, - "content": "Fig. 27.1", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - } - ], - "index": 2 - }, - { - "type": "image", - "bbox": [ - 91, - 647, - 547, - 660 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 91, - 647, - 547, - 660 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 91, - 647, - 547, - 660 - ], - "spans": [ - { - "bbox": [ - 91, - 647, - 547, - 660 - ], - "score": 0.14, - "type": "image", - "image_path": "fd7806cdf314bd6fe67dd8bcfdae097200c0e305f1f4323652e840ca2d30662a.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 91, - 647, - 547, - 660 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 10 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 60, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 60, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 291, - 45, - 304, - 55 - ], - "lines": [ - { - "bbox": [ - 288, - 43, - 307, - 59 - ], - "spans": [ - { - "bbox": [ - 288, - 43, - 307, - 59 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 16, - "width": 19 - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 686, - 546, - 699 - ], - "lines": [ - { - "bbox": [ - 530, - 685, - 549, - 701 - ], - "spans": [ - { - "bbox": [ - 530, - 685, - 549, - 701 - ], - "score": 1.0, - "content": "[4]", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "image", - "bbox": [ - 131, - 92, - 458, - 300 - ], - "blocks": [ - { - "type": "image_caption", - "bbox": [ - 43, - 62, - 439, - 77 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 47, - 62, - 438, - 77 - ], - "spans": [ - { - "bbox": [ - 47, - 62, - 438, - 77 - ], - "score": 1.0, - "content": "27 Fig. 27.1 shows the I-V characteristic of an LED designed to emit blue light.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "image_body", - "bbox": [ - 131, - 92, - 458, - 300 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 131, - 92, - 458, - 300 - ], - "spans": [ - { - "bbox": [ - 131, - 92, - 458, - 300 - ], - "score": 0.968, - "type": "image", - "image_path": "88f240f841d9fa36cf6b0fe648606faf176f4f861d4ad8be6a9505c2cac86137.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 131, - 92, - 458, - 161.33333333333331 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 131, - 161.33333333333331, - 458, - 230.66666666666663 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 131, - 230.66666666666663, - 458, - 299.99999999999994 - ], - "spans": [], - "index": 3 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 274, - 320, - 320, - 335 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 275, - 322, - 320, - 335 - ], - "spans": [ - { - "bbox": [ - 275, - 322, - 320, - 335 - ], - "score": 1.0, - "content": "Fig. 27.1", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - } - ], - "index": 2, - "page_num": "page_23", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 68, - 346, - 549, - 374 - ], - "lines": [], - "index": 5.5, - "page_num": "page_23", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 348, - 548, - 373 - ], - "lines_deleted": true - }, - { - "type": "text", - "bbox": [ - 94, - 386, - 179, - 399 - ], - "lines": [ - { - "bbox": [ - 105, - 387, - 179, - 398 - ], - "spans": [ - { - "bbox": [ - 105, - 387, - 179, - 398 - ], - "score": 1.0, - "content": "–1.0 V to 2.6 V", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_23", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 105, - 387, - 179, - 398 - ] - }, - { - "type": "text", - "bbox": [ - 94, - 490, - 173, - 503 - ], - "lines": [ - { - "bbox": [ - 108, - 492, - 172, - 502 - ], - "spans": [ - { - "bbox": [ - 108, - 492, - 172, - 502 - ], - "score": 1.0, - "content": "2.6 V to 3.0 V", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_23", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 108, - 492, - 172, - 502 - ] - }, - { - "type": "text", - "bbox": [ - 93, - 595, - 175, - 607 - ], - "lines": [ - { - "bbox": [ - 107, - 595, - 174, - 606 - ], - "spans": [ - { - "bbox": [ - 107, - 595, - 174, - 606 - ], - "score": 1.0, - "content": "3.0 V to 3.4 V.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_23", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 107, - 595, - 174, - 606 - ] - }, - { - "type": "image", - "bbox": [ - 91, - 647, - 547, - 660 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 91, - 647, - 547, - 660 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 91, - 647, - 547, - 660 - ], - "spans": [ - { - "bbox": [ - 91, - 647, - 547, - 660 - ], - "score": 0.14, - "type": "image", - "image_path": "fd7806cdf314bd6fe67dd8bcfdae097200c0e305f1f4323652e840ca2d30662a.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 91, - 647, - 547, - 660 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 10, - "page_num": "page_23", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 69, - 62, - 545, - 89 - ], - "lines": [ - { - "bbox": [ - 71, - 63, - 547, - 76 - ], - "spans": [ - { - "bbox": [ - 71, - 63, - 547, - 76 - ], - "score": 1.0, - "content": "(b) A student uses the LED with the characteristic shown in Fig. 27.1 to construct the circuit", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 93, - 77, - 186, - 89 - ], - "spans": [ - { - "bbox": [ - 93, - 77, - 186, - 89 - ], - "score": 1.0, - "content": "shown in Fig. 27.2.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "image", - "bbox": [ - 219, - 105, - 376, - 206 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 219, - 105, - 376, - 206 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 219, - 105, - 376, - 206 - ], - "spans": [ - { - "bbox": [ - 219, - 105, - 376, - 206 - ], - "score": 0.969, - "type": "image", - "image_path": "a2b9f5608aefc8b2b64e6592ce217b39ea28535fe3fbf8fd957b83bf3aa17e0f.jpg" - } - ] - } - ], - "index": 5.5, - "virtual_lines": [ - { - "bbox": [ - 219, - 105, - 376, - 118.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 219, - 118.0, - 376, - 131.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 219, - 131.0, - 376, - 144.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 219, - 144.0, - 376, - 157.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 219, - 157.0, - 376, - 170.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 219, - 170.0, - 376, - 183.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 219, - 183.0, - 376, - 196.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 219, - 196.0, - 376, - 209.0 - ], - "spans": [], - "index": 9 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 274, - 222, - 321, - 236 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 275, - 223, - 321, - 236 - ], - "spans": [ - { - "bbox": [ - 275, - 223, - 321, - 236 - ], - "score": 1.0, - "content": "Fig. 27.2", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - } - ], - "index": 7.75 - }, - { - "type": "text", - "bbox": [ - 94, - 248, - 549, - 274 - ], - "lines": [ - { - "bbox": [ - 95, - 248, - 547, - 261 - ], - "spans": [ - { - "bbox": [ - 95, - 249, - 500, - 261 - ], - "score": 1.0, - "content": "A suitable resistor R is used in the circuit. The cell has electromotive force (e.m.f.) of ", - "type": "text" - }, - { - "bbox": [ - 500, - 248, - 525, - 261 - ], - "score": 0.38, - "content": "1.5\\lor", - "type": "inline_equation", - "height": 13, - "width": 25 - }, - { - "bbox": [ - 526, - 249, - 547, - 261 - ], - "score": 1.0, - "content": " and", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 95, - 263, - 236, - 274 - ], - "spans": [ - { - "bbox": [ - 95, - 263, - 236, - 274 - ], - "score": 1.0, - "content": "negligible internal resistance.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11.5 - }, - { - "type": "text", - "bbox": [ - 93, - 275, - 548, - 313 - ], - "lines": [ - { - "bbox": [ - 94, - 274, - 381, - 288 - ], - "spans": [ - { - "bbox": [ - 94, - 274, - 381, - 288 - ], - "score": 1.0, - "content": "The LED fails to emit any light when the switch S is closed.", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 94, - 287, - 548, - 300 - ], - "spans": [ - { - "bbox": [ - 94, - 287, - 548, - 300 - ], - "score": 1.0, - "content": "Explain why the circuit does not work and modify the design of the circuit so that the LED is lit ", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 94, - 301, - 181, - 313 - ], - "spans": [ - { - "bbox": [ - 94, - 301, - 181, - 313 - ], - "score": 1.0, - "content": "when S is closed.", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 90, - 353, - 547, - 365 - ], - "lines": [ - { - "bbox": [ - 90, - 353, - 547, - 365 - ], - "spans": [], - "index": 16 - } - ], - "index": 16 - }, - { - "type": "text", - "bbox": [ - 89, - 379, - 548, - 391 - ], - "lines": [ - { - "bbox": [ - 89, - 379, - 548, - 391 - ], - "spans": [], - "index": 17 - } - ], - "index": 17 - }, - { - "type": "text", - "bbox": [ - 90, - 405, - 548, - 417 - ], - "lines": [ - { - "bbox": [ - 90, - 405, - 548, - 417 - ], - "spans": [], - "index": 18 - } - ], - "index": 18 - }, - { - "type": "text", - "bbox": [ - 88, - 431, - 547, - 443 - ], - "lines": [ - { - "bbox": [ - 88, - 431, - 547, - 443 - ], - "spans": [], - "index": 19 - } - ], - "index": 19 - }, - { - "type": "text", - "bbox": [ - 89, - 457, - 547, - 470 - ], - "lines": [ - { - "bbox": [ - 89, - 457, - 547, - 470 - ], - "spans": [], - "index": 20 - } - ], - "index": 20 - }, - { - "type": "text", - "bbox": [ - 86, - 482, - 546, - 496 - ], - "lines": [ - { - "bbox": [ - 528, - 481, - 548, - 497 - ], - "spans": [ - { - "bbox": [ - 528, - 481, - 548, - 497 - ], - "score": 1.0, - "content": " [3]", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 21 - }, - { - "type": "text", - "bbox": [ - 70, - 507, - 548, - 548 - ], - "lines": [ - { - "bbox": [ - 71, - 508, - 548, - 521 - ], - "spans": [ - { - "bbox": [ - 71, - 508, - 293, - 521 - ], - "score": 1.0, - "content": "(c) The wavelength of light from the LED is ", - "type": "text" - }, - { - "bbox": [ - 293, - 509, - 330, - 521 - ], - "score": 0.41, - "content": "480\\mathsf{n m}", - "type": "inline_equation", - "height": 12, - "width": 37 - }, - { - "bbox": [ - 330, - 508, - 548, - 521 - ], - "score": 1.0, - "content": ". The radiant power emitted from the LED is ", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 93, - 522, - 135, - 534 - ], - "spans": [ - { - "bbox": [ - 93, - 522, - 135, - 534 - ], - "score": 1.0, - "content": "1.2 mW. ", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 94, - 534, - 433, - 548 - ], - "spans": [ - { - "bbox": [ - 94, - 534, - 255, - 548 - ], - "score": 1.0, - "content": "Calculate the number of photons", - "type": "text" - }, - { - "bbox": [ - 256, - 535, - 266, - 546 - ], - "score": 0.45, - "content": "N", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 267, - 534, - 433, - 548 - ], - "score": 1.0, - "content": "emitted from the LED per second.", - "type": "text" - } - ], - "index": 24 - } - ], - "index": 23 - } - ], - "layout_bboxes": [], - "page_idx": 24, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 219, - 105, - 376, - 206 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 219, - 105, - 376, - 206 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 219, - 105, - 376, - 206 - ], - "spans": [ - { - "bbox": [ - 219, - 105, - 376, - 206 - ], - "score": 0.969, - "type": "image", - "image_path": "a2b9f5608aefc8b2b64e6592ce217b39ea28535fe3fbf8fd957b83bf3aa17e0f.jpg" - } - ] - } - ], - "index": 5.5, - "virtual_lines": [ - { - "bbox": [ - 219, - 105, - 376, - 118.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 219, - 118.0, - 376, - 131.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 219, - 131.0, - 376, - 144.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 219, - 144.0, - 376, - 157.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 219, - 157.0, - 376, - 170.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 219, - 170.0, - 376, - 183.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 219, - 183.0, - 376, - 196.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 219, - 196.0, - 376, - 209.0 - ], - "spans": [], - "index": 9 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 274, - 222, - 321, - 236 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 275, - 223, - 321, - 236 - ], - "spans": [ - { - "bbox": [ - 275, - 223, - 321, - 236 - ], - "score": 1.0, - "content": "Fig. 27.2", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - } - ], - "index": 7.75 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 60, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 60, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 290, - 45, - 304, - 55 - ], - "lines": [ - { - "bbox": [ - 288, - 43, - 307, - 59 - ], - "spans": [ - { - "bbox": [ - 288, - 43, - 307, - 59 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 16, - "width": 19 - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 225, - 768, - 369, - 781 - ], - "lines": [ - { - "bbox": [ - 227, - 769, - 369, - 780 - ], - "spans": [ - { - "bbox": [ - 227, - 769, - 369, - 780 - ], - "score": 1.0, - "content": "END OF QUESTION PAPER", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 327, - 741, - 547, - 757 - ], - "lines": [ - { - "bbox": [ - 328, - 742, - 546, - 756 - ], - "spans": [ - { - "bbox": [ - 328, - 742, - 349, - 755 - ], - "score": 1.0, - "content": "N = ", - "type": "text" - }, - { - "bbox": [ - 513, - 743, - 529, - 754 - ], - "score": 0.28, - "content": "\\mathsf{s}^{-1}", - "type": "inline_equation", - "height": 11, - "width": 16 - }, - { - "bbox": [ - 529, - 743, - 546, - 756 - ], - "score": 1.0, - "content": " [3]", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 69, - 62, - 545, - 89 - ], - "lines": [ - { - "bbox": [ - 71, - 63, - 547, - 76 - ], - "spans": [ - { - "bbox": [ - 71, - 63, - 547, - 76 - ], - "score": 1.0, - "content": "(b) A student uses the LED with the characteristic shown in Fig. 27.1 to construct the circuit", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 93, - 77, - 186, - 89 - ], - "spans": [ - { - "bbox": [ - 93, - 77, - 186, - 89 - ], - "score": 1.0, - "content": "shown in Fig. 27.2.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_24", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 63, - 547, - 89 - ] - }, - { - "type": "image", - "bbox": [ - 219, - 105, - 376, - 206 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 219, - 105, - 376, - 206 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 219, - 105, - 376, - 206 - ], - "spans": [ - { - "bbox": [ - 219, - 105, - 376, - 206 - ], - "score": 0.969, - "type": "image", - "image_path": "a2b9f5608aefc8b2b64e6592ce217b39ea28535fe3fbf8fd957b83bf3aa17e0f.jpg" - } - ] - } - ], - "index": 5.5, - "virtual_lines": [ - { - "bbox": [ - 219, - 105, - 376, - 118.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 219, - 118.0, - 376, - 131.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 219, - 131.0, - 376, - 144.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 219, - 144.0, - 376, - 157.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 219, - 157.0, - 376, - 170.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 219, - 170.0, - 376, - 183.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 219, - 183.0, - 376, - 196.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 219, - 196.0, - 376, - 209.0 - ], - "spans": [], - "index": 9 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 274, - 222, - 321, - 236 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 275, - 223, - 321, - 236 - ], - "spans": [ - { - "bbox": [ - 275, - 223, - 321, - 236 - ], - "score": 1.0, - "content": "Fig. 27.2", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - } - ], - "index": 7.75, - "page_num": "page_24", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 94, - 248, - 549, - 274 - ], - "lines": [ - { - "bbox": [ - 95, - 248, - 547, - 261 - ], - "spans": [ - { - "bbox": [ - 95, - 249, - 500, - 261 - ], - "score": 1.0, - "content": "A suitable resistor R is used in the circuit. The cell has electromotive force (e.m.f.) of ", - "type": "text" - }, - { - "bbox": [ - 500, - 248, - 525, - 261 - ], - "score": 0.38, - "content": "1.5\\lor", - "type": "inline_equation", - "height": 13, - "width": 25 - }, - { - "bbox": [ - 526, - 249, - 547, - 261 - ], - "score": 1.0, - "content": " and", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 95, - 263, - 236, - 274 - ], - "spans": [ - { - "bbox": [ - 95, - 263, - 236, - 274 - ], - "score": 1.0, - "content": "negligible internal resistance.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11.5, - "page_num": "page_24", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 95, - 248, - 547, - 274 - ] - }, - { - "type": "list", - "bbox": [ - 93, - 275, - 548, - 313 - ], - "lines": [ - { - "bbox": [ - 94, - 274, - 381, - 288 - ], - "spans": [ - { - "bbox": [ - 94, - 274, - 381, - 288 - ], - "score": 1.0, - "content": "The LED fails to emit any light when the switch S is closed.", - "type": "text" - } - ], - "index": 13, - "is_list_end_line": true - }, - { - "bbox": [ - 94, - 287, - 548, - 300 - ], - "spans": [ - { - "bbox": [ - 94, - 287, - 548, - 300 - ], - "score": 1.0, - "content": "Explain why the circuit does not work and modify the design of the circuit so that the LED is lit ", - "type": "text" - } - ], - "index": 14, - "is_list_start_line": true - }, - { - "bbox": [ - 94, - 301, - 181, - 313 - ], - "spans": [ - { - "bbox": [ - 94, - 301, - 181, - 313 - ], - "score": 1.0, - "content": "when S is closed.", - "type": "text" - } - ], - "index": 15, - "is_list_end_line": true - } - ], - "index": 14, - "page_num": "page_24", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 94, - 274, - 548, - 313 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 353, - 547, - 365 - ], - "lines": [ - { - "bbox": [ - 90, - 353, - 547, - 365 - ], - "spans": [], - "index": 16 - } - ], - "index": 16, - "page_num": "page_24", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 90, - 353, - 547, - 365 - ] - }, - { - "type": "text", - "bbox": [ - 89, - 379, - 548, - 391 - ], - "lines": [ - { - "bbox": [ - 89, - 379, - 548, - 391 - ], - "spans": [], - "index": 17 - } - ], - "index": 17, - "page_num": "page_24", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 89, - 379, - 548, - 391 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 405, - 548, - 417 - ], - "lines": [ - { - "bbox": [ - 90, - 405, - 548, - 417 - ], - "spans": [], - "index": 18 - } - ], - "index": 18, - "page_num": "page_24", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 90, - 405, - 548, - 417 - ] - }, - { - "type": "text", - "bbox": [ - 88, - 431, - 547, - 443 - ], - "lines": [ - { - "bbox": [ - 88, - 431, - 547, - 443 - ], - "spans": [], - "index": 19 - } - ], - "index": 19, - "page_num": "page_24", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 88, - 431, - 547, - 443 - ] - }, - { - "type": "text", - "bbox": [ - 89, - 457, - 547, - 470 - ], - "lines": [ - { - "bbox": [ - 89, - 457, - 547, - 470 - ], - "spans": [], - "index": 20 - } - ], - "index": 20, - "page_num": "page_24", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 89, - 457, - 547, - 470 - ] - }, - { - "type": "text", - "bbox": [ - 86, - 482, - 546, - 496 - ], - "lines": [ - { - "bbox": [ - 528, - 481, - 548, - 497 - ], - "spans": [ - { - "bbox": [ - 528, - 481, - 548, - 497 - ], - "score": 1.0, - "content": " [3]", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 71, - 508, - 548, - 521 - ], - "spans": [ - { - "bbox": [ - 71, - 508, - 293, - 521 - ], - "score": 1.0, - "content": "(c) The wavelength of light from the LED is ", - "type": "text" - }, - { - "bbox": [ - 293, - 509, - 330, - 521 - ], - "score": 0.41, - "content": "480\\mathsf{n m}", - "type": "inline_equation", - "height": 12, - "width": 37 - }, - { - "bbox": [ - 330, - 508, - 548, - 521 - ], - "score": 1.0, - "content": ". The radiant power emitted from the LED is ", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 93, - 522, - 135, - 534 - ], - "spans": [ - { - "bbox": [ - 93, - 522, - 135, - 534 - ], - "score": 1.0, - "content": "1.2 mW. ", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 94, - 534, - 433, - 548 - ], - "spans": [ - { - "bbox": [ - 94, - 534, - 255, - 548 - ], - "score": 1.0, - "content": "Calculate the number of photons", - "type": "text" - }, - { - "bbox": [ - 256, - 535, - 266, - 546 - ], - "score": 0.45, - "content": "N", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 267, - 534, - 433, - 548 - ], - "score": 1.0, - "content": "emitted from the LED per second.", - "type": "text" - } - ], - "index": 24 - } - ], - "index": 21, - "page_num": "page_24", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 528, - 481, - 548, - 497 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 507, - 548, - 548 - ], - "lines": [], - "index": 23, - "page_num": "page_24", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 508, - 548, - 548 - ], - "lines_deleted": true - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 217, - 62, - 378, - 76 - ], - "lines": [ - { - "bbox": [ - 218, - 64, - 377, - 74 - ], - "spans": [ - { - "bbox": [ - 218, - 64, - 377, - 74 - ], - "score": 1.0, - "content": "ADDITIONAL ANSWER SPACE", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 49, - 88, - 544, - 115 - ], - "lines": [ - { - "bbox": [ - 48, - 89, - 546, - 103 - ], - "spans": [ - { - "bbox": [ - 48, - 89, - 546, - 103 - ], - "score": 1.0, - "content": "If additional space is required, you should use the following lined page(s). The question number(s)", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 48, - 104, - 240, - 116 - ], - "spans": [ - { - "bbox": [ - 48, - 104, - 240, - 116 - ], - "score": 1.0, - "content": "must be clearly shown in the margin(s).", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5 - }, - { - "type": "table", - "bbox": [ - 46, - 118, - 548, - 772 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 118, - 548, - 772 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 118, - 548, - 772 - ], - "spans": [ - { - "bbox": [ - 46, - 118, - 548, - 772 - ], - "score": 0.333, - "type": "table", - "image_path": "aadb899c6b3cec615a10e1ed72c6c54495e616ad50f992d56e2fe213ac8f47be.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 46, - 118, - 548, - 336.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 46, - 336.0, - 548, - 554.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 46, - 554.0, - 548, - 772.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "layout_bboxes": [], - "page_idx": 25, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 46, - 118, - 548, - 772 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 118, - 548, - 772 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 118, - 548, - 772 - ], - "spans": [ - { - "bbox": [ - 46, - 118, - 548, - 772 - ], - "score": 0.333, - "type": "table", - "image_path": "aadb899c6b3cec615a10e1ed72c6c54495e616ad50f992d56e2fe213ac8f47be.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 46, - 118, - 548, - 336.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 46, - 336.0, - 548, - 554.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 46, - 554.0, - 548, - 772.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 787 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 290, - 44, - 305, - 56 - ], - "lines": [ - { - "bbox": [ - 289, - 44, - 307, - 59 - ], - "spans": [ - { - "bbox": [ - 289, - 44, - 307, - 59 - ], - "score": 1.0, - "content": "26", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 217, - 62, - 378, - 76 - ], - "lines": [ - { - "bbox": [ - 218, - 64, - 377, - 74 - ], - "spans": [ - { - "bbox": [ - 218, - 64, - 377, - 74 - ], - "score": 1.0, - "content": "ADDITIONAL ANSWER SPACE", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_25", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 49, - 88, - 544, - 115 - ], - "lines": [ - { - "bbox": [ - 48, - 89, - 546, - 103 - ], - "spans": [ - { - "bbox": [ - 48, - 89, - 546, - 103 - ], - "score": 1.0, - "content": "If additional space is required, you should use the following lined page(s). The question number(s)", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 48, - 104, - 240, - 116 - ], - "spans": [ - { - "bbox": [ - 48, - 104, - 240, - 116 - ], - "score": 1.0, - "content": "must be clearly shown in the margin(s).", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5, - "page_num": "page_25", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 48, - 89, - 546, - 116 - ] - }, - { - "type": "table", - "bbox": [ - 46, - 118, - 548, - 772 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 118, - 548, - 772 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 118, - 548, - 772 - ], - "spans": [ - { - "bbox": [ - 46, - 118, - 548, - 772 - ], - "score": 0.333, - "type": "table", - "image_path": "aadb899c6b3cec615a10e1ed72c6c54495e616ad50f992d56e2fe213ac8f47be.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 46, - 118, - 548, - 336.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 46, - 336.0, - 548, - 554.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 46, - 554.0, - 548, - 772.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_25", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 46, - 66, - 548, - 774 - ], - "lines": [ - { - "bbox": [ - 46, - 66, - 548, - 302.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 46, - 302.0, - 548, - 538.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 46, - 538.0, - 548, - 774.0 - ], - "spans": [], - "index": 2 - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 26, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 290, - 44, - 304, - 56 - ], - "lines": [ - { - "bbox": [ - 288, - 42, - 308, - 60 - ], - "spans": [ - { - "bbox": [ - 288, - 42, - 308, - 60 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 18, - "width": 20 - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 787 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "score": 1.0, - "content": "© OCR 2016", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 46, - 66, - 548, - 774 - ], - "lines": [ - { - "bbox": [ - 46, - 66, - 548, - 302.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 46, - 302.0, - 548, - 538.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 46, - 538.0, - 548, - 774.0 - ], - "spans": [], - "index": 2 - } - ], - "index": 1, - "page_num": "page_26", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 46, - 66, - 548, - 774.0 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 46, - 79, - 548, - 644 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 79, - 548, - 644 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 79, - 548, - 644 - ], - "spans": [ - { - "bbox": [ - 46, - 79, - 548, - 644 - ], - "score": 0.468, - "type": "table", - "image_path": "9886600270ff0c79d601e923bc61ccd8cb06978790ac35bd3339c6345077723b.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 46, - 79, - 548, - 267.33333333333337 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 46, - 267.33333333333337, - 548, - 455.66666666666674 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 46, - 455.66666666666674, - 548, - 644.0000000000001 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "title", - "bbox": [ - 48, - 650, - 127, - 675 - ], - "lines": [ - { - "bbox": [ - 49, - 652, - 126, - 677 - ], - "spans": [ - { - "bbox": [ - 49, - 652, - 126, - 677 - ], - "score": 0.9934387803077698, - "content": "OCR", - "type": "text" - } - ] - } - ], - "index": 3.5, - "virtual_lines": [ - { - "bbox": [ - 48, - 650, - 127, - 662.5 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 48, - 662.5, - 127, - 675.0 - ], - "spans": [], - "index": 4 - } - ] - }, - { - "type": "text", - "bbox": [ - 49, - 676, - 126, - 683 - ], - "lines": [ - { - "bbox": [ - 51, - 676, - 126, - 683 - ], - "spans": [ - { - "bbox": [ - 51, - 676, - 126, - 683 - ], - "score": 1.0, - "content": "Oxford Cambridge and RSA", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "title", - "bbox": [ - 49, - 688, - 113, - 696 - ], - "lines": [ - { - "bbox": [ - 49, - 689, - 114, - 697 - ], - "spans": [ - { - "bbox": [ - 49, - 689, - 114, - 697 - ], - "score": 1.0, - "content": "Copyright Information", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 51, - 699, - 546, - 723 - ], - "lines": [ - { - "bbox": [ - 49, - 698, - 547, - 708 - ], - "spans": [ - { - "bbox": [ - 49, - 698, - 547, - 708 - ], - "score": 1.0, - "content": "OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 49, - 707, - 548, - 717 - ], - "spans": [ - { - "bbox": [ - 49, - 707, - 548, - 717 - ], - "score": 1.0, - "content": "whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright ", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 49, - 716, - 546, - 724 - ], - "spans": [ - { - "bbox": [ - 49, - 716, - 546, - 724 - ], - "score": 1.0, - "content": "Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 52, - 726, - 546, - 743 - ], - "lines": [ - { - "bbox": [ - 50, - 726, - 547, - 735 - ], - "spans": [ - { - "bbox": [ - 50, - 726, - 547, - 735 - ], - "score": 1.0, - "content": "If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 50, - 734, - 82, - 743 - ], - "spans": [ - { - "bbox": [ - 50, - 734, - 82, - 743 - ], - "score": 1.0, - "content": "opportunity.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5 - }, - { - "type": "text", - "bbox": [ - 48, - 745, - 369, - 753 - ], - "lines": [ - { - "bbox": [ - 49, - 745, - 358, - 753 - ], - "spans": [ - { - "bbox": [ - 49, - 745, - 358, - 753 - ], - "score": 1.0, - "content": "For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 51, - 756, - 547, - 773 - ], - "lines": [ - { - "bbox": [ - 49, - 755, - 547, - 765 - ], - "spans": [ - { - "bbox": [ - 49, - 755, - 547, - 765 - ], - "score": 1.0, - "content": "OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a ", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 49, - 764, - 164, - 773 - ], - "spans": [ - { - "bbox": [ - 49, - 764, - 164, - 773 - ], - "score": 1.0, - "content": "department of the University of Cambridge.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 13.5 - }, - { - "type": "text", - "bbox": [ - 59, - 779, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 66, - 786 - ], - "score": 0.26, - "content": "\\circledcirc", - "type": "inline_equation", - "height": 7, - "width": 7 - }, - { - "bbox": [ - 66, - 779, - 97, - 786 - ], - "score": 1.0, - "content": " OCR 2016", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - } - ], - "layout_bboxes": [], - "page_idx": 27, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 46, - 79, - 548, - 644 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 79, - 548, - 644 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 79, - 548, - 644 - ], - "spans": [ - { - "bbox": [ - 46, - 79, - 548, - 644 - ], - "score": 0.468, - "type": "table", - "image_path": "9886600270ff0c79d601e923bc61ccd8cb06978790ac35bd3339c6345077723b.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 46, - 79, - 548, - 267.33333333333337 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 46, - 267.33333333333337, - 548, - 455.66666666666674 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 46, - 455.66666666666674, - 548, - 644.0000000000001 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 290, - 45, - 304, - 56 - ], - "lines": [ - { - "bbox": [ - 289, - 44, - 306, - 59 - ], - "spans": [ - { - "bbox": [ - 289, - 44, - 306, - 59 - ], - "score": 1.0, - "content": "28", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 46, - 79, - 548, - 644 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 79, - 548, - 644 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 79, - 548, - 644 - ], - "spans": [ - { - "bbox": [ - 46, - 79, - 548, - 644 - ], - "score": 0.468, - "type": "table", - "image_path": "9886600270ff0c79d601e923bc61ccd8cb06978790ac35bd3339c6345077723b.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 46, - 79, - 548, - 267.33333333333337 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 46, - 267.33333333333337, - 548, - 455.66666666666674 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 46, - 455.66666666666674, - 548, - 644.0000000000001 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_27", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "title", - "bbox": [ - 48, - 650, - 127, - 675 - ], - "lines": [ - { - "bbox": [ - 49, - 652, - 126, - 677 - ], - "spans": [ - { - "bbox": [ - 49, - 652, - 126, - 677 - ], - "score": 0.9934387803077698, - "content": "OCR", - "type": "text" - } - ] - } - ], - "index": 3.5, - "virtual_lines": [ - { - "bbox": [ - 48, - 650, - 127, - 662.5 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 48, - 662.5, - 127, - 675.0 - ], - "spans": [], - "index": 4 - } - ], - "page_num": "page_27", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 49, - 676, - 126, - 683 - ], - "lines": [ - { - "bbox": [ - 51, - 676, - 126, - 683 - ], - "spans": [ - { - "bbox": [ - 51, - 676, - 126, - 683 - ], - "score": 1.0, - "content": "Oxford Cambridge and RSA", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_27", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 51, - 676, - 126, - 683 - ] - }, - { - "type": "title", - "bbox": [ - 49, - 688, - 113, - 696 - ], - "lines": [ - { - "bbox": [ - 49, - 689, - 114, - 697 - ], - "spans": [ - { - "bbox": [ - 49, - 689, - 114, - 697 - ], - "score": 1.0, - "content": "Copyright Information", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_27", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 51, - 699, - 546, - 723 - ], - "lines": [ - { - "bbox": [ - 49, - 698, - 547, - 708 - ], - "spans": [ - { - "bbox": [ - 49, - 698, - 547, - 708 - ], - "score": 1.0, - "content": "OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 49, - 707, - 548, - 717 - ], - "spans": [ - { - "bbox": [ - 49, - 707, - 548, - 717 - ], - "score": 1.0, - "content": "whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright ", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 49, - 716, - 546, - 724 - ], - "spans": [ - { - "bbox": [ - 49, - 716, - 546, - 724 - ], - "score": 1.0, - "content": "Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8, - "page_num": "page_27", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 49, - 698, - 548, - 724 - ] - }, - { - "type": "text", - "bbox": [ - 52, - 726, - 546, - 743 - ], - "lines": [ - { - "bbox": [ - 50, - 726, - 547, - 735 - ], - "spans": [ - { - "bbox": [ - 50, - 726, - 547, - 735 - ], - "score": 1.0, - "content": "If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 50, - 734, - 82, - 743 - ], - "spans": [ - { - "bbox": [ - 50, - 734, - 82, - 743 - ], - "score": 1.0, - "content": "opportunity.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5, - "page_num": "page_27", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 50, - 726, - 547, - 743 - ] - }, - { - "type": "text", - "bbox": [ - 48, - 745, - 369, - 753 - ], - "lines": [ - { - "bbox": [ - 49, - 745, - 358, - 753 - ], - "spans": [ - { - "bbox": [ - 49, - 745, - 358, - 753 - ], - "score": 1.0, - "content": "For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_27", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 49, - 745, - 358, - 753 - ] - }, - { - "type": "text", - "bbox": [ - 51, - 756, - 547, - 773 - ], - "lines": [ - { - "bbox": [ - 49, - 755, - 547, - 765 - ], - "spans": [ - { - "bbox": [ - 49, - 755, - 547, - 765 - ], - "score": 1.0, - "content": "OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a ", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 49, - 764, - 164, - 773 - ], - "spans": [ - { - "bbox": [ - 49, - 764, - 164, - 773 - ], - "score": 1.0, - "content": "department of the University of Cambridge.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 13.5, - "page_num": "page_27", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 49, - 755, - 547, - 773 - ] - }, - { - "type": "text", - "bbox": [ - 59, - 779, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 97, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 66, - 786 - ], - "score": 0.26, - "content": "\\circledcirc", - "type": "inline_equation", - "height": 7, - "width": 7 - }, - { - "bbox": [ - 66, - 779, - 97, - 786 - ], - "score": 1.0, - "content": " OCR 2016", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_27", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 59, - 779, - 97, - 786 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 95, - 106, - 430, - 154 - ], - "lines": [ - { - "bbox": [ - 94, - 106, - 428, - 129 - ], - "spans": [ - { - "bbox": [ - 94, - 106, - 428, - 129 - ], - "score": 1.0, - "content": "Wednesday 18 May 2022 – Morning", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 95, - 136, - 243, - 153 - ], - "spans": [ - { - "bbox": [ - 95, - 136, - 243, - 153 - ], - "score": 1.0, - "content": "AS Level Physics A", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 94, - 163, - 270, - 179 - ], - "lines": [ - { - "bbox": [ - 94, - 164, - 269, - 179 - ], - "spans": [ - { - "bbox": [ - 94, - 164, - 269, - 179 - ], - "score": 1.0, - "content": "H156/01 Breadth in physics", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 95, - 186, - 265, - 200 - ], - "lines": [ - { - "bbox": [ - 95, - 187, - 265, - 198 - ], - "spans": [ - { - "bbox": [ - 95, - 187, - 265, - 198 - ], - "score": 0.9996948838233948, - "content": "Time allowed: 1 hour 30 minutes", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 100, - 214, - 293, - 236 - ], - "lines": [ - { - "bbox": [ - 100, - 215, - 168, - 225 - ], - "spans": [ - { - "bbox": [ - 100, - 215, - 168, - 225 - ], - "score": 1.0, - "content": "You must have:", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 99, - 226, - 292, - 236 - ], - "spans": [ - { - "bbox": [ - 99, - 227, - 105, - 234 - ], - "score": 0.26, - "content": "\\bullet", - "type": "inline_equation", - "height": 7, - "width": 6 - }, - { - "bbox": [ - 106, - 226, - 292, - 236 - ], - "score": 1.0, - "content": "the Data, Formulae and Relationships Booklet", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5 - }, - { - "type": "text", - "bbox": [ - 100, - 241, - 242, - 274 - ], - "lines": [ - { - "bbox": [ - 100, - 241, - 158, - 253 - ], - "spans": [ - { - "bbox": [ - 100, - 241, - 158, - 253 - ], - "score": 1.0, - "content": "You can use:", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 101, - 253, - 242, - 263 - ], - "spans": [ - { - "bbox": [ - 101, - 253, - 242, - 263 - ], - "score": 1.0, - "content": "• a scientific or graphical calculator", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 100, - 263, - 171, - 275 - ], - "spans": [ - { - "bbox": [ - 100, - 264, - 136, - 275 - ], - "score": 1.0, - "content": "• a ruler ", - "type": "text" - }, - { - "bbox": [ - 136, - 263, - 171, - 274 - ], - "score": 0.54, - "content": "\\left(\\mathsf{c m}/\\mathsf{m m}\\right)", - "type": "inline_equation", - "height": 11, - "width": 35 - } - ], - "index": 8 - } - ], - "index": 7 - }, - { - "type": "image", - "bbox": [ - 376, - 291, - 522, - 326 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 376, - 291, - 522, - 326 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 376, - 291, - 522, - 326 - ], - "spans": [ - { - "bbox": [ - 376, - 291, - 522, - 326 - ], - "score": 0.72, - "type": "image", - "image_path": "e13ba473e1c4a5ee55519e2fc6f8728e3f90dc2938f57f4a70f123d9177bd5f1.jpg" - } - ] - } - ], - "index": 9.5, - "virtual_lines": [ - { - "bbox": [ - 376, - 291, - 522, - 308.5 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 376, - 308.5, - 522, - 326.0 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 9.5 - }, - { - "type": "image", - "bbox": [ - 99, - 344, - 534, - 468 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 99, - 344, - 534, - 468 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 99, - 344, - 534, - 468 - ], - "spans": [ - { - "bbox": [ - 99, - 344, - 534, - 468 - ], - "score": 0.162, - "type": "image", - "image_path": "fa78cbba2e5837afe0d41bbb370018e994b402fe0392f4454e0044cb38956b2e.jpg" - } - ] - } - ], - "index": 12, - "virtual_lines": [ - { - "bbox": [ - 99, - 344, - 534, - 385.3333333333333 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 99, - 385.3333333333333, - 534, - 426.66666666666663 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 99, - 426.66666666666663, - 534, - 467.99999999999994 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "index": 12 - }, - { - "type": "title", - "bbox": [ - 93, - 474, - 177, - 486 - ], - "lines": [ - { - "bbox": [ - 94, - 475, - 177, - 486 - ], - "spans": [ - { - "bbox": [ - 94, - 475, - 177, - 486 - ], - "score": 1.0, - "content": "INSTRUCTIONS", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 93, - 487, - 537, - 566 - ], - "lines": [ - { - "bbox": [ - 100, - 487, - 476, - 501 - ], - "spans": [ - { - "bbox": [ - 100, - 487, - 476, - 501 - ], - "score": 1.0, - "content": "Use black ink. You can use an HB pencil, but only for graphs and diagrams.", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 96, - 500, - 531, - 514 - ], - "spans": [ - { - "bbox": [ - 96, - 500, - 531, - 514 - ], - "score": 1.0, - "content": "• Write your answer to each question in the space provided. If you need extra space use", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 105, - 513, - 536, - 527 - ], - "spans": [ - { - "bbox": [ - 105, - 513, - 536, - 527 - ], - "score": 1.0, - "content": "the lined pages at the end of this booklet. The question numbers must be clearly shown.", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 98, - 526, - 232, - 539 - ], - "spans": [ - { - "bbox": [ - 98, - 526, - 232, - 539 - ], - "score": 1.0, - "content": " Answer all the questions.", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 95, - 538, - 515, - 554 - ], - "spans": [ - { - "bbox": [ - 95, - 538, - 515, - 554 - ], - "score": 1.0, - "content": "• Where appropriate, your answer should be supported with working. Marks might be ", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 107, - 552, - 415, - 567 - ], - "spans": [ - { - "bbox": [ - 107, - 552, - 415, - 567 - ], - "score": 1.0, - "content": "given for using a correct method, even if your answer is wrong.", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 17.5 - }, - { - "type": "title", - "bbox": [ - 93, - 579, - 172, - 590 - ], - "lines": [ - { - "bbox": [ - 94, - 579, - 171, - 590 - ], - "spans": [ - { - "bbox": [ - 94, - 579, - 171, - 590 - ], - "score": 1.0, - "content": "INFORMATION", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 21 - }, - { - "type": "text", - "bbox": [ - 93, - 592, - 378, - 630 - ], - "lines": [ - { - "bbox": [ - 106, - 591, - 274, - 604 - ], - "spans": [ - { - "bbox": [ - 106, - 591, - 274, - 604 - ], - "score": 1.0, - "content": "The total mark for this paper is 70.", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 105, - 604, - 377, - 618 - ], - "spans": [ - { - "bbox": [ - 105, - 604, - 377, - 618 - ], - "score": 1.0, - "content": "The marks for each question are shown in brackets [ ].", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 106, - 617, - 253, - 631 - ], - "spans": [ - { - "bbox": [ - 106, - 617, - 253, - 631 - ], - "score": 1.0, - "content": "This document has 28 pages.", - "type": "text" - } - ], - "index": 24 - } - ], - "index": 23 - }, - { - "type": "title", - "bbox": [ - 94, - 644, - 136, - 655 - ], - "lines": [ - { - "bbox": [ - 93, - 642, - 137, - 655 - ], - "spans": [ - { - "bbox": [ - 93, - 642, - 137, - 655 - ], - "score": 1.0, - "content": "ADVICE", - "type": "text" - } - ], - "index": 25 - } - ], - "index": 25 - }, - { - "type": "text", - "bbox": [ - 94, - 656, - 396, - 669 - ], - "lines": [ - { - "bbox": [ - 99, - 656, - 396, - 669 - ], - "spans": [ - { - "bbox": [ - 99, - 656, - 396, - 669 - ], - "score": 1.0, - "content": " Read each question carefully before you start your answer.", - "type": "text" - } - ], - "index": 26 - } - ], - "index": 26 - } - ], - "layout_bboxes": [], - "page_idx": 28, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 376, - 291, - 522, - 326 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 376, - 291, - 522, - 326 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 376, - 291, - 522, - 326 - ], - "spans": [ - { - "bbox": [ - 376, - 291, - 522, - 326 - ], - "score": 0.72, - "type": "image", - "image_path": "e13ba473e1c4a5ee55519e2fc6f8728e3f90dc2938f57f4a70f123d9177bd5f1.jpg" - } - ] - } - ], - "index": 9.5, - "virtual_lines": [ - { - "bbox": [ - 376, - 291, - 522, - 308.5 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 376, - 308.5, - 522, - 326.0 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 9.5 - }, - { - "type": "image", - "bbox": [ - 99, - 344, - 534, - 468 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 99, - 344, - 534, - 468 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 99, - 344, - 534, - 468 - ], - "spans": [ - { - "bbox": [ - 99, - 344, - 534, - 468 - ], - "score": 0.162, - "type": "image", - "image_path": "fa78cbba2e5837afe0d41bbb370018e994b402fe0392f4454e0044cb38956b2e.jpg" - } - ] - } - ], - "index": 12, - "virtual_lines": [ - { - "bbox": [ - 99, - 344, - 534, - 385.3333333333333 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 99, - 385.3333333333333, - 534, - 426.66666666666663 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 99, - 426.66666666666663, - 534, - 467.99999999999994 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "index": 12 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 80, - 761, - 177, - 781 - ], - "lines": [ - { - "bbox": [ - 80, - 761, - 177, - 772 - ], - "spans": [ - { - "bbox": [ - 80, - 762, - 88, - 770 - ], - "score": 0.42, - "content": "\\circledcirc", - "type": "inline_equation", - "height": 8, - "width": 8 - }, - { - "bbox": [ - 89, - 761, - 177, - 772 - ], - "score": 1.0, - "content": "OCR 2022 [601/4742/8]", - "type": "text" - } - ] - }, - { - "bbox": [ - 81, - 772, - 163, - 781 - ], - "spans": [ - { - "bbox": [ - 81, - 772, - 163, - 781 - ], - "score": 1.0, - "content": "DC (PQ/SG) 301229/5", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 96, - 47, - 215, - 98 - ], - "lines": [ - { - "bbox": [ - 97, - 49, - 214, - 84 - ], - "spans": [ - { - "bbox": [ - 97, - 49, - 214, - 84 - ], - "score": 0.9914470314979553, - "content": "OCR", - "type": "text" - } - ] - }, - { - "bbox": [ - 100, - 87, - 213, - 97 - ], - "spans": [ - { - "bbox": [ - 100, - 87, - 213, - 97 - ], - "score": 1.0, - "content": "Oxford Cambridge and RSA", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 261, - 762, - 356, - 771 - ], - "lines": [ - { - "bbox": [ - 262, - 762, - 356, - 772 - ], - "spans": [ - { - "bbox": [ - 262, - 762, - 356, - 772 - ], - "score": 1.0, - "content": "OCR is an exempt Charity", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 491, - 770, - 538, - 781 - ], - "lines": [ - { - "bbox": [ - 490, - 770, - 539, - 781 - ], - "spans": [ - { - "bbox": [ - 490, - 770, - 539, - 781 - ], - "score": 1.0, - "content": "Turn over", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "spans": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 19, - 222, - 50, - 338 - ], - "lines": [ - { - "bbox": [ - 19, - 309, - 27, - 322 - ], - "spans": [ - { - "bbox": [ - 19, - 309, - 27, - 322 - ], - "score": 0.7949587106704712, - "content": "N", - "type": "text" - } - ] - }, - { - "bbox": [ - 20, - 320, - 27, - 329 - ], - "spans": [ - { - "bbox": [ - 20, - 320, - 27, - 329 - ], - "score": 0.6015223264694214, - "content": "0", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 95, - 106, - 430, - 154 - ], - "lines": [ - { - "bbox": [ - 94, - 106, - 428, - 129 - ], - "spans": [ - { - "bbox": [ - 94, - 106, - 428, - 129 - ], - "score": 1.0, - "content": "Wednesday 18 May 2022 – Morning", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 95, - 136, - 243, - 153 - ], - "spans": [ - { - "bbox": [ - 95, - 136, - 243, - 153 - ], - "score": 1.0, - "content": "AS Level Physics A", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_28", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 94, - 163, - 270, - 179 - ], - "lines": [ - { - "bbox": [ - 94, - 164, - 269, - 179 - ], - "spans": [ - { - "bbox": [ - 94, - 164, - 269, - 179 - ], - "score": 1.0, - "content": "H156/01 Breadth in physics", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_28", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 94, - 164, - 269, - 179 - ] - }, - { - "type": "text", - "bbox": [ - 95, - 186, - 265, - 200 - ], - "lines": [ - { - "bbox": [ - 95, - 187, - 265, - 198 - ], - "spans": [ - { - "bbox": [ - 95, - 187, - 265, - 198 - ], - "score": 0.9996948838233948, - "content": "Time allowed: 1 hour 30 minutes", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_28", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 95, - 187, - 265, - 198 - ] - }, - { - "type": "text", - "bbox": [ - 100, - 214, - 293, - 236 - ], - "lines": [ - { - "bbox": [ - 100, - 215, - 168, - 225 - ], - "spans": [ - { - "bbox": [ - 100, - 215, - 168, - 225 - ], - "score": 1.0, - "content": "You must have:", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 99, - 226, - 292, - 236 - ], - "spans": [ - { - "bbox": [ - 99, - 227, - 105, - 234 - ], - "score": 0.26, - "content": "\\bullet", - "type": "inline_equation", - "height": 7, - "width": 6 - }, - { - "bbox": [ - 106, - 226, - 292, - 236 - ], - "score": 1.0, - "content": "the Data, Formulae and Relationships Booklet", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5, - "page_num": "page_28", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 99, - 215, - 292, - 236 - ] - }, - { - "type": "list", - "bbox": [ - 100, - 241, - 242, - 274 - ], - "lines": [ - { - "bbox": [ - 100, - 241, - 158, - 253 - ], - "spans": [ - { - "bbox": [ - 100, - 241, - 158, - 253 - ], - "score": 1.0, - "content": "You can use:", - "type": "text" - } - ], - "index": 6, - "is_list_start_line": true - }, - { - "bbox": [ - 101, - 253, - 242, - 263 - ], - "spans": [ - { - "bbox": [ - 101, - 253, - 242, - 263 - ], - "score": 1.0, - "content": "• a scientific or graphical calculator", - "type": "text" - } - ], - "index": 7, - "is_list_start_line": true - }, - { - "bbox": [ - 100, - 263, - 171, - 275 - ], - "spans": [ - { - "bbox": [ - 100, - 264, - 136, - 275 - ], - "score": 1.0, - "content": "• a ruler ", - "type": "text" - }, - { - "bbox": [ - 136, - 263, - 171, - 274 - ], - "score": 0.54, - "content": "\\left(\\mathsf{c m}/\\mathsf{m m}\\right)", - "type": "inline_equation", - "height": 11, - "width": 35 - } - ], - "index": 8, - "is_list_start_line": true - } - ], - "index": 7, - "page_num": "page_28", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 100, - 241, - 242, - 275 - ] - }, - { - "type": "image", - "bbox": [ - 376, - 291, - 522, - 326 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 376, - 291, - 522, - 326 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 376, - 291, - 522, - 326 - ], - "spans": [ - { - "bbox": [ - 376, - 291, - 522, - 326 - ], - "score": 0.72, - "type": "image", - "image_path": "e13ba473e1c4a5ee55519e2fc6f8728e3f90dc2938f57f4a70f123d9177bd5f1.jpg" - } - ] - } - ], - "index": 9.5, - "virtual_lines": [ - { - "bbox": [ - 376, - 291, - 522, - 308.5 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 376, - 308.5, - 522, - 326.0 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 9.5, - "page_num": "page_28", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "image", - "bbox": [ - 99, - 344, - 534, - 468 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 99, - 344, - 534, - 468 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 99, - 344, - 534, - 468 - ], - "spans": [ - { - "bbox": [ - 99, - 344, - 534, - 468 - ], - "score": 0.162, - "type": "image", - "image_path": "fa78cbba2e5837afe0d41bbb370018e994b402fe0392f4454e0044cb38956b2e.jpg" - } - ] - } - ], - "index": 12, - "virtual_lines": [ - { - "bbox": [ - 99, - 344, - 534, - 385.3333333333333 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 99, - 385.3333333333333, - 534, - 426.66666666666663 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 99, - 426.66666666666663, - 534, - 467.99999999999994 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "index": 12, - "page_num": "page_28", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "title", - "bbox": [ - 93, - 474, - 177, - 486 - ], - "lines": [ - { - "bbox": [ - 94, - 475, - 177, - 486 - ], - "spans": [ - { - "bbox": [ - 94, - 475, - 177, - 486 - ], - "score": 1.0, - "content": "INSTRUCTIONS", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_28", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "list", - "bbox": [ - 93, - 487, - 537, - 566 - ], - "lines": [ - { - "bbox": [ - 100, - 487, - 476, - 501 - ], - "spans": [ - { - "bbox": [ - 100, - 487, - 476, - 501 - ], - "score": 1.0, - "content": "Use black ink. You can use an HB pencil, but only for graphs and diagrams.", - "type": "text" - } - ], - "index": 15, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 96, - 500, - 531, - 514 - ], - "spans": [ - { - "bbox": [ - 96, - 500, - 531, - 514 - ], - "score": 1.0, - "content": "• Write your answer to each question in the space provided. If you need extra space use", - "type": "text" - } - ], - "index": 16, - "is_list_start_line": true - }, - { - "bbox": [ - 105, - 513, - 536, - 527 - ], - "spans": [ - { - "bbox": [ - 105, - 513, - 536, - 527 - ], - "score": 1.0, - "content": "the lined pages at the end of this booklet. The question numbers must be clearly shown.", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 98, - 526, - 232, - 539 - ], - "spans": [ - { - "bbox": [ - 98, - 526, - 232, - 539 - ], - "score": 1.0, - "content": " Answer all the questions.", - "type": "text" - } - ], - "index": 18, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 95, - 538, - 515, - 554 - ], - "spans": [ - { - "bbox": [ - 95, - 538, - 515, - 554 - ], - "score": 1.0, - "content": "• Where appropriate, your answer should be supported with working. Marks might be ", - "type": "text" - } - ], - "index": 19, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 107, - 552, - 415, - 567 - ], - "spans": [ - { - "bbox": [ - 107, - 552, - 415, - 567 - ], - "score": 1.0, - "content": "given for using a correct method, even if your answer is wrong.", - "type": "text" - } - ], - "index": 20, - "is_list_end_line": true - } - ], - "index": 17.5, - "page_num": "page_28", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 95, - 487, - 536, - 567 - ] - }, - { - "type": "title", - "bbox": [ - 93, - 579, - 172, - 590 - ], - "lines": [ - { - "bbox": [ - 94, - 579, - 171, - 590 - ], - "spans": [ - { - "bbox": [ - 94, - 579, - 171, - 590 - ], - "score": 1.0, - "content": "INFORMATION", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 21, - "page_num": "page_28", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "list", - "bbox": [ - 93, - 592, - 378, - 630 - ], - "lines": [ - { - "bbox": [ - 106, - 591, - 274, - 604 - ], - "spans": [ - { - "bbox": [ - 106, - 591, - 274, - 604 - ], - "score": 1.0, - "content": "The total mark for this paper is 70.", - "type": "text" - } - ], - "index": 22, - "is_list_end_line": true - }, - { - "bbox": [ - 105, - 604, - 377, - 618 - ], - "spans": [ - { - "bbox": [ - 105, - 604, - 377, - 618 - ], - "score": 1.0, - "content": "The marks for each question are shown in brackets [ ].", - "type": "text" - } - ], - "index": 23, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 106, - 617, - 253, - 631 - ], - "spans": [ - { - "bbox": [ - 106, - 617, - 253, - 631 - ], - "score": 1.0, - "content": "This document has 28 pages.", - "type": "text" - } - ], - "index": 24, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 23, - "page_num": "page_28", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 105, - 591, - 377, - 631 - ] - }, - { - "type": "title", - "bbox": [ - 94, - 644, - 136, - 655 - ], - "lines": [ - { - "bbox": [ - 93, - 642, - 137, - 655 - ], - "spans": [ - { - "bbox": [ - 93, - 642, - 137, - 655 - ], - "score": 1.0, - "content": "ADVICE", - "type": "text" - } - ], - "index": 25 - } - ], - "index": 25, - "page_num": "page_28", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 94, - 656, - 396, - 669 - ], - "lines": [ - { - "bbox": [ - 99, - 656, - 396, - 669 - ], - "spans": [ - { - "bbox": [ - 99, - 656, - 396, - 669 - ], - "score": 1.0, - "content": " Read each question carefully before you start your answer.", - "type": "text" - } - ], - "index": 26 - } - ], - "index": 26, - "page_num": "page_28", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 99, - 656, - 396, - 669 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 292, - 44, - 302, - 55 - ], - "lines": [ - { - "bbox": [ - 292, - 43, - 303, - 58 - ], - "spans": [ - { - "bbox": [ - 292, - 43, - 303, - 58 - ], - "score": 1.0, - "content": "2", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "title", - "bbox": [ - 266, - 61, - 328, - 75 - ], - "lines": [ - { - "bbox": [ - 267, - 63, - 328, - 74 - ], - "spans": [ - { - "bbox": [ - 267, - 63, - 328, - 74 - ], - "score": 1.0, - "content": "SECTION A", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 137, - 88, - 456, - 102 - ], - "lines": [ - { - "bbox": [ - 140, - 89, - 456, - 101 - ], - "spans": [ - { - "bbox": [ - 140, - 89, - 456, - 101 - ], - "score": 1.0, - "content": "You should spend a maximum of 25 minutes on this section.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 234, - 114, - 359, - 128 - ], - "lines": [ - { - "bbox": [ - 236, - 115, - 359, - 127 - ], - "spans": [ - { - "bbox": [ - 236, - 115, - 359, - 127 - ], - "score": 1.0, - "content": "Answer all the questions.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 160, - 140, - 434, - 154 - ], - "lines": [ - { - "bbox": [ - 162, - 142, - 433, - 152 - ], - "spans": [ - { - "bbox": [ - 162, - 142, - 433, - 152 - ], - "score": 1.0, - "content": "Write your answer to each question in the box provided.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 46, - 165, - 415, - 180 - ], - "lines": [ - { - "bbox": [ - 47, - 166, - 416, - 179 - ], - "spans": [ - { - "bbox": [ - 47, - 167, - 57, - 179 - ], - "score": 1.0, - "content": "1", - "type": "text" - }, - { - "bbox": [ - 70, - 166, - 416, - 179 - ], - "score": 1.0, - "content": "Which of the following could be the wavelength of ultraviolet radiation?", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 70, - 191, - 152, - 284 - ], - "lines": [ - { - "bbox": [ - 70, - 192, - 146, - 205 - ], - "spans": [ - { - "bbox": [ - 70, - 192, - 82, - 205 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 92, - 192, - 146, - 204 - ], - "score": 1.0, - "content": "3 × 10–5 m", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 70, - 217, - 151, - 232 - ], - "spans": [ - { - "bbox": [ - 70, - 218, - 82, - 232 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 93, - 217, - 151, - 230 - ], - "score": 1.0, - "content": "1 × 10–10 m", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 70, - 243, - 141, - 258 - ], - "spans": [ - { - "bbox": [ - 70, - 243, - 83, - 258 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 244, - 141, - 257 - ], - "score": 1.0, - "content": "4 × 102 m", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 70, - 269, - 147, - 283 - ], - "spans": [ - { - "bbox": [ - 70, - 270, - 82, - 283 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 92, - 269, - 147, - 282 - ], - "score": 1.0, - "content": "2 × 10–7 m", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 7.5 - }, - { - "type": "text", - "bbox": [ - 70, - 295, - 168, - 321 - ], - "lines": [ - { - "bbox": [ - 71, - 302, - 135, - 316 - ], - "spans": [ - { - "bbox": [ - 71, - 302, - 135, - 316 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 531, - 303, - 547, - 316 - ], - "lines": [ - { - "bbox": [ - 530, - 301, - 548, - 318 - ], - "spans": [ - { - "bbox": [ - 530, - 301, - 548, - 318 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 47, - 340, - 348, - 355 - ], - "lines": [ - { - "bbox": [ - 47, - 340, - 346, - 354 - ], - "spans": [ - { - "bbox": [ - 47, - 340, - 58, - 354 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - }, - { - "bbox": [ - 71, - 341, - 346, - 353 - ], - "score": 1.0, - "content": "Which term is not used in either of Kirchhoff’s two laws?", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 69, - 366, - 190, - 459 - ], - "lines": [ - { - "bbox": [ - 70, - 366, - 130, - 382 - ], - "spans": [ - { - "bbox": [ - 70, - 367, - 82, - 380 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 93, - 366, - 130, - 382 - ], - "score": 1.0, - "content": "charge", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 70, - 393, - 130, - 406 - ], - "spans": [ - { - "bbox": [ - 70, - 393, - 82, - 406 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 393, - 130, - 405 - ], - "score": 1.0, - "content": "current", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 70, - 418, - 187, - 433 - ], - "spans": [ - { - "bbox": [ - 70, - 418, - 82, - 433 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 95, - 420, - 187, - 431 - ], - "score": 1.0, - "content": "electromotive force", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 70, - 445, - 188, - 458 - ], - "spans": [ - { - "bbox": [ - 70, - 445, - 82, - 458 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 94, - 447, - 188, - 457 - ], - "score": 1.0, - "content": "potential difference", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 14.5 - }, - { - "type": "text", - "bbox": [ - 70, - 470, - 168, - 496 - ], - "lines": [ - { - "bbox": [ - 71, - 477, - 134, - 489 - ], - "spans": [ - { - "bbox": [ - 71, - 477, - 134, - 489 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 17 - }, - { - "type": "text", - "bbox": [ - 531, - 477, - 547, - 491 - ], - "lines": [ - { - "bbox": [ - 530, - 475, - 548, - 493 - ], - "spans": [ - { - "bbox": [ - 530, - 475, - 548, - 493 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18 - } - ], - "layout_bboxes": [], - "page_idx": 29, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 779, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 292, - 44, - 302, - 55 - ], - "lines": [ - { - "bbox": [ - 292, - 43, - 303, - 58 - ], - "spans": [ - { - "bbox": [ - 292, - 43, - 303, - 58 - ], - "score": 1.0, - "content": "2", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_29", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "title", - "bbox": [ - 266, - 61, - 328, - 75 - ], - "lines": [ - { - "bbox": [ - 267, - 63, - 328, - 74 - ], - "spans": [ - { - "bbox": [ - 267, - 63, - 328, - 74 - ], - "score": 1.0, - "content": "SECTION A", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_29", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 137, - 88, - 456, - 102 - ], - "lines": [ - { - "bbox": [ - 140, - 89, - 456, - 101 - ], - "spans": [ - { - "bbox": [ - 140, - 89, - 456, - 101 - ], - "score": 1.0, - "content": "You should spend a maximum of 25 minutes on this section.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_29", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 140, - 89, - 456, - 101 - ] - }, - { - "type": "text", - "bbox": [ - 234, - 114, - 359, - 128 - ], - "lines": [ - { - "bbox": [ - 236, - 115, - 359, - 127 - ], - "spans": [ - { - "bbox": [ - 236, - 115, - 359, - 127 - ], - "score": 1.0, - "content": "Answer all the questions.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_29", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 236, - 115, - 359, - 127 - ] - }, - { - "type": "text", - "bbox": [ - 160, - 140, - 434, - 154 - ], - "lines": [ - { - "bbox": [ - 162, - 142, - 433, - 152 - ], - "spans": [ - { - "bbox": [ - 162, - 142, - 433, - 152 - ], - "score": 1.0, - "content": "Write your answer to each question in the box provided.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_29", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 162, - 142, - 433, - 152 - ] - }, - { - "type": "text", - "bbox": [ - 46, - 165, - 415, - 180 - ], - "lines": [ - { - "bbox": [ - 47, - 166, - 416, - 179 - ], - "spans": [ - { - "bbox": [ - 47, - 167, - 57, - 179 - ], - "score": 1.0, - "content": "1", - "type": "text" - }, - { - "bbox": [ - 70, - 166, - 416, - 179 - ], - "score": 1.0, - "content": "Which of the following could be the wavelength of ultraviolet radiation?", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_29", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 166, - 416, - 179 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 191, - 152, - 284 - ], - "lines": [ - { - "bbox": [ - 70, - 192, - 146, - 205 - ], - "spans": [ - { - "bbox": [ - 70, - 192, - 82, - 205 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 92, - 192, - 146, - 204 - ], - "score": 1.0, - "content": "3 × 10–5 m", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 70, - 217, - 151, - 232 - ], - "spans": [ - { - "bbox": [ - 70, - 218, - 82, - 232 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 93, - 217, - 151, - 230 - ], - "score": 1.0, - "content": "1 × 10–10 m", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 70, - 243, - 141, - 258 - ], - "spans": [ - { - "bbox": [ - 70, - 243, - 83, - 258 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 244, - 141, - 257 - ], - "score": 1.0, - "content": "4 × 102 m", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 70, - 269, - 147, - 283 - ], - "spans": [ - { - "bbox": [ - 70, - 270, - 82, - 283 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 92, - 269, - 147, - 282 - ], - "score": 1.0, - "content": "2 × 10–7 m", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 7.5, - "page_num": "page_29", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 192, - 151, - 283 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 295, - 168, - 321 - ], - "lines": [ - { - "bbox": [ - 71, - 302, - 135, - 316 - ], - "spans": [ - { - "bbox": [ - 71, - 302, - 135, - 316 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_29", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 302, - 135, - 316 - ] - }, - { - "type": "text", - "bbox": [ - 531, - 303, - 547, - 316 - ], - "lines": [ - { - "bbox": [ - 530, - 301, - 548, - 318 - ], - "spans": [ - { - "bbox": [ - 530, - 301, - 548, - 318 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_29", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 530, - 301, - 548, - 318 - ] - }, - { - "type": "text", - "bbox": [ - 47, - 340, - 348, - 355 - ], - "lines": [ - { - "bbox": [ - 47, - 340, - 346, - 354 - ], - "spans": [ - { - "bbox": [ - 47, - 340, - 58, - 354 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - }, - { - "bbox": [ - 71, - 341, - 346, - 353 - ], - "score": 1.0, - "content": "Which term is not used in either of Kirchhoff’s two laws?", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_29", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 340, - 346, - 354 - ] - }, - { - "type": "list", - "bbox": [ - 69, - 366, - 190, - 459 - ], - "lines": [ - { - "bbox": [ - 70, - 366, - 130, - 382 - ], - "spans": [ - { - "bbox": [ - 70, - 367, - 82, - 380 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 93, - 366, - 130, - 382 - ], - "score": 1.0, - "content": "charge", - "type": "text" - } - ], - "index": 13, - "is_list_end_line": true - }, - { - "bbox": [ - 70, - 393, - 130, - 406 - ], - "spans": [ - { - "bbox": [ - 70, - 393, - 82, - 406 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 393, - 130, - 405 - ], - "score": 1.0, - "content": "current", - "type": "text" - } - ], - "index": 14, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 70, - 418, - 187, - 433 - ], - "spans": [ - { - "bbox": [ - 70, - 418, - 82, - 433 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 95, - 420, - 187, - 431 - ], - "score": 1.0, - "content": "electromotive force", - "type": "text" - } - ], - "index": 15, - "is_list_start_line": true - }, - { - "bbox": [ - 70, - 445, - 188, - 458 - ], - "spans": [ - { - "bbox": [ - 70, - 445, - 82, - 458 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 94, - 447, - 188, - 457 - ], - "score": 1.0, - "content": "potential difference", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 14.5, - "page_num": "page_29", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 366, - 188, - 458 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 470, - 168, - 496 - ], - "lines": [ - { - "bbox": [ - 71, - 477, - 134, - 489 - ], - "spans": [ - { - "bbox": [ - 71, - 477, - 134, - 489 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 17, - "page_num": "page_29", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 477, - 134, - 489 - ] - }, - { - "type": "text", - "bbox": [ - 531, - 477, - 547, - 491 - ], - "lines": [ - { - "bbox": [ - 530, - 475, - 548, - 493 - ], - "spans": [ - { - "bbox": [ - 530, - 475, - 548, - 493 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18, - "page_num": "page_29", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 530, - 475, - 548, - 493 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 47, - 62, - 507, - 88 - ], - "lines": [ - { - "bbox": [ - 47, - 62, - 507, - 75 - ], - "spans": [ - { - "bbox": [ - 47, - 62, - 59, - 75 - ], - "score": 1.0, - "content": "3 ", - "type": "text" - }, - { - "bbox": [ - 71, - 62, - 507, - 75 - ], - "score": 1.0, - "content": "The diagram below shows the refraction of light at the boundary between two transparent", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 71, - 75, - 164, - 88 - ], - "spans": [ - { - "bbox": [ - 71, - 75, - 118, - 88 - ], - "score": 1.0, - "content": "materials", - "type": "text" - }, - { - "bbox": [ - 118, - 75, - 128, - 87 - ], - "score": 0.3, - "content": "\\pmb{\\chi}", - "type": "inline_equation", - "height": 12, - "width": 10 - }, - { - "bbox": [ - 129, - 75, - 164, - 88 - ], - "score": 1.0, - "content": "and Y.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "image", - "bbox": [ - 74, - 102, - 224, - 215 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 74, - 102, - 224, - 215 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 74, - 102, - 224, - 215 - ], - "spans": [ - { - "bbox": [ - 74, - 102, - 224, - 215 - ], - "score": 0.973, - "type": "image", - "image_path": "0910735679979ad7850c8f6a7c57f5e6ef6bc894ea5d4375755d54bbaf964fdd.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 74, - 102, - 224, - 115 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 74, - 115, - 224, - 128 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 74, - 128, - 224, - 141 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 74, - 141, - 224, - 154 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 74, - 154, - 224, - 167 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 74, - 167, - 224, - 180 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 74, - 180, - 224, - 193 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 74, - 193, - 224, - 206 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 74, - 206, - 224, - 219 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 70, - 232, - 470, - 247 - ], - "lines": [ - { - "bbox": [ - 71, - 233, - 469, - 246 - ], - "spans": [ - { - "bbox": [ - 71, - 233, - 224, - 246 - ], - "score": 1.0, - "content": "The refractive index of material", - "type": "text" - }, - { - "bbox": [ - 225, - 234, - 234, - 245 - ], - "score": 0.56, - "content": "\\pmb{\\mathrm{x}}", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 234, - 233, - 436, - 246 - ], - "score": 1.0, - "content": " is 1.5 and the refractive index of material", - "type": "text" - }, - { - "bbox": [ - 437, - 233, - 446, - 245 - ], - "score": 0.42, - "content": "\\pmb{\\upgamma}", - "type": "inline_equation", - "height": 12, - "width": 9 - }, - { - "bbox": [ - 446, - 233, - 458, - 246 - ], - "score": 1.0, - "content": " is ", - "type": "text" - }, - { - "bbox": [ - 458, - 235, - 466, - 245 - ], - "score": 0.53, - "content": "n", - "type": "inline_equation", - "height": 10, - "width": 8 - }, - { - "bbox": [ - 466, - 233, - 469, - 246 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 70, - 259, - 297, - 273 - ], - "lines": [ - { - "bbox": [ - 71, - 259, - 295, - 272 - ], - "spans": [ - { - "bbox": [ - 71, - 259, - 295, - 272 - ], - "score": 1.0, - "content": "Which of the following expressions is correct?", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 69, - 284, - 223, - 377 - ], - "lines": [ - { - "bbox": [ - 70, - 285, - 220, - 299 - ], - "spans": [ - { - "bbox": [ - 70, - 285, - 82, - 298 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 92, - 285, - 220, - 299 - ], - "score": 0.55, - "content": "n\\times\\sin70^{\\circ}=1.5\\times\\sin50^{\\circ}", - "type": "inline_equation" - } - ], - "index": 13 - }, - { - "bbox": [ - 70, - 311, - 223, - 325 - ], - "spans": [ - { - "bbox": [ - 70, - 311, - 82, - 324 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 95, - 311, - 223, - 325 - ], - "score": 0.51, - "content": "n\\times\\sin20^{\\circ}=1.5\\times\\sin40^{\\circ}", - "type": "inline_equation" - } - ], - "index": 14 - }, - { - "bbox": [ - 70, - 336, - 220, - 351 - ], - "spans": [ - { - "bbox": [ - 70, - 336, - 83, - 351 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 337, - 220, - 351 - ], - "score": 0.28, - "content": "1.5\\times\\sin70^{\\circ}=n\\times\\sin50^{\\circ}", - "type": "inline_equation", - "height": 14, - "width": 127 - } - ], - "index": 15 - }, - { - "bbox": [ - 70, - 363, - 218, - 376 - ], - "spans": [ - { - "bbox": [ - 70, - 363, - 82, - 376 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 95, - 364, - 218, - 375 - ], - "score": 1.0, - "content": "1.5 × sin 20° = n × sin 40°", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 14.5 - }, - { - "type": "text", - "bbox": [ - 71, - 389, - 168, - 414 - ], - "lines": [ - { - "bbox": [ - 71, - 395, - 135, - 409 - ], - "spans": [ - { - "bbox": [ - 71, - 395, - 135, - 409 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 17 - }, - { - "type": "text", - "bbox": [ - 48, - 434, - 443, - 474 - ], - "lines": [ - { - "bbox": [ - 48, - 435, - 441, - 448 - ], - "spans": [ - { - "bbox": [ - 48, - 435, - 57, - 446 - ], - "score": 1.0, - "content": "4", - "type": "text" - }, - { - "bbox": [ - 71, - 435, - 441, - 448 - ], - "score": 1.0, - "content": "A student is carrying out the Young double-slit experiment using visible light.", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 72, - 448, - 379, - 461 - ], - "spans": [ - { - "bbox": [ - 72, - 448, - 379, - 461 - ], - "score": 1.0, - "content": "The distance between the slits and the screen is kept constant.", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 70, - 460, - 376, - 474 - ], - "spans": [ - { - "bbox": [ - 70, - 460, - 376, - 474 - ], - "score": 1.0, - "content": "The wavelength of light is λ and the separation of the slits is a.", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 19 - }, - { - "type": "text", - "bbox": [ - 70, - 485, - 314, - 500 - ], - "lines": [ - { - "bbox": [ - 72, - 486, - 313, - 499 - ], - "spans": [ - { - "bbox": [ - 72, - 486, - 313, - 499 - ], - "score": 1.0, - "content": "The following results are collected by the student.", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 21 - }, - { - "type": "table", - "bbox": [ - 71, - 512, - 266, - 627 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 71, - 512, - 266, - 627 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 71, - 512, - 266, - 627 - ], - "spans": [ - { - "bbox": [ - 71, - 512, - 266, - 627 - ], - "score": 0.977, - "html": "
入/nma/mm
A4500.20
B5100.15
C5500.25
D6100.30
", - "type": "table", - "image_path": "1e86329ffc2eca8ffbe0c52dfbe85e1edda831b8f8ec1c1f013cfdc8032dd9a9.jpg" - } - ] - } - ], - "index": 26, - "virtual_lines": [ - { - "bbox": [ - 71, - 512, - 266, - 525 - ], - "spans": [], - "index": 22 - }, - { - "bbox": [ - 71, - 525, - 266, - 538 - ], - "spans": [], - "index": 23 - }, - { - "bbox": [ - 71, - 538, - 266, - 551 - ], - "spans": [], - "index": 24 - }, - { - "bbox": [ - 71, - 551, - 266, - 564 - ], - "spans": [], - "index": 25 - }, - { - "bbox": [ - 71, - 564, - 266, - 577 - ], - "spans": [], - "index": 26 - }, - { - "bbox": [ - 71, - 577, - 266, - 590 - ], - "spans": [], - "index": 27 - }, - { - "bbox": [ - 71, - 590, - 266, - 603 - ], - "spans": [], - "index": 28 - }, - { - "bbox": [ - 71, - 603, - 266, - 616 - ], - "spans": [], - "index": 29 - }, - { - "bbox": [ - 71, - 616, - 266, - 629 - ], - "spans": [], - "index": 30 - } - ] - } - ], - "index": 26 - }, - { - "type": "text", - "bbox": [ - 68, - 638, - 513, - 665 - ], - "lines": [ - { - "bbox": [ - 71, - 638, - 510, - 653 - ], - "spans": [ - { - "bbox": [ - 71, - 638, - 179, - 653 - ], - "score": 1.0, - "content": "Which combination of ", - "type": "text" - }, - { - "bbox": [ - 179, - 639, - 188, - 650 - ], - "score": 0.46, - "content": "\\lambda", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 188, - 638, - 210, - 653 - ], - "score": 1.0, - "content": " and", - "type": "text" - }, - { - "bbox": [ - 211, - 640, - 219, - 650 - ], - "score": 0.33, - "content": "a", - "type": "inline_equation", - "height": 10, - "width": 8 - }, - { - "bbox": [ - 219, - 638, - 510, - 653 - ], - "score": 1.0, - "content": " will give the largest separation between the adjacent bright", - "type": "text" - } - ], - "index": 31 - }, - { - "bbox": [ - 70, - 651, - 113, - 666 - ], - "spans": [ - { - "bbox": [ - 70, - 651, - 113, - 666 - ], - "score": 1.0, - "content": "fringes?", - "type": "text" - } - ], - "index": 32 - } - ], - "index": 31.5 - }, - { - "type": "image", - "bbox": [ - 71, - 677, - 168, - 702 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 71, - 677, - 168, - 702 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 71, - 677, - 168, - 702 - ], - "spans": [ - { - "bbox": [ - 71, - 677, - 168, - 702 - ], - "score": 0.271, - "type": "image", - "image_path": "64a6115ffbee9b67e051c1bc3fde99c48f14ba1f77329c7167adbf0d360e33b3.jpg" - } - ] - } - ], - "index": 33, - "virtual_lines": [ - { - "bbox": [ - 71, - 677, - 168, - 702 - ], - "spans": [], - "index": 33 - } - ] - } - ], - "index": 33 - } - ], - "layout_bboxes": [], - "page_idx": 30, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 74, - 102, - 224, - 215 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 74, - 102, - 224, - 215 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 74, - 102, - 224, - 215 - ], - "spans": [ - { - "bbox": [ - 74, - 102, - 224, - 215 - ], - "score": 0.973, - "type": "image", - "image_path": "0910735679979ad7850c8f6a7c57f5e6ef6bc894ea5d4375755d54bbaf964fdd.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 74, - 102, - 224, - 115 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 74, - 115, - 224, - 128 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 74, - 128, - 224, - 141 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 74, - 141, - 224, - 154 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 74, - 154, - 224, - 167 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 74, - 167, - 224, - 180 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 74, - 180, - 224, - 193 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 74, - 193, - 224, - 206 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 74, - 206, - 224, - 219 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 6 - }, - { - "type": "image", - "bbox": [ - 71, - 677, - 168, - 702 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 71, - 677, - 168, - 702 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 71, - 677, - 168, - 702 - ], - "spans": [ - { - "bbox": [ - 71, - 677, - 168, - 702 - ], - "score": 0.271, - "type": "image", - "image_path": "64a6115ffbee9b67e051c1bc3fde99c48f14ba1f77329c7167adbf0d360e33b3.jpg" - } - ] - } - ], - "index": 33, - "virtual_lines": [ - { - "bbox": [ - 71, - 677, - 168, - 702 - ], - "spans": [], - "index": 33 - } - ] - } - ], - "index": 33 - } - ], - "tables": [ - { - "type": "table", - "bbox": [ - 71, - 512, - 266, - 627 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 71, - 512, - 266, - 627 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 71, - 512, - 266, - 627 - ], - "spans": [ - { - "bbox": [ - 71, - 512, - 266, - 627 - ], - "score": 0.977, - "html": "
入/nma/mm
A4500.20
B5100.15
C5500.25
D6100.30
", - "type": "table", - "image_path": "1e86329ffc2eca8ffbe0c52dfbe85e1edda831b8f8ec1c1f013cfdc8032dd9a9.jpg" - } - ] - } - ], - "index": 26, - "virtual_lines": [ - { - "bbox": [ - 71, - 512, - 266, - 525 - ], - "spans": [], - "index": 22 - }, - { - "bbox": [ - 71, - 525, - 266, - 538 - ], - "spans": [], - "index": 23 - }, - { - "bbox": [ - 71, - 538, - 266, - 551 - ], - "spans": [], - "index": 24 - }, - { - "bbox": [ - 71, - 551, - 266, - 564 - ], - "spans": [], - "index": 25 - }, - { - "bbox": [ - 71, - 564, - 266, - 577 - ], - "spans": [], - "index": 26 - }, - { - "bbox": [ - 71, - 577, - 266, - 590 - ], - "spans": [], - "index": 27 - }, - { - "bbox": [ - 71, - 590, - 266, - 603 - ], - "spans": [], - "index": 28 - }, - { - "bbox": [ - 71, - 603, - 266, - 616 - ], - "spans": [], - "index": 29 - }, - { - "bbox": [ - 71, - 616, - 266, - 629 - ], - "spans": [], - "index": 30 - } - ] - } - ], - "index": 26 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 60, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 60, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 484, - 774, - 531, - 785 - ], - "lines": [ - { - "bbox": [ - 483, - 774, - 532, - 785 - ], - "spans": [ - { - "bbox": [ - 483, - 774, - 532, - 785 - ], - "score": 1.0, - "content": "Turn over", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 684, - 546, - 697 - ], - "lines": [ - { - "bbox": [ - 529, - 682, - 549, - 700 - ], - "spans": [ - { - "bbox": [ - 529, - 682, - 549, - 700 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 395, - 547, - 409 - ], - "lines": [ - { - "bbox": [ - 530, - 394, - 548, - 411 - ], - "spans": [ - { - "bbox": [ - 530, - 394, - 548, - 411 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 293, - 44, - 301, - 55 - ], - "lines": [ - { - "bbox": [ - 292, - 43, - 303, - 58 - ], - "spans": [ - { - "bbox": [ - 292, - 43, - 303, - 58 - ], - "score": 1.0, - "content": "3", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 47, - 62, - 507, - 88 - ], - "lines": [ - { - "bbox": [ - 47, - 62, - 507, - 75 - ], - "spans": [ - { - "bbox": [ - 47, - 62, - 59, - 75 - ], - "score": 1.0, - "content": "3 ", - "type": "text" - }, - { - "bbox": [ - 71, - 62, - 507, - 75 - ], - "score": 1.0, - "content": "The diagram below shows the refraction of light at the boundary between two transparent", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 71, - 75, - 164, - 88 - ], - "spans": [ - { - "bbox": [ - 71, - 75, - 118, - 88 - ], - "score": 1.0, - "content": "materials", - "type": "text" - }, - { - "bbox": [ - 118, - 75, - 128, - 87 - ], - "score": 0.3, - "content": "\\pmb{\\chi}", - "type": "inline_equation", - "height": 12, - "width": 10 - }, - { - "bbox": [ - 129, - 75, - 164, - 88 - ], - "score": 1.0, - "content": "and Y.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_30", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 62, - 507, - 88 - ] - }, - { - "type": "image", - "bbox": [ - 74, - 102, - 224, - 215 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 74, - 102, - 224, - 215 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 74, - 102, - 224, - 215 - ], - "spans": [ - { - "bbox": [ - 74, - 102, - 224, - 215 - ], - "score": 0.973, - "type": "image", - "image_path": "0910735679979ad7850c8f6a7c57f5e6ef6bc894ea5d4375755d54bbaf964fdd.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 74, - 102, - 224, - 115 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 74, - 115, - 224, - 128 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 74, - 128, - 224, - 141 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 74, - 141, - 224, - 154 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 74, - 154, - 224, - 167 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 74, - 167, - 224, - 180 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 74, - 180, - 224, - 193 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 74, - 193, - 224, - 206 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 74, - 206, - 224, - 219 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 6, - "page_num": "page_30", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 232, - 470, - 247 - ], - "lines": [ - { - "bbox": [ - 71, - 233, - 469, - 246 - ], - "spans": [ - { - "bbox": [ - 71, - 233, - 224, - 246 - ], - "score": 1.0, - "content": "The refractive index of material", - "type": "text" - }, - { - "bbox": [ - 225, - 234, - 234, - 245 - ], - "score": 0.56, - "content": "\\pmb{\\mathrm{x}}", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 234, - 233, - 436, - 246 - ], - "score": 1.0, - "content": " is 1.5 and the refractive index of material", - "type": "text" - }, - { - "bbox": [ - 437, - 233, - 446, - 245 - ], - "score": 0.42, - "content": "\\pmb{\\upgamma}", - "type": "inline_equation", - "height": 12, - "width": 9 - }, - { - "bbox": [ - 446, - 233, - 458, - 246 - ], - "score": 1.0, - "content": " is ", - "type": "text" - }, - { - "bbox": [ - 458, - 235, - 466, - 245 - ], - "score": 0.53, - "content": "n", - "type": "inline_equation", - "height": 10, - "width": 8 - }, - { - "bbox": [ - 466, - 233, - 469, - 246 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_30", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 233, - 469, - 246 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 259, - 297, - 273 - ], - "lines": [ - { - "bbox": [ - 71, - 259, - 295, - 272 - ], - "spans": [ - { - "bbox": [ - 71, - 259, - 295, - 272 - ], - "score": 1.0, - "content": "Which of the following expressions is correct?", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_30", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 259, - 295, - 272 - ] - }, - { - "type": "text", - "bbox": [ - 69, - 284, - 223, - 377 - ], - "lines": [ - { - "bbox": [ - 70, - 285, - 220, - 299 - ], - "spans": [ - { - "bbox": [ - 70, - 285, - 82, - 298 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 92, - 285, - 220, - 299 - ], - "score": 0.55, - "content": "n\\times\\sin70^{\\circ}=1.5\\times\\sin50^{\\circ}", - "type": "inline_equation" - } - ], - "index": 13 - }, - { - "bbox": [ - 70, - 311, - 223, - 325 - ], - "spans": [ - { - "bbox": [ - 70, - 311, - 82, - 324 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 95, - 311, - 223, - 325 - ], - "score": 0.51, - "content": "n\\times\\sin20^{\\circ}=1.5\\times\\sin40^{\\circ}", - "type": "inline_equation" - } - ], - "index": 14 - }, - { - "bbox": [ - 70, - 336, - 220, - 351 - ], - "spans": [ - { - "bbox": [ - 70, - 336, - 83, - 351 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 337, - 220, - 351 - ], - "score": 0.28, - "content": "1.5\\times\\sin70^{\\circ}=n\\times\\sin50^{\\circ}", - "type": "inline_equation", - "height": 14, - "width": 127 - } - ], - "index": 15 - }, - { - "bbox": [ - 70, - 363, - 218, - 376 - ], - "spans": [ - { - "bbox": [ - 70, - 363, - 82, - 376 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 95, - 364, - 218, - 375 - ], - "score": 1.0, - "content": "1.5 × sin 20° = n × sin 40°", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 14.5, - "page_num": "page_30", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 285, - 223, - 376 - ] - }, - { - "type": "text", - "bbox": [ - 71, - 389, - 168, - 414 - ], - "lines": [ - { - "bbox": [ - 71, - 395, - 135, - 409 - ], - "spans": [ - { - "bbox": [ - 71, - 395, - 135, - 409 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 17, - "page_num": "page_30", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 395, - 135, - 409 - ] - }, - { - "type": "text", - "bbox": [ - 48, - 434, - 443, - 474 - ], - "lines": [ - { - "bbox": [ - 48, - 435, - 441, - 448 - ], - "spans": [ - { - "bbox": [ - 48, - 435, - 57, - 446 - ], - "score": 1.0, - "content": "4", - "type": "text" - }, - { - "bbox": [ - 71, - 435, - 441, - 448 - ], - "score": 1.0, - "content": "A student is carrying out the Young double-slit experiment using visible light.", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 72, - 448, - 379, - 461 - ], - "spans": [ - { - "bbox": [ - 72, - 448, - 379, - 461 - ], - "score": 1.0, - "content": "The distance between the slits and the screen is kept constant.", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 70, - 460, - 376, - 474 - ], - "spans": [ - { - "bbox": [ - 70, - 460, - 376, - 474 - ], - "score": 1.0, - "content": "The wavelength of light is λ and the separation of the slits is a.", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 19, - "page_num": "page_30", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 48, - 435, - 441, - 474 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 485, - 314, - 500 - ], - "lines": [ - { - "bbox": [ - 72, - 486, - 313, - 499 - ], - "spans": [ - { - "bbox": [ - 72, - 486, - 313, - 499 - ], - "score": 1.0, - "content": "The following results are collected by the student.", - "type": "text" - } - ], - "index": 21 - } - ], - "index": 21, - "page_num": "page_30", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 486, - 313, - 499 - ] - }, - { - "type": "table", - "bbox": [ - 71, - 512, - 266, - 627 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 71, - 512, - 266, - 627 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 71, - 512, - 266, - 627 - ], - "spans": [ - { - "bbox": [ - 71, - 512, - 266, - 627 - ], - "score": 0.977, - "html": "
入/nma/mm
A4500.20
B5100.15
C5500.25
D6100.30
", - "type": "table", - "image_path": "1e86329ffc2eca8ffbe0c52dfbe85e1edda831b8f8ec1c1f013cfdc8032dd9a9.jpg" - } - ] - } - ], - "index": 26, - "virtual_lines": [ - { - "bbox": [ - 71, - 512, - 266, - 525 - ], - "spans": [], - "index": 22 - }, - { - "bbox": [ - 71, - 525, - 266, - 538 - ], - "spans": [], - "index": 23 - }, - { - "bbox": [ - 71, - 538, - 266, - 551 - ], - "spans": [], - "index": 24 - }, - { - "bbox": [ - 71, - 551, - 266, - 564 - ], - "spans": [], - "index": 25 - }, - { - "bbox": [ - 71, - 564, - 266, - 577 - ], - "spans": [], - "index": 26 - }, - { - "bbox": [ - 71, - 577, - 266, - 590 - ], - "spans": [], - "index": 27 - }, - { - "bbox": [ - 71, - 590, - 266, - 603 - ], - "spans": [], - "index": 28 - }, - { - "bbox": [ - 71, - 603, - 266, - 616 - ], - "spans": [], - "index": 29 - }, - { - "bbox": [ - 71, - 616, - 266, - 629 - ], - "spans": [], - "index": 30 - } - ] - } - ], - "index": 26, - "page_num": "page_30", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 68, - 638, - 513, - 665 - ], - "lines": [ - { - "bbox": [ - 71, - 638, - 510, - 653 - ], - "spans": [ - { - "bbox": [ - 71, - 638, - 179, - 653 - ], - "score": 1.0, - "content": "Which combination of ", - "type": "text" - }, - { - "bbox": [ - 179, - 639, - 188, - 650 - ], - "score": 0.46, - "content": "\\lambda", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 188, - 638, - 210, - 653 - ], - "score": 1.0, - "content": " and", - "type": "text" - }, - { - "bbox": [ - 211, - 640, - 219, - 650 - ], - "score": 0.33, - "content": "a", - "type": "inline_equation", - "height": 10, - "width": 8 - }, - { - "bbox": [ - 219, - 638, - 510, - 653 - ], - "score": 1.0, - "content": " will give the largest separation between the adjacent bright", - "type": "text" - } - ], - "index": 31 - }, - { - "bbox": [ - 70, - 651, - 113, - 666 - ], - "spans": [ - { - "bbox": [ - 70, - 651, - 113, - 666 - ], - "score": 1.0, - "content": "fringes?", - "type": "text" - } - ], - "index": 32 - } - ], - "index": 31.5, - "page_num": "page_30", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 638, - 510, - 666 - ] - }, - { - "type": "image", - "bbox": [ - 71, - 677, - 168, - 702 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 71, - 677, - 168, - 702 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 71, - 677, - 168, - 702 - ], - "spans": [ - { - "bbox": [ - 71, - 677, - 168, - 702 - ], - "score": 0.271, - "type": "image", - "image_path": "64a6115ffbee9b67e051c1bc3fde99c48f14ba1f77329c7167adbf0d360e33b3.jpg" - } - ] - } - ], - "index": 33, - "virtual_lines": [ - { - "bbox": [ - 71, - 677, - 168, - 702 - ], - "spans": [], - "index": 33 - } - ] - } - ], - "index": 33, - "page_num": "page_30", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 47, - 62, - 401, - 115 - ], - "lines": [ - { - "bbox": [ - 48, - 62, - 401, - 76 - ], - "spans": [ - { - "bbox": [ - 48, - 63, - 58, - 75 - ], - "score": 1.0, - "content": "5 ", - "type": "text" - }, - { - "bbox": [ - 71, - 63, - 140, - 75 - ], - "score": 1.0, - "content": "A car of mass", - "type": "text" - }, - { - "bbox": [ - 141, - 62, - 180, - 76 - ], - "score": 0.81, - "content": "1000\\mathsf{k g}", - "type": "inline_equation", - "height": 14, - "width": 39 - }, - { - "bbox": [ - 180, - 63, - 401, - 75 - ], - "score": 1.0, - "content": " is travelling on a straight and horizontal road.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 71, - 75, - 218, - 89 - ], - "spans": [ - { - "bbox": [ - 71, - 75, - 218, - 89 - ], - "score": 1.0, - "content": "The driver applies the brakes.", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 71, - 88, - 388, - 101 - ], - "spans": [ - { - "bbox": [ - 71, - 88, - 253, - 101 - ], - "score": 1.0, - "content": "The speed of the car decreases from", - "type": "text" - }, - { - "bbox": [ - 254, - 88, - 294, - 101 - ], - "score": 0.9, - "content": "20\\mathsf{m}\\mathsf{s}^{-1}", - "type": "inline_equation", - "height": 13, - "width": 40 - }, - { - "bbox": [ - 294, - 88, - 308, - 101 - ], - "score": 1.0, - "content": " to ", - "type": "text" - }, - { - "bbox": [ - 308, - 88, - 348, - 101 - ], - "score": 0.89, - "content": "15\\mathsf{m}\\mathsf{s}^{-1}", - "type": "inline_equation", - "height": 13, - "width": 40 - }, - { - "bbox": [ - 348, - 88, - 361, - 101 - ], - "score": 1.0, - "content": " in", - "type": "text" - }, - { - "bbox": [ - 361, - 88, - 385, - 101 - ], - "score": 0.6, - "content": "_{2.4\\S}", - "type": "inline_equation", - "height": 13, - "width": 24 - }, - { - "bbox": [ - 386, - 89, - 388, - 101 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 71, - 101, - 332, - 115 - ], - "spans": [ - { - "bbox": [ - 71, - 101, - 332, - 115 - ], - "score": 1.0, - "content": "What is the average power dissipated by the brakes?", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 1.5 - }, - { - "type": "text", - "bbox": [ - 70, - 125, - 155, - 219 - ], - "lines": [ - { - "bbox": [ - 70, - 126, - 153, - 141 - ], - "spans": [ - { - "bbox": [ - 70, - 127, - 82, - 140 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 93, - 126, - 153, - 141 - ], - "score": 0.39, - "content": "1.0\\times10^{3}\\mathsf{W}", - "type": "inline_equation", - "height": 15, - "width": 60 - } - ], - "index": 4 - }, - { - "bbox": [ - 70, - 152, - 153, - 167 - ], - "spans": [ - { - "bbox": [ - 70, - 153, - 82, - 166 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 92, - 152, - 153, - 167 - ], - "score": 0.27, - "content": "5.2\\times10^{3}\\mathsf{W}", - "type": "inline_equation", - "height": 15, - "width": 61 - } - ], - "index": 5 - }, - { - "bbox": [ - 70, - 178, - 152, - 192 - ], - "spans": [ - { - "bbox": [ - 70, - 178, - 82, - 192 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 92, - 179, - 152, - 191 - ], - "score": 1.0, - "content": "3.6 × 104 W", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 69, - 205, - 152, - 218 - ], - "spans": [ - { - "bbox": [ - 69, - 205, - 82, - 218 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 92, - 205, - 152, - 217 - ], - "score": 1.0, - "content": "8.3 × 104 W", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 5.5 - }, - { - "type": "text", - "bbox": [ - 70, - 230, - 168, - 256 - ], - "lines": [ - { - "bbox": [ - 71, - 238, - 134, - 250 - ], - "spans": [ - { - "bbox": [ - 71, - 238, - 134, - 250 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 46, - 275, - 361, - 290 - ], - "lines": [ - { - "bbox": [ - 48, - 276, - 361, - 289 - ], - "spans": [ - { - "bbox": [ - 48, - 276, - 58, - 289 - ], - "score": 1.0, - "content": "6 ", - "type": "text" - }, - { - "bbox": [ - 71, - 277, - 361, - 288 - ], - "score": 1.0, - "content": "Two coherent waves are emitted from the sources X and Y.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "image", - "bbox": [ - 73, - 304, - 236, - 373 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 73, - 304, - 236, - 373 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 73, - 304, - 236, - 373 - ], - "spans": [ - { - "bbox": [ - 73, - 304, - 236, - 373 - ], - "score": 0.963, - "type": "image", - "image_path": "b1c3f7863de169f33197cc957a623c06f012e82a2aa0a7befe98ca76ab97c44e.jpg" - } - ] - } - ], - "index": 12.5, - "virtual_lines": [ - { - "bbox": [ - 73, - 304, - 236, - 317.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 73, - 317.0, - 236, - 330.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 73, - 330.0, - 236, - 343.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 73, - 343.0, - 236, - 356.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 73, - 356.0, - 236, - 369.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 73, - 369.0, - 236, - 382.0 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 12.5 - }, - { - "type": "text", - "bbox": [ - 71, - 392, - 393, - 445 - ], - "lines": [ - { - "bbox": [ - 72, - 393, - 206, - 404 - ], - "spans": [ - { - "bbox": [ - 72, - 393, - 206, - 404 - ], - "score": 1.0, - "content": "The diagram is not to scale.", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 71, - 405, - 246, - 417 - ], - "spans": [ - { - "bbox": [ - 71, - 406, - 139, - 417 - ], - "score": 1.0, - "content": "The waves at", - "type": "text" - }, - { - "bbox": [ - 139, - 405, - 149, - 417 - ], - "score": 0.28, - "content": "\\pmb{\\chi}", - "type": "inline_equation", - "height": 12, - "width": 10 - }, - { - "bbox": [ - 149, - 406, - 246, - 417 - ], - "score": 1.0, - "content": " and Y are in phase.", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 71, - 418, - 248, - 431 - ], - "spans": [ - { - "bbox": [ - 71, - 418, - 212, - 431 - ], - "score": 1.0, - "content": "The waves have wavelength", - "type": "text" - }, - { - "bbox": [ - 212, - 419, - 246, - 430 - ], - "score": 0.39, - "content": "4.0\\mathsf{c m}", - "type": "inline_equation", - "height": 11, - "width": 34 - }, - { - "bbox": [ - 246, - 418, - 248, - 431 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 71, - 431, - 393, - 444 - ], - "spans": [ - { - "bbox": [ - 71, - 431, - 343, - 444 - ], - "score": 1.0, - "content": "The phase difference of the two waves meeting at point", - "type": "text" - }, - { - "bbox": [ - 343, - 431, - 353, - 443 - ], - "score": 0.39, - "content": "\\mathsf{\\textbf{P}}", - "type": "inline_equation", - "height": 12, - "width": 10 - }, - { - "bbox": [ - 353, - 431, - 364, - 444 - ], - "score": 1.0, - "content": " is", - "type": "text" - }, - { - "bbox": [ - 365, - 431, - 389, - 443 - ], - "score": 0.85, - "content": "{}^{270^{\\circ}}", - "type": "inline_equation", - "height": 12, - "width": 24 - }, - { - "bbox": [ - 389, - 431, - 393, - 444 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 17.5 - }, - { - "type": "text", - "bbox": [ - 71, - 457, - 308, - 470 - ], - "lines": [ - { - "bbox": [ - 72, - 457, - 307, - 469 - ], - "spans": [ - { - "bbox": [ - 72, - 457, - 307, - 469 - ], - "score": 1.0, - "content": "Which row gives possible distances for a and b?", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 20 - }, - { - "type": "table", - "bbox": [ - 70, - 483, - 208, - 598 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 70, - 483, - 208, - 598 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 70, - 483, - 208, - 598 - ], - "spans": [ - { - "bbox": [ - 70, - 483, - 208, - 598 - ], - "score": 0.973, - "html": "
a/cmb/cm
A20.026.0
B20.022.0
C15.018.0
D10.014.0
", - "type": "table", - "image_path": "32f55684a751af0623f631ef4474a33b8545811e010a8b8c081b1887a0455bcd.jpg" - } - ] - } - ], - "index": 21.5, - "virtual_lines": [ - { - "bbox": [ - 70, - 483, - 208, - 540.5 - ], - "spans": [], - "index": 21 - }, - { - "bbox": [ - 70, - 540.5, - 208, - 598.0 - ], - "spans": [], - "index": 22 - } - ] - } - ], - "index": 21.5 - }, - { - "type": "text", - "bbox": [ - 70, - 609, - 168, - 634 - ], - "lines": [ - { - "bbox": [ - 71, - 615, - 135, - 629 - ], - "spans": [ - { - "bbox": [ - 71, - 615, - 135, - 629 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 23 - } - ], - "layout_bboxes": [], - "page_idx": 31, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 73, - 304, - 236, - 373 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 73, - 304, - 236, - 373 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 73, - 304, - 236, - 373 - ], - "spans": [ - { - "bbox": [ - 73, - 304, - 236, - 373 - ], - "score": 0.963, - "type": "image", - "image_path": "b1c3f7863de169f33197cc957a623c06f012e82a2aa0a7befe98ca76ab97c44e.jpg" - } - ] - } - ], - "index": 12.5, - "virtual_lines": [ - { - "bbox": [ - 73, - 304, - 236, - 317.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 73, - 317.0, - 236, - 330.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 73, - 330.0, - 236, - 343.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 73, - 343.0, - 236, - 356.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 73, - 356.0, - 236, - 369.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 73, - 369.0, - 236, - 382.0 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 12.5 - } - ], - "tables": [ - { - "type": "table", - "bbox": [ - 70, - 483, - 208, - 598 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 70, - 483, - 208, - 598 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 70, - 483, - 208, - 598 - ], - "spans": [ - { - "bbox": [ - 70, - 483, - 208, - 598 - ], - "score": 0.973, - "html": "
a/cmb/cm
A20.026.0
B20.022.0
C15.018.0
D10.014.0
", - "type": "table", - "image_path": "32f55684a751af0623f631ef4474a33b8545811e010a8b8c081b1887a0455bcd.jpg" - } - ] - } - ], - "index": 21.5, - "virtual_lines": [ - { - "bbox": [ - 70, - 483, - 208, - 540.5 - ], - "spans": [], - "index": 21 - }, - { - "bbox": [ - 70, - 540.5, - 208, - 598.0 - ], - "spans": [], - "index": 22 - } - ] - } - ], - "index": 21.5 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 616, - 546, - 629 - ], - "lines": [ - { - "bbox": [ - 529, - 614, - 549, - 632 - ], - "spans": [ - { - "bbox": [ - 529, - 614, - 549, - 632 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 238, - 546, - 251 - ], - "lines": [ - { - "bbox": [ - 530, - 236, - 549, - 254 - ], - "spans": [ - { - "bbox": [ - 530, - 236, - 549, - 254 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 293, - 44, - 302, - 55 - ], - "lines": [ - { - "bbox": [ - 292, - 44, - 303, - 57 - ], - "spans": [ - { - "bbox": [ - 292, - 44, - 303, - 57 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 47, - 62, - 401, - 115 - ], - "lines": [ - { - "bbox": [ - 48, - 62, - 401, - 76 - ], - "spans": [ - { - "bbox": [ - 48, - 63, - 58, - 75 - ], - "score": 1.0, - "content": "5 ", - "type": "text" - }, - { - "bbox": [ - 71, - 63, - 140, - 75 - ], - "score": 1.0, - "content": "A car of mass", - "type": "text" - }, - { - "bbox": [ - 141, - 62, - 180, - 76 - ], - "score": 0.81, - "content": "1000\\mathsf{k g}", - "type": "inline_equation", - "height": 14, - "width": 39 - }, - { - "bbox": [ - 180, - 63, - 401, - 75 - ], - "score": 1.0, - "content": " is travelling on a straight and horizontal road.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 71, - 75, - 218, - 89 - ], - "spans": [ - { - "bbox": [ - 71, - 75, - 218, - 89 - ], - "score": 1.0, - "content": "The driver applies the brakes.", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 71, - 88, - 388, - 101 - ], - "spans": [ - { - "bbox": [ - 71, - 88, - 253, - 101 - ], - "score": 1.0, - "content": "The speed of the car decreases from", - "type": "text" - }, - { - "bbox": [ - 254, - 88, - 294, - 101 - ], - "score": 0.9, - "content": "20\\mathsf{m}\\mathsf{s}^{-1}", - "type": "inline_equation", - "height": 13, - "width": 40 - }, - { - "bbox": [ - 294, - 88, - 308, - 101 - ], - "score": 1.0, - "content": " to ", - "type": "text" - }, - { - "bbox": [ - 308, - 88, - 348, - 101 - ], - "score": 0.89, - "content": "15\\mathsf{m}\\mathsf{s}^{-1}", - "type": "inline_equation", - "height": 13, - "width": 40 - }, - { - "bbox": [ - 348, - 88, - 361, - 101 - ], - "score": 1.0, - "content": " in", - "type": "text" - }, - { - "bbox": [ - 361, - 88, - 385, - 101 - ], - "score": 0.6, - "content": "_{2.4\\S}", - "type": "inline_equation", - "height": 13, - "width": 24 - }, - { - "bbox": [ - 386, - 89, - 388, - 101 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 71, - 101, - 332, - 115 - ], - "spans": [ - { - "bbox": [ - 71, - 101, - 332, - 115 - ], - "score": 1.0, - "content": "What is the average power dissipated by the brakes?", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 1.5, - "page_num": "page_31", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 48, - 62, - 401, - 115 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 125, - 155, - 219 - ], - "lines": [ - { - "bbox": [ - 70, - 126, - 153, - 141 - ], - "spans": [ - { - "bbox": [ - 70, - 127, - 82, - 140 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 93, - 126, - 153, - 141 - ], - "score": 0.39, - "content": "1.0\\times10^{3}\\mathsf{W}", - "type": "inline_equation", - "height": 15, - "width": 60 - } - ], - "index": 4 - }, - { - "bbox": [ - 70, - 152, - 153, - 167 - ], - "spans": [ - { - "bbox": [ - 70, - 153, - 82, - 166 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 92, - 152, - 153, - 167 - ], - "score": 0.27, - "content": "5.2\\times10^{3}\\mathsf{W}", - "type": "inline_equation", - "height": 15, - "width": 61 - } - ], - "index": 5 - }, - { - "bbox": [ - 70, - 178, - 152, - 192 - ], - "spans": [ - { - "bbox": [ - 70, - 178, - 82, - 192 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 92, - 179, - 152, - 191 - ], - "score": 1.0, - "content": "3.6 × 104 W", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 69, - 205, - 152, - 218 - ], - "spans": [ - { - "bbox": [ - 69, - 205, - 82, - 218 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 92, - 205, - 152, - 217 - ], - "score": 1.0, - "content": "8.3 × 104 W", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 5.5, - "page_num": "page_31", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 69, - 126, - 153, - 218 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 230, - 168, - 256 - ], - "lines": [ - { - "bbox": [ - 71, - 238, - 134, - 250 - ], - "spans": [ - { - "bbox": [ - 71, - 238, - 134, - 250 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_31", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 238, - 134, - 250 - ] - }, - { - "type": "text", - "bbox": [ - 46, - 275, - 361, - 290 - ], - "lines": [ - { - "bbox": [ - 48, - 276, - 361, - 289 - ], - "spans": [ - { - "bbox": [ - 48, - 276, - 58, - 289 - ], - "score": 1.0, - "content": "6 ", - "type": "text" - }, - { - "bbox": [ - 71, - 277, - 361, - 288 - ], - "score": 1.0, - "content": "Two coherent waves are emitted from the sources X and Y.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_31", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 48, - 276, - 361, - 289 - ] - }, - { - "type": "image", - "bbox": [ - 73, - 304, - 236, - 373 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 73, - 304, - 236, - 373 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 73, - 304, - 236, - 373 - ], - "spans": [ - { - "bbox": [ - 73, - 304, - 236, - 373 - ], - "score": 0.963, - "type": "image", - "image_path": "b1c3f7863de169f33197cc957a623c06f012e82a2aa0a7befe98ca76ab97c44e.jpg" - } - ] - } - ], - "index": 12.5, - "virtual_lines": [ - { - "bbox": [ - 73, - 304, - 236, - 317.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 73, - 317.0, - 236, - 330.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 73, - 330.0, - 236, - 343.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 73, - 343.0, - 236, - 356.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 73, - 356.0, - 236, - 369.0 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 73, - 369.0, - 236, - 382.0 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 12.5, - "page_num": "page_31", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "list", - "bbox": [ - 71, - 392, - 393, - 445 - ], - "lines": [ - { - "bbox": [ - 72, - 393, - 206, - 404 - ], - "spans": [ - { - "bbox": [ - 72, - 393, - 206, - 404 - ], - "score": 1.0, - "content": "The diagram is not to scale.", - "type": "text" - } - ], - "index": 16, - "is_list_end_line": true - }, - { - "bbox": [ - 71, - 405, - 246, - 417 - ], - "spans": [ - { - "bbox": [ - 71, - 406, - 139, - 417 - ], - "score": 1.0, - "content": "The waves at", - "type": "text" - }, - { - "bbox": [ - 139, - 405, - 149, - 417 - ], - "score": 0.28, - "content": "\\pmb{\\chi}", - "type": "inline_equation", - "height": 12, - "width": 10 - }, - { - "bbox": [ - 149, - 406, - 246, - 417 - ], - "score": 1.0, - "content": " and Y are in phase.", - "type": "text" - } - ], - "index": 17, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 71, - 418, - 248, - 431 - ], - "spans": [ - { - "bbox": [ - 71, - 418, - 212, - 431 - ], - "score": 1.0, - "content": "The waves have wavelength", - "type": "text" - }, - { - "bbox": [ - 212, - 419, - 246, - 430 - ], - "score": 0.39, - "content": "4.0\\mathsf{c m}", - "type": "inline_equation", - "height": 11, - "width": 34 - }, - { - "bbox": [ - 246, - 418, - 248, - 431 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 18, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 71, - 431, - 393, - 444 - ], - "spans": [ - { - "bbox": [ - 71, - 431, - 343, - 444 - ], - "score": 1.0, - "content": "The phase difference of the two waves meeting at point", - "type": "text" - }, - { - "bbox": [ - 343, - 431, - 353, - 443 - ], - "score": 0.39, - "content": "\\mathsf{\\textbf{P}}", - "type": "inline_equation", - "height": 12, - "width": 10 - }, - { - "bbox": [ - 353, - 431, - 364, - 444 - ], - "score": 1.0, - "content": " is", - "type": "text" - }, - { - "bbox": [ - 365, - 431, - 389, - 443 - ], - "score": 0.85, - "content": "{}^{270^{\\circ}}", - "type": "inline_equation", - "height": 12, - "width": 24 - }, - { - "bbox": [ - 389, - 431, - 393, - 444 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 19, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 17.5, - "page_num": "page_31", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 393, - 393, - 444 - ] - }, - { - "type": "text", - "bbox": [ - 71, - 457, - 308, - 470 - ], - "lines": [ - { - "bbox": [ - 72, - 457, - 307, - 469 - ], - "spans": [ - { - "bbox": [ - 72, - 457, - 307, - 469 - ], - "score": 1.0, - "content": "Which row gives possible distances for a and b?", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 20, - "page_num": "page_31", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 457, - 307, - 469 - ] - }, - { - "type": "table", - "bbox": [ - 70, - 483, - 208, - 598 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 70, - 483, - 208, - 598 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 70, - 483, - 208, - 598 - ], - "spans": [ - { - "bbox": [ - 70, - 483, - 208, - 598 - ], - "score": 0.973, - "html": "
a/cmb/cm
A20.026.0
B20.022.0
C15.018.0
D10.014.0
", - "type": "table", - "image_path": "32f55684a751af0623f631ef4474a33b8545811e010a8b8c081b1887a0455bcd.jpg" - } - ] - } - ], - "index": 21.5, - "virtual_lines": [ - { - "bbox": [ - 70, - 483, - 208, - 540.5 - ], - "spans": [], - "index": 21 - }, - { - "bbox": [ - 70, - 540.5, - 208, - 598.0 - ], - "spans": [], - "index": 22 - } - ] - } - ], - "index": 21.5, - "page_num": "page_31", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 609, - 168, - 634 - ], - "lines": [ - { - "bbox": [ - 71, - 615, - 135, - 629 - ], - "spans": [ - { - "bbox": [ - 71, - 615, - 135, - 629 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 23, - "page_num": "page_31", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 615, - 135, - 629 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 46, - 61, - 511, - 88 - ], - "lines": [ - { - "bbox": [ - 47, - 62, - 508, - 75 - ], - "spans": [ - { - "bbox": [ - 47, - 62, - 58, - 74 - ], - "score": 1.0, - "content": "7 ", - "type": "text" - }, - { - "bbox": [ - 71, - 64, - 185, - 74 - ], - "score": 1.0, - "content": "A resistor of resistance", - "type": "text" - }, - { - "bbox": [ - 185, - 62, - 209, - 75 - ], - "score": 0.63, - "content": "12\\Omega", - "type": "inline_equation", - "height": 13, - "width": 24 - }, - { - "bbox": [ - 210, - 64, - 508, - 74 - ], - "score": 1.0, - "content": " is connected in parallel with another resistor of resistance R.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 72, - 75, - 273, - 87 - ], - "spans": [ - { - "bbox": [ - 72, - 77, - 243, - 87 - ], - "score": 1.0, - "content": "The total resistance of the circuit is", - "type": "text" - }, - { - "bbox": [ - 243, - 75, - 270, - 87 - ], - "score": 0.8, - "content": "4.0\\Omega", - "type": "inline_equation", - "height": 12, - "width": 27 - }, - { - "bbox": [ - 270, - 77, - 273, - 87 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 71, - 101, - 187, - 115 - ], - "lines": [ - { - "bbox": [ - 72, - 102, - 186, - 113 - ], - "spans": [ - { - "bbox": [ - 72, - 102, - 186, - 113 - ], - "score": 1.0, - "content": "What is the value of R?", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 69, - 126, - 129, - 219 - ], - "lines": [ - { - "bbox": [ - 70, - 127, - 127, - 141 - ], - "spans": [ - { - "bbox": [ - 70, - 127, - 82, - 141 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 93, - 128, - 127, - 140 - ], - "score": 1.0, - "content": "0.17 Ω", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 70, - 152, - 122, - 167 - ], - "spans": [ - { - "bbox": [ - 70, - 153, - 82, - 167 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 93, - 152, - 122, - 167 - ], - "score": 1.0, - "content": "6.0 Ω", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 70, - 178, - 122, - 193 - ], - "spans": [ - { - "bbox": [ - 70, - 178, - 83, - 193 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 92, - 179, - 122, - 192 - ], - "score": 1.0, - "content": "8.0 Ω", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 70, - 205, - 119, - 218 - ], - "spans": [ - { - "bbox": [ - 70, - 205, - 82, - 218 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 93, - 206, - 119, - 218 - ], - "score": 1.0, - "content": "16 Ω", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 4.5 - }, - { - "type": "text", - "bbox": [ - 70, - 230, - 167, - 256 - ], - "lines": [ - { - "bbox": [ - 71, - 238, - 134, - 250 - ], - "spans": [ - { - "bbox": [ - 71, - 238, - 134, - 250 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 44, - 275, - 478, - 290 - ], - "lines": [ - { - "bbox": [ - 47, - 276, - 477, - 289 - ], - "spans": [ - { - "bbox": [ - 47, - 276, - 59, - 289 - ], - "score": 1.0, - "content": "8 ", - "type": "text" - }, - { - "bbox": [ - 71, - 277, - 246, - 288 - ], - "score": 1.0, - "content": "A cell of electromotive force (e.m.f.)", - "type": "text" - }, - { - "bbox": [ - 247, - 276, - 272, - 289 - ], - "score": 0.36, - "content": "1.2\\lor", - "type": "inline_equation", - "height": 13, - "width": 25 - }, - { - "bbox": [ - 273, - 277, - 448, - 288 - ], - "score": 1.0, - "content": " is connected to a wire of resistance", - "type": "text" - }, - { - "bbox": [ - 448, - 276, - 475, - 289 - ], - "score": 0.69, - "content": "6.0\\Omega", - "type": "inline_equation", - "height": 13, - "width": 27 - }, - { - "bbox": [ - 476, - 277, - 477, - 288 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "image", - "bbox": [ - 72, - 300, - 193, - 421 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 72, - 300, - 193, - 421 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 72, - 300, - 193, - 421 - ], - "spans": [ - { - "bbox": [ - 72, - 300, - 193, - 421 - ], - "score": 0.966, - "type": "image", - "image_path": "2b08edd34263e502c6efede43667aa1c15931fa27efbfb6e1e29bc2128040448.jpg" - } - ] - } - ], - "index": 9.5, - "virtual_lines": [ - { - "bbox": [ - 72, - 300, - 193, - 360.5 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 72, - 360.5, - 193, - 421.0 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 9.5 - }, - { - "type": "text", - "bbox": [ - 69, - 437, - 312, - 478 - ], - "lines": [ - { - "bbox": [ - 72, - 438, - 309, - 451 - ], - "spans": [ - { - "bbox": [ - 72, - 438, - 276, - 451 - ], - "score": 1.0, - "content": "The potential difference across the wire is", - "type": "text" - }, - { - "bbox": [ - 277, - 438, - 309, - 450 - ], - "score": 0.34, - "content": "0.90\\vee.", - "type": "inline_equation", - "height": 12, - "width": 32 - } - ], - "index": 11 - }, - { - "bbox": [ - 72, - 464, - 283, - 475 - ], - "spans": [ - { - "bbox": [ - 72, - 465, - 220, - 475 - ], - "score": 1.0, - "content": "What is the internal resistance", - "type": "text" - }, - { - "bbox": [ - 221, - 466, - 228, - 475 - ], - "score": 0.43, - "content": "r", - "type": "inline_equation", - "height": 9, - "width": 7 - }, - { - "bbox": [ - 228, - 464, - 283, - 475 - ], - "score": 1.0, - "content": "of the cell?", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11.5 - }, - { - "type": "text", - "bbox": [ - 69, - 489, - 129, - 581 - ], - "lines": [ - { - "bbox": [ - 70, - 490, - 128, - 503 - ], - "spans": [ - { - "bbox": [ - 70, - 490, - 82, - 502 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 93, - 490, - 128, - 503 - ], - "score": 1.0, - "content": "0.15 Ω", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 70, - 515, - 128, - 529 - ], - "spans": [ - { - "bbox": [ - 70, - 516, - 82, - 529 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 93, - 515, - 128, - 529 - ], - "score": 1.0, - "content": "0.30 Ω", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 70, - 541, - 122, - 555 - ], - "spans": [ - { - "bbox": [ - 70, - 541, - 82, - 555 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 92, - 541, - 122, - 555 - ], - "score": 1.0, - "content": "2.0 Ω", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 70, - 567, - 122, - 581 - ], - "spans": [ - { - "bbox": [ - 70, - 568, - 82, - 581 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 92, - 567, - 122, - 580 - ], - "score": 1.0, - "content": "8.0 Ω", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 14.5 - }, - { - "type": "text", - "bbox": [ - 70, - 593, - 168, - 617 - ], - "lines": [ - { - "bbox": [ - 71, - 599, - 135, - 614 - ], - "spans": [ - { - "bbox": [ - 71, - 599, - 135, - 614 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 17 - } - ], - "layout_bboxes": [], - "page_idx": 32, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 72, - 300, - 193, - 421 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 72, - 300, - 193, - 421 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 72, - 300, - 193, - 421 - ], - "spans": [ - { - "bbox": [ - 72, - 300, - 193, - 421 - ], - "score": 0.966, - "type": "image", - "image_path": "2b08edd34263e502c6efede43667aa1c15931fa27efbfb6e1e29bc2128040448.jpg" - } - ] - } - ], - "index": 9.5, - "virtual_lines": [ - { - "bbox": [ - 72, - 300, - 193, - 360.5 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 72, - 360.5, - 193, - 421.0 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 9.5 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 600, - 546, - 613 - ], - "lines": [ - { - "bbox": [ - 529, - 598, - 549, - 616 - ], - "spans": [ - { - "bbox": [ - 529, - 598, - 549, - 616 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 238, - 546, - 251 - ], - "lines": [ - { - "bbox": [ - 530, - 236, - 549, - 254 - ], - "spans": [ - { - "bbox": [ - 530, - 236, - 549, - 254 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 484, - 774, - 531, - 785 - ], - "lines": [ - { - "bbox": [ - 483, - 774, - 532, - 785 - ], - "spans": [ - { - "bbox": [ - 483, - 774, - 532, - 785 - ], - "score": 1.0, - "content": "Turn over", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 293, - 44, - 302, - 55 - ], - "lines": [ - { - "bbox": [ - 292, - 43, - 303, - 57 - ], - "spans": [ - { - "bbox": [ - 292, - 43, - 303, - 57 - ], - "score": 1.0, - "content": "5", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 46, - 61, - 511, - 88 - ], - "lines": [ - { - "bbox": [ - 47, - 62, - 508, - 75 - ], - "spans": [ - { - "bbox": [ - 47, - 62, - 58, - 74 - ], - "score": 1.0, - "content": "7 ", - "type": "text" - }, - { - "bbox": [ - 71, - 64, - 185, - 74 - ], - "score": 1.0, - "content": "A resistor of resistance", - "type": "text" - }, - { - "bbox": [ - 185, - 62, - 209, - 75 - ], - "score": 0.63, - "content": "12\\Omega", - "type": "inline_equation", - "height": 13, - "width": 24 - }, - { - "bbox": [ - 210, - 64, - 508, - 74 - ], - "score": 1.0, - "content": " is connected in parallel with another resistor of resistance R.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 72, - 75, - 273, - 87 - ], - "spans": [ - { - "bbox": [ - 72, - 77, - 243, - 87 - ], - "score": 1.0, - "content": "The total resistance of the circuit is", - "type": "text" - }, - { - "bbox": [ - 243, - 75, - 270, - 87 - ], - "score": 0.8, - "content": "4.0\\Omega", - "type": "inline_equation", - "height": 12, - "width": 27 - }, - { - "bbox": [ - 270, - 77, - 273, - 87 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_32", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 62, - 508, - 87 - ] - }, - { - "type": "text", - "bbox": [ - 71, - 101, - 187, - 115 - ], - "lines": [ - { - "bbox": [ - 72, - 102, - 186, - 113 - ], - "spans": [ - { - "bbox": [ - 72, - 102, - 186, - 113 - ], - "score": 1.0, - "content": "What is the value of R?", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_32", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 102, - 186, - 113 - ] - }, - { - "type": "text", - "bbox": [ - 69, - 126, - 129, - 219 - ], - "lines": [ - { - "bbox": [ - 70, - 127, - 127, - 141 - ], - "spans": [ - { - "bbox": [ - 70, - 127, - 82, - 141 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 93, - 128, - 127, - 140 - ], - "score": 1.0, - "content": "0.17 Ω", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 70, - 152, - 122, - 167 - ], - "spans": [ - { - "bbox": [ - 70, - 153, - 82, - 167 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 93, - 152, - 122, - 167 - ], - "score": 1.0, - "content": "6.0 Ω", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 70, - 178, - 122, - 193 - ], - "spans": [ - { - "bbox": [ - 70, - 178, - 83, - 193 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 92, - 179, - 122, - 192 - ], - "score": 1.0, - "content": "8.0 Ω", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 70, - 205, - 119, - 218 - ], - "spans": [ - { - "bbox": [ - 70, - 205, - 82, - 218 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 93, - 206, - 119, - 218 - ], - "score": 1.0, - "content": "16 Ω", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 4.5, - "page_num": "page_32", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 127, - 127, - 218 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 230, - 167, - 256 - ], - "lines": [ - { - "bbox": [ - 71, - 238, - 134, - 250 - ], - "spans": [ - { - "bbox": [ - 71, - 238, - 134, - 250 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_32", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 238, - 134, - 250 - ] - }, - { - "type": "text", - "bbox": [ - 44, - 275, - 478, - 290 - ], - "lines": [ - { - "bbox": [ - 47, - 276, - 477, - 289 - ], - "spans": [ - { - "bbox": [ - 47, - 276, - 59, - 289 - ], - "score": 1.0, - "content": "8 ", - "type": "text" - }, - { - "bbox": [ - 71, - 277, - 246, - 288 - ], - "score": 1.0, - "content": "A cell of electromotive force (e.m.f.)", - "type": "text" - }, - { - "bbox": [ - 247, - 276, - 272, - 289 - ], - "score": 0.36, - "content": "1.2\\lor", - "type": "inline_equation", - "height": 13, - "width": 25 - }, - { - "bbox": [ - 273, - 277, - 448, - 288 - ], - "score": 1.0, - "content": " is connected to a wire of resistance", - "type": "text" - }, - { - "bbox": [ - 448, - 276, - 475, - 289 - ], - "score": 0.69, - "content": "6.0\\Omega", - "type": "inline_equation", - "height": 13, - "width": 27 - }, - { - "bbox": [ - 476, - 277, - 477, - 288 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_32", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 276, - 477, - 289 - ] - }, - { - "type": "image", - "bbox": [ - 72, - 300, - 193, - 421 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 72, - 300, - 193, - 421 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 72, - 300, - 193, - 421 - ], - "spans": [ - { - "bbox": [ - 72, - 300, - 193, - 421 - ], - "score": 0.966, - "type": "image", - "image_path": "2b08edd34263e502c6efede43667aa1c15931fa27efbfb6e1e29bc2128040448.jpg" - } - ] - } - ], - "index": 9.5, - "virtual_lines": [ - { - "bbox": [ - 72, - 300, - 193, - 360.5 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 72, - 360.5, - 193, - 421.0 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 9.5, - "page_num": "page_32", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 69, - 437, - 312, - 478 - ], - "lines": [ - { - "bbox": [ - 72, - 438, - 309, - 451 - ], - "spans": [ - { - "bbox": [ - 72, - 438, - 276, - 451 - ], - "score": 1.0, - "content": "The potential difference across the wire is", - "type": "text" - }, - { - "bbox": [ - 277, - 438, - 309, - 450 - ], - "score": 0.34, - "content": "0.90\\vee.", - "type": "inline_equation", - "height": 12, - "width": 32 - } - ], - "index": 11 - }, - { - "bbox": [ - 72, - 464, - 283, - 475 - ], - "spans": [ - { - "bbox": [ - 72, - 465, - 220, - 475 - ], - "score": 1.0, - "content": "What is the internal resistance", - "type": "text" - }, - { - "bbox": [ - 221, - 466, - 228, - 475 - ], - "score": 0.43, - "content": "r", - "type": "inline_equation", - "height": 9, - "width": 7 - }, - { - "bbox": [ - 228, - 464, - 283, - 475 - ], - "score": 1.0, - "content": "of the cell?", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11.5, - "page_num": "page_32", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 438, - 309, - 475 - ] - }, - { - "type": "text", - "bbox": [ - 69, - 489, - 129, - 581 - ], - "lines": [ - { - "bbox": [ - 70, - 490, - 128, - 503 - ], - "spans": [ - { - "bbox": [ - 70, - 490, - 82, - 502 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 93, - 490, - 128, - 503 - ], - "score": 1.0, - "content": "0.15 Ω", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 70, - 515, - 128, - 529 - ], - "spans": [ - { - "bbox": [ - 70, - 516, - 82, - 529 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 93, - 515, - 128, - 529 - ], - "score": 1.0, - "content": "0.30 Ω", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 70, - 541, - 122, - 555 - ], - "spans": [ - { - "bbox": [ - 70, - 541, - 82, - 555 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 92, - 541, - 122, - 555 - ], - "score": 1.0, - "content": "2.0 Ω", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 70, - 567, - 122, - 581 - ], - "spans": [ - { - "bbox": [ - 70, - 568, - 82, - 581 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 92, - 567, - 122, - 580 - ], - "score": 1.0, - "content": "8.0 Ω", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 14.5, - "page_num": "page_32", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 490, - 128, - 581 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 593, - 168, - 617 - ], - "lines": [ - { - "bbox": [ - 71, - 599, - 135, - 614 - ], - "spans": [ - { - "bbox": [ - 71, - 599, - 135, - 614 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 17, - "page_num": "page_32", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 599, - 135, - 614 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 47, - 62, - 453, - 89 - ], - "lines": [ - { - "bbox": [ - 48, - 62, - 420, - 75 - ], - "spans": [ - { - "bbox": [ - 48, - 63, - 57, - 74 - ], - "score": 1.0, - "content": "9", - "type": "text" - }, - { - "bbox": [ - 70, - 62, - 420, - 75 - ], - "score": 1.0, - "content": "A thin metal plate is free to rotate in the vertical plane about the point P.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 71, - 75, - 452, - 88 - ], - "spans": [ - { - "bbox": [ - 71, - 75, - 452, - 88 - ], - "score": 1.0, - "content": "Four forces A, B, C and D act at the same point on the plate, as shown below.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "image", - "bbox": [ - 70, - 104, - 207, - 219 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 70, - 104, - 207, - 219 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 70, - 104, - 207, - 219 - ], - "spans": [ - { - "bbox": [ - 70, - 104, - 207, - 219 - ], - "score": 0.967, - "type": "image", - "image_path": "e0f088531d62ab5540281a2fc2e625feb527d32c2290e9c51b47acce9675c8d4.jpg" - } - ] - } - ], - "index": 2.5, - "virtual_lines": [ - { - "bbox": [ - 70, - 104, - 207, - 161.5 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 70, - 161.5, - 207, - 219.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2.5 - }, - { - "type": "text", - "bbox": [ - 70, - 239, - 398, - 279 - ], - "lines": [ - { - "bbox": [ - 72, - 240, - 254, - 251 - ], - "spans": [ - { - "bbox": [ - 72, - 240, - 254, - 251 - ], - "score": 1.0, - "content": "The diagram above is drawn to scale.", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 72, - 253, - 255, - 264 - ], - "spans": [ - { - "bbox": [ - 72, - 253, - 255, - 264 - ], - "score": 1.0, - "content": "All the forces are in the vertical plane.", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 71, - 265, - 397, - 278 - ], - "spans": [ - { - "bbox": [ - 71, - 265, - 397, - 278 - ], - "score": 1.0, - "content": "The forces have the same magnitude but act in different directions.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 70, - 290, - 374, - 305 - ], - "lines": [ - { - "bbox": [ - 71, - 291, - 373, - 304 - ], - "spans": [ - { - "bbox": [ - 71, - 291, - 373, - 304 - ], - "score": 1.0, - "content": "Which force will produce the greatest moment about point P?", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 71, - 316, - 168, - 342 - ], - "lines": [ - { - "bbox": [ - 71, - 322, - 135, - 337 - ], - "spans": [ - { - "bbox": [ - 71, - 322, - 135, - 337 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 49, - 360, - 399, - 402 - ], - "lines": [ - { - "bbox": [ - 47, - 361, - 397, - 375 - ], - "spans": [ - { - "bbox": [ - 47, - 361, - 116, - 375 - ], - "score": 1.0, - "content": "10 A total of", - "type": "text" - }, - { - "bbox": [ - 117, - 361, - 163, - 374 - ], - "score": 0.9, - "content": "3.8\\times10^{7}", - "type": "inline_equation", - "height": 13, - "width": 46 - }, - { - "bbox": [ - 163, - 361, - 365, - 375 - ], - "score": 1.0, - "content": " electrons flow through a wire in a time of ", - "type": "text" - }, - { - "bbox": [ - 365, - 362, - 394, - 375 - ], - "score": 0.84, - "content": "1.2\\upmu\\mathrm{s}", - "type": "inline_equation", - "height": 13, - "width": 29 - }, - { - "bbox": [ - 395, - 361, - 397, - 375 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 71, - 388, - 224, - 400 - ], - "spans": [ - { - "bbox": [ - 71, - 388, - 224, - 400 - ], - "score": 1.0, - "content": "What is the current in the wire?", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9.5 - }, - { - "type": "text", - "bbox": [ - 69, - 411, - 161, - 505 - ], - "lines": [ - { - "bbox": [ - 70, - 412, - 160, - 427 - ], - "spans": [ - { - "bbox": [ - 70, - 413, - 82, - 426 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 92, - 412, - 160, - 427 - ], - "score": 0.45, - "content": "6.1\\times10^{-12}{\\mathsf{A}}", - "type": "inline_equation", - "height": 15, - "width": 68 - } - ], - "index": 11 - }, - { - "bbox": [ - 70, - 438, - 160, - 453 - ], - "spans": [ - { - "bbox": [ - 70, - 439, - 82, - 453 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 92, - 438, - 160, - 453 - ], - "score": 0.31, - "content": "7.3\\times10^{-12}\\mathsf{A}", - "type": "inline_equation", - "height": 15, - "width": 68 - } - ], - "index": 12 - }, - { - "bbox": [ - 69, - 465, - 155, - 479 - ], - "spans": [ - { - "bbox": [ - 69, - 465, - 82, - 479 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 465, - 155, - 478 - ], - "score": 1.0, - "content": "5.1 × 10–6 A", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 70, - 491, - 155, - 505 - ], - "spans": [ - { - "bbox": [ - 70, - 492, - 82, - 505 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 92, - 491, - 155, - 503 - ], - "score": 1.0, - "content": "3.2 × 1013 A", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 12.5 - }, - { - "type": "text", - "bbox": [ - 70, - 516, - 168, - 542 - ], - "lines": [ - { - "bbox": [ - 71, - 524, - 134, - 537 - ], - "spans": [ - { - "bbox": [ - 71, - 524, - 134, - 537 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "text", - "bbox": [ - 44, - 561, - 512, - 589 - ], - "lines": [ - { - "bbox": [ - 47, - 561, - 511, - 576 - ], - "spans": [ - { - "bbox": [ - 47, - 561, - 277, - 576 - ], - "score": 1.0, - "content": "11 An electric motor is used to lift a weight of ", - "type": "text" - }, - { - "bbox": [ - 277, - 562, - 304, - 575 - ], - "score": 0.44, - "content": "4.0\\mathsf{N}", - "type": "inline_equation", - "height": 13, - "width": 27 - }, - { - "bbox": [ - 304, - 561, - 437, - 576 - ], - "score": 1.0, - "content": " through a vertical height of", - "type": "text" - }, - { - "bbox": [ - 437, - 563, - 472, - 575 - ], - "score": 0.59, - "content": "0.90\\m m", - "type": "inline_equation", - "height": 12, - "width": 35 - }, - { - "bbox": [ - 472, - 561, - 484, - 576 - ], - "score": 1.0, - "content": " in ", - "type": "text" - }, - { - "bbox": [ - 484, - 562, - 508, - 575 - ], - "score": 0.31, - "content": "1.8\\mathfrak{s}", - "type": "inline_equation", - "height": 13, - "width": 24 - }, - { - "bbox": [ - 508, - 561, - 511, - 576 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 71, - 575, - 241, - 588 - ], - "spans": [ - { - "bbox": [ - 71, - 576, - 214, - 588 - ], - "score": 1.0, - "content": "The efficiency of the motor is", - "type": "text" - }, - { - "bbox": [ - 214, - 575, - 238, - 587 - ], - "score": 0.88, - "content": "20\\%", - "type": "inline_equation", - "height": 12, - "width": 24 - }, - { - "bbox": [ - 238, - 576, - 241, - 588 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 16.5 - }, - { - "type": "text", - "bbox": [ - 70, - 600, - 320, - 615 - ], - "lines": [ - { - "bbox": [ - 71, - 601, - 319, - 615 - ], - "spans": [ - { - "bbox": [ - 71, - 601, - 319, - 615 - ], - "score": 1.0, - "content": "What is the electrical power supplied to the motor?", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18 - }, - { - "type": "text", - "bbox": [ - 69, - 626, - 129, - 718 - ], - "lines": [ - { - "bbox": [ - 70, - 627, - 130, - 640 - ], - "spans": [ - { - "bbox": [ - 70, - 627, - 82, - 640 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 93, - 627, - 130, - 640 - ], - "score": 1.0, - "content": "0.40 W", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 70, - 652, - 124, - 666 - ], - "spans": [ - { - "bbox": [ - 70, - 653, - 82, - 666 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 92, - 652, - 124, - 666 - ], - "score": 1.0, - "content": "2.0 W", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 70, - 679, - 125, - 692 - ], - "spans": [ - { - "bbox": [ - 70, - 679, - 82, - 692 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 92, - 679, - 125, - 692 - ], - "score": 1.0, - "content": "3.6 W", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 70, - 704, - 121, - 718 - ], - "spans": [ - { - "bbox": [ - 70, - 705, - 82, - 718 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 93, - 704, - 121, - 718 - ], - "score": 1.0, - "content": "10 W", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 20.5 - }, - { - "type": "text", - "bbox": [ - 70, - 730, - 168, - 755 - ], - "lines": [ - { - "bbox": [ - 71, - 737, - 134, - 751 - ], - "spans": [ - { - "bbox": [ - 71, - 737, - 134, - 751 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 23 - } - ], - "layout_bboxes": [], - "page_idx": 33, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 70, - 104, - 207, - 219 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 70, - 104, - 207, - 219 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 70, - 104, - 207, - 219 - ], - "spans": [ - { - "bbox": [ - 70, - 104, - 207, - 219 - ], - "score": 0.967, - "type": "image", - "image_path": "e0f088531d62ab5540281a2fc2e625feb527d32c2290e9c51b47acce9675c8d4.jpg" - } - ] - } - ], - "index": 2.5, - "virtual_lines": [ - { - "bbox": [ - 70, - 104, - 207, - 161.5 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 70, - 161.5, - 207, - 219.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2.5 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 787 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 738, - 546, - 750 - ], - "lines": [ - { - "bbox": [ - 529, - 736, - 549, - 753 - ], - "spans": [ - { - "bbox": [ - 529, - 736, - 549, - 753 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 524, - 546, - 537 - ], - "lines": [ - { - "bbox": [ - 530, - 522, - 549, - 539 - ], - "spans": [ - { - "bbox": [ - 530, - 522, - 549, - 539 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 323, - 547, - 336 - ], - "lines": [ - { - "bbox": [ - 530, - 321, - 548, - 339 - ], - "spans": [ - { - "bbox": [ - 530, - 321, - 548, - 339 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 293, - 44, - 301, - 55 - ], - "lines": [ - { - "bbox": [ - 292, - 43, - 303, - 58 - ], - "spans": [ - { - "bbox": [ - 292, - 43, - 303, - 58 - ], - "score": 1.0, - "content": "6", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 47, - 62, - 453, - 89 - ], - "lines": [ - { - "bbox": [ - 48, - 62, - 420, - 75 - ], - "spans": [ - { - "bbox": [ - 48, - 63, - 57, - 74 - ], - "score": 1.0, - "content": "9", - "type": "text" - }, - { - "bbox": [ - 70, - 62, - 420, - 75 - ], - "score": 1.0, - "content": "A thin metal plate is free to rotate in the vertical plane about the point P.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 71, - 75, - 452, - 88 - ], - "spans": [ - { - "bbox": [ - 71, - 75, - 452, - 88 - ], - "score": 1.0, - "content": "Four forces A, B, C and D act at the same point on the plate, as shown below.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_33", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 48, - 62, - 452, - 88 - ] - }, - { - "type": "image", - "bbox": [ - 70, - 104, - 207, - 219 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 70, - 104, - 207, - 219 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 70, - 104, - 207, - 219 - ], - "spans": [ - { - "bbox": [ - 70, - 104, - 207, - 219 - ], - "score": 0.967, - "type": "image", - "image_path": "e0f088531d62ab5540281a2fc2e625feb527d32c2290e9c51b47acce9675c8d4.jpg" - } - ] - } - ], - "index": 2.5, - "virtual_lines": [ - { - "bbox": [ - 70, - 104, - 207, - 161.5 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 70, - 161.5, - 207, - 219.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2.5, - "page_num": "page_33", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "list", - "bbox": [ - 70, - 239, - 398, - 279 - ], - "lines": [ - { - "bbox": [ - 72, - 240, - 254, - 251 - ], - "spans": [ - { - "bbox": [ - 72, - 240, - 254, - 251 - ], - "score": 1.0, - "content": "The diagram above is drawn to scale.", - "type": "text" - } - ], - "index": 4, - "is_list_end_line": true - }, - { - "bbox": [ - 72, - 253, - 255, - 264 - ], - "spans": [ - { - "bbox": [ - 72, - 253, - 255, - 264 - ], - "score": 1.0, - "content": "All the forces are in the vertical plane.", - "type": "text" - } - ], - "index": 5, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 71, - 265, - 397, - 278 - ], - "spans": [ - { - "bbox": [ - 71, - 265, - 397, - 278 - ], - "score": 1.0, - "content": "The forces have the same magnitude but act in different directions.", - "type": "text" - } - ], - "index": 6, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 5, - "page_num": "page_33", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 240, - 397, - 278 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 290, - 374, - 305 - ], - "lines": [ - { - "bbox": [ - 71, - 291, - 373, - 304 - ], - "spans": [ - { - "bbox": [ - 71, - 291, - 373, - 304 - ], - "score": 1.0, - "content": "Which force will produce the greatest moment about point P?", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_33", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 291, - 373, - 304 - ] - }, - { - "type": "text", - "bbox": [ - 71, - 316, - 168, - 342 - ], - "lines": [ - { - "bbox": [ - 71, - 322, - 135, - 337 - ], - "spans": [ - { - "bbox": [ - 71, - 322, - 135, - 337 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_33", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 322, - 135, - 337 - ] - }, - { - "type": "text", - "bbox": [ - 49, - 360, - 399, - 402 - ], - "lines": [ - { - "bbox": [ - 47, - 361, - 397, - 375 - ], - "spans": [ - { - "bbox": [ - 47, - 361, - 116, - 375 - ], - "score": 1.0, - "content": "10 A total of", - "type": "text" - }, - { - "bbox": [ - 117, - 361, - 163, - 374 - ], - "score": 0.9, - "content": "3.8\\times10^{7}", - "type": "inline_equation", - "height": 13, - "width": 46 - }, - { - "bbox": [ - 163, - 361, - 365, - 375 - ], - "score": 1.0, - "content": " electrons flow through a wire in a time of ", - "type": "text" - }, - { - "bbox": [ - 365, - 362, - 394, - 375 - ], - "score": 0.84, - "content": "1.2\\upmu\\mathrm{s}", - "type": "inline_equation", - "height": 13, - "width": 29 - }, - { - "bbox": [ - 395, - 361, - 397, - 375 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 71, - 388, - 224, - 400 - ], - "spans": [ - { - "bbox": [ - 71, - 388, - 224, - 400 - ], - "score": 1.0, - "content": "What is the current in the wire?", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9.5, - "page_num": "page_33", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 361, - 397, - 400 - ] - }, - { - "type": "text", - "bbox": [ - 69, - 411, - 161, - 505 - ], - "lines": [ - { - "bbox": [ - 70, - 412, - 160, - 427 - ], - "spans": [ - { - "bbox": [ - 70, - 413, - 82, - 426 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 92, - 412, - 160, - 427 - ], - "score": 0.45, - "content": "6.1\\times10^{-12}{\\mathsf{A}}", - "type": "inline_equation", - "height": 15, - "width": 68 - } - ], - "index": 11 - }, - { - "bbox": [ - 70, - 438, - 160, - 453 - ], - "spans": [ - { - "bbox": [ - 70, - 439, - 82, - 453 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 92, - 438, - 160, - 453 - ], - "score": 0.31, - "content": "7.3\\times10^{-12}\\mathsf{A}", - "type": "inline_equation", - "height": 15, - "width": 68 - } - ], - "index": 12 - }, - { - "bbox": [ - 69, - 465, - 155, - 479 - ], - "spans": [ - { - "bbox": [ - 69, - 465, - 82, - 479 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 465, - 155, - 478 - ], - "score": 1.0, - "content": "5.1 × 10–6 A", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 70, - 491, - 155, - 505 - ], - "spans": [ - { - "bbox": [ - 70, - 492, - 82, - 505 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 92, - 491, - 155, - 503 - ], - "score": 1.0, - "content": "3.2 × 1013 A", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 12.5, - "page_num": "page_33", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 69, - 412, - 160, - 505 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 516, - 168, - 542 - ], - "lines": [ - { - "bbox": [ - 71, - 524, - 134, - 537 - ], - "spans": [ - { - "bbox": [ - 71, - 524, - 134, - 537 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_33", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 524, - 134, - 537 - ] - }, - { - "type": "text", - "bbox": [ - 44, - 561, - 512, - 589 - ], - "lines": [ - { - "bbox": [ - 47, - 561, - 511, - 576 - ], - "spans": [ - { - "bbox": [ - 47, - 561, - 277, - 576 - ], - "score": 1.0, - "content": "11 An electric motor is used to lift a weight of ", - "type": "text" - }, - { - "bbox": [ - 277, - 562, - 304, - 575 - ], - "score": 0.44, - "content": "4.0\\mathsf{N}", - "type": "inline_equation", - "height": 13, - "width": 27 - }, - { - "bbox": [ - 304, - 561, - 437, - 576 - ], - "score": 1.0, - "content": " through a vertical height of", - "type": "text" - }, - { - "bbox": [ - 437, - 563, - 472, - 575 - ], - "score": 0.59, - "content": "0.90\\m m", - "type": "inline_equation", - "height": 12, - "width": 35 - }, - { - "bbox": [ - 472, - 561, - 484, - 576 - ], - "score": 1.0, - "content": " in ", - "type": "text" - }, - { - "bbox": [ - 484, - 562, - 508, - 575 - ], - "score": 0.31, - "content": "1.8\\mathfrak{s}", - "type": "inline_equation", - "height": 13, - "width": 24 - }, - { - "bbox": [ - 508, - 561, - 511, - 576 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 71, - 575, - 241, - 588 - ], - "spans": [ - { - "bbox": [ - 71, - 576, - 214, - 588 - ], - "score": 1.0, - "content": "The efficiency of the motor is", - "type": "text" - }, - { - "bbox": [ - 214, - 575, - 238, - 587 - ], - "score": 0.88, - "content": "20\\%", - "type": "inline_equation", - "height": 12, - "width": 24 - }, - { - "bbox": [ - 238, - 576, - 241, - 588 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 16.5, - "page_num": "page_33", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 561, - 511, - 588 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 600, - 320, - 615 - ], - "lines": [ - { - "bbox": [ - 71, - 601, - 319, - 615 - ], - "spans": [ - { - "bbox": [ - 71, - 601, - 319, - 615 - ], - "score": 1.0, - "content": "What is the electrical power supplied to the motor?", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18, - "page_num": "page_33", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 601, - 319, - 615 - ] - }, - { - "type": "text", - "bbox": [ - 69, - 626, - 129, - 718 - ], - "lines": [ - { - "bbox": [ - 70, - 627, - 130, - 640 - ], - "spans": [ - { - "bbox": [ - 70, - 627, - 82, - 640 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 93, - 627, - 130, - 640 - ], - "score": 1.0, - "content": "0.40 W", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 70, - 652, - 124, - 666 - ], - "spans": [ - { - "bbox": [ - 70, - 653, - 82, - 666 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 92, - 652, - 124, - 666 - ], - "score": 1.0, - "content": "2.0 W", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 70, - 679, - 125, - 692 - ], - "spans": [ - { - "bbox": [ - 70, - 679, - 82, - 692 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 92, - 679, - 125, - 692 - ], - "score": 1.0, - "content": "3.6 W", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 70, - 704, - 121, - 718 - ], - "spans": [ - { - "bbox": [ - 70, - 705, - 82, - 718 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 93, - 704, - 121, - 718 - ], - "score": 1.0, - "content": "10 W", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 20.5, - "page_num": "page_33", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 627, - 130, - 718 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 730, - 168, - 755 - ], - "lines": [ - { - "bbox": [ - 71, - 737, - 134, - 751 - ], - "spans": [ - { - "bbox": [ - 71, - 737, - 134, - 751 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 23, - "page_num": "page_33", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 737, - 134, - 751 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 48, - 62, - 428, - 89 - ], - "lines": [ - { - "bbox": [ - 47, - 61, - 429, - 77 - ], - "spans": [ - { - "bbox": [ - 47, - 61, - 429, - 77 - ], - "score": 1.0, - "content": "12 Plane polarised light is incident perpendicular to a vertical polarising filter.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 71, - 76, - 339, - 88 - ], - "spans": [ - { - "bbox": [ - 71, - 76, - 339, - 88 - ], - "score": 1.0, - "content": "The polarising filter is rotated about the horizontal axis.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 70, - 101, - 415, - 115 - ], - "lines": [ - { - "bbox": [ - 71, - 102, - 414, - 115 - ], - "spans": [ - { - "bbox": [ - 71, - 102, - 414, - 115 - ], - "score": 1.0, - "content": "Which property of the transmitted light changes as the filter is rotated?", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 70, - 126, - 153, - 220 - ], - "lines": [ - { - "bbox": [ - 70, - 127, - 144, - 142 - ], - "spans": [ - { - "bbox": [ - 70, - 127, - 82, - 141 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 93, - 127, - 144, - 142 - ], - "score": 1.0, - "content": "frequency", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 70, - 152, - 136, - 168 - ], - "spans": [ - { - "bbox": [ - 70, - 153, - 82, - 167 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 92, - 152, - 136, - 168 - ], - "score": 1.0, - "content": "intensity", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 70, - 179, - 126, - 193 - ], - "spans": [ - { - "bbox": [ - 70, - 179, - 82, - 193 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 180, - 126, - 193 - ], - "score": 1.0, - "content": "speed", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 70, - 205, - 151, - 219 - ], - "spans": [ - { - "bbox": [ - 70, - 205, - 82, - 219 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 94, - 206, - 151, - 219 - ], - "score": 1.0, - "content": "wavelength", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 4.5 - }, - { - "type": "text", - "bbox": [ - 70, - 230, - 168, - 256 - ], - "lines": [ - { - "bbox": [ - 71, - 238, - 134, - 250 - ], - "spans": [ - { - "bbox": [ - 71, - 238, - 134, - 250 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 48, - 275, - 372, - 290 - ], - "lines": [ - { - "bbox": [ - 48, - 276, - 372, - 289 - ], - "spans": [ - { - "bbox": [ - 48, - 276, - 246, - 289 - ], - "score": 1.0, - "content": "13 A load is suspended from two wires", - "type": "text" - }, - { - "bbox": [ - 246, - 276, - 256, - 288 - ], - "score": 0.43, - "content": "\\mathsf{\\textbf{P}}", - "type": "inline_equation", - "height": 12, - "width": 10 - }, - { - "bbox": [ - 256, - 276, - 372, - 289 - ], - "score": 1.0, - "content": " and Q as shown below.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "image", - "bbox": [ - 78, - 304, - 202, - 462 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 78, - 304, - 202, - 462 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 78, - 304, - 202, - 462 - ], - "spans": [ - { - "bbox": [ - 78, - 304, - 202, - 462 - ], - "score": 0.952, - "type": "image", - "image_path": "ea4ddc2d92328235451c8d6a5b8eca8c0546627346f73846e88ac96980211816.jpg" - } - ] - } - ], - "index": 9, - "virtual_lines": [ - { - "bbox": [ - 78, - 304, - 202, - 462 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 71, - 477, - 247, - 491 - ], - "lines": [ - { - "bbox": [ - 72, - 479, - 247, - 490 - ], - "spans": [ - { - "bbox": [ - 72, - 479, - 247, - 490 - ], - "score": 1.0, - "content": "Both wires have the same diameter.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 71, - 503, - 337, - 517 - ], - "lines": [ - { - "bbox": [ - 71, - 504, - 336, - 516 - ], - "spans": [ - { - "bbox": [ - 71, - 504, - 336, - 516 - ], - "score": 1.0, - "content": "The table below shows some data for these two wires.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "table", - "bbox": [ - 71, - 530, - 527, - 611 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 71, - 530, - 527, - 611 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 71, - 530, - 527, - 611 - ], - "spans": [ - { - "bbox": [ - 71, - 530, - 527, - 611 - ], - "score": 0.983, - "html": "
Original length of wireYoungr modulus of wire'smaterialExtensionofwire/mm
PLE4.0
Q1.5 L3.0E
", - "type": "table", - "image_path": "87dafde3b9b0b7f6b89a416c42f3ce45471c3e45abc8fea967864850217832c9.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 71, - 530, - 527, - 557.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 71, - 557.0, - 527, - 584.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 71, - 584.0, - 527, - 611.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - }, - { - "type": "text", - "bbox": [ - 72, - 622, - 250, - 635 - ], - "lines": [ - { - "bbox": [ - 72, - 623, - 249, - 634 - ], - "spans": [ - { - "bbox": [ - 72, - 623, - 249, - 634 - ], - "score": 1.0, - "content": "What is the extension of the wire Q?", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "text", - "bbox": [ - 70, - 647, - 132, - 740 - ], - "lines": [ - { - "bbox": [ - 70, - 647, - 132, - 662 - ], - "spans": [ - { - "bbox": [ - 70, - 648, - 82, - 661 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 92, - 647, - 132, - 662 - ], - "score": 1.0, - "content": "2.0 mm", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 69, - 673, - 132, - 688 - ], - "spans": [ - { - "bbox": [ - 69, - 674, - 81, - 686 - ], - "score": 1.0, - "content": "B", - "type": "text" - }, - { - "bbox": [ - 93, - 673, - 132, - 688 - ], - "score": 1.0, - "content": "4.0 mm", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 70, - 700, - 131, - 713 - ], - "spans": [ - { - "bbox": [ - 70, - 700, - 82, - 713 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 700, - 131, - 713 - ], - "score": 1.0, - "content": "6.0 mm", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 70, - 726, - 131, - 739 - ], - "spans": [ - { - "bbox": [ - 70, - 726, - 82, - 739 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 93, - 726, - 131, - 739 - ], - "score": 1.0, - "content": "8.0 mm", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 17.5 - }, - { - "type": "text", - "bbox": [ - 64, - 752, - 167, - 776 - ], - "lines": [ - { - "bbox": [ - 71, - 758, - 134, - 771 - ], - "spans": [ - { - "bbox": [ - 71, - 758, - 134, - 771 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 20 - } - ], - "layout_bboxes": [], - "page_idx": 34, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 78, - 304, - 202, - 462 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 78, - 304, - 202, - 462 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 78, - 304, - 202, - 462 - ], - "spans": [ - { - "bbox": [ - 78, - 304, - 202, - 462 - ], - "score": 0.952, - "type": "image", - "image_path": "ea4ddc2d92328235451c8d6a5b8eca8c0546627346f73846e88ac96980211816.jpg" - } - ] - } - ], - "index": 9, - "virtual_lines": [ - { - "bbox": [ - 78, - 304, - 202, - 462 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 9 - } - ], - "tables": [ - { - "type": "table", - "bbox": [ - 71, - 530, - 527, - 611 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 71, - 530, - 527, - 611 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 71, - 530, - 527, - 611 - ], - "spans": [ - { - "bbox": [ - 71, - 530, - 527, - 611 - ], - "score": 0.983, - "html": "
Original length of wireYoungr modulus of wire'smaterialExtensionofwire/mm
PLE4.0
Q1.5 L3.0E
", - "type": "table", - "image_path": "87dafde3b9b0b7f6b89a416c42f3ce45471c3e45abc8fea967864850217832c9.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 71, - 530, - 527, - 557.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 71, - 557.0, - 527, - 584.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 71, - 584.0, - 527, - 611.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 238, - 546, - 251 - ], - "lines": [ - { - "bbox": [ - 530, - 236, - 549, - 254 - ], - "spans": [ - { - "bbox": [ - 530, - 236, - 549, - 254 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 293, - 44, - 302, - 55 - ], - "lines": [ - { - "bbox": [ - 292, - 43, - 304, - 59 - ], - "spans": [ - { - "bbox": [ - 292, - 43, - 304, - 59 - ], - "score": 1.0, - "content": "7", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 787 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 482, - 758, - 547, - 786 - ], - "lines": [ - { - "bbox": [ - 530, - 757, - 549, - 774 - ], - "spans": [ - { - "bbox": [ - 530, - 757, - 549, - 774 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - }, - { - "bbox": [ - 483, - 774, - 532, - 786 - ], - "spans": [ - { - "bbox": [ - 483, - 774, - 532, - 786 - ], - "score": 1.0, - "content": "Turn over", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 48, - 62, - 428, - 89 - ], - "lines": [ - { - "bbox": [ - 47, - 61, - 429, - 77 - ], - "spans": [ - { - "bbox": [ - 47, - 61, - 429, - 77 - ], - "score": 1.0, - "content": "12 Plane polarised light is incident perpendicular to a vertical polarising filter.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 71, - 76, - 339, - 88 - ], - "spans": [ - { - "bbox": [ - 71, - 76, - 339, - 88 - ], - "score": 1.0, - "content": "The polarising filter is rotated about the horizontal axis.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_34", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 61, - 429, - 88 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 101, - 415, - 115 - ], - "lines": [ - { - "bbox": [ - 71, - 102, - 414, - 115 - ], - "spans": [ - { - "bbox": [ - 71, - 102, - 414, - 115 - ], - "score": 1.0, - "content": "Which property of the transmitted light changes as the filter is rotated?", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_34", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 102, - 414, - 115 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 126, - 153, - 220 - ], - "lines": [ - { - "bbox": [ - 70, - 127, - 144, - 142 - ], - "spans": [ - { - "bbox": [ - 70, - 127, - 82, - 141 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 93, - 127, - 144, - 142 - ], - "score": 1.0, - "content": "frequency", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 70, - 152, - 136, - 168 - ], - "spans": [ - { - "bbox": [ - 70, - 153, - 82, - 167 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 92, - 152, - 136, - 168 - ], - "score": 1.0, - "content": "intensity", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 70, - 179, - 126, - 193 - ], - "spans": [ - { - "bbox": [ - 70, - 179, - 82, - 193 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 180, - 126, - 193 - ], - "score": 1.0, - "content": "speed", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 70, - 205, - 151, - 219 - ], - "spans": [ - { - "bbox": [ - 70, - 205, - 82, - 219 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 94, - 206, - 151, - 219 - ], - "score": 1.0, - "content": "wavelength", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 4.5, - "page_num": "page_34", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 127, - 151, - 219 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 230, - 168, - 256 - ], - "lines": [ - { - "bbox": [ - 71, - 238, - 134, - 250 - ], - "spans": [ - { - "bbox": [ - 71, - 238, - 134, - 250 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_34", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 238, - 134, - 250 - ] - }, - { - "type": "text", - "bbox": [ - 48, - 275, - 372, - 290 - ], - "lines": [ - { - "bbox": [ - 48, - 276, - 372, - 289 - ], - "spans": [ - { - "bbox": [ - 48, - 276, - 246, - 289 - ], - "score": 1.0, - "content": "13 A load is suspended from two wires", - "type": "text" - }, - { - "bbox": [ - 246, - 276, - 256, - 288 - ], - "score": 0.43, - "content": "\\mathsf{\\textbf{P}}", - "type": "inline_equation", - "height": 12, - "width": 10 - }, - { - "bbox": [ - 256, - 276, - 372, - 289 - ], - "score": 1.0, - "content": " and Q as shown below.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_34", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 48, - 276, - 372, - 289 - ] - }, - { - "type": "image", - "bbox": [ - 78, - 304, - 202, - 462 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 78, - 304, - 202, - 462 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 78, - 304, - 202, - 462 - ], - "spans": [ - { - "bbox": [ - 78, - 304, - 202, - 462 - ], - "score": 0.952, - "type": "image", - "image_path": "ea4ddc2d92328235451c8d6a5b8eca8c0546627346f73846e88ac96980211816.jpg" - } - ] - } - ], - "index": 9, - "virtual_lines": [ - { - "bbox": [ - 78, - 304, - 202, - 462 - ], - "spans": [], - "index": 9 - } - ] - } - ], - "index": 9, - "page_num": "page_34", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 71, - 477, - 247, - 491 - ], - "lines": [ - { - "bbox": [ - 72, - 479, - 247, - 490 - ], - "spans": [ - { - "bbox": [ - 72, - 479, - 247, - 490 - ], - "score": 1.0, - "content": "Both wires have the same diameter.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_34", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 479, - 247, - 490 - ] - }, - { - "type": "text", - "bbox": [ - 71, - 503, - 337, - 517 - ], - "lines": [ - { - "bbox": [ - 71, - 504, - 336, - 516 - ], - "spans": [ - { - "bbox": [ - 71, - 504, - 336, - 516 - ], - "score": 1.0, - "content": "The table below shows some data for these two wires.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_34", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 504, - 336, - 516 - ] - }, - { - "type": "table", - "bbox": [ - 71, - 530, - 527, - 611 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 71, - 530, - 527, - 611 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 71, - 530, - 527, - 611 - ], - "spans": [ - { - "bbox": [ - 71, - 530, - 527, - 611 - ], - "score": 0.983, - "html": "
Original length of wireYoungr modulus of wire'smaterialExtensionofwire/mm
PLE4.0
Q1.5 L3.0E
", - "type": "table", - "image_path": "87dafde3b9b0b7f6b89a416c42f3ce45471c3e45abc8fea967864850217832c9.jpg" - } - ] - } - ], - "index": 13, - "virtual_lines": [ - { - "bbox": [ - 71, - 530, - 527, - 557.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 71, - 557.0, - 527, - 584.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 71, - 584.0, - 527, - 611.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 13, - "page_num": "page_34", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 72, - 622, - 250, - 635 - ], - "lines": [ - { - "bbox": [ - 72, - 623, - 249, - 634 - ], - "spans": [ - { - "bbox": [ - 72, - 623, - 249, - 634 - ], - "score": 1.0, - "content": "What is the extension of the wire Q?", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_34", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 623, - 249, - 634 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 647, - 132, - 740 - ], - "lines": [ - { - "bbox": [ - 70, - 647, - 132, - 662 - ], - "spans": [ - { - "bbox": [ - 70, - 648, - 82, - 661 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 92, - 647, - 132, - 662 - ], - "score": 1.0, - "content": "2.0 mm", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 69, - 673, - 132, - 688 - ], - "spans": [ - { - "bbox": [ - 69, - 674, - 81, - 686 - ], - "score": 1.0, - "content": "B", - "type": "text" - }, - { - "bbox": [ - 93, - 673, - 132, - 688 - ], - "score": 1.0, - "content": "4.0 mm", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 70, - 700, - 131, - 713 - ], - "spans": [ - { - "bbox": [ - 70, - 700, - 82, - 713 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 700, - 131, - 713 - ], - "score": 1.0, - "content": "6.0 mm", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 70, - 726, - 131, - 739 - ], - "spans": [ - { - "bbox": [ - 70, - 726, - 82, - 739 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 93, - 726, - 131, - 739 - ], - "score": 1.0, - "content": "8.0 mm", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 17.5, - "page_num": "page_34", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 69, - 647, - 132, - 739 - ] - }, - { - "type": "text", - "bbox": [ - 64, - 752, - 167, - 776 - ], - "lines": [ - { - "bbox": [ - 71, - 758, - 134, - 771 - ], - "spans": [ - { - "bbox": [ - 71, - 758, - 134, - 771 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 20, - "page_num": "page_34", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 758, - 134, - 771 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 47, - 62, - 510, - 89 - ], - "lines": [ - { - "bbox": [ - 48, - 62, - 508, - 76 - ], - "spans": [ - { - "bbox": [ - 48, - 62, - 370, - 76 - ], - "score": 1.0, - "content": "14 Which graph best represents the way in which the resistance ", - "type": "text" - }, - { - "bbox": [ - 370, - 63, - 381, - 74 - ], - "score": 0.65, - "content": "R", - "type": "inline_equation", - "height": 11, - "width": 11 - }, - { - "bbox": [ - 381, - 62, - 508, - 76 - ], - "score": 1.0, - "content": "of a negative temperature", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 71, - 76, - 387, - 88 - ], - "spans": [ - { - "bbox": [ - 71, - 76, - 345, - 88 - ], - "score": 1.0, - "content": "coefficient (NTC) thermistor depends on its temperature", - "type": "text" - }, - { - "bbox": [ - 346, - 77, - 354, - 87 - ], - "score": 0.74, - "content": "\\theta", - "type": "inline_equation", - "height": 10, - "width": 8 - }, - { - "bbox": [ - 354, - 76, - 365, - 88 - ], - "score": 1.0, - "content": "in", - "type": "text" - }, - { - "bbox": [ - 366, - 76, - 381, - 87 - ], - "score": 0.72, - "content": "{}^{\\circ}\\mathrm{C}^{\\prime}", - "type": "inline_equation", - "height": 11, - "width": 15 - }, - { - "bbox": [ - 382, - 76, - 387, - 88 - ], - "score": 1.0, - "content": "?", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "image", - "bbox": [ - 70, - 98, - 463, - 258 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 70, - 98, - 463, - 258 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 70, - 98, - 463, - 258 - ], - "spans": [ - { - "bbox": [ - 70, - 98, - 463, - 258 - ], - "score": 0.755, - "type": "image", - "image_path": "a1078131086f257375fa52abc18814e6c5674f49a5698dfcd789ab629a0ef6bd.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 70, - 98, - 463, - 151.33333333333334 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 70, - 151.33333333333334, - 463, - 204.66666666666669 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 70, - 204.66666666666669, - 463, - 258.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 48, - 276, - 325, - 290 - ], - "lines": [ - { - "bbox": [ - 47, - 276, - 324, - 290 - ], - "spans": [ - { - "bbox": [ - 47, - 276, - 324, - 290 - ], - "score": 1.0, - "content": "15 A student balances a uniform metal rod horizontally.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "image", - "bbox": [ - 72, - 303, - 266, - 415 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 72, - 303, - 266, - 415 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 72, - 303, - 266, - 415 - ], - "spans": [ - { - "bbox": [ - 72, - 303, - 266, - 415 - ], - "score": 0.948, - "type": "image", - "image_path": "bbb75f5d2b0006a7ff44334419cbd33193da0ca962f888f049327ad04dced260.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 72, - 303, - 266, - 316.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 72, - 316.0, - 266, - 329.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 72, - 329.0, - 266, - 342.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 72, - 342.0, - 266, - 355.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 72, - 355.0, - 266, - 368.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 72, - 368.0, - 266, - 381.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 72, - 381.0, - 266, - 394.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 72, - 394.0, - 266, - 407.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 72, - 407.0, - 266, - 420.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 70, - 433, - 527, - 473 - ], - "lines": [ - { - "bbox": [ - 72, - 434, - 430, - 447 - ], - "spans": [ - { - "bbox": [ - 72, - 434, - 430, - 447 - ], - "score": 1.0, - "content": "The rod is pivoted at its middle. The position of weight W is kept constant.", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 71, - 447, - 526, - 460 - ], - "spans": [ - { - "bbox": [ - 71, - 447, - 202, - 460 - ], - "score": 0.9992791414260864, - "content": "The distance of the weight", - "type": "text" - }, - { - "bbox": [ - 202, - 447, - 212, - 458 - ], - "score": 0.72, - "content": "F", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 212, - 447, - 292, - 460 - ], - "score": 1.0, - "content": " from the pivot is", - "type": "text" - }, - { - "bbox": [ - 293, - 448, - 302, - 458 - ], - "score": 0.34, - "content": "X.", - "type": "inline_equation", - "height": 10, - "width": 9 - }, - { - "bbox": [ - 302, - 447, - 410, - 460 - ], - "score": 1.0, - "content": " The student changes ", - "type": "text" - }, - { - "bbox": [ - 410, - 447, - 420, - 458 - ], - "score": 0.72, - "content": "F", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 420, - 447, - 526, - 460 - ], - "score": 1.0, - "content": "and then adjusts x so", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 70, - 460, - 221, - 473 - ], - "spans": [ - { - "bbox": [ - 70, - 460, - 221, - 473 - ], - "score": 1.0, - "content": "that the rod remains balanced.", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 16 - }, - { - "type": "text", - "bbox": [ - 71, - 485, - 210, - 499 - ], - "lines": [ - { - "bbox": [ - 72, - 487, - 208, - 497 - ], - "spans": [ - { - "bbox": [ - 72, - 487, - 208, - 497 - ], - "score": 1.0, - "content": "Which statement is correct?", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18 - }, - { - "type": "text", - "bbox": [ - 69, - 511, - 396, - 604 - ], - "lines": [ - { - "bbox": [ - 71, - 512, - 394, - 525 - ], - "spans": [ - { - "bbox": [ - 71, - 512, - 82, - 525 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 94, - 512, - 146, - 524 - ], - "score": 1.0, - "content": "A graph of", - "type": "text" - }, - { - "bbox": [ - 147, - 512, - 156, - 523 - ], - "score": 0.78, - "content": "F", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 157, - 512, - 194, - 524 - ], - "score": 1.0, - "content": "against", - "type": "text" - }, - { - "bbox": [ - 195, - 514, - 203, - 523 - ], - "score": 0.66, - "content": "x", - "type": "inline_equation", - "height": 9, - "width": 8 - }, - { - "bbox": [ - 204, - 512, - 394, - 524 - ], - "score": 1.0, - "content": "will be a straight line through the origin.", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 70, - 537, - 301, - 551 - ], - "spans": [ - { - "bbox": [ - 70, - 537, - 82, - 551 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 538, - 292, - 550 - ], - "score": 1.0, - "content": "The upward force at the pivot is equal to", - "type": "text" - }, - { - "bbox": [ - 292, - 538, - 301, - 549 - ], - "score": 0.75, - "content": "F.", - "type": "inline_equation", - "height": 11, - "width": 9 - } - ], - "index": 20 - }, - { - "bbox": [ - 70, - 563, - 245, - 578 - ], - "spans": [ - { - "bbox": [ - 70, - 563, - 82, - 578 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 94, - 565, - 229, - 577 - ], - "score": 1.0, - "content": "The weight of W is equal to", - "type": "text" - }, - { - "bbox": [ - 229, - 564, - 245, - 575 - ], - "score": 0.66, - "content": "F x.", - "type": "inline_equation", - "height": 11, - "width": 16 - } - ], - "index": 21 - }, - { - "bbox": [ - 70, - 589, - 245, - 602 - ], - "spans": [ - { - "bbox": [ - 70, - 589, - 82, - 602 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 94, - 591, - 102, - 601 - ], - "score": 0.43, - "content": "x", - "type": "inline_equation", - "height": 10, - "width": 8 - }, - { - "bbox": [ - 102, - 591, - 233, - 602 - ], - "score": 1.0, - "content": "is inversely proportional to ", - "type": "text" - }, - { - "bbox": [ - 233, - 590, - 242, - 601 - ], - "score": 0.7, - "content": "F.", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 242, - 591, - 245, - 602 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 20.5 - }, - { - "type": "text", - "bbox": [ - 70, - 614, - 168, - 640 - ], - "lines": [ - { - "bbox": [ - 71, - 621, - 135, - 635 - ], - "spans": [ - { - "bbox": [ - 71, - 621, - 135, - 635 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 23 - } - ], - "layout_bboxes": [], - "page_idx": 35, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 70, - 98, - 463, - 258 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 70, - 98, - 463, - 258 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 70, - 98, - 463, - 258 - ], - "spans": [ - { - "bbox": [ - 70, - 98, - 463, - 258 - ], - "score": 0.755, - "type": "image", - "image_path": "a1078131086f257375fa52abc18814e6c5674f49a5698dfcd789ab629a0ef6bd.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 70, - 98, - 463, - 151.33333333333334 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 70, - 151.33333333333334, - 463, - 204.66666666666669 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 70, - 204.66666666666669, - 463, - 258.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3 - }, - { - "type": "image", - "bbox": [ - 72, - 303, - 266, - 415 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 72, - 303, - 266, - 415 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 72, - 303, - 266, - 415 - ], - "spans": [ - { - "bbox": [ - 72, - 303, - 266, - 415 - ], - "score": 0.948, - "type": "image", - "image_path": "bbb75f5d2b0006a7ff44334419cbd33193da0ca962f888f049327ad04dced260.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 72, - 303, - 266, - 316.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 72, - 316.0, - 266, - 329.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 72, - 329.0, - 266, - 342.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 72, - 342.0, - 266, - 355.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 72, - 355.0, - 266, - 368.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 72, - 368.0, - 266, - 381.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 72, - 381.0, - 266, - 394.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 72, - 394.0, - 266, - 407.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 72, - 407.0, - 266, - 420.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 10 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 622, - 546, - 635 - ], - "lines": [ - { - "bbox": [ - 530, - 620, - 549, - 638 - ], - "spans": [ - { - "bbox": [ - 530, - 620, - 549, - 638 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 530, - 238, - 547, - 251 - ], - "lines": [ - { - "bbox": [ - 530, - 236, - 549, - 254 - ], - "spans": [ - { - "bbox": [ - 530, - 236, - 549, - 254 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 293, - 44, - 301, - 55 - ], - "lines": [ - { - "bbox": [ - 292, - 43, - 303, - 58 - ], - "spans": [ - { - "bbox": [ - 292, - 43, - 303, - 58 - ], - "score": 1.0, - "content": "8", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 47, - 62, - 510, - 89 - ], - "lines": [ - { - "bbox": [ - 48, - 62, - 508, - 76 - ], - "spans": [ - { - "bbox": [ - 48, - 62, - 370, - 76 - ], - "score": 1.0, - "content": "14 Which graph best represents the way in which the resistance ", - "type": "text" - }, - { - "bbox": [ - 370, - 63, - 381, - 74 - ], - "score": 0.65, - "content": "R", - "type": "inline_equation", - "height": 11, - "width": 11 - }, - { - "bbox": [ - 381, - 62, - 508, - 76 - ], - "score": 1.0, - "content": "of a negative temperature", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 71, - 76, - 387, - 88 - ], - "spans": [ - { - "bbox": [ - 71, - 76, - 345, - 88 - ], - "score": 1.0, - "content": "coefficient (NTC) thermistor depends on its temperature", - "type": "text" - }, - { - "bbox": [ - 346, - 77, - 354, - 87 - ], - "score": 0.74, - "content": "\\theta", - "type": "inline_equation", - "height": 10, - "width": 8 - }, - { - "bbox": [ - 354, - 76, - 365, - 88 - ], - "score": 1.0, - "content": "in", - "type": "text" - }, - { - "bbox": [ - 366, - 76, - 381, - 87 - ], - "score": 0.72, - "content": "{}^{\\circ}\\mathrm{C}^{\\prime}", - "type": "inline_equation", - "height": 11, - "width": 15 - }, - { - "bbox": [ - 382, - 76, - 387, - 88 - ], - "score": 1.0, - "content": "?", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_35", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 48, - 62, - 508, - 88 - ] - }, - { - "type": "image", - "bbox": [ - 70, - 98, - 463, - 258 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 70, - 98, - 463, - 258 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 70, - 98, - 463, - 258 - ], - "spans": [ - { - "bbox": [ - 70, - 98, - 463, - 258 - ], - "score": 0.755, - "type": "image", - "image_path": "a1078131086f257375fa52abc18814e6c5674f49a5698dfcd789ab629a0ef6bd.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 70, - 98, - 463, - 151.33333333333334 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 70, - 151.33333333333334, - 463, - 204.66666666666669 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 70, - 204.66666666666669, - 463, - 258.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3, - "page_num": "page_35", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 48, - 276, - 325, - 290 - ], - "lines": [ - { - "bbox": [ - 47, - 276, - 324, - 290 - ], - "spans": [ - { - "bbox": [ - 47, - 276, - 324, - 290 - ], - "score": 1.0, - "content": "15 A student balances a uniform metal rod horizontally.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_35", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 276, - 324, - 290 - ] - }, - { - "type": "image", - "bbox": [ - 72, - 303, - 266, - 415 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 72, - 303, - 266, - 415 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 72, - 303, - 266, - 415 - ], - "spans": [ - { - "bbox": [ - 72, - 303, - 266, - 415 - ], - "score": 0.948, - "type": "image", - "image_path": "bbb75f5d2b0006a7ff44334419cbd33193da0ca962f888f049327ad04dced260.jpg" - } - ] - } - ], - "index": 10, - "virtual_lines": [ - { - "bbox": [ - 72, - 303, - 266, - 316.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 72, - 316.0, - 266, - 329.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 72, - 329.0, - 266, - 342.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 72, - 342.0, - 266, - 355.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 72, - 355.0, - 266, - 368.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 72, - 368.0, - 266, - 381.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 72, - 381.0, - 266, - 394.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 72, - 394.0, - 266, - 407.0 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 72, - 407.0, - 266, - 420.0 - ], - "spans": [], - "index": 14 - } - ] - } - ], - "index": 10, - "page_num": "page_35", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 433, - 527, - 473 - ], - "lines": [ - { - "bbox": [ - 72, - 434, - 430, - 447 - ], - "spans": [ - { - "bbox": [ - 72, - 434, - 430, - 447 - ], - "score": 1.0, - "content": "The rod is pivoted at its middle. The position of weight W is kept constant.", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 71, - 447, - 526, - 460 - ], - "spans": [ - { - "bbox": [ - 71, - 447, - 202, - 460 - ], - "score": 0.9992791414260864, - "content": "The distance of the weight", - "type": "text" - }, - { - "bbox": [ - 202, - 447, - 212, - 458 - ], - "score": 0.72, - "content": "F", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 212, - 447, - 292, - 460 - ], - "score": 1.0, - "content": " from the pivot is", - "type": "text" - }, - { - "bbox": [ - 293, - 448, - 302, - 458 - ], - "score": 0.34, - "content": "X.", - "type": "inline_equation", - "height": 10, - "width": 9 - }, - { - "bbox": [ - 302, - 447, - 410, - 460 - ], - "score": 1.0, - "content": " The student changes ", - "type": "text" - }, - { - "bbox": [ - 410, - 447, - 420, - 458 - ], - "score": 0.72, - "content": "F", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 420, - 447, - 526, - 460 - ], - "score": 1.0, - "content": "and then adjusts x so", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 70, - 460, - 221, - 473 - ], - "spans": [ - { - "bbox": [ - 70, - 460, - 221, - 473 - ], - "score": 1.0, - "content": "that the rod remains balanced.", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 16, - "page_num": "page_35", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 434, - 526, - 473 - ] - }, - { - "type": "text", - "bbox": [ - 71, - 485, - 210, - 499 - ], - "lines": [ - { - "bbox": [ - 72, - 487, - 208, - 497 - ], - "spans": [ - { - "bbox": [ - 72, - 487, - 208, - 497 - ], - "score": 1.0, - "content": "Which statement is correct?", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18, - "page_num": "page_35", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 487, - 208, - 497 - ] - }, - { - "type": "list", - "bbox": [ - 69, - 511, - 396, - 604 - ], - "lines": [ - { - "bbox": [ - 71, - 512, - 394, - 525 - ], - "spans": [ - { - "bbox": [ - 71, - 512, - 82, - 525 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 94, - 512, - 146, - 524 - ], - "score": 1.0, - "content": "A graph of", - "type": "text" - }, - { - "bbox": [ - 147, - 512, - 156, - 523 - ], - "score": 0.78, - "content": "F", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 157, - 512, - 194, - 524 - ], - "score": 1.0, - "content": "against", - "type": "text" - }, - { - "bbox": [ - 195, - 514, - 203, - 523 - ], - "score": 0.66, - "content": "x", - "type": "inline_equation", - "height": 9, - "width": 8 - }, - { - "bbox": [ - 204, - 512, - 394, - 524 - ], - "score": 1.0, - "content": "will be a straight line through the origin.", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 70, - 537, - 301, - 551 - ], - "spans": [ - { - "bbox": [ - 70, - 537, - 82, - 551 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 538, - 292, - 550 - ], - "score": 1.0, - "content": "The upward force at the pivot is equal to", - "type": "text" - }, - { - "bbox": [ - 292, - 538, - 301, - 549 - ], - "score": 0.75, - "content": "F.", - "type": "inline_equation", - "height": 11, - "width": 9 - } - ], - "index": 20, - "is_list_end_line": true - }, - { - "bbox": [ - 70, - 563, - 245, - 578 - ], - "spans": [ - { - "bbox": [ - 70, - 563, - 82, - 578 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 94, - 565, - 229, - 577 - ], - "score": 1.0, - "content": "The weight of W is equal to", - "type": "text" - }, - { - "bbox": [ - 229, - 564, - 245, - 575 - ], - "score": 0.66, - "content": "F x.", - "type": "inline_equation", - "height": 11, - "width": 16 - } - ], - "index": 21, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 70, - 589, - 245, - 602 - ], - "spans": [ - { - "bbox": [ - 70, - 589, - 82, - 602 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 94, - 591, - 102, - 601 - ], - "score": 0.43, - "content": "x", - "type": "inline_equation", - "height": 10, - "width": 8 - }, - { - "bbox": [ - 102, - 591, - 233, - 602 - ], - "score": 1.0, - "content": "is inversely proportional to ", - "type": "text" - }, - { - "bbox": [ - 233, - 590, - 242, - 601 - ], - "score": 0.7, - "content": "F.", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 242, - 591, - 245, - 602 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 22, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 20.5, - "page_num": "page_35", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 512, - 394, - 602 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 614, - 168, - 640 - ], - "lines": [ - { - "bbox": [ - 71, - 621, - 135, - 635 - ], - "spans": [ - { - "bbox": [ - 71, - 621, - 135, - 635 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 23, - "page_num": "page_35", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 621, - 135, - 635 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 47, - 62, - 411, - 76 - ], - "lines": [ - { - "bbox": [ - 48, - 63, - 410, - 75 - ], - "spans": [ - { - "bbox": [ - 48, - 63, - 410, - 75 - ], - "score": 1.0, - "content": "16 The I-V characteristics of two components R and L are shown below.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "image", - "bbox": [ - 75, - 92, - 254, - 248 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 75, - 92, - 254, - 248 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 75, - 92, - 254, - 248 - ], - "spans": [ - { - "bbox": [ - 75, - 92, - 254, - 248 - ], - "score": 0.958, - "type": "image", - "image_path": "c377a1b930001a6bdfb1abb8d6ed4fed05eb68f2ec2fb76d4a0d72faf46dad2e.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 75, - 92, - 254, - 105.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 75, - 105.0, - 254, - 118.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 75, - 118.0, - 254, - 131.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 75, - 131.0, - 254, - 144.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 75, - 144.0, - 254, - 157.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 75, - 157.0, - 254, - 170.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 75, - 170.0, - 254, - 183.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 75, - 183.0, - 254, - 196.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 75, - 196.0, - 254, - 209.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 75, - 209.0, - 254, - 222.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 75, - 222.0, - 254, - 235.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 75, - 235.0, - 254, - 248.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 75, - 248.0, - 254, - 261.0 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 71, - 266, - 210, - 280 - ], - "lines": [ - { - "bbox": [ - 72, - 267, - 208, - 278 - ], - "spans": [ - { - "bbox": [ - 72, - 267, - 208, - 278 - ], - "score": 1.0, - "content": "Which statement is correct?", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 70, - 291, - 434, - 385 - ], - "lines": [ - { - "bbox": [ - 70, - 292, - 254, - 305 - ], - "spans": [ - { - "bbox": [ - 70, - 292, - 82, - 305 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 94, - 293, - 254, - 305 - ], - "score": 1.0, - "content": "R and L are both filament lamps.", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 70, - 318, - 302, - 331 - ], - "spans": [ - { - "bbox": [ - 70, - 318, - 82, - 331 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 318, - 276, - 331 - ], - "score": 1.0, - "content": "R and L have the same resistance at", - "type": "text" - }, - { - "bbox": [ - 277, - 318, - 302, - 331 - ], - "score": 0.26, - "content": "1.5\\lor.", - "type": "inline_equation", - "height": 13, - "width": 25 - } - ], - "index": 16 - }, - { - "bbox": [ - 70, - 344, - 387, - 358 - ], - "spans": [ - { - "bbox": [ - 70, - 344, - 83, - 358 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 92, - 344, - 387, - 358 - ], - "score": 1.0, - "content": "The resistance of L is independent of potential difference V.", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 70, - 370, - 434, - 384 - ], - "spans": [ - { - "bbox": [ - 70, - 370, - 82, - 383 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 93, - 370, - 434, - 384 - ], - "score": 1.0, - "content": "The resistance of R increases as the potential difference V increases.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 16.5 - }, - { - "type": "text", - "bbox": [ - 70, - 395, - 167, - 421 - ], - "lines": [ - { - "bbox": [ - 71, - 402, - 134, - 415 - ], - "spans": [ - { - "bbox": [ - 71, - 402, - 134, - 415 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 19 - }, - { - "type": "text", - "bbox": [ - 49, - 440, - 446, - 480 - ], - "lines": [ - { - "bbox": [ - 49, - 441, - 444, - 454 - ], - "spans": [ - { - "bbox": [ - 49, - 442, - 65, - 453 - ], - "score": 1.0, - "content": "17 ", - "type": "text" - }, - { - "bbox": [ - 69, - 441, - 444, - 454 - ], - "score": 1.0, - "content": "The photoelectric effect can be demonstrated using a gold-leaf electroscope.", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 71, - 454, - 346, - 467 - ], - "spans": [ - { - "bbox": [ - 71, - 454, - 346, - 467 - ], - "score": 1.0, - "content": "The zinc plate of the electroscope is negatively charged.", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 71, - 467, - 379, - 481 - ], - "spans": [ - { - "bbox": [ - 71, - 467, - 379, - 481 - ], - "score": 1.0, - "content": "Ultraviolet radiation incident on the zinc collapses the gold leaf.", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 21 - }, - { - "type": "text", - "bbox": [ - 72, - 493, - 375, - 507 - ], - "lines": [ - { - "bbox": [ - 72, - 494, - 374, - 506 - ], - "spans": [ - { - "bbox": [ - 72, - 494, - 374, - 506 - ], - "score": 1.0, - "content": "What is removed from the zinc plate by the incident radiation?", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 23 - }, - { - "type": "text", - "bbox": [ - 70, - 518, - 139, - 611 - ], - "lines": [ - { - "bbox": [ - 70, - 519, - 140, - 532 - ], - "spans": [ - { - "bbox": [ - 70, - 519, - 82, - 532 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 94, - 519, - 140, - 532 - ], - "score": 1.0, - "content": "electrons", - "type": "text" - } - ], - "index": 24 - }, - { - "bbox": [ - 70, - 545, - 117, - 559 - ], - "spans": [ - { - "bbox": [ - 70, - 545, - 82, - 558 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 92, - 545, - 117, - 559 - ], - "score": 1.0, - "content": "ions", - "type": "text" - } - ], - "index": 25 - }, - { - "bbox": [ - 70, - 570, - 135, - 585 - ], - "spans": [ - { - "bbox": [ - 70, - 570, - 83, - 585 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 571, - 135, - 584 - ], - "score": 1.0, - "content": "photons", - "type": "text" - } - ], - "index": 26 - }, - { - "bbox": [ - 70, - 597, - 133, - 610 - ], - "spans": [ - { - "bbox": [ - 70, - 597, - 82, - 610 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 94, - 599, - 133, - 610 - ], - "score": 1.0, - "content": "protons", - "type": "text" - } - ], - "index": 27 - } - ], - "index": 25.5 - }, - { - "type": "text", - "bbox": [ - 70, - 623, - 168, - 647 - ], - "lines": [ - { - "bbox": [ - 71, - 629, - 135, - 643 - ], - "spans": [ - { - "bbox": [ - 71, - 629, - 135, - 643 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 28 - } - ], - "index": 28 - } - ], - "layout_bboxes": [], - "page_idx": 36, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 75, - 92, - 254, - 248 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 75, - 92, - 254, - 248 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 75, - 92, - 254, - 248 - ], - "spans": [ - { - "bbox": [ - 75, - 92, - 254, - 248 - ], - "score": 0.958, - "type": "image", - "image_path": "c377a1b930001a6bdfb1abb8d6ed4fed05eb68f2ec2fb76d4a0d72faf46dad2e.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 75, - 92, - 254, - 105.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 75, - 105.0, - 254, - 118.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 75, - 118.0, - 254, - 131.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 75, - 131.0, - 254, - 144.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 75, - 144.0, - 254, - 157.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 75, - 157.0, - 254, - 170.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 75, - 170.0, - 254, - 183.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 75, - 183.0, - 254, - 196.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 75, - 196.0, - 254, - 209.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 75, - 209.0, - 254, - 222.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 75, - 222.0, - 254, - 235.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 75, - 235.0, - 254, - 248.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 75, - 248.0, - 254, - 261.0 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "index": 7 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 630, - 546, - 642 - ], - "lines": [ - { - "bbox": [ - 529, - 628, - 549, - 645 - ], - "spans": [ - { - "bbox": [ - 529, - 628, - 549, - 645 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 403, - 547, - 416 - ], - "lines": [ - { - "bbox": [ - 530, - 401, - 548, - 419 - ], - "spans": [ - { - "bbox": [ - 530, - 401, - 548, - 419 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 484, - 774, - 531, - 785 - ], - "lines": [ - { - "bbox": [ - 483, - 774, - 532, - 785 - ], - "spans": [ - { - "bbox": [ - 483, - 774, - 532, - 785 - ], - "score": 1.0, - "content": "Turn over", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 293, - 44, - 301, - 55 - ], - "lines": [ - { - "bbox": [ - 293, - 44, - 303, - 57 - ], - "spans": [ - { - "bbox": [ - 293, - 44, - 303, - 57 - ], - "score": 1.0, - "content": "9", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 47, - 62, - 411, - 76 - ], - "lines": [ - { - "bbox": [ - 48, - 63, - 410, - 75 - ], - "spans": [ - { - "bbox": [ - 48, - 63, - 410, - 75 - ], - "score": 1.0, - "content": "16 The I-V characteristics of two components R and L are shown below.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_36", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 48, - 63, - 410, - 75 - ] - }, - { - "type": "image", - "bbox": [ - 75, - 92, - 254, - 248 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 75, - 92, - 254, - 248 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 75, - 92, - 254, - 248 - ], - "spans": [ - { - "bbox": [ - 75, - 92, - 254, - 248 - ], - "score": 0.958, - "type": "image", - "image_path": "c377a1b930001a6bdfb1abb8d6ed4fed05eb68f2ec2fb76d4a0d72faf46dad2e.jpg" - } - ] - } - ], - "index": 7, - "virtual_lines": [ - { - "bbox": [ - 75, - 92, - 254, - 105.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 75, - 105.0, - 254, - 118.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 75, - 118.0, - 254, - 131.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 75, - 131.0, - 254, - 144.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 75, - 144.0, - 254, - 157.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 75, - 157.0, - 254, - 170.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 75, - 170.0, - 254, - 183.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 75, - 183.0, - 254, - 196.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 75, - 196.0, - 254, - 209.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 75, - 209.0, - 254, - 222.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 75, - 222.0, - 254, - 235.0 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 75, - 235.0, - 254, - 248.0 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 75, - 248.0, - 254, - 261.0 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "index": 7, - "page_num": "page_36", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 71, - 266, - 210, - 280 - ], - "lines": [ - { - "bbox": [ - 72, - 267, - 208, - 278 - ], - "spans": [ - { - "bbox": [ - 72, - 267, - 208, - 278 - ], - "score": 1.0, - "content": "Which statement is correct?", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_36", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 267, - 208, - 278 - ] - }, - { - "type": "list", - "bbox": [ - 70, - 291, - 434, - 385 - ], - "lines": [ - { - "bbox": [ - 70, - 292, - 254, - 305 - ], - "spans": [ - { - "bbox": [ - 70, - 292, - 82, - 305 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 94, - 293, - 254, - 305 - ], - "score": 1.0, - "content": "R and L are both filament lamps.", - "type": "text" - } - ], - "index": 15, - "is_list_end_line": true - }, - { - "bbox": [ - 70, - 318, - 302, - 331 - ], - "spans": [ - { - "bbox": [ - 70, - 318, - 82, - 331 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 318, - 276, - 331 - ], - "score": 1.0, - "content": "R and L have the same resistance at", - "type": "text" - }, - { - "bbox": [ - 277, - 318, - 302, - 331 - ], - "score": 0.26, - "content": "1.5\\lor.", - "type": "inline_equation", - "height": 13, - "width": 25 - } - ], - "index": 16, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 70, - 344, - 387, - 358 - ], - "spans": [ - { - "bbox": [ - 70, - 344, - 83, - 358 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 92, - 344, - 387, - 358 - ], - "score": 1.0, - "content": "The resistance of L is independent of potential difference V.", - "type": "text" - } - ], - "index": 17, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 70, - 370, - 434, - 384 - ], - "spans": [ - { - "bbox": [ - 70, - 370, - 82, - 383 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 93, - 370, - 434, - 384 - ], - "score": 1.0, - "content": "The resistance of R increases as the potential difference V increases.", - "type": "text" - } - ], - "index": 18, - "is_list_start_line": true - } - ], - "index": 16.5, - "page_num": "page_36", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 292, - 434, - 384 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 395, - 167, - 421 - ], - "lines": [ - { - "bbox": [ - 71, - 402, - 134, - 415 - ], - "spans": [ - { - "bbox": [ - 71, - 402, - 134, - 415 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 19, - "page_num": "page_36", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 402, - 134, - 415 - ] - }, - { - "type": "text", - "bbox": [ - 49, - 440, - 446, - 480 - ], - "lines": [ - { - "bbox": [ - 49, - 441, - 444, - 454 - ], - "spans": [ - { - "bbox": [ - 49, - 442, - 65, - 453 - ], - "score": 1.0, - "content": "17 ", - "type": "text" - }, - { - "bbox": [ - 69, - 441, - 444, - 454 - ], - "score": 1.0, - "content": "The photoelectric effect can be demonstrated using a gold-leaf electroscope.", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 71, - 454, - 346, - 467 - ], - "spans": [ - { - "bbox": [ - 71, - 454, - 346, - 467 - ], - "score": 1.0, - "content": "The zinc plate of the electroscope is negatively charged.", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 71, - 467, - 379, - 481 - ], - "spans": [ - { - "bbox": [ - 71, - 467, - 379, - 481 - ], - "score": 1.0, - "content": "Ultraviolet radiation incident on the zinc collapses the gold leaf.", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 21, - "page_num": "page_36", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 49, - 441, - 444, - 481 - ] - }, - { - "type": "text", - "bbox": [ - 72, - 493, - 375, - 507 - ], - "lines": [ - { - "bbox": [ - 72, - 494, - 374, - 506 - ], - "spans": [ - { - "bbox": [ - 72, - 494, - 374, - 506 - ], - "score": 1.0, - "content": "What is removed from the zinc plate by the incident radiation?", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 23, - "page_num": "page_36", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 494, - 374, - 506 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 518, - 139, - 611 - ], - "lines": [ - { - "bbox": [ - 70, - 519, - 140, - 532 - ], - "spans": [ - { - "bbox": [ - 70, - 519, - 82, - 532 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 94, - 519, - 140, - 532 - ], - "score": 1.0, - "content": "electrons", - "type": "text" - } - ], - "index": 24 - }, - { - "bbox": [ - 70, - 545, - 117, - 559 - ], - "spans": [ - { - "bbox": [ - 70, - 545, - 82, - 558 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 92, - 545, - 117, - 559 - ], - "score": 1.0, - "content": "ions", - "type": "text" - } - ], - "index": 25 - }, - { - "bbox": [ - 70, - 570, - 135, - 585 - ], - "spans": [ - { - "bbox": [ - 70, - 570, - 83, - 585 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 571, - 135, - 584 - ], - "score": 1.0, - "content": "photons", - "type": "text" - } - ], - "index": 26 - }, - { - "bbox": [ - 70, - 597, - 133, - 610 - ], - "spans": [ - { - "bbox": [ - 70, - 597, - 82, - 610 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 94, - 599, - 133, - 610 - ], - "score": 1.0, - "content": "protons", - "type": "text" - } - ], - "index": 27 - } - ], - "index": 25.5, - "page_num": "page_36", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 519, - 140, - 610 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 623, - 168, - 647 - ], - "lines": [ - { - "bbox": [ - 71, - 629, - 135, - 643 - ], - "spans": [ - { - "bbox": [ - 71, - 629, - 135, - 643 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 28 - } - ], - "index": 28, - "page_num": "page_36", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 629, - 135, - 643 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 54, - 61, - 508, - 77 - ], - "lines": [ - { - "bbox": [ - 53, - 62, - 510, - 76 - ], - "spans": [ - { - "bbox": [ - 53, - 62, - 189, - 76 - ], - "score": 1.0, - "content": "8 What is the total energy", - "type": "text" - }, - { - "bbox": [ - 190, - 63, - 200, - 74 - ], - "score": 0.79, - "content": "E", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 200, - 62, - 251, - 76 - ], - "score": 1.0, - "content": "gained by ", - "type": "text" - }, - { - "bbox": [ - 251, - 63, - 261, - 74 - ], - "score": 0.71, - "content": "N", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 262, - 62, - 510, - 76 - ], - "score": 1.0, - "content": "electrons travelling through a potential difference V", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 69, - 87, - 216, - 180 - ], - "lines": [ - { - "bbox": [ - 70, - 88, - 146, - 102 - ], - "spans": [ - { - "bbox": [ - 70, - 88, - 82, - 102 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 93, - 88, - 146, - 101 - ], - "score": 0.58, - "content": "E=N\\times V", - "type": "inline_equation" - } - ], - "index": 1 - }, - { - "bbox": [ - 70, - 113, - 162, - 127 - ], - "spans": [ - { - "bbox": [ - 70, - 114, - 82, - 127 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 113, - 162, - 127 - ], - "score": 1.0, - "content": "E = V × 10–19", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 70, - 139, - 196, - 154 - ], - "spans": [ - { - "bbox": [ - 70, - 140, - 82, - 153 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 139, - 196, - 154 - ], - "score": 0.4, - "content": "E=V\\times1.60\\times10^{-19}", - "type": "inline_equation" - } - ], - "index": 3 - }, - { - "bbox": [ - 70, - 165, - 216, - 179 - ], - "spans": [ - { - "bbox": [ - 70, - 166, - 82, - 179 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 93, - 165, - 216, - 179 - ], - "score": 0.29, - "content": "E=N\\times V\\times1.60\\times10^{-19}", - "type": "inline_equation", - "height": 14, - "width": 123 - } - ], - "index": 4 - } - ], - "index": 2.5 - }, - { - "type": "text", - "bbox": [ - 70, - 191, - 168, - 217 - ], - "lines": [ - { - "bbox": [ - 71, - 198, - 135, - 212 - ], - "spans": [ - { - "bbox": [ - 71, - 198, - 135, - 212 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 46, - 236, - 536, - 290 - ], - "lines": [ - { - "bbox": [ - 48, - 237, - 534, - 251 - ], - "spans": [ - { - "bbox": [ - 48, - 237, - 363, - 251 - ], - "score": 1.0, - "content": "19 A student is experimenting with sound waves of wavelength", - "type": "text" - }, - { - "bbox": [ - 364, - 237, - 397, - 250 - ], - "score": 0.27, - "content": "3.0\\mathsf{c m}", - "type": "inline_equation", - "height": 13, - "width": 33 - }, - { - "bbox": [ - 397, - 237, - 534, - 251 - ], - "score": 1.0, - "content": " and electromagnetic waves", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 71, - 251, - 202, - 264 - ], - "spans": [ - { - "bbox": [ - 71, - 251, - 165, - 264 - ], - "score": 1.0, - "content": "also of wavelength ", - "type": "text" - }, - { - "bbox": [ - 165, - 251, - 198, - 263 - ], - "score": 0.26, - "content": "3.0\\mathsf{c m}", - "type": "inline_equation", - "height": 12, - "width": 33 - }, - { - "bbox": [ - 198, - 251, - 202, - 264 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 72, - 277, - 342, - 288 - ], - "spans": [ - { - "bbox": [ - 72, - 277, - 342, - 288 - ], - "score": 1.0, - "content": "Which statement is correct about both of these waves?", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 69, - 301, - 254, - 394 - ], - "lines": [ - { - "bbox": [ - 70, - 302, - 205, - 315 - ], - "spans": [ - { - "bbox": [ - 70, - 302, - 82, - 315 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 94, - 303, - 205, - 314 - ], - "score": 1.0, - "content": "They can be polarised.", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 70, - 328, - 253, - 341 - ], - "spans": [ - { - "bbox": [ - 70, - 328, - 82, - 341 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 95, - 329, - 253, - 341 - ], - "score": 1.0, - "content": "They can form stationary waves.", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 70, - 354, - 248, - 368 - ], - "spans": [ - { - "bbox": [ - 70, - 354, - 82, - 368 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 354, - 248, - 368 - ], - "score": 1.0, - "content": "They have the same frequency.", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 70, - 380, - 230, - 393 - ], - "spans": [ - { - "bbox": [ - 70, - 380, - 82, - 393 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 94, - 381, - 230, - 393 - ], - "score": 1.0, - "content": "They have the same speed.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 10.5 - }, - { - "type": "text", - "bbox": [ - 70, - 405, - 168, - 431 - ], - "lines": [ - { - "bbox": [ - 71, - 412, - 134, - 425 - ], - "spans": [ - { - "bbox": [ - 71, - 412, - 134, - 425 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "text", - "bbox": [ - 47, - 450, - 487, - 491 - ], - "lines": [ - { - "bbox": [ - 48, - 451, - 253, - 464 - ], - "spans": [ - { - "bbox": [ - 48, - 451, - 253, - 464 - ], - "score": 1.0, - "content": "20 A laser emits a uniform beam of light.", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 70, - 476, - 485, - 490 - ], - "spans": [ - { - "bbox": [ - 70, - 476, - 485, - 490 - ], - "score": 1.0, - "content": "What two quantities alone are required to calculate the intensity of the beam of light?", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 14.5 - }, - { - "type": "text", - "bbox": [ - 69, - 502, - 231, - 595 - ], - "lines": [ - { - "bbox": [ - 70, - 503, - 197, - 516 - ], - "spans": [ - { - "bbox": [ - 70, - 503, - 82, - 516 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 94, - 504, - 197, - 516 - ], - "score": 1.0, - "content": "amplitude, frequency", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 70, - 529, - 230, - 542 - ], - "spans": [ - { - "bbox": [ - 70, - 529, - 82, - 542 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 529, - 230, - 542 - ], - "score": 1.0, - "content": "cross-sectional area, power", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 69, - 554, - 156, - 568 - ], - "spans": [ - { - "bbox": [ - 69, - 554, - 83, - 568 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 555, - 156, - 568 - ], - "score": 1.0, - "content": "energy, time", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 70, - 581, - 204, - 594 - ], - "spans": [ - { - "bbox": [ - 70, - 581, - 82, - 594 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 94, - 582, - 204, - 593 - ], - "score": 1.0, - "content": "frequency, wavelength", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 17.5 - }, - { - "type": "text", - "bbox": [ - 70, - 605, - 168, - 631 - ], - "lines": [ - { - "bbox": [ - 71, - 613, - 134, - 626 - ], - "spans": [ - { - "bbox": [ - 71, - 613, - 134, - 626 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 20 - } - ], - "layout_bboxes": [], - "page_idx": 37, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 787 - ], - "lines": [ - { - "bbox": [ - 60, - 779, - 97, - 786 - ], - "spans": [ - { - "bbox": [ - 60, - 779, - 97, - 786 - ], - "score": 1.0, - "content": "© OCR 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 613, - 547, - 626 - ], - "lines": [ - { - "bbox": [ - 530, - 611, - 548, - 629 - ], - "spans": [ - { - "bbox": [ - 530, - 611, - 548, - 629 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 291, - 44, - 305, - 55 - ], - "lines": [ - { - "bbox": [ - 288, - 43, - 307, - 58 - ], - "spans": [ - { - "bbox": [ - 288, - 43, - 307, - 58 - ], - "score": 1.0, - "content": "10", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 530, - 198, - 547, - 212 - ], - "lines": [ - { - "bbox": [ - 530, - 197, - 549, - 214 - ], - "spans": [ - { - "bbox": [ - 530, - 197, - 549, - 214 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 530, - 412, - 547, - 426 - ], - "lines": [ - { - "bbox": [ - 530, - 411, - 549, - 428 - ], - "spans": [ - { - "bbox": [ - 530, - 411, - 549, - 428 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 54, - 61, - 508, - 77 - ], - "lines": [ - { - "bbox": [ - 53, - 62, - 510, - 76 - ], - "spans": [ - { - "bbox": [ - 53, - 62, - 189, - 76 - ], - "score": 1.0, - "content": "8 What is the total energy", - "type": "text" - }, - { - "bbox": [ - 190, - 63, - 200, - 74 - ], - "score": 0.79, - "content": "E", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 200, - 62, - 251, - 76 - ], - "score": 1.0, - "content": "gained by ", - "type": "text" - }, - { - "bbox": [ - 251, - 63, - 261, - 74 - ], - "score": 0.71, - "content": "N", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 262, - 62, - 510, - 76 - ], - "score": 1.0, - "content": "electrons travelling through a potential difference V", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_37", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 53, - 62, - 510, - 76 - ] - }, - { - "type": "list", - "bbox": [ - 69, - 87, - 216, - 180 - ], - "lines": [ - { - "bbox": [ - 70, - 88, - 146, - 102 - ], - "spans": [ - { - "bbox": [ - 70, - 88, - 82, - 102 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 93, - 88, - 146, - 101 - ], - "score": 0.58, - "content": "E=N\\times V", - "type": "inline_equation" - } - ], - "index": 1, - "is_list_start_line": true - }, - { - "bbox": [ - 70, - 113, - 162, - 127 - ], - "spans": [ - { - "bbox": [ - 70, - 114, - 82, - 127 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 113, - 162, - 127 - ], - "score": 1.0, - "content": "E = V × 10–19", - "type": "text" - } - ], - "index": 2, - "is_list_start_line": true - }, - { - "bbox": [ - 70, - 139, - 196, - 154 - ], - "spans": [ - { - "bbox": [ - 70, - 140, - 82, - 153 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 139, - 196, - 154 - ], - "score": 0.4, - "content": "E=V\\times1.60\\times10^{-19}", - "type": "inline_equation" - } - ], - "index": 3, - "is_list_start_line": true - }, - { - "bbox": [ - 70, - 165, - 216, - 179 - ], - "spans": [ - { - "bbox": [ - 70, - 166, - 82, - 179 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 93, - 165, - 216, - 179 - ], - "score": 0.29, - "content": "E=N\\times V\\times1.60\\times10^{-19}", - "type": "inline_equation", - "height": 14, - "width": 123 - } - ], - "index": 4, - "is_list_start_line": true - } - ], - "index": 2.5, - "page_num": "page_37", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 88, - 216, - 179 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 191, - 168, - 217 - ], - "lines": [ - { - "bbox": [ - 71, - 198, - 135, - 212 - ], - "spans": [ - { - "bbox": [ - 71, - 198, - 135, - 212 - ], - "score": 1.0, - "content": "Your answer ", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_37", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 198, - 135, - 212 - ] - }, - { - "type": "text", - "bbox": [ - 46, - 236, - 536, - 290 - ], - "lines": [ - { - "bbox": [ - 48, - 237, - 534, - 251 - ], - "spans": [ - { - "bbox": [ - 48, - 237, - 363, - 251 - ], - "score": 1.0, - "content": "19 A student is experimenting with sound waves of wavelength", - "type": "text" - }, - { - "bbox": [ - 364, - 237, - 397, - 250 - ], - "score": 0.27, - "content": "3.0\\mathsf{c m}", - "type": "inline_equation", - "height": 13, - "width": 33 - }, - { - "bbox": [ - 397, - 237, - 534, - 251 - ], - "score": 1.0, - "content": " and electromagnetic waves", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 71, - 251, - 202, - 264 - ], - "spans": [ - { - "bbox": [ - 71, - 251, - 165, - 264 - ], - "score": 1.0, - "content": "also of wavelength ", - "type": "text" - }, - { - "bbox": [ - 165, - 251, - 198, - 263 - ], - "score": 0.26, - "content": "3.0\\mathsf{c m}", - "type": "inline_equation", - "height": 12, - "width": 33 - }, - { - "bbox": [ - 198, - 251, - 202, - 264 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 72, - 277, - 342, - 288 - ], - "spans": [ - { - "bbox": [ - 72, - 277, - 342, - 288 - ], - "score": 1.0, - "content": "Which statement is correct about both of these waves?", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7, - "page_num": "page_37", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 48, - 237, - 534, - 288 - ] - }, - { - "type": "list", - "bbox": [ - 69, - 301, - 254, - 394 - ], - "lines": [ - { - "bbox": [ - 70, - 302, - 205, - 315 - ], - "spans": [ - { - "bbox": [ - 70, - 302, - 82, - 315 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 94, - 303, - 205, - 314 - ], - "score": 1.0, - "content": "They can be polarised.", - "type": "text" - } - ], - "index": 9, - "is_list_end_line": true - }, - { - "bbox": [ - 70, - 328, - 253, - 341 - ], - "spans": [ - { - "bbox": [ - 70, - 328, - 82, - 341 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 95, - 329, - 253, - 341 - ], - "score": 1.0, - "content": "They can form stationary waves.", - "type": "text" - } - ], - "index": 10, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 70, - 354, - 248, - 368 - ], - "spans": [ - { - "bbox": [ - 70, - 354, - 82, - 368 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 354, - 248, - 368 - ], - "score": 1.0, - "content": "They have the same frequency.", - "type": "text" - } - ], - "index": 11, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 70, - 380, - 230, - 393 - ], - "spans": [ - { - "bbox": [ - 70, - 380, - 82, - 393 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 94, - 381, - 230, - 393 - ], - "score": 1.0, - "content": "They have the same speed.", - "type": "text" - } - ], - "index": 12, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 10.5, - "page_num": "page_37", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 302, - 253, - 393 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 405, - 168, - 431 - ], - "lines": [ - { - "bbox": [ - 71, - 412, - 134, - 425 - ], - "spans": [ - { - "bbox": [ - 71, - 412, - 134, - 425 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_37", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 412, - 134, - 425 - ] - }, - { - "type": "text", - "bbox": [ - 47, - 450, - 487, - 491 - ], - "lines": [ - { - "bbox": [ - 48, - 451, - 253, - 464 - ], - "spans": [ - { - "bbox": [ - 48, - 451, - 253, - 464 - ], - "score": 1.0, - "content": "20 A laser emits a uniform beam of light.", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 70, - 476, - 485, - 490 - ], - "spans": [ - { - "bbox": [ - 70, - 476, - 485, - 490 - ], - "score": 1.0, - "content": "What two quantities alone are required to calculate the intensity of the beam of light?", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 14.5, - "page_num": "page_37", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 48, - 451, - 485, - 490 - ] - }, - { - "type": "text", - "bbox": [ - 69, - 502, - 231, - 595 - ], - "lines": [ - { - "bbox": [ - 70, - 503, - 197, - 516 - ], - "spans": [ - { - "bbox": [ - 70, - 503, - 82, - 516 - ], - "score": 1.0, - "content": "A ", - "type": "text" - }, - { - "bbox": [ - 94, - 504, - 197, - 516 - ], - "score": 1.0, - "content": "amplitude, frequency", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 70, - 529, - 230, - 542 - ], - "spans": [ - { - "bbox": [ - 70, - 529, - 82, - 542 - ], - "score": 1.0, - "content": "B ", - "type": "text" - }, - { - "bbox": [ - 94, - 529, - 230, - 542 - ], - "score": 1.0, - "content": "cross-sectional area, power", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 69, - 554, - 156, - 568 - ], - "spans": [ - { - "bbox": [ - 69, - 554, - 83, - 568 - ], - "score": 1.0, - "content": "C ", - "type": "text" - }, - { - "bbox": [ - 93, - 555, - 156, - 568 - ], - "score": 1.0, - "content": "energy, time", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 70, - 581, - 204, - 594 - ], - "spans": [ - { - "bbox": [ - 70, - 581, - 82, - 594 - ], - "score": 1.0, - "content": "D ", - "type": "text" - }, - { - "bbox": [ - 94, - 582, - 204, - 593 - ], - "score": 1.0, - "content": "frequency, wavelength", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 17.5, - "page_num": "page_37", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 69, - 503, - 230, - 594 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 605, - 168, - 631 - ], - "lines": [ - { - "bbox": [ - 71, - 613, - 134, - 626 - ], - "spans": [ - { - "bbox": [ - 71, - 613, - 134, - 626 - ], - "score": 1.0, - "content": "Your answer", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 20, - "page_num": "page_37", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 613, - 134, - 626 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 190, - 417, - 404, - 455 - ], - "lines": [ - { - "bbox": [ - 193, - 419, - 403, - 430 - ], - "spans": [ - { - "bbox": [ - 193, - 419, - 403, - 430 - ], - "score": 1.0, - "content": "PLEASE DO NOT WRITE ON THIS PAGE", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 219, - 442, - 376, - 455 - ], - "spans": [ - { - "bbox": [ - 219, - 442, - 376, - 455 - ], - "score": 1.0, - "content": "Question 21 starts on page 12", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - } - ], - "layout_bboxes": [], - "page_idx": 38, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 779, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 484, - 774, - 531, - 785 - ], - "lines": [ - { - "bbox": [ - 483, - 774, - 532, - 786 - ], - "spans": [ - { - "bbox": [ - 483, - 774, - 532, - 786 - ], - "score": 1.0, - "content": "Turn over", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 260, - 44, - 336, - 76 - ], - "lines": [ - { - "bbox": [ - 289, - 43, - 306, - 58 - ], - "spans": [ - { - "bbox": [ - 289, - 43, - 306, - 58 - ], - "score": 1.0, - "content": "11", - "type": "text" - } - ] - }, - { - "bbox": [ - 261, - 62, - 334, - 74 - ], - "spans": [ - { - "bbox": [ - 261, - 62, - 334, - 74 - ], - "score": 1.0, - "content": "BLANK PAGE", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 190, - 417, - 404, - 455 - ], - "lines": [ - { - "bbox": [ - 193, - 419, - 403, - 430 - ], - "spans": [ - { - "bbox": [ - 193, - 419, - 403, - 430 - ], - "score": 1.0, - "content": "PLEASE DO NOT WRITE ON THIS PAGE", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 219, - 442, - 376, - 455 - ], - "spans": [ - { - "bbox": [ - 219, - 442, - 376, - 455 - ], - "score": 1.0, - "content": "Question 21 starts on page 12", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_38", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 266, - 43, - 328, - 76 - ], - "lines": [ - { - "bbox": [ - 288, - 43, - 307, - 59 - ], - "spans": [ - { - "bbox": [ - 288, - 43, - 307, - 59 - ], - "score": 1.0, - "content": "12", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 268, - 63, - 328, - 74 - ], - "spans": [ - { - "bbox": [ - 268, - 63, - 328, - 74 - ], - "score": 1.0, - "content": "SECTION B", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 234, - 88, - 360, - 102 - ], - "lines": [ - { - "bbox": [ - 236, - 89, - 359, - 101 - ], - "spans": [ - { - "bbox": [ - 236, - 89, - 359, - 101 - ], - "score": 1.0, - "content": "Answer all the questions.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 43, - 114, - 453, - 128 - ], - "lines": [ - { - "bbox": [ - 47, - 113, - 454, - 129 - ], - "spans": [ - { - "bbox": [ - 47, - 113, - 454, - 129 - ], - "score": 1.0, - "content": "21 A person in a buggy is attached to a large parakite by a rope, as shown below.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "image", - "bbox": [ - 72, - 142, - 331, - 259 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 72, - 142, - 331, - 259 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 72, - 142, - 331, - 259 - ], - "spans": [ - { - "bbox": [ - 72, - 142, - 331, - 259 - ], - "score": 0.964, - "type": "image", - "image_path": "7a677d89dbd7850d8d60ee155f59b14fc5e084b7b662630729c59cfc12a7ffde.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 72, - 142, - 331, - 181.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 72, - 181.0, - 331, - 220.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 72, - 220.0, - 331, - 259.0 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 72, - 273, - 447, - 288 - ], - "lines": [ - { - "bbox": [ - 72, - 275, - 447, - 287 - ], - "spans": [ - { - "bbox": [ - 72, - 275, - 447, - 287 - ], - "score": 1.0, - "content": "Strong wind acting on the parakite moves the buggy along horizontal ground.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 71, - 299, - 522, - 326 - ], - "lines": [ - { - "bbox": [ - 70, - 299, - 522, - 314 - ], - "spans": [ - { - "bbox": [ - 70, - 299, - 210, - 314 - ], - "score": 1.0, - "content": "The rope makes an angle of", - "type": "text" - }, - { - "bbox": [ - 211, - 300, - 229, - 312 - ], - "score": 0.89, - "content": "55^{\\circ}", - "type": "inline_equation", - "height": 12, - "width": 18 - }, - { - "bbox": [ - 230, - 299, - 522, - 314 - ], - "score": 1.0, - "content": " to the horizontal. The total mass of the buggy and person is", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 71, - 311, - 108, - 329 - ], - "spans": [ - { - "bbox": [ - 71, - 313, - 104, - 326 - ], - "score": 0.41, - "content": "150\\mathsf{k g}", - "type": "inline_equation", - "height": 13, - "width": 33 - }, - { - "bbox": [ - 104, - 311, - 108, - 329 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8.5 - }, - { - "type": "text", - "bbox": [ - 72, - 338, - 388, - 353 - ], - "lines": [ - { - "bbox": [ - 72, - 339, - 387, - 352 - ], - "spans": [ - { - "bbox": [ - 72, - 339, - 387, - 352 - ], - "score": 1.0, - "content": "The velocity v against time t graph for the buggy is shown below.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "image", - "bbox": [ - 73, - 366, - 372, - 569 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 73, - 366, - 372, - 569 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 73, - 366, - 372, - 569 - ], - "spans": [ - { - "bbox": [ - 73, - 366, - 372, - 569 - ], - "score": 0.966, - "type": "image", - "image_path": "6d33415e347daed1c4c7abfe4fb0f1585698a0071e38861ad56099682f0cd9ad.jpg" - } - ] - } - ], - "index": 12, - "virtual_lines": [ - { - "bbox": [ - 73, - 366, - 372, - 433.6666666666667 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 73, - 433.6666666666667, - 372, - 501.33333333333337 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 73, - 501.33333333333337, - 372, - 569.0 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 67, - 587, - 472, - 602 - ], - "lines": [ - { - "bbox": [ - 70, - 588, - 472, - 603 - ], - "spans": [ - { - "bbox": [ - 70, - 588, - 391, - 603 - ], - "score": 1.0, - "content": "(a) Calculate the horizontal distance travelled by the buggy from", - "type": "text" - }, - { - "bbox": [ - 392, - 589, - 415, - 600 - ], - "score": 0.89, - "content": "t=0", - "type": "inline_equation", - "height": 11, - "width": 23 - }, - { - "bbox": [ - 415, - 588, - 428, - 603 - ], - "score": 1.0, - "content": " to", - "type": "text" - }, - { - "bbox": [ - 429, - 588, - 468, - 601 - ], - "score": 0.87, - "content": "t=8.05", - "type": "inline_equation", - "height": 13, - "width": 39 - }, - { - "bbox": [ - 468, - 588, - 472, - 603 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 244, - 757, - 547, - 772 - ], - "lines": [ - { - "bbox": [ - 245, - 758, - 546, - 771 - ], - "spans": [ - { - "bbox": [ - 245, - 758, - 338, - 770 - ], - "score": 1.0, - "content": "horizontal distance", - "type": "text" - }, - { - "bbox": [ - 338, - 760, - 349, - 769 - ], - "score": 0.75, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 11 - }, - { - "bbox": [ - 515, - 758, - 546, - 771 - ], - "score": 1.0, - "content": " m [3]", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - } - ], - "layout_bboxes": [], - "page_idx": 39, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 72, - 142, - 331, - 259 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 72, - 142, - 331, - 259 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 72, - 142, - 331, - 259 - ], - "spans": [ - { - "bbox": [ - 72, - 142, - 331, - 259 - ], - "score": 0.964, - "type": "image", - "image_path": "7a677d89dbd7850d8d60ee155f59b14fc5e084b7b662630729c59cfc12a7ffde.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 72, - 142, - 331, - 181.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 72, - 181.0, - 331, - 220.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 72, - 220.0, - 331, - 259.0 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5 - }, - { - "type": "image", - "bbox": [ - 73, - 366, - 372, - 569 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 73, - 366, - 372, - 569 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 73, - 366, - 372, - 569 - ], - "spans": [ - { - "bbox": [ - 73, - 366, - 372, - 569 - ], - "score": 0.966, - "type": "image", - "image_path": "6d33415e347daed1c4c7abfe4fb0f1585698a0071e38861ad56099682f0cd9ad.jpg" - } - ] - } - ], - "index": 12, - "virtual_lines": [ - { - "bbox": [ - 73, - 366, - 372, - 433.6666666666667 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 73, - 433.6666666666667, - 372, - 501.33333333333337 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 73, - 501.33333333333337, - 372, - 569.0 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "index": 12 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 60, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 60, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 266, - 43, - 328, - 76 - ], - "lines": [ - { - "bbox": [ - 288, - 43, - 307, - 59 - ], - "spans": [ - { - "bbox": [ - 288, - 43, - 307, - 59 - ], - "score": 1.0, - "content": "12", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 268, - 63, - 328, - 74 - ], - "spans": [ - { - "bbox": [ - 268, - 63, - 328, - 74 - ], - "score": 1.0, - "content": "SECTION B", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_39", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 234, - 88, - 360, - 102 - ], - "lines": [ - { - "bbox": [ - 236, - 89, - 359, - 101 - ], - "spans": [ - { - "bbox": [ - 236, - 89, - 359, - 101 - ], - "score": 1.0, - "content": "Answer all the questions.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_39", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 236, - 89, - 359, - 101 - ] - }, - { - "type": "text", - "bbox": [ - 43, - 114, - 453, - 128 - ], - "lines": [ - { - "bbox": [ - 47, - 113, - 454, - 129 - ], - "spans": [ - { - "bbox": [ - 47, - 113, - 454, - 129 - ], - "score": 1.0, - "content": "21 A person in a buggy is attached to a large parakite by a rope, as shown below.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_39", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 113, - 454, - 129 - ] - }, - { - "type": "image", - "bbox": [ - 72, - 142, - 331, - 259 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 72, - 142, - 331, - 259 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 72, - 142, - 331, - 259 - ], - "spans": [ - { - "bbox": [ - 72, - 142, - 331, - 259 - ], - "score": 0.964, - "type": "image", - "image_path": "7a677d89dbd7850d8d60ee155f59b14fc5e084b7b662630729c59cfc12a7ffde.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 72, - 142, - 331, - 181.0 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 72, - 181.0, - 331, - 220.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 72, - 220.0, - 331, - 259.0 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5, - "page_num": "page_39", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 72, - 273, - 447, - 288 - ], - "lines": [ - { - "bbox": [ - 72, - 275, - 447, - 287 - ], - "spans": [ - { - "bbox": [ - 72, - 275, - 447, - 287 - ], - "score": 1.0, - "content": "Strong wind acting on the parakite moves the buggy along horizontal ground.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_39", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 275, - 447, - 287 - ] - }, - { - "type": "text", - "bbox": [ - 71, - 299, - 522, - 326 - ], - "lines": [ - { - "bbox": [ - 70, - 299, - 522, - 314 - ], - "spans": [ - { - "bbox": [ - 70, - 299, - 210, - 314 - ], - "score": 1.0, - "content": "The rope makes an angle of", - "type": "text" - }, - { - "bbox": [ - 211, - 300, - 229, - 312 - ], - "score": 0.89, - "content": "55^{\\circ}", - "type": "inline_equation", - "height": 12, - "width": 18 - }, - { - "bbox": [ - 230, - 299, - 522, - 314 - ], - "score": 1.0, - "content": " to the horizontal. The total mass of the buggy and person is", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 71, - 311, - 108, - 329 - ], - "spans": [ - { - "bbox": [ - 71, - 313, - 104, - 326 - ], - "score": 0.41, - "content": "150\\mathsf{k g}", - "type": "inline_equation", - "height": 13, - "width": 33 - }, - { - "bbox": [ - 104, - 311, - 108, - 329 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8.5, - "page_num": "page_39", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 299, - 522, - 329 - ] - }, - { - "type": "text", - "bbox": [ - 72, - 338, - 388, - 353 - ], - "lines": [ - { - "bbox": [ - 72, - 339, - 387, - 352 - ], - "spans": [ - { - "bbox": [ - 72, - 339, - 387, - 352 - ], - "score": 1.0, - "content": "The velocity v against time t graph for the buggy is shown below.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_39", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 339, - 387, - 352 - ] - }, - { - "type": "image", - "bbox": [ - 73, - 366, - 372, - 569 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 73, - 366, - 372, - 569 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 73, - 366, - 372, - 569 - ], - "spans": [ - { - "bbox": [ - 73, - 366, - 372, - 569 - ], - "score": 0.966, - "type": "image", - "image_path": "6d33415e347daed1c4c7abfe4fb0f1585698a0071e38861ad56099682f0cd9ad.jpg" - } - ] - } - ], - "index": 12, - "virtual_lines": [ - { - "bbox": [ - 73, - 366, - 372, - 433.6666666666667 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 73, - 433.6666666666667, - 372, - 501.33333333333337 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 73, - 501.33333333333337, - 372, - 569.0 - ], - "spans": [], - "index": 13 - } - ] - } - ], - "index": 12, - "page_num": "page_39", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 67, - 587, - 472, - 602 - ], - "lines": [ - { - "bbox": [ - 70, - 588, - 472, - 603 - ], - "spans": [ - { - "bbox": [ - 70, - 588, - 391, - 603 - ], - "score": 1.0, - "content": "(a) Calculate the horizontal distance travelled by the buggy from", - "type": "text" - }, - { - "bbox": [ - 392, - 589, - 415, - 600 - ], - "score": 0.89, - "content": "t=0", - "type": "inline_equation", - "height": 11, - "width": 23 - }, - { - "bbox": [ - 415, - 588, - 428, - 603 - ], - "score": 1.0, - "content": " to", - "type": "text" - }, - { - "bbox": [ - 429, - 588, - 468, - 601 - ], - "score": 0.87, - "content": "t=8.05", - "type": "inline_equation", - "height": 13, - "width": 39 - }, - { - "bbox": [ - 468, - 588, - 472, - 603 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_39", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 588, - 472, - 603 - ] - }, - { - "type": "text", - "bbox": [ - 244, - 757, - 547, - 772 - ], - "lines": [ - { - "bbox": [ - 245, - 758, - 546, - 771 - ], - "spans": [ - { - "bbox": [ - 245, - 758, - 338, - 770 - ], - "score": 1.0, - "content": "horizontal distance", - "type": "text" - }, - { - "bbox": [ - 338, - 760, - 349, - 769 - ], - "score": 0.75, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 11 - }, - { - "bbox": [ - 515, - 758, - 546, - 771 - ], - "score": 1.0, - "content": " m [3]", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 71, - 62, - 273, - 77 - ], - "spans": [ - { - "bbox": [ - 71, - 62, - 107, - 77 - ], - "score": 1.0, - "content": "(b) At ", - "type": "text", - "cross_page": true - }, - { - "bbox": [ - 107, - 62, - 147, - 75 - ], - "score": 0.85, - "content": "t=1.0\\mathsf{s}", - "type": "inline_equation", - "height": 13, - "width": 40, - "cross_page": true - }, - { - "bbox": [ - 147, - 62, - 273, - 77 - ], - "score": 1.0, - "content": " the buggy is accelerating.", - "type": "text", - "cross_page": true - } - ], - "index": 0 - }, - { - "bbox": [ - 92, - 87, - 510, - 103 - ], - "spans": [ - { - "bbox": [ - 92, - 87, - 411, - 103 - ], - "score": 1.0, - "content": "(i) Use the graph to show that the acceleration of the person at ", - "type": "text", - "cross_page": true - }, - { - "bbox": [ - 411, - 88, - 451, - 101 - ], - "score": 0.87, - "content": "t=1.05", - "type": "inline_equation", - "height": 13, - "width": 40, - "cross_page": true - }, - { - "bbox": [ - 451, - 87, - 462, - 103 - ], - "score": 1.0, - "content": " is", - "type": "text", - "cross_page": true - }, - { - "bbox": [ - 463, - 87, - 506, - 101 - ], - "score": 0.87, - "content": "2.0\\mathsf{m}\\mathsf{s}^{-2}", - "type": "inline_equation", - "height": 14, - "width": 43, - "cross_page": true - }, - { - "bbox": [ - 507, - 87, - 510, - 103 - ], - "score": 1.0, - "content": ".", - "type": "text", - "cross_page": true - } - ], - "index": 1 - } - ], - "index": 15, - "page_num": "page_39", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 245, - 758, - 546, - 771 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 70, - 62, - 511, - 103 - ], - "lines": [ - { - "bbox": [ - 71, - 62, - 273, - 77 - ], - "spans": [ - { - "bbox": [ - 71, - 62, - 107, - 77 - ], - "score": 1.0, - "content": "(b) At ", - "type": "text" - }, - { - "bbox": [ - 107, - 62, - 147, - 75 - ], - "score": 0.85, - "content": "t=1.0\\mathsf{s}", - "type": "inline_equation", - "height": 13, - "width": 40 - }, - { - "bbox": [ - 147, - 62, - 273, - 77 - ], - "score": 1.0, - "content": " the buggy is accelerating.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 92, - 87, - 510, - 103 - ], - "spans": [ - { - "bbox": [ - 92, - 87, - 411, - 103 - ], - "score": 1.0, - "content": "(i) Use the graph to show that the acceleration of the person at ", - "type": "text" - }, - { - "bbox": [ - 411, - 88, - 451, - 101 - ], - "score": 0.87, - "content": "t=1.05", - "type": "inline_equation", - "height": 13, - "width": 40 - }, - { - "bbox": [ - 451, - 87, - 462, - 103 - ], - "score": 1.0, - "content": " is", - "type": "text" - }, - { - "bbox": [ - 463, - 87, - 506, - 101 - ], - "score": 0.87, - "content": "2.0\\mathsf{m}\\mathsf{s}^{-2}", - "type": "inline_equation", - "height": 14, - "width": 43 - }, - { - "bbox": [ - 507, - 87, - 510, - 103 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 87, - 243, - 540, - 298 - ], - "lines": [ - { - "bbox": [ - 92, - 244, - 537, - 258 - ], - "spans": [ - { - "bbox": [ - 92, - 245, - 109, - 258 - ], - "score": 1.0, - "content": "(ii) ", - "type": "text" - }, - { - "bbox": [ - 114, - 244, - 129, - 258 - ], - "score": 1.0, - "content": "At", - "type": "text" - }, - { - "bbox": [ - 130, - 245, - 169, - 257 - ], - "score": 0.88, - "content": "t=1.0\\mathsf{s}", - "type": "inline_equation", - "height": 12, - "width": 39 - }, - { - "bbox": [ - 170, - 244, - 228, - 258 - ], - "score": 1.0, - "content": " the tension ", - "type": "text" - }, - { - "bbox": [ - 228, - 245, - 237, - 256 - ], - "score": 0.48, - "content": "\\tau", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 237, - 244, - 303, - 258 - ], - "score": 1.0, - "content": " in the rope is", - "type": "text" - }, - { - "bbox": [ - 303, - 244, - 333, - 257 - ], - "score": 0.45, - "content": "680\\mathsf{N}", - "type": "inline_equation", - "height": 13, - "width": 30 - }, - { - "bbox": [ - 334, - 244, - 537, - 258 - ], - "score": 1.0, - "content": "and the total horizontal resistance acting", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 116, - 258, - 262, - 271 - ], - "spans": [ - { - "bbox": [ - 116, - 258, - 252, - 271 - ], - "score": 1.0, - "content": "on the buggy and person is ", - "type": "text" - }, - { - "bbox": [ - 252, - 258, - 262, - 269 - ], - "score": 0.41, - "content": "R", - "type": "inline_equation", - "height": 11, - "width": 10 - } - ], - "index": 3 - }, - { - "bbox": [ - 116, - 283, - 410, - 297 - ], - "spans": [ - { - "bbox": [ - 116, - 283, - 165, - 297 - ], - "score": 1.0, - "content": "Calculate", - "type": "text" - }, - { - "bbox": [ - 165, - 284, - 176, - 295 - ], - "score": 0.62, - "content": "R", - "type": "inline_equation", - "height": 11, - "width": 11 - }, - { - "bbox": [ - 176, - 283, - 410, - 297 - ], - "score": 1.0, - "content": " by resolving the tension in the rope horizontally.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 327, - 490, - 547, - 506 - ], - "lines": [ - { - "bbox": [ - 329, - 491, - 547, - 505 - ], - "spans": [ - { - "bbox": [ - 329, - 492, - 349, - 503 - ], - "score": 1.0, - "content": "R = ", - "type": "text" - }, - { - "bbox": [ - 516, - 491, - 547, - 505 - ], - "score": 1.0, - "content": " N [3]", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - } - ], - "layout_bboxes": [], - "page_idx": 40, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 484, - 774, - 531, - 785 - ], - "lines": [ - { - "bbox": [ - 483, - 774, - 532, - 786 - ], - "spans": [ - { - "bbox": [ - 483, - 774, - 532, - 786 - ], - "score": 1.0, - "content": "Turn over", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 219, - 546, - 232 - ], - "lines": [ - { - "bbox": [ - 530, - 217, - 549, - 235 - ], - "spans": [ - { - "bbox": [ - 530, - 217, - 549, - 235 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 291, - 44, - 305, - 55 - ], - "lines": [ - { - "bbox": [ - 289, - 44, - 306, - 57 - ], - "spans": [ - { - "bbox": [ - 289, - 44, - 306, - 57 - ], - "score": 1.0, - "content": "13", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 70, - 62, - 511, - 103 - ], - "lines": [], - "index": 0.5, - "page_num": "page_40", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 62, - 510, - 103 - ], - "lines_deleted": true - }, - { - "type": "text", - "bbox": [ - 87, - 243, - 540, - 298 - ], - "lines": [ - { - "bbox": [ - 92, - 244, - 537, - 258 - ], - "spans": [ - { - "bbox": [ - 92, - 245, - 109, - 258 - ], - "score": 1.0, - "content": "(ii) ", - "type": "text" - }, - { - "bbox": [ - 114, - 244, - 129, - 258 - ], - "score": 1.0, - "content": "At", - "type": "text" - }, - { - "bbox": [ - 130, - 245, - 169, - 257 - ], - "score": 0.88, - "content": "t=1.0\\mathsf{s}", - "type": "inline_equation", - "height": 12, - "width": 39 - }, - { - "bbox": [ - 170, - 244, - 228, - 258 - ], - "score": 1.0, - "content": " the tension ", - "type": "text" - }, - { - "bbox": [ - 228, - 245, - 237, - 256 - ], - "score": 0.48, - "content": "\\tau", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 237, - 244, - 303, - 258 - ], - "score": 1.0, - "content": " in the rope is", - "type": "text" - }, - { - "bbox": [ - 303, - 244, - 333, - 257 - ], - "score": 0.45, - "content": "680\\mathsf{N}", - "type": "inline_equation", - "height": 13, - "width": 30 - }, - { - "bbox": [ - 334, - 244, - 537, - 258 - ], - "score": 1.0, - "content": "and the total horizontal resistance acting", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 116, - 258, - 262, - 271 - ], - "spans": [ - { - "bbox": [ - 116, - 258, - 252, - 271 - ], - "score": 1.0, - "content": "on the buggy and person is ", - "type": "text" - }, - { - "bbox": [ - 252, - 258, - 262, - 269 - ], - "score": 0.41, - "content": "R", - "type": "inline_equation", - "height": 11, - "width": 10 - } - ], - "index": 3 - }, - { - "bbox": [ - 116, - 283, - 410, - 297 - ], - "spans": [ - { - "bbox": [ - 116, - 283, - 165, - 297 - ], - "score": 1.0, - "content": "Calculate", - "type": "text" - }, - { - "bbox": [ - 165, - 284, - 176, - 295 - ], - "score": 0.62, - "content": "R", - "type": "inline_equation", - "height": 11, - "width": 11 - }, - { - "bbox": [ - 176, - 283, - 410, - 297 - ], - "score": 1.0, - "content": " by resolving the tension in the rope horizontally.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3, - "page_num": "page_40", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 92, - 244, - 537, - 297 - ] - }, - { - "type": "text", - "bbox": [ - 327, - 490, - 547, - 506 - ], - "lines": [ - { - "bbox": [ - 329, - 491, - 547, - 505 - ], - "spans": [ - { - "bbox": [ - 329, - 492, - 349, - 503 - ], - "score": 1.0, - "content": "R = ", - "type": "text" - }, - { - "bbox": [ - 516, - 491, - 547, - 505 - ], - "score": 1.0, - "content": " N [3]", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_40", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 329, - 491, - 547, - 505 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 48, - 62, - 525, - 102 - ], - "lines": [ - { - "bbox": [ - 47, - 61, - 522, - 77 - ], - "spans": [ - { - "bbox": [ - 47, - 61, - 522, - 77 - ], - "score": 1.0, - "content": "22 A pogo stick is a spring-based toy used by a circus clown for jumping vertically up and down.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 71, - 77, - 524, - 89 - ], - "spans": [ - { - "bbox": [ - 71, - 77, - 524, - 89 - ], - "score": 1.0, - "content": "A compression spring is fixed to the bottom of the pogo stick. The upper end of the spring is", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 71, - 89, - 227, - 102 - ], - "spans": [ - { - "bbox": [ - 71, - 89, - 227, - 102 - ], - "score": 1.0, - "content": "attached to a movable platform.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1 - }, - { - "type": "image", - "bbox": [ - 74, - 114, - 235, - 295 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 74, - 114, - 235, - 295 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 74, - 114, - 235, - 295 - ], - "spans": [ - { - "bbox": [ - 74, - 114, - 235, - 295 - ], - "score": 0.944, - "type": "image", - "image_path": "82d54580131e9f95905bf28f4b9f3585c6e8272d31e608afe853480770dccf41.jpg" - } - ] - } - ], - "index": 9, - "virtual_lines": [ - { - "bbox": [ - 74, - 114, - 235, - 128 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 74, - 128, - 235, - 142 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 74, - 142, - 235, - 156 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 74, - 156, - 235, - 170 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 74, - 170, - 235, - 184 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 74, - 184, - 235, - 198 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 74, - 198, - 235, - 212 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 74, - 212, - 235, - 226 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 74, - 226, - 235, - 240 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 74, - 240, - 235, - 254 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 74, - 254, - 235, - 268 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 74, - 268, - 235, - 282 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 74, - 282, - 235, - 296 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 71, - 311, - 453, - 352 - ], - "lines": [ - { - "bbox": [ - 70, - 311, - 318, - 325 - ], - "spans": [ - { - "bbox": [ - 70, - 311, - 239, - 325 - ], - "score": 1.0, - "content": "The force constant of the spring is", - "type": "text" - }, - { - "bbox": [ - 240, - 311, - 314, - 324 - ], - "score": 0.92, - "content": "1.7\\times10^{4}\\mathsf{N m}^{-1}", - "type": "inline_equation", - "height": 13, - "width": 74 - }, - { - "bbox": [ - 315, - 311, - 318, - 325 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 71, - 325, - 225, - 338 - ], - "spans": [ - { - "bbox": [ - 71, - 325, - 194, - 338 - ], - "score": 1.0, - "content": "The mass of the clown is", - "type": "text" - }, - { - "bbox": [ - 194, - 325, - 221, - 338 - ], - "score": 0.75, - "content": "68\\mathsf{k g}", - "type": "inline_equation", - "height": 13, - "width": 27 - }, - { - "bbox": [ - 222, - 325, - 225, - 338 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 70, - 338, - 452, - 352 - ], - "spans": [ - { - "bbox": [ - 70, - 338, - 452, - 352 - ], - "score": 1.0, - "content": "The mass of the pogo stick is negligible compared with the mass of the clown.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 17 - }, - { - "type": "text", - "bbox": [ - 70, - 363, - 496, - 377 - ], - "lines": [ - { - "bbox": [ - 71, - 363, - 496, - 377 - ], - "spans": [ - { - "bbox": [ - 71, - 363, - 496, - 377 - ], - "score": 1.0, - "content": "The table below shows the state of the spring and the clown in three different positions.", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 19 - }, - { - "type": "table", - "bbox": [ - 55, - 388, - 549, - 665 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 55, - 388, - 549, - 665 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 55, - 388, - 549, - 665 - ], - "spans": [ - { - "bbox": [ - 55, - 388, - 549, - 665 - ], - "score": 0.514, - "html": "
Position APosition BPosition C
25 cm45 cm76 cm
State of springground fully compressedground original lengthground original length
State of clownstationaryMoving vertically upwards atstationary
Height of platform above the ground/cm25maximum speed 4576
", - "type": "table", - "image_path": "0c78c3f78fe9d4f1a8c07f43b64e7b511f66acd2b2b3c49f3c1b54dfbb7583ae.jpg" - } - ] - } - ], - "index": 21, - "virtual_lines": [ - { - "bbox": [ - 55, - 388, - 549, - 480.3333333333333 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 55, - 480.3333333333333, - 549, - 572.6666666666666 - ], - "spans": [], - "index": 21 - }, - { - "bbox": [ - 55, - 572.6666666666666, - 549, - 665.0 - ], - "spans": [], - "index": 22 - } - ] - } - ], - "index": 21 - } - ], - "layout_bboxes": [], - "page_idx": 41, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 74, - 114, - 235, - 295 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 74, - 114, - 235, - 295 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 74, - 114, - 235, - 295 - ], - "spans": [ - { - "bbox": [ - 74, - 114, - 235, - 295 - ], - "score": 0.944, - "type": "image", - "image_path": "82d54580131e9f95905bf28f4b9f3585c6e8272d31e608afe853480770dccf41.jpg" - } - ] - } - ], - "index": 9, - "virtual_lines": [ - { - "bbox": [ - 74, - 114, - 235, - 128 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 74, - 128, - 235, - 142 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 74, - 142, - 235, - 156 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 74, - 156, - 235, - 170 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 74, - 170, - 235, - 184 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 74, - 184, - 235, - 198 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 74, - 198, - 235, - 212 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 74, - 212, - 235, - 226 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 74, - 226, - 235, - 240 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 74, - 240, - 235, - 254 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 74, - 254, - 235, - 268 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 74, - 268, - 235, - 282 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 74, - 282, - 235, - 296 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 9 - } - ], - "tables": [ - { - "type": "table", - "bbox": [ - 55, - 388, - 549, - 665 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 55, - 388, - 549, - 665 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 55, - 388, - 549, - 665 - ], - "spans": [ - { - "bbox": [ - 55, - 388, - 549, - 665 - ], - "score": 0.514, - "html": "
Position APosition BPosition C
25 cm45 cm76 cm
State of springground fully compressedground original lengthground original length
State of clownstationaryMoving vertically upwards atstationary
Height of platform above the ground/cm25maximum speed 4576
", - "type": "table", - "image_path": "0c78c3f78fe9d4f1a8c07f43b64e7b511f66acd2b2b3c49f3c1b54dfbb7583ae.jpg" - } - ] - } - ], - "index": 21, - "virtual_lines": [ - { - "bbox": [ - 55, - 388, - 549, - 480.3333333333333 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 55, - 480.3333333333333, - 549, - 572.6666666666666 - ], - "spans": [], - "index": 21 - }, - { - "bbox": [ - 55, - 572.6666666666666, - 549, - 665.0 - ], - "spans": [], - "index": 22 - } - ] - } - ], - "index": 21 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 291, - 44, - 304, - 55 - ], - "lines": [ - { - "bbox": [ - 289, - 43, - 307, - 57 - ], - "spans": [ - { - "bbox": [ - 289, - 43, - 307, - 57 - ], - "score": 1.0, - "content": "14", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "spans": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 48, - 62, - 525, - 102 - ], - "lines": [ - { - "bbox": [ - 47, - 61, - 522, - 77 - ], - "spans": [ - { - "bbox": [ - 47, - 61, - 522, - 77 - ], - "score": 1.0, - "content": "22 A pogo stick is a spring-based toy used by a circus clown for jumping vertically up and down.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 71, - 77, - 524, - 89 - ], - "spans": [ - { - "bbox": [ - 71, - 77, - 524, - 89 - ], - "score": 1.0, - "content": "A compression spring is fixed to the bottom of the pogo stick. The upper end of the spring is", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 71, - 89, - 227, - 102 - ], - "spans": [ - { - "bbox": [ - 71, - 89, - 227, - 102 - ], - "score": 1.0, - "content": "attached to a movable platform.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1, - "page_num": "page_41", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 61, - 524, - 102 - ] - }, - { - "type": "image", - "bbox": [ - 74, - 114, - 235, - 295 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 74, - 114, - 235, - 295 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 74, - 114, - 235, - 295 - ], - "spans": [ - { - "bbox": [ - 74, - 114, - 235, - 295 - ], - "score": 0.944, - "type": "image", - "image_path": "82d54580131e9f95905bf28f4b9f3585c6e8272d31e608afe853480770dccf41.jpg" - } - ] - } - ], - "index": 9, - "virtual_lines": [ - { - "bbox": [ - 74, - 114, - 235, - 128 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 74, - 128, - 235, - 142 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 74, - 142, - 235, - 156 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 74, - 156, - 235, - 170 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 74, - 170, - 235, - 184 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 74, - 184, - 235, - 198 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 74, - 198, - 235, - 212 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 74, - 212, - 235, - 226 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 74, - 226, - 235, - 240 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 74, - 240, - 235, - 254 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 74, - 254, - 235, - 268 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 74, - 268, - 235, - 282 - ], - "spans": [], - "index": 14 - }, - { - "bbox": [ - 74, - 282, - 235, - 296 - ], - "spans": [], - "index": 15 - } - ] - } - ], - "index": 9, - "page_num": "page_41", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "list", - "bbox": [ - 71, - 311, - 453, - 352 - ], - "lines": [ - { - "bbox": [ - 70, - 311, - 318, - 325 - ], - "spans": [ - { - "bbox": [ - 70, - 311, - 239, - 325 - ], - "score": 1.0, - "content": "The force constant of the spring is", - "type": "text" - }, - { - "bbox": [ - 240, - 311, - 314, - 324 - ], - "score": 0.92, - "content": "1.7\\times10^{4}\\mathsf{N m}^{-1}", - "type": "inline_equation", - "height": 13, - "width": 74 - }, - { - "bbox": [ - 315, - 311, - 318, - 325 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 16, - "is_list_end_line": true - }, - { - "bbox": [ - 71, - 325, - 225, - 338 - ], - "spans": [ - { - "bbox": [ - 71, - 325, - 194, - 338 - ], - "score": 1.0, - "content": "The mass of the clown is", - "type": "text" - }, - { - "bbox": [ - 194, - 325, - 221, - 338 - ], - "score": 0.75, - "content": "68\\mathsf{k g}", - "type": "inline_equation", - "height": 13, - "width": 27 - }, - { - "bbox": [ - 222, - 325, - 225, - 338 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 17, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 70, - 338, - 452, - 352 - ], - "spans": [ - { - "bbox": [ - 70, - 338, - 452, - 352 - ], - "score": 1.0, - "content": "The mass of the pogo stick is negligible compared with the mass of the clown.", - "type": "text" - } - ], - "index": 18, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 17, - "page_num": "page_41", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 311, - 452, - 352 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 363, - 496, - 377 - ], - "lines": [ - { - "bbox": [ - 71, - 363, - 496, - 377 - ], - "spans": [ - { - "bbox": [ - 71, - 363, - 496, - 377 - ], - "score": 1.0, - "content": "The table below shows the state of the spring and the clown in three different positions.", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 19, - "page_num": "page_41", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 363, - 496, - 377 - ] - }, - { - "type": "table", - "bbox": [ - 55, - 388, - 549, - 665 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 55, - 388, - 549, - 665 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 55, - 388, - 549, - 665 - ], - "spans": [ - { - "bbox": [ - 55, - 388, - 549, - 665 - ], - "score": 0.514, - "html": "
Position APosition BPosition C
25 cm45 cm76 cm
State of springground fully compressedground original lengthground original length
State of clownstationaryMoving vertically upwards atstationary
Height of platform above the ground/cm25maximum speed 4576
", - "type": "table", - "image_path": "0c78c3f78fe9d4f1a8c07f43b64e7b511f66acd2b2b3c49f3c1b54dfbb7583ae.jpg" - } - ] - } - ], - "index": 21, - "virtual_lines": [ - { - "bbox": [ - 55, - 388, - 549, - 480.3333333333333 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 55, - 480.3333333333333, - 549, - 572.6666666666666 - ], - "spans": [], - "index": 21 - }, - { - "bbox": [ - 55, - 572.6666666666666, - 549, - 665.0 - ], - "spans": [], - "index": 22 - } - ] - } - ], - "index": 21, - "page_num": "page_41", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 69, - 61, - 547, - 194 - ], - "lines": [ - { - "bbox": [ - 70, - 62, - 540, - 77 - ], - "spans": [ - { - "bbox": [ - 70, - 62, - 540, - 77 - ], - "score": 1.0, - "content": "(a) Describe how the force constant of the compression spring in the pogo stick can be verified ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 92, - 74, - 177, - 89 - ], - "spans": [ - { - "bbox": [ - 92, - 74, - 177, - 89 - ], - "score": 1.0, - "content": "in the laboratory.", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 527, - 178, - 548, - 195 - ], - "spans": [ - { - "bbox": [ - 527, - 178, - 548, - 195 - ], - "score": 1.0, - "content": ". [2]", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 69, - 204, - 549, - 272 - ], - "lines": [ - { - "bbox": [ - 70, - 205, - 438, - 219 - ], - "spans": [ - { - "bbox": [ - 70, - 205, - 438, - 219 - ], - "score": 1.0, - "content": "(b) Describe the energy changes taking place between positions B and C.", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 527, - 257, - 548, - 272 - ], - "spans": [ - { - "bbox": [ - 527, - 257, - 548, - 272 - ], - "score": 1.0, - "content": ". [1]", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5 - }, - { - "type": "text", - "bbox": [ - 68, - 282, - 421, - 298 - ], - "lines": [ - { - "bbox": [ - 70, - 283, - 420, - 298 - ], - "spans": [ - { - "bbox": [ - 70, - 283, - 248, - 298 - ], - "score": 1.0, - "content": "(c) Calculate the maximum energy", - "type": "text" - }, - { - "bbox": [ - 248, - 284, - 258, - 295 - ], - "score": 0.74, - "content": "E", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 259, - 283, - 420, - 298 - ], - "score": 1.0, - "content": "stored in the compressed spring.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 328, - 452, - 547, - 467 - ], - "lines": [ - { - "bbox": [ - 330, - 452, - 547, - 467 - ], - "spans": [ - { - "bbox": [ - 330, - 453, - 348, - 464 - ], - "score": 1.0, - "content": "E =", - "type": "text" - }, - { - "bbox": [ - 519, - 452, - 547, - 467 - ], - "score": 1.0, - "content": " J [2]", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 66, - 477, - 548, - 611 - ], - "lines": [ - { - "bbox": [ - 72, - 479, - 537, - 492 - ], - "spans": [ - { - "bbox": [ - 72, - 479, - 456, - 492 - ], - "score": 1.0, - "content": "(d) A student uses the following expression to determine the maximum speed ", - "type": "text" - }, - { - "bbox": [ - 456, - 480, - 464, - 490 - ], - "score": 0.52, - "content": "V", - "type": "inline_equation", - "height": 10, - "width": 8 - }, - { - "bbox": [ - 465, - 479, - 537, - 492 - ], - "score": 1.0, - "content": "of the clown in", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 92, - 492, - 149, - 505 - ], - "spans": [ - { - "bbox": [ - 92, - 492, - 149, - 505 - ], - "score": 1.0, - "content": "position B:", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 91, - 509, - 419, - 534 - ], - "spans": [ - { - "bbox": [ - 91, - 515, - 181, - 534 - ], - "score": 1.0, - "content": "maximum energy ", - "type": "text" - }, - { - "bbox": [ - 181, - 518, - 191, - 529 - ], - "score": 0.65, - "content": "E", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 191, - 515, - 347, - 534 - ], - "score": 1.0, - "content": " stored in the compressed spring", - "type": "text" - }, - { - "bbox": [ - 348, - 509, - 419, - 534 - ], - "score": 0.4, - "content": "\\mathbf{\\delta}\\mathbf{\\sigma}={\\frac{1}{2}}\\times68\\times V^{2}.", - "type": "inline_equation" - } - ], - "index": 9 - }, - { - "bbox": [ - 95, - 543, - 507, - 557 - ], - "spans": [ - { - "bbox": [ - 95, - 543, - 507, - 557 - ], - "score": 1.0, - "content": "Explain why this expression is incorrect. You are not expected to do any calculations.", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 526, - 595, - 548, - 610 - ], - "spans": [ - { - "bbox": [ - 526, - 595, - 548, - 610 - ], - "score": 1.0, - "content": ". [1]", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 9 - } - ], - "layout_bboxes": [], - "page_idx": 42, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 60, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 60, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 484, - 774, - 531, - 785 - ], - "lines": [ - { - "bbox": [ - 483, - 773, - 532, - 786 - ], - "spans": [ - { - "bbox": [ - 483, - 773, - 532, - 786 - ], - "score": 1.0, - "content": "Turn over", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 291, - 44, - 305, - 56 - ], - "lines": [ - { - "bbox": [ - 289, - 44, - 306, - 57 - ], - "spans": [ - { - "bbox": [ - 289, - 44, - 306, - 57 - ], - "score": 1.0, - "content": "15", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 69, - 61, - 547, - 194 - ], - "lines": [ - { - "bbox": [ - 70, - 62, - 540, - 77 - ], - "spans": [ - { - "bbox": [ - 70, - 62, - 540, - 77 - ], - "score": 1.0, - "content": "(a) Describe how the force constant of the compression spring in the pogo stick can be verified ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 92, - 74, - 177, - 89 - ], - "spans": [ - { - "bbox": [ - 92, - 74, - 177, - 89 - ], - "score": 1.0, - "content": "in the laboratory.", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 527, - 178, - 548, - 195 - ], - "spans": [ - { - "bbox": [ - 527, - 178, - 548, - 195 - ], - "score": 1.0, - "content": ". [2]", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 70, - 205, - 438, - 219 - ], - "spans": [ - { - "bbox": [ - 70, - 205, - 438, - 219 - ], - "score": 1.0, - "content": "(b) Describe the energy changes taking place between positions B and C.", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 527, - 257, - 548, - 272 - ], - "spans": [ - { - "bbox": [ - 527, - 257, - 548, - 272 - ], - "score": 1.0, - "content": ". [1]", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 70, - 283, - 420, - 298 - ], - "spans": [ - { - "bbox": [ - 70, - 283, - 248, - 298 - ], - "score": 1.0, - "content": "(c) Calculate the maximum energy", - "type": "text" - }, - { - "bbox": [ - 248, - 284, - 258, - 295 - ], - "score": 0.74, - "content": "E", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 259, - 283, - 420, - 298 - ], - "score": 1.0, - "content": "stored in the compressed spring.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 1, - "page_num": "page_42", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 62, - 548, - 195 - ] - }, - { - "type": "text", - "bbox": [ - 69, - 204, - 549, - 272 - ], - "lines": [], - "index": 3.5, - "page_num": "page_42", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 205, - 548, - 272 - ], - "lines_deleted": true - }, - { - "type": "text", - "bbox": [ - 68, - 282, - 421, - 298 - ], - "lines": [], - "index": 5, - "page_num": "page_42", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 283, - 420, - 298 - ], - "lines_deleted": true - }, - { - "type": "text", - "bbox": [ - 328, - 452, - 547, - 467 - ], - "lines": [ - { - "bbox": [ - 330, - 452, - 547, - 467 - ], - "spans": [ - { - "bbox": [ - 330, - 453, - 348, - 464 - ], - "score": 1.0, - "content": "E =", - "type": "text" - }, - { - "bbox": [ - 519, - 452, - 547, - 467 - ], - "score": 1.0, - "content": " J [2]", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_42", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 330, - 452, - 547, - 467 - ] - }, - { - "type": "text", - "bbox": [ - 66, - 477, - 548, - 611 - ], - "lines": [ - { - "bbox": [ - 72, - 479, - 537, - 492 - ], - "spans": [ - { - "bbox": [ - 72, - 479, - 456, - 492 - ], - "score": 1.0, - "content": "(d) A student uses the following expression to determine the maximum speed ", - "type": "text" - }, - { - "bbox": [ - 456, - 480, - 464, - 490 - ], - "score": 0.52, - "content": "V", - "type": "inline_equation", - "height": 10, - "width": 8 - }, - { - "bbox": [ - 465, - 479, - 537, - 492 - ], - "score": 1.0, - "content": "of the clown in", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 92, - 492, - 149, - 505 - ], - "spans": [ - { - "bbox": [ - 92, - 492, - 149, - 505 - ], - "score": 1.0, - "content": "position B:", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 91, - 509, - 419, - 534 - ], - "spans": [ - { - "bbox": [ - 91, - 515, - 181, - 534 - ], - "score": 1.0, - "content": "maximum energy ", - "type": "text" - }, - { - "bbox": [ - 181, - 518, - 191, - 529 - ], - "score": 0.65, - "content": "E", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 191, - 515, - 347, - 534 - ], - "score": 1.0, - "content": " stored in the compressed spring", - "type": "text" - }, - { - "bbox": [ - 348, - 509, - 419, - 534 - ], - "score": 0.4, - "content": "\\mathbf{\\delta}\\mathbf{\\sigma}={\\frac{1}{2}}\\times68\\times V^{2}.", - "type": "inline_equation" - } - ], - "index": 9 - }, - { - "bbox": [ - 95, - 543, - 507, - 557 - ], - "spans": [ - { - "bbox": [ - 95, - 543, - 507, - 557 - ], - "score": 1.0, - "content": "Explain why this expression is incorrect. You are not expected to do any calculations.", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 526, - 595, - 548, - 610 - ], - "spans": [ - { - "bbox": [ - 526, - 595, - 548, - 610 - ], - "score": 1.0, - "content": ". [1]", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 9, - "page_num": "page_42", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 479, - 548, - 610 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 49, - 62, - 538, - 89 - ], - "lines": [ - { - "bbox": [ - 47, - 62, - 537, - 76 - ], - "spans": [ - { - "bbox": [ - 47, - 62, - 537, - 76 - ], - "score": 1.0, - "content": "23 Two objects A and B are travelling horizontally and in opposite directions. The objects collide in ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 72, - 75, - 431, - 88 - ], - "spans": [ - { - "bbox": [ - 72, - 77, - 174, - 88 - ], - "score": 1.0, - "content": "mid-air at a height of", - "type": "text" - }, - { - "bbox": [ - 175, - 75, - 205, - 88 - ], - "score": 0.6, - "content": "120\\ m", - "type": "inline_equation", - "height": 13, - "width": 30 - }, - { - "bbox": [ - 205, - 77, - 431, - 88 - ], - "score": 1.0, - "content": " above the horizontal ground, as shown below.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "image", - "bbox": [ - 73, - 101, - 263, - 220 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 73, - 101, - 263, - 220 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 73, - 101, - 263, - 220 - ], - "spans": [ - { - "bbox": [ - 73, - 101, - 263, - 220 - ], - "score": 0.969, - "type": "image", - "image_path": "ad3e775cc40b6b0083ee91f388ecd745cb0b670238724f4ea4829ff0d1796f58.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 73, - 101, - 263, - 114.5 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 73, - 114.5, - 263, - 128.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 73, - 128.0, - 263, - 141.5 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 73, - 141.5, - 263, - 155.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 73, - 155.0, - 263, - 168.5 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 73, - 168.5, - 263, - 182.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 73, - 182.0, - 263, - 195.5 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 73, - 195.5, - 263, - 209.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 73, - 209.0, - 263, - 222.5 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 71, - 234, - 325, - 249 - ], - "lines": [ - { - "bbox": [ - 71, - 234, - 324, - 248 - ], - "spans": [ - { - "bbox": [ - 71, - 234, - 156, - 248 - ], - "score": 1.0, - "content": "The mass of A is", - "type": "text" - }, - { - "bbox": [ - 156, - 235, - 187, - 248 - ], - "score": 0.74, - "content": "2.0\\mathsf{k g}", - "type": "inline_equation", - "height": 13, - "width": 31 - }, - { - "bbox": [ - 187, - 234, - 291, - 248 - ], - "score": 1.0, - "content": " and the mass of B is", - "type": "text" - }, - { - "bbox": [ - 291, - 235, - 321, - 248 - ], - "score": 0.79, - "content": "3.0\\mathsf{k g}", - "type": "inline_equation", - "height": 13, - "width": 30 - }, - { - "bbox": [ - 321, - 234, - 324, - 248 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 71, - 260, - 310, - 274 - ], - "lines": [ - { - "bbox": [ - 72, - 261, - 309, - 274 - ], - "spans": [ - { - "bbox": [ - 72, - 261, - 309, - 274 - ], - "score": 1.0, - "content": "After the collision the objects are joined together.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 70, - 286, - 538, - 313 - ], - "lines": [ - { - "bbox": [ - 70, - 286, - 538, - 302 - ], - "spans": [ - { - "bbox": [ - 70, - 286, - 150, - 302 - ], - "score": 1.0, - "content": "The momentum", - "type": "text" - }, - { - "bbox": [ - 150, - 289, - 159, - 300 - ], - "score": 0.77, - "content": "p", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 160, - 286, - 538, - 302 - ], - "score": 1.0, - "content": " against time t graphs for each object before, during and after the collision are ", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 71, - 300, - 139, - 313 - ], - "spans": [ - { - "bbox": [ - 71, - 300, - 139, - 313 - ], - "score": 1.0, - "content": "shown below.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 13.5 - }, - { - "type": "image", - "bbox": [ - 76, - 327, - 348, - 669 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 76, - 327, - 348, - 669 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 76, - 327, - 348, - 669 - ], - "spans": [ - { - "bbox": [ - 76, - 327, - 348, - 669 - ], - "score": 0.968, - "type": "image", - "image_path": "de9a91b1869c584ce0fcdb402cfb99a6944424d64c90bbeff21ff66cc1889627.jpg" - } - ] - } - ], - "index": 27.5, - "virtual_lines": [ - { - "bbox": [ - 76, - 327, - 348, - 340.5 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 76, - 340.5, - 348, - 354.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 76, - 354.0, - 348, - 367.5 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 76, - 367.5, - 348, - 381.0 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 76, - 381.0, - 348, - 394.5 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 76, - 394.5, - 348, - 408.0 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 76, - 408.0, - 348, - 421.5 - ], - "spans": [], - "index": 21 - }, - { - "bbox": [ - 76, - 421.5, - 348, - 435.0 - ], - "spans": [], - "index": 22 - }, - { - "bbox": [ - 76, - 435.0, - 348, - 448.5 - ], - "spans": [], - "index": 23 - }, - { - "bbox": [ - 76, - 448.5, - 348, - 462.0 - ], - "spans": [], - "index": 24 - }, - { - "bbox": [ - 76, - 462.0, - 348, - 475.5 - ], - "spans": [], - "index": 25 - }, - { - "bbox": [ - 76, - 475.5, - 348, - 489.0 - ], - "spans": [], - "index": 26 - }, - { - "bbox": [ - 76, - 489.0, - 348, - 502.5 - ], - "spans": [], - "index": 27 - }, - { - "bbox": [ - 76, - 502.5, - 348, - 516.0 - ], - "spans": [], - "index": 28 - }, - { - "bbox": [ - 76, - 516.0, - 348, - 529.5 - ], - "spans": [], - "index": 29 - }, - { - "bbox": [ - 76, - 529.5, - 348, - 543.0 - ], - "spans": [], - "index": 30 - }, - { - "bbox": [ - 76, - 543.0, - 348, - 556.5 - ], - "spans": [], - "index": 31 - }, - { - "bbox": [ - 76, - 556.5, - 348, - 570.0 - ], - "spans": [], - "index": 32 - }, - { - "bbox": [ - 76, - 570.0, - 348, - 583.5 - ], - "spans": [], - "index": 33 - }, - { - "bbox": [ - 76, - 583.5, - 348, - 597.0 - ], - "spans": [], - "index": 34 - }, - { - "bbox": [ - 76, - 597.0, - 348, - 610.5 - ], - "spans": [], - "index": 35 - }, - { - "bbox": [ - 76, - 610.5, - 348, - 624.0 - ], - "spans": [], - "index": 36 - }, - { - "bbox": [ - 76, - 624.0, - 348, - 637.5 - ], - "spans": [], - "index": 37 - }, - { - "bbox": [ - 76, - 637.5, - 348, - 651.0 - ], - "spans": [], - "index": 38 - }, - { - "bbox": [ - 76, - 651.0, - 348, - 664.5 - ], - "spans": [], - "index": 39 - }, - { - "bbox": [ - 76, - 664.5, - 348, - 678.0 - ], - "spans": [], - "index": 40 - } - ] - } - ], - "index": 27.5 - } - ], - "layout_bboxes": [], - "page_idx": 43, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 73, - 101, - 263, - 220 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 73, - 101, - 263, - 220 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 73, - 101, - 263, - 220 - ], - "spans": [ - { - "bbox": [ - 73, - 101, - 263, - 220 - ], - "score": 0.969, - "type": "image", - "image_path": "ad3e775cc40b6b0083ee91f388ecd745cb0b670238724f4ea4829ff0d1796f58.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 73, - 101, - 263, - 114.5 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 73, - 114.5, - 263, - 128.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 73, - 128.0, - 263, - 141.5 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 73, - 141.5, - 263, - 155.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 73, - 155.0, - 263, - 168.5 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 73, - 168.5, - 263, - 182.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 73, - 182.0, - 263, - 195.5 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 73, - 195.5, - 263, - 209.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 73, - 209.0, - 263, - 222.5 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 6 - }, - { - "type": "image", - "bbox": [ - 76, - 327, - 348, - 669 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 76, - 327, - 348, - 669 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 76, - 327, - 348, - 669 - ], - "spans": [ - { - "bbox": [ - 76, - 327, - 348, - 669 - ], - "score": 0.968, - "type": "image", - "image_path": "de9a91b1869c584ce0fcdb402cfb99a6944424d64c90bbeff21ff66cc1889627.jpg" - } - ] - } - ], - "index": 27.5, - "virtual_lines": [ - { - "bbox": [ - 76, - 327, - 348, - 340.5 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 76, - 340.5, - 348, - 354.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 76, - 354.0, - 348, - 367.5 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 76, - 367.5, - 348, - 381.0 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 76, - 381.0, - 348, - 394.5 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 76, - 394.5, - 348, - 408.0 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 76, - 408.0, - 348, - 421.5 - ], - "spans": [], - "index": 21 - }, - { - "bbox": [ - 76, - 421.5, - 348, - 435.0 - ], - "spans": [], - "index": 22 - }, - { - "bbox": [ - 76, - 435.0, - 348, - 448.5 - ], - "spans": [], - "index": 23 - }, - { - "bbox": [ - 76, - 448.5, - 348, - 462.0 - ], - "spans": [], - "index": 24 - }, - { - "bbox": [ - 76, - 462.0, - 348, - 475.5 - ], - "spans": [], - "index": 25 - }, - { - "bbox": [ - 76, - 475.5, - 348, - 489.0 - ], - "spans": [], - "index": 26 - }, - { - "bbox": [ - 76, - 489.0, - 348, - 502.5 - ], - "spans": [], - "index": 27 - }, - { - "bbox": [ - 76, - 502.5, - 348, - 516.0 - ], - "spans": [], - "index": 28 - }, - { - "bbox": [ - 76, - 516.0, - 348, - 529.5 - ], - "spans": [], - "index": 29 - }, - { - "bbox": [ - 76, - 529.5, - 348, - 543.0 - ], - "spans": [], - "index": 30 - }, - { - "bbox": [ - 76, - 543.0, - 348, - 556.5 - ], - "spans": [], - "index": 31 - }, - { - "bbox": [ - 76, - 556.5, - 348, - 570.0 - ], - "spans": [], - "index": 32 - }, - { - "bbox": [ - 76, - 570.0, - 348, - 583.5 - ], - "spans": [], - "index": 33 - }, - { - "bbox": [ - 76, - 583.5, - 348, - 597.0 - ], - "spans": [], - "index": 34 - }, - { - "bbox": [ - 76, - 597.0, - 348, - 610.5 - ], - "spans": [], - "index": 35 - }, - { - "bbox": [ - 76, - 610.5, - 348, - 624.0 - ], - "spans": [], - "index": 36 - }, - { - "bbox": [ - 76, - 624.0, - 348, - 637.5 - ], - "spans": [], - "index": 37 - }, - { - "bbox": [ - 76, - 637.5, - 348, - 651.0 - ], - "spans": [], - "index": 38 - }, - { - "bbox": [ - 76, - 651.0, - 348, - 664.5 - ], - "spans": [], - "index": 39 - }, - { - "bbox": [ - 76, - 664.5, - 348, - 678.0 - ], - "spans": [], - "index": 40 - } - ] - } - ], - "index": 27.5 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 291, - 44, - 304, - 55 - ], - "lines": [ - { - "bbox": [ - 289, - 43, - 307, - 57 - ], - "spans": [ - { - "bbox": [ - 289, - 43, - 307, - 57 - ], - "score": 1.0, - "content": "16", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "spans": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 49, - 62, - 538, - 89 - ], - "lines": [ - { - "bbox": [ - 47, - 62, - 537, - 76 - ], - "spans": [ - { - "bbox": [ - 47, - 62, - 537, - 76 - ], - "score": 1.0, - "content": "23 Two objects A and B are travelling horizontally and in opposite directions. The objects collide in ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 72, - 75, - 431, - 88 - ], - "spans": [ - { - "bbox": [ - 72, - 77, - 174, - 88 - ], - "score": 1.0, - "content": "mid-air at a height of", - "type": "text" - }, - { - "bbox": [ - 175, - 75, - 205, - 88 - ], - "score": 0.6, - "content": "120\\ m", - "type": "inline_equation", - "height": 13, - "width": 30 - }, - { - "bbox": [ - 205, - 77, - 431, - 88 - ], - "score": 1.0, - "content": " above the horizontal ground, as shown below.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_43", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 62, - 537, - 88 - ] - }, - { - "type": "image", - "bbox": [ - 73, - 101, - 263, - 220 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 73, - 101, - 263, - 220 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 73, - 101, - 263, - 220 - ], - "spans": [ - { - "bbox": [ - 73, - 101, - 263, - 220 - ], - "score": 0.969, - "type": "image", - "image_path": "ad3e775cc40b6b0083ee91f388ecd745cb0b670238724f4ea4829ff0d1796f58.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 73, - 101, - 263, - 114.5 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 73, - 114.5, - 263, - 128.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 73, - 128.0, - 263, - 141.5 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 73, - 141.5, - 263, - 155.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 73, - 155.0, - 263, - 168.5 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 73, - 168.5, - 263, - 182.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 73, - 182.0, - 263, - 195.5 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 73, - 195.5, - 263, - 209.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 73, - 209.0, - 263, - 222.5 - ], - "spans": [], - "index": 10 - } - ] - } - ], - "index": 6, - "page_num": "page_43", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 71, - 234, - 325, - 249 - ], - "lines": [ - { - "bbox": [ - 71, - 234, - 324, - 248 - ], - "spans": [ - { - "bbox": [ - 71, - 234, - 156, - 248 - ], - "score": 1.0, - "content": "The mass of A is", - "type": "text" - }, - { - "bbox": [ - 156, - 235, - 187, - 248 - ], - "score": 0.74, - "content": "2.0\\mathsf{k g}", - "type": "inline_equation", - "height": 13, - "width": 31 - }, - { - "bbox": [ - 187, - 234, - 291, - 248 - ], - "score": 1.0, - "content": " and the mass of B is", - "type": "text" - }, - { - "bbox": [ - 291, - 235, - 321, - 248 - ], - "score": 0.79, - "content": "3.0\\mathsf{k g}", - "type": "inline_equation", - "height": 13, - "width": 30 - }, - { - "bbox": [ - 321, - 234, - 324, - 248 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11, - "page_num": "page_43", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 234, - 324, - 248 - ] - }, - { - "type": "text", - "bbox": [ - 71, - 260, - 310, - 274 - ], - "lines": [ - { - "bbox": [ - 72, - 261, - 309, - 274 - ], - "spans": [ - { - "bbox": [ - 72, - 261, - 309, - 274 - ], - "score": 1.0, - "content": "After the collision the objects are joined together.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_43", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 261, - 309, - 274 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 286, - 538, - 313 - ], - "lines": [ - { - "bbox": [ - 70, - 286, - 538, - 302 - ], - "spans": [ - { - "bbox": [ - 70, - 286, - 150, - 302 - ], - "score": 1.0, - "content": "The momentum", - "type": "text" - }, - { - "bbox": [ - 150, - 289, - 159, - 300 - ], - "score": 0.77, - "content": "p", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 160, - 286, - 538, - 302 - ], - "score": 1.0, - "content": " against time t graphs for each object before, during and after the collision are ", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 71, - 300, - 139, - 313 - ], - "spans": [ - { - "bbox": [ - 71, - 300, - 139, - 313 - ], - "score": 1.0, - "content": "shown below.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 13.5, - "page_num": "page_43", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 286, - 538, - 313 - ] - }, - { - "type": "image", - "bbox": [ - 76, - 327, - 348, - 669 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 76, - 327, - 348, - 669 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 76, - 327, - 348, - 669 - ], - "spans": [ - { - "bbox": [ - 76, - 327, - 348, - 669 - ], - "score": 0.968, - "type": "image", - "image_path": "de9a91b1869c584ce0fcdb402cfb99a6944424d64c90bbeff21ff66cc1889627.jpg" - } - ] - } - ], - "index": 27.5, - "virtual_lines": [ - { - "bbox": [ - 76, - 327, - 348, - 340.5 - ], - "spans": [], - "index": 15 - }, - { - "bbox": [ - 76, - 340.5, - 348, - 354.0 - ], - "spans": [], - "index": 16 - }, - { - "bbox": [ - 76, - 354.0, - 348, - 367.5 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 76, - 367.5, - 348, - 381.0 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 76, - 381.0, - 348, - 394.5 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 76, - 394.5, - 348, - 408.0 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 76, - 408.0, - 348, - 421.5 - ], - "spans": [], - "index": 21 - }, - { - "bbox": [ - 76, - 421.5, - 348, - 435.0 - ], - "spans": [], - "index": 22 - }, - { - "bbox": [ - 76, - 435.0, - 348, - 448.5 - ], - "spans": [], - "index": 23 - }, - { - "bbox": [ - 76, - 448.5, - 348, - 462.0 - ], - "spans": [], - "index": 24 - }, - { - "bbox": [ - 76, - 462.0, - 348, - 475.5 - ], - "spans": [], - "index": 25 - }, - { - "bbox": [ - 76, - 475.5, - 348, - 489.0 - ], - "spans": [], - "index": 26 - }, - { - "bbox": [ - 76, - 489.0, - 348, - 502.5 - ], - "spans": [], - "index": 27 - }, - { - "bbox": [ - 76, - 502.5, - 348, - 516.0 - ], - "spans": [], - "index": 28 - }, - { - "bbox": [ - 76, - 516.0, - 348, - 529.5 - ], - "spans": [], - "index": 29 - }, - { - "bbox": [ - 76, - 529.5, - 348, - 543.0 - ], - "spans": [], - "index": 30 - }, - { - "bbox": [ - 76, - 543.0, - 348, - 556.5 - ], - "spans": [], - "index": 31 - }, - { - "bbox": [ - 76, - 556.5, - 348, - 570.0 - ], - "spans": [], - "index": 32 - }, - { - "bbox": [ - 76, - 570.0, - 348, - 583.5 - ], - "spans": [], - "index": 33 - }, - { - "bbox": [ - 76, - 583.5, - 348, - 597.0 - ], - "spans": [], - "index": 34 - }, - { - "bbox": [ - 76, - 597.0, - 348, - 610.5 - ], - "spans": [], - "index": 35 - }, - { - "bbox": [ - 76, - 610.5, - 348, - 624.0 - ], - "spans": [], - "index": 36 - }, - { - "bbox": [ - 76, - 624.0, - 348, - 637.5 - ], - "spans": [], - "index": 37 - }, - { - "bbox": [ - 76, - 637.5, - 348, - 651.0 - ], - "spans": [], - "index": 38 - }, - { - "bbox": [ - 76, - 651.0, - 348, - 664.5 - ], - "spans": [], - "index": 39 - }, - { - "bbox": [ - 76, - 664.5, - 348, - 678.0 - ], - "spans": [], - "index": 40 - } - ] - } - ], - "index": 27.5, - "page_num": "page_43", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 71, - 61, - 549, - 155 - ], - "lines": [ - { - "bbox": [ - 70, - 62, - 463, - 75 - ], - "spans": [ - { - "bbox": [ - 70, - 62, - 463, - 75 - ], - "score": 1.0, - "content": "(a) Explain how the graphs demonstrate Newton’s third law during the collision.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 530, - 141, - 548, - 155 - ], - "spans": [ - { - "bbox": [ - 530, - 141, - 548, - 155 - ], - "score": 1.0, - "content": " [2]", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 69, - 165, - 434, - 181 - ], - "lines": [ - { - "bbox": [ - 69, - 165, - 435, - 182 - ], - "spans": [ - { - "bbox": [ - 69, - 165, - 435, - 182 - ], - "score": 1.0, - "content": "(b) Use the graphs to show that momentum is conserved in the collision.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 530, - 284, - 547, - 297 - ], - "lines": [ - { - "bbox": [ - 531, - 282, - 548, - 299 - ], - "spans": [ - { - "bbox": [ - 531, - 282, - 548, - 299 - ], - "score": 1.0, - "content": "[2]", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 68, - 309, - 529, - 336 - ], - "lines": [ - { - "bbox": [ - 71, - 310, - 525, - 323 - ], - "spans": [ - { - "bbox": [ - 71, - 310, - 525, - 323 - ], - "score": 1.0, - "content": "(c) Calculate the magnitude of the horizontal velocity v of the combined objects immediately", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 93, - 322, - 181, - 336 - ], - "spans": [ - { - "bbox": [ - 93, - 322, - 181, - 336 - ], - "score": 1.0, - "content": "after the collision.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5 - }, - { - "type": "text", - "bbox": [ - 330, - 478, - 548, - 493 - ], - "lines": [ - { - "bbox": [ - 333, - 477, - 546, - 492 - ], - "spans": [ - { - "bbox": [ - 333, - 482, - 345, - 489 - ], - "score": 1.0, - "content": "v =", - "type": "text" - }, - { - "bbox": [ - 499, - 477, - 527, - 491 - ], - "score": 0.53, - "content": "m\\mathtt{s}^{-1}", - "type": "inline_equation", - "height": 14, - "width": 28 - }, - { - "bbox": [ - 527, - 479, - 546, - 492 - ], - "score": 1.0, - "content": " [2]", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 69, - 503, - 525, - 545 - ], - "lines": [ - { - "bbox": [ - 72, - 505, - 402, - 518 - ], - "spans": [ - { - "bbox": [ - 72, - 505, - 402, - 518 - ], - "score": 1.0, - "content": "(d) Air resistance has negligible effect on the motion of the objects.", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 94, - 530, - 523, - 544 - ], - "spans": [ - { - "bbox": [ - 94, - 530, - 523, - 544 - ], - "score": 1.0, - "content": "Calculate the time taken for the combined objects to reach the ground after the collision.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7.5 - }, - { - "type": "text", - "bbox": [ - 285, - 751, - 547, - 765 - ], - "lines": [ - { - "bbox": [ - 287, - 752, - 547, - 765 - ], - "spans": [ - { - "bbox": [ - 287, - 753, - 338, - 763 - ], - "score": 1.0, - "content": "time taken", - "type": "text" - }, - { - "bbox": [ - 338, - 754, - 349, - 763 - ], - "score": 0.77, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 11 - }, - { - "bbox": [ - 519, - 752, - 547, - 765 - ], - "score": 1.0, - "content": " s [3]", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 484, - 773, - 531, - 786 - ], - "lines": [ - { - "bbox": [ - 483, - 773, - 532, - 786 - ], - "spans": [ - { - "bbox": [ - 483, - 773, - 532, - 786 - ], - "score": 1.0, - "content": "Turn over", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - } - ], - "layout_bboxes": [], - "page_idx": 44, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 787 - ], - "lines": [ - { - "bbox": [ - 60, - 779, - 97, - 786 - ], - "spans": [ - { - "bbox": [ - 60, - 779, - 97, - 786 - ], - "score": 1.0, - "content": "© OCR 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 291, - 44, - 305, - 55 - ], - "lines": [ - { - "bbox": [ - 289, - 43, - 307, - 58 - ], - "spans": [ - { - "bbox": [ - 289, - 43, - 307, - 58 - ], - "score": 1.0, - "content": "17", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 71, - 61, - 549, - 155 - ], - "lines": [ - { - "bbox": [ - 70, - 62, - 463, - 75 - ], - "spans": [ - { - "bbox": [ - 70, - 62, - 463, - 75 - ], - "score": 1.0, - "content": "(a) Explain how the graphs demonstrate Newton’s third law during the collision.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 530, - 141, - 548, - 155 - ], - "spans": [ - { - "bbox": [ - 530, - 141, - 548, - 155 - ], - "score": 1.0, - "content": " [2]", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 69, - 165, - 435, - 182 - ], - "spans": [ - { - "bbox": [ - 69, - 165, - 435, - 182 - ], - "score": 1.0, - "content": "(b) Use the graphs to show that momentum is conserved in the collision.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 0.5, - "page_num": "page_44", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 70, - 62, - 548, - 155 - ] - }, - { - "type": "text", - "bbox": [ - 69, - 165, - 434, - 181 - ], - "lines": [], - "index": 2, - "page_num": "page_44", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 69, - 165, - 435, - 182 - ], - "lines_deleted": true - }, - { - "type": "text", - "bbox": [ - 530, - 284, - 547, - 297 - ], - "lines": [ - { - "bbox": [ - 531, - 282, - 548, - 299 - ], - "spans": [ - { - "bbox": [ - 531, - 282, - 548, - 299 - ], - "score": 1.0, - "content": "[2]", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_44", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 531, - 282, - 548, - 299 - ] - }, - { - "type": "text", - "bbox": [ - 68, - 309, - 529, - 336 - ], - "lines": [ - { - "bbox": [ - 71, - 310, - 525, - 323 - ], - "spans": [ - { - "bbox": [ - 71, - 310, - 525, - 323 - ], - "score": 1.0, - "content": "(c) Calculate the magnitude of the horizontal velocity v of the combined objects immediately", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 93, - 322, - 181, - 336 - ], - "spans": [ - { - "bbox": [ - 93, - 322, - 181, - 336 - ], - "score": 1.0, - "content": "after the collision.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5, - "page_num": "page_44", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 310, - 525, - 336 - ] - }, - { - "type": "text", - "bbox": [ - 330, - 478, - 548, - 493 - ], - "lines": [ - { - "bbox": [ - 333, - 477, - 546, - 492 - ], - "spans": [ - { - "bbox": [ - 333, - 482, - 345, - 489 - ], - "score": 1.0, - "content": "v =", - "type": "text" - }, - { - "bbox": [ - 499, - 477, - 527, - 491 - ], - "score": 0.53, - "content": "m\\mathtt{s}^{-1}", - "type": "inline_equation", - "height": 14, - "width": 28 - }, - { - "bbox": [ - 527, - 479, - 546, - 492 - ], - "score": 1.0, - "content": " [2]", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_44", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 333, - 477, - 546, - 492 - ] - }, - { - "type": "text", - "bbox": [ - 69, - 503, - 525, - 545 - ], - "lines": [ - { - "bbox": [ - 72, - 505, - 402, - 518 - ], - "spans": [ - { - "bbox": [ - 72, - 505, - 402, - 518 - ], - "score": 1.0, - "content": "(d) Air resistance has negligible effect on the motion of the objects.", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 94, - 530, - 523, - 544 - ], - "spans": [ - { - "bbox": [ - 94, - 530, - 523, - 544 - ], - "score": 1.0, - "content": "Calculate the time taken for the combined objects to reach the ground after the collision.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7.5, - "page_num": "page_44", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 505, - 523, - 544 - ] - }, - { - "type": "text", - "bbox": [ - 285, - 751, - 547, - 765 - ], - "lines": [ - { - "bbox": [ - 287, - 752, - 547, - 765 - ], - "spans": [ - { - "bbox": [ - 287, - 753, - 338, - 763 - ], - "score": 1.0, - "content": "time taken", - "type": "text" - }, - { - "bbox": [ - 338, - 754, - 349, - 763 - ], - "score": 0.77, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 11 - }, - { - "bbox": [ - 519, - 752, - 547, - 765 - ], - "score": 1.0, - "content": " s [3]", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_44", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 287, - 752, - 547, - 765 - ] - }, - { - "type": "text", - "bbox": [ - 484, - 773, - 531, - 786 - ], - "lines": [ - { - "bbox": [ - 483, - 773, - 532, - 786 - ], - "spans": [ - { - "bbox": [ - 483, - 773, - 532, - 786 - ], - "score": 1.0, - "content": "Turn over", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_44", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 483, - 773, - 532, - 786 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 50, - 62, - 533, - 89 - ], - "lines": [ - { - "bbox": [ - 47, - 61, - 531, - 76 - ], - "spans": [ - { - "bbox": [ - 47, - 61, - 531, - 76 - ], - "score": 1.0, - "content": "24 (a) Stationary waves are formed on the surface of seawater in a harbour as incoming waves", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 94, - 76, - 255, - 87 - ], - "spans": [ - { - "bbox": [ - 94, - 76, - 255, - 87 - ], - "score": 1.0, - "content": "are reflected off the harbour wall.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 84, - 100, - 548, - 193 - ], - "lines": [ - { - "bbox": [ - 94, - 101, - 333, - 115 - ], - "spans": [ - { - "bbox": [ - 94, - 101, - 333, - 115 - ], - "score": 1.0, - "content": "An observer is looking at these stationary waves.", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 94, - 127, - 405, - 141 - ], - "spans": [ - { - "bbox": [ - 94, - 127, - 405, - 141 - ], - "score": 1.0, - "content": "State how the observer can tell that these are stationary waves.", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 526, - 178, - 549, - 195 - ], - "spans": [ - { - "bbox": [ - 526, - 178, - 549, - 195 - ], - "score": 1.0, - "content": ". [1]", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 70, - 205, - 379, - 219 - ], - "lines": [ - { - "bbox": [ - 71, - 206, - 378, - 219 - ], - "spans": [ - { - "bbox": [ - 71, - 206, - 378, - 219 - ], - "score": 1.0, - "content": "(b) A wire is fixed between two supports, as shown in Fig. 24.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "image", - "bbox": [ - 94, - 235, - 314, - 314 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 94, - 235, - 314, - 314 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 94, - 235, - 314, - 314 - ], - "spans": [ - { - "bbox": [ - 94, - 235, - 314, - 314 - ], - "score": 0.966, - "type": "image", - "image_path": "645132a05ad83dd6e61ed607c026df252dff9a40d31b845f457519f7782b3b89.jpg" - } - ] - } - ], - "index": 8.5, - "virtual_lines": [ - { - "bbox": [ - 94, - 235, - 314, - 249.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 94, - 249.0, - 314, - 263.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 94, - 263.0, - 314, - 277.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 94, - 277.0, - 314, - 291.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 94, - 291.0, - 314, - 305.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 94, - 305.0, - 314, - 319.0 - ], - "spans": [], - "index": 11 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 186, - 330, - 224, - 344 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 186, - 331, - 225, - 345 - ], - "spans": [ - { - "bbox": [ - 186, - 331, - 225, - 345 - ], - "score": 1.0, - "content": "Fig. 24", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - } - ], - "index": 10.25 - }, - { - "type": "text", - "bbox": [ - 92, - 357, - 543, - 383 - ], - "lines": [ - { - "bbox": [ - 94, - 357, - 544, - 370 - ], - "spans": [ - { - "bbox": [ - 94, - 357, - 475, - 370 - ], - "score": 1.0, - "content": "The wire is plucked in the middle. A stationary wave of fundamental frequency ", - "type": "text" - }, - { - "bbox": [ - 476, - 358, - 482, - 368 - ], - "score": 0.54, - "content": "f", - "type": "inline_equation", - "height": 10, - "width": 6 - }, - { - "bbox": [ - 482, - 357, - 544, - 370 - ], - "score": 1.0, - "content": "is formed on", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 94, - 371, - 185, - 383 - ], - "spans": [ - { - "bbox": [ - 94, - 371, - 185, - 383 - ], - "score": 1.0, - "content": "the stretched wire.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 13.5 - }, - { - "type": "text", - "bbox": [ - 93, - 395, - 528, - 422 - ], - "lines": [ - { - "bbox": [ - 93, - 395, - 520, - 409 - ], - "spans": [ - { - "bbox": [ - 93, - 395, - 155, - 409 - ], - "score": 1.0, - "content": "The tension ", - "type": "text" - }, - { - "bbox": [ - 155, - 397, - 164, - 408 - ], - "score": 0.48, - "content": "\\tau", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 164, - 395, - 396, - 409 - ], - "score": 1.0, - "content": "in the stretched wire is given by the expression ", - "type": "text" - }, - { - "bbox": [ - 396, - 395, - 447, - 408 - ], - "score": 0.91, - "content": "T=4f^{2}m L", - "type": "inline_equation", - "height": 13, - "width": 51 - }, - { - "bbox": [ - 448, - 395, - 485, - 409 - ], - "score": 1.0, - "content": ", where ", - "type": "text" - }, - { - "bbox": [ - 485, - 397, - 491, - 408 - ], - "score": 0.55, - "content": "f", - "type": "inline_equation", - "height": 11, - "width": 6 - }, - { - "bbox": [ - 492, - 395, - 520, - 409 - ], - "score": 1.0, - "content": "is the", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 94, - 410, - 526, - 422 - ], - "spans": [ - { - "bbox": [ - 94, - 410, - 253, - 422 - ], - "score": 1.0, - "content": "frequency of the oscillating wire, ", - "type": "text" - }, - { - "bbox": [ - 253, - 411, - 265, - 421 - ], - "score": 0.39, - "content": "m", - "type": "inline_equation", - "height": 10, - "width": 12 - }, - { - "bbox": [ - 265, - 410, - 399, - 422 - ], - "score": 1.0, - "content": " is the mass of the wire and", - "type": "text" - }, - { - "bbox": [ - 399, - 410, - 407, - 421 - ], - "score": 0.7, - "content": "L", - "type": "inline_equation", - "height": 11, - "width": 8 - }, - { - "bbox": [ - 408, - 410, - 526, - 422 - ], - "score": 1.0, - "content": " is the length of the wire.", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 15.5 - }, - { - "type": "text", - "bbox": [ - 93, - 434, - 491, - 461 - ], - "lines": [ - { - "bbox": [ - 94, - 435, - 490, - 448 - ], - "spans": [ - { - "bbox": [ - 94, - 435, - 404, - 448 - ], - "score": 1.0, - "content": "A student is performing an experiment to determine the tension ", - "type": "text" - }, - { - "bbox": [ - 404, - 435, - 413, - 447 - ], - "score": 0.52, - "content": "\\tau", - "type": "inline_equation", - "height": 12, - "width": 9 - }, - { - "bbox": [ - 413, - 435, - 490, - 448 - ], - "score": 1.0, - "content": "in the wire. The", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 94, - 449, - 312, - 460 - ], - "spans": [ - { - "bbox": [ - 94, - 449, - 312, - 460 - ], - "score": 1.0, - "content": "measurements are shown in the table below.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 17.5 - }, - { - "type": "table", - "bbox": [ - 94, - 474, - 379, - 567 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 94, - 474, - 379, - 567 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 94, - 474, - 379, - 567 - ], - "spans": [ - { - "bbox": [ - 94, - 474, - 379, - 567 - ], - "score": 0.98, - "html": "
QuantityMeasurementPercentage uncertainty
f58Hz2.5
m9.7 x 10-4kg1.0
L0.62m0.5
", - "type": "table", - "image_path": "a7436c9583f728006c718d859179d434851b1ae83b14a267da4f019758a9d140.jpg" - } - ] - } - ], - "index": 20, - "virtual_lines": [ - { - "bbox": [ - 94, - 474, - 379, - 505.0 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 94, - 505.0, - 379, - 536.0 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 94, - 536.0, - 379, - 567.0 - ], - "spans": [], - "index": 21 - } - ] - } - ], - "index": 20 - }, - { - "type": "text", - "bbox": [ - 94, - 591, - 514, - 618 - ], - "lines": [ - { - "bbox": [ - 94, - 591, - 512, - 606 - ], - "spans": [ - { - "bbox": [ - 94, - 591, - 512, - 606 - ], - "score": 1.0, - "content": "(i) Suggest how the student may have determined the fundamental frequency of the", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 116, - 604, - 274, - 618 - ], - "spans": [ - { - "bbox": [ - 116, - 604, - 274, - 618 - ], - "score": 1.0, - "content": "oscillating wire in the laboratory.", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 22.5 - }, - { - "type": "text", - "bbox": [ - 111, - 656, - 548, - 669 - ], - "lines": [ - { - "bbox": [ - 111, - 656, - 548, - 669 - ], - "spans": [], - "index": 24 - } - ], - "index": 24 - }, - { - "type": "text", - "bbox": [ - 113, - 682, - 547, - 695 - ], - "lines": [ - { - "bbox": [ - 113, - 682, - 547, - 695 - ], - "spans": [], - "index": 25 - } - ], - "index": 25 - }, - { - "type": "text", - "bbox": [ - 116, - 708, - 548, - 722 - ], - "lines": [ - { - "bbox": [ - 526, - 708, - 548, - 722 - ], - "spans": [ - { - "bbox": [ - 526, - 708, - 548, - 722 - ], - "score": 1.0, - "content": ". [2]", - "type": "text" - } - ], - "index": 26 - } - ], - "index": 26 - } - ], - "layout_bboxes": [], - "page_idx": 45, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 94, - 235, - 314, - 314 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 94, - 235, - 314, - 314 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 94, - 235, - 314, - 314 - ], - "spans": [ - { - "bbox": [ - 94, - 235, - 314, - 314 - ], - "score": 0.966, - "type": "image", - "image_path": "645132a05ad83dd6e61ed607c026df252dff9a40d31b845f457519f7782b3b89.jpg" - } - ] - } - ], - "index": 8.5, - "virtual_lines": [ - { - "bbox": [ - 94, - 235, - 314, - 249.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 94, - 249.0, - 314, - 263.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 94, - 263.0, - 314, - 277.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 94, - 277.0, - 314, - 291.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 94, - 291.0, - 314, - 305.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 94, - 305.0, - 314, - 319.0 - ], - "spans": [], - "index": 11 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 186, - 330, - 224, - 344 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 186, - 331, - 225, - 345 - ], - "spans": [ - { - "bbox": [ - 186, - 331, - 225, - 345 - ], - "score": 1.0, - "content": "Fig. 24", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - } - ], - "index": 10.25 - } - ], - "tables": [ - { - "type": "table", - "bbox": [ - 94, - 474, - 379, - 567 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 94, - 474, - 379, - 567 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 94, - 474, - 379, - 567 - ], - "spans": [ - { - "bbox": [ - 94, - 474, - 379, - 567 - ], - "score": 0.98, - "html": "
QuantityMeasurementPercentage uncertainty
f58Hz2.5
m9.7 x 10-4kg1.0
L0.62m0.5
", - "type": "table", - "image_path": "a7436c9583f728006c718d859179d434851b1ae83b14a267da4f019758a9d140.jpg" - } - ] - } - ], - "index": 20, - "virtual_lines": [ - { - "bbox": [ - 94, - 474, - 379, - 505.0 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 94, - 505.0, - 379, - 536.0 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 94, - 536.0, - 379, - 567.0 - ], - "spans": [], - "index": 21 - } - ] - } - ], - "index": 20 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 60, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 60, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "spans": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 291, - 44, - 305, - 55 - ], - "lines": [ - { - "bbox": [ - 288, - 43, - 307, - 58 - ], - "spans": [ - { - "bbox": [ - 288, - 43, - 307, - 58 - ], - "score": 1.0, - "content": "18", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 50, - 62, - 533, - 89 - ], - "lines": [ - { - "bbox": [ - 47, - 61, - 531, - 76 - ], - "spans": [ - { - "bbox": [ - 47, - 61, - 531, - 76 - ], - "score": 1.0, - "content": "24 (a) Stationary waves are formed on the surface of seawater in a harbour as incoming waves", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 94, - 76, - 255, - 87 - ], - "spans": [ - { - "bbox": [ - 94, - 76, - 255, - 87 - ], - "score": 1.0, - "content": "are reflected off the harbour wall.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_45", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 61, - 531, - 87 - ] - }, - { - "type": "list", - "bbox": [ - 84, - 100, - 548, - 193 - ], - "lines": [ - { - "bbox": [ - 94, - 101, - 333, - 115 - ], - "spans": [ - { - "bbox": [ - 94, - 101, - 333, - 115 - ], - "score": 1.0, - "content": "An observer is looking at these stationary waves.", - "type": "text" - } - ], - "index": 2, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 94, - 127, - 405, - 141 - ], - "spans": [ - { - "bbox": [ - 94, - 127, - 405, - 141 - ], - "score": 1.0, - "content": "State how the observer can tell that these are stationary waves.", - "type": "text" - } - ], - "index": 3, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 526, - 178, - 549, - 195 - ], - "spans": [ - { - "bbox": [ - 526, - 178, - 549, - 195 - ], - "score": 1.0, - "content": ". [1]", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3, - "page_num": "page_45", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 94, - 101, - 549, - 195 - ] - }, - { - "type": "text", - "bbox": [ - 70, - 205, - 379, - 219 - ], - "lines": [ - { - "bbox": [ - 71, - 206, - 378, - 219 - ], - "spans": [ - { - "bbox": [ - 71, - 206, - 378, - 219 - ], - "score": 1.0, - "content": "(b) A wire is fixed between two supports, as shown in Fig. 24.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_45", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 206, - 378, - 219 - ] - }, - { - "type": "image", - "bbox": [ - 94, - 235, - 314, - 314 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 94, - 235, - 314, - 314 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 94, - 235, - 314, - 314 - ], - "spans": [ - { - "bbox": [ - 94, - 235, - 314, - 314 - ], - "score": 0.966, - "type": "image", - "image_path": "645132a05ad83dd6e61ed607c026df252dff9a40d31b845f457519f7782b3b89.jpg" - } - ] - } - ], - "index": 8.5, - "virtual_lines": [ - { - "bbox": [ - 94, - 235, - 314, - 249.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 94, - 249.0, - 314, - 263.0 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 94, - 263.0, - 314, - 277.0 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 94, - 277.0, - 314, - 291.0 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 94, - 291.0, - 314, - 305.0 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 94, - 305.0, - 314, - 319.0 - ], - "spans": [], - "index": 11 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 186, - 330, - 224, - 344 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 186, - 331, - 225, - 345 - ], - "spans": [ - { - "bbox": [ - 186, - 331, - 225, - 345 - ], - "score": 1.0, - "content": "Fig. 24", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - } - ], - "index": 10.25, - "page_num": "page_45", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 92, - 357, - 543, - 383 - ], - "lines": [ - { - "bbox": [ - 94, - 357, - 544, - 370 - ], - "spans": [ - { - "bbox": [ - 94, - 357, - 475, - 370 - ], - "score": 1.0, - "content": "The wire is plucked in the middle. A stationary wave of fundamental frequency ", - "type": "text" - }, - { - "bbox": [ - 476, - 358, - 482, - 368 - ], - "score": 0.54, - "content": "f", - "type": "inline_equation", - "height": 10, - "width": 6 - }, - { - "bbox": [ - 482, - 357, - 544, - 370 - ], - "score": 1.0, - "content": "is formed on", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 94, - 371, - 185, - 383 - ], - "spans": [ - { - "bbox": [ - 94, - 371, - 185, - 383 - ], - "score": 1.0, - "content": "the stretched wire.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 13.5, - "page_num": "page_45", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 94, - 357, - 544, - 383 - ] - }, - { - "type": "text", - "bbox": [ - 93, - 395, - 528, - 422 - ], - "lines": [ - { - "bbox": [ - 93, - 395, - 520, - 409 - ], - "spans": [ - { - "bbox": [ - 93, - 395, - 155, - 409 - ], - "score": 1.0, - "content": "The tension ", - "type": "text" - }, - { - "bbox": [ - 155, - 397, - 164, - 408 - ], - "score": 0.48, - "content": "\\tau", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 164, - 395, - 396, - 409 - ], - "score": 1.0, - "content": "in the stretched wire is given by the expression ", - "type": "text" - }, - { - "bbox": [ - 396, - 395, - 447, - 408 - ], - "score": 0.91, - "content": "T=4f^{2}m L", - "type": "inline_equation", - "height": 13, - "width": 51 - }, - { - "bbox": [ - 448, - 395, - 485, - 409 - ], - "score": 1.0, - "content": ", where ", - "type": "text" - }, - { - "bbox": [ - 485, - 397, - 491, - 408 - ], - "score": 0.55, - "content": "f", - "type": "inline_equation", - "height": 11, - "width": 6 - }, - { - "bbox": [ - 492, - 395, - 520, - 409 - ], - "score": 1.0, - "content": "is the", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 94, - 410, - 526, - 422 - ], - "spans": [ - { - "bbox": [ - 94, - 410, - 253, - 422 - ], - "score": 1.0, - "content": "frequency of the oscillating wire, ", - "type": "text" - }, - { - "bbox": [ - 253, - 411, - 265, - 421 - ], - "score": 0.39, - "content": "m", - "type": "inline_equation", - "height": 10, - "width": 12 - }, - { - "bbox": [ - 265, - 410, - 399, - 422 - ], - "score": 1.0, - "content": " is the mass of the wire and", - "type": "text" - }, - { - "bbox": [ - 399, - 410, - 407, - 421 - ], - "score": 0.7, - "content": "L", - "type": "inline_equation", - "height": 11, - "width": 8 - }, - { - "bbox": [ - 408, - 410, - 526, - 422 - ], - "score": 1.0, - "content": " is the length of the wire.", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 15.5, - "page_num": "page_45", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 93, - 395, - 526, - 422 - ] - }, - { - "type": "text", - "bbox": [ - 93, - 434, - 491, - 461 - ], - "lines": [ - { - "bbox": [ - 94, - 435, - 490, - 448 - ], - "spans": [ - { - "bbox": [ - 94, - 435, - 404, - 448 - ], - "score": 1.0, - "content": "A student is performing an experiment to determine the tension ", - "type": "text" - }, - { - "bbox": [ - 404, - 435, - 413, - 447 - ], - "score": 0.52, - "content": "\\tau", - "type": "inline_equation", - "height": 12, - "width": 9 - }, - { - "bbox": [ - 413, - 435, - 490, - 448 - ], - "score": 1.0, - "content": "in the wire. The", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 94, - 449, - 312, - 460 - ], - "spans": [ - { - "bbox": [ - 94, - 449, - 312, - 460 - ], - "score": 1.0, - "content": "measurements are shown in the table below.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 17.5, - "page_num": "page_45", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 94, - 435, - 490, - 460 - ] - }, - { - "type": "table", - "bbox": [ - 94, - 474, - 379, - 567 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 94, - 474, - 379, - 567 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 94, - 474, - 379, - 567 - ], - "spans": [ - { - "bbox": [ - 94, - 474, - 379, - 567 - ], - "score": 0.98, - "html": "
QuantityMeasurementPercentage uncertainty
f58Hz2.5
m9.7 x 10-4kg1.0
L0.62m0.5
", - "type": "table", - "image_path": "a7436c9583f728006c718d859179d434851b1ae83b14a267da4f019758a9d140.jpg" - } - ] - } - ], - "index": 20, - "virtual_lines": [ - { - "bbox": [ - 94, - 474, - 379, - 505.0 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 94, - 505.0, - 379, - 536.0 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 94, - 536.0, - 379, - 567.0 - ], - "spans": [], - "index": 21 - } - ] - } - ], - "index": 20, - "page_num": "page_45", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 94, - 591, - 514, - 618 - ], - "lines": [ - { - "bbox": [ - 94, - 591, - 512, - 606 - ], - "spans": [ - { - "bbox": [ - 94, - 591, - 512, - 606 - ], - "score": 1.0, - "content": "(i) Suggest how the student may have determined the fundamental frequency of the", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 116, - 604, - 274, - 618 - ], - "spans": [ - { - "bbox": [ - 116, - 604, - 274, - 618 - ], - "score": 1.0, - "content": "oscillating wire in the laboratory.", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 22.5, - "page_num": "page_45", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 94, - 591, - 512, - 618 - ] - }, - { - "type": "text", - "bbox": [ - 111, - 656, - 548, - 669 - ], - "lines": [ - { - "bbox": [ - 111, - 656, - 548, - 669 - ], - "spans": [], - "index": 24 - } - ], - "index": 24, - "page_num": "page_45", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 111, - 656, - 548, - 669 - ] - }, - { - "type": "text", - "bbox": [ - 113, - 682, - 547, - 695 - ], - "lines": [ - { - "bbox": [ - 113, - 682, - 547, - 695 - ], - "spans": [], - "index": 25 - } - ], - "index": 25, - "page_num": "page_45", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 113, - 682, - 547, - 695 - ] - }, - { - "type": "text", - "bbox": [ - 116, - 708, - 548, - 722 - ], - "lines": [ - { - "bbox": [ - 526, - 708, - 548, - 722 - ], - "spans": [ - { - "bbox": [ - 526, - 708, - 548, - 722 - ], - "score": 1.0, - "content": ". [2]", - "type": "text" - } - ], - "index": 26 - } - ], - "index": 26, - "page_num": "page_45", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 526, - 708, - 548, - 722 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 291, - 44, - 304, - 55 - ], - "lines": [ - { - "bbox": [ - 288, - 43, - 306, - 58 - ], - "spans": [ - { - "bbox": [ - 288, - 43, - 306, - 58 - ], - "score": 1.0, - "content": "19", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 90, - 61, - 447, - 103 - ], - "lines": [ - { - "bbox": [ - 92, - 62, - 302, - 76 - ], - "spans": [ - { - "bbox": [ - 92, - 62, - 108, - 76 - ], - "score": 1.0, - "content": "(ii) ", - "type": "text" - }, - { - "bbox": [ - 113, - 63, - 302, - 74 - ], - "score": 1.0, - "content": "Use the data in the table to determine", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 115, - 88, - 445, - 102 - ], - "spans": [ - { - "bbox": [ - 115, - 88, - 126, - 101 - ], - "score": 1.0, - "content": "1 ", - "type": "text" - }, - { - "bbox": [ - 138, - 89, - 445, - 102 - ], - "score": 1.0, - "content": "the wavelength of the progressive waves on the stretched wire", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5 - }, - { - "type": "text", - "bbox": [ - 278, - 205, - 547, - 220 - ], - "lines": [ - { - "bbox": [ - 282, - 206, - 546, - 219 - ], - "spans": [ - { - "bbox": [ - 282, - 207, - 338, - 218 - ], - "score": 1.0, - "content": "wavelength", - "type": "text" - }, - { - "bbox": [ - 338, - 208, - 349, - 217 - ], - "score": 0.78, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 11 - }, - { - "bbox": [ - 515, - 206, - 546, - 219 - ], - "score": 1.0, - "content": " m [1]", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 116, - 231, - 421, - 245 - ], - "lines": [ - { - "bbox": [ - 116, - 231, - 419, - 245 - ], - "spans": [ - { - "bbox": [ - 116, - 231, - 126, - 245 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - }, - { - "bbox": [ - 139, - 233, - 419, - 244 - ], - "score": 1.0, - "content": "the speed of the progressive waves on the stretched wire", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 305, - 360, - 548, - 375 - ], - "lines": [ - { - "bbox": [ - 307, - 360, - 547, - 376 - ], - "spans": [ - { - "bbox": [ - 307, - 363, - 337, - 375 - ], - "score": 1.0, - "content": "speed", - "type": "text" - }, - { - "bbox": [ - 338, - 364, - 349, - 373 - ], - "score": 0.72, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 11 - }, - { - "bbox": [ - 499, - 360, - 527, - 374 - ], - "score": 0.62, - "content": "m\\mathtt{s}^{-1}", - "type": "inline_equation", - "height": 14, - "width": 28 - }, - { - "bbox": [ - 527, - 361, - 547, - 376 - ], - "score": 1.0, - "content": " [2]", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 115, - 386, - 509, - 414 - ], - "lines": [ - { - "bbox": [ - 116, - 387, - 509, - 401 - ], - "spans": [ - { - "bbox": [ - 116, - 387, - 126, - 401 - ], - "score": 1.0, - "content": "3 ", - "type": "text" - }, - { - "bbox": [ - 138, - 387, - 332, - 401 - ], - "score": 1.0, - "content": "the absolute uncertainty in the tension ", - "type": "text" - }, - { - "bbox": [ - 332, - 388, - 341, - 399 - ], - "score": 0.31, - "content": "\\tau.", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 342, - 387, - 509, - 401 - ], - "score": 1.0, - "content": " Write your answer to 2 significant ", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 138, - 400, - 178, - 415 - ], - "spans": [ - { - "bbox": [ - 138, - 400, - 178, - 415 - ], - "score": 1.0, - "content": "figures.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6.5 - }, - { - "type": "text", - "bbox": [ - 215, - 582, - 548, - 596 - ], - "lines": [ - { - "bbox": [ - 218, - 581, - 547, - 597 - ], - "spans": [ - { - "bbox": [ - 218, - 583, - 330, - 595 - ], - "score": 1.0, - "content": "absolute uncertainty in ", - "type": "text" - }, - { - "bbox": [ - 331, - 583, - 349, - 595 - ], - "score": 0.81, - "content": "T=", - "type": "inline_equation", - "height": 12, - "width": 18 - }, - { - "bbox": [ - 516, - 581, - 547, - 597 - ], - "score": 1.0, - "content": " N [2]", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - } - ], - "layout_bboxes": [], - "page_idx": 46, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 60, - 779, - 97, - 786 - ], - "spans": [ - { - "bbox": [ - 60, - 779, - 97, - 786 - ], - "score": 1.0, - "content": "© OCR 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 484, - 774, - 531, - 785 - ], - "lines": [ - { - "bbox": [ - 483, - 773, - 532, - 786 - ], - "spans": [ - { - "bbox": [ - 483, - 773, - 532, - 786 - ], - "score": 1.0, - "content": "Turn over", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 291, - 44, - 304, - 55 - ], - "lines": [ - { - "bbox": [ - 288, - 43, - 306, - 58 - ], - "spans": [ - { - "bbox": [ - 288, - 43, - 306, - 58 - ], - "score": 1.0, - "content": "19", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_46", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 288, - 43, - 306, - 58 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 61, - 447, - 103 - ], - "lines": [ - { - "bbox": [ - 92, - 62, - 302, - 76 - ], - "spans": [ - { - "bbox": [ - 92, - 62, - 108, - 76 - ], - "score": 1.0, - "content": "(ii) ", - "type": "text" - }, - { - "bbox": [ - 113, - 63, - 302, - 74 - ], - "score": 1.0, - "content": "Use the data in the table to determine", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 115, - 88, - 445, - 102 - ], - "spans": [ - { - "bbox": [ - 115, - 88, - 126, - 101 - ], - "score": 1.0, - "content": "1 ", - "type": "text" - }, - { - "bbox": [ - 138, - 89, - 445, - 102 - ], - "score": 1.0, - "content": "the wavelength of the progressive waves on the stretched wire", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 282, - 206, - 546, - 219 - ], - "spans": [ - { - "bbox": [ - 282, - 207, - 338, - 218 - ], - "score": 1.0, - "content": "wavelength", - "type": "text" - }, - { - "bbox": [ - 338, - 208, - 349, - 217 - ], - "score": 0.78, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 11 - }, - { - "bbox": [ - 515, - 206, - 546, - 219 - ], - "score": 1.0, - "content": " m [1]", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 1.5, - "page_num": "page_46", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 92, - 62, - 445, - 102 - ] - }, - { - "type": "text", - "bbox": [ - 278, - 205, - 547, - 220 - ], - "lines": [], - "index": 3, - "page_num": "page_46", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 282, - 206, - 546, - 219 - ], - "lines_deleted": true - }, - { - "type": "text", - "bbox": [ - 116, - 231, - 421, - 245 - ], - "lines": [ - { - "bbox": [ - 116, - 231, - 419, - 245 - ], - "spans": [ - { - "bbox": [ - 116, - 231, - 126, - 245 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - }, - { - "bbox": [ - 139, - 233, - 419, - 244 - ], - "score": 1.0, - "content": "the speed of the progressive waves on the stretched wire", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 307, - 360, - 547, - 376 - ], - "spans": [ - { - "bbox": [ - 307, - 363, - 337, - 375 - ], - "score": 1.0, - "content": "speed", - "type": "text" - }, - { - "bbox": [ - 338, - 364, - 349, - 373 - ], - "score": 0.72, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 11 - }, - { - "bbox": [ - 499, - 360, - 527, - 374 - ], - "score": 0.62, - "content": "m\\mathtt{s}^{-1}", - "type": "inline_equation", - "height": 14, - "width": 28 - }, - { - "bbox": [ - 527, - 361, - 547, - 376 - ], - "score": 1.0, - "content": " [2]", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4, - "page_num": "page_46", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 116, - 231, - 419, - 245 - ] - }, - { - "type": "text", - "bbox": [ - 305, - 360, - 548, - 375 - ], - "lines": [], - "index": 5, - "page_num": "page_46", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 307, - 360, - 547, - 376 - ], - "lines_deleted": true - }, - { - "type": "text", - "bbox": [ - 115, - 386, - 509, - 414 - ], - "lines": [ - { - "bbox": [ - 116, - 387, - 509, - 401 - ], - "spans": [ - { - "bbox": [ - 116, - 387, - 126, - 401 - ], - "score": 1.0, - "content": "3 ", - "type": "text" - }, - { - "bbox": [ - 138, - 387, - 332, - 401 - ], - "score": 1.0, - "content": "the absolute uncertainty in the tension ", - "type": "text" - }, - { - "bbox": [ - 332, - 388, - 341, - 399 - ], - "score": 0.31, - "content": "\\tau.", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 342, - 387, - 509, - 401 - ], - "score": 1.0, - "content": " Write your answer to 2 significant ", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 138, - 400, - 178, - 415 - ], - "spans": [ - { - "bbox": [ - 138, - 400, - 178, - 415 - ], - "score": 1.0, - "content": "figures.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 6.5, - "page_num": "page_46", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 116, - 387, - 509, - 415 - ] - }, - { - "type": "text", - "bbox": [ - 215, - 582, - 548, - 596 - ], - "lines": [ - { - "bbox": [ - 218, - 581, - 547, - 597 - ], - "spans": [ - { - "bbox": [ - 218, - 583, - 330, - 595 - ], - "score": 1.0, - "content": "absolute uncertainty in ", - "type": "text" - }, - { - "bbox": [ - 331, - 583, - 349, - 595 - ], - "score": 0.81, - "content": "T=", - "type": "inline_equation", - "height": 12, - "width": 18 - }, - { - "bbox": [ - 516, - 581, - 547, - 597 - ], - "score": 1.0, - "content": " N [2]", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 71, - 61, - 530, - 77 - ], - "spans": [ - { - "bbox": [ - 71, - 61, - 530, - 77 - ], - "score": 1.0, - "content": "(a) Potential difference (p.d.) and electromotive force (e.m.f.) can both be defined in terms of ", - "type": "text", - "cross_page": true - } - ], - "index": 0 - }, - { - "bbox": [ - 93, - 75, - 261, - 90 - ], - "spans": [ - { - "bbox": [ - 93, - 75, - 261, - 90 - ], - "score": 1.0, - "content": "transfer of energy per unit charge.", - "type": "text", - "cross_page": true - } - ], - "index": 1 - }, - { - "bbox": [ - 95, - 102, - 340, - 115 - ], - "spans": [ - { - "bbox": [ - 95, - 102, - 340, - 115 - ], - "score": 1.0, - "content": "State one other similarity between p.d. and e.m.f.", - "type": "text", - "cross_page": true - } - ], - "index": 2 - }, - { - "bbox": [ - 526, - 153, - 548, - 168 - ], - "spans": [ - { - "bbox": [ - 526, - 153, - 548, - 168 - ], - "score": 1.0, - "content": ". [1]", - "type": "text", - "cross_page": true - } - ], - "index": 3 - } - ], - "index": 8, - "page_num": "page_46", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 218, - 581, - 547, - 597 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 47, - 61, - 547, - 168 - ], - "lines": [ - { - "bbox": [ - 71, - 61, - 530, - 77 - ], - "spans": [ - { - "bbox": [ - 71, - 61, - 530, - 77 - ], - "score": 1.0, - "content": "(a) Potential difference (p.d.) and electromotive force (e.m.f.) can both be defined in terms of ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 93, - 75, - 261, - 90 - ], - "spans": [ - { - "bbox": [ - 93, - 75, - 261, - 90 - ], - "score": 1.0, - "content": "transfer of energy per unit charge.", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 95, - 102, - 340, - 115 - ], - "spans": [ - { - "bbox": [ - 95, - 102, - 340, - 115 - ], - "score": 1.0, - "content": "State one other similarity between p.d. and e.m.f.", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 526, - 153, - 548, - 168 - ], - "spans": [ - { - "bbox": [ - 526, - 153, - 548, - 168 - ], - "score": 1.0, - "content": ". [1]", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 1.5 - }, - { - "type": "text", - "bbox": [ - 71, - 178, - 271, - 193 - ], - "lines": [ - { - "bbox": [ - 71, - 179, - 270, - 192 - ], - "spans": [ - { - "bbox": [ - 71, - 179, - 270, - 192 - ], - "score": 1.0, - "content": "(b) Fig. 25.1 shows an electrical circuit.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "image", - "bbox": [ - 94, - 202, - 381, - 322 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 94, - 202, - 381, - 322 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 94, - 202, - 381, - 322 - ], - "spans": [ - { - "bbox": [ - 94, - 202, - 381, - 322 - ], - "score": 0.97, - "type": "image", - "image_path": "a84804dda1c347fcffc0102500692228139a5f9bd7c0f271b74cce52e91053c8.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 94, - 202, - 381, - 242.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 94, - 242.0, - 381, - 282.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 94, - 282.0, - 381, - 322.0 - ], - "spans": [], - "index": 7 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 213, - 339, - 259, - 353 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 214, - 340, - 259, - 353 - ], - "spans": [ - { - "bbox": [ - 214, - 340, - 259, - 353 - ], - "score": 1.0, - "content": "Fig. 25.1", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - } - ], - "index": 7.0 - }, - { - "type": "text", - "bbox": [ - 94, - 365, - 379, - 379 - ], - "lines": [ - { - "bbox": [ - 94, - 365, - 378, - 379 - ], - "spans": [ - { - "bbox": [ - 94, - 365, - 186, - 379 - ], - "score": 1.0, - "content": "The cell has e.m.f.", - "type": "text" - }, - { - "bbox": [ - 187, - 365, - 212, - 378 - ], - "score": 0.47, - "content": "1.5\\lor", - "type": "inline_equation", - "height": 13, - "width": 25 - }, - { - "bbox": [ - 213, - 365, - 378, - 379 - ], - "score": 1.0, - "content": " and negligible internal resistance.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 89, - 390, - 549, - 457 - ], - "lines": [ - { - "bbox": [ - 94, - 390, - 548, - 405 - ], - "spans": [ - { - "bbox": [ - 94, - 390, - 524, - 405 - ], - "score": 1.0, - "content": "AB is a resistance wire of length L. The resistance of this wire is equal to the resistance ", - "type": "text" - }, - { - "bbox": [ - 524, - 392, - 535, - 403 - ], - "score": 0.42, - "content": "R", - "type": "inline_equation", - "height": 11, - "width": 11 - }, - { - "bbox": [ - 535, - 390, - 548, - 405 - ], - "score": 1.0, - "content": "of ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 94, - 404, - 179, - 417 - ], - "spans": [ - { - "bbox": [ - 94, - 404, - 179, - 417 - ], - "score": 1.0, - "content": "the fixed resistor.", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 93, - 418, - 547, - 431 - ], - "spans": [ - { - "bbox": [ - 93, - 418, - 547, - 431 - ], - "score": 1.0, - "content": "S is a sliding contact that can be moved on the resistance wire. The distance between A and ", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 93, - 429, - 127, - 445 - ], - "spans": [ - { - "bbox": [ - 93, - 429, - 127, - 445 - ], - "score": 1.0, - "content": "S is x.", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 95, - 444, - 277, - 456 - ], - "spans": [ - { - "bbox": [ - 95, - 444, - 268, - 456 - ], - "score": 1.0, - "content": "The p.d. across the fixed resistor is ", - "type": "text" - }, - { - "bbox": [ - 268, - 444, - 277, - 455 - ], - "score": 0.3, - "content": "V.", - "type": "inline_equation", - "height": 11, - "width": 9 - } - ], - "index": 14 - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 95, - 469, - 409, - 484 - ], - "lines": [ - { - "bbox": [ - 95, - 470, - 408, - 483 - ], - "spans": [ - { - "bbox": [ - 95, - 470, - 108, - 483 - ], - "score": 1.0, - "content": "(i) ", - "type": "text" - }, - { - "bbox": [ - 114, - 470, - 181, - 483 - ], - "score": 1.0, - "content": "The distance", - "type": "text" - }, - { - "bbox": [ - 182, - 471, - 190, - 481 - ], - "score": 0.41, - "content": "x", - "type": "inline_equation", - "height": 10, - "width": 8 - }, - { - "bbox": [ - 191, - 470, - 408, - 483 - ], - "score": 1.0, - "content": "is changed by moving the slider from A to B.", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "text", - "bbox": [ - 116, - 495, - 376, - 509 - ], - "lines": [ - { - "bbox": [ - 117, - 496, - 376, - 508 - ], - "spans": [ - { - "bbox": [ - 117, - 496, - 289, - 508 - ], - "score": 1.0, - "content": "On Fig. 25.2, show the variation of ", - "type": "text" - }, - { - "bbox": [ - 289, - 496, - 299, - 507 - ], - "score": 0.29, - "content": "V", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 299, - 496, - 376, - 508 - ], - "score": 1.0, - "content": "with distance x.", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16 - }, - { - "type": "image", - "bbox": [ - 118, - 520, - 276, - 633 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 118, - 520, - 276, - 633 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 118, - 520, - 276, - 633 - ], - "spans": [ - { - "bbox": [ - 118, - 520, - 276, - 633 - ], - "score": 0.959, - "type": "image", - "image_path": "d8cfb7d19f8dccbf4ba66c6980191fc426fadeb7935d80bfa302e5c191563c0f.jpg" - } - ] - } - ], - "index": 21, - "virtual_lines": [ - { - "bbox": [ - 118, - 520, - 276, - 533 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 118, - 533, - 276, - 546 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 118, - 546, - 276, - 559 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 118, - 559, - 276, - 572 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 118, - 572, - 276, - 585 - ], - "spans": [], - "index": 21 - }, - { - "bbox": [ - 118, - 585, - 276, - 598 - ], - "spans": [], - "index": 22 - }, - { - "bbox": [ - 118, - 598, - 276, - 611 - ], - "spans": [], - "index": 23 - }, - { - "bbox": [ - 118, - 611, - 276, - 624 - ], - "spans": [], - "index": 24 - }, - { - "bbox": [ - 118, - 624, - 276, - 637 - ], - "spans": [], - "index": 25 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 172, - 648, - 220, - 662 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 172, - 648, - 221, - 663 - ], - "spans": [ - { - "bbox": [ - 172, - 648, - 221, - 663 - ], - "score": 1.0, - "content": "Fig. 25.2", - "type": "text" - } - ], - "index": 26 - } - ], - "index": 26 - } - ], - "index": 23.5 - } - ], - "layout_bboxes": [], - "page_idx": 47, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 94, - 202, - 381, - 322 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 94, - 202, - 381, - 322 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 94, - 202, - 381, - 322 - ], - "spans": [ - { - "bbox": [ - 94, - 202, - 381, - 322 - ], - "score": 0.97, - "type": "image", - "image_path": "a84804dda1c347fcffc0102500692228139a5f9bd7c0f271b74cce52e91053c8.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 94, - 202, - 381, - 242.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 94, - 242.0, - 381, - 282.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 94, - 282.0, - 381, - 322.0 - ], - "spans": [], - "index": 7 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 213, - 339, - 259, - 353 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 214, - 340, - 259, - 353 - ], - "spans": [ - { - "bbox": [ - 214, - 340, - 259, - 353 - ], - "score": 1.0, - "content": "Fig. 25.1", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - } - ], - "index": 7.0 - }, - { - "type": "image", - "bbox": [ - 118, - 520, - 276, - 633 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 118, - 520, - 276, - 633 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 118, - 520, - 276, - 633 - ], - "spans": [ - { - "bbox": [ - 118, - 520, - 276, - 633 - ], - "score": 0.959, - "type": "image", - "image_path": "d8cfb7d19f8dccbf4ba66c6980191fc426fadeb7935d80bfa302e5c191563c0f.jpg" - } - ] - } - ], - "index": 21, - "virtual_lines": [ - { - "bbox": [ - 118, - 520, - 276, - 533 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 118, - 533, - 276, - 546 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 118, - 546, - 276, - 559 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 118, - 559, - 276, - 572 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 118, - 572, - 276, - 585 - ], - "spans": [], - "index": 21 - }, - { - "bbox": [ - 118, - 585, - 276, - 598 - ], - "spans": [], - "index": 22 - }, - { - "bbox": [ - 118, - 598, - 276, - 611 - ], - "spans": [], - "index": 23 - }, - { - "bbox": [ - 118, - 611, - 276, - 624 - ], - "spans": [], - "index": 24 - }, - { - "bbox": [ - 118, - 624, - 276, - 637 - ], - "spans": [], - "index": 25 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 172, - 648, - 220, - 662 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 172, - 648, - 221, - 663 - ], - "spans": [ - { - "bbox": [ - 172, - 648, - 221, - 663 - ], - "score": 1.0, - "content": "Fig. 25.2", - "type": "text" - } - ], - "index": 26 - } - ], - "index": 26 - } - ], - "index": 23.5 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 290, - 44, - 305, - 55 - ], - "lines": [ - { - "bbox": [ - 288, - 43, - 307, - 59 - ], - "spans": [ - { - "bbox": [ - 288, - 43, - 307, - 59 - ], - "score": 1.0, - "content": "20", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "spans": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 662, - 546, - 675 - ], - "lines": [ - { - "bbox": [ - 530, - 660, - 548, - 677 - ], - "spans": [ - { - "bbox": [ - 530, - 660, - 548, - 677 - ], - "score": 1.0, - "content": "[2]", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 47, - 61, - 547, - 168 - ], - "lines": [], - "index": 1.5, - "page_num": "page_47", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 61, - 548, - 168 - ], - "lines_deleted": true - }, - { - "type": "text", - "bbox": [ - 71, - 178, - 271, - 193 - ], - "lines": [ - { - "bbox": [ - 71, - 179, - 270, - 192 - ], - "spans": [ - { - "bbox": [ - 71, - 179, - 270, - 192 - ], - "score": 1.0, - "content": "(b) Fig. 25.1 shows an electrical circuit.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_47", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 71, - 179, - 270, - 192 - ] - }, - { - "type": "image", - "bbox": [ - 94, - 202, - 381, - 322 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 94, - 202, - 381, - 322 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 94, - 202, - 381, - 322 - ], - "spans": [ - { - "bbox": [ - 94, - 202, - 381, - 322 - ], - "score": 0.97, - "type": "image", - "image_path": "a84804dda1c347fcffc0102500692228139a5f9bd7c0f271b74cce52e91053c8.jpg" - } - ] - } - ], - "index": 6, - "virtual_lines": [ - { - "bbox": [ - 94, - 202, - 381, - 242.0 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 94, - 242.0, - 381, - 282.0 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 94, - 282.0, - 381, - 322.0 - ], - "spans": [], - "index": 7 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 213, - 339, - 259, - 353 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 214, - 340, - 259, - 353 - ], - "spans": [ - { - "bbox": [ - 214, - 340, - 259, - 353 - ], - "score": 1.0, - "content": "Fig. 25.1", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - } - ], - "index": 7.0, - "page_num": "page_47", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 94, - 365, - 379, - 379 - ], - "lines": [ - { - "bbox": [ - 94, - 365, - 378, - 379 - ], - "spans": [ - { - "bbox": [ - 94, - 365, - 186, - 379 - ], - "score": 1.0, - "content": "The cell has e.m.f.", - "type": "text" - }, - { - "bbox": [ - 187, - 365, - 212, - 378 - ], - "score": 0.47, - "content": "1.5\\lor", - "type": "inline_equation", - "height": 13, - "width": 25 - }, - { - "bbox": [ - 213, - 365, - 378, - 379 - ], - "score": 1.0, - "content": " and negligible internal resistance.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_47", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 94, - 365, - 378, - 379 - ] - }, - { - "type": "list", - "bbox": [ - 89, - 390, - 549, - 457 - ], - "lines": [ - { - "bbox": [ - 94, - 390, - 548, - 405 - ], - "spans": [ - { - "bbox": [ - 94, - 390, - 524, - 405 - ], - "score": 1.0, - "content": "AB is a resistance wire of length L. The resistance of this wire is equal to the resistance ", - "type": "text" - }, - { - "bbox": [ - 524, - 392, - 535, - 403 - ], - "score": 0.42, - "content": "R", - "type": "inline_equation", - "height": 11, - "width": 11 - }, - { - "bbox": [ - 535, - 390, - 548, - 405 - ], - "score": 1.0, - "content": "of ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 94, - 404, - 179, - 417 - ], - "spans": [ - { - "bbox": [ - 94, - 404, - 179, - 417 - ], - "score": 1.0, - "content": "the fixed resistor.", - "type": "text" - } - ], - "index": 11, - "is_list_end_line": true - }, - { - "bbox": [ - 93, - 418, - 547, - 431 - ], - "spans": [ - { - "bbox": [ - 93, - 418, - 547, - 431 - ], - "score": 1.0, - "content": "S is a sliding contact that can be moved on the resistance wire. The distance between A and ", - "type": "text" - } - ], - "index": 12, - "is_list_start_line": true - }, - { - "bbox": [ - 93, - 429, - 127, - 445 - ], - "spans": [ - { - "bbox": [ - 93, - 429, - 127, - 445 - ], - "score": 1.0, - "content": "S is x.", - "type": "text" - } - ], - "index": 13, - "is_list_end_line": true - }, - { - "bbox": [ - 95, - 444, - 277, - 456 - ], - "spans": [ - { - "bbox": [ - 95, - 444, - 268, - 456 - ], - "score": 1.0, - "content": "The p.d. across the fixed resistor is ", - "type": "text" - }, - { - "bbox": [ - 268, - 444, - 277, - 455 - ], - "score": 0.3, - "content": "V.", - "type": "inline_equation", - "height": 11, - "width": 9 - } - ], - "index": 14, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 12, - "page_num": "page_47", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 93, - 390, - 548, - 456 - ] - }, - { - "type": "text", - "bbox": [ - 95, - 469, - 409, - 484 - ], - "lines": [ - { - "bbox": [ - 95, - 470, - 408, - 483 - ], - "spans": [ - { - "bbox": [ - 95, - 470, - 108, - 483 - ], - "score": 1.0, - "content": "(i) ", - "type": "text" - }, - { - "bbox": [ - 114, - 470, - 181, - 483 - ], - "score": 1.0, - "content": "The distance", - "type": "text" - }, - { - "bbox": [ - 182, - 471, - 190, - 481 - ], - "score": 0.41, - "content": "x", - "type": "inline_equation", - "height": 10, - "width": 8 - }, - { - "bbox": [ - 191, - 470, - 408, - 483 - ], - "score": 1.0, - "content": "is changed by moving the slider from A to B.", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_47", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 95, - 470, - 408, - 483 - ] - }, - { - "type": "text", - "bbox": [ - 116, - 495, - 376, - 509 - ], - "lines": [ - { - "bbox": [ - 117, - 496, - 376, - 508 - ], - "spans": [ - { - "bbox": [ - 117, - 496, - 289, - 508 - ], - "score": 1.0, - "content": "On Fig. 25.2, show the variation of ", - "type": "text" - }, - { - "bbox": [ - 289, - 496, - 299, - 507 - ], - "score": 0.29, - "content": "V", - "type": "inline_equation", - "height": 11, - "width": 10 - }, - { - "bbox": [ - 299, - 496, - 376, - 508 - ], - "score": 1.0, - "content": "with distance x.", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16, - "page_num": "page_47", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 117, - 496, - 376, - 508 - ] - }, - { - "type": "image", - "bbox": [ - 118, - 520, - 276, - 633 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 118, - 520, - 276, - 633 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 118, - 520, - 276, - 633 - ], - "spans": [ - { - "bbox": [ - 118, - 520, - 276, - 633 - ], - "score": 0.959, - "type": "image", - "image_path": "d8cfb7d19f8dccbf4ba66c6980191fc426fadeb7935d80bfa302e5c191563c0f.jpg" - } - ] - } - ], - "index": 21, - "virtual_lines": [ - { - "bbox": [ - 118, - 520, - 276, - 533 - ], - "spans": [], - "index": 17 - }, - { - "bbox": [ - 118, - 533, - 276, - 546 - ], - "spans": [], - "index": 18 - }, - { - "bbox": [ - 118, - 546, - 276, - 559 - ], - "spans": [], - "index": 19 - }, - { - "bbox": [ - 118, - 559, - 276, - 572 - ], - "spans": [], - "index": 20 - }, - { - "bbox": [ - 118, - 572, - 276, - 585 - ], - "spans": [], - "index": 21 - }, - { - "bbox": [ - 118, - 585, - 276, - 598 - ], - "spans": [], - "index": 22 - }, - { - "bbox": [ - 118, - 598, - 276, - 611 - ], - "spans": [], - "index": 23 - }, - { - "bbox": [ - 118, - 611, - 276, - 624 - ], - "spans": [], - "index": 24 - }, - { - "bbox": [ - 118, - 624, - 276, - 637 - ], - "spans": [], - "index": 25 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 172, - 648, - 220, - 662 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 172, - 648, - 221, - 663 - ], - "spans": [ - { - "bbox": [ - 172, - 648, - 221, - 663 - ], - "score": 1.0, - "content": "Fig. 25.2", - "type": "text" - } - ], - "index": 26 - } - ], - "index": 26 - } - ], - "index": 23.5, - "page_num": "page_47", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 91, - 61, - 548, - 207 - ], - "lines": [ - { - "bbox": [ - 91, - 62, - 527, - 77 - ], - "spans": [ - { - "bbox": [ - 91, - 62, - 527, - 77 - ], - "score": 1.0, - "content": "(ii) The connecting wire BC is now removed. The rest of the circuit remains unchanged.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 117, - 89, - 449, - 102 - ], - "spans": [ - { - "bbox": [ - 117, - 89, - 307, - 102 - ], - "score": 1.0, - "content": "Explain the variation of V with distance", - "type": "text" - }, - { - "bbox": [ - 307, - 90, - 316, - 100 - ], - "score": 0.64, - "content": "x", - "type": "inline_equation", - "height": 10, - "width": 9 - }, - { - "bbox": [ - 317, - 89, - 449, - 102 - ], - "score": 1.0, - "content": "as S is moved from A to B.", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 532, - 194, - 546, - 205 - ], - "spans": [ - { - "bbox": [ - 532, - 194, - 546, - 205 - ], - "score": 1.0, - "content": "[2]", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 72, - 218, - 525, - 245 - ], - "lines": [ - { - "bbox": [ - 72, - 218, - 523, - 232 - ], - "spans": [ - { - "bbox": [ - 72, - 219, - 317, - 232 - ], - "score": 1.0, - "content": "(c) A power supply of electromotive force (e.m.f.)", - "type": "text" - }, - { - "bbox": [ - 318, - 218, - 349, - 231 - ], - "score": 0.59, - "content": "14.4\\lor", - "type": "inline_equation", - "height": 13, - "width": 31 - }, - { - "bbox": [ - 350, - 219, - 523, - 232 - ], - "score": 1.0, - "content": " and negligible internal resistance is", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 93, - 232, - 503, - 244 - ], - "spans": [ - { - "bbox": [ - 93, - 232, - 503, - 244 - ], - "score": 1.0, - "content": "connected by two identical metal wires to two filament lamps, as shown in Fig. 25.3.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5 - }, - { - "type": "image", - "bbox": [ - 94, - 257, - 317, - 378 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 94, - 257, - 317, - 378 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 94, - 257, - 317, - 378 - ], - "spans": [ - { - "bbox": [ - 94, - 257, - 317, - 378 - ], - "score": 0.952, - "type": "image", - "image_path": "0405d3b9a885c49ae7f175d6bb98e454187c6debd810a809bcf9ff1b306b6410.jpg" - } - ] - } - ], - "index": 9.5, - "virtual_lines": [ - { - "bbox": [ - 94, - 257, - 317, - 270 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 94, - 270, - 317, - 283 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 94, - 283, - 317, - 296 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 94, - 296, - 317, - 309 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 94, - 309, - 317, - 322 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 94, - 322, - 317, - 335 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 94, - 335, - 317, - 348 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 94, - 348, - 317, - 361 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 94, - 361, - 317, - 374 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 94, - 374, - 317, - 387 - ], - "spans": [], - "index": 14 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 182, - 392, - 229, - 407 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 183, - 394, - 229, - 407 - ], - "spans": [ - { - "bbox": [ - 183, - 394, - 229, - 407 - ], - "score": 1.0, - "content": "Fig. 25.3", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - } - ], - "index": 12.25 - }, - { - "type": "text", - "bbox": [ - 93, - 419, - 547, - 459 - ], - "lines": [ - { - "bbox": [ - 94, - 419, - 253, - 432 - ], - "spans": [ - { - "bbox": [ - 94, - 420, - 225, - 432 - ], - "score": 1.0, - "content": "The current in the circuit is", - "type": "text" - }, - { - "bbox": [ - 225, - 419, - 251, - 431 - ], - "score": 0.27, - "content": "3.0\\mathsf{A}", - "type": "inline_equation", - "height": 12, - "width": 26 - }, - { - "bbox": [ - 251, - 420, - 253, - 431 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 94, - 432, - 339, - 444 - ], - "spans": [ - { - "bbox": [ - 94, - 433, - 312, - 444 - ], - "score": 1.0, - "content": "The potential difference across each lamp is", - "type": "text" - }, - { - "bbox": [ - 313, - 432, - 339, - 444 - ], - "score": 0.66, - "content": "6.0\\vee.", - "type": "inline_equation", - "height": 12, - "width": 26 - } - ], - "index": 17 - }, - { - "bbox": [ - 94, - 444, - 545, - 458 - ], - "spans": [ - { - "bbox": [ - 94, - 444, - 269, - 458 - ], - "score": 1.0, - "content": "The total length of the metal wire is", - "type": "text" - }, - { - "bbox": [ - 269, - 445, - 303, - 457 - ], - "score": 0.65, - "content": "25.0\\mathsf{m}", - "type": "inline_equation", - "height": 12, - "width": 34 - }, - { - "bbox": [ - 303, - 444, - 495, - 458 - ], - "score": 1.0, - "content": ". The cross-sectional area of the wire is", - "type": "text" - }, - { - "bbox": [ - 496, - 444, - 543, - 457 - ], - "score": 0.87, - "content": "0.54\\mathrm{mm}^{2}", - "type": "inline_equation", - "height": 13, - "width": 47 - }, - { - "bbox": [ - 544, - 444, - 545, - 458 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 17 - }, - { - "type": "text", - "bbox": [ - 92, - 471, - 444, - 485 - ], - "lines": [ - { - "bbox": [ - 95, - 471, - 441, - 485 - ], - "spans": [ - { - "bbox": [ - 95, - 471, - 108, - 485 - ], - "score": 1.0, - "content": "(i) ", - "type": "text" - }, - { - "bbox": [ - 114, - 473, - 231, - 483 - ], - "score": 1.0, - "content": "Calculate the resistivity", - "type": "text" - }, - { - "bbox": [ - 232, - 473, - 240, - 485 - ], - "score": 0.8, - "content": "\\rho", - "type": "inline_equation", - "height": 12, - "width": 8 - }, - { - "bbox": [ - 241, - 473, - 441, - 483 - ], - "score": 1.0, - "content": "of the metal from which the wire is made.", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 19 - }, - { - "type": "text", - "bbox": [ - 329, - 679, - 547, - 694 - ], - "lines": [ - { - "bbox": [ - 331, - 680, - 546, - 693 - ], - "spans": [ - { - "bbox": [ - 331, - 685, - 348, - 693 - ], - "score": 0.5, - "content": "\\rho=", - "type": "inline_equation", - "height": 8, - "width": 17 - }, - { - "bbox": [ - 506, - 680, - 546, - 692 - ], - "score": 1.0, - "content": "Ω m [4]", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 20 - } - ], - "layout_bboxes": [], - "page_idx": 48, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 94, - 257, - 317, - 378 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 94, - 257, - 317, - 378 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 94, - 257, - 317, - 378 - ], - "spans": [ - { - "bbox": [ - 94, - 257, - 317, - 378 - ], - "score": 0.952, - "type": "image", - "image_path": "0405d3b9a885c49ae7f175d6bb98e454187c6debd810a809bcf9ff1b306b6410.jpg" - } - ] - } - ], - "index": 9.5, - "virtual_lines": [ - { - "bbox": [ - 94, - 257, - 317, - 270 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 94, - 270, - 317, - 283 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 94, - 283, - 317, - 296 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 94, - 296, - 317, - 309 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 94, - 309, - 317, - 322 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 94, - 322, - 317, - 335 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 94, - 335, - 317, - 348 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 94, - 348, - 317, - 361 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 94, - 361, - 317, - 374 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 94, - 374, - 317, - 387 - ], - "spans": [], - "index": 14 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 182, - 392, - 229, - 407 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 183, - 394, - 229, - 407 - ], - "spans": [ - { - "bbox": [ - 183, - 394, - 229, - 407 - ], - "score": 1.0, - "content": "Fig. 25.3", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - } - ], - "index": 12.25 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 484, - 774, - 531, - 785 - ], - "lines": [ - { - "bbox": [ - 483, - 774, - 532, - 785 - ], - "spans": [ - { - "bbox": [ - 483, - 774, - 532, - 785 - ], - "score": 1.0, - "content": "Turn over", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 290, - 44, - 304, - 55 - ], - "lines": [ - { - "bbox": [ - 289, - 43, - 306, - 58 - ], - "spans": [ - { - "bbox": [ - 289, - 43, - 306, - 58 - ], - "score": 1.0, - "content": "21", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 91, - 61, - 548, - 207 - ], - "lines": [ - { - "bbox": [ - 91, - 62, - 527, - 77 - ], - "spans": [ - { - "bbox": [ - 91, - 62, - 527, - 77 - ], - "score": 1.0, - "content": "(ii) The connecting wire BC is now removed. The rest of the circuit remains unchanged.", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 117, - 89, - 449, - 102 - ], - "spans": [ - { - "bbox": [ - 117, - 89, - 307, - 102 - ], - "score": 1.0, - "content": "Explain the variation of V with distance", - "type": "text" - }, - { - "bbox": [ - 307, - 90, - 316, - 100 - ], - "score": 0.64, - "content": "x", - "type": "inline_equation", - "height": 10, - "width": 9 - }, - { - "bbox": [ - 317, - 89, - 449, - 102 - ], - "score": 1.0, - "content": "as S is moved from A to B.", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 532, - 194, - 546, - 205 - ], - "spans": [ - { - "bbox": [ - 532, - 194, - 546, - 205 - ], - "score": 1.0, - "content": "[2]", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 72, - 218, - 523, - 232 - ], - "spans": [ - { - "bbox": [ - 72, - 219, - 317, - 232 - ], - "score": 1.0, - "content": "(c) A power supply of electromotive force (e.m.f.)", - "type": "text" - }, - { - "bbox": [ - 318, - 218, - 349, - 231 - ], - "score": 0.59, - "content": "14.4\\lor", - "type": "inline_equation", - "height": 13, - "width": 31 - }, - { - "bbox": [ - 350, - 219, - 523, - 232 - ], - "score": 1.0, - "content": " and negligible internal resistance is", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 93, - 232, - 503, - 244 - ], - "spans": [ - { - "bbox": [ - 93, - 232, - 503, - 244 - ], - "score": 1.0, - "content": "connected by two identical metal wires to two filament lamps, as shown in Fig. 25.3.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 1, - "page_num": "page_48", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 91, - 62, - 546, - 205 - ] - }, - { - "type": "text", - "bbox": [ - 72, - 218, - 525, - 245 - ], - "lines": [], - "index": 3.5, - "page_num": "page_48", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 218, - 523, - 244 - ], - "lines_deleted": true - }, - { - "type": "image", - "bbox": [ - 94, - 257, - 317, - 378 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 94, - 257, - 317, - 378 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 94, - 257, - 317, - 378 - ], - "spans": [ - { - "bbox": [ - 94, - 257, - 317, - 378 - ], - "score": 0.952, - "type": "image", - "image_path": "0405d3b9a885c49ae7f175d6bb98e454187c6debd810a809bcf9ff1b306b6410.jpg" - } - ] - } - ], - "index": 9.5, - "virtual_lines": [ - { - "bbox": [ - 94, - 257, - 317, - 270 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 94, - 270, - 317, - 283 - ], - "spans": [], - "index": 6 - }, - { - "bbox": [ - 94, - 283, - 317, - 296 - ], - "spans": [], - "index": 7 - }, - { - "bbox": [ - 94, - 296, - 317, - 309 - ], - "spans": [], - "index": 8 - }, - { - "bbox": [ - 94, - 309, - 317, - 322 - ], - "spans": [], - "index": 9 - }, - { - "bbox": [ - 94, - 322, - 317, - 335 - ], - "spans": [], - "index": 10 - }, - { - "bbox": [ - 94, - 335, - 317, - 348 - ], - "spans": [], - "index": 11 - }, - { - "bbox": [ - 94, - 348, - 317, - 361 - ], - "spans": [], - "index": 12 - }, - { - "bbox": [ - 94, - 361, - 317, - 374 - ], - "spans": [], - "index": 13 - }, - { - "bbox": [ - 94, - 374, - 317, - 387 - ], - "spans": [], - "index": 14 - } - ] - }, - { - "type": "image_caption", - "bbox": [ - 182, - 392, - 229, - 407 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 183, - 394, - 229, - 407 - ], - "spans": [ - { - "bbox": [ - 183, - 394, - 229, - 407 - ], - "score": 1.0, - "content": "Fig. 25.3", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - } - ], - "index": 12.25, - "page_num": "page_48", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "list", - "bbox": [ - 93, - 419, - 547, - 459 - ], - "lines": [ - { - "bbox": [ - 94, - 419, - 253, - 432 - ], - "spans": [ - { - "bbox": [ - 94, - 420, - 225, - 432 - ], - "score": 1.0, - "content": "The current in the circuit is", - "type": "text" - }, - { - "bbox": [ - 225, - 419, - 251, - 431 - ], - "score": 0.27, - "content": "3.0\\mathsf{A}", - "type": "inline_equation", - "height": 12, - "width": 26 - }, - { - "bbox": [ - 251, - 420, - 253, - 431 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 16, - "is_list_end_line": true - }, - { - "bbox": [ - 94, - 432, - 339, - 444 - ], - "spans": [ - { - "bbox": [ - 94, - 433, - 312, - 444 - ], - "score": 1.0, - "content": "The potential difference across each lamp is", - "type": "text" - }, - { - "bbox": [ - 313, - 432, - 339, - 444 - ], - "score": 0.66, - "content": "6.0\\vee.", - "type": "inline_equation", - "height": 12, - "width": 26 - } - ], - "index": 17, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 94, - 444, - 545, - 458 - ], - "spans": [ - { - "bbox": [ - 94, - 444, - 269, - 458 - ], - "score": 1.0, - "content": "The total length of the metal wire is", - "type": "text" - }, - { - "bbox": [ - 269, - 445, - 303, - 457 - ], - "score": 0.65, - "content": "25.0\\mathsf{m}", - "type": "inline_equation", - "height": 12, - "width": 34 - }, - { - "bbox": [ - 303, - 444, - 495, - 458 - ], - "score": 1.0, - "content": ". The cross-sectional area of the wire is", - "type": "text" - }, - { - "bbox": [ - 496, - 444, - 543, - 457 - ], - "score": 0.87, - "content": "0.54\\mathrm{mm}^{2}", - "type": "inline_equation", - "height": 13, - "width": 47 - }, - { - "bbox": [ - 544, - 444, - 545, - 458 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 18, - "is_list_start_line": true - } - ], - "index": 17, - "page_num": "page_48", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 94, - 419, - 545, - 458 - ] - }, - { - "type": "text", - "bbox": [ - 92, - 471, - 444, - 485 - ], - "lines": [ - { - "bbox": [ - 95, - 471, - 441, - 485 - ], - "spans": [ - { - "bbox": [ - 95, - 471, - 108, - 485 - ], - "score": 1.0, - "content": "(i) ", - "type": "text" - }, - { - "bbox": [ - 114, - 473, - 231, - 483 - ], - "score": 1.0, - "content": "Calculate the resistivity", - "type": "text" - }, - { - "bbox": [ - 232, - 473, - 240, - 485 - ], - "score": 0.8, - "content": "\\rho", - "type": "inline_equation", - "height": 12, - "width": 8 - }, - { - "bbox": [ - 241, - 473, - 441, - 483 - ], - "score": 1.0, - "content": "of the metal from which the wire is made.", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 19, - "page_num": "page_48", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 95, - 471, - 441, - 485 - ] - }, - { - "type": "text", - "bbox": [ - 329, - 679, - 547, - 694 - ], - "lines": [ - { - "bbox": [ - 331, - 680, - 546, - 693 - ], - "spans": [ - { - "bbox": [ - 331, - 685, - 348, - 693 - ], - "score": 0.5, - "content": "\\rho=", - "type": "inline_equation", - "height": 8, - "width": 17 - }, - { - "bbox": [ - 506, - 680, - 546, - 692 - ], - "score": 1.0, - "content": "Ω m [4]", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 92, - 61, - 493, - 75 - ], - "spans": [ - { - "bbox": [ - 92, - 63, - 109, - 75 - ], - "score": 1.0, - "content": "(ii) ", - "type": "text", - "cross_page": true - }, - { - "bbox": [ - 112, - 62, - 317, - 74 - ], - "score": 1.0, - "content": "The number of electrons per unit volume ", - "type": "text", - "cross_page": true - }, - { - "bbox": [ - 317, - 65, - 325, - 74 - ], - "score": 0.69, - "content": "n", - "type": "inline_equation", - "height": 9, - "width": 8, - "cross_page": true - }, - { - "bbox": [ - 326, - 62, - 420, - 74 - ], - "score": 1.0, - "content": "in the metal wire is ", - "type": "text", - "cross_page": true - }, - { - "bbox": [ - 420, - 61, - 491, - 75 - ], - "score": 0.92, - "content": "8.5\\times10^{28}\\mathrm{m}^{-3}", - "type": "inline_equation", - "height": 14, - "width": 71, - "cross_page": true - }, - { - "bbox": [ - 491, - 62, - 493, - 74 - ], - "score": 1.0, - "content": ".", - "type": "text", - "cross_page": true - } - ], - "index": 0 - }, - { - "bbox": [ - 117, - 89, - 423, - 101 - ], - "spans": [ - { - "bbox": [ - 117, - 89, - 276, - 101 - ], - "score": 1.0, - "content": "Calculate the mean drift velocity ", - "type": "text", - "cross_page": true - }, - { - "bbox": [ - 276, - 91, - 284, - 100 - ], - "score": 0.43, - "content": "V", - "type": "inline_equation", - "height": 9, - "width": 8, - "cross_page": true - }, - { - "bbox": [ - 284, - 89, - 423, - 101 - ], - "score": 1.0, - "content": "of the electrons in the metal.", - "type": "text", - "cross_page": true - } - ], - "index": 1 - } - ], - "index": 20, - "page_num": "page_48", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 331, - 680, - 546, - 693 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 91, - 61, - 495, - 102 - ], - "lines": [ - { - "bbox": [ - 92, - 61, - 493, - 75 - ], - "spans": [ - { - "bbox": [ - 92, - 63, - 109, - 75 - ], - "score": 1.0, - "content": "(ii) ", - "type": "text" - }, - { - "bbox": [ - 112, - 62, - 317, - 74 - ], - "score": 1.0, - "content": "The number of electrons per unit volume ", - "type": "text" - }, - { - "bbox": [ - 317, - 65, - 325, - 74 - ], - "score": 0.69, - "content": "n", - "type": "inline_equation", - "height": 9, - "width": 8 - }, - { - "bbox": [ - 326, - 62, - 420, - 74 - ], - "score": 1.0, - "content": "in the metal wire is ", - "type": "text" - }, - { - "bbox": [ - 420, - 61, - 491, - 75 - ], - "score": 0.92, - "content": "8.5\\times10^{28}\\mathrm{m}^{-3}", - "type": "inline_equation", - "height": 14, - "width": 71 - }, - { - "bbox": [ - 491, - 62, - 493, - 74 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 117, - 89, - 423, - 101 - ], - "spans": [ - { - "bbox": [ - 117, - 89, - 276, - 101 - ], - "score": 1.0, - "content": "Calculate the mean drift velocity ", - "type": "text" - }, - { - "bbox": [ - 276, - 91, - 284, - 100 - ], - "score": 0.43, - "content": "V", - "type": "inline_equation", - "height": 9, - "width": 8 - }, - { - "bbox": [ - 284, - 89, - 423, - 101 - ], - "score": 1.0, - "content": "of the electrons in the metal.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 330, - 269, - 548, - 285 - ], - "lines": [ - { - "bbox": [ - 333, - 268, - 547, - 285 - ], - "spans": [ - { - "bbox": [ - 333, - 275, - 345, - 281 - ], - "score": 1.0, - "content": "v =", - "type": "text" - }, - { - "bbox": [ - 500, - 269, - 527, - 283 - ], - "score": 0.44, - "content": "m\\mathtt{s}^{-1}", - "type": "inline_equation", - "height": 14, - "width": 27 - }, - { - "bbox": [ - 527, - 268, - 547, - 285 - ], - "score": 1.0, - "content": " [2]", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - } - ], - "layout_bboxes": [], - "page_idx": 49, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 290, - 44, - 305, - 55 - ], - "lines": [ - { - "bbox": [ - 288, - 43, - 307, - 59 - ], - "spans": [ - { - "bbox": [ - 288, - 43, - 307, - 59 - ], - "score": 1.0, - "content": "22", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 91, - 61, - 495, - 102 - ], - "lines": [], - "index": 0.5, - "page_num": "page_49", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 92, - 61, - 493, - 101 - ], - "lines_deleted": true - }, - { - "type": "text", - "bbox": [ - 330, - 269, - 548, - 285 - ], - "lines": [ - { - "bbox": [ - 333, - 268, - 547, - 285 - ], - "spans": [ - { - "bbox": [ - 333, - 275, - 345, - 281 - ], - "score": 1.0, - "content": "v =", - "type": "text" - }, - { - "bbox": [ - 500, - 269, - 527, - 283 - ], - "score": 0.44, - "content": "m\\mathtt{s}^{-1}", - "type": "inline_equation", - "height": 14, - "width": 27 - }, - { - "bbox": [ - 527, - 268, - 547, - 285 - ], - "score": 1.0, - "content": " [2]", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_49", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 333, - 268, - 547, - 285 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 46, - 61, - 374, - 76 - ], - "lines": [ - { - "bbox": [ - 47, - 61, - 375, - 77 - ], - "spans": [ - { - "bbox": [ - 47, - 61, - 295, - 77 - ], - "score": 1.0, - "content": "26 (a) The table below shows the work function ", - "type": "text" - }, - { - "bbox": [ - 295, - 64, - 303, - 76 - ], - "score": 0.82, - "content": "\\phi", - "type": "inline_equation", - "height": 12, - "width": 8 - }, - { - "bbox": [ - 304, - 61, - 375, - 77 - ], - "score": 1.0, - "content": "of four metals.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table", - "bbox": [ - 93, - 89, - 323, - 136 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 93, - 89, - 323, - 136 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 93, - 89, - 323, - 136 - ], - "spans": [ - { - "bbox": [ - 93, - 89, - 323, - 136 - ], - "score": 0.972, - "html": "
MetalABCD
p/eV3.24.13.36.4
", - "type": "table", - "image_path": "ecbf0fb602de7045b16a421b4e7984ec69f52499df56770ec08351a7a3b08ace.jpg" - } - ] - } - ], - "index": 2.5, - "virtual_lines": [ - { - "bbox": [ - 93, - 89, - 323, - 102.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 93, - 102.0, - 323, - 115.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 93, - 115.0, - 323, - 128.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 93, - 128.0, - 323, - 141.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 2.5 - }, - { - "type": "text", - "bbox": [ - 94, - 147, - 465, - 174 - ], - "lines": [ - { - "bbox": [ - 94, - 147, - 466, - 160 - ], - "spans": [ - { - "bbox": [ - 94, - 148, - 291, - 160 - ], - "score": 1.0, - "content": "Electromagnetic radiation of wavelength", - "type": "text" - }, - { - "bbox": [ - 291, - 147, - 329, - 160 - ], - "score": 0.65, - "content": "380\\mathsf{n m}", - "type": "inline_equation", - "height": 13, - "width": 38 - }, - { - "bbox": [ - 329, - 148, - 466, - 160 - ], - "score": 1.0, - "content": " is incident on all the metals.", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 94, - 161, - 318, - 172 - ], - "spans": [ - { - "bbox": [ - 94, - 161, - 318, - 172 - ], - "score": 1.0, - "content": "Photoelectrons are just emitted from metal A.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5.5 - }, - { - "type": "text", - "bbox": [ - 94, - 185, - 548, - 251 - ], - "lines": [ - { - "bbox": [ - 95, - 187, - 528, - 200 - ], - "spans": [ - { - "bbox": [ - 95, - 187, - 528, - 200 - ], - "score": 1.0, - "content": "(i) Explain, in terms of the energy of photons, why metal C will not emit photoelectrons.", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 529, - 238, - 548, - 252 - ], - "spans": [ - { - "bbox": [ - 529, - 238, - 548, - 252 - ], - "score": 1.0, - "content": " [1]", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7.5 - }, - { - "type": "text", - "bbox": [ - 88, - 263, - 543, - 291 - ], - "lines": [ - { - "bbox": [ - 91, - 263, - 543, - 279 - ], - "spans": [ - { - "bbox": [ - 91, - 263, - 543, - 279 - ], - "score": 1.0, - "content": "(ii) Calculate the maximum wavelength of the electromagnetic radiation in nm that will just ", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 116, - 278, - 285, - 290 - ], - "spans": [ - { - "bbox": [ - 116, - 278, - 285, - 290 - ], - "score": 1.0, - "content": "eject photoelectrons from metal D.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9.5 - }, - { - "type": "text", - "bbox": [ - 229, - 341, - 547, - 356 - ], - "lines": [ - { - "bbox": [ - 230, - 342, - 547, - 356 - ], - "spans": [ - { - "bbox": [ - 230, - 343, - 338, - 354 - ], - "score": 1.0, - "content": "maximum wavelength", - "type": "text" - }, - { - "bbox": [ - 338, - 344, - 349, - 353 - ], - "score": 0.79, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 11 - }, - { - "bbox": [ - 509, - 342, - 547, - 356 - ], - "score": 1.0, - "content": " nm [1]", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 11 - }, - { - "type": "text", - "bbox": [ - 85, - 367, - 524, - 422 - ], - "lines": [ - { - "bbox": [ - 89, - 368, - 520, - 381 - ], - "spans": [ - { - "bbox": [ - 89, - 368, - 108, - 381 - ], - "score": 1.0, - "content": "(iii) ", - "type": "text" - }, - { - "bbox": [ - 114, - 368, - 520, - 381 - ], - "score": 1.0, - "content": "The metal B is now exposed to electromagnetic radiation of a different wavelength.", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 116, - 381, - 335, - 395 - ], - "spans": [ - { - "bbox": [ - 116, - 381, - 302, - 395 - ], - "score": 1.0, - "content": "The energy of each incident photon is", - "type": "text" - }, - { - "bbox": [ - 303, - 381, - 335, - 394 - ], - "score": 0.71, - "content": "5.3{\\tt e V}.", - "type": "inline_equation", - "height": 13, - "width": 32 - } - ], - "index": 13 - }, - { - "bbox": [ - 116, - 407, - 498, - 420 - ], - "spans": [ - { - "bbox": [ - 116, - 407, - 342, - 420 - ], - "score": 1.0, - "content": "Calculate the minimum de Broglie wavelength", - "type": "text" - }, - { - "bbox": [ - 342, - 408, - 351, - 419 - ], - "score": 0.43, - "content": "\\lambda", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 352, - 407, - 498, - 420 - ], - "score": 1.0, - "content": "of the emitted photoelectrons.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 13 - }, - { - "type": "text", - "bbox": [ - 330, - 628, - 547, - 642 - ], - "lines": [ - { - "bbox": [ - 331, - 629, - 546, - 642 - ], - "spans": [ - { - "bbox": [ - 331, - 629, - 347, - 640 - ], - "score": 1.0, - "content": "λ =", - "type": "text" - }, - { - "bbox": [ - 515, - 629, - 546, - 642 - ], - "score": 1.0, - "content": " m [3]", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - } - ], - "layout_bboxes": [], - "page_idx": 50, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 93, - 89, - 323, - 136 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 93, - 89, - 323, - 136 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 93, - 89, - 323, - 136 - ], - "spans": [ - { - "bbox": [ - 93, - 89, - 323, - 136 - ], - "score": 0.972, - "html": "
MetalABCD
p/eV3.24.13.36.4
", - "type": "table", - "image_path": "ecbf0fb602de7045b16a421b4e7984ec69f52499df56770ec08351a7a3b08ace.jpg" - } - ] - } - ], - "index": 2.5, - "virtual_lines": [ - { - "bbox": [ - 93, - 89, - 323, - 102.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 93, - 102.0, - 323, - 115.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 93, - 115.0, - 323, - 128.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 93, - 128.0, - 323, - 141.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 2.5 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 290, - 44, - 305, - 55 - ], - "lines": [ - { - "bbox": [ - 288, - 43, - 307, - 58 - ], - "spans": [ - { - "bbox": [ - 288, - 43, - 307, - 58 - ], - "score": 1.0, - "content": "23", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 484, - 774, - 531, - 785 - ], - "lines": [ - { - "bbox": [ - 483, - 774, - 532, - 786 - ], - "spans": [ - { - "bbox": [ - 483, - 774, - 532, - 786 - ], - "score": 1.0, - "content": "Turn over", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 46, - 61, - 374, - 76 - ], - "lines": [ - { - "bbox": [ - 47, - 61, - 375, - 77 - ], - "spans": [ - { - "bbox": [ - 47, - 61, - 295, - 77 - ], - "score": 1.0, - "content": "26 (a) The table below shows the work function ", - "type": "text" - }, - { - "bbox": [ - 295, - 64, - 303, - 76 - ], - "score": 0.82, - "content": "\\phi", - "type": "inline_equation", - "height": 12, - "width": 8 - }, - { - "bbox": [ - 304, - 61, - 375, - 77 - ], - "score": 1.0, - "content": "of four metals.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_50", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 61, - 375, - 77 - ] - }, - { - "type": "table", - "bbox": [ - 93, - 89, - 323, - 136 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 93, - 89, - 323, - 136 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 93, - 89, - 323, - 136 - ], - "spans": [ - { - "bbox": [ - 93, - 89, - 323, - 136 - ], - "score": 0.972, - "html": "
MetalABCD
p/eV3.24.13.36.4
", - "type": "table", - "image_path": "ecbf0fb602de7045b16a421b4e7984ec69f52499df56770ec08351a7a3b08ace.jpg" - } - ] - } - ], - "index": 2.5, - "virtual_lines": [ - { - "bbox": [ - 93, - 89, - 323, - 102.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 93, - 102.0, - 323, - 115.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 93, - 115.0, - 323, - 128.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 93, - 128.0, - 323, - 141.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 2.5, - "page_num": "page_50", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "list", - "bbox": [ - 94, - 147, - 465, - 174 - ], - "lines": [ - { - "bbox": [ - 94, - 147, - 466, - 160 - ], - "spans": [ - { - "bbox": [ - 94, - 148, - 291, - 160 - ], - "score": 1.0, - "content": "Electromagnetic radiation of wavelength", - "type": "text" - }, - { - "bbox": [ - 291, - 147, - 329, - 160 - ], - "score": 0.65, - "content": "380\\mathsf{n m}", - "type": "inline_equation", - "height": 13, - "width": 38 - }, - { - "bbox": [ - 329, - 148, - 466, - 160 - ], - "score": 1.0, - "content": " is incident on all the metals.", - "type": "text" - } - ], - "index": 5, - "is_list_end_line": true - }, - { - "bbox": [ - 94, - 161, - 318, - 172 - ], - "spans": [ - { - "bbox": [ - 94, - 161, - 318, - 172 - ], - "score": 1.0, - "content": "Photoelectrons are just emitted from metal A.", - "type": "text" - } - ], - "index": 6, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 5.5, - "page_num": "page_50", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 94, - 147, - 466, - 172 - ] - }, - { - "type": "text", - "bbox": [ - 94, - 185, - 548, - 251 - ], - "lines": [ - { - "bbox": [ - 95, - 187, - 528, - 200 - ], - "spans": [ - { - "bbox": [ - 95, - 187, - 528, - 200 - ], - "score": 1.0, - "content": "(i) Explain, in terms of the energy of photons, why metal C will not emit photoelectrons.", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 529, - 238, - 548, - 252 - ], - "spans": [ - { - "bbox": [ - 529, - 238, - 548, - 252 - ], - "score": 1.0, - "content": " [1]", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 91, - 263, - 543, - 279 - ], - "spans": [ - { - "bbox": [ - 91, - 263, - 543, - 279 - ], - "score": 1.0, - "content": "(ii) Calculate the maximum wavelength of the electromagnetic radiation in nm that will just ", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 116, - 278, - 285, - 290 - ], - "spans": [ - { - "bbox": [ - 116, - 278, - 285, - 290 - ], - "score": 1.0, - "content": "eject photoelectrons from metal D.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 7.5, - "page_num": "page_50", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 95, - 187, - 548, - 252 - ] - }, - { - "type": "text", - "bbox": [ - 88, - 263, - 543, - 291 - ], - "lines": [], - "index": 9.5, - "page_num": "page_50", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 91, - 263, - 543, - 290 - ], - "lines_deleted": true - }, - { - "type": "text", - "bbox": [ - 229, - 341, - 547, - 356 - ], - "lines": [ - { - "bbox": [ - 230, - 342, - 547, - 356 - ], - "spans": [ - { - "bbox": [ - 230, - 343, - 338, - 354 - ], - "score": 1.0, - "content": "maximum wavelength", - "type": "text" - }, - { - "bbox": [ - 338, - 344, - 349, - 353 - ], - "score": 0.79, - "content": "=", - "type": "inline_equation", - "height": 9, - "width": 11 - }, - { - "bbox": [ - 509, - 342, - 547, - 356 - ], - "score": 1.0, - "content": " nm [1]", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 89, - 368, - 520, - 381 - ], - "spans": [ - { - "bbox": [ - 89, - 368, - 108, - 381 - ], - "score": 1.0, - "content": "(iii) ", - "type": "text" - }, - { - "bbox": [ - 114, - 368, - 520, - 381 - ], - "score": 1.0, - "content": "The metal B is now exposed to electromagnetic radiation of a different wavelength.", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 116, - 381, - 335, - 395 - ], - "spans": [ - { - "bbox": [ - 116, - 381, - 302, - 395 - ], - "score": 1.0, - "content": "The energy of each incident photon is", - "type": "text" - }, - { - "bbox": [ - 303, - 381, - 335, - 394 - ], - "score": 0.71, - "content": "5.3{\\tt e V}.", - "type": "inline_equation", - "height": 13, - "width": 32 - } - ], - "index": 13 - }, - { - "bbox": [ - 116, - 407, - 498, - 420 - ], - "spans": [ - { - "bbox": [ - 116, - 407, - 342, - 420 - ], - "score": 1.0, - "content": "Calculate the minimum de Broglie wavelength", - "type": "text" - }, - { - "bbox": [ - 342, - 408, - 351, - 419 - ], - "score": 0.43, - "content": "\\lambda", - "type": "inline_equation", - "height": 11, - "width": 9 - }, - { - "bbox": [ - 352, - 407, - 498, - 420 - ], - "score": 1.0, - "content": "of the emitted photoelectrons.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 11, - "page_num": "page_50", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 230, - 342, - 547, - 356 - ] - }, - { - "type": "text", - "bbox": [ - 85, - 367, - 524, - 422 - ], - "lines": [], - "index": 13, - "page_num": "page_50", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 89, - 368, - 520, - 420 - ], - "lines_deleted": true - }, - { - "type": "text", - "bbox": [ - 330, - 628, - 547, - 642 - ], - "lines": [ - { - "bbox": [ - 331, - 629, - 546, - 642 - ], - "spans": [ - { - "bbox": [ - 331, - 629, - 347, - 640 - ], - "score": 1.0, - "content": "λ =", - "type": "text" - }, - { - "bbox": [ - 515, - 629, - 546, - 642 - ], - "score": 1.0, - "content": " m [3]", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_50", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 331, - 629, - 546, - 642 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 71, - 62, - 520, - 103 - ], - "lines": [ - { - "bbox": [ - 72, - 62, - 507, - 76 - ], - "spans": [ - { - "bbox": [ - 72, - 62, - 454, - 76 - ], - "score": 1.0, - "content": "(b) A researcher is carrying out an experiment to determine the work function ", - "type": "text" - }, - { - "bbox": [ - 454, - 64, - 462, - 76 - ], - "score": 0.83, - "content": "\\phi", - "type": "inline_equation", - "height": 12, - "width": 8 - }, - { - "bbox": [ - 463, - 62, - 507, - 76 - ], - "score": 1.0, - "content": "of a new ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 93, - 76, - 518, - 88 - ], - "spans": [ - { - "bbox": [ - 93, - 77, - 473, - 88 - ], - "score": 1.0, - "content": "material. The material is illuminated by electromagnetic radiation of frequency", - "type": "text" - }, - { - "bbox": [ - 474, - 76, - 480, - 87 - ], - "score": 0.5, - "content": "f", - "type": "inline_equation", - "height": 11, - "width": 6 - }, - { - "bbox": [ - 481, - 77, - 518, - 88 - ], - "score": 1.0, - "content": "and the", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 92, - 88, - 428, - 106 - ], - "spans": [ - { - "bbox": [ - 92, - 88, - 215, - 106 - ], - "score": 1.0, - "content": "maximum kinetic energy", - "type": "text" - }, - { - "bbox": [ - 215, - 89, - 248, - 104 - ], - "score": 0.91, - "content": "K E_{\\mathrm{max}}", - "type": "inline_equation", - "height": 15, - "width": 33 - }, - { - "bbox": [ - 248, - 88, - 428, - 106 - ], - "score": 1.0, - "content": " of the photoelectrons is determined.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 94, - 114, - 340, - 128 - ], - "lines": [ - { - "bbox": [ - 94, - 115, - 340, - 127 - ], - "spans": [ - { - "bbox": [ - 94, - 115, - 340, - 127 - ], - "score": 1.0, - "content": "The researcher plots the data points shown below.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "image", - "bbox": [ - 94, - 140, - 532, - 402 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 94, - 140, - 532, - 402 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 94, - 140, - 532, - 402 - ], - "spans": [ - { - "bbox": [ - 94, - 140, - 532, - 402 - ], - "score": 0.968, - "type": "image", - "image_path": "60e29916eac776b4c6df2127d40e0b89ce7e8fe2f5e31f652651010aba4d77ef.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 94, - 140, - 532, - 227.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 94, - 227.33333333333331, - 532, - 314.66666666666663 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 94, - 314.66666666666663, - 532, - 401.99999999999994 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 89, - 417, - 526, - 471 - ], - "lines": [ - { - "bbox": [ - 95, - 417, - 377, - 432 - ], - "spans": [ - { - "bbox": [ - 95, - 417, - 108, - 432 - ], - "score": 1.0, - "content": "(i) ", - "type": "text" - }, - { - "bbox": [ - 116, - 418, - 377, - 431 - ], - "score": 1.0, - "content": "Draw a straight line of best fit through the data points.", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 91, - 444, - 522, - 458 - ], - "spans": [ - { - "bbox": [ - 91, - 444, - 109, - 458 - ], - "score": 1.0, - "content": "(ii) ", - "type": "text" - }, - { - "bbox": [ - 114, - 444, - 522, - 457 - ], - "score": 1.0, - "content": "Use the gradient of this line, and Einstein’s photoelectric equation, to determine the", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 117, - 458, - 268, - 470 - ], - "spans": [ - { - "bbox": [ - 117, - 458, - 184, - 470 - ], - "score": 1.0, - "content": "work function ", - "type": "text" - }, - { - "bbox": [ - 184, - 458, - 192, - 470 - ], - "score": 0.81, - "content": "\\phi", - "type": "inline_equation", - "height": 12, - "width": 8 - }, - { - "bbox": [ - 193, - 458, - 268, - 470 - ], - "score": 1.0, - "content": "of the material.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 330, - 690, - 547, - 705 - ], - "lines": [ - { - "bbox": [ - 332, - 692, - 546, - 704 - ], - "spans": [ - { - "bbox": [ - 332, - 694, - 348, - 704 - ], - "score": 0.53, - "content": "\\phi=", - "type": "inline_equation", - "height": 10, - "width": 16 - }, - { - "bbox": [ - 520, - 692, - 546, - 704 - ], - "score": 1.0, - "content": "J [3]", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - } - ], - "layout_bboxes": [], - "page_idx": 51, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [ - { - "type": "image", - "bbox": [ - 94, - 140, - 532, - 402 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 94, - 140, - 532, - 402 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 94, - 140, - 532, - 402 - ], - "spans": [ - { - "bbox": [ - 94, - 140, - 532, - 402 - ], - "score": 0.968, - "type": "image", - "image_path": "60e29916eac776b4c6df2127d40e0b89ce7e8fe2f5e31f652651010aba4d77ef.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 94, - 140, - 532, - 227.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 94, - 227.33333333333331, - 532, - 314.66666666666663 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 94, - 314.66666666666663, - 532, - 401.99999999999994 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5 - } - ], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 290, - 44, - 304, - 55 - ], - "lines": [ - { - "bbox": [ - 289, - 43, - 307, - 58 - ], - "spans": [ - { - "bbox": [ - 289, - 43, - 307, - 58 - ], - "score": 1.0, - "content": "24", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "spans": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 225, - 742, - 369, - 755 - ], - "lines": [ - { - "bbox": [ - 227, - 744, - 369, - 754 - ], - "spans": [ - { - "bbox": [ - 227, - 744, - 369, - 754 - ], - "score": 1.0, - "content": "END OF QUESTION PAPER", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 531, - 418, - 546, - 431 - ], - "lines": [ - { - "bbox": [ - 530, - 416, - 549, - 434 - ], - "spans": [ - { - "bbox": [ - 530, - 416, - 549, - 434 - ], - "score": 1.0, - "content": "[1]", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 71, - 62, - 520, - 103 - ], - "lines": [ - { - "bbox": [ - 72, - 62, - 507, - 76 - ], - "spans": [ - { - "bbox": [ - 72, - 62, - 454, - 76 - ], - "score": 1.0, - "content": "(b) A researcher is carrying out an experiment to determine the work function ", - "type": "text" - }, - { - "bbox": [ - 454, - 64, - 462, - 76 - ], - "score": 0.83, - "content": "\\phi", - "type": "inline_equation", - "height": 12, - "width": 8 - }, - { - "bbox": [ - 463, - 62, - 507, - 76 - ], - "score": 1.0, - "content": "of a new ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 93, - 76, - 518, - 88 - ], - "spans": [ - { - "bbox": [ - 93, - 77, - 473, - 88 - ], - "score": 1.0, - "content": "material. The material is illuminated by electromagnetic radiation of frequency", - "type": "text" - }, - { - "bbox": [ - 474, - 76, - 480, - 87 - ], - "score": 0.5, - "content": "f", - "type": "inline_equation", - "height": 11, - "width": 6 - }, - { - "bbox": [ - 481, - 77, - 518, - 88 - ], - "score": 1.0, - "content": "and the", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 92, - 88, - 428, - 106 - ], - "spans": [ - { - "bbox": [ - 92, - 88, - 215, - 106 - ], - "score": 1.0, - "content": "maximum kinetic energy", - "type": "text" - }, - { - "bbox": [ - 215, - 89, - 248, - 104 - ], - "score": 0.91, - "content": "K E_{\\mathrm{max}}", - "type": "inline_equation", - "height": 15, - "width": 33 - }, - { - "bbox": [ - 248, - 88, - 428, - 106 - ], - "score": 1.0, - "content": " of the photoelectrons is determined.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1, - "page_num": "page_51", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 72, - 62, - 518, - 106 - ] - }, - { - "type": "text", - "bbox": [ - 94, - 114, - 340, - 128 - ], - "lines": [ - { - "bbox": [ - 94, - 115, - 340, - 127 - ], - "spans": [ - { - "bbox": [ - 94, - 115, - 340, - 127 - ], - "score": 1.0, - "content": "The researcher plots the data points shown below.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_51", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 94, - 115, - 340, - 127 - ] - }, - { - "type": "image", - "bbox": [ - 94, - 140, - 532, - 402 - ], - "blocks": [ - { - "type": "image_body", - "bbox": [ - 94, - 140, - 532, - 402 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 94, - 140, - 532, - 402 - ], - "spans": [ - { - "bbox": [ - 94, - 140, - 532, - 402 - ], - "score": 0.968, - "type": "image", - "image_path": "60e29916eac776b4c6df2127d40e0b89ce7e8fe2f5e31f652651010aba4d77ef.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 94, - 140, - 532, - 227.33333333333331 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 94, - 227.33333333333331, - 532, - 314.66666666666663 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 94, - 314.66666666666663, - 532, - 401.99999999999994 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 5, - "page_num": "page_51", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "list", - "bbox": [ - 89, - 417, - 526, - 471 - ], - "lines": [ - { - "bbox": [ - 95, - 417, - 377, - 432 - ], - "spans": [ - { - "bbox": [ - 95, - 417, - 108, - 432 - ], - "score": 1.0, - "content": "(i) ", - "type": "text" - }, - { - "bbox": [ - 116, - 418, - 377, - 431 - ], - "score": 1.0, - "content": "Draw a straight line of best fit through the data points.", - "type": "text" - } - ], - "index": 7, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 91, - 444, - 522, - 458 - ], - "spans": [ - { - "bbox": [ - 91, - 444, - 109, - 458 - ], - "score": 1.0, - "content": "(ii) ", - "type": "text" - }, - { - "bbox": [ - 114, - 444, - 522, - 457 - ], - "score": 1.0, - "content": "Use the gradient of this line, and Einstein’s photoelectric equation, to determine the", - "type": "text" - } - ], - "index": 8, - "is_list_start_line": true - }, - { - "bbox": [ - 117, - 458, - 268, - 470 - ], - "spans": [ - { - "bbox": [ - 117, - 458, - 184, - 470 - ], - "score": 1.0, - "content": "work function ", - "type": "text" - }, - { - "bbox": [ - 184, - 458, - 192, - 470 - ], - "score": 0.81, - "content": "\\phi", - "type": "inline_equation", - "height": 12, - "width": 8 - }, - { - "bbox": [ - 193, - 458, - 268, - 470 - ], - "score": 1.0, - "content": "of the material.", - "type": "text" - } - ], - "index": 9, - "is_list_end_line": true - } - ], - "index": 8, - "page_num": "page_51", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 91, - 417, - 522, - 470 - ] - }, - { - "type": "text", - "bbox": [ - 330, - 690, - 547, - 705 - ], - "lines": [ - { - "bbox": [ - 332, - 692, - 546, - 704 - ], - "spans": [ - { - "bbox": [ - 332, - 694, - 348, - 704 - ], - "score": 0.53, - "content": "\\phi=", - "type": "inline_equation", - "height": 10, - "width": 16 - }, - { - "bbox": [ - 520, - 692, - 546, - 704 - ], - "score": 1.0, - "content": "J [3]", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_51", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 332, - 692, - 546, - 704 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 217, - 61, - 378, - 75 - ], - "lines": [ - { - "bbox": [ - 218, - 63, - 378, - 74 - ], - "spans": [ - { - "bbox": [ - 218, - 63, - 378, - 74 - ], - "score": 1.0, - "content": "ADDITIONAL ANSWER SPACE", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 49, - 88, - 528, - 115 - ], - "lines": [ - { - "bbox": [ - 49, - 89, - 526, - 102 - ], - "spans": [ - { - "bbox": [ - 49, - 89, - 526, - 102 - ], - "score": 1.0, - "content": "If additional space is required, you should use the following lined page(s). The question number(s)", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 48, - 103, - 241, - 115 - ], - "spans": [ - { - "bbox": [ - 48, - 103, - 241, - 115 - ], - "score": 1.0, - "content": "must be clearly shown in the margin(s).", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5 - }, - { - "type": "table", - "bbox": [ - 46, - 119, - 548, - 771 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 119, - 548, - 771 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 119, - 548, - 771 - ], - "spans": [ - { - "bbox": [ - 46, - 119, - 548, - 771 - ], - "score": 0.249, - "type": "table", - "image_path": "9b142c1215ef0e56cf943a518bcb906bf2bc0a15ef5a053f1877390488ceceec.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 46, - 119, - 548, - 336.33333333333337 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 46, - 336.33333333333337, - 548, - 553.6666666666667 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 46, - 553.6666666666667, - 548, - 771.0000000000001 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "layout_bboxes": [], - "page_idx": 52, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 46, - 119, - 548, - 771 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 119, - 548, - 771 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 119, - 548, - 771 - ], - "spans": [ - { - "bbox": [ - 46, - 119, - 548, - 771 - ], - "score": 0.249, - "type": "table", - "image_path": "9b142c1215ef0e56cf943a518bcb906bf2bc0a15ef5a053f1877390488ceceec.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 46, - 119, - 548, - 336.33333333333337 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 46, - 336.33333333333337, - 548, - 553.6666666666667 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 46, - 553.6666666666667, - 548, - 771.0000000000001 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "spans": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 787 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 290, - 44, - 305, - 56 - ], - "lines": [ - { - "bbox": [ - 289, - 43, - 307, - 58 - ], - "spans": [ - { - "bbox": [ - 289, - 43, - 307, - 58 - ], - "score": 1.0, - "content": "25", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 217, - 61, - 378, - 75 - ], - "lines": [ - { - "bbox": [ - 218, - 63, - 378, - 74 - ], - "spans": [ - { - "bbox": [ - 218, - 63, - 378, - 74 - ], - "score": 1.0, - "content": "ADDITIONAL ANSWER SPACE", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_52", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 49, - 88, - 528, - 115 - ], - "lines": [ - { - "bbox": [ - 49, - 89, - 526, - 102 - ], - "spans": [ - { - "bbox": [ - 49, - 89, - 526, - 102 - ], - "score": 1.0, - "content": "If additional space is required, you should use the following lined page(s). The question number(s)", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 48, - 103, - 241, - 115 - ], - "spans": [ - { - "bbox": [ - 48, - 103, - 241, - 115 - ], - "score": 1.0, - "content": "must be clearly shown in the margin(s).", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5, - "page_num": "page_52", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 48, - 89, - 526, - 115 - ] - }, - { - "type": "table", - "bbox": [ - 46, - 119, - 548, - 771 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 119, - 548, - 771 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 119, - 548, - 771 - ], - "spans": [ - { - "bbox": [ - 46, - 119, - 548, - 771 - ], - "score": 0.249, - "type": "table", - "image_path": "9b142c1215ef0e56cf943a518bcb906bf2bc0a15ef5a053f1877390488ceceec.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 46, - 119, - 548, - 336.33333333333337 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 46, - 336.33333333333337, - 548, - 553.6666666666667 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 46, - 553.6666666666667, - 548, - 771.0000000000001 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_52", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 46, - 65, - 548, - 772 - ], - "lines": [ - { - "bbox": [ - 46, - 65, - 548, - 300.66666666666663 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 46, - 300.66666666666663, - 548, - 536.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 46, - 536.3333333333333, - 548, - 771.9999999999999 - ], - "spans": [], - "index": 2 - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 53, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 290, - 44, - 305, - 56 - ], - "lines": [ - { - "bbox": [ - 289, - 43, - 307, - 58 - ], - "spans": [ - { - "bbox": [ - 289, - 43, - 307, - 58 - ], - "score": 1.0, - "content": "26", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 787 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2022", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 46, - 65, - 548, - 772 - ], - "lines": [ - { - "bbox": [ - 46, - 65, - 548, - 300.66666666666663 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 46, - 300.66666666666663, - 548, - 536.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 46, - 536.3333333333333, - 548, - 771.9999999999999 - ], - "spans": [], - "index": 2 - } - ], - "index": 1, - "page_num": "page_53", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 46, - 65, - 548, - 771.9999999999999 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 46, - 65, - 548, - 772 - ], - "lines": [ - { - "bbox": [ - 46, - 65, - 548, - 300.66666666666663 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 46, - 300.66666666666663, - 548, - 536.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 46, - 536.3333333333333, - 548, - 771.9999999999999 - ], - "spans": [], - "index": 2 - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 54, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 597, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 290, - 44, - 304, - 55 - ], - "lines": [ - { - "bbox": [ - 288, - 43, - 307, - 59 - ], - "spans": [ - { - "bbox": [ - 288, - 43, - 307, - 59 - ], - "score": 1.0, - "content": "27", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 59, - 778, - 96, - 787 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "score": 1.0, - "content": "© OCR 2022", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 46, - 65, - 548, - 772 - ], - "lines": [ - { - "bbox": [ - 46, - 65, - 548, - 300.66666666666663 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 46, - 300.66666666666663, - 548, - 536.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 46, - 536.3333333333333, - 548, - 771.9999999999999 - ], - "spans": [], - "index": 2 - } - ], - "index": 1, - "page_num": "page_54", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 46, - 65, - 548, - 771.9999999999999 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 46, - 78, - 548, - 641 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 78, - 548, - 641 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 78, - 548, - 641 - ], - "spans": [ - { - "bbox": [ - 46, - 78, - 548, - 641 - ], - "score": 0.495, - "type": "table", - "image_path": "f697f69f4f597b907fdf9d12f49f05a9bd9923f89370366095cff7e716c734ca.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 46, - 78, - 548, - 265.66666666666663 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 46, - 265.66666666666663, - 548, - 453.33333333333326 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 46, - 453.33333333333326, - 548, - 640.9999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "title", - "bbox": [ - 48, - 648, - 127, - 672 - ], - "lines": [ - { - "bbox": [ - 49, - 649, - 126, - 673 - ], - "spans": [ - { - "bbox": [ - 49, - 649, - 126, - 673 - ], - "score": 0.9964492917060852, - "content": "OCR", - "type": "text" - } - ] - } - ], - "index": 3.5, - "virtual_lines": [ - { - "bbox": [ - 48, - 648, - 127, - 660.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 48, - 660.0, - 127, - 672.0 - ], - "spans": [], - "index": 4 - } - ] - }, - { - "type": "text", - "bbox": [ - 50, - 673, - 126, - 681 - ], - "lines": [ - { - "bbox": [ - 51, - 673, - 126, - 681 - ], - "spans": [ - { - "bbox": [ - 51, - 673, - 126, - 681 - ], - "score": 1.0, - "content": "Oxford Cambridge and RSA", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "title", - "bbox": [ - 49, - 685, - 113, - 693 - ], - "lines": [ - { - "bbox": [ - 49, - 686, - 114, - 694 - ], - "spans": [ - { - "bbox": [ - 49, - 686, - 114, - 694 - ], - "score": 1.0, - "content": "Copyright Information", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 48, - 696, - 531, - 728 - ], - "lines": [ - { - "bbox": [ - 49, - 696, - 530, - 705 - ], - "spans": [ - { - "bbox": [ - 49, - 696, - 530, - 705 - ], - "score": 1.0, - "content": "OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 48, - 704, - 532, - 713 - ], - "spans": [ - { - "bbox": [ - 48, - 704, - 532, - 713 - ], - "score": 1.0, - "content": "whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright ", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 48, - 712, - 530, - 721 - ], - "spans": [ - { - "bbox": [ - 48, - 712, - 530, - 721 - ], - "score": 1.0, - "content": "Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination ", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 48, - 721, - 68, - 728 - ], - "spans": [ - { - "bbox": [ - 48, - 721, - 68, - 728 - ], - "score": 1.0, - "content": "series.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 8.5 - }, - { - "type": "text", - "bbox": [ - 45, - 731, - 517, - 748 - ], - "lines": [ - { - "bbox": [ - 48, - 731, - 518, - 740 - ], - "spans": [ - { - "bbox": [ - 48, - 731, - 518, - 740 - ], - "score": 1.0, - "content": "If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possibl", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 48, - 739, - 82, - 749 - ], - "spans": [ - { - "bbox": [ - 48, - 739, - 82, - 749 - ], - "score": 1.0, - "content": "opportunity.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11.5 - }, - { - "type": "text", - "bbox": [ - 55, - 750, - 433, - 758 - ], - "lines": [ - { - "bbox": [ - 54, - 751, - 419, - 758 - ], - "spans": [ - { - "bbox": [ - 54, - 751, - 419, - 758 - ], - "score": 1.0, - "content": "or queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "text", - "bbox": [ - 49, - 761, - 364, - 770 - ], - "lines": [ - { - "bbox": [ - 49, - 762, - 363, - 770 - ], - "spans": [ - { - "bbox": [ - 49, - 762, - 363, - 770 - ], - "score": 1.0, - "content": "OCR is part of Cambridge University Press & Assessment, which is itself a department of the University of Cambridge.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 59, - 779, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 66, - 786 - ], - "score": 0.29, - "content": "\\circledcirc", - "type": "inline_equation", - "height": 7, - "width": 7 - }, - { - "bbox": [ - 66, - 779, - 96, - 786 - ], - "score": 1.0, - "content": " OCR 2022", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - } - ], - "layout_bboxes": [], - "page_idx": 55, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 46, - 78, - 548, - 641 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 78, - 548, - 641 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 78, - 548, - 641 - ], - "spans": [ - { - "bbox": [ - 46, - 78, - 548, - 641 - ], - "score": 0.495, - "type": "table", - "image_path": "f697f69f4f597b907fdf9d12f49f05a9bd9923f89370366095cff7e716c734ca.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 46, - 78, - 548, - 265.66666666666663 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 46, - 265.66666666666663, - 548, - 453.33333333333326 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 46, - 453.33333333333326, - 548, - 640.9999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 570, - 1, - 595, - 13 - ], - "lines": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "spans": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 290, - 44, - 304, - 55 - ], - "lines": [ - { - "bbox": [ - 289, - 43, - 306, - 58 - ], - "spans": [ - { - "bbox": [ - 289, - 43, - 306, - 58 - ], - "score": 1.0, - "content": "28", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 46, - 78, - 548, - 641 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 78, - 548, - 641 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 78, - 548, - 641 - ], - "spans": [ - { - "bbox": [ - 46, - 78, - 548, - 641 - ], - "score": 0.495, - "type": "table", - "image_path": "f697f69f4f597b907fdf9d12f49f05a9bd9923f89370366095cff7e716c734ca.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 46, - 78, - 548, - 265.66666666666663 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 46, - 265.66666666666663, - 548, - 453.33333333333326 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 46, - 453.33333333333326, - 548, - 640.9999999999999 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_55", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "title", - "bbox": [ - 48, - 648, - 127, - 672 - ], - "lines": [ - { - "bbox": [ - 49, - 649, - 126, - 673 - ], - "spans": [ - { - "bbox": [ - 49, - 649, - 126, - 673 - ], - "score": 0.9964492917060852, - "content": "OCR", - "type": "text" - } - ] - } - ], - "index": 3.5, - "virtual_lines": [ - { - "bbox": [ - 48, - 648, - 127, - 660.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 48, - 660.0, - 127, - 672.0 - ], - "spans": [], - "index": 4 - } - ], - "page_num": "page_55", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 50, - 673, - 126, - 681 - ], - "lines": [ - { - "bbox": [ - 51, - 673, - 126, - 681 - ], - "spans": [ - { - "bbox": [ - 51, - 673, - 126, - 681 - ], - "score": 1.0, - "content": "Oxford Cambridge and RSA", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_55", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 51, - 673, - 126, - 681 - ] - }, - { - "type": "title", - "bbox": [ - 49, - 685, - 113, - 693 - ], - "lines": [ - { - "bbox": [ - 49, - 686, - 114, - 694 - ], - "spans": [ - { - "bbox": [ - 49, - 686, - 114, - 694 - ], - "score": 1.0, - "content": "Copyright Information", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_55", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 48, - 696, - 531, - 728 - ], - "lines": [ - { - "bbox": [ - 49, - 696, - 530, - 705 - ], - "spans": [ - { - "bbox": [ - 49, - 696, - 530, - 705 - ], - "score": 1.0, - "content": "OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 48, - 704, - 532, - 713 - ], - "spans": [ - { - "bbox": [ - 48, - 704, - 532, - 713 - ], - "score": 1.0, - "content": "whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright ", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 48, - 712, - 530, - 721 - ], - "spans": [ - { - "bbox": [ - 48, - 712, - 530, - 721 - ], - "score": 1.0, - "content": "Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination ", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 48, - 721, - 68, - 728 - ], - "spans": [ - { - "bbox": [ - 48, - 721, - 68, - 728 - ], - "score": 1.0, - "content": "series.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 8.5, - "page_num": "page_55", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 48, - 696, - 532, - 728 - ] - }, - { - "type": "text", - "bbox": [ - 45, - 731, - 517, - 748 - ], - "lines": [ - { - "bbox": [ - 48, - 731, - 518, - 740 - ], - "spans": [ - { - "bbox": [ - 48, - 731, - 518, - 740 - ], - "score": 1.0, - "content": "If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possibl", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 48, - 739, - 82, - 749 - ], - "spans": [ - { - "bbox": [ - 48, - 739, - 82, - 749 - ], - "score": 1.0, - "content": "opportunity.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11.5, - "page_num": "page_55", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 48, - 731, - 518, - 749 - ] - }, - { - "type": "text", - "bbox": [ - 55, - 750, - 433, - 758 - ], - "lines": [ - { - "bbox": [ - 54, - 751, - 419, - 758 - ], - "spans": [ - { - "bbox": [ - 54, - 751, - 419, - 758 - ], - "score": 1.0, - "content": "or queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_55", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 54, - 751, - 419, - 758 - ] - }, - { - "type": "text", - "bbox": [ - 49, - 761, - 364, - 770 - ], - "lines": [ - { - "bbox": [ - 49, - 762, - 363, - 770 - ], - "spans": [ - { - "bbox": [ - 49, - 762, - 363, - 770 - ], - "score": 1.0, - "content": "OCR is part of Cambridge University Press & Assessment, which is itself a department of the University of Cambridge.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_55", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 49, - 762, - 363, - 770 - ] - }, - { - "type": "text", - "bbox": [ - 59, - 779, - 96, - 786 - ], - "lines": [ - { - "bbox": [ - 59, - 779, - 96, - 786 - ], - "spans": [ - { - "bbox": [ - 59, - 779, - 66, - 786 - ], - "score": 0.29, - "content": "\\circledcirc", - "type": "inline_equation", - "height": 7, - "width": 7 - }, - { - "bbox": [ - 66, - 779, - 96, - 786 - ], - "score": 1.0, - "content": " OCR 2022", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_55", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 59, - 779, - 96, - 786 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 61, - 126, - 150, - 182 - ], - "lines": [ - { - "bbox": [ - 61, - 129, - 103, - 147 - ], - "spans": [ - { - "bbox": [ - 61, - 129, - 103, - 147 - ], - "score": 1.0, - "content": "GCE", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 61, - 162, - 149, - 181 - ], - "spans": [ - { - "bbox": [ - 61, - 162, - 149, - 181 - ], - "score": 1.0, - "content": "Physics A", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5 - }, - { - "type": "text", - "bbox": [ - 61, - 209, - 273, - 225 - ], - "lines": [ - { - "bbox": [ - 62, - 210, - 271, - 225 - ], - "spans": [ - { - "bbox": [ - 62, - 210, - 271, - 225 - ], - "score": 1.0, - "content": "Unit H156/01: Breadth in physics", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 62, - 241, - 229, - 257 - ], - "lines": [ - { - "bbox": [ - 61, - 242, - 228, - 257 - ], - "spans": [ - { - "bbox": [ - 61, - 242, - 228, - 257 - ], - "score": 1.0, - "content": "Advanced Subsidiary GCE", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "title", - "bbox": [ - 60, - 282, - 301, - 303 - ], - "lines": [ - { - "bbox": [ - 63, - 285, - 299, - 300 - ], - "spans": [ - { - "bbox": [ - 63, - 285, - 299, - 300 - ], - "score": 1.0, - "content": "Mark Scheme for June 2016", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - } - ], - "layout_bboxes": [], - "page_idx": 56, - "page_size": [ - 595.3200073242188, - 842.0399780273438 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 62, - 804, - 231, - 814 - ], - "lines": [ - { - "bbox": [ - 61, - 804, - 231, - 815 - ], - "spans": [ - { - "bbox": [ - 61, - 804, - 231, - 815 - ], - "score": 1.0, - "content": "Oxford Cambridge and RSA Examinations", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 61, - 39, - 182, - 90 - ], - "lines": [ - { - "bbox": [ - 61, - 42, - 180, - 77 - ], - "spans": [ - { - "bbox": [ - 61, - 42, - 180, - 77 - ], - "score": 0.9135913252830505, - "content": "OCR", - "type": "text" - } - ] - }, - { - "bbox": [ - 65, - 78, - 180, - 89 - ], - "spans": [ - { - "bbox": [ - 65, - 78, - 180, - 89 - ], - "score": 0.999901533126831, - "content": "Oxford Cambridge and RSA", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 594, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 596, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 596, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 61, - 126, - 150, - 182 - ], - "lines": [ - { - "bbox": [ - 61, - 129, - 103, - 147 - ], - "spans": [ - { - "bbox": [ - 61, - 129, - 103, - 147 - ], - "score": 1.0, - "content": "GCE", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 61, - 162, - 149, - 181 - ], - "spans": [ - { - "bbox": [ - 61, - 162, - 149, - 181 - ], - "score": 1.0, - "content": "Physics A", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 0.5, - "page_num": "page_56", - "page_size": [ - 595.3200073242188, - 842.0399780273438 - ] - }, - { - "type": "text", - "bbox": [ - 61, - 209, - 273, - 225 - ], - "lines": [ - { - "bbox": [ - 62, - 210, - 271, - 225 - ], - "spans": [ - { - "bbox": [ - 62, - 210, - 271, - 225 - ], - "score": 1.0, - "content": "Unit H156/01: Breadth in physics", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_56", - "page_size": [ - 595.3200073242188, - 842.0399780273438 - ], - "bbox_fs": [ - 62, - 210, - 271, - 225 - ] - }, - { - "type": "text", - "bbox": [ - 62, - 241, - 229, - 257 - ], - "lines": [ - { - "bbox": [ - 61, - 242, - 228, - 257 - ], - "spans": [ - { - "bbox": [ - 61, - 242, - 228, - 257 - ], - "score": 1.0, - "content": "Advanced Subsidiary GCE", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_56", - "page_size": [ - 595.3200073242188, - 842.0399780273438 - ], - "bbox_fs": [ - 61, - 242, - 228, - 257 - ] - }, - { - "type": "title", - "bbox": [ - 60, - 282, - 301, - 303 - ], - "lines": [ - { - "bbox": [ - 63, - 285, - 299, - 300 - ], - "spans": [ - { - "bbox": [ - 63, - 285, - 299, - 300 - ], - "score": 1.0, - "content": "Mark Scheme for June 2016", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_56", - "page_size": [ - 595.3200073242188, - 842.0399780273438 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 62, - 70, - 518, - 134 - ], - "lines": [ - { - "bbox": [ - 61, - 70, - 517, - 84 - ], - "spans": [ - { - "bbox": [ - 61, - 70, - 517, - 84 - ], - "score": 1.0, - "content": "OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 61, - 84, - 502, - 96 - ], - "spans": [ - { - "bbox": [ - 61, - 84, - 502, - 96 - ], - "score": 1.0, - "content": "qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 61, - 97, - 483, - 109 - ], - "spans": [ - { - "bbox": [ - 61, - 97, - 483, - 109 - ], - "score": 1.0, - "content": "include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals,", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 61, - 109, - 513, - 122 - ], - "spans": [ - { - "bbox": [ - 61, - 109, - 513, - 122 - ], - "score": 1.0, - "content": "Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in ", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 61, - 122, - 517, - 135 - ], - "spans": [ - { - "bbox": [ - 61, - 122, - 517, - 135 - ], - "score": 1.0, - "content": "areas such as IT, business, languages, teaching/training, administration and secretarial skills.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 62, - 146, - 517, - 197 - ], - "lines": [ - { - "bbox": [ - 61, - 147, - 515, - 159 - ], - "spans": [ - { - "bbox": [ - 61, - 147, - 515, - 159 - ], - "score": 1.0, - "content": "It is also responsible for developing new specifications to meet national requirements and the", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 61, - 160, - 501, - 172 - ], - "spans": [ - { - "bbox": [ - 61, - 160, - 501, - 172 - ], - "score": 1.0, - "content": "needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 61, - 173, - 503, - 185 - ], - "spans": [ - { - "bbox": [ - 61, - 173, - 503, - 185 - ], - "score": 1.0, - "content": "invested back into the establishment to help towards the development of qualifications and", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 61, - 185, - 400, - 199 - ], - "spans": [ - { - "bbox": [ - 61, - 185, - 400, - 199 - ], - "score": 1.0, - "content": "support, which keep pace with the changing needs of today’s society.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 6.5 - }, - { - "type": "text", - "bbox": [ - 61, - 209, - 531, - 260 - ], - "lines": [ - { - "bbox": [ - 61, - 210, - 528, - 223 - ], - "spans": [ - { - "bbox": [ - 61, - 210, - 528, - 223 - ], - "score": 1.0, - "content": "This mark scheme is published as an aid to teachers and students, to indicate the requirements ", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 61, - 223, - 525, - 235 - ], - "spans": [ - { - "bbox": [ - 61, - 223, - 525, - 235 - ], - "score": 1.0, - "content": "of the examination. It shows the basis on which marks were awarded by examiners. It does not ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 60, - 234, - 532, - 249 - ], - "spans": [ - { - "bbox": [ - 60, - 234, - 532, - 249 - ], - "score": 1.0, - "content": "indicate the details of the discussions which took place at an examiners’ meeting before marking", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 61, - 249, - 126, - 261 - ], - "spans": [ - { - "bbox": [ - 61, - 249, - 126, - 261 - ], - "score": 1.0, - "content": "commenced.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 10.5 - }, - { - "type": "text", - "bbox": [ - 62, - 273, - 511, - 311 - ], - "lines": [ - { - "bbox": [ - 62, - 274, - 508, - 286 - ], - "spans": [ - { - "bbox": [ - 62, - 274, - 508, - 286 - ], - "score": 1.0, - "content": "All examiners are instructed that alternative correct answers and unexpected approaches in", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 61, - 287, - 503, - 299 - ], - "spans": [ - { - "bbox": [ - 61, - 287, - 503, - 299 - ], - "score": 1.0, - "content": "candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 61, - 299, - 133, - 311 - ], - "spans": [ - { - "bbox": [ - 61, - 299, - 133, - 311 - ], - "score": 1.0, - "content": "demonstrated.", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 59, - 324, - 526, - 349 - ], - "lines": [ - { - "bbox": [ - 60, - 323, - 526, - 337 - ], - "spans": [ - { - "bbox": [ - 60, - 323, - 526, - 337 - ], - "score": 1.0, - "content": "Mark schemes should be read in conjunction with the published question papers and the report ", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 61, - 337, - 159, - 349 - ], - "spans": [ - { - "bbox": [ - 61, - 337, - 159, - 349 - ], - "score": 1.0, - "content": "on the examination.", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 16.5 - }, - { - "type": "text", - "bbox": [ - 58, - 361, - 526, - 375 - ], - "lines": [ - { - "bbox": [ - 61, - 361, - 525, - 375 - ], - "spans": [ - { - "bbox": [ - 61, - 361, - 525, - 375 - ], - "score": 1.0, - "content": "OCR will not enter into any discussion or correspondence in connection with this mark scheme.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18 - }, - { - "type": "text", - "bbox": [ - 61, - 387, - 126, - 399 - ], - "lines": [ - { - "bbox": [ - 60, - 387, - 126, - 399 - ], - "spans": [ - { - "bbox": [ - 60, - 387, - 72, - 399 - ], - "score": 0.39, - "content": "\\circledcirc", - "type": "inline_equation", - "height": 12, - "width": 12 - }, - { - "bbox": [ - 72, - 388, - 126, - 398 - ], - "score": 1.0, - "content": " OCR 2016", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 19 - } - ], - "layout_bboxes": [], - "page_idx": 57, - "page_size": [ - 595.3200073242188, - 842.0399780273438 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 570, - 2, - 594, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 0, - 596, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 0, - 596, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 62, - 70, - 518, - 134 - ], - "lines": [ - { - "bbox": [ - 61, - 70, - 517, - 84 - ], - "spans": [ - { - "bbox": [ - 61, - 70, - 517, - 84 - ], - "score": 1.0, - "content": "OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 61, - 84, - 502, - 96 - ], - "spans": [ - { - "bbox": [ - 61, - 84, - 502, - 96 - ], - "score": 1.0, - "content": "qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 61, - 97, - 483, - 109 - ], - "spans": [ - { - "bbox": [ - 61, - 97, - 483, - 109 - ], - "score": 1.0, - "content": "include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals,", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 61, - 109, - 513, - 122 - ], - "spans": [ - { - "bbox": [ - 61, - 109, - 513, - 122 - ], - "score": 1.0, - "content": "Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in ", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 61, - 122, - 517, - 135 - ], - "spans": [ - { - "bbox": [ - 61, - 122, - 517, - 135 - ], - "score": 1.0, - "content": "areas such as IT, business, languages, teaching/training, administration and secretarial skills.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 2, - "page_num": "page_57", - "page_size": [ - 595.3200073242188, - 842.0399780273438 - ], - "bbox_fs": [ - 61, - 70, - 517, - 135 - ] - }, - { - "type": "text", - "bbox": [ - 62, - 146, - 517, - 197 - ], - "lines": [ - { - "bbox": [ - 61, - 147, - 515, - 159 - ], - "spans": [ - { - "bbox": [ - 61, - 147, - 515, - 159 - ], - "score": 1.0, - "content": "It is also responsible for developing new specifications to meet national requirements and the", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 61, - 160, - 501, - 172 - ], - "spans": [ - { - "bbox": [ - 61, - 160, - 501, - 172 - ], - "score": 1.0, - "content": "needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 61, - 173, - 503, - 185 - ], - "spans": [ - { - "bbox": [ - 61, - 173, - 503, - 185 - ], - "score": 1.0, - "content": "invested back into the establishment to help towards the development of qualifications and", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 61, - 185, - 400, - 199 - ], - "spans": [ - { - "bbox": [ - 61, - 185, - 400, - 199 - ], - "score": 1.0, - "content": "support, which keep pace with the changing needs of today’s society.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 6.5, - "page_num": "page_57", - "page_size": [ - 595.3200073242188, - 842.0399780273438 - ], - "bbox_fs": [ - 61, - 147, - 515, - 199 - ] - }, - { - "type": "text", - "bbox": [ - 61, - 209, - 531, - 260 - ], - "lines": [ - { - "bbox": [ - 61, - 210, - 528, - 223 - ], - "spans": [ - { - "bbox": [ - 61, - 210, - 528, - 223 - ], - "score": 1.0, - "content": "This mark scheme is published as an aid to teachers and students, to indicate the requirements ", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 61, - 223, - 525, - 235 - ], - "spans": [ - { - "bbox": [ - 61, - 223, - 525, - 235 - ], - "score": 1.0, - "content": "of the examination. It shows the basis on which marks were awarded by examiners. It does not ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 60, - 234, - 532, - 249 - ], - "spans": [ - { - "bbox": [ - 60, - 234, - 532, - 249 - ], - "score": 1.0, - "content": "indicate the details of the discussions which took place at an examiners’ meeting before marking", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 61, - 249, - 126, - 261 - ], - "spans": [ - { - "bbox": [ - 61, - 249, - 126, - 261 - ], - "score": 1.0, - "content": "commenced.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 10.5, - "page_num": "page_57", - "page_size": [ - 595.3200073242188, - 842.0399780273438 - ], - "bbox_fs": [ - 60, - 210, - 532, - 261 - ] - }, - { - "type": "text", - "bbox": [ - 62, - 273, - 511, - 311 - ], - "lines": [ - { - "bbox": [ - 62, - 274, - 508, - 286 - ], - "spans": [ - { - "bbox": [ - 62, - 274, - 508, - 286 - ], - "score": 1.0, - "content": "All examiners are instructed that alternative correct answers and unexpected approaches in", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 61, - 287, - 503, - 299 - ], - "spans": [ - { - "bbox": [ - 61, - 287, - 503, - 299 - ], - "score": 1.0, - "content": "candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 61, - 299, - 133, - 311 - ], - "spans": [ - { - "bbox": [ - 61, - 299, - 133, - 311 - ], - "score": 1.0, - "content": "demonstrated.", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 14, - "page_num": "page_57", - "page_size": [ - 595.3200073242188, - 842.0399780273438 - ], - "bbox_fs": [ - 61, - 274, - 508, - 311 - ] - }, - { - "type": "text", - "bbox": [ - 59, - 324, - 526, - 349 - ], - "lines": [ - { - "bbox": [ - 60, - 323, - 526, - 337 - ], - "spans": [ - { - "bbox": [ - 60, - 323, - 526, - 337 - ], - "score": 1.0, - "content": "Mark schemes should be read in conjunction with the published question papers and the report ", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 61, - 337, - 159, - 349 - ], - "spans": [ - { - "bbox": [ - 61, - 337, - 159, - 349 - ], - "score": 1.0, - "content": "on the examination.", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 16.5, - "page_num": "page_57", - "page_size": [ - 595.3200073242188, - 842.0399780273438 - ], - "bbox_fs": [ - 60, - 323, - 526, - 349 - ] - }, - { - "type": "text", - "bbox": [ - 58, - 361, - 526, - 375 - ], - "lines": [ - { - "bbox": [ - 61, - 361, - 525, - 375 - ], - "spans": [ - { - "bbox": [ - 61, - 361, - 525, - 375 - ], - "score": 1.0, - "content": "OCR will not enter into any discussion or correspondence in connection with this mark scheme.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18, - "page_num": "page_57", - "page_size": [ - 595.3200073242188, - 842.0399780273438 - ], - "bbox_fs": [ - 61, - 361, - 525, - 375 - ] - }, - { - "type": "text", - "bbox": [ - 61, - 387, - 126, - 399 - ], - "lines": [ - { - "bbox": [ - 60, - 387, - 126, - 399 - ], - "spans": [ - { - "bbox": [ - 60, - 387, - 72, - 399 - ], - "score": 0.39, - "content": "\\circledcirc", - "type": "inline_equation", - "height": 12, - "width": 12 - }, - { - "bbox": [ - 72, - 388, - 126, - 398 - ], - "score": 1.0, - "content": " OCR 2016", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 19, - "page_num": "page_57", - "page_size": [ - 595.3200073242188, - 842.0399780273438 - ], - "bbox_fs": [ - 60, - 387, - 126, - 399 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 55, - 42, - 98, - 55 - ], - "lines": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "spans": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "title", - "bbox": [ - 381, - 42, - 454, - 55 - ], - "lines": [ - { - "bbox": [ - 382, - 42, - 454, - 54 - ], - "spans": [ - { - "bbox": [ - 382, - 42, - 454, - 54 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 56, - 67, - 241, - 81 - ], - "lines": [ - { - "bbox": [ - 56, - 69, - 241, - 79 - ], - "spans": [ - { - "bbox": [ - 56, - 69, - 241, - 79 - ], - "score": 1.0, - "content": "Annotations available in RM Assessor", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "table", - "bbox": [ - 45, - 91, - 815, - 465 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 45, - 91, - 815, - 465 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 45, - 91, - 815, - 465 - ], - "spans": [ - { - "bbox": [ - 45, - 91, - 815, - 465 - ], - "score": 0.892, - "html": "
AnnotationMeaning
BODBenefit of doubt given
CONContradiction
Incorrect response
ECFError carried forward
L1Level 1
L2Level 2
L3Level 3
TETranscription error
NBODBenefit of doubt not given
POTPower of 10 error
Omissionmark
SFError in number of significant figures
Correct response
Wrong physics or equation
", - "type": "table", - "image_path": "50ea7e80209d9ad5f19506f7711aa8cff2dba0eb7f370832eff2a7db057d2abc.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 45, - 91, - 815, - 215.66666666666669 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 45, - 215.66666666666669, - 815, - 340.33333333333337 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 45, - 340.33333333333337, - 815, - 465.00000000000006 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "layout_bboxes": [], - "page_idx": 58, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 45, - 91, - 815, - 465 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 45, - 91, - 815, - 465 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 45, - 91, - 815, - 465 - ], - "spans": [ - { - "bbox": [ - 45, - 91, - 815, - 465 - ], - "score": 0.892, - "html": "
AnnotationMeaning
BODBenefit of doubt given
CONContradiction
Incorrect response
ECFError carried forward
L1Level 1
L2Level 2
L3Level 3
TETranscription error
NBODBenefit of doubt not given
POTPower of 10 error
Omissionmark
SFError in number of significant figures
Correct response
Wrong physics or equation
", - "type": "table", - "image_path": "50ea7e80209d9ad5f19506f7711aa8cff2dba0eb7f370832eff2a7db057d2abc.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 45, - 91, - 815, - 215.66666666666669 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 45, - 215.66666666666669, - 815, - 340.33333333333337 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 45, - 340.33333333333337, - 815, - 465.00000000000006 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 708, - 42, - 763, - 54 - ], - "lines": [ - { - "bbox": [ - 708, - 43, - 763, - 54 - ], - "spans": [ - { - "bbox": [ - 708, - 43, - 763, - 54 - ], - "score": 1.0, - "content": "June 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 13 - ], - "lines": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "spans": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 416, - 555, - 425, - 566 - ], - "lines": [ - { - "bbox": [ - 415, - 554, - 426, - 568 - ], - "spans": [ - { - "bbox": [ - 415, - 554, - 426, - 568 - ], - "score": 1.0, - "content": "3 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 55, - 42, - 98, - 55 - ], - "lines": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "spans": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_58", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "title", - "bbox": [ - 381, - 42, - 454, - 55 - ], - "lines": [ - { - "bbox": [ - 382, - 42, - 454, - 54 - ], - "spans": [ - { - "bbox": [ - 382, - 42, - 454, - 54 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_58", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "text", - "bbox": [ - 56, - 67, - 241, - 81 - ], - "lines": [ - { - "bbox": [ - 56, - 69, - 241, - 79 - ], - "spans": [ - { - "bbox": [ - 56, - 69, - 241, - 79 - ], - "score": 1.0, - "content": "Annotations available in RM Assessor", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_58", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 56, - 69, - 241, - 79 - ] - }, - { - "type": "table", - "bbox": [ - 45, - 91, - 815, - 465 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 45, - 91, - 815, - 465 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 45, - 91, - 815, - 465 - ], - "spans": [ - { - "bbox": [ - 45, - 91, - 815, - 465 - ], - "score": 0.892, - "html": "
AnnotationMeaning
BODBenefit of doubt given
CONContradiction
Incorrect response
ECFError carried forward
L1Level 1
L2Level 2
L3Level 3
TETranscription error
NBODBenefit of doubt not given
POTPower of 10 error
Omissionmark
SFError in number of significant figures
Correct response
Wrong physics or equation
", - "type": "table", - "image_path": "50ea7e80209d9ad5f19506f7711aa8cff2dba0eb7f370832eff2a7db057d2abc.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 45, - 91, - 815, - 215.66666666666669 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 45, - 215.66666666666669, - 815, - 340.33333333333337 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 45, - 340.33333333333337, - 815, - 465.00000000000006 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_58", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 55, - 42, - 98, - 54 - ], - "lines": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "spans": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "title", - "bbox": [ - 381, - 42, - 454, - 55 - ], - "lines": [ - { - "bbox": [ - 382, - 42, - 454, - 54 - ], - "spans": [ - { - "bbox": [ - 382, - 42, - 454, - 54 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 60, - 67, - 736, - 81 - ], - "lines": [ - { - "bbox": [ - 58, - 67, - 730, - 82 - ], - "spans": [ - { - "bbox": [ - 58, - 67, - 730, - 82 - ], - "score": 1.0, - "content": "Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "table", - "bbox": [ - 46, - 90, - 805, - 379 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 90, - 805, - 379 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 90, - 805, - 379 - ], - "spans": [ - { - "bbox": [ - 46, - 90, - 805, - 379 - ], - "score": 0.977, - "html": "
AnnotationMeaning
alternative and acceptable answers for the same marking point
rejectAnswers which are not worthy of credit
notAnswers which are not worthy of credit
IgnoreStatementswhich areirrelevant
AllowAnswers that can be accepted
()Words which are not essential to gain credit
Underlined words must be present in answer to score a mark
ECF AWError carried forward
ORAAlternative wording
Or reverse argument
", - "type": "table", - "image_path": "8510cb467750fd0402f93a539cd94eca4f6908b0fb4f4da8788658a5e721d426.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 46, - 90, - 805, - 186.33333333333331 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 46, - 186.33333333333331, - 805, - 282.66666666666663 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 46, - 282.66666666666663, - 805, - 378.99999999999994 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "layout_bboxes": [], - "page_idx": 59, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 46, - 90, - 805, - 379 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 90, - 805, - 379 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 90, - 805, - 379 - ], - "spans": [ - { - "bbox": [ - 46, - 90, - 805, - 379 - ], - "score": 0.977, - "html": "
AnnotationMeaning
alternative and acceptable answers for the same marking point
rejectAnswers which are not worthy of credit
notAnswers which are not worthy of credit
IgnoreStatementswhich areirrelevant
AllowAnswers that can be accepted
()Words which are not essential to gain credit
Underlined words must be present in answer to score a mark
ECF AWError carried forward
ORAAlternative wording
Or reverse argument
", - "type": "table", - "image_path": "8510cb467750fd0402f93a539cd94eca4f6908b0fb4f4da8788658a5e721d426.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 46, - 90, - 805, - 186.33333333333331 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 46, - 186.33333333333331, - 805, - 282.66666666666663 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 46, - 282.66666666666663, - 805, - 378.99999999999994 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 707, - 42, - 763, - 54 - ], - "lines": [ - { - "bbox": [ - 708, - 43, - 762, - 54 - ], - "spans": [ - { - "bbox": [ - 708, - 43, - 762, - 54 - ], - "score": 1.0, - "content": "June 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 13 - ], - "lines": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "spans": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 416, - 555, - 425, - 565 - ], - "lines": [ - { - "bbox": [ - 416, - 555, - 426, - 567 - ], - "spans": [ - { - "bbox": [ - 416, - 555, - 426, - 567 - ], - "score": 1.0, - "content": "4 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 55, - 42, - 98, - 54 - ], - "lines": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "spans": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_59", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "title", - "bbox": [ - 381, - 42, - 454, - 55 - ], - "lines": [ - { - "bbox": [ - 382, - 42, - 454, - 54 - ], - "spans": [ - { - "bbox": [ - 382, - 42, - 454, - 54 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_59", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "text", - "bbox": [ - 60, - 67, - 736, - 81 - ], - "lines": [ - { - "bbox": [ - 58, - 67, - 730, - 82 - ], - "spans": [ - { - "bbox": [ - 58, - 67, - 730, - 82 - ], - "score": 1.0, - "content": "Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_59", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 58, - 67, - 730, - 82 - ] - }, - { - "type": "table", - "bbox": [ - 46, - 90, - 805, - 379 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 90, - 805, - 379 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 90, - 805, - 379 - ], - "spans": [ - { - "bbox": [ - 46, - 90, - 805, - 379 - ], - "score": 0.977, - "html": "
AnnotationMeaning
alternative and acceptable answers for the same marking point
rejectAnswers which are not worthy of credit
notAnswers which are not worthy of credit
IgnoreStatementswhich areirrelevant
AllowAnswers that can be accepted
()Words which are not essential to gain credit
Underlined words must be present in answer to score a mark
ECF AWError carried forward
ORAAlternative wording
Or reverse argument
", - "type": "table", - "image_path": "8510cb467750fd0402f93a539cd94eca4f6908b0fb4f4da8788658a5e721d426.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 46, - 90, - 805, - 186.33333333333331 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 46, - 186.33333333333331, - 805, - 282.66666666666663 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 46, - 282.66666666666663, - 805, - 378.99999999999994 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_59", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 56, - 91, - 218, - 105 - ], - "lines": [ - { - "bbox": [ - 56, - 93, - 217, - 103 - ], - "spans": [ - { - "bbox": [ - 56, - 93, - 217, - 103 - ], - "score": 1.0, - "content": "CATEGORISATION OF MARKS", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 57, - 117, - 364, - 130 - ], - "lines": [ - { - "bbox": [ - 57, - 118, - 365, - 130 - ], - "spans": [ - { - "bbox": [ - 57, - 118, - 365, - 130 - ], - "score": 1.0, - "content": "The marking schemes categorise marks on the MACB scheme.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 55, - 154, - 764, - 180 - ], - "lines": [ - { - "bbox": [ - 56, - 154, - 761, - 169 - ], - "spans": [ - { - "bbox": [ - 56, - 154, - 761, - 169 - ], - "score": 1.0, - "content": "B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 54, - 166, - 315, - 182 - ], - "spans": [ - { - "bbox": [ - 54, - 166, - 315, - 182 - ], - "score": 1.0, - "content": "must be seen specifically in the candidate’s answers.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5 - }, - { - "type": "text", - "bbox": [ - 56, - 193, - 778, - 232 - ], - "lines": [ - { - "bbox": [ - 56, - 194, - 769, - 207 - ], - "spans": [ - { - "bbox": [ - 56, - 194, - 769, - 207 - ], - "score": 1.0, - "content": "C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate,", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 55, - 207, - 779, - 220 - ], - "spans": [ - { - "bbox": [ - 55, - 207, - 779, - 220 - ], - "score": 1.0, - "content": "providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 55, - 220, - 685, - 232 - ], - "spans": [ - { - "bbox": [ - 55, - 220, - 685, - 232 - ], - "score": 1.0, - "content": "write down the actual equation but does correct working which shows the candidate knew the equation, then the C-mark is given.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 56, - 243, - 782, - 269 - ], - "lines": [ - { - "bbox": [ - 56, - 243, - 783, - 256 - ], - "spans": [ - { - "bbox": [ - 56, - 243, - 783, - 256 - ], - "score": 1.0, - "content": "M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 54, - 256, - 725, - 272 - ], - "spans": [ - { - "bbox": [ - 54, - 256, - 725, - 272 - ], - "score": 1.0, - "content": "be seen in the candidate’s answers. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7.5 - }, - { - "type": "text", - "bbox": [ - 58, - 281, - 617, - 295 - ], - "lines": [ - { - "bbox": [ - 57, - 281, - 617, - 296 - ], - "spans": [ - { - "bbox": [ - 57, - 281, - 617, - 296 - ], - "score": 1.0, - "content": "A marks: These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "title", - "bbox": [ - 56, - 345, - 215, - 358 - ], - "lines": [ - { - "bbox": [ - 56, - 346, - 215, - 358 - ], - "spans": [ - { - "bbox": [ - 56, - 346, - 215, - 358 - ], - "score": 1.0, - "content": "Note about significant figures:", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 56, - 370, - 461, - 409 - ], - "lines": [ - { - "bbox": [ - 55, - 371, - 453, - 384 - ], - "spans": [ - { - "bbox": [ - 55, - 371, - 453, - 384 - ], - "score": 1.0, - "content": "If the data given in a question is to 2 sf, then allow to 2 or more significant figures.", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 55, - 383, - 461, - 397 - ], - "spans": [ - { - "bbox": [ - 55, - 383, - 461, - 397 - ], - "score": 1.0, - "content": "If an answer is given to fewer than 2 sf, then penalise once only in the entire paper.", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 55, - 397, - 351, - 409 - ], - "spans": [ - { - "bbox": [ - 55, - 397, - 351, - 409 - ], - "score": 1.0, - "content": "Any exception to this rule will be mentioned in the Guidance.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 12 - } - ], - "layout_bboxes": [], - "page_idx": 60, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 708, - 43, - 762, - 54 - ], - "lines": [ - { - "bbox": [ - 708, - 42, - 763, - 54 - ], - "spans": [ - { - "bbox": [ - 708, - 42, - 763, - 54 - ], - "score": 1.0, - "content": "June 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 56, - 42, - 97, - 54 - ], - "lines": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "spans": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 381, - 42, - 454, - 54 - ], - "lines": [ - { - "bbox": [ - 382, - 42, - 454, - 54 - ], - "spans": [ - { - "bbox": [ - 382, - 42, - 454, - 54 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 416, - 556, - 425, - 565 - ], - "lines": [ - { - "bbox": [ - 415, - 554, - 426, - 568 - ], - "spans": [ - { - "bbox": [ - 415, - 554, - 426, - 568 - ], - "score": 1.0, - "content": "5 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 56, - 91, - 218, - 105 - ], - "lines": [ - { - "bbox": [ - 56, - 93, - 217, - 103 - ], - "spans": [ - { - "bbox": [ - 56, - 93, - 217, - 103 - ], - "score": 1.0, - "content": "CATEGORISATION OF MARKS", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_60", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "text", - "bbox": [ - 57, - 117, - 364, - 130 - ], - "lines": [ - { - "bbox": [ - 57, - 118, - 365, - 130 - ], - "spans": [ - { - "bbox": [ - 57, - 118, - 365, - 130 - ], - "score": 1.0, - "content": "The marking schemes categorise marks on the MACB scheme.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_60", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 57, - 118, - 365, - 130 - ] - }, - { - "type": "text", - "bbox": [ - 55, - 154, - 764, - 180 - ], - "lines": [ - { - "bbox": [ - 56, - 154, - 761, - 169 - ], - "spans": [ - { - "bbox": [ - 56, - 154, - 761, - 169 - ], - "score": 1.0, - "content": "B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 54, - 166, - 315, - 182 - ], - "spans": [ - { - "bbox": [ - 54, - 166, - 315, - 182 - ], - "score": 1.0, - "content": "must be seen specifically in the candidate’s answers.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2.5, - "page_num": "page_60", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 54, - 154, - 761, - 182 - ] - }, - { - "type": "text", - "bbox": [ - 56, - 193, - 778, - 232 - ], - "lines": [ - { - "bbox": [ - 56, - 194, - 769, - 207 - ], - "spans": [ - { - "bbox": [ - 56, - 194, - 769, - 207 - ], - "score": 1.0, - "content": "C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate,", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 55, - 207, - 779, - 220 - ], - "spans": [ - { - "bbox": [ - 55, - 207, - 779, - 220 - ], - "score": 1.0, - "content": "providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 55, - 220, - 685, - 232 - ], - "spans": [ - { - "bbox": [ - 55, - 220, - 685, - 232 - ], - "score": 1.0, - "content": "write down the actual equation but does correct working which shows the candidate knew the equation, then the C-mark is given.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5, - "page_num": "page_60", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 55, - 194, - 779, - 232 - ] - }, - { - "type": "text", - "bbox": [ - 56, - 243, - 782, - 269 - ], - "lines": [ - { - "bbox": [ - 56, - 243, - 783, - 256 - ], - "spans": [ - { - "bbox": [ - 56, - 243, - 783, - 256 - ], - "score": 1.0, - "content": "M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 54, - 256, - 725, - 272 - ], - "spans": [ - { - "bbox": [ - 54, - 256, - 725, - 272 - ], - "score": 1.0, - "content": "be seen in the candidate’s answers. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7.5, - "page_num": "page_60", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 54, - 243, - 783, - 272 - ] - }, - { - "type": "text", - "bbox": [ - 58, - 281, - 617, - 295 - ], - "lines": [ - { - "bbox": [ - 57, - 281, - 617, - 296 - ], - "spans": [ - { - "bbox": [ - 57, - 281, - 617, - 296 - ], - "score": 1.0, - "content": "A marks: These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_60", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 57, - 281, - 617, - 296 - ] - }, - { - "type": "title", - "bbox": [ - 56, - 345, - 215, - 358 - ], - "lines": [ - { - "bbox": [ - 56, - 346, - 215, - 358 - ], - "spans": [ - { - "bbox": [ - 56, - 346, - 215, - 358 - ], - "score": 1.0, - "content": "Note about significant figures:", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_60", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "list", - "bbox": [ - 56, - 370, - 461, - 409 - ], - "lines": [ - { - "bbox": [ - 55, - 371, - 453, - 384 - ], - "spans": [ - { - "bbox": [ - 55, - 371, - 453, - 384 - ], - "score": 1.0, - "content": "If the data given in a question is to 2 sf, then allow to 2 or more significant figures.", - "type": "text" - } - ], - "index": 11, - "is_list_end_line": true - }, - { - "bbox": [ - 55, - 383, - 461, - 397 - ], - "spans": [ - { - "bbox": [ - 55, - 383, - 461, - 397 - ], - "score": 1.0, - "content": "If an answer is given to fewer than 2 sf, then penalise once only in the entire paper.", - "type": "text" - } - ], - "index": 12, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 55, - 397, - 351, - 409 - ], - "spans": [ - { - "bbox": [ - 55, - 397, - 351, - 409 - ], - "score": 1.0, - "content": "Any exception to this rule will be mentioned in the Guidance.", - "type": "text" - } - ], - "index": 13, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 12, - "page_num": "page_60", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 55, - 371, - 461, - 409 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 381, - 42, - 454, - 55 - ], - "lines": [ - { - "bbox": [ - 382, - 42, - 454, - 54 - ], - "spans": [ - { - "bbox": [ - 382, - 42, - 454, - 54 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "title", - "bbox": [ - 388, - 67, - 452, - 80 - ], - "lines": [ - { - "bbox": [ - 390, - 68, - 451, - 79 - ], - "spans": [ - { - "bbox": [ - 390, - 68, - 451, - 79 - ], - "score": 1.0, - "content": "SECTION A", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 45, - 93, - 797, - 425 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 45, - 93, - 797, - 425 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 45, - 93, - 797, - 425 - ], - "spans": [ - { - "bbox": [ - 45, - 93, - 797, - 425 - ], - "score": 0.98, - "html": "
QuestionAnswerMarks Guidance
1C1
2B1
3C1
4D1
5B1
9A1
7B1
8B1
9A1
10C1
11D1
12B1
13C1
14C1
15C1
16A1
17D1
18C1
19D1
20B1
Total20
", - "type": "table", - "image_path": "a7f8f3922ac8cc761f4fcebdfeb704b3d88481369642e3f95e9bc59d3e0d1517.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 45, - 93, - 797, - 203.66666666666669 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 45, - 203.66666666666669, - 797, - 314.33333333333337 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 45, - 314.33333333333337, - 797, - 425.00000000000006 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3 - } - ], - "layout_bboxes": [], - "page_idx": 61, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 45, - 93, - 797, - 425 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 45, - 93, - 797, - 425 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 45, - 93, - 797, - 425 - ], - "spans": [ - { - "bbox": [ - 45, - 93, - 797, - 425 - ], - "score": 0.98, - "html": "
QuestionAnswerMarks Guidance
1C1
2B1
3C1
4D1
5B1
9A1
7B1
8B1
9A1
10C1
11D1
12B1
13C1
14C1
15C1
16A1
17D1
18C1
19D1
20B1
Total20
", - "type": "table", - "image_path": "a7f8f3922ac8cc761f4fcebdfeb704b3d88481369642e3f95e9bc59d3e0d1517.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 45, - 93, - 797, - 203.66666666666669 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 45, - 203.66666666666669, - 797, - 314.33333333333337 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 45, - 314.33333333333337, - 797, - 425.00000000000006 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 708, - 43, - 762, - 54 - ], - "lines": [ - { - "bbox": [ - 708, - 42, - 763, - 54 - ], - "spans": [ - { - "bbox": [ - 708, - 42, - 763, - 54 - ], - "score": 1.0, - "content": "June 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 416, - 556, - 425, - 566 - ], - "lines": [ - { - "bbox": [ - 416, - 554, - 426, - 567 - ], - "spans": [ - { - "bbox": [ - 416, - 554, - 426, - 567 - ], - "score": 1.0, - "content": "6 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 13 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 841, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 841, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 55, - 42, - 98, - 54 - ], - "lines": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "spans": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 381, - 42, - 454, - 55 - ], - "lines": [ - { - "bbox": [ - 382, - 42, - 454, - 54 - ], - "spans": [ - { - "bbox": [ - 382, - 42, - 454, - 54 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_61", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "title", - "bbox": [ - 388, - 67, - 452, - 80 - ], - "lines": [ - { - "bbox": [ - 390, - 68, - 451, - 79 - ], - "spans": [ - { - "bbox": [ - 390, - 68, - 451, - 79 - ], - "score": 1.0, - "content": "SECTION A", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_61", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 45, - 93, - 797, - 425 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 45, - 93, - 797, - 425 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 45, - 93, - 797, - 425 - ], - "spans": [ - { - "bbox": [ - 45, - 93, - 797, - 425 - ], - "score": 0.98, - "html": "
QuestionAnswerMarks Guidance
1C1
2B1
3C1
4D1
5B1
9A1
7B1
8B1
9A1
10C1
11D1
12B1
13C1
14C1
15C1
16A1
17D1
18C1
19D1
20B1
Total20
", - "type": "table", - "image_path": "a7f8f3922ac8cc761f4fcebdfeb704b3d88481369642e3f95e9bc59d3e0d1517.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 45, - 93, - 797, - 203.66666666666669 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 45, - 203.66666666666669, - 797, - 314.33333333333337 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 45, - 314.33333333333337, - 797, - 425.00000000000006 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3, - "page_num": "page_61", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 381, - 42, - 455, - 55 - ], - "lines": [ - { - "bbox": [ - 382, - 42, - 454, - 54 - ], - "spans": [ - { - "bbox": [ - 382, - 42, - 454, - 54 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "title", - "bbox": [ - 388, - 67, - 452, - 80 - ], - "lines": [ - { - "bbox": [ - 390, - 68, - 451, - 79 - ], - "spans": [ - { - "bbox": [ - 390, - 68, - 451, - 79 - ], - "score": 1.0, - "content": "SECTION B", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 47, - 92, - 798, - 461 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 92, - 798, - 461 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 47, - 92, - 798, - 461 - ], - "spans": [ - { - "bbox": [ - 47, - 92, - 798, - 461 - ], - "score": 0.981, - "html": "
Question 21AnswerMarksGuidance
(a) Mass is a scalar (quantity) and velocity is a vector (quantity).B1
(q) (i)(Addition of) velocity depends on direction / sign / vector triangle / resolving (ORA) An arrow from trolley to ramp along the string (for the tension) and a downwards arrow from the trolley (for theB1 B1Allow‘Velocity can be cancelled out' Not arrow for the tension parallel to the rampAllow arrows in correct directions anywhere on Fig. 21 Not arrow perpendicular to the ramp for the weight
weight). (ii) t= 0.73 (s)(s = 12 at'); 0.80 = 1%2 × 3.0 × t (Any subject)C1 A1Not two arrow heads in opposite directions along the string for the tension
Allow full credit for alternative methods, e.g: v2 = 2 × 0.80 × 3.0; v= 2.19 (m s-1) 2.19Note: Apply SF penalty if 0.7 s is on the answer line or the final answer Allow 1 mark for 0.40 (s); 9.8 m s2 used instead of 3.0 m s-2
=1 C1 3.0 t= 0.73 (s) A1
Total 5
", - "type": "table", - "image_path": "f6ac9e460d55687dbf1bdfa140f80dbc9ab4b22822b9d72e14ecc7bf7a846d76.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 47, - 92, - 798, - 215.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 47, - 215.0, - 798, - 338.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 47, - 338.0, - 798, - 461.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3 - } - ], - "layout_bboxes": [], - "page_idx": 62, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 47, - 92, - 798, - 461 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 92, - 798, - 461 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 47, - 92, - 798, - 461 - ], - "spans": [ - { - "bbox": [ - 47, - 92, - 798, - 461 - ], - "score": 0.981, - "html": "
Question 21AnswerMarksGuidance
(a) Mass is a scalar (quantity) and velocity is a vector (quantity).B1
(q) (i)(Addition of) velocity depends on direction / sign / vector triangle / resolving (ORA) An arrow from trolley to ramp along the string (for the tension) and a downwards arrow from the trolley (for theB1 B1Allow‘Velocity can be cancelled out' Not arrow for the tension parallel to the rampAllow arrows in correct directions anywhere on Fig. 21 Not arrow perpendicular to the ramp for the weight
weight). (ii) t= 0.73 (s)(s = 12 at'); 0.80 = 1%2 × 3.0 × t (Any subject)C1 A1Not two arrow heads in opposite directions along the string for the tension
Allow full credit for alternative methods, e.g: v2 = 2 × 0.80 × 3.0; v= 2.19 (m s-1) 2.19Note: Apply SF penalty if 0.7 s is on the answer line or the final answer Allow 1 mark for 0.40 (s); 9.8 m s2 used instead of 3.0 m s-2
=1 C1 3.0 t= 0.73 (s) A1
Total 5
", - "type": "table", - "image_path": "f6ac9e460d55687dbf1bdfa140f80dbc9ab4b22822b9d72e14ecc7bf7a846d76.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 47, - 92, - 798, - 215.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 47, - 215.0, - 798, - 338.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 47, - 338.0, - 798, - 461.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 708, - 42, - 763, - 54 - ], - "lines": [ - { - "bbox": [ - 708, - 42, - 763, - 54 - ], - "spans": [ - { - "bbox": [ - 708, - 42, - 763, - 54 - ], - "score": 1.0, - "content": "June 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 13 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 841, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 841, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 417, - 555, - 424, - 565 - ], - "lines": [ - { - "bbox": [ - 415, - 554, - 427, - 568 - ], - "spans": [ - { - "bbox": [ - 415, - 554, - 427, - 568 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 14, - "width": 12 - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 55, - 42, - 98, - 54 - ], - "lines": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "spans": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 381, - 42, - 455, - 55 - ], - "lines": [ - { - "bbox": [ - 382, - 42, - 454, - 54 - ], - "spans": [ - { - "bbox": [ - 382, - 42, - 454, - 54 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_62", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "title", - "bbox": [ - 388, - 67, - 452, - 80 - ], - "lines": [ - { - "bbox": [ - 390, - 68, - 451, - 79 - ], - "spans": [ - { - "bbox": [ - 390, - 68, - 451, - 79 - ], - "score": 1.0, - "content": "SECTION B", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_62", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 47, - 92, - 798, - 461 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 92, - 798, - 461 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 47, - 92, - 798, - 461 - ], - "spans": [ - { - "bbox": [ - 47, - 92, - 798, - 461 - ], - "score": 0.981, - "html": "
Question 21AnswerMarksGuidance
(a) Mass is a scalar (quantity) and velocity is a vector (quantity).B1
(q) (i)(Addition of) velocity depends on direction / sign / vector triangle / resolving (ORA) An arrow from trolley to ramp along the string (for the tension) and a downwards arrow from the trolley (for theB1 B1Allow‘Velocity can be cancelled out' Not arrow for the tension parallel to the rampAllow arrows in correct directions anywhere on Fig. 21 Not arrow perpendicular to the ramp for the weight
weight). (ii) t= 0.73 (s)(s = 12 at'); 0.80 = 1%2 × 3.0 × t (Any subject)C1 A1Not two arrow heads in opposite directions along the string for the tension
Allow full credit for alternative methods, e.g: v2 = 2 × 0.80 × 3.0; v= 2.19 (m s-1) 2.19Note: Apply SF penalty if 0.7 s is on the answer line or the final answer Allow 1 mark for 0.40 (s); 9.8 m s2 used instead of 3.0 m s-2
=1 C1 3.0 t= 0.73 (s) A1
Total 5
", - "type": "table", - "image_path": "f6ac9e460d55687dbf1bdfa140f80dbc9ab4b22822b9d72e14ecc7bf7a846d76.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 47, - 92, - 798, - 215.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 47, - 215.0, - 798, - 338.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 47, - 338.0, - 798, - 461.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3, - "page_num": "page_62", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 381, - 42, - 454, - 55 - ], - "lines": [ - { - "bbox": [ - 382, - 41, - 454, - 54 - ], - "spans": [ - { - "bbox": [ - 382, - 41, - 454, - 54 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table", - "bbox": [ - 46, - 67, - 797, - 392 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 67, - 797, - 392 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 67, - 797, - 392 - ], - "spans": [ - { - "bbox": [ - 46, - 67, - 797, - 392 - ], - "score": 0.976, - "html": "
22 (a)QuestionAnswer The gradient remains the sameMarks B1Guidance Note: This mark is for the idea that the gradient / slope (of
the line) remains the same Allow: The line is (just) shifted (to the right) by the same amount (Aw)
(q)Gradient determined from Fig. 22 and gradient = 16C1Allow ± 0.5 for the value of the gradient Not u²/x value using the line or a data point because the
gradient is not determined Allow this mark even if gradient = a
gradient = 2a (F = ma); F= 920 × 8.0C1
F = 7.4 × 103 (N)A1Possible ECF for this A1 mark if the gradient is determined but its value is outside the range 15.5 to 16.5 and the second
C1 mark has also been scored Note: The answer to 3 SF is 7360 (N)
Total4Note: F= 920 × 16 = 14720 (N) can score the first C1 mark
", - "type": "table", - "image_path": "42b0a6605aadd6f0622de116d198186998bf10ca88ec60e54c325d4d10de0690.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 46, - 67, - 797, - 175.33333333333331 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 46, - 175.33333333333331, - 797, - 283.66666666666663 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 46, - 283.66666666666663, - 797, - 391.99999999999994 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - } - ], - "layout_bboxes": [], - "page_idx": 63, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 46, - 67, - 797, - 392 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 67, - 797, - 392 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 67, - 797, - 392 - ], - "spans": [ - { - "bbox": [ - 46, - 67, - 797, - 392 - ], - "score": 0.976, - "html": "
22 (a)QuestionAnswer The gradient remains the sameMarks B1Guidance Note: This mark is for the idea that the gradient / slope (of
the line) remains the same Allow: The line is (just) shifted (to the right) by the same amount (Aw)
(q)Gradient determined from Fig. 22 and gradient = 16C1Allow ± 0.5 for the value of the gradient Not u²/x value using the line or a data point because the
gradient is not determined Allow this mark even if gradient = a
gradient = 2a (F = ma); F= 920 × 8.0C1
F = 7.4 × 103 (N)A1Possible ECF for this A1 mark if the gradient is determined but its value is outside the range 15.5 to 16.5 and the second
C1 mark has also been scored Note: The answer to 3 SF is 7360 (N)
Total4Note: F= 920 × 16 = 14720 (N) can score the first C1 mark
", - "type": "table", - "image_path": "42b0a6605aadd6f0622de116d198186998bf10ca88ec60e54c325d4d10de0690.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 46, - 67, - 797, - 175.33333333333331 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 46, - 175.33333333333331, - 797, - 283.66666666666663 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 46, - 283.66666666666663, - 797, - 391.99999999999994 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 708, - 43, - 763, - 54 - ], - "lines": [ - { - "bbox": [ - 708, - 42, - 763, - 54 - ], - "spans": [ - { - "bbox": [ - 708, - 42, - 763, - 54 - ], - "score": 1.0, - "content": "June 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 416, - 556, - 425, - 566 - ], - "lines": [ - { - "bbox": [ - 416, - 555, - 426, - 567 - ], - "spans": [ - { - "bbox": [ - 416, - 555, - 426, - 567 - ], - "score": 1.0, - "content": "8 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 13 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 841, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 841, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 55, - 42, - 98, - 54 - ], - "lines": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "spans": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 381, - 42, - 454, - 55 - ], - "lines": [ - { - "bbox": [ - 382, - 41, - 454, - 54 - ], - "spans": [ - { - "bbox": [ - 382, - 41, - 454, - 54 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_63", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 46, - 67, - 797, - 392 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 67, - 797, - 392 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 67, - 797, - 392 - ], - "spans": [ - { - "bbox": [ - 46, - 67, - 797, - 392 - ], - "score": 0.976, - "html": "
22 (a)QuestionAnswer The gradient remains the sameMarks B1Guidance Note: This mark is for the idea that the gradient / slope (of
the line) remains the same Allow: The line is (just) shifted (to the right) by the same amount (Aw)
(q)Gradient determined from Fig. 22 and gradient = 16C1Allow ± 0.5 for the value of the gradient Not u²/x value using the line or a data point because the
gradient is not determined Allow this mark even if gradient = a
gradient = 2a (F = ma); F= 920 × 8.0C1
F = 7.4 × 103 (N)A1Possible ECF for this A1 mark if the gradient is determined but its value is outside the range 15.5 to 16.5 and the second
C1 mark has also been scored Note: The answer to 3 SF is 7360 (N)
Total4Note: F= 920 × 16 = 14720 (N) can score the first C1 mark
", - "type": "table", - "image_path": "42b0a6605aadd6f0622de116d198186998bf10ca88ec60e54c325d4d10de0690.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 46, - 67, - 797, - 175.33333333333331 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 46, - 175.33333333333331, - 797, - 283.66666666666663 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 46, - 283.66666666666663, - 797, - 391.99999999999994 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2, - "page_num": "page_63", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 381, - 42, - 454, - 55 - ], - "lines": [ - { - "bbox": [ - 382, - 41, - 454, - 54 - ], - "spans": [ - { - "bbox": [ - 382, - 41, - 454, - 54 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table", - "bbox": [ - 44, - 62, - 798, - 514 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 44, - 62, - 798, - 514 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 44, - 62, - 798, - 514 - ], - "spans": [ - { - "bbox": [ - 44, - 62, - 798, - 514 - ], - "score": 0.981, - "html": "
Question 23(a)MarksGuidance Note: In this question any symbols used must be defined or
previously mentioned Note: Allow full credit for alternative methods, e.g. using the equation pressure = height x density × g
pressure = weight(of cyinder) areaB1Allowforce/area
Weight (of cylinder) determined using a newtonmeterB1
or Measure mass (of cylinder) using balance / scale(s) and multiplying by g / 9.8(1 m s-²)Not 'gravity' for g
Area determined by measuring the diameter with a ruler /B1Not measure radius
vernier callipers / micrometer and then using (area =) π × 2 A sensible suggestion that reduces the % uncertainty:B1Allow other correct methods Not 'repeat readings (of diameter etc.)' because this
Use micrometer / (vernier) calipers / travelling microscope Use balance / newtonmeter with smaller division (AW)procedure improves the accuracy and not the precision Allow balance / newtonmeter with ‘high resolution'
/ air displaced (L)8:6/0:6 (= ssew) 10 (N) 8'2 - 0:6 (= 4snudn)B1
C1Note: This C1 mark for determining the upthrust (1.2 N) or the mass (0.92 kg) of the cylinder
V = (1.2/9.81) or V= 1.2(23) × 10-4 (m²) 1000C1
(9.0/9.81) 1.223×10-4
(9.0) p
8
×1000 = 7.5×10² (kg m-3)
p = 7.5 × 10² (kg m-3)
A1Allow full credit for alternative methods, e.g:
1.2
", - "type": "table", - "image_path": "f415aab86ff645a1fd0b9df8fc0219785e1ee582c0aa23822ee77008431ceaf1.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 44, - 62, - 798, - 212.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 44, - 212.66666666666666, - 798, - 363.3333333333333 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 44, - 363.3333333333333, - 798, - 514.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - } - ], - "layout_bboxes": [], - "page_idx": 64, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 44, - 62, - 798, - 514 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 44, - 62, - 798, - 514 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 44, - 62, - 798, - 514 - ], - "spans": [ - { - "bbox": [ - 44, - 62, - 798, - 514 - ], - "score": 0.981, - "html": "
Question 23(a)MarksGuidance Note: In this question any symbols used must be defined or
previously mentioned Note: Allow full credit for alternative methods, e.g. using the equation pressure = height x density × g
pressure = weight(of cyinder) areaB1Allowforce/area
Weight (of cylinder) determined using a newtonmeterB1
or Measure mass (of cylinder) using balance / scale(s) and multiplying by g / 9.8(1 m s-²)Not 'gravity' for g
Area determined by measuring the diameter with a ruler /B1Not measure radius
vernier callipers / micrometer and then using (area =) π × 2 A sensible suggestion that reduces the % uncertainty:B1Allow other correct methods Not 'repeat readings (of diameter etc.)' because this
Use micrometer / (vernier) calipers / travelling microscope Use balance / newtonmeter with smaller division (AW)procedure improves the accuracy and not the precision Allow balance / newtonmeter with ‘high resolution'
/ air displaced (L)8:6/0:6 (= ssew) 10 (N) 8'2 - 0:6 (= 4snudn)B1
C1Note: This C1 mark for determining the upthrust (1.2 N) or the mass (0.92 kg) of the cylinder
V = (1.2/9.81) or V= 1.2(23) × 10-4 (m²) 1000C1
(9.0/9.81) 1.223×10-4
(9.0) p
8
×1000 = 7.5×10² (kg m-3)
p = 7.5 × 10² (kg m-3)
A1Allow full credit for alternative methods, e.g:
1.2
", - "type": "table", - "image_path": "f415aab86ff645a1fd0b9df8fc0219785e1ee582c0aa23822ee77008431ceaf1.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 44, - 62, - 798, - 212.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 44, - 212.66666666666666, - 798, - 363.3333333333333 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 44, - 363.3333333333333, - 798, - 514.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 708, - 43, - 763, - 54 - ], - "lines": [ - { - "bbox": [ - 708, - 42, - 763, - 54 - ], - "spans": [ - { - "bbox": [ - 708, - 42, - 763, - 54 - ], - "score": 1.0, - "content": "June 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 416, - 555, - 425, - 566 - ], - "lines": [ - { - "bbox": [ - 415, - 554, - 426, - 568 - ], - "spans": [ - { - "bbox": [ - 415, - 554, - 426, - 568 - ], - "score": 1.0, - "content": "9 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 13 - ], - "lines": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "spans": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 55, - 42, - 98, - 54 - ], - "lines": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "spans": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 381, - 42, - 454, - 55 - ], - "lines": [ - { - "bbox": [ - 382, - 41, - 454, - 54 - ], - "spans": [ - { - "bbox": [ - 382, - 41, - 454, - 54 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_64", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 44, - 62, - 798, - 514 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 44, - 62, - 798, - 514 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 44, - 62, - 798, - 514 - ], - "spans": [ - { - "bbox": [ - 44, - 62, - 798, - 514 - ], - "score": 0.981, - "html": "
Question 23(a)MarksGuidance Note: In this question any symbols used must be defined or
previously mentioned Note: Allow full credit for alternative methods, e.g. using the equation pressure = height x density × g
pressure = weight(of cyinder) areaB1Allowforce/area
Weight (of cylinder) determined using a newtonmeterB1
or Measure mass (of cylinder) using balance / scale(s) and multiplying by g / 9.8(1 m s-²)Not 'gravity' for g
Area determined by measuring the diameter with a ruler /B1Not measure radius
vernier callipers / micrometer and then using (area =) π × 2 A sensible suggestion that reduces the % uncertainty:B1Allow other correct methods Not 'repeat readings (of diameter etc.)' because this
Use micrometer / (vernier) calipers / travelling microscope Use balance / newtonmeter with smaller division (AW)procedure improves the accuracy and not the precision Allow balance / newtonmeter with ‘high resolution'
/ air displaced (L)8:6/0:6 (= ssew) 10 (N) 8'2 - 0:6 (= 4snudn)B1
C1Note: This C1 mark for determining the upthrust (1.2 N) or the mass (0.92 kg) of the cylinder
V = (1.2/9.81) or V= 1.2(23) × 10-4 (m²) 1000C1
(9.0/9.81) 1.223×10-4
(9.0) p
8
×1000 = 7.5×10² (kg m-3)
p = 7.5 × 10² (kg m-3)
A1Allow full credit for alternative methods, e.g:
1.2
", - "type": "table", - "image_path": "f415aab86ff645a1fd0b9df8fc0219785e1ee582c0aa23822ee77008431ceaf1.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 44, - 62, - 798, - 212.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 44, - 212.66666666666666, - 798, - 363.3333333333333 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 44, - 363.3333333333333, - 798, - 514.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2, - "page_num": "page_64", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 381, - 42, - 454, - 55 - ], - "lines": [ - { - "bbox": [ - 382, - 41, - 454, - 54 - ], - "spans": [ - { - "bbox": [ - 382, - 41, - 454, - 54 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table", - "bbox": [ - 45, - 66, - 799, - 493 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 45, - 66, - 799, - 493 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 45, - 66, - 799, - 493 - ], - "spans": [ - { - "bbox": [ - 45, - 66, - 799, - 493 - ], - "score": 0.981, - "html": "
QuestionAnswerMarksGuidance
24 (a)(Resultant) force is (directly) proportional / equal to the rate of change of momentumB1Notforce=mass× acceleration Not *force α change in momentum over time'
(q)(i)Any two from: momentum, (total) energy and massB1Not: kinetic energy
(ii)The force will have the same magnitude (at any time t) The force is in the opposite direction / has negative valueB1 B1Not 'This is because action = reaction'
Not Newton's third law Allow 1 mark for a correct graph if there is no description or explanation
(c)Method1:Momentumisconserved
1.7 × 10-27× 500 or 1.7 × 10-27 ×(-) 420 or 2.0 × 10-26 × vC1
1.7 × 10-27 × 500 = 1.7 × 10-27 × -420 + 2.0 × 10-26 × vC1
v = 78 (m s-1)A1Allow 1 mark for 6.8 (m s-1); + 420 used instead of - 420
Method 2: Kinetic energy is conserved
%2× 1.7 × 10-27 × 500² or %× 1.7 × 10-27 × 420² or 1%2 × 2.0 × 10-26 × v2C1Allow full credit for correct use of 'velocity of approach = -
1%2 × 1.7 × 10-27 × 5002 = 1%2 × 1.7 × 10-27 × 4202 + %2 × 2.0 xC1velocity of recession', e.g:
10-26 × v2 v= 79 (m s-1)'speed’ of approach = (-)'speed' of recession C1 500 = v+ 420 C1 v= 80 (m s-1) A1
TotalA1
7
", - "type": "table", - "image_path": "0f1ce7dc23805e28e82d8f8de3afee9d6c9934d8abaa397800d3ed58cd4f7a1b.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 45, - 66, - 799, - 208.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 45, - 208.33333333333334, - 799, - 350.6666666666667 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 45, - 350.6666666666667, - 799, - 493.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - } - ], - "layout_bboxes": [], - "page_idx": 65, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 45, - 66, - 799, - 493 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 45, - 66, - 799, - 493 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 45, - 66, - 799, - 493 - ], - "spans": [ - { - "bbox": [ - 45, - 66, - 799, - 493 - ], - "score": 0.981, - "html": "
QuestionAnswerMarksGuidance
24 (a)(Resultant) force is (directly) proportional / equal to the rate of change of momentumB1Notforce=mass× acceleration Not *force α change in momentum over time'
(q)(i)Any two from: momentum, (total) energy and massB1Not: kinetic energy
(ii)The force will have the same magnitude (at any time t) The force is in the opposite direction / has negative valueB1 B1Not 'This is because action = reaction'
Not Newton's third law Allow 1 mark for a correct graph if there is no description or explanation
(c)Method1:Momentumisconserved
1.7 × 10-27× 500 or 1.7 × 10-27 ×(-) 420 or 2.0 × 10-26 × vC1
1.7 × 10-27 × 500 = 1.7 × 10-27 × -420 + 2.0 × 10-26 × vC1
v = 78 (m s-1)A1Allow 1 mark for 6.8 (m s-1); + 420 used instead of - 420
Method 2: Kinetic energy is conserved
%2× 1.7 × 10-27 × 500² or %× 1.7 × 10-27 × 420² or 1%2 × 2.0 × 10-26 × v2C1Allow full credit for correct use of 'velocity of approach = -
1%2 × 1.7 × 10-27 × 5002 = 1%2 × 1.7 × 10-27 × 4202 + %2 × 2.0 xC1velocity of recession', e.g:
10-26 × v2 v= 79 (m s-1)'speed’ of approach = (-)'speed' of recession C1 500 = v+ 420 C1 v= 80 (m s-1) A1
TotalA1
7
", - "type": "table", - "image_path": "0f1ce7dc23805e28e82d8f8de3afee9d6c9934d8abaa397800d3ed58cd4f7a1b.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 45, - 66, - 799, - 208.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 45, - 208.33333333333334, - 799, - 350.6666666666667 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 45, - 350.6666666666667, - 799, - 493.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 414, - 555, - 428, - 566 - ], - "lines": [ - { - "bbox": [ - 412, - 554, - 429, - 568 - ], - "spans": [ - { - "bbox": [ - 412, - 554, - 429, - 568 - ], - "score": 1.0, - "content": "10 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 707, - 42, - 763, - 54 - ], - "lines": [ - { - "bbox": [ - 708, - 43, - 762, - 54 - ], - "spans": [ - { - "bbox": [ - 708, - 43, - 762, - 54 - ], - "score": 1.0, - "content": "June 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 13 - ], - "lines": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "spans": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 55, - 42, - 98, - 54 - ], - "lines": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "spans": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 381, - 42, - 454, - 55 - ], - "lines": [ - { - "bbox": [ - 382, - 41, - 454, - 54 - ], - "spans": [ - { - "bbox": [ - 382, - 41, - 454, - 54 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_65", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 45, - 66, - 799, - 493 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 45, - 66, - 799, - 493 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 45, - 66, - 799, - 493 - ], - "spans": [ - { - "bbox": [ - 45, - 66, - 799, - 493 - ], - "score": 0.981, - "html": "
QuestionAnswerMarksGuidance
24 (a)(Resultant) force is (directly) proportional / equal to the rate of change of momentumB1Notforce=mass× acceleration Not *force α change in momentum over time'
(q)(i)Any two from: momentum, (total) energy and massB1Not: kinetic energy
(ii)The force will have the same magnitude (at any time t) The force is in the opposite direction / has negative valueB1 B1Not 'This is because action = reaction'
Not Newton's third law Allow 1 mark for a correct graph if there is no description or explanation
(c)Method1:Momentumisconserved
1.7 × 10-27× 500 or 1.7 × 10-27 ×(-) 420 or 2.0 × 10-26 × vC1
1.7 × 10-27 × 500 = 1.7 × 10-27 × -420 + 2.0 × 10-26 × vC1
v = 78 (m s-1)A1Allow 1 mark for 6.8 (m s-1); + 420 used instead of - 420
Method 2: Kinetic energy is conserved
%2× 1.7 × 10-27 × 500² or %× 1.7 × 10-27 × 420² or 1%2 × 2.0 × 10-26 × v2C1Allow full credit for correct use of 'velocity of approach = -
1%2 × 1.7 × 10-27 × 5002 = 1%2 × 1.7 × 10-27 × 4202 + %2 × 2.0 xC1velocity of recession', e.g:
10-26 × v2 v= 79 (m s-1)'speed’ of approach = (-)'speed' of recession C1 500 = v+ 420 C1 v= 80 (m s-1) A1
TotalA1
7
", - "type": "table", - "image_path": "0f1ce7dc23805e28e82d8f8de3afee9d6c9934d8abaa397800d3ed58cd4f7a1b.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 45, - 66, - 799, - 208.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 45, - 208.33333333333334, - 799, - 350.6666666666667 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 45, - 350.6666666666667, - 799, - 493.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2, - "page_num": "page_65", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 381, - 42, - 454, - 55 - ], - "lines": [ - { - "bbox": [ - 382, - 41, - 454, - 54 - ], - "spans": [ - { - "bbox": [ - 382, - 41, - 454, - 54 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table", - "bbox": [ - 46, - 63, - 793, - 518 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 63, - 793, - 518 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 63, - 793, - 518 - ], - "spans": [ - { - "bbox": [ - 46, - 63, - 793, - 518 - ], - "score": 0.978, - "html": "
Question (i)Answer Similarity - same unit (Aw)Marks B1Guidance
25(a)Difference - For e.m.f, energy is transformed from chemical / other forms to electrical and for p.d., energy is transformedtoheat/otherformsfromelectricalB1 Allow any pair from: e.m.f. Energy (transformed) to electricalAllow *both defined as energy (transformed) per unit charge' or 'both defined as work done per unit charge' electricalp.d. Energy (transformed) from
(ii) n=9.6 ×1016 or n = 1.3(3...) × 1025 (m-3) 1.2x10-6 ×6.0x10-3C1heat /other forms Charges gain energy Work done on chargesCharges lose energy Work done by charges
(I = Anev)0.003 = 1.2 × 10-6 × 1.33... × 1025 × 1.6 × 10-19 × v
v= 1.2 × 10-3 (m s-1)C1Note Any subject for this equation
A1 Allow 1 mark for 1.6(3) × 105 (m s-1); n = 9.6 x1016 used
", - "type": "table", - "image_path": "3c7cf2a3add40669ef0cc2340baa0f14d432cce84c6659171375f6b5ffcc192b.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 46, - 63, - 793, - 214.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 46, - 214.66666666666666, - 793, - 366.3333333333333 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 46, - 366.3333333333333, - 793, - 518.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - } - ], - "layout_bboxes": [], - "page_idx": 66, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 46, - 63, - 793, - 518 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 63, - 793, - 518 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 63, - 793, - 518 - ], - "spans": [ - { - "bbox": [ - 46, - 63, - 793, - 518 - ], - "score": 0.978, - "html": "
Question (i)Answer Similarity - same unit (Aw)Marks B1Guidance
25(a)Difference - For e.m.f, energy is transformed from chemical / other forms to electrical and for p.d., energy is transformedtoheat/otherformsfromelectricalB1 Allow any pair from: e.m.f. Energy (transformed) to electricalAllow *both defined as energy (transformed) per unit charge' or 'both defined as work done per unit charge' electricalp.d. Energy (transformed) from
(ii) n=9.6 ×1016 or n = 1.3(3...) × 1025 (m-3) 1.2x10-6 ×6.0x10-3C1heat /other forms Charges gain energy Work done on chargesCharges lose energy Work done by charges
(I = Anev)0.003 = 1.2 × 10-6 × 1.33... × 1025 × 1.6 × 10-19 × v
v= 1.2 × 10-3 (m s-1)C1Note Any subject for this equation
A1 Allow 1 mark for 1.6(3) × 105 (m s-1); n = 9.6 x1016 used
", - "type": "table", - "image_path": "3c7cf2a3add40669ef0cc2340baa0f14d432cce84c6659171375f6b5ffcc192b.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 46, - 63, - 793, - 214.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 46, - 214.66666666666666, - 793, - 366.3333333333333 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 46, - 366.3333333333333, - 793, - 518.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 707, - 42, - 763, - 54 - ], - "lines": [ - { - "bbox": [ - 708, - 43, - 762, - 54 - ], - "spans": [ - { - "bbox": [ - 708, - 43, - 762, - 54 - ], - "score": 1.0, - "content": "June 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 413, - 555, - 426, - 566 - ], - "lines": [ - { - "bbox": [ - 412, - 554, - 429, - 568 - ], - "spans": [ - { - "bbox": [ - 412, - 554, - 429, - 568 - ], - "score": 1.0, - "content": "11 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 55, - 42, - 98, - 54 - ], - "lines": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "spans": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 381, - 42, - 454, - 55 - ], - "lines": [ - { - "bbox": [ - 382, - 41, - 454, - 54 - ], - "spans": [ - { - "bbox": [ - 382, - 41, - 454, - 54 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_66", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 46, - 63, - 793, - 518 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 63, - 793, - 518 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 63, - 793, - 518 - ], - "spans": [ - { - "bbox": [ - 46, - 63, - 793, - 518 - ], - "score": 0.978, - "html": "
Question (i)Answer Similarity - same unit (Aw)Marks B1Guidance
25(a)Difference - For e.m.f, energy is transformed from chemical / other forms to electrical and for p.d., energy is transformedtoheat/otherformsfromelectricalB1 Allow any pair from: e.m.f. Energy (transformed) to electricalAllow *both defined as energy (transformed) per unit charge' or 'both defined as work done per unit charge' electricalp.d. Energy (transformed) from
(ii) n=9.6 ×1016 or n = 1.3(3...) × 1025 (m-3) 1.2x10-6 ×6.0x10-3C1heat /other forms Charges gain energy Work done on chargesCharges lose energy Work done by charges
(I = Anev)0.003 = 1.2 × 10-6 × 1.33... × 1025 × 1.6 × 10-19 × v
v= 1.2 × 10-3 (m s-1)C1Note Any subject for this equation
A1 Allow 1 mark for 1.6(3) × 105 (m s-1); n = 9.6 x1016 used
", - "type": "table", - "image_path": "3c7cf2a3add40669ef0cc2340baa0f14d432cce84c6659171375f6b5ffcc192b.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 46, - 63, - 793, - 214.66666666666666 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 46, - 214.66666666666666, - 793, - 366.3333333333333 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 46, - 366.3333333333333, - 793, - 518.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2, - "page_num": "page_66", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 381, - 42, - 454, - 54 - ], - "lines": [ - { - "bbox": [ - 382, - 42, - 454, - 54 - ], - "spans": [ - { - "bbox": [ - 382, - 42, - 454, - 54 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table", - "bbox": [ - 43, - 67, - 798, - 378 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 43, - 67, - 798, - 378 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 43, - 67, - 798, - 378 - ], - "spans": [ - { - "bbox": [ - 43, - 67, - 798, - 378 - ], - "score": 0.978, - "html": "
(q)QuestionAnswer Circuit withcell inserieswith an ammeter and variable resistor.A voltmeter is connected across thevariableMarks B1Guidance Allow thisB1 mark for a clearly drawn circuit with correct symbols for the cell, variable resistor, voltmeter and
resistor/(terminalsofthe)cellammeter.Allow a battery symbol instead of symbol for a cell
Measure current and p.d. / voltage across variable resistor / cellB1Allow 'terminal p.d' for p.d. across the cell Allow'measure I and V if the circuit is correct Allow'measure voltmeter and ammeter readings'if the
Correct description of how to get multiple readings (of currentorp.d)B1circuit is correct Possible ECF for incorrect symbol for variable resistor
E.g.change the resistance of the variableresistor / use different value resistors, etc. (E = V+ Ir)B1
line) is equal to (-) r (AW)Total 9
", - "type": "table", - "image_path": "19eb8f3dd49cb948426b1519dbb0967d4166dfc4094e859f9012f850d4f812ed.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 43, - 67, - 798, - 170.66666666666669 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 43, - 170.66666666666669, - 798, - 274.33333333333337 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 43, - 274.33333333333337, - 798, - 378.00000000000006 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - } - ], - "layout_bboxes": [], - "page_idx": 67, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 43, - 67, - 798, - 378 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 43, - 67, - 798, - 378 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 43, - 67, - 798, - 378 - ], - "spans": [ - { - "bbox": [ - 43, - 67, - 798, - 378 - ], - "score": 0.978, - "html": "
(q)QuestionAnswer Circuit withcell inserieswith an ammeter and variable resistor.A voltmeter is connected across thevariableMarks B1Guidance Allow thisB1 mark for a clearly drawn circuit with correct symbols for the cell, variable resistor, voltmeter and
resistor/(terminalsofthe)cellammeter.Allow a battery symbol instead of symbol for a cell
Measure current and p.d. / voltage across variable resistor / cellB1Allow 'terminal p.d' for p.d. across the cell Allow'measure I and V if the circuit is correct Allow'measure voltmeter and ammeter readings'if the
Correct description of how to get multiple readings (of currentorp.d)B1circuit is correct Possible ECF for incorrect symbol for variable resistor
E.g.change the resistance of the variableresistor / use different value resistors, etc. (E = V+ Ir)B1
line) is equal to (-) r (AW)Total 9
", - "type": "table", - "image_path": "19eb8f3dd49cb948426b1519dbb0967d4166dfc4094e859f9012f850d4f812ed.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 43, - 67, - 798, - 170.66666666666669 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 43, - 170.66666666666669, - 798, - 274.33333333333337 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 43, - 274.33333333333337, - 798, - 378.00000000000006 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 708, - 43, - 763, - 54 - ], - "lines": [ - { - "bbox": [ - 708, - 42, - 763, - 54 - ], - "spans": [ - { - "bbox": [ - 708, - 42, - 763, - 54 - ], - "score": 1.0, - "content": "June 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 414, - 555, - 427, - 566 - ], - "lines": [ - { - "bbox": [ - 411, - 553, - 430, - 569 - ], - "spans": [ - { - "bbox": [ - 411, - 553, - 430, - 569 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 16, - "width": 19 - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 13 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 841, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 841, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 55, - 42, - 98, - 54 - ], - "lines": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "spans": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 381, - 42, - 454, - 54 - ], - "lines": [ - { - "bbox": [ - 382, - 42, - 454, - 54 - ], - "spans": [ - { - "bbox": [ - 382, - 42, - 454, - 54 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_67", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 43, - 67, - 798, - 378 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 43, - 67, - 798, - 378 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 43, - 67, - 798, - 378 - ], - "spans": [ - { - "bbox": [ - 43, - 67, - 798, - 378 - ], - "score": 0.978, - "html": "
(q)QuestionAnswer Circuit withcell inserieswith an ammeter and variable resistor.A voltmeter is connected across thevariableMarks B1Guidance Allow thisB1 mark for a clearly drawn circuit with correct symbols for the cell, variable resistor, voltmeter and
resistor/(terminalsofthe)cellammeter.Allow a battery symbol instead of symbol for a cell
Measure current and p.d. / voltage across variable resistor / cellB1Allow 'terminal p.d' for p.d. across the cell Allow'measure I and V if the circuit is correct Allow'measure voltmeter and ammeter readings'if the
Correct description of how to get multiple readings (of currentorp.d)B1circuit is correct Possible ECF for incorrect symbol for variable resistor
E.g.change the resistance of the variableresistor / use different value resistors, etc. (E = V+ Ir)B1
line) is equal to (-) r (AW)Total 9
", - "type": "table", - "image_path": "19eb8f3dd49cb948426b1519dbb0967d4166dfc4094e859f9012f850d4f812ed.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 43, - 67, - 798, - 170.66666666666669 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 43, - 170.66666666666669, - 798, - 274.33333333333337 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 43, - 274.33333333333337, - 798, - 378.00000000000006 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2, - "page_num": "page_67", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 381, - 42, - 454, - 55 - ], - "lines": [ - { - "bbox": [ - 382, - 42, - 454, - 54 - ], - "spans": [ - { - "bbox": [ - 382, - 42, - 454, - 54 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table", - "bbox": [ - 45, - 67, - 799, - 395 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 45, - 67, - 799, - 395 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 45, - 67, - 799, - 395 - ], - "spans": [ - { - "bbox": [ - 45, - 67, - 799, - 395 - ], - "score": 0.871, - "html": "
26Question (a)Answer (i) A and B move in opposite directionsMarks B1Guidance Allow A is moving up and B is moving down (or vice versa)
Allow they have a phase difference of 180(o) or π (rad) Allow they are in antiphase
(b)(i) = 0.80 (m)C1Allow 80 (cm) for this C1 mark
v= fn; v = 75× 0.80 v = 60 (m s-1) 2.0A1Allow 1 mark for 30 (m s-1) from the C1A1 marks; = 0.40 m used
absoluteuncertainty= x60 40 absolute uncertainty = 3.0 (m s-1)A1Note 60 ± 3 (m s-1) scores full marks Allow 2 marks for 6000 ± 300 (m s-1); in cm (POT error)
(i) Reflection (of progressive waves) at (fixed) end(s) / X / YB1Allow 2 marks for 30 ± 1.5 (m s-1); = 0.40 m used
Superposition (of these waves gives rise to the stationary wave)B1Allow: 'interference' instead of 'superposition'
The wavelength is twice the
length of cord / distance between X and YB1Allow = 2xY or equivalent
Total 7
", - "type": "table", - "image_path": "1a5f20b76804f23ddbca58502da5a06a8534fa105e7bc8eda75c3acf781d1d90.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 45, - 67, - 799, - 176.33333333333331 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 45, - 176.33333333333331, - 799, - 285.66666666666663 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 45, - 285.66666666666663, - 799, - 394.99999999999994 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - } - ], - "layout_bboxes": [], - "page_idx": 68, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 45, - 67, - 799, - 395 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 45, - 67, - 799, - 395 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 45, - 67, - 799, - 395 - ], - "spans": [ - { - "bbox": [ - 45, - 67, - 799, - 395 - ], - "score": 0.871, - "html": "
26Question (a)Answer (i) A and B move in opposite directionsMarks B1Guidance Allow A is moving up and B is moving down (or vice versa)
Allow they have a phase difference of 180(o) or π (rad) Allow they are in antiphase
(b)(i) = 0.80 (m)C1Allow 80 (cm) for this C1 mark
v= fn; v = 75× 0.80 v = 60 (m s-1) 2.0A1Allow 1 mark for 30 (m s-1) from the C1A1 marks; = 0.40 m used
absoluteuncertainty= x60 40 absolute uncertainty = 3.0 (m s-1)A1Note 60 ± 3 (m s-1) scores full marks Allow 2 marks for 6000 ± 300 (m s-1); in cm (POT error)
(i) Reflection (of progressive waves) at (fixed) end(s) / X / YB1Allow 2 marks for 30 ± 1.5 (m s-1); = 0.40 m used
Superposition (of these waves gives rise to the stationary wave)B1Allow: 'interference' instead of 'superposition'
The wavelength is twice the
length of cord / distance between X and YB1Allow = 2xY or equivalent
Total 7
", - "type": "table", - "image_path": "1a5f20b76804f23ddbca58502da5a06a8534fa105e7bc8eda75c3acf781d1d90.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 45, - 67, - 799, - 176.33333333333331 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 45, - 176.33333333333331, - 799, - 285.66666666666663 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 45, - 285.66666666666663, - 799, - 394.99999999999994 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 414, - 555, - 427, - 566 - ], - "lines": [ - { - "bbox": [ - 412, - 554, - 429, - 568 - ], - "spans": [ - { - "bbox": [ - 412, - 554, - 429, - 568 - ], - "score": 1.0, - "content": "13 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 708, - 43, - 763, - 54 - ], - "lines": [ - { - "bbox": [ - 708, - 42, - 763, - 54 - ], - "spans": [ - { - "bbox": [ - 708, - 42, - 763, - 54 - ], - "score": 1.0, - "content": "June 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 13 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 841, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 841, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 55, - 42, - 98, - 54 - ], - "lines": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "spans": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 381, - 42, - 454, - 55 - ], - "lines": [ - { - "bbox": [ - 382, - 42, - 454, - 54 - ], - "spans": [ - { - "bbox": [ - 382, - 42, - 454, - 54 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_68", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 45, - 67, - 799, - 395 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 45, - 67, - 799, - 395 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 45, - 67, - 799, - 395 - ], - "spans": [ - { - "bbox": [ - 45, - 67, - 799, - 395 - ], - "score": 0.871, - "html": "
26Question (a)Answer (i) A and B move in opposite directionsMarks B1Guidance Allow A is moving up and B is moving down (or vice versa)
Allow they have a phase difference of 180(o) or π (rad) Allow they are in antiphase
(b)(i) = 0.80 (m)C1Allow 80 (cm) for this C1 mark
v= fn; v = 75× 0.80 v = 60 (m s-1) 2.0A1Allow 1 mark for 30 (m s-1) from the C1A1 marks; = 0.40 m used
absoluteuncertainty= x60 40 absolute uncertainty = 3.0 (m s-1)A1Note 60 ± 3 (m s-1) scores full marks Allow 2 marks for 6000 ± 300 (m s-1); in cm (POT error)
(i) Reflection (of progressive waves) at (fixed) end(s) / X / YB1Allow 2 marks for 30 ± 1.5 (m s-1); = 0.40 m used
Superposition (of these waves gives rise to the stationary wave)B1Allow: 'interference' instead of 'superposition'
The wavelength is twice the
length of cord / distance between X and YB1Allow = 2xY or equivalent
Total 7
", - "type": "table", - "image_path": "1a5f20b76804f23ddbca58502da5a06a8534fa105e7bc8eda75c3acf781d1d90.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 45, - 67, - 799, - 176.33333333333331 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 45, - 176.33333333333331, - 799, - 285.66666666666663 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 45, - 285.66666666666663, - 799, - 394.99999999999994 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2, - "page_num": "page_68", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 374, - 42, - 447, - 55 - ], - "lines": [ - { - "bbox": [ - 375, - 42, - 447, - 54 - ], - "spans": [ - { - "bbox": [ - 375, - 42, - 447, - 54 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table", - "bbox": [ - 43, - 63, - 781, - 525 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 43, - 63, - 781, - 525 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 43, - 63, - 781, - 525 - ], - "spans": [ - { - "bbox": [ - 43, - 63, - 781, - 525 - ], - "score": 0.979, - "html": "
QuestionAnswerMarks B1
-1.0 V to 2.6 V: I = 0 / negligible and R = oo / (very) large (AW)
2.6 Vto3.0V:RdecreasesB1 Allow'rapid decrease in R
3.0 V to 3.4 V:R decreases
B1 Allow'slow decrease in R' Not R is constant (because it is a straight line)
Justification of a B1 point in terms of R = V/I. For example to show:B1Not R = gradient1 Ignore powers of 10 and units
R is infinite: R = 2.0/0 = ∞0Note: V and I values within ± 1 small square
R decreases: R calculated once and has R = o, or R calculated twice
(The circuit does not work because) the LED is reverse biased / incorrect polarity of the cell (AW)B1Allow: (For the circuit to work) the LED must be forward- biased / 'reverse the LED'/ 'reverse the cell'
V must be greater than 2.6 (V for the LED to be lit)B1Allow ± 0.1 V Not V must be equal to / 'at least' 2.6 V
B1Allow this mark even if the LED is reverse biased Note: This B1 mark can be scored on Fig. 27.2
(c)6.63×10-34 ×3.0×108 E= or E = 4.1(4) × 10-19 (J) 480×10-9 1.2×10-3C1Allow this mark even if the LED is reverse biased
C1
4.1(4)×10-19 N = 2.9 × 1015 (s-1)A1
Total10
", - "type": "table", - "image_path": "d13d0bacb2747c0caaae2c3d90d709911fe909c8ff5a04b4dab9d38913a2b177.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 43, - 63, - 781, - 217.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 43, - 217.0, - 781, - 371.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 43, - 371.0, - 781, - 525.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - } - ], - "layout_bboxes": [], - "page_idx": 69, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 43, - 63, - 781, - 525 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 43, - 63, - 781, - 525 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 43, - 63, - 781, - 525 - ], - "spans": [ - { - "bbox": [ - 43, - 63, - 781, - 525 - ], - "score": 0.979, - "html": "
QuestionAnswerMarks B1
-1.0 V to 2.6 V: I = 0 / negligible and R = oo / (very) large (AW)
2.6 Vto3.0V:RdecreasesB1 Allow'rapid decrease in R
3.0 V to 3.4 V:R decreases
B1 Allow'slow decrease in R' Not R is constant (because it is a straight line)
Justification of a B1 point in terms of R = V/I. For example to show:B1Not R = gradient1 Ignore powers of 10 and units
R is infinite: R = 2.0/0 = ∞0Note: V and I values within ± 1 small square
R decreases: R calculated once and has R = o, or R calculated twice
(The circuit does not work because) the LED is reverse biased / incorrect polarity of the cell (AW)B1Allow: (For the circuit to work) the LED must be forward- biased / 'reverse the LED'/ 'reverse the cell'
V must be greater than 2.6 (V for the LED to be lit)B1Allow ± 0.1 V Not V must be equal to / 'at least' 2.6 V
B1Allow this mark even if the LED is reverse biased Note: This B1 mark can be scored on Fig. 27.2
(c)6.63×10-34 ×3.0×108 E= or E = 4.1(4) × 10-19 (J) 480×10-9 1.2×10-3C1Allow this mark even if the LED is reverse biased
C1
4.1(4)×10-19 N = 2.9 × 1015 (s-1)A1
Total10
", - "type": "table", - "image_path": "d13d0bacb2747c0caaae2c3d90d709911fe909c8ff5a04b4dab9d38913a2b177.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 43, - 63, - 781, - 217.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 43, - 217.0, - 781, - 371.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 43, - 371.0, - 781, - 525.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 407, - 555, - 420, - 566 - ], - "lines": [ - { - "bbox": [ - 405, - 554, - 422, - 568 - ], - "spans": [ - { - "bbox": [ - 405, - 554, - 422, - 568 - ], - "score": 1.0, - "content": "14 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 718, - 43, - 773, - 54 - ], - "lines": [ - { - "bbox": [ - 718, - 42, - 773, - 54 - ], - "spans": [ - { - "bbox": [ - 718, - 42, - 773, - 54 - ], - "score": 1.0, - "content": "June 2016", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 13 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 841, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 841, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 55, - 42, - 98, - 54 - ], - "lines": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "spans": [ - { - "bbox": [ - 55, - 42, - 98, - 54 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 374, - 42, - 447, - 55 - ], - "lines": [ - { - "bbox": [ - 375, - 42, - 447, - 54 - ], - "spans": [ - { - "bbox": [ - 375, - 42, - 447, - 54 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_69", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 43, - 63, - 781, - 525 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 43, - 63, - 781, - 525 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 43, - 63, - 781, - 525 - ], - "spans": [ - { - "bbox": [ - 43, - 63, - 781, - 525 - ], - "score": 0.979, - "html": "
QuestionAnswerMarks B1
-1.0 V to 2.6 V: I = 0 / negligible and R = oo / (very) large (AW)
2.6 Vto3.0V:RdecreasesB1 Allow'rapid decrease in R
3.0 V to 3.4 V:R decreases
B1 Allow'slow decrease in R' Not R is constant (because it is a straight line)
Justification of a B1 point in terms of R = V/I. For example to show:B1Not R = gradient1 Ignore powers of 10 and units
R is infinite: R = 2.0/0 = ∞0Note: V and I values within ± 1 small square
R decreases: R calculated once and has R = o, or R calculated twice
(The circuit does not work because) the LED is reverse biased / incorrect polarity of the cell (AW)B1Allow: (For the circuit to work) the LED must be forward- biased / 'reverse the LED'/ 'reverse the cell'
V must be greater than 2.6 (V for the LED to be lit)B1Allow ± 0.1 V Not V must be equal to / 'at least' 2.6 V
B1Allow this mark even if the LED is reverse biased Note: This B1 mark can be scored on Fig. 27.2
(c)6.63×10-34 ×3.0×108 E= or E = 4.1(4) × 10-19 (J) 480×10-9 1.2×10-3C1Allow this mark even if the LED is reverse biased
C1
4.1(4)×10-19 N = 2.9 × 1015 (s-1)A1
Total10
", - "type": "table", - "image_path": "d13d0bacb2747c0caaae2c3d90d709911fe909c8ff5a04b4dab9d38913a2b177.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 43, - 63, - 781, - 217.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 43, - 217.0, - 781, - 371.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 43, - 371.0, - 781, - 525.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2, - "page_num": "page_69", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 61, - 70, - 317, - 124 - ], - "lines": [ - { - "bbox": [ - 61, - 72, - 317, - 84 - ], - "spans": [ - { - "bbox": [ - 61, - 72, - 317, - 84 - ], - "score": 1.0, - "content": "OCR (Oxford Cambridge and RSA Examinations)", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 61, - 85, - 126, - 98 - ], - "spans": [ - { - "bbox": [ - 61, - 85, - 126, - 98 - ], - "score": 1.0, - "content": "1 Hills Road", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 61, - 98, - 121, - 113 - ], - "spans": [ - { - "bbox": [ - 61, - 98, - 121, - 113 - ], - "score": 1.0, - "content": "Cambridge", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 61, - 112, - 110, - 125 - ], - "spans": [ - { - "bbox": [ - 61, - 112, - 110, - 125 - ], - "score": 1.0, - "content": "CB1 2EU", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 1.5 - }, - { - "type": "text", - "bbox": [ - 63, - 137, - 223, - 151 - ], - "lines": [ - { - "bbox": [ - 62, - 139, - 223, - 149 - ], - "spans": [ - { - "bbox": [ - 62, - 139, - 223, - 149 - ], - "score": 1.0, - "content": "OCR Customer Contact Centre", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 61, - 165, - 261, - 222 - ], - "lines": [ - { - "bbox": [ - 61, - 165, - 188, - 178 - ], - "spans": [ - { - "bbox": [ - 61, - 165, - 188, - 178 - ], - "score": 1.0, - "content": "Education and Learning", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 61, - 181, - 192, - 192 - ], - "spans": [ - { - "bbox": [ - 61, - 181, - 192, - 192 - ], - "score": 1.0, - "content": "Telephone: 01223 553998", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 61, - 196, - 185, - 206 - ], - "spans": [ - { - "bbox": [ - 61, - 196, - 185, - 206 - ], - "score": 1.0, - "content": "Facsimile: 01223 552627", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 62, - 210, - 260, - 222 - ], - "spans": [ - { - "bbox": [ - 62, - 210, - 260, - 222 - ], - "score": 1.0, - "content": "Email: general.qualifications@ocr.org.uk", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 6.5 - }, - { - "type": "text", - "bbox": [ - 61, - 236, - 145, - 247 - ], - "lines": [ - { - "bbox": [ - 61, - 237, - 145, - 247 - ], - "spans": [ - { - "bbox": [ - 61, - 237, - 145, - 247 - ], - "score": 1.0, - "content": "www.ocr.org.uk", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 61, - 678, - 290, - 742 - ], - "lines": [ - { - "bbox": [ - 61, - 679, - 243, - 690 - ], - "spans": [ - { - "bbox": [ - 61, - 679, - 243, - 690 - ], - "score": 1.0, - "content": "Oxford Cambridge and RSA Examinations", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 61, - 691, - 216, - 700 - ], - "spans": [ - { - "bbox": [ - 61, - 691, - 216, - 700 - ], - "score": 1.0, - "content": "is a Company Limited by Guarantee", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 61, - 701, - 158, - 711 - ], - "spans": [ - { - "bbox": [ - 61, - 701, - 158, - 711 - ], - "score": 1.0, - "content": "Registered in England", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 61, - 711, - 290, - 721 - ], - "spans": [ - { - "bbox": [ - 61, - 711, - 290, - 721 - ], - "score": 1.0, - "content": "Registered Office; 1 Hills Road, Cambridge, CB1 2EU", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 61, - 721, - 230, - 732 - ], - "spans": [ - { - "bbox": [ - 61, - 721, - 230, - 732 - ], - "score": 1.0, - "content": "Registered Company Number: 3484466", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 61, - 730, - 174, - 743 - ], - "spans": [ - { - "bbox": [ - 61, - 730, - 174, - 743 - ], - "score": 1.0, - "content": "OCR is an exempt Charity", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 12.5 - }, - { - "type": "text", - "bbox": [ - 61, - 751, - 272, - 793 - ], - "lines": [ - { - "bbox": [ - 61, - 752, - 271, - 762 - ], - "spans": [ - { - "bbox": [ - 61, - 752, - 271, - 762 - ], - "score": 1.0, - "content": "OCR (Oxford Cambridge and RSA Examinations)", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 61, - 763, - 111, - 772 - ], - "spans": [ - { - "bbox": [ - 61, - 763, - 111, - 772 - ], - "score": 1.0, - "content": "Head office", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 61, - 773, - 171, - 783 - ], - "spans": [ - { - "bbox": [ - 61, - 773, - 171, - 783 - ], - "score": 1.0, - "content": "Telephone: 01223 552552", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 61, - 784, - 167, - 793 - ], - "spans": [ - { - "bbox": [ - 61, - 784, - 167, - 793 - ], - "score": 1.0, - "content": "Facsimile: 01223 552553", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 17.5 - }, - { - "type": "text", - "bbox": [ - 61, - 803, - 115, - 814 - ], - "lines": [ - { - "bbox": [ - 60, - 803, - 115, - 813 - ], - "spans": [ - { - "bbox": [ - 60, - 803, - 70, - 813 - ], - "score": 0.57, - "content": "\\circledcirc", - "type": "inline_equation", - "height": 10, - "width": 10 - }, - { - "bbox": [ - 70, - 804, - 115, - 813 - ], - "score": 1.0, - "content": " OCR 2016", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 20 - } - ], - "layout_bboxes": [], - "page_idx": 70, - "page_size": [ - 595.3200073242188, - 842.0399780273438 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 424, - 744, - 535, - 813 - ], - "lines": [ - { - "bbox": [ - 451, - 749, - 475, - 759 - ], - "spans": [ - { - "bbox": [ - 451, - 749, - 475, - 759 - ], - "score": 0.9841736555099487, - "content": "QUALITY", - "type": "text" - } - ] - }, - { - "bbox": [ - 442, - 760, - 526, - 793 - ], - "spans": [ - { - "bbox": [ - 442, - 760, - 470, - 792 - ], - "score": 0.9930040240287781, - "content": "R", - "type": "text" - }, - { - "bbox": [ - 495, - 784, - 526, - 793 - ], - "score": 0.9940158128738403, - "content": "UKAS", - "type": "text" - } - ] - }, - { - "bbox": [ - 493, - 791, - 527, - 799 - ], - "spans": [ - { - "bbox": [ - 493, - 791, - 527, - 799 - ], - "score": 0.9959205389022827, - "content": "MANAGEMENT", - "type": "text" - } - ] - }, - { - "bbox": [ - 445, - 796, - 521, - 803 - ], - "spans": [ - { - "bbox": [ - 445, - 796, - 465, - 802 - ], - "score": 0.8224993348121643, - "content": "150900", - "type": "text" - }, - { - "bbox": [ - 500, - 796, - 521, - 803 - ], - "score": 0.9958978891372681, - "content": "SYSTEMS", - "type": "text" - } - ] - }, - { - "bbox": [ - 503, - 804, - 518, - 813 - ], - "spans": [ - { - "bbox": [ - 503, - 804, - 518, - 813 - ], - "score": 0.9966917634010315, - "content": "001", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 424, - 677, - 533, - 714 - ], - "lines": [ - { - "bbox": [ - 428, - 671, - 534, - 723 - ], - "spans": [ - { - "bbox": [ - 428, - 671, - 500, - 723 - ], - "score": 0.9028490781784058, - "content": "A", - "type": "text" - }, - { - "bbox": [ - 463, - 701, - 534, - 708 - ], - "score": 0.9961102604866028, - "content": "CAMBRIDGE ASSESSMENT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 570, - 1, - 594, - 13 - ], - "lines": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "spans": [ - { - "bbox": [ - 569, - 1, - 596, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 61, - 273, - 370, - 298 - ], - "lines": [ - { - "bbox": [ - 61, - 273, - 369, - 287 - ], - "spans": [ - { - "bbox": [ - 61, - 273, - 369, - 287 - ], - "score": 1.0, - "content": "For staff training purposes and as part of our quality assurance", - "type": "text" - } - ] - }, - { - "bbox": [ - 62, - 287, - 313, - 297 - ], - "spans": [ - { - "bbox": [ - 62, - 287, - 313, - 297 - ], - "score": 1.0, - "content": "programme your call may be recorded or monitored", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 61, - 70, - 317, - 124 - ], - "lines": [ - { - "bbox": [ - 61, - 72, - 317, - 84 - ], - "spans": [ - { - "bbox": [ - 61, - 72, - 317, - 84 - ], - "score": 1.0, - "content": "OCR (Oxford Cambridge and RSA Examinations)", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 61, - 85, - 126, - 98 - ], - "spans": [ - { - "bbox": [ - 61, - 85, - 126, - 98 - ], - "score": 1.0, - "content": "1 Hills Road", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 61, - 98, - 121, - 113 - ], - "spans": [ - { - "bbox": [ - 61, - 98, - 121, - 113 - ], - "score": 1.0, - "content": "Cambridge", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 61, - 112, - 110, - 125 - ], - "spans": [ - { - "bbox": [ - 61, - 112, - 110, - 125 - ], - "score": 1.0, - "content": "CB1 2EU", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 1.5, - "page_num": "page_70", - "page_size": [ - 595.3200073242188, - 842.0399780273438 - ] - }, - { - "type": "text", - "bbox": [ - 63, - 137, - 223, - 151 - ], - "lines": [ - { - "bbox": [ - 62, - 139, - 223, - 149 - ], - "spans": [ - { - "bbox": [ - 62, - 139, - 223, - 149 - ], - "score": 1.0, - "content": "OCR Customer Contact Centre", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_70", - "page_size": [ - 595.3200073242188, - 842.0399780273438 - ], - "bbox_fs": [ - 62, - 139, - 223, - 149 - ] - }, - { - "type": "list", - "bbox": [ - 61, - 165, - 261, - 222 - ], - "lines": [ - { - "bbox": [ - 61, - 165, - 188, - 178 - ], - "spans": [ - { - "bbox": [ - 61, - 165, - 188, - 178 - ], - "score": 1.0, - "content": "Education and Learning", - "type": "text" - } - ], - "index": 5, - "is_list_start_line": true - }, - { - "bbox": [ - 61, - 181, - 192, - 192 - ], - "spans": [ - { - "bbox": [ - 61, - 181, - 192, - 192 - ], - "score": 1.0, - "content": "Telephone: 01223 553998", - "type": "text" - } - ], - "index": 6, - "is_list_start_line": true - }, - { - "bbox": [ - 61, - 196, - 185, - 206 - ], - "spans": [ - { - "bbox": [ - 61, - 196, - 185, - 206 - ], - "score": 1.0, - "content": "Facsimile: 01223 552627", - "type": "text" - } - ], - "index": 7, - "is_list_start_line": true - }, - { - "bbox": [ - 62, - 210, - 260, - 222 - ], - "spans": [ - { - "bbox": [ - 62, - 210, - 260, - 222 - ], - "score": 1.0, - "content": "Email: general.qualifications@ocr.org.uk", - "type": "text" - } - ], - "index": 8, - "is_list_start_line": true - } - ], - "index": 6.5, - "page_num": "page_70", - "page_size": [ - 595.3200073242188, - 842.0399780273438 - ], - "bbox_fs": [ - 61, - 165, - 260, - 222 - ] - }, - { - "type": "text", - "bbox": [ - 61, - 236, - 145, - 247 - ], - "lines": [ - { - "bbox": [ - 61, - 237, - 145, - 247 - ], - "spans": [ - { - "bbox": [ - 61, - 237, - 145, - 247 - ], - "score": 1.0, - "content": "www.ocr.org.uk", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 9, - "page_num": "page_70", - "page_size": [ - 595.3200073242188, - 842.0399780273438 - ], - "bbox_fs": [ - 61, - 237, - 145, - 247 - ] - }, - { - "type": "list", - "bbox": [ - 61, - 678, - 290, - 742 - ], - "lines": [ - { - "bbox": [ - 61, - 679, - 243, - 690 - ], - "spans": [ - { - "bbox": [ - 61, - 679, - 243, - 690 - ], - "score": 1.0, - "content": "Oxford Cambridge and RSA Examinations", - "type": "text" - } - ], - "index": 10, - "is_list_start_line": true - }, - { - "bbox": [ - 61, - 691, - 216, - 700 - ], - "spans": [ - { - "bbox": [ - 61, - 691, - 216, - 700 - ], - "score": 1.0, - "content": "is a Company Limited by Guarantee", - "type": "text" - } - ], - "index": 11, - "is_list_start_line": true - }, - { - "bbox": [ - 61, - 701, - 158, - 711 - ], - "spans": [ - { - "bbox": [ - 61, - 701, - 158, - 711 - ], - "score": 1.0, - "content": "Registered in England", - "type": "text" - } - ], - "index": 12, - "is_list_start_line": true - }, - { - "bbox": [ - 61, - 711, - 290, - 721 - ], - "spans": [ - { - "bbox": [ - 61, - 711, - 290, - 721 - ], - "score": 1.0, - "content": "Registered Office; 1 Hills Road, Cambridge, CB1 2EU", - "type": "text" - } - ], - "index": 13, - "is_list_start_line": true - }, - { - "bbox": [ - 61, - 721, - 230, - 732 - ], - "spans": [ - { - "bbox": [ - 61, - 721, - 230, - 732 - ], - "score": 1.0, - "content": "Registered Company Number: 3484466", - "type": "text" - } - ], - "index": 14, - "is_list_start_line": true - }, - { - "bbox": [ - 61, - 730, - 174, - 743 - ], - "spans": [ - { - "bbox": [ - 61, - 730, - 174, - 743 - ], - "score": 1.0, - "content": "OCR is an exempt Charity", - "type": "text" - } - ], - "index": 15, - "is_list_start_line": true - }, - { - "bbox": [ - 61, - 752, - 271, - 762 - ], - "spans": [ - { - "bbox": [ - 61, - 752, - 271, - 762 - ], - "score": 1.0, - "content": "OCR (Oxford Cambridge and RSA Examinations)", - "type": "text" - } - ], - "index": 16, - "is_list_start_line": true - }, - { - "bbox": [ - 61, - 763, - 111, - 772 - ], - "spans": [ - { - "bbox": [ - 61, - 763, - 111, - 772 - ], - "score": 1.0, - "content": "Head office", - "type": "text" - } - ], - "index": 17, - "is_list_start_line": true - }, - { - "bbox": [ - 61, - 773, - 171, - 783 - ], - "spans": [ - { - "bbox": [ - 61, - 773, - 171, - 783 - ], - "score": 1.0, - "content": "Telephone: 01223 552552", - "type": "text" - } - ], - "index": 18, - "is_list_start_line": true - }, - { - "bbox": [ - 61, - 784, - 167, - 793 - ], - "spans": [ - { - "bbox": [ - 61, - 784, - 167, - 793 - ], - "score": 1.0, - "content": "Facsimile: 01223 552553", - "type": "text" - } - ], - "index": 19, - "is_list_start_line": true - } - ], - "index": 12.5, - "page_num": "page_70", - "page_size": [ - 595.3200073242188, - 842.0399780273438 - ], - "bbox_fs": [ - 61, - 679, - 290, - 743 - ] - }, - { - "type": "list", - "bbox": [ - 61, - 751, - 272, - 793 - ], - "lines": [], - "index": 17.5, - "page_num": "page_70", - "page_size": [ - 595.3200073242188, - 842.0399780273438 - ], - "bbox_fs": [ - 61, - 752, - 271, - 793 - ], - "lines_deleted": true - }, - { - "type": "text", - "bbox": [ - 61, - 803, - 115, - 814 - ], - "lines": [ - { - "bbox": [ - 60, - 803, - 115, - 813 - ], - "spans": [ - { - "bbox": [ - 60, - 803, - 70, - 813 - ], - "score": 0.57, - "content": "\\circledcirc", - "type": "inline_equation", - "height": 10, - "width": 10 - }, - { - "bbox": [ - 70, - 804, - 115, - 813 - ], - "score": 1.0, - "content": " OCR 2016", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 20, - "page_num": "page_70", - "page_size": [ - 595.3200073242188, - 842.0399780273438 - ], - "bbox_fs": [ - 60, - 803, - 115, - 813 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 58, - 146, - 98, - 166 - ], - "lines": [ - { - "bbox": [ - 58, - 148, - 99, - 165 - ], - "spans": [ - { - "bbox": [ - 58, - 148, - 99, - 165 - ], - "score": 1.0, - "content": "GCE", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "title", - "bbox": [ - 58, - 199, - 145, - 220 - ], - "lines": [ - { - "bbox": [ - 59, - 201, - 145, - 220 - ], - "spans": [ - { - "bbox": [ - 59, - 201, - 145, - 220 - ], - "score": 1.0, - "content": "Physics A", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "title", - "bbox": [ - 57, - 242, - 273, - 261 - ], - "lines": [ - { - "bbox": [ - 59, - 244, - 272, - 261 - ], - "spans": [ - { - "bbox": [ - 59, - 244, - 272, - 261 - ], - "score": 1.0, - "content": "H156/01: Breadth in physics", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 57, - 293, - 116, - 309 - ], - "lines": [ - { - "bbox": [ - 58, - 294, - 116, - 308 - ], - "spans": [ - { - "bbox": [ - 58, - 294, - 116, - 308 - ], - "score": 1.0, - "content": "AS Level", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "title", - "bbox": [ - 56, - 346, - 297, - 367 - ], - "lines": [ - { - "bbox": [ - 60, - 349, - 295, - 364 - ], - "spans": [ - { - "bbox": [ - 60, - 349, - 295, - 364 - ], - "score": 1.0, - "content": "Mark Scheme for June 2022", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - } - ], - "layout_bboxes": [], - "page_idx": 71, - "page_size": [ - 594.9600219726562, - 842.0399780273438 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 56, - 32, - 174, - 82 - ], - "lines": [ - { - "bbox": [ - 57, - 34, - 172, - 67 - ], - "spans": [ - { - "bbox": [ - 57, - 34, - 172, - 67 - ], - "score": 0.9942076206207275, - "content": "OCR", - "type": "text" - } - ] - }, - { - "bbox": [ - 61, - 71, - 172, - 81 - ], - "spans": [ - { - "bbox": [ - 61, - 71, - 172, - 81 - ], - "score": 0.9692522883415222, - "content": "Oxford Cambridge and RSA", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 58, - 817, - 209, - 826 - ], - "lines": [ - { - "bbox": [ - 59, - 817, - 209, - 826 - ], - "spans": [ - { - "bbox": [ - 59, - 817, - 209, - 826 - ], - "score": 1.0, - "content": "Oxford Cambridge and RSA Examinations", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 569, - 1, - 593, - 14 - ], - "lines": [ - { - "bbox": [ - 568, - 1, - 595, - 14 - ], - "spans": [ - { - "bbox": [ - 568, - 1, - 595, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 58, - 146, - 98, - 166 - ], - "lines": [ - { - "bbox": [ - 58, - 148, - 99, - 165 - ], - "spans": [ - { - "bbox": [ - 58, - 148, - 99, - 165 - ], - "score": 1.0, - "content": "GCE", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_71", - "page_size": [ - 594.9600219726562, - 842.0399780273438 - ] - }, - { - "type": "title", - "bbox": [ - 58, - 199, - 145, - 220 - ], - "lines": [ - { - "bbox": [ - 59, - 201, - 145, - 220 - ], - "spans": [ - { - "bbox": [ - 59, - 201, - 145, - 220 - ], - "score": 1.0, - "content": "Physics A", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_71", - "page_size": [ - 594.9600219726562, - 842.0399780273438 - ] - }, - { - "type": "title", - "bbox": [ - 57, - 242, - 273, - 261 - ], - "lines": [ - { - "bbox": [ - 59, - 244, - 272, - 261 - ], - "spans": [ - { - "bbox": [ - 59, - 244, - 272, - 261 - ], - "score": 1.0, - "content": "H156/01: Breadth in physics", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_71", - "page_size": [ - 594.9600219726562, - 842.0399780273438 - ] - }, - { - "type": "text", - "bbox": [ - 57, - 293, - 116, - 309 - ], - "lines": [ - { - "bbox": [ - 58, - 294, - 116, - 308 - ], - "spans": [ - { - "bbox": [ - 58, - 294, - 116, - 308 - ], - "score": 1.0, - "content": "AS Level", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_71", - "page_size": [ - 594.9600219726562, - 842.0399780273438 - ], - "bbox_fs": [ - 58, - 294, - 116, - 308 - ] - }, - { - "type": "title", - "bbox": [ - 56, - 346, - 297, - 367 - ], - "lines": [ - { - "bbox": [ - 60, - 349, - 295, - 364 - ], - "spans": [ - { - "bbox": [ - 60, - 349, - 295, - 364 - ], - "score": 1.0, - "content": "Mark Scheme for June 2022", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_71", - "page_size": [ - 594.9600219726562, - 842.0399780273438 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 58, - 108, - 514, - 181 - ], - "lines": [ - { - "bbox": [ - 58, - 108, - 514, - 123 - ], - "spans": [ - { - "bbox": [ - 58, - 108, - 514, - 123 - ], - "score": 1.0, - "content": "OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 58, - 125, - 498, - 136 - ], - "spans": [ - { - "bbox": [ - 58, - 125, - 498, - 136 - ], - "score": 1.0, - "content": "qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 58, - 140, - 479, - 151 - ], - "spans": [ - { - "bbox": [ - 58, - 140, - 479, - 151 - ], - "score": 1.0, - "content": "include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals,", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 58, - 154, - 508, - 165 - ], - "spans": [ - { - "bbox": [ - 58, - 154, - 508, - 165 - ], - "score": 1.0, - "content": "Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 58, - 169, - 513, - 181 - ], - "spans": [ - { - "bbox": [ - 58, - 169, - 513, - 181 - ], - "score": 1.0, - "content": "areas such as IT, business, languages, teaching/training, administration and secretarial skills.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 58, - 191, - 513, - 249 - ], - "lines": [ - { - "bbox": [ - 57, - 192, - 513, - 206 - ], - "spans": [ - { - "bbox": [ - 57, - 192, - 513, - 206 - ], - "score": 1.0, - "content": "It is also responsible for developing new specifications to meet national requirements and the", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 58, - 208, - 497, - 220 - ], - "spans": [ - { - "bbox": [ - 58, - 208, - 497, - 220 - ], - "score": 1.0, - "content": "needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 57, - 222, - 499, - 234 - ], - "spans": [ - { - "bbox": [ - 57, - 222, - 499, - 234 - ], - "score": 1.0, - "content": "invested back into the establishment to help towards the development of qualifications and", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 57, - 236, - 398, - 250 - ], - "spans": [ - { - "bbox": [ - 57, - 236, - 398, - 250 - ], - "score": 1.0, - "content": "support, which keep pace with the changing needs of today’s society.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 6.5 - }, - { - "type": "text", - "bbox": [ - 58, - 260, - 527, - 317 - ], - "lines": [ - { - "bbox": [ - 58, - 260, - 524, - 273 - ], - "spans": [ - { - "bbox": [ - 58, - 260, - 524, - 273 - ], - "score": 1.0, - "content": "This mark scheme is published as an aid to teachers and students, to indicate the requirements", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 58, - 275, - 522, - 288 - ], - "spans": [ - { - "bbox": [ - 58, - 275, - 522, - 288 - ], - "score": 1.0, - "content": "of the examination. It shows the basis on which marks were awarded by examiners. It does not", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 57, - 288, - 528, - 303 - ], - "spans": [ - { - "bbox": [ - 57, - 288, - 528, - 303 - ], - "score": 1.0, - "content": "indicate the details of the discussions which took place at an examiners’ meeting before marking", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 58, - 304, - 124, - 317 - ], - "spans": [ - { - "bbox": [ - 58, - 304, - 124, - 317 - ], - "score": 1.0, - "content": "commenced.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 10.5 - }, - { - "type": "text", - "bbox": [ - 58, - 328, - 507, - 370 - ], - "lines": [ - { - "bbox": [ - 58, - 329, - 505, - 342 - ], - "spans": [ - { - "bbox": [ - 58, - 329, - 505, - 342 - ], - "score": 1.0, - "content": "All examiners are instructed that alternative correct answers and unexpected approaches in", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 59, - 344, - 500, - 355 - ], - "spans": [ - { - "bbox": [ - 59, - 344, - 500, - 355 - ], - "score": 1.0, - "content": "candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 57, - 358, - 130, - 370 - ], - "spans": [ - { - "bbox": [ - 57, - 358, - 130, - 370 - ], - "score": 1.0, - "content": "demonstrated.", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 56, - 382, - 521, - 409 - ], - "lines": [ - { - "bbox": [ - 58, - 382, - 522, - 396 - ], - "spans": [ - { - "bbox": [ - 58, - 382, - 522, - 396 - ], - "score": 1.0, - "content": "Mark schemes should be read in conjunction with the published question papers and the report", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 59, - 398, - 156, - 409 - ], - "spans": [ - { - "bbox": [ - 59, - 398, - 156, - 409 - ], - "score": 1.0, - "content": "on the examination.", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 16.5 - }, - { - "type": "text", - "bbox": [ - 57, - 433, - 122, - 446 - ], - "lines": [ - { - "bbox": [ - 57, - 434, - 123, - 445 - ], - "spans": [ - { - "bbox": [ - 57, - 434, - 69, - 445 - ], - "score": 0.28, - "content": "\\circledcirc", - "type": "inline_equation", - "height": 11, - "width": 12 - }, - { - "bbox": [ - 69, - 435, - 123, - 445 - ], - "score": 1.0, - "content": " OCR 2022", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18 - } - ], - "layout_bboxes": [], - "page_idx": 72, - "page_size": [ - 594.9600219726562, - 842.0399780273438 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 58, - 817, - 209, - 826 - ], - "lines": [ - { - "bbox": [ - 59, - 817, - 209, - 826 - ], - "spans": [ - { - "bbox": [ - 59, - 817, - 209, - 826 - ], - "score": 1.0, - "content": "Oxford Cambridge and RSA Examinations", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 569, - 2, - 593, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 0, - 595, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 0, - 595, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 58, - 108, - 514, - 181 - ], - "lines": [ - { - "bbox": [ - 58, - 108, - 514, - 123 - ], - "spans": [ - { - "bbox": [ - 58, - 108, - 514, - 123 - ], - "score": 1.0, - "content": "OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 58, - 125, - 498, - 136 - ], - "spans": [ - { - "bbox": [ - 58, - 125, - 498, - 136 - ], - "score": 1.0, - "content": "qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 58, - 140, - 479, - 151 - ], - "spans": [ - { - "bbox": [ - 58, - 140, - 479, - 151 - ], - "score": 1.0, - "content": "include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals,", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 58, - 154, - 508, - 165 - ], - "spans": [ - { - "bbox": [ - 58, - 154, - 508, - 165 - ], - "score": 1.0, - "content": "Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 58, - 169, - 513, - 181 - ], - "spans": [ - { - "bbox": [ - 58, - 169, - 513, - 181 - ], - "score": 1.0, - "content": "areas such as IT, business, languages, teaching/training, administration and secretarial skills.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 2, - "page_num": "page_72", - "page_size": [ - 594.9600219726562, - 842.0399780273438 - ], - "bbox_fs": [ - 58, - 108, - 514, - 181 - ] - }, - { - "type": "text", - "bbox": [ - 58, - 191, - 513, - 249 - ], - "lines": [ - { - "bbox": [ - 57, - 192, - 513, - 206 - ], - "spans": [ - { - "bbox": [ - 57, - 192, - 513, - 206 - ], - "score": 1.0, - "content": "It is also responsible for developing new specifications to meet national requirements and the", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 58, - 208, - 497, - 220 - ], - "spans": [ - { - "bbox": [ - 58, - 208, - 497, - 220 - ], - "score": 1.0, - "content": "needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 57, - 222, - 499, - 234 - ], - "spans": [ - { - "bbox": [ - 57, - 222, - 499, - 234 - ], - "score": 1.0, - "content": "invested back into the establishment to help towards the development of qualifications and", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 57, - 236, - 398, - 250 - ], - "spans": [ - { - "bbox": [ - 57, - 236, - 398, - 250 - ], - "score": 1.0, - "content": "support, which keep pace with the changing needs of today’s society.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 6.5, - "page_num": "page_72", - "page_size": [ - 594.9600219726562, - 842.0399780273438 - ], - "bbox_fs": [ - 57, - 192, - 513, - 250 - ] - }, - { - "type": "text", - "bbox": [ - 58, - 260, - 527, - 317 - ], - "lines": [ - { - "bbox": [ - 58, - 260, - 524, - 273 - ], - "spans": [ - { - "bbox": [ - 58, - 260, - 524, - 273 - ], - "score": 1.0, - "content": "This mark scheme is published as an aid to teachers and students, to indicate the requirements", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 58, - 275, - 522, - 288 - ], - "spans": [ - { - "bbox": [ - 58, - 275, - 522, - 288 - ], - "score": 1.0, - "content": "of the examination. It shows the basis on which marks were awarded by examiners. It does not", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 57, - 288, - 528, - 303 - ], - "spans": [ - { - "bbox": [ - 57, - 288, - 528, - 303 - ], - "score": 1.0, - "content": "indicate the details of the discussions which took place at an examiners’ meeting before marking", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 58, - 304, - 124, - 317 - ], - "spans": [ - { - "bbox": [ - 58, - 304, - 124, - 317 - ], - "score": 1.0, - "content": "commenced.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 10.5, - "page_num": "page_72", - "page_size": [ - 594.9600219726562, - 842.0399780273438 - ], - "bbox_fs": [ - 57, - 260, - 528, - 317 - ] - }, - { - "type": "text", - "bbox": [ - 58, - 328, - 507, - 370 - ], - "lines": [ - { - "bbox": [ - 58, - 329, - 505, - 342 - ], - "spans": [ - { - "bbox": [ - 58, - 329, - 505, - 342 - ], - "score": 1.0, - "content": "All examiners are instructed that alternative correct answers and unexpected approaches in", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 59, - 344, - 500, - 355 - ], - "spans": [ - { - "bbox": [ - 59, - 344, - 500, - 355 - ], - "score": 1.0, - "content": "candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 57, - 358, - 130, - 370 - ], - "spans": [ - { - "bbox": [ - 57, - 358, - 130, - 370 - ], - "score": 1.0, - "content": "demonstrated.", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 14, - "page_num": "page_72", - "page_size": [ - 594.9600219726562, - 842.0399780273438 - ], - "bbox_fs": [ - 57, - 329, - 505, - 370 - ] - }, - { - "type": "text", - "bbox": [ - 56, - 382, - 521, - 409 - ], - "lines": [ - { - "bbox": [ - 58, - 382, - 522, - 396 - ], - "spans": [ - { - "bbox": [ - 58, - 382, - 522, - 396 - ], - "score": 1.0, - "content": "Mark schemes should be read in conjunction with the published question papers and the report", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 59, - 398, - 156, - 409 - ], - "spans": [ - { - "bbox": [ - 59, - 398, - 156, - 409 - ], - "score": 1.0, - "content": "on the examination.", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 16.5, - "page_num": "page_72", - "page_size": [ - 594.9600219726562, - 842.0399780273438 - ], - "bbox_fs": [ - 58, - 382, - 522, - 409 - ] - }, - { - "type": "text", - "bbox": [ - 57, - 433, - 122, - 446 - ], - "lines": [ - { - "bbox": [ - 57, - 434, - 123, - 445 - ], - "spans": [ - { - "bbox": [ - 57, - 434, - 69, - 445 - ], - "score": 0.28, - "content": "\\circledcirc", - "type": "inline_equation", - "height": 11, - "width": 12 - }, - { - "bbox": [ - 69, - 435, - 123, - 445 - ], - "score": 1.0, - "content": " OCR 2022", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18, - "page_num": "page_72", - "page_size": [ - 594.9600219726562, - 842.0399780273438 - ], - "bbox_fs": [ - 57, - 434, - 123, - 445 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 61, - 36, - 104, - 49 - ], - "lines": [ - { - "bbox": [ - 61, - 37, - 104, - 48 - ], - "spans": [ - { - "bbox": [ - 61, - 37, - 104, - 48 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "title", - "bbox": [ - 406, - 37, - 478, - 49 - ], - "lines": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "spans": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "title", - "bbox": [ - 61, - 61, - 294, - 75 - ], - "lines": [ - { - "bbox": [ - 62, - 63, - 293, - 73 - ], - "spans": [ - { - "bbox": [ - 62, - 63, - 293, - 73 - ], - "score": 1.0, - "content": "PREPARATION FOR MARKING ON-SCREEN", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 53, - 87, - 772, - 178 - ], - "lines": [ - { - "bbox": [ - 61, - 86, - 767, - 101 - ], - "spans": [ - { - "bbox": [ - 61, - 88, - 72, - 99 - ], - "score": 1.0, - "content": "1.", - "type": "text" - }, - { - "bbox": [ - 87, - 86, - 767, - 101 - ], - "score": 1.0, - "content": "Make sure that you have accessed and completed the relevant training packages for on-screen marking: RM assessor Online Training and ", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 87, - 99, - 272, - 115 - ], - "spans": [ - { - "bbox": [ - 87, - 99, - 272, - 115 - ], - "score": 1.0, - "content": "the OCR Essential Guide to Marking.", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 59, - 123, - 771, - 141 - ], - "spans": [ - { - "bbox": [ - 59, - 126, - 73, - 139 - ], - "score": 1.0, - "content": "2.", - "type": "text" - }, - { - "bbox": [ - 87, - 123, - 771, - 141 - ], - "score": 1.0, - "content": "Make sure that you have read and understood the Instructions for On-Screen Marking and the mark scheme and the question paper for this ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 88, - 138, - 598, - 153 - ], - "spans": [ - { - "bbox": [ - 88, - 138, - 598, - 153 - ], - "score": 1.0, - "content": "unit. These are posted on the RM Cambridge Assessment Support Portal http://www.rm.com/support/ca ", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 59, - 162, - 743, - 178 - ], - "spans": [ - { - "bbox": [ - 59, - 162, - 743, - 178 - ], - "score": 1.0, - "content": "3. Log-in to RM Assessor and mark the required number of practice responses and the required number of standardisation responses.", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 5 - }, - { - "type": "title", - "bbox": [ - 64, - 188, - 554, - 202 - ], - "lines": [ - { - "bbox": [ - 63, - 188, - 552, - 200 - ], - "spans": [ - { - "bbox": [ - 63, - 188, - 552, - 200 - ], - "score": 1.0, - "content": "MARKING INSTRUCTIONS – FOR MARKING ON-SCREEN AND FOR PAPER BASED MARKING", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 47, - 214, - 786, - 328 - ], - "lines": [ - { - "bbox": [ - 60, - 213, - 253, - 229 - ], - "spans": [ - { - "bbox": [ - 60, - 215, - 75, - 228 - ], - "score": 1.0, - "content": "1. ", - "type": "text" - }, - { - "bbox": [ - 87, - 213, - 253, - 229 - ], - "score": 1.0, - "content": "Mark strictly to the mark scheme.", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 60, - 239, - 374, - 253 - ], - "spans": [ - { - "bbox": [ - 60, - 239, - 74, - 253 - ], - "score": 1.0, - "content": "2. ", - "type": "text" - }, - { - "bbox": [ - 88, - 240, - 374, - 253 - ], - "score": 1.0, - "content": "Marks awarded must relate directly to the marking criteria.", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 60, - 261, - 780, - 281 - ], - "spans": [ - { - "bbox": [ - 60, - 263, - 73, - 279 - ], - "score": 1.0, - "content": "3.", - "type": "text" - }, - { - "bbox": [ - 87, - 261, - 511, - 281 - ], - "score": 1.0, - "content": "The schedule of dates is very important. It is essential that you meet the RM Assessor", - "type": "text" - }, - { - "bbox": [ - 512, - 265, - 535, - 277 - ], - "score": 0.85, - "content": "50\\%", - "type": "inline_equation", - "height": 12, - "width": 23 - }, - { - "bbox": [ - 536, - 261, - 558, - 281 - ], - "score": 1.0, - "content": " and", - "type": "text" - }, - { - "bbox": [ - 559, - 265, - 588, - 277 - ], - "score": 0.84, - "content": "100\\%", - "type": "inline_equation", - "height": 12, - "width": 29 - }, - { - "bbox": [ - 588, - 261, - 780, - 281 - ], - "score": 1.0, - "content": " deadlines. If you experience problems,", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 87, - 276, - 339, - 293 - ], - "spans": [ - { - "bbox": [ - 87, - 276, - 339, - 293 - ], - "score": 1.0, - "content": "you must contact your Team Leader without delay. ", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 60, - 299, - 782, - 319 - ], - "spans": [ - { - "bbox": [ - 60, - 303, - 74, - 315 - ], - "score": 1.0, - "content": "4. ", - "type": "text" - }, - { - "bbox": [ - 87, - 299, - 782, - 319 - ], - "score": 1.0, - "content": "If you are in any doubt about applying the mark scheme, consult your Team Leader by telephone or the RM Assessor messaging system, or ", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 87, - 313, - 138, - 331 - ], - "spans": [ - { - "bbox": [ - 87, - 313, - 138, - 331 - ], - "score": 1.0, - "content": "by email. ", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 11.5 - }, - { - "type": "title", - "bbox": [ - 62, - 341, - 218, - 353 - ], - "lines": [ - { - "bbox": [ - 60, - 340, - 218, - 354 - ], - "spans": [ - { - "bbox": [ - 60, - 340, - 73, - 354 - ], - "score": 1.0, - "content": "5.", - "type": "text" - }, - { - "bbox": [ - 90, - 341, - 218, - 353 - ], - "score": 1.0, - "content": "Crossed Out Responses", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "text", - "bbox": [ - 84, - 354, - 780, - 391 - ], - "lines": [ - { - "bbox": [ - 88, - 352, - 781, - 368 - ], - "spans": [ - { - "bbox": [ - 88, - 352, - 781, - 368 - ], - "score": 1.0, - "content": "Where a candidate has crossed out a response and provided a clear alternative then the crossed out response is not marked. Where no ", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 89, - 367, - 780, - 379 - ], - "spans": [ - { - "bbox": [ - 89, - 367, - 780, - 379 - ], - "score": 1.0, - "content": "alternative response has been provided, examiners may give candidates the benefit of the doubt and mark the crossed out response where", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 89, - 380, - 127, - 392 - ], - "spans": [ - { - "bbox": [ - 89, - 380, - 127, - 392 - ], - "score": 1.0, - "content": "legible.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 17 - }, - { - "type": "title", - "bbox": [ - 89, - 404, - 331, - 416 - ], - "lines": [ - { - "bbox": [ - 90, - 405, - 331, - 417 - ], - "spans": [ - { - "bbox": [ - 90, - 405, - 331, - 417 - ], - "score": 1.0, - "content": "Rubric Error Responses – Optional Questions", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 19 - }, - { - "type": "text", - "bbox": [ - 87, - 417, - 782, - 468 - ], - "lines": [ - { - "bbox": [ - 88, - 416, - 781, - 431 - ], - "spans": [ - { - "bbox": [ - 88, - 416, - 781, - 431 - ], - "score": 1.0, - "content": "Where candidates have a choice of question across a whole paper or a whole section and have provided more answers than required, then all ", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 89, - 431, - 780, - 442 - ], - "spans": [ - { - "bbox": [ - 89, - 431, - 780, - 442 - ], - "score": 1.0, - "content": "responses are marked and the highest mark allowable within the rubric is given. Enter a mark for each question answered into RM assessor,", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 88, - 441, - 781, - 457 - ], - "spans": [ - { - "bbox": [ - 88, - 441, - 781, - 457 - ], - "score": 1.0, - "content": "which will select the highest mark from those awarded. (The underlying assumption is that the candidate has penalised themselves by ", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 90, - 455, - 401, - 468 - ], - "spans": [ - { - "bbox": [ - 90, - 455, - 401, - 468 - ], - "score": 1.0, - "content": "attempting more questions than necessary in the time allowed.) ", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 21.5 - } - ], - "layout_bboxes": [], - "page_idx": 73, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 37, - 768, - 49 - ], - "lines": [ - { - "bbox": [ - 713, - 38, - 768, - 48 - ], - "spans": [ - { - "bbox": [ - 713, - 38, - 768, - 48 - ], - "score": 1.0, - "content": "June 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 416, - 543, - 424, - 553 - ], - "lines": [ - { - "bbox": [ - 415, - 541, - 426, - 556 - ], - "spans": [ - { - "bbox": [ - 415, - 541, - 426, - 556 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 15, - "width": 11 - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 61, - 36, - 104, - 49 - ], - "lines": [ - { - "bbox": [ - 61, - 37, - 104, - 48 - ], - "spans": [ - { - "bbox": [ - 61, - 37, - 104, - 48 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_73", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "title", - "bbox": [ - 406, - 37, - 478, - 49 - ], - "lines": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "spans": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_73", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "title", - "bbox": [ - 61, - 61, - 294, - 75 - ], - "lines": [ - { - "bbox": [ - 62, - 63, - 293, - 73 - ], - "spans": [ - { - "bbox": [ - 62, - 63, - 293, - 73 - ], - "score": 1.0, - "content": "PREPARATION FOR MARKING ON-SCREEN", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_73", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "list", - "bbox": [ - 53, - 87, - 772, - 178 - ], - "lines": [ - { - "bbox": [ - 61, - 86, - 767, - 101 - ], - "spans": [ - { - "bbox": [ - 61, - 88, - 72, - 99 - ], - "score": 1.0, - "content": "1.", - "type": "text" - }, - { - "bbox": [ - 87, - 86, - 767, - 101 - ], - "score": 1.0, - "content": "Make sure that you have accessed and completed the relevant training packages for on-screen marking: RM assessor Online Training and ", - "type": "text" - } - ], - "index": 3, - "is_list_start_line": true - }, - { - "bbox": [ - 87, - 99, - 272, - 115 - ], - "spans": [ - { - "bbox": [ - 87, - 99, - 272, - 115 - ], - "score": 1.0, - "content": "the OCR Essential Guide to Marking.", - "type": "text" - } - ], - "index": 4, - "is_list_end_line": true - }, - { - "bbox": [ - 59, - 123, - 771, - 141 - ], - "spans": [ - { - "bbox": [ - 59, - 126, - 73, - 139 - ], - "score": 1.0, - "content": "2.", - "type": "text" - }, - { - "bbox": [ - 87, - 123, - 771, - 141 - ], - "score": 1.0, - "content": "Make sure that you have read and understood the Instructions for On-Screen Marking and the mark scheme and the question paper for this ", - "type": "text" - } - ], - "index": 5, - "is_list_start_line": true - }, - { - "bbox": [ - 88, - 138, - 598, - 153 - ], - "spans": [ - { - "bbox": [ - 88, - 138, - 598, - 153 - ], - "score": 1.0, - "content": "unit. These are posted on the RM Cambridge Assessment Support Portal http://www.rm.com/support/ca ", - "type": "text" - } - ], - "index": 6, - "is_list_end_line": true - }, - { - "bbox": [ - 59, - 162, - 743, - 178 - ], - "spans": [ - { - "bbox": [ - 59, - 162, - 743, - 178 - ], - "score": 1.0, - "content": "3. Log-in to RM Assessor and mark the required number of practice responses and the required number of standardisation responses.", - "type": "text" - } - ], - "index": 7, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 5, - "page_num": "page_73", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 59, - 86, - 771, - 178 - ] - }, - { - "type": "title", - "bbox": [ - 64, - 188, - 554, - 202 - ], - "lines": [ - { - "bbox": [ - 63, - 188, - 552, - 200 - ], - "spans": [ - { - "bbox": [ - 63, - 188, - 552, - 200 - ], - "score": 1.0, - "content": "MARKING INSTRUCTIONS – FOR MARKING ON-SCREEN AND FOR PAPER BASED MARKING", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_73", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "list", - "bbox": [ - 47, - 214, - 786, - 328 - ], - "lines": [ - { - "bbox": [ - 60, - 213, - 253, - 229 - ], - "spans": [ - { - "bbox": [ - 60, - 215, - 75, - 228 - ], - "score": 1.0, - "content": "1. ", - "type": "text" - }, - { - "bbox": [ - 87, - 213, - 253, - 229 - ], - "score": 1.0, - "content": "Mark strictly to the mark scheme.", - "type": "text" - } - ], - "index": 9, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 60, - 239, - 374, - 253 - ], - "spans": [ - { - "bbox": [ - 60, - 239, - 74, - 253 - ], - "score": 1.0, - "content": "2. ", - "type": "text" - }, - { - "bbox": [ - 88, - 240, - 374, - 253 - ], - "score": 1.0, - "content": "Marks awarded must relate directly to the marking criteria.", - "type": "text" - } - ], - "index": 10, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 60, - 261, - 780, - 281 - ], - "spans": [ - { - "bbox": [ - 60, - 263, - 73, - 279 - ], - "score": 1.0, - "content": "3.", - "type": "text" - }, - { - "bbox": [ - 87, - 261, - 511, - 281 - ], - "score": 1.0, - "content": "The schedule of dates is very important. It is essential that you meet the RM Assessor", - "type": "text" - }, - { - "bbox": [ - 512, - 265, - 535, - 277 - ], - "score": 0.85, - "content": "50\\%", - "type": "inline_equation", - "height": 12, - "width": 23 - }, - { - "bbox": [ - 536, - 261, - 558, - 281 - ], - "score": 1.0, - "content": " and", - "type": "text" - }, - { - "bbox": [ - 559, - 265, - 588, - 277 - ], - "score": 0.84, - "content": "100\\%", - "type": "inline_equation", - "height": 12, - "width": 29 - }, - { - "bbox": [ - 588, - 261, - 780, - 281 - ], - "score": 1.0, - "content": " deadlines. If you experience problems,", - "type": "text" - } - ], - "index": 11, - "is_list_start_line": true - }, - { - "bbox": [ - 87, - 276, - 339, - 293 - ], - "spans": [ - { - "bbox": [ - 87, - 276, - 339, - 293 - ], - "score": 1.0, - "content": "you must contact your Team Leader without delay. ", - "type": "text" - } - ], - "index": 12, - "is_list_end_line": true - }, - { - "bbox": [ - 60, - 299, - 782, - 319 - ], - "spans": [ - { - "bbox": [ - 60, - 303, - 74, - 315 - ], - "score": 1.0, - "content": "4. ", - "type": "text" - }, - { - "bbox": [ - 87, - 299, - 782, - 319 - ], - "score": 1.0, - "content": "If you are in any doubt about applying the mark scheme, consult your Team Leader by telephone or the RM Assessor messaging system, or ", - "type": "text" - } - ], - "index": 13, - "is_list_start_line": true - }, - { - "bbox": [ - 87, - 313, - 138, - 331 - ], - "spans": [ - { - "bbox": [ - 87, - 313, - 138, - 331 - ], - "score": 1.0, - "content": "by email. ", - "type": "text" - } - ], - "index": 14, - "is_list_end_line": true - } - ], - "index": 11.5, - "page_num": "page_73", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 60, - 213, - 782, - 331 - ] - }, - { - "type": "title", - "bbox": [ - 62, - 341, - 218, - 353 - ], - "lines": [ - { - "bbox": [ - 60, - 340, - 218, - 354 - ], - "spans": [ - { - "bbox": [ - 60, - 340, - 73, - 354 - ], - "score": 1.0, - "content": "5.", - "type": "text" - }, - { - "bbox": [ - 90, - 341, - 218, - 353 - ], - "score": 1.0, - "content": "Crossed Out Responses", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_73", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "text", - "bbox": [ - 84, - 354, - 780, - 391 - ], - "lines": [ - { - "bbox": [ - 88, - 352, - 781, - 368 - ], - "spans": [ - { - "bbox": [ - 88, - 352, - 781, - 368 - ], - "score": 1.0, - "content": "Where a candidate has crossed out a response and provided a clear alternative then the crossed out response is not marked. Where no ", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 89, - 367, - 780, - 379 - ], - "spans": [ - { - "bbox": [ - 89, - 367, - 780, - 379 - ], - "score": 1.0, - "content": "alternative response has been provided, examiners may give candidates the benefit of the doubt and mark the crossed out response where", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 89, - 380, - 127, - 392 - ], - "spans": [ - { - "bbox": [ - 89, - 380, - 127, - 392 - ], - "score": 1.0, - "content": "legible.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 17, - "page_num": "page_73", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 88, - 352, - 781, - 392 - ] - }, - { - "type": "title", - "bbox": [ - 89, - 404, - 331, - 416 - ], - "lines": [ - { - "bbox": [ - 90, - 405, - 331, - 417 - ], - "spans": [ - { - "bbox": [ - 90, - 405, - 331, - 417 - ], - "score": 1.0, - "content": "Rubric Error Responses – Optional Questions", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 19, - "page_num": "page_73", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "text", - "bbox": [ - 87, - 417, - 782, - 468 - ], - "lines": [ - { - "bbox": [ - 88, - 416, - 781, - 431 - ], - "spans": [ - { - "bbox": [ - 88, - 416, - 781, - 431 - ], - "score": 1.0, - "content": "Where candidates have a choice of question across a whole paper or a whole section and have provided more answers than required, then all ", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 89, - 431, - 780, - 442 - ], - "spans": [ - { - "bbox": [ - 89, - 431, - 780, - 442 - ], - "score": 1.0, - "content": "responses are marked and the highest mark allowable within the rubric is given. Enter a mark for each question answered into RM assessor,", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 88, - 441, - 781, - 457 - ], - "spans": [ - { - "bbox": [ - 88, - 441, - 781, - 457 - ], - "score": 1.0, - "content": "which will select the highest mark from those awarded. (The underlying assumption is that the candidate has penalised themselves by ", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 90, - 455, - 401, - 468 - ], - "spans": [ - { - "bbox": [ - 90, - 455, - 401, - 468 - ], - "score": 1.0, - "content": "attempting more questions than necessary in the time allowed.) ", - "type": "text" - } - ], - "index": 23 - } - ], - "index": 21.5, - "page_num": "page_73", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 88, - 416, - 781, - 468 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 90, - 62, - 284, - 75 - ], - "lines": [ - { - "bbox": [ - 90, - 63, - 284, - 74 - ], - "spans": [ - { - "bbox": [ - 90, - 63, - 284, - 74 - ], - "score": 1.0, - "content": "Multiple Choice Question Responses", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 89, - 75, - 781, - 126 - ], - "lines": [ - { - "bbox": [ - 87, - 73, - 780, - 89 - ], - "spans": [ - { - "bbox": [ - 87, - 73, - 780, - 89 - ], - "score": 1.0, - "content": "When a multiple choice question has only a single, correct response and a candidate provides two responses (even if one of these responses", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 88, - 88, - 746, - 101 - ], - "spans": [ - { - "bbox": [ - 88, - 88, - 746, - 101 - ], - "score": 1.0, - "content": "is correct), then no mark should be awarded (as it is not possible to determine which was the first response selected by the candidate).", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 89, - 99, - 783, - 114 - ], - "spans": [ - { - "bbox": [ - 89, - 99, - 783, - 114 - ], - "score": 1.0, - "content": "When a question requires candidates to select more than one option/multiple options, then local marking arrangements need to ensure ", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 87, - 113, - 214, - 127 - ], - "spans": [ - { - "bbox": [ - 87, - 113, - 214, - 127 - ], - "score": 1.0, - "content": "consistency of approach. ", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 2.5 - }, - { - "type": "title", - "bbox": [ - 90, - 139, - 225, - 151 - ], - "lines": [ - { - "bbox": [ - 90, - 139, - 225, - 152 - ], - "spans": [ - { - "bbox": [ - 90, - 139, - 225, - 152 - ], - "score": 1.0, - "content": "Contradictory Responses", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 100, - 150, - 692, - 163 - ], - "lines": [ - { - "bbox": [ - 98, - 150, - 694, - 165 - ], - "spans": [ - { - "bbox": [ - 98, - 150, - 694, - 165 - ], - "score": 1.0, - "content": "hen a candidate provides contradictory responses, then no mark should be awarded, even if one of the answers is correct.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 89, - 188, - 782, - 265 - ], - "lines": [ - { - "bbox": [ - 89, - 189, - 779, - 202 - ], - "spans": [ - { - "bbox": [ - 89, - 189, - 779, - 202 - ], - "score": 1.0, - "content": "Where candidates are required to provide a set number of short answer responses then only the set number of responses should be marked.", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 89, - 203, - 780, - 214 - ], - "spans": [ - { - "bbox": [ - 89, - 203, - 780, - 214 - ], - "score": 1.0, - "content": "The response space should be marked from left to right on each line and then line by line until the required number of responses have been", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 89, - 216, - 779, - 227 - ], - "spans": [ - { - "bbox": [ - 89, - 216, - 779, - 227 - ], - "score": 1.0, - "content": "considered. The remaining responses should not then be marked. Examiners will have to apply judgement as to whether a ‘second response’", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 89, - 228, - 781, - 241 - ], - "spans": [ - { - "bbox": [ - 89, - 228, - 781, - 241 - ], - "score": 1.0, - "content": "on a line is a development of the ‘first response’, rather than a separate, discrete response. (The underlying assumption is that the candidate ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 89, - 240, - 782, - 254 - ], - "spans": [ - { - "bbox": [ - 89, - 240, - 782, - 254 - ], - "score": 1.0, - "content": "is attempting to hedge their bets and therefore getting undue benefit rather than engaging with the question and giving the most relevant/correct ", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 88, - 253, - 151, - 267 - ], - "spans": [ - { - "bbox": [ - 88, - 253, - 151, - 267 - ], - "score": 1.0, - "content": "responses.) ", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 9.5 - }, - { - "type": "text", - "bbox": [ - 89, - 277, - 547, - 290 - ], - "lines": [ - { - "bbox": [ - 88, - 277, - 547, - 291 - ], - "spans": [ - { - "bbox": [ - 88, - 277, - 547, - 291 - ], - "score": 1.0, - "content": "Short Answer Questions (requiring a more developed response, worth two or more marks)", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "text", - "bbox": [ - 86, - 291, - 782, - 328 - ], - "lines": [ - { - "bbox": [ - 89, - 290, - 781, - 304 - ], - "spans": [ - { - "bbox": [ - 89, - 290, - 781, - 304 - ], - "score": 1.0, - "content": "If the candidates are required to provide a description of, say, three items or factors and four items or factors are provided, then mark on a ", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 89, - 304, - 781, - 316 - ], - "spans": [ - { - "bbox": [ - 89, - 304, - 781, - 316 - ], - "score": 1.0, - "content": "similar basis – that is downwards (as it is unlikely in this situation that a candidate will provide more than one response in each section of the", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 89, - 317, - 177, - 329 - ], - "spans": [ - { - "bbox": [ - 89, - 317, - 177, - 329 - ], - "score": 1.0, - "content": "response space.) ", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 15 - }, - { - "type": "text", - "bbox": [ - 90, - 341, - 393, - 353 - ], - "lines": [ - { - "bbox": [ - 89, - 341, - 392, - 354 - ], - "spans": [ - { - "bbox": [ - 89, - 341, - 392, - 354 - ], - "score": 1.0, - "content": "Longer Answer Questions (requiring a developed response)", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 17 - }, - { - "type": "text", - "bbox": [ - 86, - 352, - 780, - 392 - ], - "lines": [ - { - "bbox": [ - 88, - 353, - 781, - 368 - ], - "spans": [ - { - "bbox": [ - 88, - 353, - 781, - 368 - ], - "score": 1.0, - "content": "Where candidates have provided two (or more) responses to a medium or high tariff question which only required a single (developed) response", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 89, - 367, - 781, - 380 - ], - "spans": [ - { - "bbox": [ - 89, - 367, - 781, - 380 - ], - "score": 1.0, - "content": "and not crossed out the first response, then only the first response should be marked. Examiners will need to apply professional judgement as ", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 89, - 380, - 718, - 392 - ], - "spans": [ - { - "bbox": [ - 89, - 380, - 718, - 392 - ], - "score": 1.0, - "content": "to whether the second (or a subsequent) response is a ‘new start’ or simply a poorly expressed continuation of the first response.", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 19 - }, - { - "type": "text", - "bbox": [ - 71, - 406, - 772, - 432 - ], - "lines": [ - { - "bbox": [ - 90, - 405, - 772, - 420 - ], - "spans": [ - { - "bbox": [ - 90, - 405, - 772, - 420 - ], - "score": 1.0, - "content": "Always check the pages (and additional objects if present) at the end of the response in case any answers have been continued there. If the", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 89, - 417, - 563, - 433 - ], - "spans": [ - { - "bbox": [ - 89, - 417, - 563, - 433 - ], - "score": 1.0, - "content": "candidate has continued an answer there then add a tick to confirm that the work has been seen.", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 21.5 - }, - { - "type": "text", - "bbox": [ - 61, - 443, - 634, - 508 - ], - "lines": [ - { - "bbox": [ - 60, - 443, - 239, - 458 - ], - "spans": [ - { - "bbox": [ - 60, - 443, - 73, - 457 - ], - "score": 1.0, - "content": "7.", - "type": "text" - }, - { - "bbox": [ - 97, - 444, - 239, - 458 - ], - "score": 1.0, - "content": " Award No Response (NR) if:", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 146, - 456, - 365, - 471 - ], - "spans": [ - { - "bbox": [ - 146, - 456, - 365, - 471 - ], - "score": 1.0, - "content": "there is nothing written in the answer space", - "type": "text" - } - ], - "index": 24 - }, - { - "bbox": [ - 96, - 481, - 182, - 495 - ], - "spans": [ - { - "bbox": [ - 96, - 481, - 156, - 495 - ], - "score": 1.0, - "content": "Award Zero", - "type": "text" - }, - { - "bbox": [ - 157, - 481, - 169, - 493 - ], - "score": 0.55, - "content": "\\mathrm{^{6}0^{,}}", - "type": "inline_equation", - "height": 12, - "width": 12 - }, - { - "bbox": [ - 170, - 481, - 182, - 495 - ], - "score": 1.0, - "content": " if:", - "type": "text" - } - ], - "index": 25 - }, - { - "bbox": [ - 147, - 494, - 628, - 508 - ], - "spans": [ - { - "bbox": [ - 147, - 494, - 628, - 508 - ], - "score": 1.0, - "content": "anything is written in the answer space and is not worthy of credit (this includes text and symbols).", - "type": "text" - } - ], - "index": 26 - } - ], - "index": 24.5 - } - ], - "layout_bboxes": [], - "page_idx": 74, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 714, - 37, - 768, - 48 - ], - "lines": [ - { - "bbox": [ - 714, - 38, - 768, - 48 - ], - "spans": [ - { - "bbox": [ - 714, - 38, - 768, - 48 - ], - "score": 1.0, - "content": "June 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 61, - 37, - 103, - 48 - ], - "lines": [ - { - "bbox": [ - 61, - 36, - 104, - 49 - ], - "spans": [ - { - "bbox": [ - 61, - 36, - 104, - 49 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 13 - ], - "lines": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "spans": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 416, - 543, - 424, - 553 - ], - "lines": [ - { - "bbox": [ - 415, - 541, - 426, - 555 - ], - "spans": [ - { - "bbox": [ - 415, - 541, - 426, - 555 - ], - "score": 1.0, - "content": "3 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 406, - 37, - 478, - 49 - ], - "lines": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "spans": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 90, - 62, - 284, - 75 - ], - "lines": [ - { - "bbox": [ - 90, - 63, - 284, - 74 - ], - "spans": [ - { - "bbox": [ - 90, - 63, - 284, - 74 - ], - "score": 1.0, - "content": "Multiple Choice Question Responses", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_74", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "text", - "bbox": [ - 89, - 75, - 781, - 126 - ], - "lines": [ - { - "bbox": [ - 87, - 73, - 780, - 89 - ], - "spans": [ - { - "bbox": [ - 87, - 73, - 780, - 89 - ], - "score": 1.0, - "content": "When a multiple choice question has only a single, correct response and a candidate provides two responses (even if one of these responses", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 88, - 88, - 746, - 101 - ], - "spans": [ - { - "bbox": [ - 88, - 88, - 746, - 101 - ], - "score": 1.0, - "content": "is correct), then no mark should be awarded (as it is not possible to determine which was the first response selected by the candidate).", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 89, - 99, - 783, - 114 - ], - "spans": [ - { - "bbox": [ - 89, - 99, - 783, - 114 - ], - "score": 1.0, - "content": "When a question requires candidates to select more than one option/multiple options, then local marking arrangements need to ensure ", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 87, - 113, - 214, - 127 - ], - "spans": [ - { - "bbox": [ - 87, - 113, - 214, - 127 - ], - "score": 1.0, - "content": "consistency of approach. ", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 2.5, - "page_num": "page_74", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 87, - 73, - 783, - 127 - ] - }, - { - "type": "title", - "bbox": [ - 90, - 139, - 225, - 151 - ], - "lines": [ - { - "bbox": [ - 90, - 139, - 225, - 152 - ], - "spans": [ - { - "bbox": [ - 90, - 139, - 225, - 152 - ], - "score": 1.0, - "content": "Contradictory Responses", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_74", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "text", - "bbox": [ - 100, - 150, - 692, - 163 - ], - "lines": [ - { - "bbox": [ - 98, - 150, - 694, - 165 - ], - "spans": [ - { - "bbox": [ - 98, - 150, - 694, - 165 - ], - "score": 1.0, - "content": "hen a candidate provides contradictory responses, then no mark should be awarded, even if one of the answers is correct.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_74", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 98, - 150, - 694, - 165 - ] - }, - { - "type": "text", - "bbox": [ - 89, - 188, - 782, - 265 - ], - "lines": [ - { - "bbox": [ - 89, - 189, - 779, - 202 - ], - "spans": [ - { - "bbox": [ - 89, - 189, - 779, - 202 - ], - "score": 1.0, - "content": "Where candidates are required to provide a set number of short answer responses then only the set number of responses should be marked.", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 89, - 203, - 780, - 214 - ], - "spans": [ - { - "bbox": [ - 89, - 203, - 780, - 214 - ], - "score": 1.0, - "content": "The response space should be marked from left to right on each line and then line by line until the required number of responses have been", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 89, - 216, - 779, - 227 - ], - "spans": [ - { - "bbox": [ - 89, - 216, - 779, - 227 - ], - "score": 1.0, - "content": "considered. The remaining responses should not then be marked. Examiners will have to apply judgement as to whether a ‘second response’", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 89, - 228, - 781, - 241 - ], - "spans": [ - { - "bbox": [ - 89, - 228, - 781, - 241 - ], - "score": 1.0, - "content": "on a line is a development of the ‘first response’, rather than a separate, discrete response. (The underlying assumption is that the candidate ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 89, - 240, - 782, - 254 - ], - "spans": [ - { - "bbox": [ - 89, - 240, - 782, - 254 - ], - "score": 1.0, - "content": "is attempting to hedge their bets and therefore getting undue benefit rather than engaging with the question and giving the most relevant/correct ", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 88, - 253, - 151, - 267 - ], - "spans": [ - { - "bbox": [ - 88, - 253, - 151, - 267 - ], - "score": 1.0, - "content": "responses.) ", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 9.5, - "page_num": "page_74", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 88, - 189, - 782, - 267 - ] - }, - { - "type": "text", - "bbox": [ - 89, - 277, - 547, - 290 - ], - "lines": [ - { - "bbox": [ - 88, - 277, - 547, - 291 - ], - "spans": [ - { - "bbox": [ - 88, - 277, - 547, - 291 - ], - "score": 1.0, - "content": "Short Answer Questions (requiring a more developed response, worth two or more marks)", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_74", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 88, - 277, - 547, - 291 - ] - }, - { - "type": "text", - "bbox": [ - 86, - 291, - 782, - 328 - ], - "lines": [ - { - "bbox": [ - 89, - 290, - 781, - 304 - ], - "spans": [ - { - "bbox": [ - 89, - 290, - 781, - 304 - ], - "score": 1.0, - "content": "If the candidates are required to provide a description of, say, three items or factors and four items or factors are provided, then mark on a ", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 89, - 304, - 781, - 316 - ], - "spans": [ - { - "bbox": [ - 89, - 304, - 781, - 316 - ], - "score": 1.0, - "content": "similar basis – that is downwards (as it is unlikely in this situation that a candidate will provide more than one response in each section of the", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 89, - 317, - 177, - 329 - ], - "spans": [ - { - "bbox": [ - 89, - 317, - 177, - 329 - ], - "score": 1.0, - "content": "response space.) ", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 15, - "page_num": "page_74", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 89, - 290, - 781, - 329 - ] - }, - { - "type": "text", - "bbox": [ - 90, - 341, - 393, - 353 - ], - "lines": [ - { - "bbox": [ - 89, - 341, - 392, - 354 - ], - "spans": [ - { - "bbox": [ - 89, - 341, - 392, - 354 - ], - "score": 1.0, - "content": "Longer Answer Questions (requiring a developed response)", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 17, - "page_num": "page_74", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 89, - 341, - 392, - 354 - ] - }, - { - "type": "text", - "bbox": [ - 86, - 352, - 780, - 392 - ], - "lines": [ - { - "bbox": [ - 88, - 353, - 781, - 368 - ], - "spans": [ - { - "bbox": [ - 88, - 353, - 781, - 368 - ], - "score": 1.0, - "content": "Where candidates have provided two (or more) responses to a medium or high tariff question which only required a single (developed) response", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 89, - 367, - 781, - 380 - ], - "spans": [ - { - "bbox": [ - 89, - 367, - 781, - 380 - ], - "score": 1.0, - "content": "and not crossed out the first response, then only the first response should be marked. Examiners will need to apply professional judgement as ", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 89, - 380, - 718, - 392 - ], - "spans": [ - { - "bbox": [ - 89, - 380, - 718, - 392 - ], - "score": 1.0, - "content": "to whether the second (or a subsequent) response is a ‘new start’ or simply a poorly expressed continuation of the first response.", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 19, - "page_num": "page_74", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 88, - 353, - 781, - 392 - ] - }, - { - "type": "text", - "bbox": [ - 71, - 406, - 772, - 432 - ], - "lines": [ - { - "bbox": [ - 90, - 405, - 772, - 420 - ], - "spans": [ - { - "bbox": [ - 90, - 405, - 772, - 420 - ], - "score": 1.0, - "content": "Always check the pages (and additional objects if present) at the end of the response in case any answers have been continued there. If the", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 89, - 417, - 563, - 433 - ], - "spans": [ - { - "bbox": [ - 89, - 417, - 563, - 433 - ], - "score": 1.0, - "content": "candidate has continued an answer there then add a tick to confirm that the work has been seen.", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 21.5, - "page_num": "page_74", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 89, - 405, - 772, - 433 - ] - }, - { - "type": "text", - "bbox": [ - 61, - 443, - 634, - 508 - ], - "lines": [ - { - "bbox": [ - 60, - 443, - 239, - 458 - ], - "spans": [ - { - "bbox": [ - 60, - 443, - 73, - 457 - ], - "score": 1.0, - "content": "7.", - "type": "text" - }, - { - "bbox": [ - 97, - 444, - 239, - 458 - ], - "score": 1.0, - "content": " Award No Response (NR) if:", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 146, - 456, - 365, - 471 - ], - "spans": [ - { - "bbox": [ - 146, - 456, - 365, - 471 - ], - "score": 1.0, - "content": "there is nothing written in the answer space", - "type": "text" - } - ], - "index": 24 - }, - { - "bbox": [ - 96, - 481, - 182, - 495 - ], - "spans": [ - { - "bbox": [ - 96, - 481, - 156, - 495 - ], - "score": 1.0, - "content": "Award Zero", - "type": "text" - }, - { - "bbox": [ - 157, - 481, - 169, - 493 - ], - "score": 0.55, - "content": "\\mathrm{^{6}0^{,}}", - "type": "inline_equation", - "height": 12, - "width": 12 - }, - { - "bbox": [ - 170, - 481, - 182, - 495 - ], - "score": 1.0, - "content": " if:", - "type": "text" - } - ], - "index": 25 - }, - { - "bbox": [ - 147, - 494, - 628, - 508 - ], - "spans": [ - { - "bbox": [ - 147, - 494, - 628, - 508 - ], - "score": 1.0, - "content": "anything is written in the answer space and is not worthy of credit (this includes text and symbols).", - "type": "text" - } - ], - "index": 26 - } - ], - "index": 24.5, - "page_num": "page_74", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 60, - 443, - 628, - 508 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 406, - 37, - 478, - 49 - ], - "lines": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "spans": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 87, - 62, - 755, - 88 - ], - "lines": [ - { - "bbox": [ - 96, - 61, - 753, - 76 - ], - "spans": [ - { - "bbox": [ - 96, - 61, - 753, - 76 - ], - "score": 1.0, - "content": "Team Leaders must confirm the correct use of the NR button with their markers before live marking commences and should check this ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 96, - 76, - 212, - 89 - ], - "spans": [ - { - "bbox": [ - 96, - 76, - 212, - 89 - ], - "score": 1.0, - "content": "when reviewing scripts.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5 - }, - { - "type": "text", - "bbox": [ - 62, - 99, - 740, - 128 - ], - "lines": [ - { - "bbox": [ - 61, - 100, - 732, - 113 - ], - "spans": [ - { - "bbox": [ - 61, - 100, - 732, - 113 - ], - "score": 1.0, - "content": "8. The RM Assessor comments box is used by your team leader to explain the marking of the practice responses. Please refer to these ", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 79, - 116, - 604, - 129 - ], - "spans": [ - { - "bbox": [ - 79, - 116, - 604, - 129 - ], - "score": 1.0, - "content": "comments when checking your practice responses. Do not use the comments box for any other reason. ", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5 - }, - { - "type": "text", - "bbox": [ - 95, - 138, - 693, - 153 - ], - "lines": [ - { - "bbox": [ - 92, - 137, - 695, - 155 - ], - "spans": [ - { - "bbox": [ - 92, - 137, - 695, - 155 - ], - "score": 1.0, - "content": "If you have any questions or comments for your team leader, use the phone, the RM Assessor messaging system, or e-mail.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "title", - "bbox": [ - 61, - 164, - 206, - 178 - ], - "lines": [ - { - "bbox": [ - 61, - 164, - 205, - 178 - ], - "spans": [ - { - "bbox": [ - 61, - 164, - 205, - 178 - ], - "score": 1.0, - "content": "9. Level of response (LoR)", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 77, - 188, - 773, - 227 - ], - "lines": [ - { - "bbox": [ - 79, - 190, - 757, - 202 - ], - "spans": [ - { - "bbox": [ - 79, - 190, - 757, - 202 - ], - "score": 1.0, - "content": "Read through the whole answer from start to finish, concentrating on features that make it a stronger or weaker answer using the indicative ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 78, - 201, - 769, - 215 - ], - "spans": [ - { - "bbox": [ - 78, - 201, - 769, - 215 - ], - "score": 1.0, - "content": "scientific content as guidance. The indicative scientific content indicates the expected parameters for candidates’ answers, but be prepared to", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 79, - 216, - 440, - 228 - ], - "spans": [ - { - "bbox": [ - 79, - 216, - 440, - 228 - ], - "score": 1.0, - "content": "recognise and credit unexpected approaches where they show relevance.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 79, - 232, - 773, - 259 - ], - "lines": [ - { - "bbox": [ - 79, - 233, - 767, - 245 - ], - "spans": [ - { - "bbox": [ - 79, - 233, - 767, - 245 - ], - "score": 1.0, - "content": "Using a ‘best-fit’ approach based on the science content of the answer, first decide which set of level descriptors, Level 1 (L1), Level 2 (L2) or", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 78, - 246, - 740, - 258 - ], - "spans": [ - { - "bbox": [ - 78, - 246, - 740, - 258 - ], - "score": 1.0, - "content": "Level 3 (L3), best describes the overall quality of the answer using the guidelines described in the level descriptors in the mark scheme.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5 - }, - { - "type": "text", - "bbox": [ - 80, - 263, - 361, - 276 - ], - "lines": [ - { - "bbox": [ - 79, - 264, - 360, - 276 - ], - "spans": [ - { - "bbox": [ - 79, - 264, - 360, - 276 - ], - "score": 1.0, - "content": "Once the level is located, award the higher or lower mark.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12 - }, - { - "type": "text", - "bbox": [ - 77, - 288, - 777, - 327 - ], - "lines": [ - { - "bbox": [ - 79, - 290, - 776, - 302 - ], - "spans": [ - { - "bbox": [ - 79, - 290, - 776, - 302 - ], - "score": 1.0, - "content": "The higher mark should be awarded where the level descriptor has been evidenced and all aspects of the communication statement (in italics)", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 78, - 302, - 735, - 315 - ], - "spans": [ - { - "bbox": [ - 78, - 302, - 735, - 315 - ], - "score": 1.0, - "content": "have been met. The lower mark should be awarded where the level descriptor has been evidenced but aspects of the communication ", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 77, - 313, - 241, - 330 - ], - "spans": [ - { - "bbox": [ - 77, - 313, - 241, - 330 - ], - "score": 1.0, - "content": "statement (in italics) are missing.", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 79, - 340, - 141, - 352 - ], - "lines": [ - { - "bbox": [ - 79, - 340, - 142, - 353 - ], - "spans": [ - { - "bbox": [ - 79, - 340, - 142, - 353 - ], - "score": 1.0, - "content": "In summary:", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16 - }, - { - "type": "text", - "bbox": [ - 108, - 353, - 464, - 379 - ], - "lines": [ - { - "bbox": [ - 127, - 354, - 332, - 364 - ], - "spans": [ - { - "bbox": [ - 127, - 354, - 332, - 364 - ], - "score": 1.0, - "content": "the science content determines the level", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 128, - 367, - 464, - 378 - ], - "spans": [ - { - "bbox": [ - 128, - 367, - 464, - 378 - ], - "score": 1.0, - "content": "the communication statement determines the mark within a level.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 17.5 - } - ], - "layout_bboxes": [], - "page_idx": 75, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 37, - 768, - 49 - ], - "lines": [ - { - "bbox": [ - 713, - 38, - 768, - 48 - ], - "spans": [ - { - "bbox": [ - 713, - 38, - 768, - 48 - ], - "score": 1.0, - "content": "June 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 13 - ], - "lines": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "spans": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 416, - 543, - 424, - 552 - ], - "lines": [ - { - "bbox": [ - 416, - 542, - 425, - 554 - ], - "spans": [ - { - "bbox": [ - 416, - 542, - 425, - 554 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 61, - 37, - 104, - 49 - ], - "lines": [ - { - "bbox": [ - 61, - 37, - 104, - 48 - ], - "spans": [ - { - "bbox": [ - 61, - 37, - 104, - 48 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 406, - 37, - 478, - 49 - ], - "lines": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "spans": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_75", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "text", - "bbox": [ - 87, - 62, - 755, - 88 - ], - "lines": [ - { - "bbox": [ - 96, - 61, - 753, - 76 - ], - "spans": [ - { - "bbox": [ - 96, - 61, - 753, - 76 - ], - "score": 1.0, - "content": "Team Leaders must confirm the correct use of the NR button with their markers before live marking commences and should check this ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 96, - 76, - 212, - 89 - ], - "spans": [ - { - "bbox": [ - 96, - 76, - 212, - 89 - ], - "score": 1.0, - "content": "when reviewing scripts.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5, - "page_num": "page_75", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 96, - 61, - 753, - 89 - ] - }, - { - "type": "text", - "bbox": [ - 62, - 99, - 740, - 128 - ], - "lines": [ - { - "bbox": [ - 61, - 100, - 732, - 113 - ], - "spans": [ - { - "bbox": [ - 61, - 100, - 732, - 113 - ], - "score": 1.0, - "content": "8. The RM Assessor comments box is used by your team leader to explain the marking of the practice responses. Please refer to these ", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 79, - 116, - 604, - 129 - ], - "spans": [ - { - "bbox": [ - 79, - 116, - 604, - 129 - ], - "score": 1.0, - "content": "comments when checking your practice responses. Do not use the comments box for any other reason. ", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 3.5, - "page_num": "page_75", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 61, - 100, - 732, - 129 - ] - }, - { - "type": "text", - "bbox": [ - 95, - 138, - 693, - 153 - ], - "lines": [ - { - "bbox": [ - 92, - 137, - 695, - 155 - ], - "spans": [ - { - "bbox": [ - 92, - 137, - 695, - 155 - ], - "score": 1.0, - "content": "If you have any questions or comments for your team leader, use the phone, the RM Assessor messaging system, or e-mail.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_75", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 92, - 137, - 695, - 155 - ] - }, - { - "type": "title", - "bbox": [ - 61, - 164, - 206, - 178 - ], - "lines": [ - { - "bbox": [ - 61, - 164, - 205, - 178 - ], - "spans": [ - { - "bbox": [ - 61, - 164, - 205, - 178 - ], - "score": 1.0, - "content": "9. Level of response (LoR)", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_75", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "text", - "bbox": [ - 77, - 188, - 773, - 227 - ], - "lines": [ - { - "bbox": [ - 79, - 190, - 757, - 202 - ], - "spans": [ - { - "bbox": [ - 79, - 190, - 757, - 202 - ], - "score": 1.0, - "content": "Read through the whole answer from start to finish, concentrating on features that make it a stronger or weaker answer using the indicative ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 78, - 201, - 769, - 215 - ], - "spans": [ - { - "bbox": [ - 78, - 201, - 769, - 215 - ], - "score": 1.0, - "content": "scientific content as guidance. The indicative scientific content indicates the expected parameters for candidates’ answers, but be prepared to", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 79, - 216, - 440, - 228 - ], - "spans": [ - { - "bbox": [ - 79, - 216, - 440, - 228 - ], - "score": 1.0, - "content": "recognise and credit unexpected approaches where they show relevance.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8, - "page_num": "page_75", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 78, - 190, - 769, - 228 - ] - }, - { - "type": "text", - "bbox": [ - 79, - 232, - 773, - 259 - ], - "lines": [ - { - "bbox": [ - 79, - 233, - 767, - 245 - ], - "spans": [ - { - "bbox": [ - 79, - 233, - 767, - 245 - ], - "score": 1.0, - "content": "Using a ‘best-fit’ approach based on the science content of the answer, first decide which set of level descriptors, Level 1 (L1), Level 2 (L2) or", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 78, - 246, - 740, - 258 - ], - "spans": [ - { - "bbox": [ - 78, - 246, - 740, - 258 - ], - "score": 1.0, - "content": "Level 3 (L3), best describes the overall quality of the answer using the guidelines described in the level descriptors in the mark scheme.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5, - "page_num": "page_75", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 78, - 233, - 767, - 258 - ] - }, - { - "type": "text", - "bbox": [ - 80, - 263, - 361, - 276 - ], - "lines": [ - { - "bbox": [ - 79, - 264, - 360, - 276 - ], - "spans": [ - { - "bbox": [ - 79, - 264, - 360, - 276 - ], - "score": 1.0, - "content": "Once the level is located, award the higher or lower mark.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 12, - "page_num": "page_75", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 79, - 264, - 360, - 276 - ] - }, - { - "type": "text", - "bbox": [ - 77, - 288, - 777, - 327 - ], - "lines": [ - { - "bbox": [ - 79, - 290, - 776, - 302 - ], - "spans": [ - { - "bbox": [ - 79, - 290, - 776, - 302 - ], - "score": 1.0, - "content": "The higher mark should be awarded where the level descriptor has been evidenced and all aspects of the communication statement (in italics)", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 78, - 302, - 735, - 315 - ], - "spans": [ - { - "bbox": [ - 78, - 302, - 735, - 315 - ], - "score": 1.0, - "content": "have been met. The lower mark should be awarded where the level descriptor has been evidenced but aspects of the communication ", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 77, - 313, - 241, - 330 - ], - "spans": [ - { - "bbox": [ - 77, - 313, - 241, - 330 - ], - "score": 1.0, - "content": "statement (in italics) are missing.", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 14, - "page_num": "page_75", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 77, - 290, - 776, - 330 - ] - }, - { - "type": "text", - "bbox": [ - 79, - 340, - 141, - 352 - ], - "lines": [ - { - "bbox": [ - 79, - 340, - 142, - 353 - ], - "spans": [ - { - "bbox": [ - 79, - 340, - 142, - 353 - ], - "score": 1.0, - "content": "In summary:", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16, - "page_num": "page_75", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 79, - 340, - 142, - 353 - ] - }, - { - "type": "text", - "bbox": [ - 108, - 353, - 464, - 379 - ], - "lines": [ - { - "bbox": [ - 127, - 354, - 332, - 364 - ], - "spans": [ - { - "bbox": [ - 127, - 354, - 332, - 364 - ], - "score": 1.0, - "content": "the science content determines the level", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 128, - 367, - 464, - 378 - ], - "spans": [ - { - "bbox": [ - 128, - 367, - 464, - 378 - ], - "score": 1.0, - "content": "the communication statement determines the mark within a level.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 17.5, - "page_num": "page_75", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 127, - 354, - 464, - 378 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 61, - 74, - 393, - 88 - ], - "lines": [ - { - "bbox": [ - 61, - 75, - 392, - 88 - ], - "spans": [ - { - "bbox": [ - 61, - 75, - 392, - 88 - ], - "score": 1.0, - "content": "10. Here are the subject specific instructions for this question paper.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "title", - "bbox": [ - 80, - 112, - 241, - 126 - ], - "lines": [ - { - "bbox": [ - 80, - 113, - 241, - 124 - ], - "spans": [ - { - "bbox": [ - 80, - 113, - 241, - 124 - ], - "score": 1.0, - "content": "CATEGORISATION OF MARKS", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 79, - 138, - 388, - 151 - ], - "lines": [ - { - "bbox": [ - 80, - 139, - 387, - 150 - ], - "spans": [ - { - "bbox": [ - 80, - 139, - 387, - 150 - ], - "score": 1.0, - "content": "The marking schemes categorise marks on the MACB scheme.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "title", - "bbox": [ - 84, - 164, - 127, - 176 - ], - "lines": [ - { - "bbox": [ - 85, - 164, - 127, - 176 - ], - "spans": [ - { - "bbox": [ - 85, - 164, - 127, - 176 - ], - "score": 1.0, - "content": "B marks", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 138, - 163, - 734, - 189 - ], - "lines": [ - { - "bbox": [ - 145, - 164, - 731, - 176 - ], - "spans": [ - { - "bbox": [ - 145, - 164, - 731, - 176 - ], - "score": 1.0, - "content": "These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 144, - 177, - 475, - 189 - ], - "spans": [ - { - "bbox": [ - 144, - 177, - 475, - 189 - ], - "score": 1.0, - "content": "which it refers must be seen specifically in the candidate’s answers.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5 - }, - { - "type": "title", - "bbox": [ - 84, - 202, - 128, - 214 - ], - "lines": [ - { - "bbox": [ - 84, - 201, - 129, - 214 - ], - "spans": [ - { - "bbox": [ - 84, - 201, - 129, - 214 - ], - "score": 1.0, - "content": "M marks", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 136, - 201, - 753, - 239 - ], - "lines": [ - { - "bbox": [ - 145, - 202, - 754, - 215 - ], - "spans": [ - { - "bbox": [ - 145, - 202, - 754, - 215 - ], - "score": 1.0, - "content": "These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 144, - 215, - 705, - 228 - ], - "spans": [ - { - "bbox": [ - 144, - 215, - 705, - 228 - ], - "score": 1.0, - "content": "it refers must be seen in the candidate’s answers. If a candidate fails to score a particular M-mark, then none of the", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 144, - 228, - 317, - 240 - ], - "spans": [ - { - "bbox": [ - 144, - 228, - 317, - 240 - ], - "score": 1.0, - "content": "dependent A-marks can be scored.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8 - }, - { - "type": "title", - "bbox": [ - 84, - 252, - 127, - 264 - ], - "lines": [ - { - "bbox": [ - 84, - 252, - 127, - 264 - ], - "spans": [ - { - "bbox": [ - 84, - 252, - 127, - 264 - ], - "score": 1.0, - "content": "C marks", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - }, - { - "type": "text", - "bbox": [ - 127, - 251, - 759, - 303 - ], - "lines": [ - { - "bbox": [ - 145, - 252, - 758, - 265 - ], - "spans": [ - { - "bbox": [ - 145, - 252, - 758, - 265 - ], - "score": 1.0, - "content": "These are compensatory method marks which can be scored even if the points to which they refer are not written down by the", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 145, - 265, - 749, - 278 - ], - "spans": [ - { - "bbox": [ - 145, - 265, - 749, - 278 - ], - "score": 1.0, - "content": "candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 144, - 277, - 756, - 291 - ], - "spans": [ - { - "bbox": [ - 144, - 277, - 756, - 291 - ], - "score": 1.0, - "content": "C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 144, - 291, - 336, - 304 - ], - "spans": [ - { - "bbox": [ - 144, - 291, - 336, - 304 - ], - "score": 1.0, - "content": "the equation, then the C-mark is given. ", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 12.5 - }, - { - "type": "text", - "bbox": [ - 84, - 315, - 658, - 329 - ], - "lines": [ - { - "bbox": [ - 85, - 315, - 659, - 330 - ], - "spans": [ - { - "bbox": [ - 85, - 315, - 128, - 330 - ], - "score": 1.0, - "content": "A marks", - "type": "text" - }, - { - "bbox": [ - 144, - 315, - 659, - 330 - ], - "score": 1.0, - "content": "These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "title", - "bbox": [ - 79, - 396, - 203, - 410 - ], - "lines": [ - { - "bbox": [ - 79, - 398, - 202, - 409 - ], - "spans": [ - { - "bbox": [ - 79, - 398, - 202, - 409 - ], - "score": 1.0, - "content": "SIGNIFICANT FIGURES", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16 - }, - { - "type": "text", - "bbox": [ - 79, - 423, - 484, - 461 - ], - "lines": [ - { - "bbox": [ - 79, - 423, - 476, - 437 - ], - "spans": [ - { - "bbox": [ - 79, - 423, - 476, - 437 - ], - "score": 1.0, - "content": "If the data given in a question is to 2 sf, then allow to 2 or more significant figures.", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 79, - 436, - 484, - 448 - ], - "spans": [ - { - "bbox": [ - 79, - 436, - 484, - 448 - ], - "score": 1.0, - "content": "If an answer is given to fewer than 2 sf, then penalise once only in the entire paper.", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 78, - 448, - 426, - 461 - ], - "spans": [ - { - "bbox": [ - 78, - 448, - 426, - 461 - ], - "score": 1.0, - "content": "Any exception to this rule will be mentioned in the Additional Guidance.", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 18 - } - ], - "layout_bboxes": [], - "page_idx": 76, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 714, - 37, - 768, - 49 - ], - "lines": [ - { - "bbox": [ - 714, - 38, - 768, - 48 - ], - "spans": [ - { - "bbox": [ - 714, - 38, - 768, - 48 - ], - "score": 1.0, - "content": "June 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 406, - 37, - 478, - 49 - ], - "lines": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "spans": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 13 - ], - "lines": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "spans": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 416, - 543, - 424, - 553 - ], - "lines": [ - { - "bbox": [ - 416, - 541, - 426, - 555 - ], - "spans": [ - { - "bbox": [ - 416, - 541, - 426, - 555 - ], - "score": 1.0, - "content": "5 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 61, - 37, - 103, - 49 - ], - "lines": [ - { - "bbox": [ - 61, - 37, - 104, - 49 - ], - "spans": [ - { - "bbox": [ - 61, - 37, - 104, - 49 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 61, - 74, - 393, - 88 - ], - "lines": [ - { - "bbox": [ - 61, - 75, - 392, - 88 - ], - "spans": [ - { - "bbox": [ - 61, - 75, - 392, - 88 - ], - "score": 1.0, - "content": "10. Here are the subject specific instructions for this question paper.", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_76", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 61, - 75, - 392, - 88 - ] - }, - { - "type": "title", - "bbox": [ - 80, - 112, - 241, - 126 - ], - "lines": [ - { - "bbox": [ - 80, - 113, - 241, - 124 - ], - "spans": [ - { - "bbox": [ - 80, - 113, - 241, - 124 - ], - "score": 1.0, - "content": "CATEGORISATION OF MARKS", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_76", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "text", - "bbox": [ - 79, - 138, - 388, - 151 - ], - "lines": [ - { - "bbox": [ - 80, - 139, - 387, - 150 - ], - "spans": [ - { - "bbox": [ - 80, - 139, - 387, - 150 - ], - "score": 1.0, - "content": "The marking schemes categorise marks on the MACB scheme.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_76", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 80, - 139, - 387, - 150 - ] - }, - { - "type": "title", - "bbox": [ - 84, - 164, - 127, - 176 - ], - "lines": [ - { - "bbox": [ - 85, - 164, - 127, - 176 - ], - "spans": [ - { - "bbox": [ - 85, - 164, - 127, - 176 - ], - "score": 1.0, - "content": "B marks", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_76", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "text", - "bbox": [ - 138, - 163, - 734, - 189 - ], - "lines": [ - { - "bbox": [ - 145, - 164, - 731, - 176 - ], - "spans": [ - { - "bbox": [ - 145, - 164, - 731, - 176 - ], - "score": 1.0, - "content": "These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 144, - 177, - 475, - 189 - ], - "spans": [ - { - "bbox": [ - 144, - 177, - 475, - 189 - ], - "score": 1.0, - "content": "which it refers must be seen specifically in the candidate’s answers.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5, - "page_num": "page_76", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 144, - 164, - 731, - 189 - ] - }, - { - "type": "title", - "bbox": [ - 84, - 202, - 128, - 214 - ], - "lines": [ - { - "bbox": [ - 84, - 201, - 129, - 214 - ], - "spans": [ - { - "bbox": [ - 84, - 201, - 129, - 214 - ], - "score": 1.0, - "content": "M marks", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_76", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "text", - "bbox": [ - 136, - 201, - 753, - 239 - ], - "lines": [ - { - "bbox": [ - 145, - 202, - 754, - 215 - ], - "spans": [ - { - "bbox": [ - 145, - 202, - 754, - 215 - ], - "score": 1.0, - "content": "These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 144, - 215, - 705, - 228 - ], - "spans": [ - { - "bbox": [ - 144, - 215, - 705, - 228 - ], - "score": 1.0, - "content": "it refers must be seen in the candidate’s answers. If a candidate fails to score a particular M-mark, then none of the", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 144, - 228, - 317, - 240 - ], - "spans": [ - { - "bbox": [ - 144, - 228, - 317, - 240 - ], - "score": 1.0, - "content": "dependent A-marks can be scored.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8, - "page_num": "page_76", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 144, - 202, - 754, - 240 - ] - }, - { - "type": "title", - "bbox": [ - 84, - 252, - 127, - 264 - ], - "lines": [ - { - "bbox": [ - 84, - 252, - 127, - 264 - ], - "spans": [ - { - "bbox": [ - 84, - 252, - 127, - 264 - ], - "score": 1.0, - "content": "C marks", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_76", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "text", - "bbox": [ - 127, - 251, - 759, - 303 - ], - "lines": [ - { - "bbox": [ - 145, - 252, - 758, - 265 - ], - "spans": [ - { - "bbox": [ - 145, - 252, - 758, - 265 - ], - "score": 1.0, - "content": "These are compensatory method marks which can be scored even if the points to which they refer are not written down by the", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 145, - 265, - 749, - 278 - ], - "spans": [ - { - "bbox": [ - 145, - 265, - 749, - 278 - ], - "score": 1.0, - "content": "candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 144, - 277, - 756, - 291 - ], - "spans": [ - { - "bbox": [ - 144, - 277, - 756, - 291 - ], - "score": 1.0, - "content": "C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 144, - 291, - 336, - 304 - ], - "spans": [ - { - "bbox": [ - 144, - 291, - 336, - 304 - ], - "score": 1.0, - "content": "the equation, then the C-mark is given. ", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 12.5, - "page_num": "page_76", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 144, - 252, - 758, - 304 - ] - }, - { - "type": "text", - "bbox": [ - 84, - 315, - 658, - 329 - ], - "lines": [ - { - "bbox": [ - 85, - 315, - 659, - 330 - ], - "spans": [ - { - "bbox": [ - 85, - 315, - 128, - 330 - ], - "score": 1.0, - "content": "A marks", - "type": "text" - }, - { - "bbox": [ - 144, - 315, - 659, - 330 - ], - "score": 1.0, - "content": "These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_76", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 85, - 315, - 659, - 330 - ] - }, - { - "type": "title", - "bbox": [ - 79, - 396, - 203, - 410 - ], - "lines": [ - { - "bbox": [ - 79, - 398, - 202, - 409 - ], - "spans": [ - { - "bbox": [ - 79, - 398, - 202, - 409 - ], - "score": 1.0, - "content": "SIGNIFICANT FIGURES", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16, - "page_num": "page_76", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "list", - "bbox": [ - 79, - 423, - 484, - 461 - ], - "lines": [ - { - "bbox": [ - 79, - 423, - 476, - 437 - ], - "spans": [ - { - "bbox": [ - 79, - 423, - 476, - 437 - ], - "score": 1.0, - "content": "If the data given in a question is to 2 sf, then allow to 2 or more significant figures.", - "type": "text" - } - ], - "index": 17, - "is_list_end_line": true - }, - { - "bbox": [ - 79, - 436, - 484, - 448 - ], - "spans": [ - { - "bbox": [ - 79, - 436, - 484, - 448 - ], - "score": 1.0, - "content": "If an answer is given to fewer than 2 sf, then penalise once only in the entire paper.", - "type": "text" - } - ], - "index": 18, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 78, - 448, - 426, - 461 - ], - "spans": [ - { - "bbox": [ - 78, - 448, - 426, - 461 - ], - "score": 1.0, - "content": "Any exception to this rule will be mentioned in the Additional Guidance.", - "type": "text" - } - ], - "index": 19, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 18, - "page_num": "page_76", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 78, - 423, - 484, - 461 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 61, - 37, - 104, - 49 - ], - "lines": [ - { - "bbox": [ - 61, - 37, - 104, - 49 - ], - "spans": [ - { - "bbox": [ - 61, - 37, - 104, - 49 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "title", - "bbox": [ - 405, - 37, - 478, - 49 - ], - "lines": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "spans": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 61, - 62, - 266, - 75 - ], - "lines": [ - { - "bbox": [ - 62, - 63, - 265, - 74 - ], - "spans": [ - { - "bbox": [ - 62, - 63, - 265, - 74 - ], - "score": 1.0, - "content": "11. Annotations available in RM Assessor", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "table", - "bbox": [ - 46, - 82, - 799, - 530 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 82, - 799, - 530 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 82, - 799, - 530 - ], - "spans": [ - { - "bbox": [ - 46, - 82, - 799, - 530 - ], - "score": 0.984, - "html": "
AnnotationMeaning
Correct responseUsed to indicate the point at which a mark has been awarded (one tick per mark awarded).
Incorrect responseUsed toindicate anincorrect answer or a point where a mark islost.
AEArithmetic errorECF if there arenofurther errors.
BODBenefit of doubt givenUsed to indicate a mark awarded where the candidate provides an answer that is not totally satisfactory, but the examiner feels that sufficient workhasbeen done.
BPBlank pageUse BP on additional page(s) to show that there is no additional work provided by the candidates.
CONContradictionUsed in numerical answers only, unless specified otherwise in the mark scheme. Answers to later sections of
ECFError carried forwardWithin a question, ECF can be given for AE, TE and POT errors but not for XP.
L1Level 1L1 is used to show 2 marks awarded and L1^ is used to show 1 mark awarded.
L2Level 2L2 isused to show 4 marks awarded andL2^ is used to show3 marks awarded.
L3Level 3L3 is used to show6 marks awarded and L3^ is used to show 5 marks awarded.
POTPower of 10 errorThis isusuallylinked toconversionof Sl prefixes.Donot allowthemarkwheretheerror occurs.Thenfollow through the working/calculation giving ECF for subsequent marks if there are no further errors.
SEENSeen
SFError in number of significant figuresnecessary will be considered within the mark scheme.Penalised only once in the paper.
TETranscription errorsubsequent marks.
XPWrong physics or equationUsed in numerical answers only, unless otherwise specified in the mark scheme. Use of an incorrect equation is wrong physics even if it happens to lead to the correct answer.
OmissionUsed to indicate where more is needed for a mark to be awarded (what is written is not wrong but not enough).
", - "type": "table", - "image_path": "ed2dbdb2cbd0686431b9eaf8375227ca25b5eaddad4dc3bd8ad295aef3e587d0.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 46, - 82, - 799, - 231.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 46, - 231.33333333333334, - 799, - 380.6666666666667 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 46, - 380.6666666666667, - 799, - 530.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "layout_bboxes": [], - "page_idx": 77, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 46, - 82, - 799, - 530 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 82, - 799, - 530 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 82, - 799, - 530 - ], - "spans": [ - { - "bbox": [ - 46, - 82, - 799, - 530 - ], - "score": 0.984, - "html": "
AnnotationMeaning
Correct responseUsed to indicate the point at which a mark has been awarded (one tick per mark awarded).
Incorrect responseUsed toindicate anincorrect answer or a point where a mark islost.
AEArithmetic errorECF if there arenofurther errors.
BODBenefit of doubt givenUsed to indicate a mark awarded where the candidate provides an answer that is not totally satisfactory, but the examiner feels that sufficient workhasbeen done.
BPBlank pageUse BP on additional page(s) to show that there is no additional work provided by the candidates.
CONContradictionUsed in numerical answers only, unless specified otherwise in the mark scheme. Answers to later sections of
ECFError carried forwardWithin a question, ECF can be given for AE, TE and POT errors but not for XP.
L1Level 1L1 is used to show 2 marks awarded and L1^ is used to show 1 mark awarded.
L2Level 2L2 isused to show 4 marks awarded andL2^ is used to show3 marks awarded.
L3Level 3L3 is used to show6 marks awarded and L3^ is used to show 5 marks awarded.
POTPower of 10 errorThis isusuallylinked toconversionof Sl prefixes.Donot allowthemarkwheretheerror occurs.Thenfollow through the working/calculation giving ECF for subsequent marks if there are no further errors.
SEENSeen
SFError in number of significant figuresnecessary will be considered within the mark scheme.Penalised only once in the paper.
TETranscription errorsubsequent marks.
XPWrong physics or equationUsed in numerical answers only, unless otherwise specified in the mark scheme. Use of an incorrect equation is wrong physics even if it happens to lead to the correct answer.
OmissionUsed to indicate where more is needed for a mark to be awarded (what is written is not wrong but not enough).
", - "type": "table", - "image_path": "ed2dbdb2cbd0686431b9eaf8375227ca25b5eaddad4dc3bd8ad295aef3e587d0.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 46, - 82, - 799, - 231.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 46, - 231.33333333333334, - 799, - 380.6666666666667 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 46, - 380.6666666666667, - 799, - 530.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 37, - 768, - 49 - ], - "lines": [ - { - "bbox": [ - 713, - 38, - 768, - 48 - ], - "spans": [ - { - "bbox": [ - 713, - 38, - 768, - 48 - ], - "score": 1.0, - "content": "June 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 416, - 543, - 425, - 553 - ], - "lines": [ - { - "bbox": [ - 416, - 542, - 426, - 554 - ], - "spans": [ - { - "bbox": [ - 416, - 542, - 426, - 554 - ], - "score": 1.0, - "content": "6 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 13 - ], - "lines": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "spans": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 61, - 37, - 104, - 49 - ], - "lines": [ - { - "bbox": [ - 61, - 37, - 104, - 49 - ], - "spans": [ - { - "bbox": [ - 61, - 37, - 104, - 49 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_77", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "title", - "bbox": [ - 405, - 37, - 478, - 49 - ], - "lines": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "spans": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_77", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "text", - "bbox": [ - 61, - 62, - 266, - 75 - ], - "lines": [ - { - "bbox": [ - 62, - 63, - 265, - 74 - ], - "spans": [ - { - "bbox": [ - 62, - 63, - 265, - 74 - ], - "score": 1.0, - "content": "11. Annotations available in RM Assessor", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_77", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 62, - 63, - 265, - 74 - ] - }, - { - "type": "table", - "bbox": [ - 46, - 82, - 799, - 530 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 46, - 82, - 799, - 530 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 46, - 82, - 799, - 530 - ], - "spans": [ - { - "bbox": [ - 46, - 82, - 799, - 530 - ], - "score": 0.984, - "html": "
AnnotationMeaning
Correct responseUsed to indicate the point at which a mark has been awarded (one tick per mark awarded).
Incorrect responseUsed toindicate anincorrect answer or a point where a mark islost.
AEArithmetic errorECF if there arenofurther errors.
BODBenefit of doubt givenUsed to indicate a mark awarded where the candidate provides an answer that is not totally satisfactory, but the examiner feels that sufficient workhasbeen done.
BPBlank pageUse BP on additional page(s) to show that there is no additional work provided by the candidates.
CONContradictionUsed in numerical answers only, unless specified otherwise in the mark scheme. Answers to later sections of
ECFError carried forwardWithin a question, ECF can be given for AE, TE and POT errors but not for XP.
L1Level 1L1 is used to show 2 marks awarded and L1^ is used to show 1 mark awarded.
L2Level 2L2 isused to show 4 marks awarded andL2^ is used to show3 marks awarded.
L3Level 3L3 is used to show6 marks awarded and L3^ is used to show 5 marks awarded.
POTPower of 10 errorThis isusuallylinked toconversionof Sl prefixes.Donot allowthemarkwheretheerror occurs.Thenfollow through the working/calculation giving ECF for subsequent marks if there are no further errors.
SEENSeen
SFError in number of significant figuresnecessary will be considered within the mark scheme.Penalised only once in the paper.
TETranscription errorsubsequent marks.
XPWrong physics or equationUsed in numerical answers only, unless otherwise specified in the mark scheme. Use of an incorrect equation is wrong physics even if it happens to lead to the correct answer.
OmissionUsed to indicate where more is needed for a mark to be awarded (what is written is not wrong but not enough).
", - "type": "table", - "image_path": "ed2dbdb2cbd0686431b9eaf8375227ca25b5eaddad4dc3bd8ad295aef3e587d0.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 46, - 82, - 799, - 231.33333333333334 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 46, - 231.33333333333334, - 799, - 380.6666666666667 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 46, - 380.6666666666667, - 799, - 530.0 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_77", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 406, - 37, - 478, - 49 - ], - "lines": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "spans": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table", - "bbox": [ - 59, - 98, - 717, - 374 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 59, - 74, - 730, - 88 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 61, - 74, - 732, - 89 - ], - "spans": [ - { - "bbox": [ - 61, - 74, - 732, - 89 - ], - "score": 1.0, - "content": "Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "table_body", - "bbox": [ - 59, - 98, - 717, - 374 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 59, - 98, - 717, - 374 - ], - "spans": [ - { - "bbox": [ - 59, - 98, - 717, - 374 - ], - "score": 0.981, - "html": "
AnnotationMeaning
alternative and acceptable answers for the same marking point
RejectAnswerswhicharenotworthyofcredit
NotAnswers which are not worthy of credit
IgnoreStatements which are irrelevant
AllowAnswers that can be accepted
()Words which are not essential to gain credit
Underlined words must be present in answer to score a mark
ECFError carried forward
AWAlternative wording
ORAOr reverse argument
", - "type": "table", - "image_path": "99a5e6a0104e575923f191780bcae50853e2a7b620ed54212346276037e2ecb8.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 59, - 98, - 717, - 190.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 59, - 190.0, - 717, - 282.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 59, - 282.0, - 717, - 374.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 2.0 - } - ], - "layout_bboxes": [], - "page_idx": 78, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 59, - 98, - 717, - 374 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 59, - 74, - 730, - 88 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 61, - 74, - 732, - 89 - ], - "spans": [ - { - "bbox": [ - 61, - 74, - 732, - 89 - ], - "score": 1.0, - "content": "Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "table_body", - "bbox": [ - 59, - 98, - 717, - 374 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 59, - 98, - 717, - 374 - ], - "spans": [ - { - "bbox": [ - 59, - 98, - 717, - 374 - ], - "score": 0.981, - "html": "
AnnotationMeaning
alternative and acceptable answers for the same marking point
RejectAnswerswhicharenotworthyofcredit
NotAnswers which are not worthy of credit
IgnoreStatements which are irrelevant
AllowAnswers that can be accepted
()Words which are not essential to gain credit
Underlined words must be present in answer to score a mark
ECFError carried forward
AWAlternative wording
ORAOr reverse argument
", - "type": "table", - "image_path": "99a5e6a0104e575923f191780bcae50853e2a7b620ed54212346276037e2ecb8.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 59, - 98, - 717, - 190.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 59, - 190.0, - 717, - 282.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 59, - 282.0, - 717, - 374.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 2.0 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 37, - 768, - 49 - ], - "lines": [ - { - "bbox": [ - 713, - 38, - 768, - 48 - ], - "spans": [ - { - "bbox": [ - 713, - 38, - 768, - 48 - ], - "score": 1.0, - "content": "June 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 13 - ], - "lines": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "spans": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 417, - 543, - 424, - 552 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 61, - 37, - 104, - 49 - ], - "lines": [ - { - "bbox": [ - 61, - 37, - 104, - 49 - ], - "spans": [ - { - "bbox": [ - 61, - 37, - 104, - 49 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 406, - 37, - 478, - 49 - ], - "lines": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "spans": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_78", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 59, - 98, - 717, - 374 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 59, - 74, - 730, - 88 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 61, - 74, - 732, - 89 - ], - "spans": [ - { - "bbox": [ - 61, - 74, - 732, - 89 - ], - "score": 1.0, - "content": "Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "table_body", - "bbox": [ - 59, - 98, - 717, - 374 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 59, - 98, - 717, - 374 - ], - "spans": [ - { - "bbox": [ - 59, - 98, - 717, - 374 - ], - "score": 0.981, - "html": "
AnnotationMeaning
alternative and acceptable answers for the same marking point
RejectAnswerswhicharenotworthyofcredit
NotAnswers which are not worthy of credit
IgnoreStatements which are irrelevant
AllowAnswers that can be accepted
()Words which are not essential to gain credit
Underlined words must be present in answer to score a mark
ECFError carried forward
AWAlternative wording
ORAOr reverse argument
", - "type": "table", - "image_path": "99a5e6a0104e575923f191780bcae50853e2a7b620ed54212346276037e2ecb8.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 59, - 98, - 717, - 190.0 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 59, - 190.0, - 717, - 282.0 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 59, - 282.0, - 717, - 374.0 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 2.0, - "page_num": "page_78", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 406, - 37, - 478, - 49 - ], - "lines": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "spans": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "title", - "bbox": [ - 389, - 74, - 451, - 87 - ], - "lines": [ - { - "bbox": [ - 390, - 76, - 451, - 87 - ], - "spans": [ - { - "bbox": [ - 390, - 76, - 451, - 87 - ], - "score": 1.0, - "content": "SECTION A", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 57, - 100, - 776, - 432 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 57, - 100, - 776, - 432 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 57, - 100, - 776, - 432 - ], - "spans": [ - { - "bbox": [ - 57, - 100, - 776, - 432 - ], - "score": 0.982, - "html": "
QuestionAnswerMarksGuidance
1D1
2A1
3C1
4B1
5C1
9C1
7B1
8C1
9A1
10C1
11D1
12B1
13A1
14A1
15 D1
16 B1
17 A1
18 D1
19 B1
20 B1 20
", - "type": "table", - "image_path": "5a89028a357fa0b391ff81dbb822b99f4350e199f834f48a51e7691bd2f82340.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 57, - 100, - 776, - 210.66666666666669 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 57, - 210.66666666666669, - 776, - 321.33333333333337 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 57, - 321.33333333333337, - 776, - 432.00000000000006 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3 - } - ], - "layout_bboxes": [], - "page_idx": 79, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 57, - 100, - 776, - 432 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 57, - 100, - 776, - 432 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 57, - 100, - 776, - 432 - ], - "spans": [ - { - "bbox": [ - 57, - 100, - 776, - 432 - ], - "score": 0.982, - "html": "
QuestionAnswerMarksGuidance
1D1
2A1
3C1
4B1
5C1
9C1
7B1
8C1
9A1
10C1
11D1
12B1
13A1
14A1
15 D1
16 B1
17 A1
18 D1
19 B1
20 B1 20
", - "type": "table", - "image_path": "5a89028a357fa0b391ff81dbb822b99f4350e199f834f48a51e7691bd2f82340.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 57, - 100, - 776, - 210.66666666666669 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 57, - 210.66666666666669, - 776, - 321.33333333333337 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 57, - 321.33333333333337, - 776, - 432.00000000000006 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 714, - 37, - 768, - 49 - ], - "lines": [ - { - "bbox": [ - 713, - 37, - 768, - 49 - ], - "spans": [ - { - "bbox": [ - 713, - 37, - 768, - 49 - ], - "score": 1.0, - "content": "June 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 61, - 37, - 103, - 49 - ], - "lines": [ - { - "bbox": [ - 61, - 37, - 104, - 49 - ], - "spans": [ - { - "bbox": [ - 61, - 37, - 104, - 49 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 13 - ], - "lines": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "spans": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 416, - 543, - 424, - 553 - ], - "lines": [ - { - "bbox": [ - 416, - 542, - 426, - 555 - ], - "spans": [ - { - "bbox": [ - 416, - 542, - 426, - 555 - ], - "score": 1.0, - "content": "8 ", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 406, - 37, - 478, - 49 - ], - "lines": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "spans": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_79", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "title", - "bbox": [ - 389, - 74, - 451, - 87 - ], - "lines": [ - { - "bbox": [ - 390, - 76, - 451, - 87 - ], - "spans": [ - { - "bbox": [ - 390, - 76, - 451, - 87 - ], - "score": 1.0, - "content": "SECTION A", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_79", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 57, - 100, - 776, - 432 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 57, - 100, - 776, - 432 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 57, - 100, - 776, - 432 - ], - "spans": [ - { - "bbox": [ - 57, - 100, - 776, - 432 - ], - "score": 0.982, - "html": "
QuestionAnswerMarksGuidance
1D1
2A1
3C1
4B1
5C1
9C1
7B1
8C1
9A1
10C1
11D1
12B1
13A1
14A1
15 D1
16 B1
17 A1
18 D1
19 B1
20 B1 20
", - "type": "table", - "image_path": "5a89028a357fa0b391ff81dbb822b99f4350e199f834f48a51e7691bd2f82340.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 57, - 100, - 776, - 210.66666666666669 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 57, - 210.66666666666669, - 776, - 321.33333333333337 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 57, - 321.33333333333337, - 776, - 432.00000000000006 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 3, - "page_num": "page_79", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 405, - 37, - 478, - 49 - ], - "lines": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "spans": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "title", - "bbox": [ - 389, - 61, - 451, - 75 - ], - "lines": [ - { - "bbox": [ - 390, - 63, - 451, - 73 - ], - "spans": [ - { - "bbox": [ - 390, - 63, - 451, - 73 - ], - "score": 1.0, - "content": "SECTION B", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 65, - 87, - 585, - 101 - ], - "lines": [ - { - "bbox": [ - 62, - 87, - 582, - 101 - ], - "spans": [ - { - "bbox": [ - 62, - 87, - 582, - 101 - ], - "score": 1.0, - "content": "General rule: For substitution into an equation, allow any subject - unless stated otherwise in the guidance", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "table", - "bbox": [ - 59, - 110, - 786, - 349 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 59, - 110, - 786, - 349 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 59, - 110, - 786, - 349 - ], - "spans": [ - { - "bbox": [ - 59, - 110, - 786, - 349 - ], - "score": 0.982, - "html": "
QuestionAnswerMarksGuidance
21(a)(b) (i)distance = area under the graph/suvat equationsC1Allow any attempt to calculate part of the area under the graph or suvat equations Allow any correct calculation of part of the area under the
1%2 (4.0 + 10.0) × 3.0 / 10.0 × 5.0C1 graph/suvat eqn e.g. 9, 12, 20,21, 30, 32, 50 (m)
horizontal distance = 71 (m)A1 C1
2.0 (ii)3.0A0Allow any correct gradient calculation
680cos55 / 150 × 2.0C1If both components given (vertical and horizontal) it must be clear that the 390N is the horizontal component.
680c0s55 - R = 150 × 2.0 R = 90 (N)C1
A1
Total 7
", - "type": "table", - "image_path": "c251b17a2619af1a1114c42aa9633ae595e95e25dc280d7c840301019fc2b12f.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 59, - 110, - 786, - 189.66666666666669 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 59, - 189.66666666666669, - 786, - 269.33333333333337 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 59, - 269.33333333333337, - 786, - 349.00000000000006 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "layout_bboxes": [], - "page_idx": 80, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 59, - 110, - 786, - 349 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 59, - 110, - 786, - 349 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 59, - 110, - 786, - 349 - ], - "spans": [ - { - "bbox": [ - 59, - 110, - 786, - 349 - ], - "score": 0.982, - "html": "
QuestionAnswerMarksGuidance
21(a)(b) (i)distance = area under the graph/suvat equationsC1Allow any attempt to calculate part of the area under the graph or suvat equations Allow any correct calculation of part of the area under the
1%2 (4.0 + 10.0) × 3.0 / 10.0 × 5.0C1 graph/suvat eqn e.g. 9, 12, 20,21, 30, 32, 50 (m)
horizontal distance = 71 (m)A1 C1
2.0 (ii)3.0A0Allow any correct gradient calculation
680cos55 / 150 × 2.0C1If both components given (vertical and horizontal) it must be clear that the 390N is the horizontal component.
680c0s55 - R = 150 × 2.0 R = 90 (N)C1
A1
Total 7
", - "type": "table", - "image_path": "c251b17a2619af1a1114c42aa9633ae595e95e25dc280d7c840301019fc2b12f.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 59, - 110, - 786, - 189.66666666666669 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 59, - 189.66666666666669, - 786, - 269.33333333333337 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 59, - 269.33333333333337, - 786, - 349.00000000000006 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 37, - 768, - 49 - ], - "lines": [ - { - "bbox": [ - 713, - 38, - 768, - 48 - ], - "spans": [ - { - "bbox": [ - 713, - 38, - 768, - 48 - ], - "score": 1.0, - "content": "June 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 416, - 543, - 424, - 553 - ], - "lines": [ - { - "bbox": [ - 416, - 542, - 425, - 554 - ], - "spans": [ - { - "bbox": [ - 416, - 542, - 425, - 554 - ], - "score": 1.0, - "content": "9", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 13 - ], - "lines": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "spans": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 61, - 37, - 104, - 49 - ], - "lines": [ - { - "bbox": [ - 61, - 37, - 104, - 49 - ], - "spans": [ - { - "bbox": [ - 61, - 37, - 104, - 49 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 405, - 37, - 478, - 49 - ], - "lines": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "spans": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_80", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "title", - "bbox": [ - 389, - 61, - 451, - 75 - ], - "lines": [ - { - "bbox": [ - 390, - 63, - 451, - 73 - ], - "spans": [ - { - "bbox": [ - 390, - 63, - 451, - 73 - ], - "score": 1.0, - "content": "SECTION B", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_80", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "text", - "bbox": [ - 65, - 87, - 585, - 101 - ], - "lines": [ - { - "bbox": [ - 62, - 87, - 582, - 101 - ], - "spans": [ - { - "bbox": [ - 62, - 87, - 582, - 101 - ], - "score": 1.0, - "content": "General rule: For substitution into an equation, allow any subject - unless stated otherwise in the guidance", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_80", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "bbox_fs": [ - 62, - 87, - 582, - 101 - ] - }, - { - "type": "table", - "bbox": [ - 59, - 110, - 786, - 349 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 59, - 110, - 786, - 349 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 59, - 110, - 786, - 349 - ], - "spans": [ - { - "bbox": [ - 59, - 110, - 786, - 349 - ], - "score": 0.982, - "html": "
QuestionAnswerMarksGuidance
21(a)(b) (i)distance = area under the graph/suvat equationsC1Allow any attempt to calculate part of the area under the graph or suvat equations Allow any correct calculation of part of the area under the
1%2 (4.0 + 10.0) × 3.0 / 10.0 × 5.0C1 graph/suvat eqn e.g. 9, 12, 20,21, 30, 32, 50 (m)
horizontal distance = 71 (m)A1 C1
2.0 (ii)3.0A0Allow any correct gradient calculation
680cos55 / 150 × 2.0C1If both components given (vertical and horizontal) it must be clear that the 390N is the horizontal component.
680c0s55 - R = 150 × 2.0 R = 90 (N)C1
A1
Total 7
", - "type": "table", - "image_path": "c251b17a2619af1a1114c42aa9633ae595e95e25dc280d7c840301019fc2b12f.jpg" - } - ] - } - ], - "index": 4, - "virtual_lines": [ - { - "bbox": [ - 59, - 110, - 786, - 189.66666666666669 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 59, - 189.66666666666669, - 786, - 269.33333333333337 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 59, - 269.33333333333337, - 786, - 349.00000000000006 - ], - "spans": [], - "index": 5 - } - ] - } - ], - "index": 4, - "page_num": "page_80", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 57, - 74, - 782, - 385 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 57, - 74, - 782, - 385 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 57, - 74, - 782, - 385 - ], - "spans": [ - { - "bbox": [ - 57, - 74, - 782, - 385 - ], - "score": 0.984, - "html": "
Question 22 (a)Answer Add (a range of) loads/force/weights to the spring andMarks B1Guidance Allow extension for compression throughout
determine the compression (for each load)B1Allow W = mg Not length for compression
force Allow force constant = - and k = F/x (k must compression be subject)
(q)(c)KE/kinetic to gravitational PE/potentialB1AllowKEtransferredtoGPE Not elastic potential energyIgnore increase of thermal store of the surroundings
(d)E = 12 × 1.7 × 104 × (0.45 -0.25)2C1Allow gain in GPE = 68g(0.76 - 0.25) lgnore E = % Fx
E= 340 (J) The gravitational potential energy store of the person has been omitted/(elastic) potential store of the spring has beenA1 B1lgnorereferencestoenergylosses
transferred to gravitational potential energy store(of the
person)Total 6
", - "type": "table", - "image_path": "1aa64be2021aebbf63a6c61259ae718dc8ac4ce7aa87ffe6bf6eced9bfbdcfcd.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 57, - 74, - 782, - 177.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 57, - 177.66666666666669, - 782, - 281.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 57, - 281.33333333333337, - 782, - 385.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 81, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 57, - 74, - 782, - 385 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 57, - 74, - 782, - 385 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 57, - 74, - 782, - 385 - ], - "spans": [ - { - "bbox": [ - 57, - 74, - 782, - 385 - ], - "score": 0.984, - "html": "
Question 22 (a)Answer Add (a range of) loads/force/weights to the spring andMarks B1Guidance Allow extension for compression throughout
determine the compression (for each load)B1Allow W = mg Not length for compression
force Allow force constant = - and k = F/x (k must compression be subject)
(q)(c)KE/kinetic to gravitational PE/potentialB1AllowKEtransferredtoGPE Not elastic potential energyIgnore increase of thermal store of the surroundings
(d)E = 12 × 1.7 × 104 × (0.45 -0.25)2C1Allow gain in GPE = 68g(0.76 - 0.25) lgnore E = % Fx
E= 340 (J) The gravitational potential energy store of the person has been omitted/(elastic) potential store of the spring has beenA1 B1lgnorereferencestoenergylosses
transferred to gravitational potential energy store(of the
person)Total 6
", - "type": "table", - "image_path": "1aa64be2021aebbf63a6c61259ae718dc8ac4ce7aa87ffe6bf6eced9bfbdcfcd.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 57, - 74, - 782, - 177.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 57, - 177.66666666666669, - 782, - 281.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 57, - 281.33333333333337, - 782, - 385.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 37, - 768, - 49 - ], - "lines": [ - { - "bbox": [ - 713, - 37, - 768, - 49 - ], - "spans": [ - { - "bbox": [ - 713, - 37, - 768, - 49 - ], - "score": 1.0, - "content": "June 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 415, - 543, - 427, - 553 - ], - "lines": [ - { - "bbox": [ - 412, - 541, - 429, - 555 - ], - "spans": [ - { - "bbox": [ - 412, - 541, - 429, - 555 - ], - "score": 1.0, - "content": "10 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 13 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 841, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 841, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 406, - 37, - 478, - 49 - ], - "lines": [ - { - "bbox": [ - 406, - 38, - 478, - 48 - ], - "spans": [ - { - "bbox": [ - 406, - 38, - 478, - 48 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 61, - 37, - 103, - 49 - ], - "lines": [ - { - "bbox": [ - 61, - 37, - 104, - 49 - ], - "spans": [ - { - "bbox": [ - 61, - 37, - 104, - 49 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 57, - 74, - 782, - 385 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 57, - 74, - 782, - 385 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 57, - 74, - 782, - 385 - ], - "spans": [ - { - "bbox": [ - 57, - 74, - 782, - 385 - ], - "score": 0.984, - "html": "
Question 22 (a)Answer Add (a range of) loads/force/weights to the spring andMarks B1Guidance Allow extension for compression throughout
determine the compression (for each load)B1Allow W = mg Not length for compression
force Allow force constant = - and k = F/x (k must compression be subject)
(q)(c)KE/kinetic to gravitational PE/potentialB1AllowKEtransferredtoGPE Not elastic potential energyIgnore increase of thermal store of the surroundings
(d)E = 12 × 1.7 × 104 × (0.45 -0.25)2C1Allow gain in GPE = 68g(0.76 - 0.25) lgnore E = % Fx
E= 340 (J) The gravitational potential energy store of the person has been omitted/(elastic) potential store of the spring has beenA1 B1lgnorereferencestoenergylosses
transferred to gravitational potential energy store(of the
person)Total 6
", - "type": "table", - "image_path": "1aa64be2021aebbf63a6c61259ae718dc8ac4ce7aa87ffe6bf6eced9bfbdcfcd.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 57, - 74, - 782, - 177.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 57, - 177.66666666666669, - 782, - 281.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 57, - 281.33333333333337, - 782, - 385.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_81", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 60, - 60, - 789, - 437 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 61, - 37, - 104, - 49 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 61, - 37, - 104, - 49 - ], - "spans": [ - { - "bbox": [ - 61, - 37, - 104, - 49 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table_caption", - "bbox": [ - 405, - 37, - 478, - 49 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "spans": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "table_body", - "bbox": [ - 60, - 60, - 789, - 437 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 60, - 60, - 789, - 437 - ], - "spans": [ - { - "bbox": [ - 60, - 60, - 789, - 437 - ], - "score": 0.983, - "html": "
QuestionAnswerMarksGuidance
23 (a)Gradients/rate of change of momentum are opposite/ positive & negativeB1Ignore change in momentum is the same for A and B
(q)Gradients/rate of change of momentum of the graphs have the same magnitude/Force on A and B = 24000NB1Allow calculations of the gradient for 2 marks A F = (20 - (-4)/1ms = 24000N and B F = (-30 - 6)/1ms = -24000N Ignore POT
Allow 1 mark if no reference to the graph - The forces acting on each object are opposite and the (magnitude) of
the forces are the same Allowalternativeanswerof: loss of momentum of A = 24 (kg/m/s)
momentum before = 20 - 30 (= -10 kg m s-1) momentum after = -4 -6 (= -10 kg m s-1)B1 B1
(Therefore, the momentum is conserved)gain of momentum by B = 24 (kg/m/s) (Therefore, the momentum is conserved)
(c) (2.0 + 3.0) v = 10C1 Allow answer of 2 1sf, without any SF penalty
v = 2.0 (m s-1)A1 Ignore sign
C1
", - "type": "table", - "image_path": "3c2e653cc8c05cd228ba461dc12fbf3cfd6a141888adf692b0619572372d8020.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 60, - 60, - 789, - 185.66666666666669 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 60, - 185.66666666666669, - 789, - 311.33333333333337 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 60, - 311.33333333333337, - 789, - 437.00000000000006 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 82, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 60, - 60, - 789, - 437 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 61, - 37, - 104, - 49 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 61, - 37, - 104, - 49 - ], - "spans": [ - { - "bbox": [ - 61, - 37, - 104, - 49 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table_caption", - "bbox": [ - 405, - 37, - 478, - 49 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "spans": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "table_body", - "bbox": [ - 60, - 60, - 789, - 437 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 60, - 60, - 789, - 437 - ], - "spans": [ - { - "bbox": [ - 60, - 60, - 789, - 437 - ], - "score": 0.983, - "html": "
QuestionAnswerMarksGuidance
23 (a)Gradients/rate of change of momentum are opposite/ positive & negativeB1Ignore change in momentum is the same for A and B
(q)Gradients/rate of change of momentum of the graphs have the same magnitude/Force on A and B = 24000NB1Allow calculations of the gradient for 2 marks A F = (20 - (-4)/1ms = 24000N and B F = (-30 - 6)/1ms = -24000N Ignore POT
Allow 1 mark if no reference to the graph - The forces acting on each object are opposite and the (magnitude) of
the forces are the same Allowalternativeanswerof: loss of momentum of A = 24 (kg/m/s)
momentum before = 20 - 30 (= -10 kg m s-1) momentum after = -4 -6 (= -10 kg m s-1)B1 B1
(Therefore, the momentum is conserved)gain of momentum by B = 24 (kg/m/s) (Therefore, the momentum is conserved)
(c) (2.0 + 3.0) v = 10C1 Allow answer of 2 1sf, without any SF penalty
v = 2.0 (m s-1)A1 Ignore sign
C1
", - "type": "table", - "image_path": "3c2e653cc8c05cd228ba461dc12fbf3cfd6a141888adf692b0619572372d8020.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 60, - 60, - 789, - 185.66666666666669 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 60, - 185.66666666666669, - 789, - 311.33333333333337 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 60, - 311.33333333333337, - 789, - 437.00000000000006 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 415, - 543, - 426, - 553 - ], - "lines": [ - { - "bbox": [ - 412, - 541, - 429, - 556 - ], - "spans": [ - { - "bbox": [ - 412, - 541, - 429, - 556 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 15, - "width": 17 - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 13 - ], - "lines": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "spans": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 713, - 37, - 768, - 49 - ], - "lines": [ - { - "bbox": [ - 713, - 37, - 768, - 49 - ], - "spans": [ - { - "bbox": [ - 713, - 37, - 768, - 49 - ], - "score": 1.0, - "content": "June 2022", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 60, - 60, - 789, - 437 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 61, - 37, - 104, - 49 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 61, - 37, - 104, - 49 - ], - "spans": [ - { - "bbox": [ - 61, - 37, - 104, - 49 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table_caption", - "bbox": [ - 405, - 37, - 478, - 49 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "spans": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "table_body", - "bbox": [ - 60, - 60, - 789, - 437 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 60, - 60, - 789, - 437 - ], - "spans": [ - { - "bbox": [ - 60, - 60, - 789, - 437 - ], - "score": 0.983, - "html": "
QuestionAnswerMarksGuidance
23 (a)Gradients/rate of change of momentum are opposite/ positive & negativeB1Ignore change in momentum is the same for A and B
(q)Gradients/rate of change of momentum of the graphs have the same magnitude/Force on A and B = 24000NB1Allow calculations of the gradient for 2 marks A F = (20 - (-4)/1ms = 24000N and B F = (-30 - 6)/1ms = -24000N Ignore POT
Allow 1 mark if no reference to the graph - The forces acting on each object are opposite and the (magnitude) of
the forces are the same Allowalternativeanswerof: loss of momentum of A = 24 (kg/m/s)
momentum before = 20 - 30 (= -10 kg m s-1) momentum after = -4 -6 (= -10 kg m s-1)B1 B1
(Therefore, the momentum is conserved)gain of momentum by B = 24 (kg/m/s) (Therefore, the momentum is conserved)
(c) (2.0 + 3.0) v = 10C1 Allow answer of 2 1sf, without any SF penalty
v = 2.0 (m s-1)A1 Ignore sign
C1
", - "type": "table", - "image_path": "3c2e653cc8c05cd228ba461dc12fbf3cfd6a141888adf692b0619572372d8020.jpg" - } - ] - } - ], - "index": 3, - "virtual_lines": [ - { - "bbox": [ - 60, - 60, - 789, - 185.66666666666669 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 60, - 185.66666666666669, - 789, - 311.33333333333337 - ], - "spans": [], - "index": 3 - }, - { - "bbox": [ - 60, - 311.33333333333337, - 789, - 437.00000000000006 - ], - "spans": [], - "index": 4 - } - ] - } - ], - "index": 1, - "page_num": "page_82", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 45, - 69, - 791, - 525 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 45, - 69, - 791, - 525 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 45, - 69, - 791, - 525 - ], - "spans": [ - { - "bbox": [ - 45, - 69, - 791, - 525 - ], - "score": 0.976, - "html": "
Question 24Ignore the waves don't moveGuidance
(b)(i)Any acceptable methods e.g.B1Allow vibration generator connected to a variable
Note matched to a note produced by a speaker connected to a variable (calibrated) signal generator/ Reducebackground sound levelB1(calibrated)signal generator Allow Adjust signal generator to the fundamental
ORfrequency (whenastationarywaveisachieved)
Count the number of oscillations and divide by time
camera)taken (from a stopwatch/oscilloscope/slow motion
Take many oscillations e.g. 5 or 10/ longer time
OR
Microphone connected to oscilloscope to measure T/
period and f = 1/T/period
Reduce background sound level
OR
Use a (calibrated) strobe to determine the frequency
Dim down the lights (Aw) to get the best results
Allow 1.2(m)
(ii)1
1.24 (m)
", - "type": "table", - "image_path": "d8142e5350cdae5d907ae6407a5ae916fcee9d32f462862f61e49d2d3f4b265a.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 45, - 69, - 791, - 221.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 45, - 221.0, - 791, - 373.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 45, - 373.0, - 791, - 525.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 83, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 45, - 69, - 791, - 525 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 45, - 69, - 791, - 525 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 45, - 69, - 791, - 525 - ], - "spans": [ - { - "bbox": [ - 45, - 69, - 791, - 525 - ], - "score": 0.976, - "html": "
Question 24Ignore the waves don't moveGuidance
(b)(i)Any acceptable methods e.g.B1Allow vibration generator connected to a variable
Note matched to a note produced by a speaker connected to a variable (calibrated) signal generator/ Reducebackground sound levelB1(calibrated)signal generator Allow Adjust signal generator to the fundamental
ORfrequency (whenastationarywaveisachieved)
Count the number of oscillations and divide by time
camera)taken (from a stopwatch/oscilloscope/slow motion
Take many oscillations e.g. 5 or 10/ longer time
OR
Microphone connected to oscilloscope to measure T/
period and f = 1/T/period
Reduce background sound level
OR
Use a (calibrated) strobe to determine the frequency
Dim down the lights (Aw) to get the best results
Allow 1.2(m)
(ii)1
1.24 (m)
", - "type": "table", - "image_path": "d8142e5350cdae5d907ae6407a5ae916fcee9d32f462862f61e49d2d3f4b265a.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 45, - 69, - 791, - 221.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 45, - 221.0, - 791, - 373.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 45, - 373.0, - 791, - 525.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 37, - 768, - 49 - ], - "lines": [ - { - "bbox": [ - 713, - 38, - 768, - 48 - ], - "spans": [ - { - "bbox": [ - 713, - 38, - 768, - 48 - ], - "score": 1.0, - "content": "June 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 415, - 543, - 428, - 553 - ], - "lines": [ - { - "bbox": [ - 412, - 541, - 429, - 556 - ], - "spans": [ - { - "bbox": [ - 412, - 541, - 429, - 556 - ], - "score": 1.0, - "content": "12 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 14 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 842, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 61, - 37, - 104, - 49 - ], - "lines": [ - { - "bbox": [ - 61, - 37, - 104, - 48 - ], - "spans": [ - { - "bbox": [ - 61, - 37, - 104, - 48 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 405, - 37, - 478, - 49 - ], - "lines": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "spans": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 45, - 69, - 791, - 525 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 45, - 69, - 791, - 525 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 45, - 69, - 791, - 525 - ], - "spans": [ - { - "bbox": [ - 45, - 69, - 791, - 525 - ], - "score": 0.976, - "html": "
Question 24Ignore the waves don't moveGuidance
(b)(i)Any acceptable methods e.g.B1Allow vibration generator connected to a variable
Note matched to a note produced by a speaker connected to a variable (calibrated) signal generator/ Reducebackground sound levelB1(calibrated)signal generator Allow Adjust signal generator to the fundamental
ORfrequency (whenastationarywaveisachieved)
Count the number of oscillations and divide by time
camera)taken (from a stopwatch/oscilloscope/slow motion
Take many oscillations e.g. 5 or 10/ longer time
OR
Microphone connected to oscilloscope to measure T/
period and f = 1/T/period
Reduce background sound level
OR
Use a (calibrated) strobe to determine the frequency
Dim down the lights (Aw) to get the best results
Allow 1.2(m)
(ii)1
1.24 (m)
", - "type": "table", - "image_path": "d8142e5350cdae5d907ae6407a5ae916fcee9d32f462862f61e49d2d3f4b265a.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 45, - 69, - 791, - 221.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 45, - 221.0, - 791, - 373.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 45, - 373.0, - 791, - 525.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_83", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 405, - 37, - 478, - 49 - ], - "lines": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "spans": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table", - "bbox": [ - 57, - 61, - 781, - 285 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 57, - 61, - 781, - 285 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 57, - 61, - 781, - 285 - ], - "spans": [ - { - "bbox": [ - 57, - 61, - 781, - 285 - ], - "score": 0.982, - "html": "
QuestionAnswerMarksGuidance
(ii)2(v= fn) v = 58 × 1.24 v = 72 (m s-1)C1 A1ECF from (b)(ii)1
(ii)3% uncertainty = [2 × 2.5] + 1.0 + 0.5 (= 6.5) 0.065 × [4 × 582 × 9.7 × 10-4 × 0.62] absolute uncertainty = 0.53 (N)C1 A1Answer to 2sf only Allow ECF 1 mark for %uncertainty of 4% and absolute
Total8uncertainty 0.32N 2sf
", - "type": "table", - "image_path": "a7a340909246e3d100bb4ab6b88e52ffacc34e492be12ab1af2e7c6ab51195bc.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 57, - 61, - 781, - 135.66666666666669 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 57, - 135.66666666666669, - 781, - 210.33333333333337 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 57, - 210.33333333333337, - 781, - 285.00000000000006 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - } - ], - "layout_bboxes": [], - "page_idx": 84, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 57, - 61, - 781, - 285 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 57, - 61, - 781, - 285 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 57, - 61, - 781, - 285 - ], - "spans": [ - { - "bbox": [ - 57, - 61, - 781, - 285 - ], - "score": 0.982, - "html": "
QuestionAnswerMarksGuidance
(ii)2(v= fn) v = 58 × 1.24 v = 72 (m s-1)C1 A1ECF from (b)(ii)1
(ii)3% uncertainty = [2 × 2.5] + 1.0 + 0.5 (= 6.5) 0.065 × [4 × 582 × 9.7 × 10-4 × 0.62] absolute uncertainty = 0.53 (N)C1 A1Answer to 2sf only Allow ECF 1 mark for %uncertainty of 4% and absolute
Total8uncertainty 0.32N 2sf
", - "type": "table", - "image_path": "a7a340909246e3d100bb4ab6b88e52ffacc34e492be12ab1af2e7c6ab51195bc.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 57, - 61, - 781, - 135.66666666666669 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 57, - 135.66666666666669, - 781, - 210.33333333333337 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 57, - 210.33333333333337, - 781, - 285.00000000000006 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 415, - 543, - 427, - 553 - ], - "lines": [ - { - "bbox": [ - 412, - 541, - 429, - 555 - ], - "spans": [ - { - "bbox": [ - 412, - 541, - 429, - 555 - ], - "score": 1.0, - "content": "13 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 13 - ], - "lines": [ - { - "bbox": [ - 815, - 1, - 841, - 14 - ], - "spans": [ - { - "bbox": [ - 815, - 1, - 841, - 14 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 713, - 37, - 768, - 49 - ], - "lines": [ - { - "bbox": [ - 713, - 37, - 768, - 49 - ], - "spans": [ - { - "bbox": [ - 713, - 37, - 768, - 49 - ], - "score": 1.0, - "content": "June 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 61, - 37, - 104, - 49 - ], - "lines": [ - { - "bbox": [ - 61, - 37, - 104, - 49 - ], - "spans": [ - { - "bbox": [ - 61, - 37, - 104, - 49 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 405, - 37, - 478, - 49 - ], - "lines": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "spans": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_84", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - }, - { - "type": "table", - "bbox": [ - 57, - 61, - 781, - 285 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 57, - 61, - 781, - 285 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 57, - 61, - 781, - 285 - ], - "spans": [ - { - "bbox": [ - 57, - 61, - 781, - 285 - ], - "score": 0.982, - "html": "
QuestionAnswerMarksGuidance
(ii)2(v= fn) v = 58 × 1.24 v = 72 (m s-1)C1 A1ECF from (b)(ii)1
(ii)3% uncertainty = [2 × 2.5] + 1.0 + 0.5 (= 6.5) 0.065 × [4 × 582 × 9.7 × 10-4 × 0.62] absolute uncertainty = 0.53 (N)C1 A1Answer to 2sf only Allow ECF 1 mark for %uncertainty of 4% and absolute
Total8uncertainty 0.32N 2sf
", - "type": "table", - "image_path": "a7a340909246e3d100bb4ab6b88e52ffacc34e492be12ab1af2e7c6ab51195bc.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 57, - 61, - 781, - 135.66666666666669 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 57, - 135.66666666666669, - 781, - 210.33333333333337 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 57, - 210.33333333333337, - 781, - 285.00000000000006 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2, - "page_num": "page_84", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 58, - 71, - 790, - 491 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 58, - 71, - 790, - 491 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 58, - 71, - 790, - 491 - ], - "spans": [ - { - "bbox": [ - 58, - 71, - 790, - 491 - ], - "score": 0.982, - "html": "
Question 25(a)AnswerMarksGuidance
Bothmeasured inVolts / same unitsB1Allow V for volt
(q)(i)Graph from 1.5 V at 0/A to 0 V at L/BM1Allow they are both voltages/they are both measured with a voltmeter Allow curve of increasing gradient/straight line
(ii)Curve of decreasing gradientA1 B1
At A / x = 0, V= 1.5 V and at B / x = L, V = 0.75 V/p.d is shared/halved Total resistance increases so current decreasesB1Allow V(across R) decreases as x increases (as S moves from A to B) Allow Explanation of potential divider e.g. At B resistance
(c)(i)(as length of wire L and resistor of R are in series)C1of length of wire = resistance of R
p.d across wire = 14.4 - 12.0 = (2.4 V) (= 0.80 Ω)C1
3.0 p x 25.0 0.80 = 0.54 x 10-6C1
p= 1.7 × 10-8 (Ω m)A1ECF R = 2.8 Ω (V = 8.4 V) to give p = 6.0 × 10-8 (Ω m) for 3 marks
(ii)(/ = Anev) 3.0 = 0.54 × 10-6 × 1.60 × 10-19 × 8.5 × 1028 × VC1Do not penalise the same PoT error in 0.54 mm2 from (c)(i) again
v = 4.1 x 10-4 (m s-1)A1 Total
", - "type": "table", - "image_path": "69bcc7ab78c2418c6c58b3e6c18ab72b8ef505a549be0abf65f647811ca5d616.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 58, - 71, - 790, - 211.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 58, - 211.0, - 790, - 351.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 58, - 351.0, - 790, - 491.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 85, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 58, - 71, - 790, - 491 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 58, - 71, - 790, - 491 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 58, - 71, - 790, - 491 - ], - "spans": [ - { - "bbox": [ - 58, - 71, - 790, - 491 - ], - "score": 0.982, - "html": "
Question 25(a)AnswerMarksGuidance
Bothmeasured inVolts / same unitsB1Allow V for volt
(q)(i)Graph from 1.5 V at 0/A to 0 V at L/BM1Allow they are both voltages/they are both measured with a voltmeter Allow curve of increasing gradient/straight line
(ii)Curve of decreasing gradientA1 B1
At A / x = 0, V= 1.5 V and at B / x = L, V = 0.75 V/p.d is shared/halved Total resistance increases so current decreasesB1Allow V(across R) decreases as x increases (as S moves from A to B) Allow Explanation of potential divider e.g. At B resistance
(c)(i)(as length of wire L and resistor of R are in series)C1of length of wire = resistance of R
p.d across wire = 14.4 - 12.0 = (2.4 V) (= 0.80 Ω)C1
3.0 p x 25.0 0.80 = 0.54 x 10-6C1
p= 1.7 × 10-8 (Ω m)A1ECF R = 2.8 Ω (V = 8.4 V) to give p = 6.0 × 10-8 (Ω m) for 3 marks
(ii)(/ = Anev) 3.0 = 0.54 × 10-6 × 1.60 × 10-19 × 8.5 × 1028 × VC1Do not penalise the same PoT error in 0.54 mm2 from (c)(i) again
v = 4.1 x 10-4 (m s-1)A1 Total
", - "type": "table", - "image_path": "69bcc7ab78c2418c6c58b3e6c18ab72b8ef505a549be0abf65f647811ca5d616.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 58, - 71, - 790, - 211.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 58, - 211.0, - 790, - 351.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 58, - 351.0, - 790, - 491.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 37, - 768, - 49 - ], - "lines": [ - { - "bbox": [ - 713, - 38, - 768, - 48 - ], - "spans": [ - { - "bbox": [ - 713, - 38, - 768, - 48 - ], - "score": 1.0, - "content": "June 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 415, - 543, - 427, - 553 - ], - "lines": [ - { - "bbox": [ - 412, - 541, - 429, - 555 - ], - "spans": [ - { - "bbox": [ - 412, - 541, - 429, - 555 - ], - "score": 1.0, - "content": "14 ", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 13 - ], - "lines": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "spans": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 61, - 37, - 104, - 49 - ], - "lines": [ - { - "bbox": [ - 61, - 37, - 104, - 48 - ], - "spans": [ - { - "bbox": [ - 61, - 37, - 104, - 48 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 405, - 37, - 478, - 49 - ], - "lines": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "spans": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 58, - 71, - 790, - 491 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 58, - 71, - 790, - 491 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 58, - 71, - 790, - 491 - ], - "spans": [ - { - "bbox": [ - 58, - 71, - 790, - 491 - ], - "score": 0.982, - "html": "
Question 25(a)AnswerMarksGuidance
Bothmeasured inVolts / same unitsB1Allow V for volt
(q)(i)Graph from 1.5 V at 0/A to 0 V at L/BM1Allow they are both voltages/they are both measured with a voltmeter Allow curve of increasing gradient/straight line
(ii)Curve of decreasing gradientA1 B1
At A / x = 0, V= 1.5 V and at B / x = L, V = 0.75 V/p.d is shared/halved Total resistance increases so current decreasesB1Allow V(across R) decreases as x increases (as S moves from A to B) Allow Explanation of potential divider e.g. At B resistance
(c)(i)(as length of wire L and resistor of R are in series)C1of length of wire = resistance of R
p.d across wire = 14.4 - 12.0 = (2.4 V) (= 0.80 Ω)C1
3.0 p x 25.0 0.80 = 0.54 x 10-6C1
p= 1.7 × 10-8 (Ω m)A1ECF R = 2.8 Ω (V = 8.4 V) to give p = 6.0 × 10-8 (Ω m) for 3 marks
(ii)(/ = Anev) 3.0 = 0.54 × 10-6 × 1.60 × 10-19 × 8.5 × 1028 × VC1Do not penalise the same PoT error in 0.54 mm2 from (c)(i) again
v = 4.1 x 10-4 (m s-1)A1 Total
", - "type": "table", - "image_path": "69bcc7ab78c2418c6c58b3e6c18ab72b8ef505a549be0abf65f647811ca5d616.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 58, - 71, - 790, - 211.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 58, - 211.0, - 790, - 351.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 58, - 351.0, - 790, - 491.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_85", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 59, - 60, - 789, - 445 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 405, - 37, - 478, - 49 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "spans": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table_body", - "bbox": [ - 59, - 60, - 789, - 445 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 59, - 60, - 789, - 445 - ], - "spans": [ - { - "bbox": [ - 59, - 60, - 789, - 445 - ], - "score": 0.983, - "html": "
QuestionAnswerMarksGuidance
26(a)(i)Energy (of photon) is less than work function/Φ (of C ) 3.3 (eV)B1Allow energy of photon / 3.2 (eV) < 3.3 (eV)/work function (of C) (so no photoelectrons)
(ii) (ii)190 (nm)B1Allow 194 (nm) from calculation E=hf
(hf = Φ + KEmax)
5.3 = 4.1 + KE(max) (KEmax =) 1.2 (eV) orC1Allow KE = 1.92 x 10-19 (J)
% × 9.11 × 10-31 × v2 = 1.2 × 1.6 × 10-19 6.63 × 10-34C1
入= 9.11 × 10-31 x 6.4924 x 105Allow v= 6.5 × 105 (m s-1) or p = 5.9 × 10-25 (kg m s-1)
(q)(i) (ii) = 1.1 × 10-9 (m)A1
Line of best fit drawnB1Not drawn through 0.5/5.0
gradient calculated and gradient = 6.2 × 10-34 (J s)C1Allow value in the range 5.8 to 6.6 × 10-34 (J s)
Correct use equation of straight line, and gradient to determine the y-intercept / Φ Φ= 2.7 × 10-19 (J)M1ECF from incorrect value of h
A1Allow value in the range 2.4 to 3.0 × 10-19 (J)
Total 9
", - "type": "table", - "image_path": "71c74c00974f96021992aa3ccf5ef49ab0aec4e826f6afdcd313302a289abaf5.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 59, - 60, - 789, - 188.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 59, - 188.33333333333334, - 789, - 316.6666666666667 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 59, - 316.6666666666667, - 789, - 445.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 1.0 - } - ], - "layout_bboxes": [], - "page_idx": 86, - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 59, - 60, - 789, - 445 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 405, - 37, - 478, - 49 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "spans": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table_body", - "bbox": [ - 59, - 60, - 789, - 445 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 59, - 60, - 789, - 445 - ], - "spans": [ - { - "bbox": [ - 59, - 60, - 789, - 445 - ], - "score": 0.983, - "html": "
QuestionAnswerMarksGuidance
26(a)(i)Energy (of photon) is less than work function/Φ (of C ) 3.3 (eV)B1Allow energy of photon / 3.2 (eV) < 3.3 (eV)/work function (of C) (so no photoelectrons)
(ii) (ii)190 (nm)B1Allow 194 (nm) from calculation E=hf
(hf = Φ + KEmax)
5.3 = 4.1 + KE(max) (KEmax =) 1.2 (eV) orC1Allow KE = 1.92 x 10-19 (J)
% × 9.11 × 10-31 × v2 = 1.2 × 1.6 × 10-19 6.63 × 10-34C1
入= 9.11 × 10-31 x 6.4924 x 105Allow v= 6.5 × 105 (m s-1) or p = 5.9 × 10-25 (kg m s-1)
(q)(i) (ii) = 1.1 × 10-9 (m)A1
Line of best fit drawnB1Not drawn through 0.5/5.0
gradient calculated and gradient = 6.2 × 10-34 (J s)C1Allow value in the range 5.8 to 6.6 × 10-34 (J s)
Correct use equation of straight line, and gradient to determine the y-intercept / Φ Φ= 2.7 × 10-19 (J)M1ECF from incorrect value of h
A1Allow value in the range 2.4 to 3.0 × 10-19 (J)
Total 9
", - "type": "table", - "image_path": "71c74c00974f96021992aa3ccf5ef49ab0aec4e826f6afdcd313302a289abaf5.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 59, - 60, - 789, - 188.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 59, - 188.33333333333334, - 789, - 316.6666666666667 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 59, - 316.6666666666667, - 789, - 445.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 1.0 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 415, - 543, - 427, - 553 - ], - "lines": [ - { - "bbox": [ - 412, - 541, - 429, - 556 - ], - "spans": [ - { - "bbox": [ - 412, - 541, - 429, - 556 - ], - "score": 1.0, - "content": "", - "type": "text", - "height": 15, - "width": 17 - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 816, - 2, - 841, - 13 - ], - "lines": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "spans": [ - { - "bbox": [ - 814, - 0, - 842, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 713, - 37, - 768, - 49 - ], - "lines": [ - { - "bbox": [ - 713, - 38, - 768, - 48 - ], - "spans": [ - { - "bbox": [ - 713, - 38, - 768, - 48 - ], - "score": 1.0, - "content": "June 2022", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 61, - 37, - 104, - 49 - ], - "lines": [ - { - "bbox": [ - 61, - 37, - 104, - 49 - ], - "spans": [ - { - "bbox": [ - 61, - 37, - 104, - 49 - ], - "score": 1.0, - "content": "H156/01", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 59, - 60, - 789, - 445 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 405, - 37, - 478, - 49 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "spans": [ - { - "bbox": [ - 406, - 37, - 478, - 49 - ], - "score": 1.0, - "content": "Mark Scheme", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table_body", - "bbox": [ - 59, - 60, - 789, - 445 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 59, - 60, - 789, - 445 - ], - "spans": [ - { - "bbox": [ - 59, - 60, - 789, - 445 - ], - "score": 0.983, - "html": "
QuestionAnswerMarksGuidance
26(a)(i)Energy (of photon) is less than work function/Φ (of C ) 3.3 (eV)B1Allow energy of photon / 3.2 (eV) < 3.3 (eV)/work function (of C) (so no photoelectrons)
(ii) (ii)190 (nm)B1Allow 194 (nm) from calculation E=hf
(hf = Φ + KEmax)
5.3 = 4.1 + KE(max) (KEmax =) 1.2 (eV) orC1Allow KE = 1.92 x 10-19 (J)
% × 9.11 × 10-31 × v2 = 1.2 × 1.6 × 10-19 6.63 × 10-34C1
入= 9.11 × 10-31 x 6.4924 x 105Allow v= 6.5 × 105 (m s-1) or p = 5.9 × 10-25 (kg m s-1)
(q)(i) (ii) = 1.1 × 10-9 (m)A1
Line of best fit drawnB1Not drawn through 0.5/5.0
gradient calculated and gradient = 6.2 × 10-34 (J s)C1Allow value in the range 5.8 to 6.6 × 10-34 (J s)
Correct use equation of straight line, and gradient to determine the y-intercept / Φ Φ= 2.7 × 10-19 (J)M1ECF from incorrect value of h
A1Allow value in the range 2.4 to 3.0 × 10-19 (J)
Total 9
", - "type": "table", - "image_path": "71c74c00974f96021992aa3ccf5ef49ab0aec4e826f6afdcd313302a289abaf5.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 59, - 60, - 789, - 188.33333333333334 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 59, - 188.33333333333334, - 789, - 316.6666666666667 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 59, - 316.6666666666667, - 789, - 445.0 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 1.0, - "page_num": "page_86", - "page_size": [ - 841.9199829101562, - 595.3200073242188 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 41, - 42, - 135, - 53 - ], - "lines": [ - { - "bbox": [ - 42, - 43, - 135, - 53 - ], - "spans": [ - { - "bbox": [ - 42, - 43, - 135, - 53 - ], - "score": 1.0, - "content": "Need to get in touch?", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 41, - 61, - 545, - 82 - ], - "lines": [ - { - "bbox": [ - 42, - 60, - 546, - 71 - ], - "spans": [ - { - "bbox": [ - 42, - 60, - 546, - 71 - ], - "score": 1.0, - "content": "If you ever have any questions about OCR qualifications or services (including administration, logistics and teaching) please feel free to get in", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 41, - 71, - 190, - 83 - ], - "spans": [ - { - "bbox": [ - 41, - 71, - 190, - 83 - ], - "score": 1.0, - "content": "touch with our customer support centre. ", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5 - }, - { - "type": "title", - "bbox": [ - 42, - 91, - 86, - 101 - ], - "lines": [ - { - "bbox": [ - 42, - 91, - 86, - 101 - ], - "spans": [ - { - "bbox": [ - 42, - 91, - 86, - 101 - ], - "score": 1.0, - "content": "Call us on", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 41, - 109, - 101, - 120 - ], - "lines": [ - { - "bbox": [ - 42, - 110, - 101, - 120 - ], - "spans": [ - { - "bbox": [ - 42, - 110, - 101, - 120 - ], - "score": 1.0, - "content": "01223 553998", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 42, - 129, - 189, - 140 - ], - "lines": [ - { - "bbox": [ - 42, - 129, - 188, - 140 - ], - "spans": [ - { - "bbox": [ - 42, - 129, - 188, - 140 - ], - "score": 1.0, - "content": "Alternatively, you can email us on", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 42, - 148, - 130, - 159 - ], - "lines": [ - { - "bbox": [ - 41, - 149, - 130, - 159 - ], - "spans": [ - { - "bbox": [ - 41, - 149, - 130, - 159 - ], - "score": 1.0, - "content": "support@ocr.org.uk", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 42, - 167, - 155, - 178 - ], - "lines": [ - { - "bbox": [ - 41, - 167, - 155, - 177 - ], - "spans": [ - { - "bbox": [ - 41, - 167, - 155, - 177 - ], - "score": 1.0, - "content": "For more information visit", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 51, - 185, - 243, - 293 - ], - "lines": [ - { - "bbox": [ - 69, - 187, - 243, - 197 - ], - "spans": [ - { - "bbox": [ - 69, - 187, - 243, - 197 - ], - "score": 1.0, - "content": "ocr.org.uk/qualifications/resource-finder", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 67, - 206, - 111, - 217 - ], - "spans": [ - { - "bbox": [ - 67, - 206, - 111, - 217 - ], - "score": 1.0, - "content": "ocr.org.uk", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 68, - 224, - 145, - 235 - ], - "spans": [ - { - "bbox": [ - 68, - 224, - 145, - 235 - ], - "score": 1.0, - "content": "Twitter/ocrexams ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 67, - 244, - 114, - 254 - ], - "spans": [ - { - "bbox": [ - 67, - 244, - 114, - 254 - ], - "score": 1.0, - "content": "/ocrexams", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 68, - 263, - 128, - 273 - ], - "spans": [ - { - "bbox": [ - 68, - 263, - 128, - 273 - ], - "score": 1.0, - "content": "/company/ocr", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 67, - 281, - 114, - 293 - ], - "spans": [ - { - "bbox": [ - 67, - 281, - 114, - 293 - ], - "score": 1.0, - "content": "/ocrexams", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 10.5 - }, - { - "type": "title", - "bbox": [ - 41, - 460, - 227, - 494 - ], - "lines": [ - { - "bbox": [ - 74, - 464, - 224, - 482 - ], - "spans": [ - { - "bbox": [ - 74, - 464, - 224, - 482 - ], - "score": 0.9970797300338745, - "content": "CAMBRIDGE", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 75, - 484, - 225, - 492 - ], - "spans": [ - { - "bbox": [ - 75, - 484, - 225, - 492 - ], - "score": 0.9640211462974548, - "content": "UNIVERSITY PRESS & ASSESSMENT", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 14.5 - }, - { - "type": "text", - "bbox": [ - 39, - 513, - 457, - 525 - ], - "lines": [ - { - "bbox": [ - 42, - 515, - 457, - 526 - ], - "spans": [ - { - "bbox": [ - 42, - 515, - 457, - 526 - ], - "score": 1.0, - "content": "OCR is part of Cambridge University Press & Assessment, a department of the University of Cambridge.", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16 - }, - { - "type": "text", - "bbox": [ - 42, - 532, - 548, - 566 - ], - "lines": [ - { - "bbox": [ - 40, - 533, - 537, - 544 - ], - "spans": [ - { - "bbox": [ - 40, - 533, - 504, - 544 - ], - "score": 1.0, - "content": "For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored.", - "type": "text" - }, - { - "bbox": [ - 504, - 533, - 513, - 542 - ], - "score": 0.69, - "content": "\\circledcirc", - "type": "inline_equation", - "height": 9, - "width": 9 - }, - { - "bbox": [ - 513, - 533, - 537, - 544 - ], - "score": 1.0, - "content": " OCR ", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 40, - 543, - 548, - 556 - ], - "spans": [ - { - "bbox": [ - 40, - 543, - 548, - 556 - ], - "score": 1.0, - "content": "2022 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England. Registered office ", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 41, - 555, - 299, - 566 - ], - "spans": [ - { - "bbox": [ - 41, - 555, - 299, - 566 - ], - "score": 1.0, - "content": "The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA.", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 18 - }, - { - "type": "text", - "bbox": [ - 42, - 573, - 306, - 585 - ], - "lines": [ - { - "bbox": [ - 41, - 574, - 305, - 586 - ], - "spans": [ - { - "bbox": [ - 41, - 574, - 305, - 586 - ], - "score": 1.0, - "content": "Registered company number 3484466. OCR is an exempt charity.", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 20 - }, - { - "type": "text", - "bbox": [ - 42, - 592, - 540, - 615 - ], - "lines": [ - { - "bbox": [ - 43, - 594, - 535, - 604 - ], - "spans": [ - { - "bbox": [ - 43, - 594, - 535, - 604 - ], - "score": 1.0, - "content": "OCR operates academic and vocational qualifications regulated by Ofqual, Qualifications Wales and CCEA as listed in their", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 42, - 604, - 443, - 616 - ], - "spans": [ - { - "bbox": [ - 42, - 604, - 443, - 616 - ], - "score": 1.0, - "content": "qualifications registers including A Levels, GCSEs, Cambridge Technicals and Cambridge Nationals.", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 21.5 - }, - { - "type": "text", - "bbox": [ - 42, - 622, - 553, - 667 - ], - "lines": [ - { - "bbox": [ - 42, - 623, - 554, - 635 - ], - "spans": [ - { - "bbox": [ - 42, - 623, - 554, - 635 - ], - "score": 1.0, - "content": "OCR provides resources to help you deliver our qualifications. These resources do not represent any particular teaching method ", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 41, - 635, - 546, - 646 - ], - "spans": [ - { - "bbox": [ - 41, - 635, - 546, - 646 - ], - "score": 1.0, - "content": "we expect you to use. We update our resources regularly and aim to make sure content is accurate but please check the OCR", - "type": "text" - } - ], - "index": 24 - }, - { - "bbox": [ - 41, - 646, - 533, - 656 - ], - "spans": [ - { - "bbox": [ - 41, - 646, - 533, - 656 - ], - "score": 1.0, - "content": "website so that you have the most up-to-date version. OCR cannot be held responsible for any errors or omissions in these", - "type": "text" - } - ], - "index": 25 - }, - { - "bbox": [ - 41, - 658, - 86, - 668 - ], - "spans": [ - { - "bbox": [ - 41, - 658, - 86, - 668 - ], - "score": 1.0, - "content": "resources. ", - "type": "text" - } - ], - "index": 26 - } - ], - "index": 24.5 - }, - { - "type": "text", - "bbox": [ - 42, - 674, - 551, - 719 - ], - "lines": [ - { - "bbox": [ - 42, - 676, - 512, - 686 - ], - "spans": [ - { - "bbox": [ - 42, - 676, - 512, - 686 - ], - "score": 1.0, - "content": "Though we make every effort to check our resources, there may be contradictions between published support and the", - "type": "text" - } - ], - "index": 27 - }, - { - "bbox": [ - 42, - 686, - 550, - 698 - ], - "spans": [ - { - "bbox": [ - 42, - 686, - 550, - 698 - ], - "score": 1.0, - "content": "specification, so it is important that you always use information in the latest specification. We indicate any specification changes", - "type": "text" - } - ], - "index": 28 - }, - { - "bbox": [ - 41, - 696, - 541, - 710 - ], - "spans": [ - { - "bbox": [ - 41, - 696, - 541, - 710 - ], - "score": 1.0, - "content": "within the document itself, change the version number and provide a summary of the changes. If you do notice a discrepancy", - "type": "text" - } - ], - "index": 29 - }, - { - "bbox": [ - 41, - 710, - 284, - 720 - ], - "spans": [ - { - "bbox": [ - 41, - 710, - 284, - 720 - ], - "score": 1.0, - "content": "between the specification and a resource, please contact us.", - "type": "text" - } - ], - "index": 30 - } - ], - "index": 28.5 - }, - { - "type": "text", - "bbox": [ - 41, - 727, - 513, - 750 - ], - "lines": [ - { - "bbox": [ - 41, - 727, - 510, - 739 - ], - "spans": [ - { - "bbox": [ - 41, - 727, - 510, - 739 - ], - "score": 1.0, - "content": "Whether you already offer OCR qualifications, are new to OCR or are thinking about switching, you can request more", - "type": "text" - } - ], - "index": 31 - }, - { - "bbox": [ - 41, - 738, - 239, - 750 - ], - "spans": [ - { - "bbox": [ - 41, - 738, - 239, - 750 - ], - "score": 1.0, - "content": "information using our Expression of Interest form.", - "type": "text" - } - ], - "index": 32 - } - ], - "index": 31.5 - }, - { - "type": "text", - "bbox": [ - 39, - 757, - 542, - 770 - ], - "lines": [ - { - "bbox": [ - 41, - 758, - 543, - 770 - ], - "spans": [ - { - "bbox": [ - 41, - 758, - 543, - 770 - ], - "score": 1.0, - "content": "Please get in touch if you want to discuss the accessibility of resources we offer to support you in delivering our qualifications.", - "type": "text" - } - ], - "index": 33 - } - ], - "index": 33 - } - ], - "layout_bboxes": [], - "page_idx": 87, - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 570, - 2, - 594, - 13 - ], - "lines": [ - { - "bbox": [ - 568, - 0, - 596, - 15 - ], - "spans": [ - { - "bbox": [ - 568, - 0, - 596, - 15 - ], - "score": 1.0, - "content": "PMT", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 43, - 185, - 61, - 294 - ], - "lines": [ - { - "bbox": [ - 44, - 278, - 61, - 296 - ], - "spans": [ - { - "bbox": [ - 44, - 278, - 61, - 296 - ], - "score": 0.5899690985679626, - "content": "0", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 41, - 42, - 135, - 53 - ], - "lines": [ - { - "bbox": [ - 42, - 43, - 135, - 53 - ], - "spans": [ - { - "bbox": [ - 42, - 43, - 135, - 53 - ], - "score": 1.0, - "content": "Need to get in touch?", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_87", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 41, - 61, - 545, - 82 - ], - "lines": [ - { - "bbox": [ - 42, - 60, - 546, - 71 - ], - "spans": [ - { - "bbox": [ - 42, - 60, - 546, - 71 - ], - "score": 1.0, - "content": "If you ever have any questions about OCR qualifications or services (including administration, logistics and teaching) please feel free to get in", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 41, - 71, - 190, - 83 - ], - "spans": [ - { - "bbox": [ - 41, - 71, - 190, - 83 - ], - "score": 1.0, - "content": "touch with our customer support centre. ", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1.5, - "page_num": "page_87", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 60, - 546, - 83 - ] - }, - { - "type": "title", - "bbox": [ - 42, - 91, - 86, - 101 - ], - "lines": [ - { - "bbox": [ - 42, - 91, - 86, - 101 - ], - "spans": [ - { - "bbox": [ - 42, - 91, - 86, - 101 - ], - "score": 1.0, - "content": "Call us on", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_87", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 41, - 109, - 101, - 120 - ], - "lines": [ - { - "bbox": [ - 42, - 110, - 101, - 120 - ], - "spans": [ - { - "bbox": [ - 42, - 110, - 101, - 120 - ], - "score": 1.0, - "content": "01223 553998", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_87", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 110, - 101, - 120 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 129, - 189, - 140 - ], - "lines": [ - { - "bbox": [ - 42, - 129, - 188, - 140 - ], - "spans": [ - { - "bbox": [ - 42, - 129, - 188, - 140 - ], - "score": 1.0, - "content": "Alternatively, you can email us on", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 41, - 149, - 130, - 159 - ], - "spans": [ - { - "bbox": [ - 41, - 149, - 130, - 159 - ], - "score": 1.0, - "content": "support@ocr.org.uk", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5, - "page_num": "page_87", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 129, - 188, - 140 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 148, - 130, - 159 - ], - "lines": [], - "index": 6, - "page_num": "page_87", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 149, - 130, - 159 - ], - "lines_deleted": true - }, - { - "type": "text", - "bbox": [ - 42, - 167, - 155, - 178 - ], - "lines": [ - { - "bbox": [ - 41, - 167, - 155, - 177 - ], - "spans": [ - { - "bbox": [ - 41, - 167, - 155, - 177 - ], - "score": 1.0, - "content": "For more information visit", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_87", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 167, - 155, - 177 - ] - }, - { - "type": "list", - "bbox": [ - 51, - 185, - 243, - 293 - ], - "lines": [ - { - "bbox": [ - 69, - 187, - 243, - 197 - ], - "spans": [ - { - "bbox": [ - 69, - 187, - 243, - 197 - ], - "score": 1.0, - "content": "ocr.org.uk/qualifications/resource-finder", - "type": "text" - } - ], - "index": 8, - "is_list_start_line": true - }, - { - "bbox": [ - 67, - 206, - 111, - 217 - ], - "spans": [ - { - "bbox": [ - 67, - 206, - 111, - 217 - ], - "score": 1.0, - "content": "ocr.org.uk", - "type": "text" - } - ], - "index": 9, - "is_list_start_line": true - }, - { - "bbox": [ - 68, - 224, - 145, - 235 - ], - "spans": [ - { - "bbox": [ - 68, - 224, - 145, - 235 - ], - "score": 1.0, - "content": "Twitter/ocrexams ", - "type": "text" - } - ], - "index": 10, - "is_list_start_line": true - }, - { - "bbox": [ - 67, - 244, - 114, - 254 - ], - "spans": [ - { - "bbox": [ - 67, - 244, - 114, - 254 - ], - "score": 1.0, - "content": "/ocrexams", - "type": "text" - } - ], - "index": 11, - "is_list_start_line": true - }, - { - "bbox": [ - 68, - 263, - 128, - 273 - ], - "spans": [ - { - "bbox": [ - 68, - 263, - 128, - 273 - ], - "score": 1.0, - "content": "/company/ocr", - "type": "text" - } - ], - "index": 12, - "is_list_start_line": true - }, - { - "bbox": [ - 67, - 281, - 114, - 293 - ], - "spans": [ - { - "bbox": [ - 67, - 281, - 114, - 293 - ], - "score": 1.0, - "content": "/ocrexams", - "type": "text" - } - ], - "index": 13, - "is_list_start_line": true - } - ], - "index": 10.5, - "page_num": "page_87", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 67, - 187, - 243, - 293 - ] - }, - { - "type": "title", - "bbox": [ - 41, - 460, - 227, - 494 - ], - "lines": [ - { - "bbox": [ - 74, - 464, - 224, - 482 - ], - "spans": [ - { - "bbox": [ - 74, - 464, - 224, - 482 - ], - "score": 0.9970797300338745, - "content": "CAMBRIDGE", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 75, - 484, - 225, - 492 - ], - "spans": [ - { - "bbox": [ - 75, - 484, - 225, - 492 - ], - "score": 0.9640211462974548, - "content": "UNIVERSITY PRESS & ASSESSMENT", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 14.5, - "page_num": "page_87", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ] - }, - { - "type": "text", - "bbox": [ - 39, - 513, - 457, - 525 - ], - "lines": [ - { - "bbox": [ - 42, - 515, - 457, - 526 - ], - "spans": [ - { - "bbox": [ - 42, - 515, - 457, - 526 - ], - "score": 1.0, - "content": "OCR is part of Cambridge University Press & Assessment, a department of the University of Cambridge.", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16, - "page_num": "page_87", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 515, - 457, - 526 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 532, - 548, - 566 - ], - "lines": [ - { - "bbox": [ - 40, - 533, - 537, - 544 - ], - "spans": [ - { - "bbox": [ - 40, - 533, - 504, - 544 - ], - "score": 1.0, - "content": "For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored.", - "type": "text" - }, - { - "bbox": [ - 504, - 533, - 513, - 542 - ], - "score": 0.69, - "content": "\\circledcirc", - "type": "inline_equation", - "height": 9, - "width": 9 - }, - { - "bbox": [ - 513, - 533, - 537, - 544 - ], - "score": 1.0, - "content": " OCR ", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 40, - 543, - 548, - 556 - ], - "spans": [ - { - "bbox": [ - 40, - 543, - 548, - 556 - ], - "score": 1.0, - "content": "2022 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England. Registered office ", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 41, - 555, - 299, - 566 - ], - "spans": [ - { - "bbox": [ - 41, - 555, - 299, - 566 - ], - "score": 1.0, - "content": "The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA.", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 18, - "page_num": "page_87", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 40, - 533, - 548, - 566 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 573, - 306, - 585 - ], - "lines": [ - { - "bbox": [ - 41, - 574, - 305, - 586 - ], - "spans": [ - { - "bbox": [ - 41, - 574, - 305, - 586 - ], - "score": 1.0, - "content": "Registered company number 3484466. OCR is an exempt charity.", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 20, - "page_num": "page_87", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 574, - 305, - 586 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 592, - 540, - 615 - ], - "lines": [ - { - "bbox": [ - 43, - 594, - 535, - 604 - ], - "spans": [ - { - "bbox": [ - 43, - 594, - 535, - 604 - ], - "score": 1.0, - "content": "OCR operates academic and vocational qualifications regulated by Ofqual, Qualifications Wales and CCEA as listed in their", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 42, - 604, - 443, - 616 - ], - "spans": [ - { - "bbox": [ - 42, - 604, - 443, - 616 - ], - "score": 1.0, - "content": "qualifications registers including A Levels, GCSEs, Cambridge Technicals and Cambridge Nationals.", - "type": "text" - } - ], - "index": 22 - } - ], - "index": 21.5, - "page_num": "page_87", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 42, - 594, - 535, - 616 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 622, - 553, - 667 - ], - "lines": [ - { - "bbox": [ - 42, - 623, - 554, - 635 - ], - "spans": [ - { - "bbox": [ - 42, - 623, - 554, - 635 - ], - "score": 1.0, - "content": "OCR provides resources to help you deliver our qualifications. These resources do not represent any particular teaching method ", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 41, - 635, - 546, - 646 - ], - "spans": [ - { - "bbox": [ - 41, - 635, - 546, - 646 - ], - "score": 1.0, - "content": "we expect you to use. We update our resources regularly and aim to make sure content is accurate but please check the OCR", - "type": "text" - } - ], - "index": 24 - }, - { - "bbox": [ - 41, - 646, - 533, - 656 - ], - "spans": [ - { - "bbox": [ - 41, - 646, - 533, - 656 - ], - "score": 1.0, - "content": "website so that you have the most up-to-date version. OCR cannot be held responsible for any errors or omissions in these", - "type": "text" - } - ], - "index": 25 - }, - { - "bbox": [ - 41, - 658, - 86, - 668 - ], - "spans": [ - { - "bbox": [ - 41, - 658, - 86, - 668 - ], - "score": 1.0, - "content": "resources. ", - "type": "text" - } - ], - "index": 26 - } - ], - "index": 24.5, - "page_num": "page_87", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 623, - 554, - 668 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 674, - 551, - 719 - ], - "lines": [ - { - "bbox": [ - 42, - 676, - 512, - 686 - ], - "spans": [ - { - "bbox": [ - 42, - 676, - 512, - 686 - ], - "score": 1.0, - "content": "Though we make every effort to check our resources, there may be contradictions between published support and the", - "type": "text" - } - ], - "index": 27 - }, - { - "bbox": [ - 42, - 686, - 550, - 698 - ], - "spans": [ - { - "bbox": [ - 42, - 686, - 550, - 698 - ], - "score": 1.0, - "content": "specification, so it is important that you always use information in the latest specification. We indicate any specification changes", - "type": "text" - } - ], - "index": 28 - }, - { - "bbox": [ - 41, - 696, - 541, - 710 - ], - "spans": [ - { - "bbox": [ - 41, - 696, - 541, - 710 - ], - "score": 1.0, - "content": "within the document itself, change the version number and provide a summary of the changes. If you do notice a discrepancy", - "type": "text" - } - ], - "index": 29 - }, - { - "bbox": [ - 41, - 710, - 284, - 720 - ], - "spans": [ - { - "bbox": [ - 41, - 710, - 284, - 720 - ], - "score": 1.0, - "content": "between the specification and a resource, please contact us.", - "type": "text" - } - ], - "index": 30 - } - ], - "index": 28.5, - "page_num": "page_87", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 676, - 550, - 720 - ] - }, - { - "type": "text", - "bbox": [ - 41, - 727, - 513, - 750 - ], - "lines": [ - { - "bbox": [ - 41, - 727, - 510, - 739 - ], - "spans": [ - { - "bbox": [ - 41, - 727, - 510, - 739 - ], - "score": 1.0, - "content": "Whether you already offer OCR qualifications, are new to OCR or are thinking about switching, you can request more", - "type": "text" - } - ], - "index": 31 - }, - { - "bbox": [ - 41, - 738, - 239, - 750 - ], - "spans": [ - { - "bbox": [ - 41, - 738, - 239, - 750 - ], - "score": 1.0, - "content": "information using our Expression of Interest form.", - "type": "text" - } - ], - "index": 32 - } - ], - "index": 31.5, - "page_num": "page_87", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 727, - 510, - 750 - ] - }, - { - "type": "text", - "bbox": [ - 39, - 757, - 542, - 770 - ], - "lines": [ - { - "bbox": [ - 41, - 758, - 543, - 770 - ], - "spans": [ - { - "bbox": [ - 41, - 758, - 543, - 770 - ], - "score": 1.0, - "content": "Please get in touch if you want to discuss the accessibility of resources we offer to support you in delivering our qualifications.", - "type": "text" - } - ], - "index": 33 - } - ], - "index": 33, - "page_num": "page_87", - "page_size": [ - 595.3200073242188, - 841.9199829101562 - ], - "bbox_fs": [ - 41, - 758, - 543, - 770 - ] - } - ] - } - ], - "_parse_type": "txt", - "_version_name": "1.1.0", - "lang": "en" -} \ No newline at end of file diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/H156_01_24_May_2016_1739552446_model.json b/pdf_output/H156_01_24_May_2016_1739552446/auto/H156_01_24_May_2016_1739552446_model.json deleted file mode 100644 index 4d9f30935b6c675dcedba8cedbb1f0d057b5e561..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/H156_01_24_May_2016_1739552446_model.json +++ /dev/null @@ -1,55400 +0,0 @@ -[ - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 260, - 1356, - 1419, - 1356, - 1419, - 1608, - 260, - 1608 - ], - "score": 0.975 - }, - { - "category_id": 5, - "poly": [ - 265, - 1015, - 1493, - 1015, - 1493, - 1261, - 265, - 1261 - ], - "score": 0.964, - "html": "
Firstname
Last name
Centre numberCandidate number
" - }, - { - "category_id": 0, - "poly": [ - 262, - 460, - 1110, - 460, - 1110, - 580, - 262, - 580 - ], - "score": 0.959 - }, - { - "category_id": 1, - "poly": [ - 261, - 1681, - 1051, - 1681, - 1051, - 1788, - 261, - 1788 - ], - "score": 0.957 - }, - { - "category_id": 2, - "poly": [ - 224, - 2116, - 494, - 2116, - 494, - 2171, - 224, - 2171 - ], - "score": 0.932 - }, - { - "category_id": 1, - "poly": [ - 281, - 660, - 818, - 660, - 818, - 720, - 281, - 720 - ], - "score": 0.915 - }, - { - "category_id": 0, - "poly": [ - 261, - 1319, - 494, - 1319, - 494, - 1351, - 261, - 1351 - ], - "score": 0.915 - }, - { - "category_id": 2, - "poly": [ - 267, - 132, - 600, - 132, - 600, - 273, - 267, - 273 - ], - "score": 0.914 - }, - { - "category_id": 0, - "poly": [ - 262, - 1645, - 479, - 1645, - 479, - 1676, - 262, - 1676 - ], - "score": 0.903 - }, - { - "category_id": 0, - "poly": [ - 261, - 300, - 810, - 300, - 810, - 417, - 261, - 417 - ], - "score": 0.902 - }, - { - "category_id": 2, - "poly": [ - 728, - 2117, - 992, - 2117, - 992, - 2144, - 728, - 2144 - ], - "score": 0.878 - }, - { - "category_id": 2, - "poly": [ - 1364, - 2142, - 1494, - 2142, - 1494, - 2169, - 1364, - 2169 - ], - "score": 0.868 - }, - { - "category_id": 1, - "poly": [ - 281, - 766, - 536, - 766, - 536, - 825, - 281, - 825 - ], - "score": 0.866 - }, - { - "category_id": 0, - "poly": [ - 282, - 629, - 467, - 629, - 467, - 657, - 282, - 657 - ], - "score": 0.865 - }, - { - "category_id": 2, - "poly": [ - 54, - 617, - 140, - 617, - 140, - 936, - 54, - 936 - ], - "score": 0.809 - }, - { - "category_id": 0, - "poly": [ - 281, - 736, - 445, - 736, - 445, - 762, - 281, - 762 - ], - "score": 0.797 - }, - { - "category_id": 2, - "poly": [ - 1045, - 808, - 1445, - 808, - 1445, - 905, - 1045, - 905 - ], - "score": 0.736 - }, - { - "category_id": 1, - "poly": [ - 280, - 736, - 536, - 736, - 536, - 825, - 280, - 825 - ], - "score": 0.127 - }, - { - "category_id": 13, - "poly": [ - 224, - 2117, - 247, - 2117, - 247, - 2141, - 224, - 2141 - ], - "score": 0.44, - "latex": "\\copyright" - }, - { - "category_id": 15, - "poly": [ - 299.0, - 1355.0, - 1160.0, - 1355.0, - 1160.0, - 1391.0, - 299.0, - 1391.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 299.0, - 1393.0, - 1417.0, - 1393.0, - 1417.0, - 1427.0, - 299.0, - 1427.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 297.0, - 1427.0, - 648.0, - 1427.0, - 648.0, - 1464.0, - 297.0, - 1464.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 298.0, - 1466.0, - 1376.0, - 1466.0, - 1376.0, - 1500.0, - 298.0, - 1500.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 300.0, - 1500.0, - 1410.0, - 1500.0, - 1410.0, - 1534.0, - 300.0, - 1534.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 299.0, - 1536.0, - 763.0, - 1536.0, - 763.0, - 1571.0, - 299.0, - 1571.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 299.0, - 1576.0, - 698.0, - 1576.0, - 698.0, - 1606.0, - 299.0, - 1606.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 463.0, - 1106.0, - 463.0, - 1106.0, - 525.0, - 261.0, - 525.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 533.0, - 950.0, - 533.0, - 950.0, - 575.0, - 263.0, - 575.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 296.0, - 1681.0, - 764.0, - 1681.0, - 764.0, - 1714.0, - 296.0, - 1714.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 295.0, - 1714.0, - 1051.0, - 1714.0, - 1051.0, - 1754.0, - 295.0, - 1754.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 297.0, - 1752.0, - 799.0, - 1752.0, - 799.0, - 1788.0, - 297.0, - 1788.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 248.0, - 2117.0, - 492.0, - 2117.0, - 492.0, - 2144.0, - 248.0, - 2144.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 227.0, - 2146.0, - 453.0, - 2146.0, - 453.0, - 2171.0, - 227.0, - 2171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 281.0, - 660.0, - 817.0, - 660.0, - 817.0, - 689.0, - 281.0, - 689.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 693.0, - 626.0, - 693.0, - 626.0, - 721.0, - 303.0, - 721.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 1322.0, - 493.0, - 1322.0, - 493.0, - 1350.0, - 263.0, - 1350.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 269.0, - 139.0, - 593.0, - 139.0, - 593.0, - 231.0, - 269.0, - 231.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 280.0, - 243.0, - 593.0, - 243.0, - 593.0, - 272.0, - 280.0, - 272.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 264.0, - 1646.0, - 478.0, - 1646.0, - 478.0, - 1675.0, - 264.0, - 1675.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 265.0, - 304.0, - 776.0, - 304.0, - 776.0, - 357.0, - 265.0, - 357.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 366.0, - 806.0, - 366.0, - 806.0, - 418.0, - 262.0, - 418.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 730.0, - 2118.0, - 990.0, - 2118.0, - 990.0, - 2145.0, - 730.0, - 2145.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 2140.0, - 1499.0, - 2140.0, - 1499.0, - 2171.0, - 1362.0, - 2171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 283.0, - 767.0, - 535.0, - 767.0, - 535.0, - 792.0, - 283.0, - 792.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 282.0, - 797.0, - 482.0, - 797.0, - 482.0, - 826.0, - 282.0, - 826.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 281.0, - 629.0, - 470.0, - 629.0, - 470.0, - 657.0, - 281.0, - 657.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 62.0, - 625.0, - 74.0, - 625.0, - 74.0, - 643.0, - 62.0, - 643.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 56.0, - 649.0, - 75.0, - 649.0, - 75.0, - 672.0, - 56.0, - 672.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 56.0, - 677.0, - 75.0, - 677.0, - 75.0, - 699.0, - 56.0, - 699.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 55.0, - 703.0, - 75.0, - 703.0, - 75.0, - 724.0, - 55.0, - 724.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 56.0, - 729.0, - 75.0, - 729.0, - 75.0, - 752.0, - 56.0, - 752.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 56.0, - 755.0, - 75.0, - 755.0, - 75.0, - 779.0, - 56.0, - 779.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 57.0, - 783.0, - 73.0, - 783.0, - 73.0, - 804.0, - 57.0, - 804.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 56.0, - 810.0, - 75.0, - 810.0, - 75.0, - 832.0, - 56.0, - 832.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 55.0, - 862.0, - 75.0, - 862.0, - 75.0, - 884.0, - 55.0, - 884.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 55.0, - 888.0, - 75.0, - 888.0, - 75.0, - 910.0, - 55.0, - 910.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 62.0, - 919.0, - 73.0, - 919.0, - 73.0, - 933.0, - 62.0, - 933.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 60.25, - 834.0, - 67.25, - 834.0, - 67.25, - 855.5, - 60.25, - 855.5 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 282.0, - 735.0, - 448.0, - 735.0, - 448.0, - 764.0, - 282.0, - 764.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1105.0, - 891.0, - 1124.0, - 891.0, - 1124.0, - 903.0, - 1105.0, - 903.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1158.0, - 890.0, - 1174.0, - 890.0, - 1174.0, - 903.0, - 1158.0, - 903.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1211.0, - 890.0, - 1228.0, - 890.0, - 1228.0, - 902.0, - 1211.0, - 902.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1265.0, - 891.0, - 1280.0, - 891.0, - 1280.0, - 902.0, - 1265.0, - 902.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1316.0, - 892.0, - 1331.0, - 892.0, - 1331.0, - 900.0, - 1316.0, - 900.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 892.0, - 1380.0, - 892.0, - 1380.0, - 900.0, - 1369.0, - 900.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 281.0, - 734.0, - 447.0, - 734.0, - 447.0, - 765.0, - 281.0, - 765.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 280.0, - 766.0, - 536.0, - 766.0, - 536.0, - 791.0, - 280.0, - 791.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 282.0, - 797.0, - 483.0, - 797.0, - 483.0, - 826.0, - 282.0, - 826.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 0, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 194, - 607, - 627, - 607, - 627, - 864, - 194, - 864 - ], - "score": 0.971 - }, - { - "category_id": 3, - "poly": [ - 554, - 1099, - 1072, - 1099, - 1072, - 1555, - 554, - 1555 - ], - "score": 0.966 - }, - { - "category_id": 1, - "poly": [ - 194, - 1792, - 388, - 1792, - 388, - 2052, - 194, - 2052 - ], - "score": 0.951 - }, - { - "category_id": 1, - "poly": [ - 131, - 1017, - 1003, - 1017, - 1003, - 1057, - 131, - 1057 - ], - "score": 0.911 - }, - { - "category_id": 1, - "poly": [ - 197, - 1722, - 779, - 1722, - 779, - 1761, - 197, - 1761 - ], - "score": 0.906 - }, - { - "category_id": 1, - "poly": [ - 197, - 1615, - 1235, - 1615, - 1235, - 1690, - 197, - 1690 - ], - "score": 0.891 - }, - { - "category_id": 0, - "poly": [ - 739, - 173, - 912, - 173, - 912, - 212, - 739, - 212 - ], - "score": 0.876 - }, - { - "category_id": 1, - "poly": [ - 197, - 891, - 464, - 891, - 464, - 961, - 197, - 961 - ], - "score": 0.872 - }, - { - "category_id": 2, - "poly": [ - 1475, - 2103, - 1518, - 2103, - 1518, - 2138, - 1475, - 2138 - ], - "score": 0.86 - }, - { - "category_id": 2, - "poly": [ - 165, - 2162, - 269, - 2162, - 269, - 2187, - 165, - 2187 - ], - "score": 0.841 - }, - { - "category_id": 2, - "poly": [ - 1474, - 917, - 1518, - 917, - 1518, - 952, - 1474, - 952 - ], - "score": 0.837 - }, - { - "category_id": 1, - "poly": [ - 445, - 390, - 1206, - 390, - 1206, - 430, - 445, - 430 - ], - "score": 0.803 - }, - { - "category_id": 1, - "poly": [ - 654, - 319, - 1000, - 319, - 1000, - 357, - 654, - 357 - ], - "score": 0.786 - }, - { - "category_id": 1, - "poly": [ - 136, - 463, - 637, - 463, - 637, - 503, - 136, - 503 - ], - "score": 0.755 - }, - { - "category_id": 1, - "poly": [ - 196, - 535, - 944, - 535, - 944, - 575, - 196, - 575 - ], - "score": 0.685 - }, - { - "category_id": 1, - "poly": [ - 383, - 246, - 1266, - 246, - 1266, - 287, - 383, - 287 - ], - "score": 0.683 - }, - { - "category_id": 1, - "poly": [ - 195, - 2078, - 465, - 2078, - 465, - 2147, - 195, - 2147 - ], - "score": 0.535 - }, - { - "category_id": 1, - "poly": [ - 196, - 2078, - 463, - 2078, - 463, - 2147, - 196, - 2147 - ], - "score": 0.479 - }, - { - "category_id": 2, - "poly": [ - 814, - 125, - 839, - 125, - 839, - 155, - 814, - 155 - ], - "score": 0.402 - }, - { - "category_id": 1, - "poly": [ - 199, - 1615, - 581, - 1615, - 581, - 1650, - 199, - 1650 - ], - "score": 0.341 - }, - { - "category_id": 1, - "poly": [ - 138, - 463, - 944, - 463, - 944, - 575, - 138, - 575 - ], - "score": 0.334 - }, - { - "category_id": 0, - "poly": [ - 383, - 246, - 1266, - 246, - 1266, - 287, - 383, - 287 - ], - "score": 0.275 - }, - { - "category_id": 0, - "poly": [ - 814, - 125, - 839, - 125, - 839, - 155, - 814, - 155 - ], - "score": 0.102 - }, - { - "category_id": 13, - "poly": [ - 315, - 1657, - 335, - 1657, - 335, - 1684, - 315, - 1684 - ], - "score": 0.56, - "latex": "r" - }, - { - "category_id": 13, - "poly": [ - 196, - 1656, - 255, - 1656, - 255, - 1689, - 196, - 1689 - ], - "score": 0.45, - "latex": "p,q" - }, - { - "category_id": 13, - "poly": [ - 737, - 1653, - 763, - 1653, - 763, - 1684, - 737, - 1684 - ], - "score": 0.32, - "latex": "\\pmb{\\times}" - }, - { - "category_id": 13, - "poly": [ - 684, - 1219, - 705, - 1219, - 705, - 1246, - 684, - 1246 - ], - "score": 0.27, - "latex": "p" - }, - { - "category_id": 15, - "poly": [ - 193.0, - 610.0, - 226.0, - 610.0, - 226.0, - 642.0, - 193.0, - 642.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 611.0, - 557.0, - 611.0, - 557.0, - 642.0, - 262.0, - 642.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 681.0, - 228.0, - 681.0, - 228.0, - 717.0, - 197.0, - 717.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 684.0, - 623.0, - 684.0, - 623.0, - 715.0, - 262.0, - 715.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 749.0, - 232.0, - 749.0, - 232.0, - 794.0, - 197.0, - 794.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 757.0, - 524.0, - 757.0, - 524.0, - 790.0, - 260.0, - 790.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 826.0, - 230.0, - 826.0, - 230.0, - 864.0, - 195.0, - 864.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 830.0, - 540.0, - 830.0, - 540.0, - 862.0, - 263.0, - 862.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1795.0, - 229.0, - 1795.0, - 229.0, - 1832.0, - 196.0, - 1832.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 1794.0, - 318.0, - 1794.0, - 318.0, - 1837.0, - 261.0, - 1837.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1868.0, - 229.0, - 1868.0, - 229.0, - 1907.0, - 196.0, - 1907.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 1862.0, - 321.0, - 1862.0, - 321.0, - 1911.0, - 263.0, - 1911.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1939.0, - 230.0, - 1939.0, - 230.0, - 1977.0, - 196.0, - 1977.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 1939.0, - 313.0, - 1939.0, - 313.0, - 1977.0, - 261.0, - 1977.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 2012.0, - 229.0, - 2012.0, - 229.0, - 2049.0, - 196.0, - 2049.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 2012.0, - 388.0, - 2012.0, - 388.0, - 2052.0, - 263.0, - 2052.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 1019.0, - 161.0, - 1019.0, - 161.0, - 1056.0, - 133.0, - 1056.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 1022.0, - 1000.0, - 1022.0, - 1000.0, - 1056.0, - 198.0, - 1056.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1725.0, - 775.0, - 1725.0, - 775.0, - 1759.0, - 200.0, - 1759.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1618.0, - 578.0, - 1618.0, - 578.0, - 1651.0, - 199.0, - 1651.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 1654.0, - 314.0, - 1654.0, - 314.0, - 1689.0, - 256.0, - 1689.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 336.0, - 1654.0, - 736.0, - 1654.0, - 736.0, - 1689.0, - 336.0, - 1689.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 764.0, - 1654.0, - 1234.0, - 1654.0, - 1234.0, - 1689.0, - 764.0, - 1689.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 742.0, - 176.0, - 912.0, - 176.0, - 912.0, - 210.0, - 742.0, - 210.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 916.0, - 372.0, - 916.0, - 372.0, - 950.0, - 199.0, - 950.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1470.0, - 2098.0, - 1524.0, - 2098.0, - 1524.0, - 2145.0, - 1470.0, - 2145.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 270.0, - 2165.0, - 270.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 912.0, - 1525.0, - 912.0, - 1525.0, - 959.0, - 1471.0, - 959.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 451.0, - 395.0, - 1204.0, - 395.0, - 1204.0, - 429.0, - 451.0, - 429.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 657.0, - 323.0, - 998.0, - 323.0, - 998.0, - 356.0, - 657.0, - 356.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 467.0, - 158.0, - 467.0, - 158.0, - 499.0, - 135.0, - 499.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 467.0, - 636.0, - 467.0, - 636.0, - 499.0, - 199.0, - 499.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 540.0, - 930.0, - 540.0, - 930.0, - 570.0, - 200.0, - 570.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 389.0, - 250.0, - 1267.0, - 250.0, - 1267.0, - 284.0, - 389.0, - 284.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 2101.0, - 373.0, - 2101.0, - 373.0, - 2139.0, - 199.0, - 2139.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 2102.0, - 373.0, - 2102.0, - 373.0, - 2138.0, - 200.0, - 2138.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 812.0, - 120.0, - 845.0, - 120.0, - 845.0, - 165.0, - 812.0, - 165.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1618.0, - 580.0, - 1618.0, - 580.0, - 1650.0, - 200.0, - 1650.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 466.0, - 160.0, - 466.0, - 160.0, - 498.0, - 134.0, - 498.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 468.0, - 635.0, - 468.0, - 635.0, - 499.0, - 197.0, - 499.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 540.0, - 937.0, - 540.0, - 937.0, - 571.0, - 199.0, - 571.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 389.0, - 250.0, - 1267.0, - 250.0, - 1267.0, - 284.0, - 389.0, - 284.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 812.0, - 120.0, - 845.0, - 120.0, - 845.0, - 165.0, - 812.0, - 165.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 1, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 194, - 949, - 1170, - 949, - 1170, - 1207, - 194, - 1207 - ], - "score": 0.982 - }, - { - "category_id": 1, - "poly": [ - 195, - 353, - 777, - 353, - 777, - 612, - 195, - 612 - ], - "score": 0.978 - }, - { - "category_id": 1, - "poly": [ - 194, - 1434, - 414, - 1434, - 414, - 1691, - 194, - 1691 - ], - "score": 0.962 - }, - { - "category_id": 1, - "poly": [ - 138, - 175, - 1515, - 175, - 1515, - 250, - 138, - 250 - ], - "score": 0.912 - }, - { - "category_id": 1, - "poly": [ - 127, - 1362, - 1311, - 1362, - 1311, - 1402, - 127, - 1402 - ], - "score": 0.91 - }, - { - "category_id": 1, - "poly": [ - 198, - 639, - 464, - 639, - 464, - 709, - 198, - 709 - ], - "score": 0.907 - }, - { - "category_id": 1, - "poly": [ - 198, - 1233, - 464, - 1233, - 464, - 1303, - 198, - 1303 - ], - "score": 0.903 - }, - { - "category_id": 1, - "poly": [ - 196, - 282, - 1001, - 282, - 1001, - 323, - 196, - 323 - ], - "score": 0.889 - }, - { - "category_id": 2, - "poly": [ - 165, - 2162, - 268, - 2162, - 268, - 2187, - 165, - 2187 - ], - "score": 0.886 - }, - { - "category_id": 1, - "poly": [ - 197, - 1718, - 465, - 1718, - 465, - 1788, - 197, - 1788 - ], - "score": 0.883 - }, - { - "category_id": 2, - "poly": [ - 1474, - 1743, - 1518, - 1743, - 1518, - 1778, - 1474, - 1778 - ], - "score": 0.862 - }, - { - "category_id": 2, - "poly": [ - 1346, - 2152, - 1474, - 2152, - 1474, - 2182, - 1346, - 2182 - ], - "score": 0.787 - }, - { - "category_id": 2, - "poly": [ - 1474, - 663, - 1519, - 663, - 1519, - 700, - 1474, - 700 - ], - "score": 0.765 - }, - { - "category_id": 2, - "poly": [ - 814, - 125, - 839, - 125, - 839, - 156, - 814, - 156 - ], - "score": 0.755 - }, - { - "category_id": 1, - "poly": [ - 199, - 877, - 592, - 877, - 592, - 915, - 199, - 915 - ], - "score": 0.485 - }, - { - "category_id": 1, - "poly": [ - 131, - 768, - 1040, - 768, - 1040, - 842, - 131, - 842 - ], - "score": 0.471 - }, - { - "category_id": 1, - "poly": [ - 133, - 767, - 1043, - 767, - 1043, - 917, - 133, - 917 - ], - "score": 0.427 - }, - { - "category_id": 2, - "poly": [ - 1473, - 1256, - 1519, - 1256, - 1519, - 1295, - 1473, - 1295 - ], - "score": 0.403 - }, - { - "category_id": 1, - "poly": [ - 1473, - 1256, - 1519, - 1256, - 1519, - 1295, - 1473, - 1295 - ], - "score": 0.339 - }, - { - "category_id": 1, - "poly": [ - 1473, - 1256, - 1519, - 1256, - 1519, - 1295, - 1473, - 1295 - ], - "score": 0.229 - }, - { - "category_id": 2, - "poly": [ - 1473, - 1256, - 1519, - 1256, - 1519, - 1295, - 1473, - 1295 - ], - "score": 0.182 - }, - { - "category_id": 13, - "poly": [ - 624, - 355, - 770, - 355, - 770, - 391, - 624, - 391 - ], - "score": 0.92, - "latex": "5\\times10^{-7}\\mathrm{m}" - }, - { - "category_id": 13, - "poly": [ - 1205, - 1364, - 1309, - 1364, - 1309, - 1401, - 1205, - 1401 - ], - "score": 0.82, - "latex": "50\\upmu\\mathrm{m}?" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 952.0, - 228.0, - 952.0, - 228.0, - 986.0, - 197.0, - 986.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 954.0, - 908.0, - 954.0, - 908.0, - 985.0, - 263.0, - 985.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 1022.0, - 228.0, - 1022.0, - 228.0, - 1059.0, - 197.0, - 1059.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 1024.0, - 996.0, - 1024.0, - 996.0, - 1059.0, - 262.0, - 1059.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 194.0, - 1091.0, - 230.0, - 1091.0, - 230.0, - 1132.0, - 194.0, - 1132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 1097.0, - 1013.0, - 1097.0, - 1013.0, - 1128.0, - 262.0, - 1128.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 194.0, - 1166.0, - 230.0, - 1166.0, - 230.0, - 1204.0, - 194.0, - 1204.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 1167.0, - 1165.0, - 1167.0, - 1165.0, - 1203.0, - 259.0, - 1203.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 356.0, - 229.0, - 356.0, - 229.0, - 392.0, - 197.0, - 392.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 356.0, - 623.0, - 356.0, - 623.0, - 391.0, - 261.0, - 391.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 771.0, - 356.0, - 775.0, - 356.0, - 775.0, - 391.0, - 771.0, - 391.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 428.0, - 229.0, - 428.0, - 229.0, - 465.0, - 197.0, - 465.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 429.0, - 661.0, - 429.0, - 661.0, - 467.0, - 261.0, - 467.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 500.0, - 230.0, - 500.0, - 230.0, - 538.0, - 197.0, - 538.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 504.0, - 573.0, - 504.0, - 573.0, - 538.0, - 262.0, - 538.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 573.0, - 229.0, - 573.0, - 229.0, - 608.0, - 197.0, - 608.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 576.0, - 586.0, - 576.0, - 586.0, - 608.0, - 262.0, - 608.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1435.0, - 229.0, - 1435.0, - 229.0, - 1470.0, - 196.0, - 1470.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 1435.0, - 353.0, - 1435.0, - 353.0, - 1471.0, - 258.0, - 1471.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 1507.0, - 228.0, - 1507.0, - 228.0, - 1543.0, - 197.0, - 1543.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 1509.0, - 382.0, - 1509.0, - 382.0, - 1541.0, - 261.0, - 1541.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1579.0, - 229.0, - 1579.0, - 229.0, - 1616.0, - 196.0, - 1616.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 1583.0, - 411.0, - 1583.0, - 411.0, - 1615.0, - 262.0, - 1615.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 1652.0, - 229.0, - 1652.0, - 229.0, - 1687.0, - 195.0, - 1687.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 1652.0, - 337.0, - 1652.0, - 337.0, - 1689.0, - 258.0, - 1689.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 178.0, - 163.0, - 178.0, - 163.0, - 211.0, - 133.0, - 211.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 193.0, - 176.0, - 1520.0, - 176.0, - 1520.0, - 215.0, - 193.0, - 215.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 215.0, - 662.0, - 215.0, - 662.0, - 249.0, - 199.0, - 249.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 132.0, - 1363.0, - 163.0, - 1363.0, - 163.0, - 1401.0, - 132.0, - 1401.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1367.0, - 1204.0, - 1367.0, - 1204.0, - 1400.0, - 200.0, - 1400.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 663.0, - 372.0, - 663.0, - 372.0, - 696.0, - 199.0, - 696.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1257.0, - 372.0, - 1257.0, - 372.0, - 1290.0, - 199.0, - 1290.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 287.0, - 996.0, - 287.0, - 996.0, - 321.0, - 200.0, - 321.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1742.0, - 371.0, - 1742.0, - 371.0, - 1775.0, - 200.0, - 1775.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 1738.0, - 1525.0, - 1738.0, - 1525.0, - 1785.0, - 1471.0, - 1785.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1344.0, - 2152.0, - 1477.0, - 2152.0, - 1477.0, - 2183.0, - 1344.0, - 2183.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1472.0, - 658.0, - 1524.0, - 658.0, - 1524.0, - 706.0, - 1472.0, - 706.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 812.0, - 123.0, - 842.0, - 123.0, - 842.0, - 163.0, - 812.0, - 163.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 881.0, - 569.0, - 881.0, - 569.0, - 911.0, - 200.0, - 911.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 137.0, - 773.0, - 158.0, - 773.0, - 158.0, - 800.0, - 137.0, - 800.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 771.0, - 1040.0, - 771.0, - 1040.0, - 805.0, - 200.0, - 805.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 808.0, - 579.0, - 808.0, - 579.0, - 839.0, - 200.0, - 839.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 772.0, - 160.0, - 772.0, - 160.0, - 802.0, - 135.0, - 802.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 769.0, - 1040.0, - 769.0, - 1040.0, - 805.0, - 199.0, - 805.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 807.0, - 580.0, - 807.0, - 580.0, - 839.0, - 199.0, - 839.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 879.0, - 572.0, - 879.0, - 572.0, - 912.0, - 198.0, - 912.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 1252.0, - 1524.0, - 1252.0, - 1524.0, - 1300.0, - 1471.0, - 1300.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 1252.0, - 1524.0, - 1252.0, - 1524.0, - 1300.0, - 1471.0, - 1300.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 1252.0, - 1524.0, - 1252.0, - 1524.0, - 1300.0, - 1471.0, - 1300.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 1252.0, - 1524.0, - 1252.0, - 1524.0, - 1300.0, - 1471.0, - 1300.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 2, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 195, - 818, - 771, - 818, - 771, - 1076, - 195, - 1076 - ], - "score": 0.978 - }, - { - "category_id": 3, - "poly": [ - 582, - 259, - 1108, - 259, - 1108, - 688, - 582, - 688 - ], - "score": 0.967 - }, - { - "category_id": 1, - "poly": [ - 196, - 746, - 1513, - 746, - 1513, - 786, - 196, - 786 - ], - "score": 0.921 - }, - { - "category_id": 1, - "poly": [ - 128, - 174, - 1060, - 174, - 1060, - 214, - 128, - 214 - ], - "score": 0.904 - }, - { - "category_id": 2, - "poly": [ - 166, - 2163, - 267, - 2163, - 267, - 2186, - 166, - 2186 - ], - "score": 0.878 - }, - { - "category_id": 2, - "poly": [ - 1474, - 1126, - 1519, - 1126, - 1519, - 1162, - 1474, - 1162 - ], - "score": 0.859 - }, - { - "category_id": 1, - "poly": [ - 196, - 1103, - 465, - 1103, - 465, - 1172, - 196, - 1172 - ], - "score": 0.565 - }, - { - "category_id": 2, - "poly": [ - 815, - 126, - 838, - 126, - 838, - 154, - 815, - 154 - ], - "score": 0.557 - }, - { - "category_id": 2, - "poly": [ - 815, - 126, - 838, - 126, - 838, - 154, - 815, - 154 - ], - "score": 0.504 - }, - { - "category_id": 1, - "poly": [ - 198, - 1102, - 465, - 1102, - 465, - 1173, - 198, - 1173 - ], - "score": 0.439 - }, - { - "category_id": 15, - "poly": [ - 196.0, - 820.0, - 229.0, - 820.0, - 229.0, - 855.0, - 196.0, - 855.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 822.0, - 743.0, - 822.0, - 743.0, - 856.0, - 263.0, - 856.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 892.0, - 229.0, - 892.0, - 229.0, - 929.0, - 196.0, - 929.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 893.0, - 768.0, - 893.0, - 768.0, - 928.0, - 263.0, - 928.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 963.0, - 229.0, - 963.0, - 229.0, - 1001.0, - 196.0, - 1001.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 968.0, - 731.0, - 968.0, - 731.0, - 1000.0, - 263.0, - 1000.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1036.0, - 229.0, - 1036.0, - 229.0, - 1072.0, - 196.0, - 1072.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 1039.0, - 680.0, - 1039.0, - 680.0, - 1072.0, - 262.0, - 1072.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 746.0, - 1519.0, - 746.0, - 1519.0, - 788.0, - 196.0, - 788.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 178.0, - 160.0, - 178.0, - 160.0, - 210.0, - 135.0, - 210.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 175.0, - 1059.0, - 175.0, - 1059.0, - 214.0, - 195.0, - 214.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 270.0, - 2165.0, - 270.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1473.0, - 1123.0, - 1523.0, - 1123.0, - 1523.0, - 1167.0, - 1473.0, - 1167.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 1125.0, - 373.0, - 1125.0, - 373.0, - 1163.0, - 198.0, - 1163.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 813.0, - 124.0, - 843.0, - 124.0, - 843.0, - 161.0, - 813.0, - 161.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 813.0, - 124.0, - 843.0, - 124.0, - 843.0, - 161.0, - 813.0, - 161.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1126.0, - 372.0, - 1126.0, - 372.0, - 1160.0, - 199.0, - 1160.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 3, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 544, - 296, - 1132, - 296, - 1132, - 613, - 544, - 613 - ], - "score": 0.967 - }, - { - "category_id": 1, - "poly": [ - 199, - 668, - 1521, - 668, - 1521, - 741, - 199, - 741 - ], - "score": 0.936 - }, - { - "category_id": 1, - "poly": [ - 197, - 776, - 817, - 776, - 817, - 815, - 197, - 815 - ], - "score": 0.931 - }, - { - "category_id": 2, - "poly": [ - 166, - 2163, - 267, - 2163, - 267, - 2186, - 166, - 2186 - ], - "score": 0.886 - }, - { - "category_id": 3, - "poly": [ - 188, - 856, - 421, - 856, - 421, - 1689, - 188, - 1689 - ], - "score": 0.874 - }, - { - "category_id": 2, - "poly": [ - 1475, - 1769, - 1517, - 1769, - 1517, - 1802, - 1475, - 1802 - ], - "score": 0.863 - }, - { - "category_id": 2, - "poly": [ - 1346, - 2152, - 1474, - 2152, - 1474, - 2182, - 1346, - 2182 - ], - "score": 0.776 - }, - { - "category_id": 1, - "poly": [ - 137, - 177, - 694, - 177, - 694, - 211, - 137, - 211 - ], - "score": 0.742 - }, - { - "category_id": 2, - "poly": [ - 815, - 126, - 838, - 126, - 838, - 155, - 815, - 155 - ], - "score": 0.698 - }, - { - "category_id": 1, - "poly": [ - 190, - 203, - 1130, - 203, - 1130, - 249, - 190, - 249 - ], - "score": 0.356 - }, - { - "category_id": 1, - "poly": [ - 197, - 1743, - 465, - 1743, - 465, - 1815, - 197, - 1815 - ], - "score": 0.336 - }, - { - "category_id": 1, - "poly": [ - 136, - 176, - 1132, - 176, - 1132, - 250, - 136, - 250 - ], - "score": 0.268 - }, - { - "category_id": 2, - "poly": [ - 815, - 126, - 838, - 126, - 838, - 155, - 815, - 155 - ], - "score": 0.231 - }, - { - "category_id": 3, - "poly": [ - 197, - 1743, - 465, - 1743, - 465, - 1815, - 197, - 1815 - ], - "score": 0.184 - }, - { - "category_id": 0, - "poly": [ - 137, - 177, - 694, - 177, - 694, - 211, - 137, - 211 - ], - "score": 0.108 - }, - { - "category_id": 13, - "poly": [ - 1098, - 214, - 1123, - 214, - 1123, - 244, - 1098, - 244 - ], - "score": 0.63, - "latex": "F" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 671.0, - 1516.0, - 671.0, - 1516.0, - 704.0, - 199.0, - 704.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 707.0, - 519.0, - 707.0, - 519.0, - 741.0, - 198.0, - 741.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 779.0, - 814.0, - 779.0, - 814.0, - 813.0, - 200.0, - 813.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 270.0, - 2165.0, - 270.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1470.0, - 1763.0, - 1525.0, - 1763.0, - 1525.0, - 1810.0, - 1470.0, - 1810.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1344.0, - 2152.0, - 1477.0, - 2152.0, - 1477.0, - 2183.0, - 1344.0, - 2183.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 176.0, - 160.0, - 176.0, - 160.0, - 212.0, - 134.0, - 212.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 176.0, - 692.0, - 176.0, - 692.0, - 213.0, - 199.0, - 213.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 813.0, - 122.0, - 842.0, - 122.0, - 842.0, - 164.0, - 813.0, - 164.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 201.0, - 215.0, - 1097.0, - 215.0, - 1097.0, - 247.0, - 201.0, - 247.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1124.0, - 215.0, - 1128.0, - 215.0, - 1128.0, - 247.0, - 1124.0, - 247.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1767.0, - 371.0, - 1767.0, - 371.0, - 1801.0, - 200.0, - 1801.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 175.0, - 162.0, - 175.0, - 162.0, - 212.0, - 135.0, - 212.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 178.0, - 691.0, - 178.0, - 691.0, - 212.0, - 199.0, - 212.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 216.0, - 1097.0, - 216.0, - 1097.0, - 245.0, - 200.0, - 245.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1124.0, - 216.0, - 1131.0, - 216.0, - 1131.0, - 245.0, - 1124.0, - 245.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 813.0, - 122.0, - 842.0, - 122.0, - 842.0, - 164.0, - 813.0, - 164.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 176.0, - 160.0, - 176.0, - 160.0, - 212.0, - 134.0, - 212.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 176.0, - 692.0, - 176.0, - 692.0, - 213.0, - 199.0, - 213.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 4, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 614, - 261, - 1048, - 261, - 1048, - 735, - 614, - 735 - ], - "score": 0.966 - }, - { - "category_id": 1, - "poly": [ - 193, - 968, - 309, - 968, - 309, - 1254, - 193, - 1254 - ], - "score": 0.93 - }, - { - "category_id": 1, - "poly": [ - 197, - 897, - 914, - 897, - 914, - 939, - 197, - 939 - ], - "score": 0.903 - }, - { - "category_id": 1, - "poly": [ - 127, - 174, - 1034, - 174, - 1034, - 217, - 127, - 217 - ], - "score": 0.899 - }, - { - "category_id": 2, - "poly": [ - 166, - 2163, - 267, - 2163, - 267, - 2186, - 166, - 2186 - ], - "score": 0.88 - }, - { - "category_id": 2, - "poly": [ - 1474, - 1307, - 1518, - 1307, - 1518, - 1343, - 1474, - 1343 - ], - "score": 0.868 - }, - { - "category_id": 2, - "poly": [ - 814, - 126, - 839, - 126, - 839, - 156, - 814, - 156 - ], - "score": 0.812 - }, - { - "category_id": 1, - "poly": [ - 197, - 1283, - 465, - 1283, - 465, - 1353, - 197, - 1353 - ], - "score": 0.701 - }, - { - "category_id": 1, - "poly": [ - 195, - 780, - 1520, - 780, - 1520, - 871, - 195, - 871 - ], - "score": 0.684 - }, - { - "category_id": 1, - "poly": [ - 197, - 779, - 1521, - 779, - 1521, - 870, - 197, - 870 - ], - "score": 0.36 - }, - { - "category_id": 1, - "poly": [ - 198, - 1306, - 372, - 1306, - 372, - 1344, - 198, - 1344 - ], - "score": 0.264 - }, - { - "category_id": 13, - "poly": [ - 1053, - 827, - 1092, - 827, - 1092, - 869, - 1053, - 869 - ], - "score": 0.86, - "latex": "{\\mathsf{s}}_{2}" - }, - { - "category_id": 13, - "poly": [ - 690, - 178, - 730, - 178, - 730, - 217, - 690, - 217 - ], - "score": 0.86, - "latex": "\\mathsf{s}_{2}" - }, - { - "category_id": 13, - "poly": [ - 589, - 177, - 627, - 177, - 627, - 217, - 589, - 217 - ], - "score": 0.85, - "latex": "\\mathsf{s}_{1}" - }, - { - "category_id": 13, - "poly": [ - 1007, - 783, - 1045, - 783, - 1045, - 824, - 1007, - 824 - ], - "score": 0.84, - "latex": "\\mathsf{s}_{1}" - }, - { - "category_id": 13, - "poly": [ - 728, - 783, - 765, - 783, - 765, - 825, - 728, - 825 - ], - "score": 0.74, - "latex": "\\mathsf{s}_{1}" - }, - { - "category_id": 13, - "poly": [ - 854, - 900, - 897, - 900, - 897, - 941, - 854, - 941 - ], - "score": 0.71, - "latex": "\\mathsf{s}_{2}^{\\mathsf{\\Pi}}" - }, - { - "category_id": 13, - "poly": [ - 1407, - 816, - 1437, - 816, - 1437, - 882, - 1407, - 882 - ], - "score": 0.65, - "latex": "\\frac{x}{3}" - }, - { - "category_id": 13, - "poly": [ - 1079, - 786, - 1103, - 786, - 1103, - 815, - 1079, - 815 - ], - "score": 0.57, - "latex": "x." - }, - { - "category_id": 13, - "poly": [ - 1334, - 818, - 1437, - 818, - 1437, - 882, - 1334, - 882 - ], - "score": 0.55, - "latex": "\\mathsf{S}_{2}\\mathrm{i}\\mathsf{s}\\frac{x}{3}" - }, - { - "category_id": 13, - "poly": [ - 1333, - 822, - 1373, - 822, - 1373, - 875, - 1333, - 875 - ], - "score": 0.52, - "latex": "\\mathsf{s}_{2}" - }, - { - "category_id": 13, - "poly": [ - 372, - 827, - 400, - 827, - 400, - 859, - 372, - 859 - ], - "score": 0.42, - "latex": "E." - }, - { - "category_id": 15, - "poly": [ - 196.0, - 987.0, - 228.0, - 987.0, - 228.0, - 1025.0, - 196.0, - 1025.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 970.0, - 296.0, - 970.0, - 296.0, - 1016.0, - 263.0, - 1016.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 265.0, - 1008.0, - 294.0, - 1008.0, - 294.0, - 1048.0, - 265.0, - 1048.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 1055.0, - 296.0, - 1055.0, - 296.0, - 1095.0, - 261.0, - 1095.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1074.0, - 228.0, - 1074.0, - 228.0, - 1111.0, - 196.0, - 1111.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 264.0, - 1096.0, - 295.0, - 1096.0, - 295.0, - 1132.0, - 264.0, - 1132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 193.0, - 1142.0, - 231.0, - 1142.0, - 231.0, - 1186.0, - 193.0, - 1186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 1145.0, - 310.0, - 1145.0, - 310.0, - 1182.0, - 259.0, - 1182.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1219.0, - 228.0, - 1219.0, - 228.0, - 1254.0, - 196.0, - 1254.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 1217.0, - 310.0, - 1217.0, - 310.0, - 1255.0, - 259.0, - 1255.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 896.0, - 853.0, - 896.0, - 853.0, - 940.0, - 197.0, - 940.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 898.0, - 896.0, - 908.0, - 896.0, - 908.0, - 940.0, - 898.0, - 940.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 177.0, - 161.0, - 177.0, - 161.0, - 213.0, - 133.0, - 213.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 178.0, - 588.0, - 178.0, - 588.0, - 216.0, - 198.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 628.0, - 178.0, - 689.0, - 178.0, - 689.0, - 216.0, - 628.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 731.0, - 178.0, - 1037.0, - 178.0, - 1037.0, - 216.0, - 731.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 270.0, - 2165.0, - 270.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 1303.0, - 1525.0, - 1303.0, - 1525.0, - 1351.0, - 1471.0, - 1351.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 815.0, - 124.0, - 841.0, - 124.0, - 841.0, - 161.0, - 815.0, - 161.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1307.0, - 371.0, - 1307.0, - 371.0, - 1340.0, - 200.0, - 1340.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 787.0, - 727.0, - 787.0, - 727.0, - 820.0, - 200.0, - 820.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 766.0, - 787.0, - 1006.0, - 787.0, - 1006.0, - 820.0, - 766.0, - 820.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1046.0, - 787.0, - 1078.0, - 787.0, - 1078.0, - 820.0, - 1046.0, - 820.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1104.0, - 787.0, - 1518.0, - 787.0, - 1518.0, - 820.0, - 1104.0, - 820.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 826.0, - 371.0, - 826.0, - 371.0, - 872.0, - 195.0, - 872.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 401.0, - 826.0, - 1052.0, - 826.0, - 1052.0, - 872.0, - 401.0, - 872.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1093.0, - 826.0, - 1332.0, - 826.0, - 1332.0, - 872.0, - 1093.0, - 872.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 783.0, - 727.0, - 783.0, - 727.0, - 823.0, - 197.0, - 823.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 766.0, - 783.0, - 1006.0, - 783.0, - 1006.0, - 823.0, - 766.0, - 823.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1046.0, - 783.0, - 1078.0, - 783.0, - 1078.0, - 823.0, - 1046.0, - 823.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1104.0, - 783.0, - 1521.0, - 783.0, - 1521.0, - 823.0, - 1104.0, - 823.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 826.0, - 371.0, - 826.0, - 371.0, - 868.0, - 196.0, - 868.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 401.0, - 826.0, - 1052.0, - 826.0, - 1052.0, - 868.0, - 401.0, - 868.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1093.0, - 826.0, - 1332.0, - 826.0, - 1332.0, - 868.0, - 1093.0, - 868.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1306.0, - 372.0, - 1306.0, - 372.0, - 1343.0, - 199.0, - 1343.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 5, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 195, - 1596, - 1264, - 1596, - 1264, - 1854, - 195, - 1854 - ], - "score": 0.983 - }, - { - "category_id": 3, - "poly": [ - 500, - 296, - 1157, - 296, - 1157, - 704, - 500, - 704 - ], - "score": 0.967 - }, - { - "category_id": 1, - "poly": [ - 194, - 837, - 362, - 837, - 362, - 1092, - 194, - 1092 - ], - "score": 0.952 - }, - { - "category_id": 3, - "poly": [ - 503, - 1358, - 1160, - 1358, - 1160, - 1482, - 503, - 1482 - ], - "score": 0.944 - }, - { - "category_id": 1, - "poly": [ - 131, - 175, - 1519, - 175, - 1519, - 250, - 131, - 250 - ], - "score": 0.941 - }, - { - "category_id": 1, - "poly": [ - 132, - 1250, - 1519, - 1250, - 1519, - 1326, - 132, - 1326 - ], - "score": 0.939 - }, - { - "category_id": 1, - "poly": [ - 196, - 764, - 1151, - 764, - 1151, - 804, - 196, - 804 - ], - "score": 0.917 - }, - { - "category_id": 1, - "poly": [ - 198, - 1525, - 582, - 1525, - 582, - 1564, - 198, - 1564 - ], - "score": 0.915 - }, - { - "category_id": 2, - "poly": [ - 165, - 2162, - 268, - 2162, - 268, - 2186, - 165, - 2186 - ], - "score": 0.89 - }, - { - "category_id": 2, - "poly": [ - 1474, - 1905, - 1518, - 1905, - 1518, - 1941, - 1474, - 1941 - ], - "score": 0.889 - }, - { - "category_id": 2, - "poly": [ - 1346, - 2153, - 1474, - 2153, - 1474, - 2182, - 1346, - 2182 - ], - "score": 0.883 - }, - { - "category_id": 2, - "poly": [ - 1475, - 1145, - 1518, - 1145, - 1518, - 1181, - 1475, - 1181 - ], - "score": 0.874 - }, - { - "category_id": 1, - "poly": [ - 197, - 1121, - 464, - 1121, - 464, - 1190, - 197, - 1190 - ], - "score": 0.859 - }, - { - "category_id": 2, - "poly": [ - 815, - 125, - 838, - 125, - 838, - 154, - 815, - 154 - ], - "score": 0.748 - }, - { - "category_id": 1, - "poly": [ - 197, - 1881, - 466, - 1881, - 466, - 1950, - 197, - 1950 - ], - "score": 0.645 - }, - { - "category_id": 1, - "poly": [ - 198, - 1143, - 373, - 1143, - 373, - 1182, - 198, - 1182 - ], - "score": 0.128 - }, - { - "category_id": 13, - "poly": [ - 1149, - 178, - 1177, - 178, - 1177, - 210, - 1149, - 210 - ], - "score": 0.49, - "latex": "\\pmb{\\times}" - }, - { - "category_id": 13, - "poly": [ - 1244, - 177, - 1272, - 177, - 1272, - 209, - 1244, - 209 - ], - "score": 0.37, - "latex": "\\pmb{\\upgamma}" - }, - { - "category_id": 13, - "poly": [ - 1208, - 214, - 1280, - 214, - 1280, - 247, - 1208, - 247 - ], - "score": 0.36, - "latex": "3\\mathsf{m A}" - }, - { - "category_id": 13, - "poly": [ - 1017, - 767, - 1045, - 767, - 1045, - 799, - 1017, - 799 - ], - "score": 0.32, - "latex": "\\pmb{\\times}" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1597.0, - 229.0, - 1597.0, - 229.0, - 1636.0, - 196.0, - 1636.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 1599.0, - 865.0, - 1599.0, - 865.0, - 1634.0, - 262.0, - 1634.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1669.0, - 229.0, - 1669.0, - 229.0, - 1708.0, - 196.0, - 1708.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 1669.0, - 1220.0, - 1669.0, - 1220.0, - 1709.0, - 261.0, - 1709.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1740.0, - 230.0, - 1740.0, - 230.0, - 1780.0, - 196.0, - 1780.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 1740.0, - 1264.0, - 1740.0, - 1264.0, - 1782.0, - 260.0, - 1782.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 1814.0, - 230.0, - 1814.0, - 230.0, - 1852.0, - 195.0, - 1852.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 1817.0, - 647.0, - 1817.0, - 647.0, - 1852.0, - 262.0, - 1852.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 839.0, - 230.0, - 839.0, - 230.0, - 875.0, - 195.0, - 875.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 839.0, - 345.0, - 839.0, - 345.0, - 874.0, - 260.0, - 874.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 911.0, - 229.0, - 911.0, - 229.0, - 947.0, - 196.0, - 947.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 910.0, - 362.0, - 910.0, - 362.0, - 946.0, - 259.0, - 946.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 982.0, - 230.0, - 982.0, - 230.0, - 1020.0, - 196.0, - 1020.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 983.0, - 362.0, - 983.0, - 362.0, - 1019.0, - 259.0, - 1019.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 1055.0, - 230.0, - 1055.0, - 230.0, - 1091.0, - 195.0, - 1091.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 1056.0, - 360.0, - 1056.0, - 360.0, - 1090.0, - 260.0, - 1090.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 180.0, - 160.0, - 180.0, - 160.0, - 208.0, - 135.0, - 208.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 178.0, - 1148.0, - 178.0, - 1148.0, - 213.0, - 196.0, - 213.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1178.0, - 178.0, - 1243.0, - 178.0, - 1243.0, - 213.0, - 1178.0, - 213.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1273.0, - 178.0, - 1519.0, - 178.0, - 1519.0, - 213.0, - 1273.0, - 213.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 215.0, - 1207.0, - 215.0, - 1207.0, - 249.0, - 199.0, - 249.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1281.0, - 215.0, - 1287.0, - 215.0, - 1287.0, - 249.0, - 1281.0, - 249.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 1255.0, - 1521.0, - 1255.0, - 1521.0, - 1289.0, - 136.0, - 1289.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 1291.0, - 904.0, - 1291.0, - 904.0, - 1325.0, - 197.0, - 1325.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 768.0, - 1016.0, - 768.0, - 1016.0, - 801.0, - 199.0, - 801.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1046.0, - 768.0, - 1149.0, - 768.0, - 1149.0, - 801.0, - 1046.0, - 801.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1529.0, - 579.0, - 1529.0, - 579.0, - 1560.0, - 200.0, - 1560.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 167.0, - 2166.0, - 269.0, - 2166.0, - 269.0, - 2185.0, - 167.0, - 2185.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 1901.0, - 1525.0, - 1901.0, - 1525.0, - 1949.0, - 1471.0, - 1949.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1344.0, - 2151.0, - 1478.0, - 2151.0, - 1478.0, - 2184.0, - 1344.0, - 2184.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1470.0, - 1141.0, - 1524.0, - 1141.0, - 1524.0, - 1187.0, - 1470.0, - 1187.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1145.0, - 372.0, - 1145.0, - 372.0, - 1181.0, - 200.0, - 1181.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 810.0, - 121.0, - 844.0, - 121.0, - 844.0, - 165.0, - 810.0, - 165.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1904.0, - 373.0, - 1904.0, - 373.0, - 1942.0, - 199.0, - 1942.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1145.0, - 373.0, - 1145.0, - 373.0, - 1181.0, - 199.0, - 1181.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 6, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 199, - 711, - 1207, - 711, - 1207, - 1012, - 199, - 1012 - ], - "score": 0.98, - "html": "
DirectionofconventionalcurrentMagnitude of current
Aclockwisegreater at Y than at X
Bclockwisesame atY and X
Canticlockwisegreater at X than at Y
Danticlockwisesame at X and Y
" - }, - { - "category_id": 3, - "poly": [ - 557, - 1238, - 1097, - 1238, - 1097, - 1611, - 557, - 1611 - ], - "score": 0.969 - }, - { - "category_id": 1, - "poly": [ - 193, - 1736, - 519, - 1736, - 519, - 1997, - 193, - 1997 - ], - "score": 0.968 - }, - { - "category_id": 3, - "poly": [ - 566, - 246, - 1086, - 246, - 1086, - 550, - 566, - 550 - ], - "score": 0.964 - }, - { - "category_id": 1, - "poly": [ - 128, - 1148, - 1511, - 1148, - 1511, - 1225, - 128, - 1225 - ], - "score": 0.944 - }, - { - "category_id": 1, - "poly": [ - 198, - 1664, - 640, - 1664, - 640, - 1703, - 198, - 1703 - ], - "score": 0.914 - }, - { - "category_id": 1, - "poly": [ - 133, - 175, - 1037, - 175, - 1037, - 214, - 133, - 214 - ], - "score": 0.911 - }, - { - "category_id": 1, - "poly": [ - 196, - 612, - 750, - 612, - 750, - 685, - 196, - 685 - ], - "score": 0.9 - }, - { - "category_id": 2, - "poly": [ - 165, - 2162, - 268, - 2162, - 268, - 2187, - 165, - 2187 - ], - "score": 0.893 - }, - { - "category_id": 2, - "poly": [ - 1474, - 2034, - 1518, - 2034, - 1518, - 2069, - 1474, - 2069 - ], - "score": 0.874 - }, - { - "category_id": 1, - "poly": [ - 197, - 1031, - 464, - 1031, - 464, - 1100, - 197, - 1100 - ], - "score": 0.85 - }, - { - "category_id": 2, - "poly": [ - 1474, - 1054, - 1518, - 1054, - 1518, - 1091, - 1474, - 1091 - ], - "score": 0.842 - }, - { - "category_id": 2, - "poly": [ - 814, - 126, - 838, - 126, - 838, - 156, - 814, - 156 - ], - "score": 0.808 - }, - { - "category_id": 1, - "poly": [ - 196, - 2010, - 465, - 2010, - 465, - 2079, - 196, - 2079 - ], - "score": 0.593 - }, - { - "category_id": 3, - "poly": [ - 196, - 2010, - 465, - 2010, - 465, - 2079, - 196, - 2079 - ], - "score": 0.186 - }, - { - "category_id": 1, - "poly": [ - 199, - 652, - 494, - 652, - 494, - 684, - 199, - 684 - ], - "score": 0.106 - }, - { - "category_id": 1, - "poly": [ - 199, - 2031, - 374, - 2031, - 374, - 2070, - 199, - 2070 - ], - "score": 0.105 - }, - { - "category_id": 13, - "poly": [ - 195, - 1188, - 306, - 1188, - 306, - 1230, - 195, - 1230 - ], - "score": 0.91, - "latex": "I_{1},I_{2},I_{3}" - }, - { - "category_id": 13, - "poly": [ - 366, - 1189, - 397, - 1189, - 397, - 1228, - 366, - 1228 - ], - "score": 0.87, - "latex": "I_{4}" - }, - { - "category_id": 13, - "poly": [ - 836, - 1524, - 863, - 1524, - 863, - 1554, - 836, - 1554 - ], - "score": 0.77, - "latex": "I_{4}" - }, - { - "category_id": 14, - "poly": [ - 256, - 1955, - 517, - 1955, - 517, - 1998, - 256, - 1998 - ], - "score": 0.62, - "latex": "I_{1}+I_{2}+I_{3}+I_{4}=0" - }, - { - "category_id": 14, - "poly": [ - 255, - 1738, - 465, - 1738, - 465, - 1782, - 255, - 1782 - ], - "score": 0.54, - "latex": "I_{1}+I_{2}=I_{3}+I_{4}" - }, - { - "category_id": 13, - "poly": [ - 970, - 1409, - 997, - 1409, - 997, - 1441, - 970, - 1441 - ], - "score": 0.51, - "latex": "I_{3}" - }, - { - "category_id": 14, - "poly": [ - 256, - 1810, - 515, - 1810, - 515, - 1856, - 256, - 1856 - ], - "score": 0.38, - "latex": "I_{1}-I_{2}+I_{3}-I_{4}=0" - }, - { - "category_id": 13, - "poly": [ - 407, - 1883, - 497, - 1883, - 497, - 1926, - 407, - 1926 - ], - "score": 0.33, - "latex": "I_{3}=I_{4}" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 1740.0, - 228.0, - 1740.0, - 228.0, - 1773.0, - 198.0, - 1773.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 1810.0, - 229.0, - 1810.0, - 229.0, - 1848.0, - 197.0, - 1848.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1881.0, - 229.0, - 1881.0, - 229.0, - 1921.0, - 196.0, - 1921.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 1884.0, - 406.0, - 1884.0, - 406.0, - 1926.0, - 259.0, - 1926.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 1956.0, - 229.0, - 1956.0, - 229.0, - 1992.0, - 195.0, - 1992.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 1151.0, - 1513.0, - 1151.0, - 1513.0, - 1188.0, - 135.0, - 1188.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 307.0, - 1191.0, - 365.0, - 1191.0, - 365.0, - 1224.0, - 307.0, - 1224.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 398.0, - 1191.0, - 607.0, - 1191.0, - 607.0, - 1224.0, - 398.0, - 1224.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1667.0, - 637.0, - 1667.0, - 637.0, - 1700.0, - 200.0, - 1700.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 177.0, - 1039.0, - 177.0, - 1039.0, - 211.0, - 136.0, - 211.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 616.0, - 747.0, - 616.0, - 747.0, - 646.0, - 200.0, - 646.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 651.0, - 495.0, - 651.0, - 495.0, - 684.0, - 199.0, - 684.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 2029.0, - 1525.0, - 2029.0, - 1525.0, - 2076.0, - 1471.0, - 2076.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1054.0, - 371.0, - 1054.0, - 371.0, - 1089.0, - 200.0, - 1089.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1470.0, - 1050.0, - 1525.0, - 1050.0, - 1525.0, - 1097.0, - 1470.0, - 1097.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 812.0, - 124.0, - 842.0, - 124.0, - 842.0, - 163.0, - 812.0, - 163.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 2032.0, - 373.0, - 2032.0, - 373.0, - 2070.0, - 198.0, - 2070.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 651.0, - 492.0, - 651.0, - 492.0, - 684.0, - 200.0, - 684.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 2033.0, - 373.0, - 2033.0, - 373.0, - 2069.0, - 199.0, - 2069.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 7, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 367, - 1077, - 1289, - 1077, - 1289, - 1530, - 367, - 1530 - ], - "score": 0.956 - }, - { - "category_id": 1, - "poly": [ - 194, - 427, - 341, - 427, - 341, - 682, - 194, - 682 - ], - "score": 0.945 - }, - { - "category_id": 1, - "poly": [ - 135, - 175, - 1522, - 175, - 1522, - 250, - 135, - 250 - ], - "score": 0.921 - }, - { - "category_id": 1, - "poly": [ - 198, - 355, - 929, - 355, - 929, - 394, - 198, - 394 - ], - "score": 0.896 - }, - { - "category_id": 1, - "poly": [ - 196, - 985, - 1237, - 985, - 1237, - 1024, - 196, - 1024 - ], - "score": 0.892 - }, - { - "category_id": 2, - "poly": [ - 165, - 2163, - 268, - 2163, - 268, - 2186, - 165, - 2186 - ], - "score": 0.887 - }, - { - "category_id": 2, - "poly": [ - 1474, - 1614, - 1518, - 1614, - 1518, - 1650, - 1474, - 1650 - ], - "score": 0.873 - }, - { - "category_id": 2, - "poly": [ - 1475, - 736, - 1518, - 736, - 1518, - 771, - 1475, - 771 - ], - "score": 0.868 - }, - { - "category_id": 2, - "poly": [ - 1346, - 2152, - 1474, - 2152, - 1474, - 2182, - 1346, - 2182 - ], - "score": 0.791 - }, - { - "category_id": 2, - "poly": [ - 814, - 125, - 839, - 125, - 839, - 156, - 814, - 156 - ], - "score": 0.73 - }, - { - "category_id": 1, - "poly": [ - 135, - 842, - 1524, - 842, - 1524, - 949, - 135, - 949 - ], - "score": 0.72 - }, - { - "category_id": 1, - "poly": [ - 199, - 282, - 800, - 282, - 800, - 322, - 199, - 322 - ], - "score": 0.713 - }, - { - "category_id": 1, - "poly": [ - 197, - 711, - 465, - 711, - 465, - 781, - 197, - 781 - ], - "score": 0.656 - }, - { - "category_id": 1, - "poly": [ - 196, - 712, - 464, - 712, - 464, - 779, - 196, - 779 - ], - "score": 0.633 - }, - { - "category_id": 1, - "poly": [ - 136, - 842, - 854, - 842, - 854, - 878, - 136, - 878 - ], - "score": 0.382 - }, - { - "category_id": 1, - "poly": [ - 137, - 880, - 1521, - 880, - 1521, - 949, - 137, - 949 - ], - "score": 0.279 - }, - { - "category_id": 8, - "poly": [ - 199, - 282, - 800, - 282, - 800, - 322, - 199, - 322 - ], - "score": 0.242 - }, - { - "category_id": 1, - "poly": [ - 198, - 1615, - 371, - 1615, - 371, - 1649, - 198, - 1649 - ], - "score": 0.131 - }, - { - "category_id": 1, - "poly": [ - 199, - 734, - 378, - 734, - 378, - 772, - 199, - 772 - ], - "score": 0.119 - }, - { - "category_id": 13, - "poly": [ - 519, - 285, - 763, - 285, - 763, - 322, - 519, - 322 - ], - "score": 0.84, - "latex": "I=(40.0\\pm1.0)\\Omega" - }, - { - "category_id": 13, - "poly": [ - 200, - 283, - 459, - 283, - 459, - 322, - 200, - 322 - ], - "score": 0.82, - "latex": "V=(5.00\\pm0.20)\\lor" - }, - { - "category_id": 13, - "poly": [ - 533, - 215, - 554, - 215, - 554, - 245, - 533, - 245 - ], - "score": 0.65, - "latex": "I" - }, - { - "category_id": 13, - "poly": [ - 697, - 178, - 727, - 178, - 727, - 209, - 697, - 209 - ], - "score": 0.61, - "latex": "R" - }, - { - "category_id": 13, - "poly": [ - 261, - 428, - 337, - 428, - 337, - 465, - 261, - 465 - ], - "score": 0.59, - "latex": "1.5\\%" - }, - { - "category_id": 13, - "poly": [ - 261, - 500, - 336, - 500, - 336, - 538, - 261, - 538 - ], - "score": 0.42, - "latex": "1.6\\%" - }, - { - "category_id": 13, - "poly": [ - 260, - 572, - 336, - 572, - 336, - 610, - 260, - 610 - ], - "score": 0.25, - "latex": "6.5\\%" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 428.0, - 228.0, - 428.0, - 228.0, - 465.0, - 196.0, - 465.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 428.0, - 260.0, - 428.0, - 260.0, - 466.0, - 259.0, - 466.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 338.0, - 428.0, - 339.0, - 428.0, - 339.0, - 466.0, - 338.0, - 466.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 499.0, - 230.0, - 499.0, - 230.0, - 538.0, - 195.0, - 538.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 500.0, - 260.0, - 500.0, - 260.0, - 537.0, - 259.0, - 537.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 337.0, - 500.0, - 339.0, - 500.0, - 339.0, - 537.0, - 337.0, - 537.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 571.0, - 230.0, - 571.0, - 230.0, - 611.0, - 195.0, - 611.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 573.0, - 259.0, - 573.0, - 259.0, - 610.0, - 259.0, - 610.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 337.0, - 573.0, - 339.0, - 573.0, - 339.0, - 610.0, - 337.0, - 610.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 645.0, - 229.0, - 645.0, - 229.0, - 681.0, - 196.0, - 681.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 644.0, - 330.0, - 644.0, - 330.0, - 682.0, - 258.0, - 682.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 178.0, - 696.0, - 178.0, - 696.0, - 212.0, - 136.0, - 212.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 728.0, - 178.0, - 1524.0, - 178.0, - 1524.0, - 212.0, - 728.0, - 212.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 214.0, - 532.0, - 214.0, - 532.0, - 249.0, - 197.0, - 249.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 555.0, - 214.0, - 1166.0, - 214.0, - 1166.0, - 249.0, - 555.0, - 249.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 357.0, - 926.0, - 357.0, - 926.0, - 394.0, - 200.0, - 394.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 989.0, - 1233.0, - 989.0, - 1233.0, - 1020.0, - 199.0, - 1020.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 1610.0, - 1525.0, - 1610.0, - 1525.0, - 1658.0, - 1471.0, - 1658.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1470.0, - 731.0, - 1524.0, - 731.0, - 1524.0, - 778.0, - 1470.0, - 778.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1344.0, - 2152.0, - 1477.0, - 2152.0, - 1477.0, - 2183.0, - 1344.0, - 2183.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 813.0, - 123.0, - 842.0, - 123.0, - 842.0, - 163.0, - 813.0, - 163.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 839.0, - 854.0, - 839.0, - 854.0, - 881.0, - 133.0, - 881.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 881.0, - 1520.0, - 881.0, - 1520.0, - 913.0, - 195.0, - 913.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 917.0, - 310.0, - 917.0, - 310.0, - 949.0, - 197.0, - 949.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 460.0, - 287.0, - 518.0, - 287.0, - 518.0, - 321.0, - 460.0, - 321.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 764.0, - 287.0, - 797.0, - 287.0, - 797.0, - 321.0, - 764.0, - 321.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 735.0, - 372.0, - 735.0, - 372.0, - 768.0, - 200.0, - 768.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 734.0, - 372.0, - 734.0, - 372.0, - 772.0, - 199.0, - 772.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 842.0, - 854.0, - 842.0, - 854.0, - 879.0, - 135.0, - 879.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 876.0, - 1523.0, - 876.0, - 1523.0, - 920.0, - 197.0, - 920.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 918.0, - 313.0, - 918.0, - 313.0, - 951.0, - 198.0, - 951.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 1613.0, - 373.0, - 1613.0, - 373.0, - 1650.0, - 198.0, - 1650.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 736.0, - 372.0, - 736.0, - 372.0, - 770.0, - 199.0, - 770.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 8, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 194, - 1523, - 466, - 1523, - 466, - 1784, - 194, - 1784 - ], - "score": 0.963 - }, - { - "category_id": 3, - "poly": [ - 495, - 297, - 1111, - 297, - 1111, - 710, - 495, - 710 - ], - "score": 0.962 - }, - { - "category_id": 1, - "poly": [ - 132, - 175, - 1507, - 175, - 1507, - 251, - 132, - 251 - ], - "score": 0.936 - }, - { - "category_id": 1, - "poly": [ - 195, - 790, - 1271, - 790, - 1271, - 862, - 195, - 862 - ], - "score": 0.936 - }, - { - "category_id": 1, - "poly": [ - 193, - 867, - 330, - 867, - 330, - 1190, - 193, - 1190 - ], - "score": 0.916 - }, - { - "category_id": 1, - "poly": [ - 133, - 1344, - 1518, - 1344, - 1518, - 1421, - 133, - 1421 - ], - "score": 0.909 - }, - { - "category_id": 2, - "poly": [ - 165, - 2162, - 268, - 2162, - 268, - 2187, - 165, - 2187 - ], - "score": 0.89 - }, - { - "category_id": 1, - "poly": [ - 195, - 1454, - 883, - 1454, - 883, - 1495, - 195, - 1495 - ], - "score": 0.881 - }, - { - "category_id": 1, - "poly": [ - 197, - 1216, - 465, - 1216, - 465, - 1287, - 197, - 1287 - ], - "score": 0.88 - }, - { - "category_id": 2, - "poly": [ - 1474, - 1834, - 1518, - 1834, - 1518, - 1870, - 1474, - 1870 - ], - "score": 0.868 - }, - { - "category_id": 2, - "poly": [ - 809, - 125, - 847, - 125, - 847, - 156, - 809, - 156 - ], - "score": 0.849 - }, - { - "category_id": 2, - "poly": [ - 1474, - 1241, - 1518, - 1241, - 1518, - 1277, - 1474, - 1277 - ], - "score": 0.837 - }, - { - "category_id": 1, - "poly": [ - 196, - 1810, - 466, - 1810, - 466, - 1881, - 196, - 1881 - ], - "score": 0.832 - }, - { - "category_id": 13, - "poly": [ - 455, - 1346, - 628, - 1346, - 628, - 1382, - 455, - 1382 - ], - "score": 0.91, - "latex": "4.8\\times10^{-19}\\mathrm{J}" - }, - { - "category_id": 13, - "poly": [ - 197, - 1382, - 370, - 1382, - 370, - 1418, - 197, - 1418 - ], - "score": 0.9, - "latex": "3.2\\times10^{-19}\\mathrm{J}" - }, - { - "category_id": 13, - "poly": [ - 670, - 789, - 707, - 789, - 707, - 864, - 670, - 864 - ], - "score": 0.84, - "latex": "\\frac{V}{2}" - }, - { - "category_id": 13, - "poly": [ - 259, - 1523, - 465, - 1523, - 465, - 1565, - 259, - 1565 - ], - "score": 0.45, - "latex": "5.9\\times10^{5}\\mathrm{m}s^{-1}" - }, - { - "category_id": 13, - "poly": [ - 261, - 1041, - 315, - 1041, - 315, - 1124, - 261, - 1124 - ], - "score": 0.4, - "latex": "\\frac{u}{\\sqrt{2}}" - }, - { - "category_id": 13, - "poly": [ - 259, - 1595, - 464, - 1595, - 464, - 1637, - 259, - 1637 - ], - "score": 0.35, - "latex": "8.4\\times10^{5}\\mathrm{m}s^{-1}" - }, - { - "category_id": 13, - "poly": [ - 261, - 1140, - 330, - 1140, - 330, - 1189, - 261, - 1189 - ], - "score": 0.32, - "latex": "u\\sqrt2" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 1526.0, - 230.0, - 1526.0, - 230.0, - 1565.0, - 195.0, - 1565.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1599.0, - 228.0, - 1599.0, - 228.0, - 1636.0, - 196.0, - 1636.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 1670.0, - 230.0, - 1670.0, - 230.0, - 1710.0, - 195.0, - 1710.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 1671.0, - 462.0, - 1671.0, - 462.0, - 1705.0, - 261.0, - 1705.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1746.0, - 229.0, - 1746.0, - 229.0, - 1782.0, - 196.0, - 1782.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 1744.0, - 462.0, - 1744.0, - 462.0, - 1777.0, - 260.0, - 1777.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 174.0, - 1516.0, - 174.0, - 1516.0, - 214.0, - 133.0, - 214.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 214.0, - 520.0, - 214.0, - 520.0, - 249.0, - 197.0, - 249.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 810.0, - 667.0, - 810.0, - 667.0, - 843.0, - 200.0, - 843.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 716.0, - 806.0, - 1271.0, - 806.0, - 1271.0, - 845.0, - 716.0, - 845.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 264.0, - 867.0, - 294.0, - 867.0, - 294.0, - 899.0, - 264.0, - 899.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 880.0, - 230.0, - 880.0, - 230.0, - 918.0, - 195.0, - 918.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 901.0, - 294.0, - 901.0, - 294.0, - 940.0, - 261.0, - 940.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 967.0, - 230.0, - 967.0, - 230.0, - 1005.0, - 196.0, - 1005.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 953.0, - 296.0, - 953.0, - 296.0, - 1001.0, - 260.0, - 1001.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 989.0, - 295.0, - 989.0, - 295.0, - 1031.0, - 263.0, - 1031.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1055.0, - 230.0, - 1055.0, - 230.0, - 1094.0, - 196.0, - 1094.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 1078.0, - 260.0, - 1078.0, - 260.0, - 1126.0, - 260.0, - 1126.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 1152.0, - 230.0, - 1152.0, - 230.0, - 1188.0, - 195.0, - 1188.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 1142.0, - 260.0, - 1142.0, - 260.0, - 1188.0, - 257.0, - 1188.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 331.0, - 1142.0, - 332.0, - 1142.0, - 332.0, - 1188.0, - 331.0, - 1188.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 1347.0, - 454.0, - 1347.0, - 454.0, - 1385.0, - 136.0, - 1385.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 629.0, - 1347.0, - 1520.0, - 1347.0, - 1520.0, - 1385.0, - 629.0, - 1385.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 194.0, - 1381.0, - 196.0, - 1381.0, - 196.0, - 1418.0, - 194.0, - 1418.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 371.0, - 1381.0, - 383.0, - 1381.0, - 383.0, - 1418.0, - 371.0, - 1418.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1459.0, - 877.0, - 1459.0, - 877.0, - 1490.0, - 200.0, - 1490.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1239.0, - 372.0, - 1239.0, - 372.0, - 1278.0, - 199.0, - 1278.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 1830.0, - 1525.0, - 1830.0, - 1525.0, - 1878.0, - 1471.0, - 1878.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 803.0, - 123.0, - 853.0, - 123.0, - 853.0, - 165.0, - 803.0, - 165.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 1237.0, - 1525.0, - 1237.0, - 1525.0, - 1285.0, - 1471.0, - 1285.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1832.0, - 373.0, - 1832.0, - 373.0, - 1871.0, - 199.0, - 1871.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 9, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 193, - 1339, - 359, - 1339, - 359, - 1594, - 193, - 1594 - ], - "score": 0.95 - }, - { - "category_id": 1, - "poly": [ - 137, - 895, - 1435, - 895, - 1435, - 972, - 137, - 972 - ], - "score": 0.943 - }, - { - "category_id": 1, - "poly": [ - 193, - 481, - 346, - 481, - 346, - 737, - 193, - 737 - ], - "score": 0.939 - }, - { - "category_id": 1, - "poly": [ - 138, - 174, - 1508, - 174, - 1508, - 250, - 138, - 250 - ], - "score": 0.927 - }, - { - "category_id": 1, - "poly": [ - 196, - 1266, - 1030, - 1266, - 1030, - 1307, - 196, - 1307 - ], - "score": 0.922 - }, - { - "category_id": 1, - "poly": [ - 196, - 281, - 1482, - 281, - 1482, - 435, - 196, - 435 - ], - "score": 0.909 - }, - { - "category_id": 3, - "poly": [ - 237, - 1016, - 1388, - 1016, - 1388, - 1217, - 237, - 1217 - ], - "score": 0.907 - }, - { - "category_id": 2, - "poly": [ - 165, - 2163, - 268, - 2163, - 268, - 2186, - 165, - 2186 - ], - "score": 0.89 - }, - { - "category_id": 2, - "poly": [ - 1474, - 1648, - 1518, - 1648, - 1518, - 1683, - 1474, - 1683 - ], - "score": 0.865 - }, - { - "category_id": 1, - "poly": [ - 197, - 766, - 465, - 766, - 465, - 836, - 197, - 836 - ], - "score": 0.858 - }, - { - "category_id": 2, - "poly": [ - 1474, - 791, - 1518, - 791, - 1518, - 826, - 1474, - 826 - ], - "score": 0.855 - }, - { - "category_id": 1, - "poly": [ - 196, - 1623, - 466, - 1623, - 466, - 1693, - 196, - 1693 - ], - "score": 0.764 - }, - { - "category_id": 2, - "poly": [ - 1346, - 2152, - 1474, - 2152, - 1474, - 2182, - 1346, - 2182 - ], - "score": 0.71 - }, - { - "category_id": 2, - "poly": [ - 808, - 124, - 844, - 124, - 844, - 156, - 808, - 156 - ], - "score": 0.639 - }, - { - "category_id": 2, - "poly": [ - 808, - 124, - 844, - 124, - 844, - 156, - 808, - 156 - ], - "score": 0.328 - }, - { - "category_id": 1, - "poly": [ - 198, - 1646, - 373, - 1646, - 373, - 1684, - 198, - 1684 - ], - "score": 0.182 - }, - { - "category_id": 1, - "poly": [ - 1346, - 2152, - 1474, - 2152, - 1474, - 2182, - 1346, - 2182 - ], - "score": 0.159 - }, - { - "category_id": 1, - "poly": [ - 197, - 348, - 1210, - 348, - 1210, - 434, - 197, - 434 - ], - "score": 0.109 - }, - { - "category_id": 1, - "poly": [ - 198, - 788, - 374, - 788, - 374, - 828, - 198, - 828 - ], - "score": 0.109 - }, - { - "category_id": 13, - "poly": [ - 606, - 899, - 658, - 899, - 658, - 932, - 606, - 932 - ], - "score": 0.89, - "latex": "{\\mathfrak{30}}^{\\circ}" - }, - { - "category_id": 13, - "poly": [ - 1347, - 285, - 1466, - 285, - 1466, - 320, - 1347, - 320 - ], - "score": 0.49, - "latex": "0.80\\mathrm{mm}" - }, - { - "category_id": 13, - "poly": [ - 689, - 286, - 809, - 286, - 809, - 320, - 689, - 320 - ], - "score": 0.41, - "latex": "0.20\\mathsf{m m}" - }, - { - "category_id": 13, - "poly": [ - 1400, - 899, - 1429, - 899, - 1429, - 930, - 1400, - 930 - ], - "score": 0.4, - "latex": "K." - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1339.0, - 229.0, - 1339.0, - 229.0, - 1376.0, - 196.0, - 1376.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 1340.0, - 286.0, - 1340.0, - 286.0, - 1376.0, - 258.0, - 1376.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1412.0, - 229.0, - 1412.0, - 229.0, - 1447.0, - 196.0, - 1447.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 1411.0, - 357.0, - 1411.0, - 357.0, - 1447.0, - 259.0, - 1447.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1484.0, - 230.0, - 1484.0, - 230.0, - 1521.0, - 196.0, - 1521.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 1485.0, - 358.0, - 1485.0, - 358.0, - 1521.0, - 259.0, - 1521.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1557.0, - 229.0, - 1557.0, - 229.0, - 1593.0, - 196.0, - 1593.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 1558.0, - 356.0, - 1558.0, - 356.0, - 1592.0, - 260.0, - 1592.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 895.0, - 605.0, - 895.0, - 605.0, - 935.0, - 134.0, - 935.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 659.0, - 895.0, - 1399.0, - 895.0, - 1399.0, - 935.0, - 659.0, - 935.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1430.0, - 895.0, - 1436.0, - 895.0, - 1436.0, - 935.0, - 1430.0, - 935.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 201.0, - 938.0, - 1007.0, - 938.0, - 1007.0, - 968.0, - 201.0, - 968.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 194.0, - 483.0, - 230.0, - 483.0, - 230.0, - 521.0, - 194.0, - 521.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 485.0, - 345.0, - 485.0, - 345.0, - 519.0, - 260.0, - 519.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 555.0, - 229.0, - 555.0, - 229.0, - 592.0, - 196.0, - 592.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 556.0, - 330.0, - 556.0, - 330.0, - 592.0, - 259.0, - 592.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 625.0, - 230.0, - 625.0, - 230.0, - 666.0, - 195.0, - 666.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 627.0, - 314.0, - 627.0, - 314.0, - 665.0, - 259.0, - 665.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 701.0, - 229.0, - 701.0, - 229.0, - 736.0, - 195.0, - 736.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 699.0, - 305.0, - 699.0, - 305.0, - 737.0, - 259.0, - 737.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 132.0, - 175.0, - 1517.0, - 175.0, - 1517.0, - 215.0, - 132.0, - 215.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 215.0, - 725.0, - 215.0, - 725.0, - 248.0, - 200.0, - 248.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1270.0, - 1027.0, - 1270.0, - 1027.0, - 1304.0, - 199.0, - 1304.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 287.0, - 688.0, - 287.0, - 688.0, - 321.0, - 199.0, - 321.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 810.0, - 287.0, - 1346.0, - 287.0, - 1346.0, - 321.0, - 810.0, - 321.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1467.0, - 287.0, - 1474.0, - 287.0, - 1474.0, - 321.0, - 1467.0, - 321.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 592.0, - 347.0, - 1190.0, - 347.0, - 1190.0, - 393.0, - 592.0, - 393.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 201.0, - 379.0, - 589.0, - 379.0, - 589.0, - 409.0, - 201.0, - 409.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 594.0, - 394.0, - 1180.0, - 394.0, - 1180.0, - 436.0, - 594.0, - 436.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 1643.0, - 1525.0, - 1643.0, - 1525.0, - 1690.0, - 1471.0, - 1690.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 790.0, - 372.0, - 790.0, - 372.0, - 823.0, - 200.0, - 823.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 786.0, - 1525.0, - 786.0, - 1525.0, - 833.0, - 1471.0, - 833.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1647.0, - 373.0, - 1647.0, - 373.0, - 1680.0, - 199.0, - 1680.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1344.0, - 2152.0, - 1477.0, - 2152.0, - 1477.0, - 2183.0, - 1344.0, - 2183.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 803.0, - 122.0, - 850.0, - 122.0, - 850.0, - 163.0, - 803.0, - 163.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 803.0, - 122.0, - 850.0, - 122.0, - 850.0, - 163.0, - 803.0, - 163.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1646.0, - 373.0, - 1646.0, - 373.0, - 1684.0, - 199.0, - 1684.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1344.0, - 2152.0, - 1477.0, - 2152.0, - 1477.0, - 2183.0, - 1344.0, - 2183.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 594.0, - 349.0, - 1184.0, - 349.0, - 1184.0, - 391.0, - 594.0, - 391.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 377.0, - 590.0, - 377.0, - 590.0, - 408.0, - 199.0, - 408.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 596.0, - 396.0, - 1178.0, - 396.0, - 1178.0, - 434.0, - 596.0, - 434.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 790.0, - 372.0, - 790.0, - 372.0, - 825.0, - 199.0, - 825.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 10, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 134, - 1118, - 1525, - 1118, - 1525, - 1198, - 134, - 1198 - ], - "score": 0.965 - }, - { - "category_id": 3, - "poly": [ - 567, - 279, - 1063, - 279, - 1063, - 537, - 567, - 537 - ], - "score": 0.965 - }, - { - "category_id": 1, - "poly": [ - 132, - 175, - 1507, - 175, - 1507, - 249, - 132, - 249 - ], - "score": 0.95 - }, - { - "category_id": 3, - "poly": [ - 633, - 1238, - 992, - 1238, - 992, - 1623, - 633, - 1623 - ], - "score": 0.95 - }, - { - "category_id": 1, - "poly": [ - 195, - 607, - 1064, - 607, - 1064, - 691, - 195, - 691 - ], - "score": 0.947 - }, - { - "category_id": 1, - "poly": [ - 193, - 1739, - 318, - 1739, - 318, - 1977, - 193, - 1977 - ], - "score": 0.932 - }, - { - "category_id": 1, - "poly": [ - 194, - 695, - 297, - 695, - 297, - 962, - 194, - 962 - ], - "score": 0.914 - }, - { - "category_id": 1, - "poly": [ - 197, - 1669, - 1262, - 1669, - 1262, - 1711, - 197, - 1711 - ], - "score": 0.907 - }, - { - "category_id": 2, - "poly": [ - 165, - 2161, - 268, - 2161, - 268, - 2187, - 165, - 2187 - ], - "score": 0.891 - }, - { - "category_id": 2, - "poly": [ - 1474, - 2031, - 1518, - 2031, - 1518, - 2067, - 1474, - 2067 - ], - "score": 0.874 - }, - { - "category_id": 1, - "poly": [ - 197, - 993, - 465, - 993, - 465, - 1063, - 197, - 1063 - ], - "score": 0.871 - }, - { - "category_id": 2, - "poly": [ - 1475, - 1017, - 1518, - 1017, - 1518, - 1053, - 1475, - 1053 - ], - "score": 0.862 - }, - { - "category_id": 2, - "poly": [ - 809, - 125, - 847, - 125, - 847, - 156, - 809, - 156 - ], - "score": 0.855 - }, - { - "category_id": 1, - "poly": [ - 198, - 2007, - 465, - 2007, - 465, - 2077, - 198, - 2077 - ], - "score": 0.715 - }, - { - "category_id": 1, - "poly": [ - 198, - 2030, - 372, - 2030, - 372, - 2066, - 198, - 2066 - ], - "score": 0.201 - }, - { - "category_id": 13, - "poly": [ - 551, - 1121, - 753, - 1121, - 753, - 1158, - 551, - 1158 - ], - "score": 0.92, - "latex": "3.0\\times10^{8}\\mathrm{m}s^{-1}" - }, - { - "category_id": 13, - "poly": [ - 1197, - 1121, - 1399, - 1121, - 1399, - 1158, - 1197, - 1158 - ], - "score": 0.91, - "latex": "2.0\\times10^{8}\\mathrm{m}s^{-1}" - }, - { - "category_id": 13, - "poly": [ - 1193, - 1161, - 1245, - 1161, - 1245, - 1194, - 1193, - 1194 - ], - "score": 0.86, - "latex": "{80^{\\circ}}" - }, - { - "category_id": 13, - "poly": [ - 514, - 178, - 543, - 178, - 543, - 210, - 514, - 210 - ], - "score": 0.37, - "latex": "R" - }, - { - "category_id": 13, - "poly": [ - 988, - 653, - 1039, - 653, - 1039, - 688, - 988, - 688 - ], - "score": 0.28, - "latex": "_{2R}" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 1123.0, - 550.0, - 1123.0, - 550.0, - 1162.0, - 134.0, - 1162.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 754.0, - 1123.0, - 1196.0, - 1123.0, - 1196.0, - 1162.0, - 754.0, - 1162.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1400.0, - 1123.0, - 1521.0, - 1123.0, - 1521.0, - 1162.0, - 1400.0, - 1162.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1158.0, - 1192.0, - 1158.0, - 1192.0, - 1200.0, - 196.0, - 1200.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1246.0, - 1158.0, - 1474.0, - 1158.0, - 1474.0, - 1200.0, - 1246.0, - 1200.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 178.0, - 513.0, - 178.0, - 513.0, - 212.0, - 136.0, - 212.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 544.0, - 178.0, - 1511.0, - 178.0, - 1511.0, - 212.0, - 544.0, - 212.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 216.0, - 654.0, - 216.0, - 654.0, - 246.0, - 199.0, - 246.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 439.0, - 614.0, - 1028.0, - 614.0, - 1028.0, - 640.0, - 439.0, - 640.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 201.0, - 637.0, - 423.0, - 637.0, - 423.0, - 665.0, - 201.0, - 665.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 430.0, - 658.0, - 987.0, - 658.0, - 987.0, - 686.0, - 430.0, - 686.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1742.0, - 228.0, - 1742.0, - 228.0, - 1777.0, - 196.0, - 1777.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 1740.0, - 325.0, - 1740.0, - 325.0, - 1777.0, - 258.0, - 1777.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1807.0, - 228.0, - 1807.0, - 228.0, - 1844.0, - 196.0, - 1844.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 1807.0, - 315.0, - 1807.0, - 315.0, - 1842.0, - 256.0, - 1842.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 1872.0, - 230.0, - 1872.0, - 230.0, - 1912.0, - 195.0, - 1912.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 1872.0, - 317.0, - 1872.0, - 317.0, - 1911.0, - 258.0, - 1911.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 1942.0, - 228.0, - 1942.0, - 228.0, - 1976.0, - 195.0, - 1976.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 1940.0, - 317.0, - 1940.0, - 317.0, - 1978.0, - 258.0, - 1978.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 693.0, - 293.0, - 693.0, - 293.0, - 734.0, - 261.0, - 734.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 712.0, - 230.0, - 712.0, - 230.0, - 751.0, - 196.0, - 751.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 268.0, - 726.0, - 289.0, - 726.0, - 289.0, - 742.0, - 268.0, - 742.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 733.0, - 294.0, - 733.0, - 294.0, - 773.0, - 261.0, - 773.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 773.0, - 294.0, - 773.0, - 294.0, - 815.0, - 261.0, - 815.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 794.0, - 230.0, - 794.0, - 230.0, - 835.0, - 196.0, - 835.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 812.0, - 295.0, - 812.0, - 295.0, - 859.0, - 260.0, - 859.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 858.0, - 231.0, - 858.0, - 231.0, - 901.0, - 195.0, - 901.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 861.0, - 291.0, - 861.0, - 291.0, - 898.0, - 262.0, - 898.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 194.0, - 927.0, - 231.0, - 927.0, - 231.0, - 968.0, - 194.0, - 968.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 927.0, - 292.0, - 927.0, - 292.0, - 968.0, - 260.0, - 968.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 1672.0, - 1259.0, - 1672.0, - 1259.0, - 1709.0, - 198.0, - 1709.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 167.0, - 2166.0, - 269.0, - 2166.0, - 269.0, - 2185.0, - 167.0, - 2185.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 2027.0, - 1525.0, - 2027.0, - 1525.0, - 2075.0, - 1471.0, - 2075.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1017.0, - 371.0, - 1017.0, - 371.0, - 1050.0, - 200.0, - 1050.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1470.0, - 1013.0, - 1524.0, - 1013.0, - 1524.0, - 1059.0, - 1470.0, - 1059.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 801.0, - 122.0, - 854.0, - 122.0, - 854.0, - 167.0, - 801.0, - 167.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 2031.0, - 372.0, - 2031.0, - 372.0, - 2064.0, - 199.0, - 2064.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 2031.0, - 373.0, - 2031.0, - 373.0, - 2065.0, - 199.0, - 2065.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 11, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 566, - 826, - 1111, - 826, - 1111, - 1063, - 566, - 1063 - ], - "score": 0.967 - }, - { - "category_id": 1, - "poly": [ - 194, - 741, - 972, - 741, - 972, - 781, - 194, - 781 - ], - "score": 0.916 - }, - { - "category_id": 1, - "poly": [ - 260, - 1171, - 1520, - 1171, - 1520, - 1282, - 260, - 1282 - ], - "score": 0.901 - }, - { - "category_id": 1, - "poly": [ - 655, - 241, - 998, - 241, - 998, - 279, - 655, - 279 - ], - "score": 0.898 - }, - { - "category_id": 4, - "poly": [ - 775, - 1099, - 875, - 1099, - 875, - 1138, - 775, - 1138 - ], - "score": 0.881 - }, - { - "category_id": 2, - "poly": [ - 166, - 2163, - 268, - 2163, - 268, - 2186, - 166, - 2186 - ], - "score": 0.873 - }, - { - "category_id": 0, - "poly": [ - 739, - 174, - 913, - 174, - 913, - 212, - 739, - 212 - ], - "score": 0.862 - }, - { - "category_id": 1, - "poly": [ - 133, - 305, - 1521, - 305, - 1521, - 710, - 133, - 710 - ], - "score": 0.644 - }, - { - "category_id": 2, - "poly": [ - 925, - 2110, - 1520, - 2110, - 1520, - 2183, - 925, - 2183 - ], - "score": 0.575 - }, - { - "category_id": 1, - "poly": [ - 133, - 308, - 1524, - 308, - 1524, - 419, - 133, - 419 - ], - "score": 0.551 - }, - { - "category_id": 1, - "poly": [ - 254, - 1316, - 1525, - 1316, - 1525, - 1611, - 254, - 1611 - ], - "score": 0.516 - }, - { - "category_id": 0, - "poly": [ - 808, - 124, - 848, - 124, - 848, - 157, - 808, - 157 - ], - "score": 0.51 - }, - { - "category_id": 1, - "poly": [ - 255, - 1315, - 1524, - 1315, - 1524, - 1610, - 255, - 1610 - ], - "score": 0.463 - }, - { - "category_id": 1, - "poly": [ - 260, - 1316, - 1520, - 1316, - 1520, - 1427, - 260, - 1427 - ], - "score": 0.454 - }, - { - "category_id": 1, - "poly": [ - 256, - 1496, - 1522, - 1496, - 1522, - 1609, - 256, - 1609 - ], - "score": 0.449 - }, - { - "category_id": 1, - "poly": [ - 925, - 2110, - 1520, - 2110, - 1520, - 2183, - 925, - 2183 - ], - "score": 0.218 - }, - { - "category_id": 1, - "poly": [ - 262, - 1212, - 1517, - 1212, - 1517, - 1282, - 262, - 1282 - ], - "score": 0.17 - }, - { - "category_id": 2, - "poly": [ - 1475, - 1428, - 1516, - 1428, - 1516, - 1464, - 1475, - 1464 - ], - "score": 0.159 - }, - { - "category_id": 1, - "poly": [ - 262, - 1172, - 1487, - 1172, - 1487, - 1209, - 262, - 1209 - ], - "score": 0.158 - }, - { - "category_id": 1, - "poly": [ - 230, - 527, - 1523, - 527, - 1523, - 562, - 230, - 562 - ], - "score": 0.13 - }, - { - "category_id": 2, - "poly": [ - 808, - 124, - 848, - 124, - 848, - 157, - 808, - 157 - ], - "score": 0.108 - }, - { - "category_id": 13, - "poly": [ - 530, - 1533, - 651, - 1533, - 651, - 1569, - 530, - 1569 - ], - "score": 0.9, - "latex": "3.0\\mathsf{m}\\mathsf{s}^{-2}" - }, - { - "category_id": 13, - "poly": [ - 700, - 1501, - 765, - 1501, - 765, - 1531, - 700, - 1531 - ], - "score": 0.87, - "latex": "t=0" - }, - { - "category_id": 13, - "poly": [ - 1154, - 1572, - 1248, - 1572, - 1248, - 1606, - 1154, - 1606 - ], - "score": 0.7, - "latex": "0.80\\m m" - }, - { - "category_id": 13, - "poly": [ - 577, - 1574, - 594, - 1574, - 594, - 1603, - 577, - 1603 - ], - "score": 0.41, - "latex": "t" - }, - { - "category_id": 13, - "poly": [ - 930, - 2121, - 966, - 2121, - 966, - 2142, - 930, - 2142 - ], - "score": 0.28, - "latex": "t=" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 743.0, - 969.0, - 743.0, - 969.0, - 782.0, - 200.0, - 782.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 1172.0, - 1467.0, - 1172.0, - 1467.0, - 1211.0, - 261.0, - 1211.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 1209.0, - 1520.0, - 1209.0, - 1520.0, - 1248.0, - 260.0, - 1248.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 1243.0, - 429.0, - 1243.0, - 429.0, - 1286.0, - 258.0, - 1286.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 656.0, - 245.0, - 998.0, - 245.0, - 998.0, - 278.0, - 656.0, - 278.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 774.0, - 1101.0, - 876.0, - 1101.0, - 876.0, - 1139.0, - 774.0, - 1139.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 165.0, - 2165.0, - 270.0, - 2165.0, - 270.0, - 2186.0, - 165.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 744.0, - 180.0, - 912.0, - 180.0, - 912.0, - 208.0, - 744.0, - 208.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 131.0, - 305.0, - 1523.0, - 305.0, - 1523.0, - 350.0, - 131.0, - 350.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 348.0, - 638.0, - 348.0, - 638.0, - 383.0, - 261.0, - 383.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 383.0, - 1366.0, - 383.0, - 1366.0, - 418.0, - 263.0, - 418.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1470.0, - 670.0, - 1523.0, - 670.0, - 1523.0, - 711.0, - 1470.0, - 711.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1448.0, - 2113.0, - 1519.0, - 2113.0, - 1519.0, - 2150.0, - 1448.0, - 2150.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 2153.0, - 1476.0, - 2153.0, - 1476.0, - 2181.0, - 1346.0, - 2181.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 130.0, - 302.0, - 1523.0, - 302.0, - 1523.0, - 352.0, - 130.0, - 352.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 349.0, - 641.0, - 349.0, - 641.0, - 385.0, - 262.0, - 385.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 265.0, - 385.0, - 1363.0, - 385.0, - 1363.0, - 416.0, - 265.0, - 416.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 265.0, - 1313.0, - 1519.0, - 1313.0, - 1519.0, - 1358.0, - 265.0, - 1358.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 320.0, - 1352.0, - 420.0, - 1352.0, - 420.0, - 1394.0, - 320.0, - 1394.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 325.0, - 1391.0, - 1515.0, - 1391.0, - 1515.0, - 1425.0, - 325.0, - 1425.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1469.0, - 1425.0, - 1525.0, - 1425.0, - 1525.0, - 1468.0, - 1469.0, - 1468.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1496.0, - 699.0, - 1496.0, - 699.0, - 1539.0, - 253.0, - 1539.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 766.0, - 1496.0, - 1522.0, - 1496.0, - 1522.0, - 1539.0, - 766.0, - 1539.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 322.0, - 1538.0, - 529.0, - 1538.0, - 529.0, - 1568.0, - 322.0, - 1568.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 652.0, - 1538.0, - 659.0, - 1538.0, - 659.0, - 1568.0, - 652.0, - 1568.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 323.0, - 1568.0, - 576.0, - 1568.0, - 576.0, - 1609.0, - 323.0, - 1609.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 595.0, - 1568.0, - 1153.0, - 1568.0, - 1153.0, - 1609.0, - 595.0, - 1609.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1249.0, - 1568.0, - 1464.0, - 1568.0, - 1464.0, - 1609.0, - 1249.0, - 1609.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 804.0, - 124.0, - 851.0, - 124.0, - 851.0, - 161.0, - 804.0, - 161.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 265.0, - 1320.0, - 305.0, - 1320.0, - 305.0, - 1354.0, - 265.0, - 1354.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1314.0, - 1520.0, - 1314.0, - 1520.0, - 1357.0, - 318.0, - 1357.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 1353.0, - 419.0, - 1353.0, - 419.0, - 1394.0, - 319.0, - 1394.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 325.0, - 1391.0, - 1516.0, - 1391.0, - 1516.0, - 1425.0, - 325.0, - 1425.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1470.0, - 1424.0, - 1524.0, - 1424.0, - 1524.0, - 1467.0, - 1470.0, - 1467.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 1498.0, - 699.0, - 1498.0, - 699.0, - 1535.0, - 259.0, - 1535.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 766.0, - 1498.0, - 1520.0, - 1498.0, - 1520.0, - 1535.0, - 766.0, - 1535.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 322.0, - 1537.0, - 529.0, - 1537.0, - 529.0, - 1568.0, - 322.0, - 1568.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 652.0, - 1537.0, - 658.0, - 1537.0, - 658.0, - 1568.0, - 652.0, - 1568.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 322.0, - 1568.0, - 576.0, - 1568.0, - 576.0, - 1609.0, - 322.0, - 1609.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 595.0, - 1568.0, - 1153.0, - 1568.0, - 1153.0, - 1609.0, - 595.0, - 1609.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1249.0, - 1568.0, - 1464.0, - 1568.0, - 1464.0, - 1609.0, - 1249.0, - 1609.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 265.0, - 1320.0, - 302.0, - 1320.0, - 302.0, - 1354.0, - 265.0, - 1354.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 1315.0, - 1518.0, - 1315.0, - 1518.0, - 1357.0, - 319.0, - 1357.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 1353.0, - 420.0, - 1353.0, - 420.0, - 1393.0, - 319.0, - 1393.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 323.0, - 1390.0, - 1516.0, - 1390.0, - 1516.0, - 1427.0, - 323.0, - 1427.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1498.0, - 699.0, - 1498.0, - 699.0, - 1539.0, - 253.0, - 1539.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 766.0, - 1498.0, - 1524.0, - 1498.0, - 1524.0, - 1539.0, - 766.0, - 1539.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 321.0, - 1537.0, - 529.0, - 1537.0, - 529.0, - 1568.0, - 321.0, - 1568.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 652.0, - 1537.0, - 659.0, - 1537.0, - 659.0, - 1568.0, - 652.0, - 1568.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 324.0, - 1571.0, - 576.0, - 1571.0, - 576.0, - 1608.0, - 324.0, - 1608.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 595.0, - 1571.0, - 1153.0, - 1571.0, - 1153.0, - 1608.0, - 595.0, - 1608.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1249.0, - 1571.0, - 1462.0, - 1571.0, - 1462.0, - 1608.0, - 1249.0, - 1608.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1448.0, - 2113.0, - 1519.0, - 2113.0, - 1519.0, - 2150.0, - 1448.0, - 2150.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1346.0, - 2153.0, - 1476.0, - 2153.0, - 1476.0, - 2181.0, - 1346.0, - 2181.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 1212.0, - 1518.0, - 1212.0, - 1518.0, - 1246.0, - 263.0, - 1246.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 1244.0, - 428.0, - 1244.0, - 428.0, - 1286.0, - 256.0, - 1286.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 1423.0, - 1526.0, - 1423.0, - 1526.0, - 1470.0, - 1471.0, - 1470.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 1172.0, - 1468.0, - 1172.0, - 1468.0, - 1213.0, - 259.0, - 1213.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 804.0, - 124.0, - 851.0, - 124.0, - 851.0, - 161.0, - 804.0, - 161.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 12, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 320, - 364, - 1330, - 364, - 1330, - 1085, - 320, - 1085 - ], - "score": 0.973 - }, - { - "category_id": 1, - "poly": [ - 198, - 1363, - 946, - 1363, - 946, - 1402, - 198, - 1402 - ], - "score": 0.937 - }, - { - "category_id": 1, - "poly": [ - 199, - 1435, - 1522, - 1435, - 1522, - 1583, - 199, - 1583 - ], - "score": 0.933 - }, - { - "category_id": 1, - "poly": [ - 199, - 1219, - 981, - 1219, - 981, - 1257, - 199, - 1257 - ], - "score": 0.933 - }, - { - "category_id": 2, - "poly": [ - 166, - 2163, - 267, - 2163, - 267, - 2186, - 166, - 2186 - ], - "score": 0.893 - }, - { - "category_id": 4, - "poly": [ - 775, - 1147, - 879, - 1147, - 879, - 1186, - 775, - 1186 - ], - "score": 0.889 - }, - { - "category_id": 1, - "poly": [ - 134, - 176, - 1523, - 176, - 1523, - 321, - 134, - 321 - ], - "score": 0.87 - }, - { - "category_id": 2, - "poly": [ - 809, - 126, - 845, - 126, - 845, - 154, - 809, - 154 - ], - "score": 0.842 - }, - { - "category_id": 8, - "poly": [ - 766, - 1288, - 889, - 1288, - 889, - 1329, - 766, - 1329 - ], - "score": 0.7 - }, - { - "category_id": 1, - "poly": [ - 139, - 176, - 1510, - 176, - 1510, - 248, - 139, - 248 - ], - "score": 0.284 - }, - { - "category_id": 8, - "poly": [ - 766, - 1288, - 889, - 1288, - 889, - 1329, - 766, - 1329 - ], - "score": 0.259 - }, - { - "category_id": 1, - "poly": [ - 241, - 1760, - 1520, - 1760, - 1520, - 1800, - 241, - 1800 - ], - "score": 0.255 - }, - { - "category_id": 1, - "poly": [ - 166, - 249, - 1513, - 249, - 1513, - 320, - 166, - 320 - ], - "score": 0.234 - }, - { - "category_id": 14, - "poly": [ - 766, - 1287, - 894, - 1287, - 894, - 1328, - 766, - 1328 - ], - "score": 0.89, - "latex": "U^{2}=2a x" - }, - { - "category_id": 13, - "poly": [ - 1019, - 1471, - 1057, - 1471, - 1057, - 1507, - 1019, - 1507 - ], - "score": 0.87, - "latex": "u^{2}" - }, - { - "category_id": 13, - "poly": [ - 769, - 247, - 807, - 247, - 807, - 282, - 769, - 282 - ], - "score": 0.87, - "latex": "u^{2}" - }, - { - "category_id": 13, - "poly": [ - 781, - 1226, - 805, - 1226, - 805, - 1252, - 781, - 1252 - ], - "score": 0.76, - "latex": "x" - }, - { - "category_id": 13, - "poly": [ - 915, - 253, - 939, - 253, - 939, - 281, - 915, - 281 - ], - "score": 0.71, - "latex": "x" - }, - { - "category_id": 13, - "poly": [ - 698, - 1227, - 721, - 1227, - 721, - 1252, - 698, - 1252 - ], - "score": 0.7, - "latex": "u" - }, - { - "category_id": 13, - "poly": [ - 746, - 1514, - 772, - 1514, - 772, - 1542, - 746, - 1542 - ], - "score": 0.59, - "latex": "x" - }, - { - "category_id": 13, - "poly": [ - 927, - 1478, - 951, - 1478, - 951, - 1506, - 927, - 1506 - ], - "score": 0.53, - "latex": "x." - }, - { - "category_id": 13, - "poly": [ - 662, - 218, - 685, - 218, - 685, - 245, - 662, - 245 - ], - "score": 0.48, - "latex": "u" - }, - { - "category_id": 13, - "poly": [ - 1461, - 181, - 1486, - 181, - 1486, - 209, - 1461, - 209 - ], - "score": 0.44, - "latex": "x" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1366.0, - 946.0, - 1366.0, - 946.0, - 1399.0, - 200.0, - 1399.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 1438.0, - 1519.0, - 1438.0, - 1519.0, - 1473.0, - 198.0, - 1473.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 1472.0, - 926.0, - 1472.0, - 926.0, - 1512.0, - 259.0, - 1512.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 952.0, - 1472.0, - 1018.0, - 1472.0, - 1018.0, - 1512.0, - 952.0, - 1512.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1058.0, - 1472.0, - 1339.0, - 1472.0, - 1339.0, - 1512.0, - 1058.0, - 1512.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 1512.0, - 745.0, - 1512.0, - 745.0, - 1546.0, - 262.0, - 1546.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 773.0, - 1512.0, - 1520.0, - 1512.0, - 1520.0, - 1546.0, - 773.0, - 1546.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 1551.0, - 1124.0, - 1551.0, - 1124.0, - 1580.0, - 263.0, - 1580.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1222.0, - 697.0, - 1222.0, - 697.0, - 1254.0, - 200.0, - 1254.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 722.0, - 1222.0, - 780.0, - 1222.0, - 780.0, - 1254.0, - 722.0, - 1254.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 806.0, - 1222.0, - 977.0, - 1222.0, - 977.0, - 1254.0, - 806.0, - 1254.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 270.0, - 2165.0, - 270.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 775.0, - 1148.0, - 880.0, - 1148.0, - 880.0, - 1188.0, - 775.0, - 1188.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 177.0, - 1460.0, - 177.0, - 1460.0, - 215.0, - 134.0, - 215.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1487.0, - 177.0, - 1522.0, - 177.0, - 1522.0, - 215.0, - 1487.0, - 215.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 216.0, - 661.0, - 216.0, - 661.0, - 250.0, - 197.0, - 250.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 686.0, - 216.0, - 1244.0, - 216.0, - 1244.0, - 250.0, - 686.0, - 250.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 250.0, - 768.0, - 250.0, - 768.0, - 288.0, - 197.0, - 288.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 808.0, - 250.0, - 914.0, - 250.0, - 914.0, - 288.0, - 808.0, - 288.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 940.0, - 250.0, - 1522.0, - 250.0, - 1522.0, - 288.0, - 940.0, - 288.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 288.0, - 613.0, - 288.0, - 613.0, - 322.0, - 200.0, - 322.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 803.0, - 123.0, - 853.0, - 123.0, - 853.0, - 161.0, - 803.0, - 161.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 176.0, - 1460.0, - 176.0, - 1460.0, - 216.0, - 133.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1487.0, - 176.0, - 1514.0, - 176.0, - 1514.0, - 216.0, - 1487.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 216.0, - 661.0, - 216.0, - 661.0, - 250.0, - 196.0, - 250.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 686.0, - 216.0, - 1244.0, - 216.0, - 1244.0, - 250.0, - 686.0, - 250.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1467.0, - 1762.0, - 1521.0, - 1762.0, - 1521.0, - 1800.0, - 1467.0, - 1800.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 251.0, - 768.0, - 251.0, - 768.0, - 285.0, - 200.0, - 285.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 808.0, - 251.0, - 914.0, - 251.0, - 914.0, - 285.0, - 808.0, - 285.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 940.0, - 251.0, - 1518.0, - 251.0, - 1518.0, - 285.0, - 940.0, - 285.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 289.0, - 613.0, - 289.0, - 613.0, - 322.0, - 200.0, - 322.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 13, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 198, - 176, - 1522, - 176, - 1522, - 284, - 198, - 284 - ], - "score": 0.888 - }, - { - "category_id": 2, - "poly": [ - 166, - 2164, - 267, - 2164, - 267, - 2186, - 166, - 2186 - ], - "score": 0.869 - }, - { - "category_id": 1, - "poly": [ - 914, - 861, - 1520, - 861, - 1520, - 901, - 914, - 901 - ], - "score": 0.819 - }, - { - "category_id": 2, - "poly": [ - 1346, - 2153, - 1474, - 2153, - 1474, - 2182, - 1346, - 2182 - ], - "score": 0.791 - }, - { - "category_id": 2, - "poly": [ - 809, - 126, - 847, - 126, - 847, - 156, - 809, - 156 - ], - "score": 0.751 - }, - { - "category_id": 13, - "poly": [ - 1351, - 214, - 1379, - 214, - 1379, - 245, - 1351, - 245 - ], - "score": 0.77, - "latex": "F" - }, - { - "category_id": 13, - "poly": [ - 569, - 177, - 660, - 177, - 660, - 214, - 569, - 214 - ], - "score": 0.29, - "latex": "920\\mathsf{k g}" - }, - { - "category_id": 15, - "poly": [ - 201.0, - 178.0, - 568.0, - 178.0, - 568.0, - 214.0, - 201.0, - 214.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 661.0, - 178.0, - 661.0, - 178.0, - 661.0, - 214.0, - 661.0, - 214.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 210.0, - 1350.0, - 210.0, - 1350.0, - 253.0, - 258.0, - 253.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1380.0, - 210.0, - 1520.0, - 210.0, - 1520.0, - 253.0, - 1380.0, - 253.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 247.0, - 369.0, - 247.0, - 369.0, - 287.0, - 258.0, - 287.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 167.0, - 2166.0, - 268.0, - 2166.0, - 268.0, - 2185.0, - 167.0, - 2185.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 920.0, - 866.0, - 963.0, - 866.0, - 963.0, - 892.0, - 920.0, - 892.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1441.0, - 863.0, - 1520.0, - 863.0, - 1520.0, - 901.0, - 1441.0, - 901.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1344.0, - 2151.0, - 1478.0, - 2151.0, - 1478.0, - 2184.0, - 1344.0, - 2184.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 803.0, - 123.0, - 852.0, - 123.0, - 852.0, - 162.0, - 803.0, - 162.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 14, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 566, - 255, - 1115, - 255, - 1115, - 612, - 566, - 612 - ], - "score": 0.97 - }, - { - "category_id": 1, - "poly": [ - 260, - 727, - 1520, - 727, - 1520, - 836, - 260, - 836 - ], - "score": 0.965 - }, - { - "category_id": 4, - "poly": [ - 762, - 653, - 889, - 653, - 889, - 692, - 762, - 692 - ], - "score": 0.906 - }, - { - "category_id": 2, - "poly": [ - 166, - 2163, - 267, - 2163, - 267, - 2186, - 166, - 2186 - ], - "score": 0.888 - }, - { - "category_id": 1, - "poly": [ - 158, - 175, - 1410, - 175, - 1410, - 215, - 158, - 215 - ], - "score": 0.873 - }, - { - "category_id": 2, - "poly": [ - 809, - 126, - 846, - 126, - 846, - 156, - 809, - 156 - ], - "score": 0.849 - }, - { - "category_id": 1, - "poly": [ - 197, - 1592, - 705, - 1592, - 705, - 1633, - 197, - 1633 - ], - "score": 0.828 - }, - { - "category_id": 1, - "poly": [ - 318, - 1807, - 1520, - 1807, - 1520, - 1849, - 318, - 1849 - ], - "score": 0.343 - }, - { - "category_id": 1, - "poly": [ - 253, - 1518, - 1519, - 1518, - 1519, - 1558, - 253, - 1558 - ], - "score": 0.3 - }, - { - "category_id": 1, - "poly": [ - 254, - 874, - 1520, - 874, - 1520, - 1565, - 254, - 1565 - ], - "score": 0.195 - }, - { - "category_id": 1, - "poly": [ - 250, - 1015, - 1519, - 1015, - 1519, - 1054, - 250, - 1054 - ], - "score": 0.194 - }, - { - "category_id": 1, - "poly": [ - 318, - 1738, - 1520, - 1738, - 1520, - 1777, - 318, - 1777 - ], - "score": 0.186 - }, - { - "category_id": 1, - "poly": [ - 250, - 1085, - 1521, - 1085, - 1521, - 1126, - 250, - 1126 - ], - "score": 0.136 - }, - { - "category_id": 1, - "poly": [ - 253, - 941, - 1521, - 941, - 1521, - 981, - 253, - 981 - ], - "score": 0.129 - }, - { - "category_id": 15, - "poly": [ - 262.0, - 729.0, - 1516.0, - 729.0, - 1516.0, - 763.0, - 262.0, - 763.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 766.0, - 1520.0, - 766.0, - 1520.0, - 801.0, - 260.0, - 801.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 804.0, - 534.0, - 804.0, - 534.0, - 835.0, - 261.0, - 835.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 762.0, - 653.0, - 892.0, - 653.0, - 892.0, - 694.0, - 762.0, - 694.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 270.0, - 2165.0, - 270.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 150.0, - 176.0, - 1418.0, - 176.0, - 1418.0, - 217.0, - 150.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 803.0, - 123.0, - 851.0, - 123.0, - 851.0, - 162.0, - 803.0, - 162.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 1593.0, - 301.0, - 1593.0, - 301.0, - 1635.0, - 198.0, - 1635.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 321.0, - 1594.0, - 702.0, - 1594.0, - 702.0, - 1630.0, - 321.0, - 1630.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1467.0, - 1809.0, - 1523.0, - 1809.0, - 1523.0, - 1852.0, - 1467.0, - 1852.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1459.0, - 1516.0, - 1525.0, - 1516.0, - 1525.0, - 1564.0, - 1459.0, - 1564.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1470.0, - 1522.0, - 1520.0, - 1522.0, - 1520.0, - 1560.0, - 1470.0, - 1560.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 15, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 507, - 259, - 1147, - 259, - 1147, - 780, - 507, - 780 - ], - "score": 0.956 - }, - { - "category_id": 1, - "poly": [ - 279, - 175, - 1238, - 175, - 1238, - 214, - 279, - 214 - ], - "score": 0.907 - }, - { - "category_id": 4, - "poly": [ - 762, - 835, - 892, - 835, - 892, - 874, - 762, - 874 - ], - "score": 0.894 - }, - { - "category_id": 2, - "poly": [ - 166, - 2163, - 267, - 2163, - 267, - 2186, - 166, - 2186 - ], - "score": 0.883 - }, - { - "category_id": 2, - "poly": [ - 1346, - 2152, - 1474, - 2152, - 1474, - 2182, - 1346, - 2182 - ], - "score": 0.861 - }, - { - "category_id": 2, - "poly": [ - 809, - 126, - 845, - 126, - 845, - 155, - 809, - 155 - ], - "score": 0.821 - }, - { - "category_id": 1, - "poly": [ - 332, - 946, - 1520, - 946, - 1520, - 1053, - 332, - 1053 - ], - "score": 0.806 - }, - { - "category_id": 1, - "poly": [ - 326, - 909, - 882, - 909, - 882, - 945, - 326, - 945 - ], - "score": 0.791 - }, - { - "category_id": 1, - "poly": [ - 915, - 1882, - 1520, - 1882, - 1520, - 1923, - 915, - 1923 - ], - "score": 0.697 - }, - { - "category_id": 1, - "poly": [ - 325, - 1055, - 1011, - 1055, - 1011, - 1090, - 325, - 1090 - ], - "score": 0.66 - }, - { - "category_id": 2, - "poly": [ - 915, - 1882, - 1520, - 1882, - 1520, - 1923, - 915, - 1923 - ], - "score": 0.209 - }, - { - "category_id": 1, - "poly": [ - 325, - 945, - 1520, - 945, - 1520, - 1092, - 325, - 1092 - ], - "score": 0.102 - }, - { - "category_id": 13, - "poly": [ - 927, - 1016, - 1087, - 1016, - 1087, - 1054, - 927, - 1054 - ], - "score": 0.9, - "latex": "1000\\mathsf{k g}\\mathsf{m}^{-3}" - }, - { - "category_id": 13, - "poly": [ - 615, - 1058, - 639, - 1058, - 639, - 1091, - 615, - 1091 - ], - "score": 0.81, - "latex": "\\rho" - }, - { - "category_id": 13, - "poly": [ - 920, - 1899, - 966, - 1899, - 966, - 1922, - 920, - 1922 - ], - "score": 0.61, - "latex": "\\rho=" - }, - { - "category_id": 13, - "poly": [ - 803, - 909, - 876, - 909, - 876, - 943, - 803, - 943 - ], - "score": 0.58, - "latex": "9.0\\mathsf{N}" - }, - { - "category_id": 13, - "poly": [ - 528, - 1018, - 602, - 1018, - 602, - 1052, - 528, - 1052 - ], - "score": 0.27, - "latex": "7.8\\mathsf{N}" - }, - { - "category_id": 15, - "poly": [ - 272.0, - 177.0, - 1245.0, - 177.0, - 1245.0, - 214.0, - 272.0, - 214.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 764.0, - 838.0, - 892.0, - 838.0, - 892.0, - 874.0, - 764.0, - 874.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 270.0, - 2165.0, - 270.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1344.0, - 2152.0, - 1477.0, - 2152.0, - 1477.0, - 2183.0, - 1344.0, - 2183.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 803.0, - 122.0, - 851.0, - 122.0, - 851.0, - 164.0, - 803.0, - 164.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 329.0, - 948.0, - 1515.0, - 948.0, - 1515.0, - 980.0, - 329.0, - 980.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 329.0, - 984.0, - 1519.0, - 984.0, - 1519.0, - 1016.0, - 329.0, - 1016.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 329.0, - 1018.0, - 527.0, - 1018.0, - 527.0, - 1055.0, - 329.0, - 1055.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 603.0, - 1018.0, - 926.0, - 1018.0, - 926.0, - 1055.0, - 603.0, - 1055.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1088.0, - 1018.0, - 1096.0, - 1018.0, - 1096.0, - 1055.0, - 1088.0, - 1055.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 327.0, - 912.0, - 802.0, - 912.0, - 802.0, - 942.0, - 327.0, - 942.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 877.0, - 912.0, - 884.0, - 912.0, - 884.0, - 942.0, - 877.0, - 942.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 919.0, - 1896.0, - 919.0, - 1896.0, - 919.0, - 1915.0, - 919.0, - 1915.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1372.0, - 1884.0, - 1519.0, - 1884.0, - 1519.0, - 1923.0, - 1372.0, - 1923.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 325.0, - 1055.0, - 614.0, - 1055.0, - 614.0, - 1089.0, - 325.0, - 1089.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 640.0, - 1055.0, - 1009.0, - 1055.0, - 1009.0, - 1089.0, - 640.0, - 1089.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 919.0, - 1896.0, - 919.0, - 1896.0, - 919.0, - 1915.0, - 919.0, - 1915.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1372.0, - 1884.0, - 1519.0, - 1884.0, - 1519.0, - 1923.0, - 1372.0, - 1923.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 328.0, - 948.0, - 1515.0, - 948.0, - 1515.0, - 980.0, - 328.0, - 980.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 328.0, - 985.0, - 1519.0, - 985.0, - 1519.0, - 1017.0, - 328.0, - 1017.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 322.0, - 1019.0, - 527.0, - 1019.0, - 527.0, - 1054.0, - 322.0, - 1054.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 603.0, - 1019.0, - 926.0, - 1019.0, - 926.0, - 1054.0, - 603.0, - 1054.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1088.0, - 1019.0, - 1099.0, - 1019.0, - 1099.0, - 1054.0, - 1088.0, - 1054.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 324.0, - 1053.0, - 614.0, - 1053.0, - 614.0, - 1092.0, - 324.0, - 1092.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 640.0, - 1053.0, - 1014.0, - 1053.0, - 1014.0, - 1092.0, - 640.0, - 1092.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 16, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 547, - 860, - 1114, - 860, - 1114, - 1380, - 547, - 1380 - ], - "score": 0.969 - }, - { - "category_id": 1, - "poly": [ - 320, - 1498, - 1520, - 1498, - 1520, - 1574, - 320, - 1574 - ], - "score": 0.945 - }, - { - "category_id": 1, - "poly": [ - 243, - 787, - 1515, - 787, - 1515, - 829, - 243, - 829 - ], - "score": 0.895 - }, - { - "category_id": 2, - "poly": [ - 165, - 2163, - 268, - 2163, - 268, - 2186, - 165, - 2186 - ], - "score": 0.887 - }, - { - "category_id": 1, - "poly": [ - 192, - 462, - 1172, - 462, - 1172, - 504, - 192, - 504 - ], - "score": 0.875 - }, - { - "category_id": 1, - "poly": [ - 135, - 175, - 636, - 175, - 636, - 214, - 135, - 214 - ], - "score": 0.825 - }, - { - "category_id": 1, - "poly": [ - 260, - 534, - 1084, - 534, - 1084, - 576, - 260, - 576 - ], - "score": 0.815 - }, - { - "category_id": 2, - "poly": [ - 809, - 125, - 847, - 125, - 847, - 156, - 809, - 156 - ], - "score": 0.771 - }, - { - "category_id": 4, - "poly": [ - 762, - 1425, - 889, - 1425, - 889, - 1464, - 762, - 1464 - ], - "score": 0.713 - }, - { - "category_id": 1, - "poly": [ - 323, - 1823, - 1521, - 1823, - 1521, - 1864, - 323, - 1864 - ], - "score": 0.447 - }, - { - "category_id": 4, - "poly": [ - 762, - 1425, - 889, - 1425, - 889, - 1464, - 762, - 1464 - ], - "score": 0.442 - }, - { - "category_id": 1, - "poly": [ - 320, - 1680, - 1519, - 1680, - 1519, - 1717, - 320, - 1717 - ], - "score": 0.323 - }, - { - "category_id": 1, - "poly": [ - 320, - 1751, - 1519, - 1751, - 1519, - 1788, - 320, - 1788 - ], - "score": 0.322 - }, - { - "category_id": 1, - "poly": [ - 224, - 176, - 1524, - 176, - 1524, - 433, - 224, - 433 - ], - "score": 0.315 - }, - { - "category_id": 1, - "poly": [ - 260, - 254, - 1521, - 254, - 1521, - 433, - 260, - 433 - ], - "score": 0.276 - }, - { - "category_id": 1, - "poly": [ - 319, - 608, - 1519, - 608, - 1519, - 722, - 319, - 722 - ], - "score": 0.253 - }, - { - "category_id": 2, - "poly": [ - 1474, - 720, - 1517, - 720, - 1517, - 757, - 1474, - 757 - ], - "score": 0.17 - }, - { - "category_id": 1, - "poly": [ - 290, - 534, - 1521, - 534, - 1521, - 733, - 290, - 733 - ], - "score": 0.119 - }, - { - "category_id": 1, - "poly": [ - 327, - 1609, - 1520, - 1609, - 1520, - 1866, - 327, - 1866 - ], - "score": 0.118 - }, - { - "category_id": 13, - "poly": [ - 1082, - 1158, - 1094, - 1158, - 1094, - 1180, - 1082, - 1180 - ], - "score": 0.79, - "latex": "t" - }, - { - "category_id": 13, - "poly": [ - 724, - 792, - 751, - 792, - 751, - 823, - 724, - 823 - ], - "score": 0.62, - "latex": "F" - }, - { - "category_id": 15, - "poly": [ - 327.0, - 1502.0, - 1519.0, - 1502.0, - 1519.0, - 1536.0, - 327.0, - 1536.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 326.0, - 1539.0, - 1384.0, - 1539.0, - 1384.0, - 1573.0, - 326.0, - 1573.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 790.0, - 723.0, - 790.0, - 723.0, - 832.0, - 254.0, - 832.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 752.0, - 790.0, - 1519.0, - 790.0, - 1519.0, - 832.0, - 752.0, - 832.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 467.0, - 1169.0, - 467.0, - 1169.0, - 502.0, - 200.0, - 502.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 173.0, - 639.0, - 173.0, - 639.0, - 217.0, - 133.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 537.0, - 301.0, - 537.0, - 301.0, - 577.0, - 263.0, - 577.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 325.0, - 539.0, - 1081.0, - 539.0, - 1081.0, - 574.0, - 325.0, - 574.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 802.0, - 123.0, - 852.0, - 123.0, - 852.0, - 164.0, - 802.0, - 164.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 762.0, - 1425.0, - 891.0, - 1425.0, - 891.0, - 1466.0, - 762.0, - 1466.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1468.0, - 1826.0, - 1520.0, - 1826.0, - 1520.0, - 1863.0, - 1468.0, - 1863.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 762.0, - 1425.0, - 891.0, - 1425.0, - 891.0, - 1466.0, - 762.0, - 1466.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 216.0, - 178.0, - 636.0, - 178.0, - 636.0, - 211.0, - 216.0, - 211.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1470.0, - 394.0, - 1520.0, - 394.0, - 1520.0, - 431.0, - 1470.0, - 431.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1472.0, - 393.0, - 1520.0, - 393.0, - 1520.0, - 431.0, - 1472.0, - 431.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 326.0, - 612.0, - 346.0, - 612.0, - 346.0, - 641.0, - 326.0, - 641.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 325.0, - 684.0, - 352.0, - 684.0, - 352.0, - 714.0, - 325.0, - 714.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 716.0, - 1526.0, - 716.0, - 1526.0, - 764.0, - 1471.0, - 764.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 322.0, - 540.0, - 1080.0, - 540.0, - 1080.0, - 573.0, - 322.0, - 573.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 327.0, - 617.0, - 344.0, - 617.0, - 344.0, - 635.0, - 327.0, - 635.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 327.0, - 688.0, - 344.0, - 688.0, - 344.0, - 708.0, - 327.0, - 708.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1473.0, - 1825.0, - 1520.0, - 1825.0, - 1520.0, - 1863.0, - 1473.0, - 1863.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 17, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 198, - 174, - 1519, - 174, - 1519, - 286, - 198, - 286 - ], - "score": 0.959 - }, - { - "category_id": 3, - "poly": [ - 251, - 331, - 1408, - 331, - 1408, - 715, - 251, - 715 - ], - "score": 0.956 - }, - { - "category_id": 4, - "poly": [ - 762, - 762, - 893, - 762, - 893, - 802, - 762, - 802 - ], - "score": 0.901 - }, - { - "category_id": 2, - "poly": [ - 166, - 2163, - 267, - 2163, - 267, - 2186, - 166, - 2186 - ], - "score": 0.877 - }, - { - "category_id": 2, - "poly": [ - 1346, - 2153, - 1474, - 2153, - 1474, - 2182, - 1346, - 2182 - ], - "score": 0.854 - }, - { - "category_id": 2, - "poly": [ - 809, - 126, - 846, - 126, - 846, - 155, - 809, - 155 - ], - "score": 0.816 - }, - { - "category_id": 1, - "poly": [ - 919, - 1593, - 1520, - 1593, - 1520, - 1635, - 919, - 1635 - ], - "score": 0.769 - }, - { - "category_id": 1, - "poly": [ - 258, - 911, - 1070, - 911, - 1070, - 947, - 258, - 947 - ], - "score": 0.632 - }, - { - "category_id": 1, - "poly": [ - 251, - 834, - 1516, - 834, - 1516, - 908, - 251, - 908 - ], - "score": 0.585 - }, - { - "category_id": 1, - "poly": [ - 258, - 834, - 1520, - 834, - 1520, - 947, - 258, - 947 - ], - "score": 0.442 - }, - { - "category_id": 13, - "poly": [ - 782, - 834, - 974, - 834, - 974, - 874, - 782, - 874 - ], - "score": 0.91, - "latex": "1.7\\times10^{-27}\\mathrm{kg}" - }, - { - "category_id": 13, - "poly": [ - 676, - 174, - 805, - 174, - 805, - 211, - 676, - 211 - ], - "score": 0.9, - "latex": "500\\mathsf{m}\\mathsf{s}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 260, - 871, - 451, - 871, - 451, - 911, - 260, - 911 - ], - "score": 0.9, - "latex": "2.0\\times10^{-26}\\mathrm{kg}" - }, - { - "category_id": 13, - "poly": [ - 476, - 248, - 602, - 248, - 602, - 283, - 476, - 283 - ], - "score": 0.88, - "latex": "420\\mathsf{m}\\mathsf{s}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 541, - 914, - 563, - 914, - 563, - 941, - 541, - 941 - ], - "score": 0.48, - "latex": "V" - }, - { - "category_id": 13, - "poly": [ - 1395, - 1594, - 1470, - 1594, - 1470, - 1630, - 1395, - 1630 - ], - "score": 0.37, - "latex": "m\\mathtt{s}^{-1}" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 175.0, - 675.0, - 175.0, - 675.0, - 215.0, - 197.0, - 215.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 806.0, - 175.0, - 1519.0, - 175.0, - 1519.0, - 215.0, - 806.0, - 215.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 217.0, - 1519.0, - 217.0, - 1519.0, - 248.0, - 262.0, - 248.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 248.0, - 475.0, - 248.0, - 475.0, - 285.0, - 260.0, - 285.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 603.0, - 248.0, - 1369.0, - 248.0, - 1369.0, - 285.0, - 603.0, - 285.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 765.0, - 767.0, - 891.0, - 767.0, - 891.0, - 803.0, - 765.0, - 803.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 270.0, - 2165.0, - 270.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1344.0, - 2151.0, - 1478.0, - 2151.0, - 1478.0, - 2184.0, - 1344.0, - 2184.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 803.0, - 122.0, - 851.0, - 122.0, - 851.0, - 164.0, - 803.0, - 164.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 924.0, - 1604.0, - 964.0, - 1604.0, - 964.0, - 1626.0, - 924.0, - 1626.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1393.0, - 1590.0, - 1394.0, - 1590.0, - 1394.0, - 1636.0, - 1393.0, - 1636.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 1590.0, - 1520.0, - 1590.0, - 1520.0, - 1636.0, - 1471.0, - 1636.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 910.0, - 540.0, - 910.0, - 540.0, - 945.0, - 263.0, - 945.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 564.0, - 910.0, - 1067.0, - 910.0, - 1067.0, - 945.0, - 564.0, - 945.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 837.0, - 781.0, - 837.0, - 781.0, - 874.0, - 259.0, - 874.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 975.0, - 837.0, - 1520.0, - 837.0, - 1520.0, - 874.0, - 975.0, - 874.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 867.0, - 259.0, - 867.0, - 259.0, - 913.0, - 257.0, - 913.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 452.0, - 867.0, - 463.0, - 867.0, - 463.0, - 913.0, - 452.0, - 913.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 835.0, - 781.0, - 835.0, - 781.0, - 876.0, - 260.0, - 876.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 975.0, - 835.0, - 1522.0, - 835.0, - 1522.0, - 876.0, - 975.0, - 876.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 865.0, - 259.0, - 865.0, - 259.0, - 915.0, - 259.0, - 915.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 452.0, - 865.0, - 462.0, - 865.0, - 462.0, - 915.0, - 452.0, - 915.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 912.0, - 540.0, - 912.0, - 540.0, - 945.0, - 263.0, - 945.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 564.0, - 912.0, - 1068.0, - 912.0, - 1068.0, - 945.0, - 564.0, - 945.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 18, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 134, - 175, - 888, - 175, - 888, - 213, - 134, - 213 - ], - "score": 0.877 - }, - { - "category_id": 2, - "poly": [ - 166, - 2163, - 267, - 2163, - 267, - 2186, - 166, - 2186 - ], - "score": 0.873 - }, - { - "category_id": 1, - "poly": [ - 253, - 932, - 1520, - 932, - 1520, - 1079, - 253, - 1079 - ], - "score": 0.821 - }, - { - "category_id": 1, - "poly": [ - 919, - 1727, - 1520, - 1727, - 1520, - 1769, - 919, - 1769 - ], - "score": 0.717 - }, - { - "category_id": 1, - "poly": [ - 263, - 243, - 1522, - 243, - 1522, - 904, - 263, - 904 - ], - "score": 0.664 - }, - { - "category_id": 2, - "poly": [ - 806, - 125, - 847, - 125, - 847, - 157, - 806, - 157 - ], - "score": 0.637 - }, - { - "category_id": 1, - "poly": [ - 323, - 646, - 471, - 646, - 471, - 682, - 323, - 682 - ], - "score": 0.14 - }, - { - "category_id": 1, - "poly": [ - 302, - 861, - 1522, - 861, - 1522, - 900, - 302, - 900 - ], - "score": 0.117 - }, - { - "category_id": 1, - "poly": [ - 806, - 125, - 847, - 125, - 847, - 157, - 806, - 157 - ], - "score": 0.112 - }, - { - "category_id": 13, - "poly": [ - 1180, - 931, - 1364, - 931, - 1364, - 969, - 1180, - 969 - ], - "score": 0.92, - "latex": "1.2\\times10^{-6}\\mathsf{m}^{2}" - }, - { - "category_id": 13, - "poly": [ - 323, - 969, - 494, - 969, - 494, - 1005, - 323, - 1005 - ], - "score": 0.91, - "latex": "6.0\\times10^{-3}\\mathrm{m}" - }, - { - "category_id": 13, - "poly": [ - 834, - 969, - 976, - 969, - 976, - 1005, - 834, - 1005 - ], - "score": 0.91, - "latex": "9.6\\times10^{16}" - }, - { - "category_id": 13, - "poly": [ - 323, - 1043, - 420, - 1043, - 420, - 1078, - 323, - 1078 - ], - "score": 0.64, - "latex": "3.0\\mathsf{m A}" - }, - { - "category_id": 13, - "poly": [ - 784, - 1011, - 809, - 1011, - 809, - 1039, - 784, - 1039 - ], - "score": 0.6, - "latex": "V" - }, - { - "category_id": 13, - "poly": [ - 1394, - 1727, - 1470, - 1727, - 1470, - 1765, - 1394, - 1765 - ], - "score": 0.33, - "latex": "m\\mathtt{s}^{-1}" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 172.0, - 891.0, - 172.0, - 891.0, - 218.0, - 133.0, - 218.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 270.0, - 2165.0, - 270.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 936.0, - 303.0, - 936.0, - 303.0, - 972.0, - 257.0, - 972.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 314.0, - 930.0, - 1179.0, - 930.0, - 1179.0, - 975.0, - 314.0, - 975.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1365.0, - 930.0, - 1520.0, - 930.0, - 1520.0, - 975.0, - 1365.0, - 975.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 495.0, - 968.0, - 833.0, - 968.0, - 833.0, - 1009.0, - 495.0, - 1009.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 977.0, - 968.0, - 1177.0, - 968.0, - 1177.0, - 1009.0, - 977.0, - 1009.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 323.0, - 1004.0, - 783.0, - 1004.0, - 783.0, - 1046.0, - 323.0, - 1046.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 810.0, - 1004.0, - 1522.0, - 1004.0, - 1522.0, - 1046.0, - 810.0, - 1046.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 421.0, - 1044.0, - 431.0, - 1044.0, - 431.0, - 1080.0, - 421.0, - 1080.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 924.0, - 1738.0, - 964.0, - 1738.0, - 964.0, - 1760.0, - 924.0, - 1760.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1393.0, - 1724.0, - 1393.0, - 1724.0, - 1393.0, - 1770.0, - 1393.0, - 1770.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 1724.0, - 1520.0, - 1724.0, - 1520.0, - 1770.0, - 1471.0, - 1770.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 265.0, - 252.0, - 301.0, - 252.0, - 301.0, - 285.0, - 265.0, - 285.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 250.0, - 1518.0, - 250.0, - 1518.0, - 285.0, - 316.0, - 285.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 322.0, - 285.0, - 532.0, - 285.0, - 532.0, - 322.0, - 322.0, - 322.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 325.0, - 358.0, - 1177.0, - 358.0, - 1177.0, - 393.0, - 325.0, - 393.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 321.0, - 426.0, - 458.0, - 426.0, - 458.0, - 470.0, - 321.0, - 470.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 322.0, - 645.0, - 472.0, - 645.0, - 472.0, - 681.0, - 322.0, - 681.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1473.0, - 863.0, - 1520.0, - 863.0, - 1520.0, - 901.0, - 1473.0, - 901.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 801.0, - 121.0, - 853.0, - 121.0, - 853.0, - 167.0, - 801.0, - 167.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 326.0, - 646.0, - 472.0, - 646.0, - 472.0, - 681.0, - 326.0, - 681.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1469.0, - 863.0, - 1520.0, - 863.0, - 1520.0, - 902.0, - 1469.0, - 902.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 801.0, - 121.0, - 853.0, - 121.0, - 853.0, - 167.0, - 801.0, - 167.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 19, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 166, - 2163, - 267, - 2163, - 267, - 2186, - 166, - 2186 - ], - "score": 0.873 - }, - { - "category_id": 2, - "poly": [ - 1346, - 2152, - 1474, - 2152, - 1474, - 2182, - 1346, - 2182 - ], - "score": 0.831 - }, - { - "category_id": 2, - "poly": [ - 806, - 125, - 844, - 125, - 844, - 156, - 806, - 156 - ], - "score": 0.786 - }, - { - "category_id": 1, - "poly": [ - 258, - 358, - 869, - 358, - 869, - 468, - 258, - 468 - ], - "score": 0.659 - }, - { - "category_id": 1, - "poly": [ - 257, - 1510, - 1522, - 1510, - 1522, - 1550, - 257, - 1550 - ], - "score": 0.43 - }, - { - "category_id": 1, - "poly": [ - 191, - 176, - 1524, - 176, - 1524, - 471, - 191, - 471 - ], - "score": 0.381 - }, - { - "category_id": 1, - "poly": [ - 203, - 250, - 1523, - 250, - 1523, - 322, - 203, - 322 - ], - "score": 0.305 - }, - { - "category_id": 1, - "poly": [ - 192, - 176, - 1514, - 176, - 1514, - 247, - 192, - 247 - ], - "score": 0.293 - }, - { - "category_id": 1, - "poly": [ - 253, - 1439, - 1525, - 1439, - 1525, - 1478, - 253, - 1478 - ], - "score": 0.269 - }, - { - "category_id": 1, - "poly": [ - 253, - 1368, - 1521, - 1368, - 1521, - 1405, - 253, - 1405 - ], - "score": 0.268 - }, - { - "category_id": 1, - "poly": [ - 255, - 1078, - 1521, - 1078, - 1521, - 1560, - 255, - 1560 - ], - "score": 0.249 - }, - { - "category_id": 1, - "poly": [ - 256, - 1224, - 1520, - 1224, - 1520, - 1259, - 256, - 1259 - ], - "score": 0.237 - }, - { - "category_id": 1, - "poly": [ - 257, - 1152, - 1524, - 1152, - 1524, - 1188, - 257, - 1188 - ], - "score": 0.199 - }, - { - "category_id": 1, - "poly": [ - 197, - 175, - 1522, - 175, - 1522, - 356, - 197, - 356 - ], - "score": 0.185 - }, - { - "category_id": 1, - "poly": [ - 257, - 1294, - 1524, - 1294, - 1524, - 1332, - 257, - 1332 - ], - "score": 0.128 - }, - { - "category_id": 1, - "poly": [ - 265, - 432, - 863, - 432, - 863, - 468, - 265, - 468 - ], - "score": 0.102 - }, - { - "category_id": 13, - "poly": [ - 1217, - 254, - 1238, - 254, - 1238, - 281, - 1217, - 281 - ], - "score": 0.47, - "latex": "r" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 270.0, - 2165.0, - 270.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1344.0, - 2152.0, - 1477.0, - 2152.0, - 1477.0, - 2183.0, - 1344.0, - 2183.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 802.0, - 123.0, - 851.0, - 123.0, - 851.0, - 164.0, - 802.0, - 164.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 325.0, - 360.0, - 535.0, - 360.0, - 535.0, - 390.0, - 325.0, - 390.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 324.0, - 395.0, - 664.0, - 395.0, - 664.0, - 427.0, - 324.0, - 427.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 324.0, - 432.0, - 863.0, - 432.0, - 863.0, - 466.0, - 324.0, - 466.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1470.0, - 1512.0, - 1521.0, - 1512.0, - 1521.0, - 1552.0, - 1470.0, - 1552.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 177.0, - 1520.0, - 177.0, - 1520.0, - 215.0, - 199.0, - 215.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 215.0, - 537.0, - 215.0, - 537.0, - 249.0, - 262.0, - 249.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 251.0, - 1216.0, - 251.0, - 1216.0, - 285.0, - 262.0, - 285.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1239.0, - 251.0, - 1520.0, - 251.0, - 1520.0, - 285.0, - 1239.0, - 285.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 288.0, - 835.0, - 288.0, - 835.0, - 322.0, - 263.0, - 322.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 322.0, - 869.0, - 322.0, - 869.0, - 361.0, - 260.0, - 361.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 265.0, - 368.0, - 275.0, - 368.0, - 275.0, - 382.0, - 265.0, - 382.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 322.0, - 357.0, - 537.0, - 357.0, - 537.0, - 391.0, - 322.0, - 391.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 323.0, - 394.0, - 668.0, - 394.0, - 668.0, - 428.0, - 323.0, - 428.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 428.0, - 864.0, - 428.0, - 864.0, - 469.0, - 319.0, - 469.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 264.0, - 251.0, - 1216.0, - 251.0, - 1216.0, - 285.0, - 264.0, - 285.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1239.0, - 251.0, - 1520.0, - 251.0, - 1520.0, - 285.0, - 1239.0, - 285.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 289.0, - 832.0, - 289.0, - 832.0, - 322.0, - 262.0, - 322.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 178.0, - 1520.0, - 178.0, - 1520.0, - 216.0, - 200.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 214.0, - 533.0, - 214.0, - 533.0, - 248.0, - 260.0, - 248.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1469.0, - 1513.0, - 1518.0, - 1513.0, - 1518.0, - 1551.0, - 1469.0, - 1551.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 178.0, - 1520.0, - 178.0, - 1520.0, - 213.0, - 197.0, - 213.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 214.0, - 536.0, - 214.0, - 536.0, - 251.0, - 261.0, - 251.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 249.0, - 1216.0, - 249.0, - 1216.0, - 286.0, - 260.0, - 286.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1239.0, - 249.0, - 1522.0, - 249.0, - 1522.0, - 286.0, - 1239.0, - 286.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 285.0, - 836.0, - 285.0, - 836.0, - 324.0, - 260.0, - 324.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 323.0, - 868.0, - 323.0, - 868.0, - 359.0, - 261.0, - 359.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 324.0, - 431.0, - 862.0, - 431.0, - 862.0, - 466.0, - 324.0, - 466.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 20, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 237, - 280, - 1417, - 280, - 1417, - 747, - 237, - 747 - ], - "score": 0.97 - }, - { - "category_id": 1, - "poly": [ - 261, - 865, - 1520, - 865, - 1520, - 975, - 261, - 975 - ], - "score": 0.968 - }, - { - "category_id": 4, - "poly": [ - 762, - 792, - 888, - 792, - 888, - 832, - 762, - 832 - ], - "score": 0.898 - }, - { - "category_id": 2, - "poly": [ - 166, - 2163, - 267, - 2163, - 267, - 2186, - 166, - 2186 - ], - "score": 0.875 - }, - { - "category_id": 2, - "poly": [ - 808, - 127, - 845, - 127, - 845, - 154, - 808, - 154 - ], - "score": 0.847 - }, - { - "category_id": 1, - "poly": [ - 135, - 176, - 1505, - 176, - 1505, - 250, - 135, - 250 - ], - "score": 0.703 - }, - { - "category_id": 1, - "poly": [ - 1003, - 2057, - 1520, - 2057, - 1520, - 2096, - 1003, - 2096 - ], - "score": 0.693 - }, - { - "category_id": 1, - "poly": [ - 254, - 1225, - 1521, - 1225, - 1521, - 1374, - 254, - 1374 - ], - "score": 0.688 - }, - { - "category_id": 1, - "poly": [ - 261, - 1009, - 1521, - 1009, - 1521, - 1194, - 261, - 1194 - ], - "score": 0.595 - }, - { - "category_id": 4, - "poly": [ - 135, - 176, - 1505, - 176, - 1505, - 250, - 135, - 250 - ], - "score": 0.361 - }, - { - "category_id": 1, - "poly": [ - 246, - 1010, - 1520, - 1010, - 1520, - 1374, - 246, - 1374 - ], - "score": 0.322 - }, - { - "category_id": 2, - "poly": [ - 1003, - 2057, - 1520, - 2057, - 1520, - 2096, - 1003, - 2096 - ], - "score": 0.173 - }, - { - "category_id": 13, - "poly": [ - 999, - 1264, - 1205, - 1264, - 1205, - 1301, - 999, - 1301 - ], - "score": 0.84, - "latex": "(40.0\\pm2.0)\\mathsf{c m}" - }, - { - "category_id": 13, - "poly": [ - 863, - 1228, - 943, - 1228, - 943, - 1261, - 863, - 1261 - ], - "score": 0.73, - "latex": "75\\mathsf{H z}" - }, - { - "category_id": 13, - "poly": [ - 1109, - 182, - 1134, - 182, - 1134, - 209, - 1109, - 209 - ], - "score": 0.58, - "latex": "x" - }, - { - "category_id": 13, - "poly": [ - 605, - 1304, - 629, - 1304, - 629, - 1332, - 605, - 1332 - ], - "score": 0.28, - "latex": "V" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 867.0, - 1518.0, - 867.0, - 1518.0, - 903.0, - 263.0, - 903.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 906.0, - 1519.0, - 906.0, - 1519.0, - 938.0, - 263.0, - 938.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 940.0, - 684.0, - 940.0, - 684.0, - 974.0, - 261.0, - 974.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 763.0, - 794.0, - 891.0, - 794.0, - 891.0, - 833.0, - 763.0, - 833.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 270.0, - 2165.0, - 270.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 801.0, - 122.0, - 853.0, - 122.0, - 853.0, - 166.0, - 801.0, - 166.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 175.0, - 1108.0, - 175.0, - 1108.0, - 217.0, - 133.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1135.0, - 175.0, - 1512.0, - 175.0, - 1512.0, - 217.0, - 1135.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 216.0, - 924.0, - 216.0, - 924.0, - 248.0, - 258.0, - 248.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1008.0, - 2071.0, - 1031.0, - 2071.0, - 1031.0, - 2086.0, - 1008.0, - 2086.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1396.0, - 2060.0, - 1517.0, - 2060.0, - 1517.0, - 2096.0, - 1396.0, - 2096.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 1229.0, - 299.0, - 1229.0, - 299.0, - 1267.0, - 257.0, - 1267.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 322.0, - 1228.0, - 862.0, - 1228.0, - 862.0, - 1262.0, - 322.0, - 1262.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 944.0, - 1228.0, - 949.0, - 1228.0, - 949.0, - 1262.0, - 944.0, - 1262.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 325.0, - 1265.0, - 998.0, - 1265.0, - 998.0, - 1299.0, - 325.0, - 1299.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1206.0, - 1265.0, - 1212.0, - 1265.0, - 1212.0, - 1299.0, - 1206.0, - 1299.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 322.0, - 1298.0, - 604.0, - 1298.0, - 604.0, - 1340.0, - 322.0, - 1340.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 630.0, - 1298.0, - 1520.0, - 1298.0, - 1520.0, - 1340.0, - 630.0, - 1340.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 321.0, - 1337.0, - 498.0, - 1337.0, - 498.0, - 1376.0, - 321.0, - 1376.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 265.0, - 1014.0, - 303.0, - 1014.0, - 303.0, - 1050.0, - 265.0, - 1050.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 321.0, - 1014.0, - 1140.0, - 1014.0, - 1140.0, - 1047.0, - 321.0, - 1047.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1470.0, - 1156.0, - 1521.0, - 1156.0, - 1521.0, - 1195.0, - 1470.0, - 1195.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 175.0, - 1108.0, - 175.0, - 1108.0, - 217.0, - 133.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1135.0, - 175.0, - 1512.0, - 175.0, - 1512.0, - 217.0, - 1135.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 216.0, - 924.0, - 216.0, - 924.0, - 248.0, - 258.0, - 248.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 265.0, - 1014.0, - 302.0, - 1014.0, - 302.0, - 1050.0, - 265.0, - 1050.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 321.0, - 1012.0, - 1141.0, - 1012.0, - 1141.0, - 1047.0, - 321.0, - 1047.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1476.0, - 1159.0, - 1518.0, - 1159.0, - 1518.0, - 1192.0, - 1476.0, - 1192.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 1230.0, - 300.0, - 1230.0, - 300.0, - 1264.0, - 258.0, - 1264.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 322.0, - 1228.0, - 862.0, - 1228.0, - 862.0, - 1264.0, - 322.0, - 1264.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 944.0, - 1228.0, - 950.0, - 1228.0, - 950.0, - 1264.0, - 944.0, - 1264.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 328.0, - 1266.0, - 998.0, - 1266.0, - 998.0, - 1298.0, - 328.0, - 1298.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1206.0, - 1266.0, - 1212.0, - 1266.0, - 1212.0, - 1298.0, - 1206.0, - 1298.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 323.0, - 1299.0, - 604.0, - 1299.0, - 604.0, - 1338.0, - 323.0, - 1338.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 630.0, - 1299.0, - 1519.0, - 1299.0, - 1519.0, - 1338.0, - 630.0, - 1338.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 323.0, - 1338.0, - 498.0, - 1338.0, - 498.0, - 1372.0, - 323.0, - 1372.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1008.0, - 2071.0, - 1031.0, - 2071.0, - 1031.0, - 2086.0, - 1008.0, - 2086.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1396.0, - 2060.0, - 1517.0, - 2060.0, - 1517.0, - 2096.0, - 1396.0, - 2096.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 21, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 199, - 174, - 1519, - 174, - 1519, - 286, - 199, - 286 - ], - "score": 0.967 - }, - { - "category_id": 3, - "poly": [ - 495, - 320, - 1155, - 320, - 1155, - 487, - 495, - 487 - ], - "score": 0.964 - }, - { - "category_id": 1, - "poly": [ - 258, - 615, - 1295, - 615, - 1295, - 657, - 258, - 657 - ], - "score": 0.914 - }, - { - "category_id": 1, - "poly": [ - 249, - 976, - 1517, - 976, - 1517, - 1053, - 249, - 1053 - ], - "score": 0.912 - }, - { - "category_id": 4, - "poly": [ - 762, - 543, - 892, - 543, - 892, - 583, - 762, - 583 - ], - "score": 0.899 - }, - { - "category_id": 2, - "poly": [ - 166, - 2163, - 267, - 2163, - 267, - 2186, - 166, - 2186 - ], - "score": 0.883 - }, - { - "category_id": 2, - "poly": [ - 807, - 126, - 846, - 126, - 846, - 156, - 807, - 156 - ], - "score": 0.855 - }, - { - "category_id": 2, - "poly": [ - 1346, - 2152, - 1474, - 2152, - 1474, - 2182, - 1346, - 2182 - ], - "score": 0.847 - }, - { - "category_id": 1, - "poly": [ - 317, - 1230, - 1520, - 1230, - 1520, - 1271, - 317, - 1271 - ], - "score": 0.477 - }, - { - "category_id": 1, - "poly": [ - 308, - 904, - 1518, - 904, - 1518, - 944, - 308, - 944 - ], - "score": 0.181 - }, - { - "category_id": 13, - "poly": [ - 969, - 178, - 997, - 178, - 997, - 210, - 969, - 210 - ], - "score": 0.31, - "latex": "\\pmb{\\times}" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 179.0, - 968.0, - 179.0, - 968.0, - 215.0, - 199.0, - 215.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 998.0, - 179.0, - 1520.0, - 179.0, - 1520.0, - 215.0, - 998.0, - 215.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 210.0, - 1520.0, - 210.0, - 1520.0, - 255.0, - 259.0, - 255.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 250.0, - 523.0, - 250.0, - 523.0, - 288.0, - 261.0, - 288.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 266.0, - 622.0, - 302.0, - 622.0, - 302.0, - 655.0, - 266.0, - 655.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 619.0, - 1293.0, - 619.0, - 1293.0, - 654.0, - 318.0, - 654.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 980.0, - 303.0, - 980.0, - 303.0, - 1016.0, - 256.0, - 1016.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 314.0, - 980.0, - 1516.0, - 980.0, - 1516.0, - 1014.0, - 314.0, - 1014.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 324.0, - 1019.0, - 1473.0, - 1019.0, - 1473.0, - 1049.0, - 324.0, - 1049.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 764.0, - 548.0, - 892.0, - 548.0, - 892.0, - 583.0, - 764.0, - 583.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 270.0, - 2165.0, - 270.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 803.0, - 123.0, - 853.0, - 123.0, - 853.0, - 164.0, - 803.0, - 164.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1344.0, - 2152.0, - 1477.0, - 2152.0, - 1477.0, - 2183.0, - 1344.0, - 2183.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1467.0, - 1233.0, - 1520.0, - 1233.0, - 1520.0, - 1271.0, - 1467.0, - 1271.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1464.0, - 904.0, - 1523.0, - 904.0, - 1523.0, - 947.0, - 1464.0, - 947.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 22, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 366, - 257, - 1273, - 257, - 1273, - 836, - 366, - 836 - ], - "score": 0.968 - }, - { - "category_id": 1, - "poly": [ - 189, - 963, - 1524, - 963, - 1524, - 1039, - 189, - 1039 - ], - "score": 0.939 - }, - { - "category_id": 4, - "poly": [ - 762, - 891, - 889, - 891, - 889, - 931, - 762, - 931 - ], - "score": 0.902 - }, - { - "category_id": 2, - "poly": [ - 165, - 2162, - 268, - 2162, - 268, - 2186, - 165, - 2186 - ], - "score": 0.89 - }, - { - "category_id": 2, - "poly": [ - 808, - 127, - 845, - 127, - 845, - 154, - 808, - 154 - ], - "score": 0.823 - }, - { - "category_id": 1, - "poly": [ - 261, - 1363, - 482, - 1363, - 482, - 1399, - 261, - 1399 - ], - "score": 0.765 - }, - { - "category_id": 1, - "poly": [ - 260, - 1653, - 486, - 1653, - 486, - 1687, - 260, - 1687 - ], - "score": 0.716 - }, - { - "category_id": 4, - "poly": [ - 121, - 175, - 1219, - 175, - 1219, - 214, - 121, - 214 - ], - "score": 0.636 - }, - { - "category_id": 1, - "poly": [ - 261, - 1073, - 498, - 1073, - 498, - 1111, - 261, - 1111 - ], - "score": 0.575 - }, - { - "category_id": 2, - "poly": [ - 1474, - 1906, - 1517, - 1906, - 1517, - 1942, - 1474, - 1942 - ], - "score": 0.438 - }, - { - "category_id": 3, - "poly": [ - 254, - 1798, - 1520, - 1798, - 1520, - 1834, - 254, - 1834 - ], - "score": 0.14 - }, - { - "category_id": 13, - "poly": [ - 920, - 967, - 950, - 967, - 950, - 998, - 920, - 998 - ], - "score": 0.31, - "latex": "R" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 967.0, - 919.0, - 967.0, - 919.0, - 1001.0, - 199.0, - 1001.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 951.0, - 967.0, - 1523.0, - 967.0, - 1523.0, - 1001.0, - 951.0, - 1001.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 1007.0, - 717.0, - 1007.0, - 717.0, - 1037.0, - 263.0, - 1037.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 764.0, - 895.0, - 890.0, - 895.0, - 890.0, - 931.0, - 764.0, - 931.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 167.0, - 2166.0, - 269.0, - 2166.0, - 269.0, - 2185.0, - 167.0, - 2185.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 801.0, - 122.0, - 854.0, - 122.0, - 854.0, - 165.0, - 801.0, - 165.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 300.0, - 1367.0, - 480.0, - 1367.0, - 480.0, - 1395.0, - 300.0, - 1395.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 299.0, - 1655.0, - 485.0, - 1655.0, - 485.0, - 1686.0, - 299.0, - 1686.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 132.0, - 174.0, - 1218.0, - 174.0, - 1218.0, - 215.0, - 132.0, - 215.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 294.0, - 1077.0, - 498.0, - 1077.0, - 498.0, - 1107.0, - 294.0, - 1107.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 1903.0, - 1526.0, - 1903.0, - 1526.0, - 1950.0, - 1471.0, - 1950.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 23, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 608, - 294, - 1045, - 294, - 1045, - 573, - 608, - 573 - ], - "score": 0.969 - }, - { - "category_id": 1, - "poly": [ - 192, - 175, - 1513, - 175, - 1513, - 250, - 192, - 250 - ], - "score": 0.936 - }, - { - "category_id": 1, - "poly": [ - 261, - 690, - 1526, - 690, - 1526, - 762, - 261, - 762 - ], - "score": 0.91 - }, - { - "category_id": 4, - "poly": [ - 762, - 618, - 893, - 618, - 893, - 657, - 762, - 657 - ], - "score": 0.901 - }, - { - "category_id": 2, - "poly": [ - 165, - 2162, - 268, - 2162, - 268, - 2186, - 165, - 2186 - ], - "score": 0.874 - }, - { - "category_id": 2, - "poly": [ - 807, - 126, - 846, - 126, - 846, - 155, - 807, - 155 - ], - "score": 0.857 - }, - { - "category_id": 2, - "poly": [ - 627, - 2134, - 1026, - 2134, - 1026, - 2171, - 627, - 2171 - ], - "score": 0.807 - }, - { - "category_id": 1, - "poly": [ - 261, - 801, - 1522, - 801, - 1522, - 872, - 261, - 872 - ], - "score": 0.773 - }, - { - "category_id": 1, - "poly": [ - 260, - 765, - 1066, - 765, - 1066, - 799, - 260, - 799 - ], - "score": 0.675 - }, - { - "category_id": 1, - "poly": [ - 204, - 1412, - 1521, - 1412, - 1521, - 1485, - 204, - 1485 - ], - "score": 0.505 - }, - { - "category_id": 1, - "poly": [ - 196, - 1411, - 1520, - 1411, - 1520, - 1525, - 196, - 1525 - ], - "score": 0.501 - }, - { - "category_id": 2, - "poly": [ - 910, - 2061, - 1520, - 2061, - 1520, - 2103, - 910, - 2103 - ], - "score": 0.423 - }, - { - "category_id": 1, - "poly": [ - 241, - 1339, - 1516, - 1339, - 1516, - 1378, - 241, - 1378 - ], - "score": 0.399 - }, - { - "category_id": 1, - "poly": [ - 910, - 2061, - 1520, - 2061, - 1520, - 2103, - 910, - 2103 - ], - "score": 0.387 - }, - { - "category_id": 1, - "poly": [ - 239, - 1486, - 1218, - 1486, - 1218, - 1524, - 239, - 1524 - ], - "score": 0.368 - }, - { - "category_id": 1, - "poly": [ - 249, - 1053, - 1521, - 1053, - 1521, - 1088, - 249, - 1088 - ], - "score": 0.346 - }, - { - "category_id": 1, - "poly": [ - 246, - 1198, - 1519, - 1198, - 1519, - 1233, - 246, - 1233 - ], - "score": 0.275 - }, - { - "category_id": 1, - "poly": [ - 252, - 1126, - 1521, - 1126, - 1521, - 1161, - 252, - 1161 - ], - "score": 0.265 - }, - { - "category_id": 1, - "poly": [ - 260, - 764, - 1523, - 764, - 1523, - 871, - 260, - 871 - ], - "score": 0.204 - }, - { - "category_id": 1, - "poly": [ - 252, - 981, - 1520, - 981, - 1520, - 1015, - 252, - 1015 - ], - "score": 0.178 - }, - { - "category_id": 1, - "poly": [ - 248, - 1271, - 1519, - 1271, - 1519, - 1306, - 248, - 1306 - ], - "score": 0.141 - }, - { - "category_id": 13, - "poly": [ - 711, - 1487, - 740, - 1487, - 740, - 1518, - 711, - 1518 - ], - "score": 0.45, - "latex": "N" - }, - { - "category_id": 13, - "poly": [ - 815, - 1414, - 916, - 1414, - 916, - 1448, - 815, - 1448 - ], - "score": 0.41, - "latex": "480\\mathsf{n m}" - }, - { - "category_id": 13, - "poly": [ - 1390, - 691, - 1459, - 691, - 1459, - 726, - 1390, - 726 - ], - "score": 0.38, - "latex": "1.5\\lor" - }, - { - "category_id": 13, - "poly": [ - 1425, - 2064, - 1469, - 2064, - 1469, - 2096, - 1425, - 2096 - ], - "score": 0.28, - "latex": "\\mathsf{s}^{-1}" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 177.0, - 1520.0, - 177.0, - 1520.0, - 212.0, - 198.0, - 212.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 215.0, - 518.0, - 215.0, - 518.0, - 248.0, - 259.0, - 248.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 264.0, - 694.0, - 1389.0, - 694.0, - 1389.0, - 727.0, - 264.0, - 727.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1460.0, - 694.0, - 1519.0, - 694.0, - 1519.0, - 727.0, - 1460.0, - 727.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 264.0, - 733.0, - 656.0, - 733.0, - 656.0, - 762.0, - 264.0, - 762.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 765.0, - 621.0, - 891.0, - 621.0, - 891.0, - 657.0, - 765.0, - 657.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 167.0, - 2166.0, - 269.0, - 2166.0, - 269.0, - 2185.0, - 167.0, - 2185.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 802.0, - 121.0, - 854.0, - 121.0, - 854.0, - 166.0, - 802.0, - 166.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 630.0, - 2138.0, - 1025.0, - 2138.0, - 1025.0, - 2167.0, - 630.0, - 2167.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 799.0, - 1522.0, - 799.0, - 1522.0, - 835.0, - 262.0, - 835.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 838.0, - 503.0, - 838.0, - 503.0, - 871.0, - 261.0, - 871.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 764.0, - 1058.0, - 764.0, - 1058.0, - 799.0, - 262.0, - 799.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 1413.0, - 814.0, - 1413.0, - 814.0, - 1450.0, - 198.0, - 1450.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 917.0, - 1413.0, - 1521.0, - 1413.0, - 1521.0, - 1450.0, - 917.0, - 1450.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 1451.0, - 375.0, - 1451.0, - 375.0, - 1486.0, - 260.0, - 1486.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 1415.0, - 814.0, - 1415.0, - 814.0, - 1448.0, - 198.0, - 1448.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 917.0, - 1415.0, - 1518.0, - 1415.0, - 1518.0, - 1448.0, - 917.0, - 1448.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 1451.0, - 373.0, - 1451.0, - 373.0, - 1485.0, - 263.0, - 1485.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 1486.0, - 710.0, - 1486.0, - 710.0, - 1523.0, - 262.0, - 1523.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 741.0, - 1486.0, - 1202.0, - 1486.0, - 1202.0, - 1523.0, - 741.0, - 1523.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 913.0, - 2063.0, - 970.0, - 2063.0, - 970.0, - 2098.0, - 913.0, - 2098.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1470.0, - 2064.0, - 1518.0, - 2064.0, - 1518.0, - 2102.0, - 1470.0, - 2102.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1466.0, - 1338.0, - 1523.0, - 1338.0, - 1523.0, - 1383.0, - 1466.0, - 1383.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 913.0, - 2063.0, - 970.0, - 2063.0, - 970.0, - 2098.0, - 913.0, - 2098.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1470.0, - 2064.0, - 1518.0, - 2064.0, - 1518.0, - 2102.0, - 1470.0, - 2102.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 1488.0, - 710.0, - 1488.0, - 710.0, - 1520.0, - 263.0, - 1520.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 741.0, - 1488.0, - 1199.0, - 1488.0, - 1199.0, - 1520.0, - 741.0, - 1520.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 763.0, - 1059.0, - 763.0, - 1059.0, - 801.0, - 261.0, - 801.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 801.0, - 1520.0, - 801.0, - 1520.0, - 836.0, - 261.0, - 836.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 838.0, - 502.0, - 838.0, - 502.0, - 871.0, - 261.0, - 871.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 24, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 136, - 247, - 1512, - 247, - 1512, - 322, - 136, - 322 - ], - "score": 0.933 - }, - { - "category_id": 0, - "poly": [ - 604, - 174, - 1051, - 174, - 1051, - 213, - 604, - 213 - ], - "score": 0.887 - }, - { - "category_id": 2, - "poly": [ - 164, - 2162, - 268, - 2162, - 268, - 2187, - 164, - 2187 - ], - "score": 0.774 - }, - { - "category_id": 2, - "poly": [ - 806, - 124, - 848, - 124, - 848, - 157, - 806, - 157 - ], - "score": 0.521 - }, - { - "category_id": 5, - "poly": [ - 129, - 330, - 1522, - 330, - 1522, - 2147, - 129, - 2147 - ], - "score": 0.333 - }, - { - "category_id": 1, - "poly": [ - 129, - 330, - 1522, - 330, - 1522, - 2147, - 129, - 2147 - ], - "score": 0.277 - }, - { - "category_id": 0, - "poly": [ - 806, - 124, - 848, - 124, - 848, - 157, - 806, - 157 - ], - "score": 0.13 - }, - { - "category_id": 15, - "poly": [ - 134.0, - 248.0, - 1516.0, - 248.0, - 1516.0, - 287.0, - 134.0, - 287.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 289.0, - 667.0, - 289.0, - 667.0, - 323.0, - 134.0, - 323.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 607.0, - 180.0, - 1049.0, - 180.0, - 1049.0, - 208.0, - 607.0, - 208.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 803.0, - 123.0, - 853.0, - 123.0, - 853.0, - 164.0, - 803.0, - 164.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 803.0, - 123.0, - 853.0, - 123.0, - 853.0, - 164.0, - 803.0, - 164.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 25, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 807, - 125, - 846, - 125, - 846, - 156, - 807, - 156 - ], - "score": 0.77 - }, - { - "category_id": 2, - "poly": [ - 164, - 2162, - 269, - 2162, - 269, - 2187, - 164, - 2187 - ], - "score": 0.762 - }, - { - "category_id": 1, - "poly": [ - 128, - 185, - 1522, - 185, - 1522, - 2151, - 128, - 2151 - ], - "score": 0.334 - }, - { - "category_id": 5, - "poly": [ - 128, - 185, - 1522, - 185, - 1522, - 2151, - 128, - 2151 - ], - "score": 0.309 - }, - { - "category_id": 15, - "poly": [ - 802.0, - 119.0, - 855.0, - 119.0, - 855.0, - 168.0, - 802.0, - 168.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 270.0, - 2165.0, - 270.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 26, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 142, - 1942, - 1517, - 1942, - 1517, - 2011, - 142, - 2011 - ], - "score": 0.94 - }, - { - "category_id": 0, - "poly": [ - 136, - 1912, - 315, - 1912, - 315, - 1935, - 136, - 1935 - ], - "score": 0.915 - }, - { - "category_id": 1, - "poly": [ - 145, - 2017, - 1517, - 2017, - 1517, - 2064, - 145, - 2064 - ], - "score": 0.888 - }, - { - "category_id": 1, - "poly": [ - 142, - 2101, - 1520, - 2101, - 1520, - 2148, - 142, - 2148 - ], - "score": 0.825 - }, - { - "category_id": 1, - "poly": [ - 135, - 2070, - 1026, - 2070, - 1026, - 2094, - 135, - 2094 - ], - "score": 0.782 - }, - { - "category_id": 2, - "poly": [ - 807, - 126, - 846, - 126, - 846, - 156, - 807, - 156 - ], - "score": 0.745 - }, - { - "category_id": 0, - "poly": [ - 134, - 1808, - 354, - 1808, - 354, - 1877, - 134, - 1877 - ], - "score": 0.626 - }, - { - "category_id": 1, - "poly": [ - 166, - 2164, - 267, - 2164, - 267, - 2185, - 166, - 2185 - ], - "score": 0.567 - }, - { - "category_id": 1, - "poly": [ - 138, - 1878, - 351, - 1878, - 351, - 1900, - 138, - 1900 - ], - "score": 0.47 - }, - { - "category_id": 5, - "poly": [ - 130, - 221, - 1521, - 221, - 1521, - 1790, - 130, - 1790 - ], - "score": 0.468 - }, - { - "category_id": 1, - "poly": [ - 130, - 221, - 1521, - 221, - 1521, - 1790, - 130, - 1790 - ], - "score": 0.372 - }, - { - "category_id": 2, - "poly": [ - 166, - 2164, - 267, - 2164, - 267, - 2185, - 166, - 2185 - ], - "score": 0.369 - }, - { - "category_id": 13, - "poly": [ - 165, - 2164, - 184, - 2164, - 184, - 2184, - 165, - 2184 - ], - "score": 0.26, - "latex": "\\circledcirc" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 1940.0, - 1519.0, - 1940.0, - 1519.0, - 1968.0, - 138.0, - 1968.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 1964.0, - 1521.0, - 1964.0, - 1521.0, - 1992.0, - 138.0, - 1992.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 1989.0, - 1518.0, - 1989.0, - 1518.0, - 2012.0, - 138.0, - 2012.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 1914.0, - 317.0, - 1914.0, - 317.0, - 1938.0, - 136.0, - 1938.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 2018.0, - 1519.0, - 2018.0, - 1519.0, - 2042.0, - 141.0, - 2042.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 2041.0, - 228.0, - 2041.0, - 228.0, - 2065.0, - 139.0, - 2065.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 2100.0, - 1519.0, - 2100.0, - 1519.0, - 2126.0, - 138.0, - 2126.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 2125.0, - 457.0, - 2125.0, - 457.0, - 2149.0, - 138.0, - 2149.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 137.0, - 2072.0, - 995.0, - 2072.0, - 995.0, - 2094.0, - 137.0, - 2094.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 803.0, - 123.0, - 851.0, - 123.0, - 851.0, - 164.0, - 803.0, - 164.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 1812.0, - 351.0, - 1812.0, - 351.0, - 1881.0, - 136.0, - 1881.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 185.0, - 2165.0, - 270.0, - 2165.0, - 270.0, - 2186.0, - 185.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 142.0, - 1879.0, - 350.0, - 1879.0, - 350.0, - 1900.0, - 142.0, - 1900.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 185.0, - 2165.0, - 270.0, - 2165.0, - 270.0, - 2186.0, - 185.0, - 2186.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 27, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 0, - "poly": [ - 264, - 295, - 1194, - 295, - 1194, - 428, - 264, - 428 - ], - "score": 0.962 - }, - { - "category_id": 1, - "poly": [ - 259, - 1355, - 1493, - 1355, - 1493, - 1573, - 259, - 1573 - ], - "score": 0.96 - }, - { - "category_id": 1, - "poly": [ - 259, - 1645, - 1050, - 1645, - 1050, - 1752, - 259, - 1752 - ], - "score": 0.957 - }, - { - "category_id": 2, - "poly": [ - 223, - 2116, - 492, - 2116, - 492, - 2170, - 223, - 2170 - ], - "score": 0.94 - }, - { - "category_id": 0, - "poly": [ - 260, - 1609, - 478, - 1609, - 478, - 1640, - 260, - 1640 - ], - "score": 0.923 - }, - { - "category_id": 2, - "poly": [ - 267, - 132, - 599, - 132, - 599, - 274, - 267, - 274 - ], - "score": 0.921 - }, - { - "category_id": 0, - "poly": [ - 260, - 1318, - 493, - 1318, - 493, - 1352, - 260, - 1352 - ], - "score": 0.918 - }, - { - "category_id": 1, - "poly": [ - 263, - 453, - 751, - 453, - 751, - 500, - 263, - 500 - ], - "score": 0.901 - }, - { - "category_id": 0, - "poly": [ - 261, - 1789, - 380, - 1789, - 380, - 1820, - 261, - 1820 - ], - "score": 0.895 - }, - { - "category_id": 1, - "poly": [ - 261, - 1825, - 1101, - 1825, - 1101, - 1861, - 261, - 1861 - ], - "score": 0.889 - }, - { - "category_id": 2, - "poly": [ - 727, - 2117, - 990, - 2117, - 990, - 2144, - 727, - 2144 - ], - "score": 0.882 - }, - { - "category_id": 2, - "poly": [ - 1364, - 2141, - 1494, - 2141, - 1494, - 2170, - 1364, - 2170 - ], - "score": 0.879 - }, - { - "category_id": 1, - "poly": [ - 266, - 518, - 738, - 518, - 738, - 556, - 266, - 556 - ], - "score": 0.87 - }, - { - "category_id": 1, - "poly": [ - 279, - 703, - 672, - 703, - 672, - 763, - 279, - 763 - ], - "score": 0.841 - }, - { - "category_id": 2, - "poly": [ - 1582, - 5, - 1652, - 5, - 1652, - 38, - 1582, - 38 - ], - "score": 0.813 - }, - { - "category_id": 0, - "poly": [ - 280, - 673, - 436, - 673, - 436, - 699, - 280, - 699 - ], - "score": 0.75 - }, - { - "category_id": 3, - "poly": [ - 1044, - 809, - 1449, - 809, - 1449, - 906, - 1044, - 906 - ], - "score": 0.72 - }, - { - "category_id": 0, - "poly": [ - 280, - 598, - 466, - 598, - 466, - 626, - 280, - 626 - ], - "score": 0.68 - }, - { - "category_id": 2, - "poly": [ - 53, - 618, - 140, - 618, - 140, - 939, - 53, - 939 - ], - "score": 0.648 - }, - { - "category_id": 1, - "poly": [ - 282, - 968, - 1148, - 968, - 1148, - 1007, - 282, - 1007 - ], - "score": 0.558 - }, - { - "category_id": 1, - "poly": [ - 281, - 627, - 815, - 627, - 815, - 658, - 281, - 658 - ], - "score": 0.472 - }, - { - "category_id": 1, - "poly": [ - 280, - 1149, - 1476, - 1149, - 1476, - 1301, - 280, - 1301 - ], - "score": 0.302 - }, - { - "category_id": 1, - "poly": [ - 278, - 597, - 814, - 597, - 814, - 658, - 278, - 658 - ], - "score": 0.296 - }, - { - "category_id": 2, - "poly": [ - 53, - 616, - 138, - 616, - 138, - 940, - 53, - 940 - ], - "score": 0.213 - }, - { - "category_id": 1, - "poly": [ - 282, - 966, - 1481, - 966, - 1481, - 1103, - 282, - 1103 - ], - "score": 0.189 - }, - { - "category_id": 1, - "poly": [ - 278, - 672, - 672, - 672, - 672, - 763, - 278, - 763 - ], - "score": 0.185 - }, - { - "category_id": 3, - "poly": [ - 276, - 956, - 1482, - 956, - 1482, - 1302, - 276, - 1302 - ], - "score": 0.162 - }, - { - "category_id": 2, - "poly": [ - 1044, - 809, - 1449, - 809, - 1449, - 906, - 1044, - 906 - ], - "score": 0.148 - }, - { - "category_id": 13, - "poly": [ - 379, - 733, - 475, - 733, - 475, - 763, - 379, - 763 - ], - "score": 0.54, - "latex": "\\left(\\mathsf{c m}/\\mathsf{m m}\\right)" - }, - { - "category_id": 13, - "poly": [ - 223, - 2117, - 246, - 2117, - 246, - 2141, - 223, - 2141 - ], - "score": 0.42, - "latex": "\\circledcirc" - }, - { - "category_id": 13, - "poly": [ - 275, - 633, - 294, - 633, - 294, - 652, - 275, - 652 - ], - "score": 0.26, - "latex": "\\bullet" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 296.0, - 1190.0, - 296.0, - 1190.0, - 360.0, - 262.0, - 360.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 265.0, - 380.0, - 677.0, - 380.0, - 677.0, - 426.0, - 265.0, - 426.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 280.0, - 1355.0, - 1322.0, - 1355.0, - 1322.0, - 1392.0, - 280.0, - 1392.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 269.0, - 1390.0, - 1475.0, - 1390.0, - 1475.0, - 1429.0, - 269.0, - 1429.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 294.0, - 1427.0, - 1490.0, - 1427.0, - 1490.0, - 1465.0, - 294.0, - 1465.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 273.0, - 1463.0, - 645.0, - 1463.0, - 645.0, - 1500.0, - 273.0, - 1500.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 266.0, - 1495.0, - 1430.0, - 1495.0, - 1430.0, - 1541.0, - 266.0, - 1541.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 297.0, - 1535.0, - 1154.0, - 1535.0, - 1154.0, - 1576.0, - 297.0, - 1576.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 295.0, - 1644.0, - 763.0, - 1644.0, - 763.0, - 1680.0, - 295.0, - 1680.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 293.0, - 1678.0, - 1048.0, - 1678.0, - 1048.0, - 1718.0, - 293.0, - 1718.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 295.0, - 1715.0, - 703.0, - 1715.0, - 703.0, - 1754.0, - 295.0, - 1754.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 247.0, - 2115.0, - 492.0, - 2115.0, - 492.0, - 2145.0, - 247.0, - 2145.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 226.0, - 2145.0, - 453.0, - 2145.0, - 453.0, - 2172.0, - 226.0, - 2172.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 1610.0, - 477.0, - 1610.0, - 477.0, - 1639.0, - 262.0, - 1639.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 270.0, - 138.0, - 595.0, - 138.0, - 595.0, - 234.0, - 270.0, - 234.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 280.0, - 243.0, - 593.0, - 243.0, - 593.0, - 271.0, - 280.0, - 271.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 1320.0, - 492.0, - 1320.0, - 492.0, - 1351.0, - 261.0, - 1351.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 457.0, - 748.0, - 457.0, - 748.0, - 499.0, - 262.0, - 499.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 1786.0, - 381.0, - 1786.0, - 381.0, - 1822.0, - 260.0, - 1822.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 277.0, - 1825.0, - 1101.0, - 1825.0, - 1101.0, - 1860.0, - 277.0, - 1860.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 728.0, - 2118.0, - 988.0, - 2118.0, - 988.0, - 2145.0, - 728.0, - 2145.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1362.0, - 2139.0, - 1498.0, - 2139.0, - 1498.0, - 2172.0, - 1362.0, - 2172.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 265.0, - 522.0, - 736.0, - 522.0, - 736.0, - 552.0, - 265.0, - 552.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 281.0, - 704.0, - 672.0, - 704.0, - 672.0, - 732.0, - 281.0, - 732.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 279.0, - 734.0, - 378.0, - 734.0, - 378.0, - 766.0, - 279.0, - 766.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 476.0, - 734.0, - 480.0, - 734.0, - 480.0, - 766.0, - 476.0, - 766.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1580.0, - 5.0, - 1656.0, - 5.0, - 1656.0, - 41.0, - 1580.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 281.0, - 674.0, - 437.0, - 674.0, - 437.0, - 700.0, - 281.0, - 700.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 280.0, - 598.0, - 468.0, - 598.0, - 468.0, - 626.0, - 280.0, - 626.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 62.0, - 627.0, - 73.0, - 627.0, - 73.0, - 643.0, - 62.0, - 643.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 57.0, - 649.0, - 74.0, - 649.0, - 74.0, - 673.0, - 57.0, - 673.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 57.0, - 676.0, - 75.0, - 676.0, - 75.0, - 701.0, - 57.0, - 701.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 58.0, - 704.0, - 73.0, - 704.0, - 73.0, - 724.0, - 58.0, - 724.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 56.0, - 730.0, - 82.0, - 730.0, - 82.0, - 753.0, - 56.0, - 753.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 57.0, - 756.0, - 76.0, - 756.0, - 76.0, - 780.0, - 57.0, - 780.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 58.0, - 785.0, - 73.0, - 785.0, - 73.0, - 806.0, - 58.0, - 806.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 57.0, - 811.0, - 76.0, - 811.0, - 76.0, - 833.0, - 57.0, - 833.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 56.0, - 837.0, - 82.0, - 837.0, - 82.0, - 860.0, - 56.0, - 860.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 56.0, - 862.0, - 75.0, - 862.0, - 75.0, - 888.0, - 56.0, - 888.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 58.0, - 894.0, - 73.0, - 894.0, - 73.0, - 913.0, - 58.0, - 913.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 64.0, - 922.0, - 72.0, - 922.0, - 72.0, - 933.0, - 64.0, - 933.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 286.0, - 971.0, - 1146.0, - 971.0, - 1146.0, - 1005.0, - 286.0, - 1005.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 295.0, - 628.0, - 813.0, - 628.0, - 813.0, - 656.0, - 295.0, - 656.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 283.0, - 1150.0, - 469.0, - 1150.0, - 469.0, - 1191.0, - 283.0, - 1191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 280.0, - 1223.0, - 433.0, - 1223.0, - 433.0, - 1265.0, - 280.0, - 1265.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 280.0, - 598.0, - 467.0, - 598.0, - 467.0, - 626.0, - 280.0, - 626.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 295.0, - 631.0, - 812.0, - 631.0, - 812.0, - 656.0, - 295.0, - 656.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 62.0, - 625.0, - 75.0, - 625.0, - 75.0, - 648.0, - 62.0, - 648.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 52.0, - 637.0, - 83.0, - 637.0, - 83.0, - 768.0, - 52.0, - 768.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 55.0, - 753.0, - 78.0, - 753.0, - 78.0, - 842.0, - 55.0, - 842.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 55.0, - 861.0, - 75.0, - 861.0, - 75.0, - 897.0, - 55.0, - 897.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 57.0, - 889.0, - 75.0, - 889.0, - 75.0, - 916.0, - 57.0, - 916.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 63.0, - 920.0, - 73.0, - 920.0, - 73.0, - 935.0, - 63.0, - 935.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 65.75, - 836.0, - 65.75, - 836.0, - 65.75, - 861.5, - 65.75, - 861.5 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 286.0, - 969.0, - 1147.0, - 969.0, - 1147.0, - 1006.0, - 286.0, - 1006.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 285.0, - 1042.0, - 495.0, - 1042.0, - 495.0, - 1079.0, - 285.0, - 1079.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 905.0, - 1042.0, - 1163.0, - 1042.0, - 1163.0, - 1079.0, - 905.0, - 1079.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 279.0, - 672.0, - 439.0, - 672.0, - 439.0, - 703.0, - 279.0, - 703.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 279.0, - 704.0, - 672.0, - 704.0, - 672.0, - 731.0, - 279.0, - 731.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 278.0, - 731.0, - 378.0, - 731.0, - 378.0, - 765.0, - 278.0, - 765.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 476.0, - 731.0, - 479.0, - 731.0, - 479.0, - 765.0, - 476.0, - 765.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1103.0, - 891.0, - 1124.0, - 891.0, - 1124.0, - 903.0, - 1103.0, - 903.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1158.0, - 891.0, - 1174.0, - 891.0, - 1174.0, - 903.0, - 1158.0, - 903.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1212.0, - 891.0, - 1230.0, - 891.0, - 1230.0, - 902.0, - 1212.0, - 902.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1267.0, - 891.0, - 1283.0, - 891.0, - 1283.0, - 902.0, - 1267.0, - 902.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1318.0, - 891.0, - 1336.0, - 891.0, - 1336.0, - 902.0, - 1318.0, - 902.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1373.0, - 892.0, - 1386.0, - 892.0, - 1386.0, - 901.0, - 1373.0, - 901.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 28, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 194, - 1019, - 529, - 1019, - 529, - 1276, - 194, - 1276 - ], - "score": 0.968 - }, - { - "category_id": 1, - "poly": [ - 195, - 531, - 422, - 531, - 422, - 790, - 195, - 790 - ], - "score": 0.962 - }, - { - "category_id": 1, - "poly": [ - 131, - 946, - 966, - 946, - 966, - 987, - 131, - 987 - ], - "score": 0.919 - }, - { - "category_id": 1, - "poly": [ - 128, - 461, - 1154, - 461, - 1154, - 502, - 128, - 502 - ], - "score": 0.905 - }, - { - "category_id": 1, - "poly": [ - 197, - 822, - 468, - 822, - 468, - 893, - 197, - 893 - ], - "score": 0.904 - }, - { - "category_id": 2, - "poly": [ - 166, - 2164, - 267, - 2164, - 267, - 2186, - 166, - 2186 - ], - "score": 0.87 - }, - { - "category_id": 0, - "poly": [ - 740, - 171, - 912, - 171, - 912, - 210, - 740, - 210 - ], - "score": 0.862 - }, - { - "category_id": 1, - "poly": [ - 196, - 1308, - 467, - 1308, - 467, - 1378, - 196, - 1378 - ], - "score": 0.827 - }, - { - "category_id": 1, - "poly": [ - 445, - 389, - 1206, - 389, - 1206, - 429, - 445, - 429 - ], - "score": 0.825 - }, - { - "category_id": 1, - "poly": [ - 381, - 245, - 1267, - 245, - 1267, - 286, - 381, - 286 - ], - "score": 0.812 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 39, - 1582, - 39 - ], - "score": 0.79 - }, - { - "category_id": 1, - "poly": [ - 652, - 318, - 999, - 318, - 999, - 356, - 652, - 356 - ], - "score": 0.78 - }, - { - "category_id": 1, - "poly": [ - 1474, - 842, - 1519, - 842, - 1519, - 879, - 1474, - 879 - ], - "score": 0.493 - }, - { - "category_id": 1, - "poly": [ - 1474, - 1327, - 1519, - 1327, - 1519, - 1364, - 1474, - 1364 - ], - "score": 0.426 - }, - { - "category_id": 2, - "poly": [ - 1474, - 1327, - 1519, - 1327, - 1519, - 1364, - 1474, - 1364 - ], - "score": 0.423 - }, - { - "category_id": 2, - "poly": [ - 1474, - 842, - 1519, - 842, - 1519, - 879, - 1474, - 879 - ], - "score": 0.358 - }, - { - "category_id": 0, - "poly": [ - 813, - 124, - 840, - 124, - 840, - 155, - 813, - 155 - ], - "score": 0.211 - }, - { - "category_id": 2, - "poly": [ - 813, - 124, - 840, - 124, - 840, - 155, - 813, - 155 - ], - "score": 0.195 - }, - { - "category_id": 0, - "poly": [ - 813, - 124, - 840, - 124, - 840, - 155, - 813, - 155 - ], - "score": 0.136 - }, - { - "category_id": 1, - "poly": [ - 198, - 1326, - 376, - 1326, - 376, - 1362, - 198, - 1362 - ], - "score": 0.129 - }, - { - "category_id": 2, - "poly": [ - 813, - 124, - 840, - 124, - 840, - 155, - 813, - 155 - ], - "score": 0.123 - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1021.0, - 228.0, - 1021.0, - 228.0, - 1057.0, - 196.0, - 1057.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 1019.0, - 361.0, - 1019.0, - 361.0, - 1063.0, - 259.0, - 1063.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1093.0, - 228.0, - 1093.0, - 228.0, - 1128.0, - 196.0, - 1128.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 1094.0, - 363.0, - 1094.0, - 363.0, - 1127.0, - 261.0, - 1127.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 1163.0, - 230.0, - 1163.0, - 230.0, - 1203.0, - 195.0, - 1203.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 264.0, - 1169.0, - 521.0, - 1169.0, - 521.0, - 1198.0, - 264.0, - 1198.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1237.0, - 228.0, - 1237.0, - 228.0, - 1273.0, - 196.0, - 1273.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 1242.0, - 523.0, - 1242.0, - 523.0, - 1271.0, - 263.0, - 1271.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 536.0, - 230.0, - 536.0, - 230.0, - 572.0, - 196.0, - 572.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 534.0, - 407.0, - 534.0, - 407.0, - 567.0, - 258.0, - 567.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 606.0, - 229.0, - 606.0, - 229.0, - 645.0, - 197.0, - 645.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 604.0, - 421.0, - 604.0, - 421.0, - 641.0, - 259.0, - 641.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 677.0, - 231.0, - 677.0, - 231.0, - 718.0, - 195.0, - 718.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 678.0, - 393.0, - 678.0, - 393.0, - 715.0, - 259.0, - 715.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 752.0, - 230.0, - 752.0, - 230.0, - 788.0, - 196.0, - 788.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 748.0, - 408.0, - 748.0, - 408.0, - 786.0, - 256.0, - 786.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 947.0, - 161.0, - 947.0, - 161.0, - 984.0, - 133.0, - 984.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 949.0, - 962.0, - 949.0, - 962.0, - 982.0, - 199.0, - 982.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 464.0, - 159.0, - 464.0, - 159.0, - 498.0, - 133.0, - 498.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 463.0, - 1155.0, - 463.0, - 1155.0, - 499.0, - 196.0, - 499.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 840.0, - 375.0, - 840.0, - 375.0, - 880.0, - 199.0, - 880.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2185.0, - 166.0, - 2185.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 743.0, - 176.0, - 913.0, - 176.0, - 913.0, - 208.0, - 743.0, - 208.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1327.0, - 373.0, - 1327.0, - 373.0, - 1361.0, - 199.0, - 1361.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 450.0, - 395.0, - 1202.0, - 395.0, - 1202.0, - 425.0, - 450.0, - 425.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 389.0, - 249.0, - 1267.0, - 249.0, - 1267.0, - 283.0, - 389.0, - 283.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 655.0, - 322.0, - 998.0, - 322.0, - 998.0, - 355.0, - 655.0, - 355.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1472.0, - 837.0, - 1523.0, - 837.0, - 1523.0, - 886.0, - 1472.0, - 886.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1472.0, - 1322.0, - 1523.0, - 1322.0, - 1523.0, - 1371.0, - 1472.0, - 1371.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1472.0, - 1322.0, - 1523.0, - 1322.0, - 1523.0, - 1371.0, - 1472.0, - 1371.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1472.0, - 837.0, - 1523.0, - 837.0, - 1523.0, - 886.0, - 1472.0, - 886.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 812.0, - 121.0, - 842.0, - 121.0, - 842.0, - 163.0, - 812.0, - 163.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 812.0, - 121.0, - 842.0, - 121.0, - 842.0, - 163.0, - 812.0, - 163.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 812.0, - 121.0, - 842.0, - 121.0, - 842.0, - 163.0, - 812.0, - 163.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1327.0, - 374.0, - 1327.0, - 374.0, - 1361.0, - 200.0, - 1361.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 812.0, - 121.0, - 842.0, - 121.0, - 842.0, - 163.0, - 812.0, - 163.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 29, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 198, - 1425, - 739, - 1425, - 739, - 1744, - 198, - 1744 - ], - "score": 0.977, - "html": "
入/nma/mm
A4500.20
B5100.15
C5500.25
D6100.30
" - }, - { - "category_id": 1, - "poly": [ - 194, - 791, - 617, - 791, - 617, - 1048, - 194, - 1048 - ], - "score": 0.973 - }, - { - "category_id": 3, - "poly": [ - 208, - 284, - 622, - 284, - 622, - 600, - 208, - 600 - ], - "score": 0.973 - }, - { - "category_id": 1, - "poly": [ - 134, - 1206, - 1230, - 1206, - 1230, - 1318, - 134, - 1318 - ], - "score": 0.967 - }, - { - "category_id": 1, - "poly": [ - 132, - 173, - 1409, - 173, - 1409, - 247, - 132, - 247 - ], - "score": 0.942 - }, - { - "category_id": 1, - "poly": [ - 190, - 1773, - 1424, - 1773, - 1424, - 1849, - 190, - 1849 - ], - "score": 0.939 - }, - { - "category_id": 1, - "poly": [ - 197, - 1350, - 872, - 1350, - 872, - 1389, - 197, - 1389 - ], - "score": 0.917 - }, - { - "category_id": 2, - "poly": [ - 165, - 2162, - 267, - 2162, - 267, - 2186, - 165, - 2186 - ], - "score": 0.888 - }, - { - "category_id": 1, - "poly": [ - 198, - 1081, - 467, - 1081, - 467, - 1152, - 198, - 1152 - ], - "score": 0.888 - }, - { - "category_id": 1, - "poly": [ - 196, - 647, - 1305, - 647, - 1305, - 687, - 196, - 687 - ], - "score": 0.887 - }, - { - "category_id": 2, - "poly": [ - 1345, - 2152, - 1474, - 2152, - 1474, - 2182, - 1345, - 2182 - ], - "score": 0.885 - }, - { - "category_id": 1, - "poly": [ - 197, - 721, - 825, - 721, - 825, - 760, - 197, - 760 - ], - "score": 0.878 - }, - { - "category_id": 2, - "poly": [ - 1475, - 1902, - 1518, - 1902, - 1518, - 1937, - 1475, - 1937 - ], - "score": 0.874 - }, - { - "category_id": 2, - "poly": [ - 1474, - 1100, - 1519, - 1100, - 1519, - 1137, - 1474, - 1137 - ], - "score": 0.821 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 39, - 1582, - 39 - ], - "score": 0.806 - }, - { - "category_id": 2, - "poly": [ - 814, - 125, - 838, - 125, - 838, - 154, - 814, - 154 - ], - "score": 0.739 - }, - { - "category_id": 3, - "poly": [ - 198, - 1881, - 468, - 1881, - 468, - 1952, - 198, - 1952 - ], - "score": 0.271 - }, - { - "category_id": 1, - "poly": [ - 199, - 1900, - 373, - 1900, - 373, - 1936, - 199, - 1936 - ], - "score": 0.193 - }, - { - "category_id": 13, - "poly": [ - 625, - 651, - 651, - 651, - 651, - 682, - 625, - 682 - ], - "score": 0.56, - "latex": "\\pmb{\\mathrm{x}}" - }, - { - "category_id": 14, - "poly": [ - 258, - 793, - 612, - 793, - 612, - 831, - 258, - 831 - ], - "score": 0.55, - "latex": "n\\times\\sin70^{\\circ}=1.5\\times\\sin50^{\\circ}" - }, - { - "category_id": 13, - "poly": [ - 1273, - 655, - 1295, - 655, - 1295, - 681, - 1273, - 681 - ], - "score": 0.53, - "latex": "n" - }, - { - "category_id": 14, - "poly": [ - 266, - 865, - 620, - 865, - 620, - 903, - 266, - 903 - ], - "score": 0.51, - "latex": "n\\times\\sin20^{\\circ}=1.5\\times\\sin40^{\\circ}" - }, - { - "category_id": 13, - "poly": [ - 498, - 1776, - 523, - 1776, - 523, - 1808, - 498, - 1808 - ], - "score": 0.46, - "latex": "\\lambda" - }, - { - "category_id": 13, - "poly": [ - 1213, - 650, - 1239, - 650, - 1239, - 681, - 1213, - 681 - ], - "score": 0.42, - "latex": "\\pmb{\\upgamma}" - }, - { - "category_id": 13, - "poly": [ - 258, - 793, - 611, - 793, - 611, - 831, - 258, - 831 - ], - "score": 0.4, - "latex": "n\\times\\sin70^{\\circ}=1.5\\times\\sin50^{\\circ}" - }, - { - "category_id": 13, - "poly": [ - 267, - 865, - 620, - 865, - 620, - 903, - 267, - 903 - ], - "score": 0.36, - "latex": "n\\times\\sin20^{\\circ}=1.5\\times\\sin40^{\\circ}" - }, - { - "category_id": 13, - "poly": [ - 586, - 1780, - 609, - 1780, - 609, - 1808, - 586, - 1808 - ], - "score": 0.33, - "latex": "a" - }, - { - "category_id": 13, - "poly": [ - 221, - 434, - 240, - 434, - 240, - 451, - 221, - 451 - ], - "score": 0.31, - "latex": "n" - }, - { - "category_id": 13, - "poly": [ - 329, - 211, - 357, - 211, - 357, - 243, - 329, - 243 - ], - "score": 0.3, - "latex": "\\pmb{\\chi}" - }, - { - "category_id": 13, - "poly": [ - 259, - 937, - 612, - 937, - 612, - 976, - 259, - 976 - ], - "score": 0.28, - "latex": "1.5\\times\\sin70^{\\circ}=n\\times\\sin50^{\\circ}" - }, - { - "category_id": 14, - "poly": [ - 260, - 937, - 614, - 937, - 614, - 977, - 260, - 977 - ], - "score": 0.25, - "latex": "1.5\\times\\sin70^{\\circ}=n\\times\\sin50^{\\circ}" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 794.0, - 230.0, - 794.0, - 230.0, - 829.0, - 196.0, - 829.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 866.0, - 229.0, - 866.0, - 229.0, - 902.0, - 196.0, - 902.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 936.0, - 231.0, - 936.0, - 231.0, - 976.0, - 195.0, - 976.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1010.0, - 229.0, - 1010.0, - 229.0, - 1045.0, - 196.0, - 1045.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 264.0, - 1013.0, - 607.0, - 1013.0, - 607.0, - 1044.0, - 264.0, - 1044.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 1209.0, - 160.0, - 1209.0, - 160.0, - 1241.0, - 135.0, - 1241.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1209.0, - 1225.0, - 1209.0, - 1225.0, - 1246.0, - 199.0, - 1246.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1245.0, - 1053.0, - 1245.0, - 1053.0, - 1281.0, - 200.0, - 1281.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 1279.0, - 1046.0, - 1279.0, - 1046.0, - 1318.0, - 197.0, - 1318.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 131.0, - 175.0, - 164.0, - 175.0, - 164.0, - 210.0, - 131.0, - 210.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 175.0, - 1409.0, - 175.0, - 1409.0, - 211.0, - 198.0, - 211.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 211.0, - 328.0, - 211.0, - 328.0, - 245.0, - 198.0, - 245.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 358.0, - 211.0, - 456.0, - 211.0, - 456.0, - 245.0, - 358.0, - 245.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 1774.0, - 497.0, - 1774.0, - 497.0, - 1814.0, - 198.0, - 1814.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 524.0, - 1774.0, - 585.0, - 1774.0, - 585.0, - 1814.0, - 524.0, - 1814.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 610.0, - 1774.0, - 1418.0, - 1774.0, - 1418.0, - 1814.0, - 610.0, - 1814.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1811.0, - 316.0, - 1811.0, - 316.0, - 1851.0, - 196.0, - 1851.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1352.0, - 870.0, - 1352.0, - 870.0, - 1387.0, - 200.0, - 1387.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 168.0, - 2166.0, - 269.0, - 2166.0, - 269.0, - 2185.0, - 168.0, - 2185.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1098.0, - 375.0, - 1098.0, - 375.0, - 1138.0, - 199.0, - 1138.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 648.0, - 624.0, - 648.0, - 624.0, - 686.0, - 198.0, - 686.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 652.0, - 648.0, - 1212.0, - 648.0, - 1212.0, - 686.0, - 652.0, - 686.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1240.0, - 648.0, - 1272.0, - 648.0, - 1272.0, - 686.0, - 1240.0, - 686.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1296.0, - 648.0, - 1303.0, - 648.0, - 1303.0, - 686.0, - 1296.0, - 686.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1342.0, - 2151.0, - 1477.0, - 2151.0, - 1477.0, - 2183.0, - 1342.0, - 2183.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 722.0, - 821.0, - 722.0, - 821.0, - 758.0, - 198.0, - 758.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1470.0, - 1896.0, - 1524.0, - 1896.0, - 1524.0, - 1945.0, - 1470.0, - 1945.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1472.0, - 1095.0, - 1523.0, - 1095.0, - 1523.0, - 1144.0, - 1472.0, - 1144.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 812.0, - 122.0, - 842.0, - 122.0, - 842.0, - 162.0, - 812.0, - 162.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1901.0, - 375.0, - 1901.0, - 375.0, - 1935.0, - 200.0, - 1935.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 30, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 197, - 1344, - 580, - 1344, - 580, - 1662, - 197, - 1662 - ], - "score": 0.973, - "html": "
a/cmb/cm
A20.026.0
B20.022.0
C15.018.0
D10.014.0
" - }, - { - "category_id": 1, - "poly": [ - 198, - 1090, - 1092, - 1090, - 1092, - 1237, - 198, - 1237 - ], - "score": 0.971 - }, - { - "category_id": 3, - "poly": [ - 203, - 846, - 656, - 846, - 656, - 1037, - 203, - 1037 - ], - "score": 0.963 - }, - { - "category_id": 1, - "poly": [ - 195, - 350, - 431, - 350, - 431, - 610, - 195, - 610 - ], - "score": 0.962 - }, - { - "category_id": 1, - "poly": [ - 198, - 1270, - 857, - 1270, - 857, - 1308, - 198, - 1308 - ], - "score": 0.921 - }, - { - "category_id": 1, - "poly": [ - 129, - 766, - 1004, - 766, - 1004, - 806, - 129, - 806 - ], - "score": 0.908 - }, - { - "category_id": 2, - "poly": [ - 166, - 2163, - 267, - 2163, - 267, - 2186, - 166, - 2186 - ], - "score": 0.884 - }, - { - "category_id": 1, - "poly": [ - 197, - 641, - 467, - 641, - 467, - 713, - 197, - 713 - ], - "score": 0.867 - }, - { - "category_id": 2, - "poly": [ - 1475, - 1713, - 1517, - 1713, - 1517, - 1748, - 1475, - 1748 - ], - "score": 0.849 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 39, - 1582, - 39 - ], - "score": 0.761 - }, - { - "category_id": 2, - "poly": [ - 1474, - 662, - 1518, - 662, - 1518, - 698, - 1474, - 698 - ], - "score": 0.749 - }, - { - "category_id": 1, - "poly": [ - 197, - 1693, - 467, - 1693, - 467, - 1762, - 197, - 1762 - ], - "score": 0.634 - }, - { - "category_id": 1, - "poly": [ - 196, - 247, - 1069, - 247, - 1069, - 321, - 196, - 321 - ], - "score": 0.589 - }, - { - "category_id": 2, - "poly": [ - 815, - 125, - 839, - 125, - 839, - 153, - 815, - 153 - ], - "score": 0.57 - }, - { - "category_id": 1, - "poly": [ - 132, - 173, - 1115, - 173, - 1115, - 245, - 132, - 245 - ], - "score": 0.498 - }, - { - "category_id": 2, - "poly": [ - 815, - 125, - 838, - 125, - 838, - 153, - 815, - 153 - ], - "score": 0.355 - }, - { - "category_id": 1, - "poly": [ - 134, - 173, - 1113, - 173, - 1113, - 322, - 134, - 322 - ], - "score": 0.283 - }, - { - "category_id": 1, - "poly": [ - 199, - 1712, - 374, - 1712, - 374, - 1747, - 199, - 1747 - ], - "score": 0.162 - }, - { - "category_id": 1, - "poly": [ - 203, - 247, - 1076, - 247, - 1076, - 283, - 203, - 283 - ], - "score": 0.113 - }, - { - "category_id": 1, - "poly": [ - 136, - 174, - 1111, - 174, - 1111, - 211, - 136, - 211 - ], - "score": 0.112 - }, - { - "category_id": 13, - "poly": [ - 705, - 245, - 817, - 245, - 817, - 282, - 705, - 282 - ], - "score": 0.9, - "latex": "20\\mathsf{m}\\mathsf{s}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 857, - 245, - 967, - 245, - 967, - 282, - 857, - 282 - ], - "score": 0.89, - "latex": "15\\mathsf{m}\\mathsf{s}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 1013, - 1199, - 1081, - 1199, - 1081, - 1233, - 1013, - 1233 - ], - "score": 0.85, - "latex": "{}^{270^{\\circ}}" - }, - { - "category_id": 13, - "poly": [ - 392, - 175, - 500, - 175, - 500, - 212, - 392, - 212 - ], - "score": 0.81, - "latex": "1000\\mathsf{k g}" - }, - { - "category_id": 13, - "poly": [ - 1003, - 246, - 1071, - 246, - 1071, - 281, - 1003, - 281 - ], - "score": 0.6, - "latex": "_{2.4\\S}" - }, - { - "category_id": 13, - "poly": [ - 954, - 1200, - 981, - 1200, - 981, - 1231, - 954, - 1231 - ], - "score": 0.39, - "latex": "\\mathsf{\\textbf{P}}" - }, - { - "category_id": 13, - "poly": [ - 259, - 351, - 425, - 351, - 425, - 392, - 259, - 392 - ], - "score": 0.39, - "latex": "1.0\\times10^{3}\\mathsf{W}" - }, - { - "category_id": 13, - "poly": [ - 591, - 1164, - 683, - 1164, - 683, - 1197, - 591, - 1197 - ], - "score": 0.39, - "latex": "4.0\\mathsf{c m}" - }, - { - "category_id": 13, - "poly": [ - 387, - 1127, - 415, - 1127, - 415, - 1160, - 387, - 1160 - ], - "score": 0.28, - "latex": "\\pmb{\\chi}" - }, - { - "category_id": 13, - "poly": [ - 258, - 423, - 425, - 423, - 425, - 464, - 258, - 464 - ], - "score": 0.27, - "latex": "5.2\\times10^{3}\\mathsf{W}" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1092.0, - 574.0, - 1092.0, - 574.0, - 1125.0, - 200.0, - 1125.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1128.0, - 386.0, - 1128.0, - 386.0, - 1161.0, - 199.0, - 1161.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 416.0, - 1128.0, - 684.0, - 1128.0, - 684.0, - 1161.0, - 416.0, - 1161.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 1162.0, - 590.0, - 1162.0, - 590.0, - 1199.0, - 198.0, - 1199.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 684.0, - 1162.0, - 691.0, - 1162.0, - 691.0, - 1199.0, - 684.0, - 1199.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 1199.0, - 953.0, - 1199.0, - 953.0, - 1235.0, - 198.0, - 1235.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 982.0, - 1199.0, - 1012.0, - 1199.0, - 1012.0, - 1235.0, - 982.0, - 1235.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1082.0, - 1199.0, - 1091.0, - 1199.0, - 1091.0, - 1235.0, - 1082.0, - 1235.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 354.0, - 230.0, - 354.0, - 230.0, - 391.0, - 196.0, - 391.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 426.0, - 229.0, - 426.0, - 229.0, - 463.0, - 196.0, - 463.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 497.0, - 230.0, - 497.0, - 230.0, - 535.0, - 196.0, - 535.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 499.0, - 424.0, - 499.0, - 424.0, - 532.0, - 257.0, - 532.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 194.0, - 572.0, - 229.0, - 572.0, - 229.0, - 607.0, - 194.0, - 607.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 571.0, - 424.0, - 571.0, - 424.0, - 605.0, - 258.0, - 605.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1272.0, - 854.0, - 1272.0, - 854.0, - 1305.0, - 200.0, - 1305.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 768.0, - 161.0, - 768.0, - 161.0, - 804.0, - 134.0, - 804.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 771.0, - 1003.0, - 771.0, - 1003.0, - 801.0, - 198.0, - 801.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 662.0, - 374.0, - 662.0, - 374.0, - 697.0, - 199.0, - 697.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1470.0, - 1707.0, - 1525.0, - 1707.0, - 1525.0, - 1756.0, - 1470.0, - 1756.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 658.0, - 1525.0, - 658.0, - 1525.0, - 706.0, - 1471.0, - 706.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1710.0, - 375.0, - 1710.0, - 375.0, - 1750.0, - 199.0, - 1750.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 246.0, - 704.0, - 246.0, - 704.0, - 283.0, - 198.0, - 283.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 818.0, - 246.0, - 856.0, - 246.0, - 856.0, - 283.0, - 818.0, - 283.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 968.0, - 246.0, - 1002.0, - 246.0, - 1002.0, - 283.0, - 968.0, - 283.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1072.0, - 246.0, - 1072.0, - 246.0, - 1072.0, - 283.0, - 1072.0, - 283.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 283.0, - 922.0, - 283.0, - 922.0, - 322.0, - 198.0, - 322.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 814.0, - 124.0, - 842.0, - 124.0, - 842.0, - 158.0, - 814.0, - 158.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 176.0, - 161.0, - 176.0, - 161.0, - 209.0, - 135.0, - 209.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 177.0, - 391.0, - 177.0, - 391.0, - 210.0, - 199.0, - 210.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 501.0, - 177.0, - 1114.0, - 177.0, - 1114.0, - 210.0, - 501.0, - 210.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 212.0, - 603.0, - 212.0, - 603.0, - 246.0, - 199.0, - 246.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 813.0, - 123.0, - 843.0, - 123.0, - 843.0, - 160.0, - 813.0, - 160.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 175.0, - 160.0, - 175.0, - 160.0, - 209.0, - 135.0, - 209.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 176.0, - 391.0, - 176.0, - 391.0, - 211.0, - 199.0, - 211.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 501.0, - 176.0, - 1115.0, - 176.0, - 1115.0, - 211.0, - 501.0, - 211.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 211.0, - 606.0, - 211.0, - 606.0, - 250.0, - 199.0, - 250.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 249.0, - 704.0, - 249.0, - 704.0, - 281.0, - 197.0, - 281.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 818.0, - 249.0, - 856.0, - 249.0, - 856.0, - 281.0, - 818.0, - 281.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 968.0, - 249.0, - 1002.0, - 249.0, - 1002.0, - 281.0, - 968.0, - 281.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1072.0, - 249.0, - 1077.0, - 249.0, - 1077.0, - 281.0, - 1072.0, - 281.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 282.0, - 924.0, - 282.0, - 924.0, - 322.0, - 196.0, - 322.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1714.0, - 374.0, - 1714.0, - 374.0, - 1744.0, - 200.0, - 1744.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 246.0, - 704.0, - 246.0, - 704.0, - 282.0, - 200.0, - 282.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 818.0, - 246.0, - 856.0, - 246.0, - 856.0, - 282.0, - 818.0, - 282.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 968.0, - 246.0, - 1002.0, - 246.0, - 1002.0, - 282.0, - 968.0, - 282.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1072.0, - 246.0, - 1078.0, - 246.0, - 1078.0, - 282.0, - 1072.0, - 282.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 176.0, - 161.0, - 176.0, - 161.0, - 209.0, - 135.0, - 209.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 175.0, - 391.0, - 175.0, - 391.0, - 211.0, - 197.0, - 211.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 501.0, - 175.0, - 1113.0, - 175.0, - 1113.0, - 211.0, - 501.0, - 211.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 31, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 201, - 836, - 536, - 836, - 536, - 1171, - 201, - 1171 - ], - "score": 0.966 - }, - { - "category_id": 1, - "poly": [ - 193, - 1359, - 358, - 1359, - 358, - 1616, - 193, - 1616 - ], - "score": 0.948 - }, - { - "category_id": 1, - "poly": [ - 193, - 351, - 358, - 351, - 358, - 609, - 193, - 609 - ], - "score": 0.941 - }, - { - "category_id": 1, - "poly": [ - 129, - 172, - 1419, - 172, - 1419, - 247, - 129, - 247 - ], - "score": 0.932 - }, - { - "category_id": 1, - "poly": [ - 124, - 765, - 1329, - 765, - 1329, - 807, - 124, - 807 - ], - "score": 0.912 - }, - { - "category_id": 2, - "poly": [ - 166, - 2163, - 267, - 2163, - 267, - 2186, - 166, - 2186 - ], - "score": 0.884 - }, - { - "category_id": 2, - "poly": [ - 1475, - 1669, - 1518, - 1669, - 1518, - 1704, - 1475, - 1704 - ], - "score": 0.858 - }, - { - "category_id": 2, - "poly": [ - 1474, - 662, - 1518, - 662, - 1518, - 698, - 1474, - 698 - ], - "score": 0.84 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 39, - 1582, - 39 - ], - "score": 0.775 - }, - { - "category_id": 1, - "poly": [ - 198, - 1287, - 791, - 1287, - 791, - 1327, - 198, - 1327 - ], - "score": 0.77 - }, - { - "category_id": 1, - "poly": [ - 197, - 641, - 466, - 641, - 466, - 713, - 197, - 713 - ], - "score": 0.759 - }, - { - "category_id": 2, - "poly": [ - 1345, - 2152, - 1474, - 2152, - 1474, - 2182, - 1345, - 2182 - ], - "score": 0.757 - }, - { - "category_id": 1, - "poly": [ - 197, - 1215, - 867, - 1215, - 867, - 1256, - 197, - 1256 - ], - "score": 0.744 - }, - { - "category_id": 1, - "poly": [ - 198, - 282, - 521, - 282, - 521, - 320, - 198, - 320 - ], - "score": 0.724 - }, - { - "category_id": 2, - "poly": [ - 814, - 124, - 839, - 124, - 839, - 154, - 814, - 154 - ], - "score": 0.587 - }, - { - "category_id": 1, - "poly": [ - 197, - 1667, - 374, - 1667, - 374, - 1704, - 197, - 1704 - ], - "score": 0.507 - }, - { - "category_id": 1, - "poly": [ - 196, - 1649, - 468, - 1649, - 468, - 1714, - 196, - 1714 - ], - "score": 0.327 - }, - { - "category_id": 2, - "poly": [ - 814, - 124, - 839, - 124, - 839, - 154, - 814, - 154 - ], - "score": 0.326 - }, - { - "category_id": 1, - "poly": [ - 194, - 1215, - 867, - 1215, - 867, - 1328, - 194, - 1328 - ], - "score": 0.189 - }, - { - "category_id": 1, - "poly": [ - 197, - 659, - 375, - 659, - 375, - 699, - 197, - 699 - ], - "score": 0.123 - }, - { - "category_id": 1, - "poly": [ - 1345, - 2152, - 1474, - 2152, - 1474, - 2182, - 1345, - 2182 - ], - "score": 0.101 - }, - { - "category_id": 13, - "poly": [ - 676, - 211, - 751, - 211, - 751, - 244, - 676, - 244 - ], - "score": 0.8, - "latex": "4.0\\Omega" - }, - { - "category_id": 13, - "poly": [ - 1245, - 769, - 1320, - 769, - 1320, - 803, - 1245, - 803 - ], - "score": 0.69, - "latex": "6.0\\Omega" - }, - { - "category_id": 13, - "poly": [ - 516, - 175, - 582, - 175, - 582, - 209, - 516, - 209 - ], - "score": 0.63, - "latex": "12\\Omega" - }, - { - "category_id": 13, - "poly": [ - 614, - 1295, - 634, - 1295, - 634, - 1322, - 614, - 1322 - ], - "score": 0.43, - "latex": "r" - }, - { - "category_id": 13, - "poly": [ - 686, - 768, - 757, - 768, - 757, - 803, - 686, - 803 - ], - "score": 0.36, - "latex": "1.2\\lor" - }, - { - "category_id": 13, - "poly": [ - 769, - 1217, - 858, - 1217, - 858, - 1252, - 769, - 1252 - ], - "score": 0.34, - "latex": "0.90\\vee." - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1362.0, - 230.0, - 1362.0, - 230.0, - 1397.0, - 196.0, - 1397.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 1362.0, - 356.0, - 1362.0, - 356.0, - 1398.0, - 259.0, - 1398.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 1434.0, - 229.0, - 1434.0, - 229.0, - 1470.0, - 197.0, - 1470.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 1433.0, - 356.0, - 1433.0, - 356.0, - 1470.0, - 259.0, - 1470.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1505.0, - 230.0, - 1505.0, - 230.0, - 1542.0, - 196.0, - 1542.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 1505.0, - 341.0, - 1505.0, - 341.0, - 1542.0, - 258.0, - 1542.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1578.0, - 229.0, - 1578.0, - 229.0, - 1614.0, - 196.0, - 1614.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 1576.0, - 341.0, - 1576.0, - 341.0, - 1613.0, - 258.0, - 1613.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 354.0, - 230.0, - 354.0, - 230.0, - 392.0, - 196.0, - 392.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 356.0, - 355.0, - 356.0, - 355.0, - 389.0, - 260.0, - 389.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 426.0, - 229.0, - 426.0, - 229.0, - 465.0, - 197.0, - 465.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 425.0, - 341.0, - 425.0, - 341.0, - 464.0, - 259.0, - 464.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 496.0, - 231.0, - 496.0, - 231.0, - 537.0, - 195.0, - 537.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 498.0, - 341.0, - 498.0, - 341.0, - 536.0, - 258.0, - 536.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 572.0, - 230.0, - 572.0, - 230.0, - 607.0, - 196.0, - 607.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 573.0, - 331.0, - 573.0, - 331.0, - 608.0, - 259.0, - 608.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 175.0, - 162.0, - 175.0, - 162.0, - 207.0, - 133.0, - 207.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 178.0, - 515.0, - 178.0, - 515.0, - 208.0, - 199.0, - 208.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 583.0, - 178.0, - 1411.0, - 178.0, - 1411.0, - 208.0, - 583.0, - 208.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 201.0, - 214.0, - 675.0, - 214.0, - 675.0, - 244.0, - 201.0, - 244.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 752.0, - 214.0, - 758.0, - 214.0, - 758.0, - 244.0, - 752.0, - 244.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 131.0, - 767.0, - 164.0, - 767.0, - 164.0, - 805.0, - 131.0, - 805.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 770.0, - 685.0, - 770.0, - 685.0, - 802.0, - 198.0, - 802.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 758.0, - 770.0, - 1244.0, - 770.0, - 1244.0, - 802.0, - 758.0, - 802.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1321.0, - 770.0, - 1325.0, - 770.0, - 1325.0, - 802.0, - 1321.0, - 802.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1470.0, - 1663.0, - 1524.0, - 1663.0, - 1524.0, - 1712.0, - 1470.0, - 1712.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 658.0, - 1525.0, - 658.0, - 1525.0, - 706.0, - 1471.0, - 706.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 201.0, - 1292.0, - 613.0, - 1292.0, - 613.0, - 1322.0, - 201.0, - 1322.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 635.0, - 1292.0, - 784.0, - 1292.0, - 784.0, - 1322.0, - 635.0, - 1322.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 662.0, - 374.0, - 662.0, - 374.0, - 697.0, - 199.0, - 697.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1342.0, - 2151.0, - 1477.0, - 2151.0, - 1477.0, - 2183.0, - 1342.0, - 2183.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1219.0, - 768.0, - 1219.0, - 768.0, - 1253.0, - 200.0, - 1253.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 859.0, - 1219.0, - 864.0, - 1219.0, - 864.0, - 1253.0, - 859.0, - 1253.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 201.0, - 286.0, - 517.0, - 286.0, - 517.0, - 316.0, - 201.0, - 316.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 813.0, - 122.0, - 842.0, - 122.0, - 842.0, - 161.0, - 813.0, - 161.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1669.0, - 375.0, - 1669.0, - 375.0, - 1700.0, - 200.0, - 1700.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 1666.0, - 375.0, - 1666.0, - 375.0, - 1706.0, - 198.0, - 1706.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 813.0, - 122.0, - 842.0, - 122.0, - 842.0, - 161.0, - 813.0, - 161.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1219.0, - 768.0, - 1219.0, - 768.0, - 1252.0, - 199.0, - 1252.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 859.0, - 1219.0, - 863.0, - 1219.0, - 863.0, - 1252.0, - 859.0, - 1252.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1291.0, - 613.0, - 1291.0, - 613.0, - 1321.0, - 199.0, - 1321.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 635.0, - 1291.0, - 786.0, - 1291.0, - 786.0, - 1321.0, - 635.0, - 1321.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 661.0, - 375.0, - 661.0, - 375.0, - 696.0, - 198.0, - 696.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1342.0, - 2151.0, - 1477.0, - 2151.0, - 1477.0, - 2183.0, - 1342.0, - 2183.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 32, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 195, - 290, - 575, - 290, - 575, - 610, - 195, - 610 - ], - "score": 0.967 - }, - { - "category_id": 1, - "poly": [ - 137, - 1002, - 1108, - 1002, - 1108, - 1117, - 137, - 1117 - ], - "score": 0.964 - }, - { - "category_id": 1, - "poly": [ - 194, - 1144, - 447, - 1144, - 447, - 1405, - 194, - 1405 - ], - "score": 0.964 - }, - { - "category_id": 1, - "poly": [ - 195, - 666, - 1106, - 666, - 1106, - 776, - 195, - 776 - ], - "score": 0.951 - }, - { - "category_id": 1, - "poly": [ - 193, - 1741, - 359, - 1741, - 359, - 1997, - 193, - 1997 - ], - "score": 0.946 - }, - { - "category_id": 1, - "poly": [ - 133, - 173, - 1258, - 173, - 1258, - 249, - 133, - 249 - ], - "score": 0.924 - }, - { - "category_id": 1, - "poly": [ - 124, - 1561, - 1421, - 1561, - 1421, - 1637, - 124, - 1637 - ], - "score": 0.917 - }, - { - "category_id": 1, - "poly": [ - 196, - 1669, - 890, - 1669, - 890, - 1709, - 196, - 1709 - ], - "score": 0.899 - }, - { - "category_id": 1, - "poly": [ - 197, - 1436, - 467, - 1436, - 467, - 1508, - 197, - 1508 - ], - "score": 0.885 - }, - { - "category_id": 2, - "poly": [ - 165, - 2162, - 268, - 2162, - 268, - 2187, - 165, - 2187 - ], - "score": 0.885 - }, - { - "category_id": 2, - "poly": [ - 1475, - 2051, - 1518, - 2051, - 1518, - 2086, - 1475, - 2086 - ], - "score": 0.868 - }, - { - "category_id": 2, - "poly": [ - 1474, - 1457, - 1518, - 1457, - 1518, - 1494, - 1474, - 1494 - ], - "score": 0.842 - }, - { - "category_id": 1, - "poly": [ - 197, - 808, - 1039, - 808, - 1039, - 848, - 197, - 848 - ], - "score": 0.84 - }, - { - "category_id": 2, - "poly": [ - 1582, - 5, - 1652, - 5, - 1652, - 39, - 1582, - 39 - ], - "score": 0.807 - }, - { - "category_id": 2, - "poly": [ - 1474, - 899, - 1519, - 899, - 1519, - 936, - 1474, - 936 - ], - "score": 0.769 - }, - { - "category_id": 2, - "poly": [ - 814, - 125, - 838, - 125, - 838, - 154, - 814, - 154 - ], - "score": 0.758 - }, - { - "category_id": 1, - "poly": [ - 198, - 880, - 467, - 880, - 467, - 951, - 198, - 951 - ], - "score": 0.715 - }, - { - "category_id": 1, - "poly": [ - 197, - 2030, - 468, - 2030, - 468, - 2099, - 197, - 2099 - ], - "score": 0.469 - }, - { - "category_id": 1, - "poly": [ - 198, - 2049, - 373, - 2049, - 373, - 2085, - 198, - 2085 - ], - "score": 0.263 - }, - { - "category_id": 13, - "poly": [ - 325, - 1003, - 454, - 1003, - 454, - 1041, - 325, - 1041 - ], - "score": 0.9, - "latex": "3.8\\times10^{7}" - }, - { - "category_id": 13, - "poly": [ - 596, - 1600, - 661, - 1600, - 661, - 1633, - 596, - 1633 - ], - "score": 0.88, - "latex": "20\\%" - }, - { - "category_id": 13, - "poly": [ - 1014, - 1007, - 1096, - 1007, - 1096, - 1043, - 1014, - 1043 - ], - "score": 0.84, - "latex": "1.2\\upmu\\mathrm{s}" - }, - { - "category_id": 13, - "poly": [ - 1215, - 1564, - 1310, - 1564, - 1310, - 1598, - 1215, - 1598 - ], - "score": 0.59, - "latex": "0.90\\m m" - }, - { - "category_id": 13, - "poly": [ - 258, - 1145, - 446, - 1145, - 446, - 1187, - 258, - 1187 - ], - "score": 0.45, - "latex": "6.1\\times10^{-12}{\\mathsf{A}}" - }, - { - "category_id": 13, - "poly": [ - 770, - 1563, - 844, - 1563, - 844, - 1598, - 770, - 1598 - ], - "score": 0.44, - "latex": "4.0\\mathsf{N}" - }, - { - "category_id": 13, - "poly": [ - 1345, - 1563, - 1411, - 1563, - 1411, - 1598, - 1345, - 1598 - ], - "score": 0.31, - "latex": "1.8\\mathfrak{s}" - }, - { - "category_id": 13, - "poly": [ - 258, - 1218, - 445, - 1218, - 445, - 1259, - 258, - 1259 - ], - "score": 0.31, - "latex": "7.3\\times10^{-12}\\mathsf{A}" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 1003.0, - 324.0, - 1003.0, - 324.0, - 1044.0, - 133.0, - 1044.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 455.0, - 1003.0, - 1013.0, - 1003.0, - 1013.0, - 1044.0, - 455.0, - 1044.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1097.0, - 1003.0, - 1104.0, - 1003.0, - 1104.0, - 1044.0, - 1097.0, - 1044.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1079.0, - 624.0, - 1079.0, - 624.0, - 1113.0, - 199.0, - 1113.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1149.0, - 229.0, - 1149.0, - 229.0, - 1186.0, - 196.0, - 1186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 1221.0, - 228.0, - 1221.0, - 228.0, - 1259.0, - 197.0, - 1259.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 194.0, - 1292.0, - 230.0, - 1292.0, - 230.0, - 1333.0, - 194.0, - 1333.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 1293.0, - 431.0, - 1293.0, - 431.0, - 1328.0, - 259.0, - 1328.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 1367.0, - 229.0, - 1367.0, - 229.0, - 1403.0, - 195.0, - 1403.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 1366.0, - 432.0, - 1366.0, - 432.0, - 1399.0, - 258.0, - 1399.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 202.0, - 668.0, - 707.0, - 668.0, - 707.0, - 699.0, - 202.0, - 699.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 201.0, - 703.0, - 708.0, - 703.0, - 708.0, - 736.0, - 201.0, - 736.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 737.0, - 1104.0, - 737.0, - 1104.0, - 774.0, - 199.0, - 774.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1744.0, - 230.0, - 1744.0, - 230.0, - 1780.0, - 196.0, - 1780.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 1743.0, - 362.0, - 1743.0, - 362.0, - 1779.0, - 259.0, - 1779.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1815.0, - 229.0, - 1815.0, - 229.0, - 1852.0, - 196.0, - 1852.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 1813.0, - 346.0, - 1813.0, - 346.0, - 1851.0, - 258.0, - 1851.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1887.0, - 230.0, - 1887.0, - 230.0, - 1925.0, - 196.0, - 1925.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 1887.0, - 347.0, - 1887.0, - 347.0, - 1925.0, - 258.0, - 1925.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1960.0, - 229.0, - 1960.0, - 229.0, - 1995.0, - 196.0, - 1995.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 1958.0, - 338.0, - 1958.0, - 338.0, - 1995.0, - 259.0, - 1995.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 177.0, - 160.0, - 177.0, - 160.0, - 207.0, - 134.0, - 207.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 174.0, - 1168.0, - 174.0, - 1168.0, - 211.0, - 197.0, - 211.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 211.0, - 1256.0, - 211.0, - 1256.0, - 247.0, - 198.0, - 247.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 132.0, - 1560.0, - 769.0, - 1560.0, - 769.0, - 1602.0, - 132.0, - 1602.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 845.0, - 1560.0, - 1214.0, - 1560.0, - 1214.0, - 1602.0, - 845.0, - 1602.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1311.0, - 1560.0, - 1344.0, - 1560.0, - 1344.0, - 1602.0, - 1311.0, - 1602.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1412.0, - 1560.0, - 1419.0, - 1560.0, - 1419.0, - 1602.0, - 1412.0, - 1602.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1602.0, - 595.0, - 1602.0, - 595.0, - 1636.0, - 199.0, - 1636.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 662.0, - 1602.0, - 671.0, - 1602.0, - 671.0, - 1636.0, - 662.0, - 1636.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1671.0, - 887.0, - 1671.0, - 887.0, - 1709.0, - 199.0, - 1709.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1457.0, - 374.0, - 1457.0, - 374.0, - 1492.0, - 199.0, - 1492.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1470.0, - 2045.0, - 1524.0, - 2045.0, - 1524.0, - 2094.0, - 1470.0, - 2094.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 1452.0, - 1525.0, - 1452.0, - 1525.0, - 1500.0, - 1471.0, - 1500.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 809.0, - 1036.0, - 809.0, - 1036.0, - 846.0, - 199.0, - 846.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 3.0, - 1658.0, - 3.0, - 1658.0, - 42.0, - 1579.0, - 42.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1472.0, - 894.0, - 1523.0, - 894.0, - 1523.0, - 943.0, - 1472.0, - 943.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 813.0, - 121.0, - 842.0, - 121.0, - 842.0, - 162.0, - 813.0, - 162.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 897.0, - 375.0, - 897.0, - 375.0, - 937.0, - 199.0, - 937.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 2048.0, - 374.0, - 2048.0, - 374.0, - 2088.0, - 199.0, - 2088.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 2050.0, - 374.0, - 2050.0, - 374.0, - 2084.0, - 199.0, - 2084.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 33, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 199, - 1473, - 1464, - 1473, - 1464, - 1699, - 199, - 1699 - ], - "score": 0.983, - "html": "
Original length of wireYoungr modulus of wire'smaterialExtensionofwire/mm
PLE4.0
Q1.5 L3.0E
" - }, - { - "category_id": 1, - "poly": [ - 195, - 352, - 425, - 352, - 425, - 612, - 195, - 612 - ], - "score": 0.963 - }, - { - "category_id": 1, - "poly": [ - 196, - 1799, - 367, - 1799, - 367, - 2056, - 196, - 2056 - ], - "score": 0.955 - }, - { - "category_id": 3, - "poly": [ - 217, - 846, - 562, - 846, - 562, - 1284, - 217, - 1284 - ], - "score": 0.952 - }, - { - "category_id": 1, - "poly": [ - 135, - 766, - 1033, - 766, - 1033, - 806, - 135, - 806 - ], - "score": 0.908 - }, - { - "category_id": 1, - "poly": [ - 135, - 173, - 1190, - 173, - 1190, - 248, - 135, - 248 - ], - "score": 0.906 - }, - { - "category_id": 1, - "poly": [ - 199, - 1399, - 937, - 1399, - 937, - 1438, - 199, - 1438 - ], - "score": 0.904 - }, - { - "category_id": 1, - "poly": [ - 199, - 1327, - 688, - 1327, - 688, - 1366, - 199, - 1366 - ], - "score": 0.891 - }, - { - "category_id": 1, - "poly": [ - 197, - 282, - 1152, - 282, - 1152, - 322, - 197, - 322 - ], - "score": 0.871 - }, - { - "category_id": 1, - "poly": [ - 197, - 641, - 467, - 641, - 467, - 713, - 197, - 713 - ], - "score": 0.871 - }, - { - "category_id": 1, - "poly": [ - 201, - 1728, - 694, - 1728, - 694, - 1766, - 201, - 1766 - ], - "score": 0.862 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 39, - 1582, - 39 - ], - "score": 0.784 - }, - { - "category_id": 2, - "poly": [ - 1474, - 662, - 1518, - 662, - 1518, - 698, - 1474, - 698 - ], - "score": 0.78 - }, - { - "category_id": 2, - "poly": [ - 1474, - 2108, - 1517, - 2108, - 1517, - 2144, - 1474, - 2144 - ], - "score": 0.731 - }, - { - "category_id": 2, - "poly": [ - 1345, - 2152, - 1475, - 2152, - 1475, - 2183, - 1345, - 2183 - ], - "score": 0.668 - }, - { - "category_id": 2, - "poly": [ - 815, - 124, - 839, - 124, - 839, - 153, - 815, - 153 - ], - "score": 0.65 - }, - { - "category_id": 1, - "poly": [ - 191, - 2107, - 373, - 2107, - 373, - 2143, - 191, - 2143 - ], - "score": 0.476 - }, - { - "category_id": 2, - "poly": [ - 165, - 2162, - 268, - 2162, - 268, - 2187, - 165, - 2187 - ], - "score": 0.465 - }, - { - "category_id": 1, - "poly": [ - 165, - 2162, - 268, - 2162, - 268, - 2187, - 165, - 2187 - ], - "score": 0.389 - }, - { - "category_id": 2, - "poly": [ - 815, - 124, - 838, - 124, - 838, - 153, - 815, - 153 - ], - "score": 0.159 - }, - { - "category_id": 1, - "poly": [ - 1345, - 2152, - 1475, - 2152, - 1475, - 2183, - 1345, - 2183 - ], - "score": 0.139 - }, - { - "category_id": 1, - "poly": [ - 180, - 2089, - 465, - 2089, - 465, - 2150, - 180, - 2150 - ], - "score": 0.126 - }, - { - "category_id": 2, - "poly": [ - 1340, - 2106, - 1520, - 2106, - 1520, - 2184, - 1340, - 2184 - ], - "score": 0.103 - }, - { - "category_id": 3, - "poly": [ - 397, - 2089, - 465, - 2089, - 465, - 2158, - 397, - 2158 - ], - "score": 0.101 - }, - { - "category_id": 13, - "poly": [ - 831, - 1642, - 912, - 1642, - 912, - 1683, - 831, - 1683 - ], - "score": 0.56, - "latex": "3.0E" - }, - { - "category_id": 13, - "poly": [ - 442, - 1643, - 513, - 1643, - 513, - 1683, - 442, - 1683 - ], - "score": 0.52, - "latex": "1.5L" - }, - { - "category_id": 13, - "poly": [ - 856, - 1581, - 889, - 1581, - 889, - 1617, - 856, - 1617 - ], - "score": 0.45, - "latex": "E" - }, - { - "category_id": 13, - "poly": [ - 684, - 769, - 712, - 769, - 712, - 801, - 684, - 801 - ], - "score": 0.43, - "latex": "\\mathsf{\\textbf{P}}" - }, - { - "category_id": 13, - "poly": [ - 464, - 1582, - 491, - 1582, - 491, - 1617, - 464, - 1617 - ], - "score": 0.42, - "latex": "L" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 355.0, - 229.0, - 355.0, - 229.0, - 393.0, - 197.0, - 393.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 355.0, - 402.0, - 355.0, - 402.0, - 395.0, - 259.0, - 395.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 427.0, - 229.0, - 427.0, - 229.0, - 464.0, - 197.0, - 464.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 425.0, - 380.0, - 425.0, - 380.0, - 468.0, - 258.0, - 468.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 498.0, - 230.0, - 498.0, - 230.0, - 537.0, - 197.0, - 537.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 501.0, - 352.0, - 501.0, - 352.0, - 537.0, - 259.0, - 537.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 572.0, - 230.0, - 572.0, - 230.0, - 609.0, - 196.0, - 609.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 574.0, - 421.0, - 574.0, - 421.0, - 611.0, - 261.0, - 611.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1801.0, - 230.0, - 1801.0, - 230.0, - 1837.0, - 196.0, - 1837.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 1798.0, - 368.0, - 1798.0, - 368.0, - 1839.0, - 258.0, - 1839.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 194.0, - 1874.0, - 227.0, - 1874.0, - 227.0, - 1908.0, - 194.0, - 1908.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 1872.0, - 368.0, - 1872.0, - 368.0, - 1912.0, - 259.0, - 1912.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1945.0, - 230.0, - 1945.0, - 230.0, - 1982.0, - 196.0, - 1982.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 1946.0, - 366.0, - 1946.0, - 366.0, - 1982.0, - 259.0, - 1982.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 2018.0, - 230.0, - 2018.0, - 230.0, - 2053.0, - 196.0, - 2053.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 2018.0, - 366.0, - 2018.0, - 366.0, - 2055.0, - 259.0, - 2055.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 767.0, - 683.0, - 767.0, - 683.0, - 805.0, - 134.0, - 805.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 713.0, - 767.0, - 1033.0, - 767.0, - 1033.0, - 805.0, - 713.0, - 805.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 132.0, - 172.0, - 1193.0, - 172.0, - 1193.0, - 214.0, - 132.0, - 214.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 213.0, - 942.0, - 213.0, - 942.0, - 247.0, - 198.0, - 247.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1402.0, - 934.0, - 1402.0, - 934.0, - 1434.0, - 199.0, - 1434.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 201.0, - 1331.0, - 687.0, - 1331.0, - 687.0, - 1362.0, - 201.0, - 1362.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 284.0, - 1151.0, - 284.0, - 1151.0, - 322.0, - 199.0, - 322.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 662.0, - 374.0, - 662.0, - 374.0, - 697.0, - 199.0, - 697.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 201.0, - 1732.0, - 692.0, - 1732.0, - 692.0, - 1762.0, - 201.0, - 1762.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 658.0, - 1525.0, - 658.0, - 1525.0, - 706.0, - 1471.0, - 706.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 2104.0, - 1526.0, - 2104.0, - 1526.0, - 2152.0, - 1471.0, - 2152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1342.0, - 2151.0, - 1478.0, - 2151.0, - 1478.0, - 2184.0, - 1342.0, - 2184.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 811.0, - 120.0, - 844.0, - 120.0, - 844.0, - 164.0, - 811.0, - 164.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 2108.0, - 374.0, - 2108.0, - 374.0, - 2142.0, - 199.0, - 2142.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 810.0, - 120.0, - 844.0, - 120.0, - 844.0, - 164.0, - 810.0, - 164.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1342.0, - 2151.0, - 1478.0, - 2151.0, - 1478.0, - 2184.0, - 1342.0, - 2184.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 2107.0, - 375.0, - 2107.0, - 375.0, - 2142.0, - 198.0, - 2142.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 2103.0, - 1524.0, - 2103.0, - 1524.0, - 2149.0, - 1471.0, - 2149.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1343.0, - 2151.0, - 1477.0, - 2151.0, - 1477.0, - 2185.0, - 1343.0, - 2185.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 34, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 193, - 1420, - 1101, - 1420, - 1101, - 1679, - 193, - 1679 - ], - "score": 0.974 - }, - { - "category_id": 3, - "poly": [ - 200, - 844, - 739, - 844, - 739, - 1155, - 200, - 1155 - ], - "score": 0.948 - }, - { - "category_id": 1, - "poly": [ - 132, - 173, - 1418, - 173, - 1418, - 248, - 132, - 248 - ], - "score": 0.942 - }, - { - "category_id": 1, - "poly": [ - 197, - 1204, - 1465, - 1204, - 1465, - 1315, - 197, - 1315 - ], - "score": 0.929 - }, - { - "category_id": 1, - "poly": [ - 134, - 768, - 903, - 768, - 903, - 808, - 134, - 808 - ], - "score": 0.914 - }, - { - "category_id": 1, - "poly": [ - 199, - 1349, - 583, - 1349, - 583, - 1387, - 199, - 1387 - ], - "score": 0.907 - }, - { - "category_id": 2, - "poly": [ - 166, - 2163, - 267, - 2163, - 267, - 2186, - 166, - 2186 - ], - "score": 0.887 - }, - { - "category_id": 2, - "poly": [ - 1474, - 1729, - 1518, - 1729, - 1518, - 1765, - 1474, - 1765 - ], - "score": 0.886 - }, - { - "category_id": 2, - "poly": [ - 1473, - 662, - 1519, - 662, - 1519, - 700, - 1473, - 700 - ], - "score": 0.817 - }, - { - "category_id": 2, - "poly": [ - 1582, - 5, - 1652, - 5, - 1652, - 39, - 1582, - 39 - ], - "score": 0.807 - }, - { - "category_id": 2, - "poly": [ - 814, - 125, - 838, - 125, - 838, - 154, - 814, - 154 - ], - "score": 0.792 - }, - { - "category_id": 3, - "poly": [ - 196, - 273, - 1286, - 273, - 1286, - 718, - 196, - 718 - ], - "score": 0.755 - }, - { - "category_id": 3, - "poly": [ - 199, - 276, - 1287, - 276, - 1287, - 618, - 199, - 618 - ], - "score": 0.639 - }, - { - "category_id": 1, - "poly": [ - 197, - 1708, - 468, - 1708, - 468, - 1780, - 197, - 1780 - ], - "score": 0.451 - }, - { - "category_id": 1, - "poly": [ - 196, - 643, - 468, - 643, - 468, - 715, - 196, - 715 - ], - "score": 0.289 - }, - { - "category_id": 1, - "poly": [ - 201, - 1245, - 1460, - 1245, - 1460, - 1315, - 201, - 1315 - ], - "score": 0.189 - }, - { - "category_id": 1, - "poly": [ - 202, - 1204, - 1210, - 1204, - 1210, - 1241, - 202, - 1241 - ], - "score": 0.171 - }, - { - "category_id": 3, - "poly": [ - 197, - 1708, - 468, - 1708, - 468, - 1780, - 197, - 1780 - ], - "score": 0.148 - }, - { - "category_id": 1, - "poly": [ - 199, - 1729, - 375, - 1729, - 375, - 1764, - 199, - 1764 - ], - "score": 0.115 - }, - { - "category_id": 13, - "poly": [ - 408, - 1424, - 435, - 1424, - 435, - 1455, - 408, - 1455 - ], - "score": 0.78, - "latex": "F" - }, - { - "category_id": 13, - "poly": [ - 813, - 1496, - 838, - 1496, - 838, - 1526, - 813, - 1526 - ], - "score": 0.75, - "latex": "F." - }, - { - "category_id": 13, - "poly": [ - 961, - 214, - 983, - 214, - 983, - 243, - 961, - 243 - ], - "score": 0.74, - "latex": "\\theta" - }, - { - "category_id": 13, - "poly": [ - 562, - 1244, - 590, - 1244, - 590, - 1275, - 562, - 1275 - ], - "score": 0.72, - "latex": "F" - }, - { - "category_id": 13, - "poly": [ - 1139, - 1244, - 1167, - 1244, - 1167, - 1275, - 1139, - 1275 - ], - "score": 0.72, - "latex": "F" - }, - { - "category_id": 13, - "poly": [ - 1016, - 212, - 1060, - 212, - 1060, - 244, - 1016, - 244 - ], - "score": 0.72, - "latex": "{}^{\\circ}\\mathrm{C}^{\\prime}" - }, - { - "category_id": 13, - "poly": [ - 649, - 1641, - 673, - 1641, - 673, - 1671, - 649, - 1671 - ], - "score": 0.7, - "latex": "F." - }, - { - "category_id": 13, - "poly": [ - 638, - 1568, - 680, - 1568, - 680, - 1600, - 638, - 1600 - ], - "score": 0.66, - "latex": "F x." - }, - { - "category_id": 13, - "poly": [ - 542, - 1428, - 566, - 1428, - 566, - 1454, - 542, - 1454 - ], - "score": 0.66, - "latex": "x" - }, - { - "category_id": 13, - "poly": [ - 1029, - 176, - 1058, - 176, - 1058, - 207, - 1029, - 207 - ], - "score": 0.65, - "latex": "R" - }, - { - "category_id": 13, - "poly": [ - 261, - 1644, - 284, - 1644, - 284, - 1672, - 261, - 1672 - ], - "score": 0.43, - "latex": "x" - }, - { - "category_id": 13, - "poly": [ - 814, - 1247, - 839, - 1247, - 839, - 1275, - 814, - 1275 - ], - "score": 0.34, - "latex": "X." - }, - { - "category_id": 15, - "poly": [ - 198.0, - 1423.0, - 230.0, - 1423.0, - 230.0, - 1459.0, - 198.0, - 1459.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 1425.0, - 407.0, - 1425.0, - 407.0, - 1457.0, - 263.0, - 1457.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 436.0, - 1425.0, - 541.0, - 1425.0, - 541.0, - 1457.0, - 436.0, - 1457.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 567.0, - 1425.0, - 1094.0, - 1425.0, - 1094.0, - 1457.0, - 567.0, - 1457.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 1494.0, - 229.0, - 1494.0, - 229.0, - 1531.0, - 197.0, - 1531.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 1495.0, - 812.0, - 1495.0, - 812.0, - 1530.0, - 263.0, - 1530.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 839.0, - 1495.0, - 843.0, - 1495.0, - 843.0, - 1530.0, - 839.0, - 1530.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 1566.0, - 230.0, - 1566.0, - 230.0, - 1606.0, - 197.0, - 1606.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 1571.0, - 637.0, - 1571.0, - 637.0, - 1603.0, - 263.0, - 1603.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 681.0, - 1571.0, - 683.0, - 1571.0, - 683.0, - 1603.0, - 681.0, - 1603.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 1638.0, - 229.0, - 1638.0, - 229.0, - 1675.0, - 195.0, - 1675.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 285.0, - 1642.0, - 648.0, - 1642.0, - 648.0, - 1675.0, - 285.0, - 1675.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 674.0, - 1642.0, - 680.0, - 1642.0, - 680.0, - 1675.0, - 674.0, - 1675.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 175.0, - 1028.0, - 175.0, - 1028.0, - 212.0, - 135.0, - 212.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1059.0, - 175.0, - 1412.0, - 175.0, - 1412.0, - 212.0, - 1059.0, - 212.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 213.0, - 960.0, - 213.0, - 960.0, - 247.0, - 199.0, - 247.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 984.0, - 213.0, - 1015.0, - 213.0, - 1015.0, - 247.0, - 984.0, - 247.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1061.0, - 213.0, - 1074.0, - 213.0, - 1074.0, - 247.0, - 1061.0, - 247.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1207.0, - 1194.0, - 1207.0, - 1194.0, - 1242.0, - 200.0, - 1242.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 1244.0, - 561.0, - 1244.0, - 561.0, - 1279.0, - 198.0, - 1279.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 591.0, - 1244.0, - 813.0, - 1244.0, - 813.0, - 1279.0, - 591.0, - 1279.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 840.0, - 1244.0, - 1138.0, - 1244.0, - 1138.0, - 1279.0, - 840.0, - 1279.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1168.0, - 1244.0, - 1461.0, - 1244.0, - 1461.0, - 1279.0, - 1168.0, - 1279.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 1279.0, - 616.0, - 1279.0, - 616.0, - 1314.0, - 197.0, - 1314.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 768.0, - 900.0, - 768.0, - 900.0, - 808.0, - 133.0, - 808.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1353.0, - 579.0, - 1353.0, - 579.0, - 1383.0, - 200.0, - 1383.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 1725.0, - 1525.0, - 1725.0, - 1525.0, - 1773.0, - 1471.0, - 1773.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 658.0, - 1524.0, - 658.0, - 1524.0, - 707.0, - 1471.0, - 707.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 3.0, - 1658.0, - 3.0, - 1658.0, - 42.0, - 1579.0, - 42.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 812.0, - 122.0, - 842.0, - 122.0, - 842.0, - 163.0, - 812.0, - 163.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1729.0, - 373.0, - 1729.0, - 373.0, - 1764.0, - 200.0, - 1764.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 663.0, - 374.0, - 663.0, - 374.0, - 697.0, - 200.0, - 697.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 1243.0, - 561.0, - 1243.0, - 561.0, - 1279.0, - 198.0, - 1279.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 591.0, - 1243.0, - 813.0, - 1243.0, - 813.0, - 1279.0, - 591.0, - 1279.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 840.0, - 1243.0, - 1138.0, - 1243.0, - 1138.0, - 1279.0, - 840.0, - 1279.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1168.0, - 1243.0, - 1460.0, - 1243.0, - 1460.0, - 1279.0, - 1168.0, - 1279.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1281.0, - 617.0, - 1281.0, - 617.0, - 1315.0, - 199.0, - 1315.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 201.0, - 1206.0, - 1195.0, - 1206.0, - 1195.0, - 1242.0, - 201.0, - 1242.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 1727.0, - 375.0, - 1727.0, - 375.0, - 1766.0, - 198.0, - 1766.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 35, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 195, - 811, - 1207, - 811, - 1207, - 1071, - 195, - 1071 - ], - "score": 0.98 - }, - { - "category_id": 1, - "poly": [ - 138, - 1225, - 1238, - 1225, - 1238, - 1336, - 138, - 1336 - ], - "score": 0.967 - }, - { - "category_id": 3, - "poly": [ - 209, - 256, - 705, - 256, - 705, - 689, - 209, - 689 - ], - "score": 0.958 - }, - { - "category_id": 1, - "poly": [ - 195, - 1441, - 387, - 1441, - 387, - 1699, - 195, - 1699 - ], - "score": 0.953 - }, - { - "category_id": 1, - "poly": [ - 201, - 1370, - 1041, - 1370, - 1041, - 1409, - 201, - 1409 - ], - "score": 0.916 - }, - { - "category_id": 1, - "poly": [ - 199, - 740, - 583, - 740, - 583, - 779, - 199, - 779 - ], - "score": 0.91 - }, - { - "category_id": 1, - "poly": [ - 132, - 174, - 1141, - 174, - 1141, - 213, - 132, - 213 - ], - "score": 0.894 - }, - { - "category_id": 2, - "poly": [ - 166, - 2163, - 267, - 2163, - 267, - 2186, - 166, - 2186 - ], - "score": 0.886 - }, - { - "category_id": 2, - "poly": [ - 1475, - 1751, - 1518, - 1751, - 1518, - 1786, - 1475, - 1786 - ], - "score": 0.863 - }, - { - "category_id": 1, - "poly": [ - 197, - 1100, - 466, - 1100, - 466, - 1170, - 197, - 1170 - ], - "score": 0.818 - }, - { - "category_id": 2, - "poly": [ - 1474, - 1120, - 1519, - 1120, - 1519, - 1157, - 1474, - 1157 - ], - "score": 0.799 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 39, - 1582, - 39 - ], - "score": 0.788 - }, - { - "category_id": 2, - "poly": [ - 1345, - 2152, - 1474, - 2152, - 1474, - 2182, - 1345, - 2182 - ], - "score": 0.785 - }, - { - "category_id": 2, - "poly": [ - 814, - 125, - 838, - 125, - 838, - 154, - 814, - 154 - ], - "score": 0.762 - }, - { - "category_id": 1, - "poly": [ - 196, - 1731, - 469, - 1731, - 469, - 1800, - 196, - 1800 - ], - "score": 0.636 - }, - { - "category_id": 1, - "poly": [ - 197, - 1100, - 468, - 1100, - 468, - 1170, - 197, - 1170 - ], - "score": 0.164 - }, - { - "category_id": 1, - "poly": [ - 198, - 1746, - 377, - 1746, - 377, - 1786, - 198, - 1786 - ], - "score": 0.137 - }, - { - "category_id": 13, - "poly": [ - 769, - 886, - 840, - 886, - 840, - 921, - 769, - 921 - ], - "score": 0.26, - "latex": "1.5\\lor." - }, - { - "category_id": 15, - "poly": [ - 197.0, - 813.0, - 228.0, - 813.0, - 228.0, - 849.0, - 197.0, - 849.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 814.0, - 707.0, - 814.0, - 707.0, - 849.0, - 261.0, - 849.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 885.0, - 230.0, - 885.0, - 230.0, - 922.0, - 197.0, - 922.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 886.0, - 768.0, - 886.0, - 768.0, - 920.0, - 261.0, - 920.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 841.0, - 886.0, - 846.0, - 886.0, - 846.0, - 920.0, - 841.0, - 920.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 956.0, - 231.0, - 956.0, - 231.0, - 996.0, - 195.0, - 996.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 956.0, - 1074.0, - 956.0, - 1074.0, - 996.0, - 257.0, - 996.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1030.0, - 230.0, - 1030.0, - 230.0, - 1065.0, - 196.0, - 1065.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 1029.0, - 1205.0, - 1029.0, - 1205.0, - 1067.0, - 259.0, - 1067.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 1230.0, - 182.0, - 1230.0, - 182.0, - 1259.0, - 138.0, - 1259.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 193.0, - 1226.0, - 1234.0, - 1226.0, - 1234.0, - 1263.0, - 193.0, - 1263.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1263.0, - 961.0, - 1263.0, - 961.0, - 1299.0, - 199.0, - 1299.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 1298.0, - 1053.0, - 1298.0, - 1053.0, - 1337.0, - 198.0, - 1337.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 1443.0, - 229.0, - 1443.0, - 229.0, - 1478.0, - 197.0, - 1478.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 1443.0, - 391.0, - 1443.0, - 391.0, - 1479.0, - 261.0, - 1479.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 1514.0, - 229.0, - 1514.0, - 229.0, - 1551.0, - 197.0, - 1551.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 1514.0, - 325.0, - 1514.0, - 325.0, - 1553.0, - 257.0, - 1553.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1584.0, - 231.0, - 1584.0, - 231.0, - 1626.0, - 196.0, - 1626.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 1588.0, - 376.0, - 1588.0, - 376.0, - 1625.0, - 260.0, - 1625.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1659.0, - 229.0, - 1659.0, - 229.0, - 1696.0, - 196.0, - 1696.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 1664.0, - 370.0, - 1664.0, - 370.0, - 1697.0, - 261.0, - 1697.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1373.0, - 1038.0, - 1373.0, - 1038.0, - 1407.0, - 200.0, - 1407.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 744.0, - 579.0, - 744.0, - 579.0, - 775.0, - 200.0, - 775.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 176.0, - 1139.0, - 176.0, - 1139.0, - 210.0, - 135.0, - 210.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1470.0, - 1745.0, - 1524.0, - 1745.0, - 1524.0, - 1794.0, - 1470.0, - 1794.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1119.0, - 374.0, - 1119.0, - 374.0, - 1155.0, - 199.0, - 1155.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1472.0, - 1115.0, - 1523.0, - 1115.0, - 1523.0, - 1164.0, - 1472.0, - 1164.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1342.0, - 2151.0, - 1477.0, - 2151.0, - 1477.0, - 2183.0, - 1342.0, - 2183.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 814.0, - 123.0, - 841.0, - 123.0, - 841.0, - 161.0, - 814.0, - 161.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 1748.0, - 376.0, - 1748.0, - 376.0, - 1788.0, - 198.0, - 1788.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1119.0, - 373.0, - 1119.0, - 373.0, - 1155.0, - 200.0, - 1155.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1749.0, - 374.0, - 1749.0, - 374.0, - 1784.0, - 200.0, - 1784.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 36, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 194, - 838, - 707, - 838, - 707, - 1096, - 194, - 1096 - ], - "score": 0.979 - }, - { - "category_id": 1, - "poly": [ - 194, - 1396, - 642, - 1396, - 642, - 1653, - 194, - 1653 - ], - "score": 0.972 - }, - { - "category_id": 1, - "poly": [ - 193, - 244, - 601, - 244, - 601, - 501, - 193, - 501 - ], - "score": 0.966 - }, - { - "category_id": 1, - "poly": [ - 197, - 1683, - 467, - 1683, - 467, - 1755, - 197, - 1755 - ], - "score": 0.91 - }, - { - "category_id": 1, - "poly": [ - 152, - 172, - 1411, - 172, - 1411, - 214, - 152, - 214 - ], - "score": 0.909 - }, - { - "category_id": 1, - "poly": [ - 197, - 533, - 467, - 533, - 467, - 604, - 197, - 604 - ], - "score": 0.904 - }, - { - "category_id": 2, - "poly": [ - 165, - 2162, - 267, - 2162, - 267, - 2187, - 165, - 2187 - ], - "score": 0.883 - }, - { - "category_id": 1, - "poly": [ - 197, - 1126, - 467, - 1126, - 467, - 1198, - 197, - 1198 - ], - "score": 0.854 - }, - { - "category_id": 1, - "poly": [ - 129, - 658, - 1489, - 658, - 1489, - 735, - 129, - 735 - ], - "score": 0.845 - }, - { - "category_id": 1, - "poly": [ - 132, - 1251, - 1352, - 1251, - 1352, - 1366, - 132, - 1366 - ], - "score": 0.83 - }, - { - "category_id": 2, - "poly": [ - 1474, - 1704, - 1519, - 1704, - 1519, - 1741, - 1474, - 1741 - ], - "score": 0.827 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 39, - 1582, - 39 - ], - "score": 0.813 - }, - { - "category_id": 1, - "poly": [ - 193, - 765, - 956, - 765, - 956, - 807, - 193, - 807 - ], - "score": 0.786 - }, - { - "category_id": 2, - "poly": [ - 809, - 124, - 848, - 124, - 848, - 155, - 809, - 155 - ], - "score": 0.774 - }, - { - "category_id": 2, - "poly": [ - 1473, - 552, - 1519, - 552, - 1519, - 591, - 1473, - 591 - ], - "score": 0.719 - }, - { - "category_id": 2, - "poly": [ - 1473, - 1146, - 1519, - 1146, - 1519, - 1185, - 1473, - 1185 - ], - "score": 0.706 - }, - { - "category_id": 1, - "poly": [ - 134, - 1252, - 706, - 1252, - 706, - 1292, - 134, - 1292 - ], - "score": 0.367 - }, - { - "category_id": 1, - "poly": [ - 1473, - 1146, - 1519, - 1146, - 1519, - 1185, - 1473, - 1185 - ], - "score": 0.152 - }, - { - "category_id": 1, - "poly": [ - 175, - 1323, - 1353, - 1323, - 1353, - 1365, - 175, - 1365 - ], - "score": 0.147 - }, - { - "category_id": 1, - "poly": [ - 131, - 656, - 1488, - 656, - 1488, - 808, - 131, - 808 - ], - "score": 0.108 - }, - { - "category_id": 1, - "poly": [ - 1473, - 552, - 1519, - 552, - 1519, - 591, - 1473, - 591 - ], - "score": 0.107 - }, - { - "category_id": 13, - "poly": [ - 528, - 176, - 556, - 176, - 556, - 208, - 528, - 208 - ], - "score": 0.79, - "latex": "E" - }, - { - "category_id": 13, - "poly": [ - 698, - 176, - 727, - 176, - 727, - 207, - 698, - 207 - ], - "score": 0.71, - "latex": "N" - }, - { - "category_id": 14, - "poly": [ - 259, - 245, - 407, - 245, - 407, - 283, - 259, - 283 - ], - "score": 0.58, - "latex": "E=N\\times V" - }, - { - "category_id": 14, - "poly": [ - 259, - 387, - 546, - 387, - 546, - 428, - 259, - 428 - ], - "score": 0.4, - "latex": "E=V\\times1.60\\times10^{-19}" - }, - { - "category_id": 13, - "poly": [ - 260, - 388, - 545, - 388, - 545, - 428, - 260, - 428 - ], - "score": 0.36, - "latex": "E=V\\times1.60\\times10^{-19}" - }, - { - "category_id": 13, - "poly": [ - 260, - 460, - 602, - 460, - 602, - 499, - 260, - 499 - ], - "score": 0.29, - "latex": "E=N\\times V\\times1.60\\times10^{-19}" - }, - { - "category_id": 13, - "poly": [ - 1011, - 661, - 1103, - 661, - 1103, - 695, - 1011, - 695 - ], - "score": 0.27, - "latex": "3.0\\mathsf{c m}" - }, - { - "category_id": 14, - "poly": [ - 260, - 315, - 452, - 315, - 452, - 356, - 260, - 356 - ], - "score": 0.27, - "latex": "E=V\\times10^{-19}" - }, - { - "category_id": 13, - "poly": [ - 459, - 698, - 550, - 698, - 550, - 731, - 459, - 731 - ], - "score": 0.26, - "latex": "3.0\\mathsf{c m}" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 841.0, - 229.0, - 841.0, - 229.0, - 876.0, - 196.0, - 876.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 843.0, - 570.0, - 843.0, - 570.0, - 875.0, - 262.0, - 875.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 912.0, - 229.0, - 912.0, - 229.0, - 950.0, - 197.0, - 950.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 264.0, - 915.0, - 704.0, - 915.0, - 704.0, - 948.0, - 264.0, - 948.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 984.0, - 229.0, - 984.0, - 229.0, - 1024.0, - 196.0, - 1024.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 985.0, - 691.0, - 985.0, - 691.0, - 1024.0, - 260.0, - 1024.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 1056.0, - 229.0, - 1056.0, - 229.0, - 1094.0, - 195.0, - 1094.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 1060.0, - 640.0, - 1060.0, - 640.0, - 1092.0, - 262.0, - 1092.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 1398.0, - 229.0, - 1398.0, - 229.0, - 1434.0, - 196.0, - 1434.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 1401.0, - 548.0, - 1401.0, - 548.0, - 1435.0, - 262.0, - 1435.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 1470.0, - 229.0, - 1470.0, - 229.0, - 1506.0, - 197.0, - 1506.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 1472.0, - 641.0, - 1472.0, - 641.0, - 1506.0, - 262.0, - 1506.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 194.0, - 1540.0, - 231.0, - 1540.0, - 231.0, - 1580.0, - 194.0, - 1580.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 1544.0, - 433.0, - 1544.0, - 433.0, - 1580.0, - 259.0, - 1580.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 1614.0, - 229.0, - 1614.0, - 229.0, - 1651.0, - 195.0, - 1651.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 1618.0, - 567.0, - 1618.0, - 567.0, - 1650.0, - 262.0, - 1650.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 246.0, - 230.0, - 246.0, - 230.0, - 284.0, - 195.0, - 284.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 319.0, - 229.0, - 319.0, - 229.0, - 355.0, - 197.0, - 355.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 390.0, - 229.0, - 390.0, - 229.0, - 427.0, - 197.0, - 427.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 462.0, - 230.0, - 462.0, - 230.0, - 500.0, - 195.0, - 500.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 315.0, - 452.0, - 315.0, - 452.0, - 354.0, - 261.0, - 354.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1704.0, - 374.0, - 1704.0, - 374.0, - 1739.0, - 199.0, - 1739.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 149.0, - 175.0, - 527.0, - 175.0, - 527.0, - 212.0, - 149.0, - 212.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 557.0, - 175.0, - 697.0, - 175.0, - 697.0, - 212.0, - 557.0, - 212.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 728.0, - 175.0, - 1417.0, - 175.0, - 1417.0, - 212.0, - 728.0, - 212.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 551.0, - 375.0, - 551.0, - 375.0, - 591.0, - 199.0, - 591.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 167.0, - 2165.0, - 270.0, - 2165.0, - 270.0, - 2186.0, - 167.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1147.0, - 374.0, - 1147.0, - 374.0, - 1182.0, - 199.0, - 1182.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 661.0, - 1010.0, - 661.0, - 1010.0, - 698.0, - 135.0, - 698.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1104.0, - 661.0, - 1484.0, - 661.0, - 1484.0, - 698.0, - 1104.0, - 698.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 699.0, - 458.0, - 699.0, - 458.0, - 734.0, - 198.0, - 734.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 551.0, - 699.0, - 561.0, - 699.0, - 561.0, - 734.0, - 551.0, - 734.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 1253.0, - 704.0, - 1253.0, - 704.0, - 1291.0, - 134.0, - 1291.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1327.0, - 1346.0, - 1327.0, - 1346.0, - 1361.0, - 200.0, - 1361.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1472.0, - 1699.0, - 1523.0, - 1699.0, - 1523.0, - 1748.0, - 1472.0, - 1748.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 201.0, - 770.0, - 950.0, - 770.0, - 950.0, - 802.0, - 201.0, - 802.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 802.0, - 122.0, - 852.0, - 122.0, - 852.0, - 162.0, - 802.0, - 162.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 548.0, - 1524.0, - 548.0, - 1524.0, - 596.0, - 1471.0, - 596.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 1142.0, - 1524.0, - 1142.0, - 1524.0, - 1190.0, - 1471.0, - 1190.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 1254.0, - 702.0, - 1254.0, - 702.0, - 1287.0, - 136.0, - 1287.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 1142.0, - 1524.0, - 1142.0, - 1524.0, - 1190.0, - 1471.0, - 1190.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 1323.0, - 1346.0, - 1323.0, - 1346.0, - 1363.0, - 197.0, - 1363.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 658.0, - 1010.0, - 658.0, - 1010.0, - 699.0, - 133.0, - 699.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1104.0, - 658.0, - 1483.0, - 658.0, - 1483.0, - 699.0, - 1104.0, - 699.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 699.0, - 458.0, - 699.0, - 458.0, - 734.0, - 199.0, - 734.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 551.0, - 699.0, - 561.0, - 699.0, - 561.0, - 734.0, - 551.0, - 734.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 770.0, - 952.0, - 770.0, - 952.0, - 804.0, - 199.0, - 804.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 548.0, - 1524.0, - 548.0, - 1524.0, - 596.0, - 1471.0, - 596.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 37, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 166, - 2164, - 267, - 2164, - 267, - 2186, - 166, - 2186 - ], - "score": 0.862 - }, - { - "category_id": 2, - "poly": [ - 1345, - 2152, - 1474, - 2152, - 1474, - 2183, - 1345, - 2183 - ], - "score": 0.73 - }, - { - "category_id": 2, - "poly": [ - 1582, - 3, - 1652, - 3, - 1652, - 39, - 1582, - 39 - ], - "score": 0.72 - }, - { - "category_id": 1, - "poly": [ - 606, - 1226, - 1048, - 1226, - 1048, - 1265, - 606, - 1265 - ], - "score": 0.541 - }, - { - "category_id": 0, - "poly": [ - 530, - 1160, - 1123, - 1160, - 1123, - 1200, - 530, - 1200 - ], - "score": 0.397 - }, - { - "category_id": 1, - "poly": [ - 723, - 172, - 930, - 172, - 930, - 210, - 723, - 210 - ], - "score": 0.351 - }, - { - "category_id": 2, - "poly": [ - 809, - 125, - 844, - 125, - 844, - 156, - 809, - 156 - ], - "score": 0.314 - }, - { - "category_id": 2, - "poly": [ - 724, - 123, - 933, - 123, - 933, - 212, - 724, - 212 - ], - "score": 0.244 - }, - { - "category_id": 0, - "poly": [ - 532, - 1159, - 1122, - 1159, - 1122, - 1266, - 532, - 1266 - ], - "score": 0.156 - }, - { - "category_id": 2, - "poly": [ - 723, - 172, - 930, - 172, - 930, - 210, - 723, - 210 - ], - "score": 0.148 - }, - { - "category_id": 0, - "poly": [ - 606, - 1226, - 1048, - 1226, - 1048, - 1265, - 606, - 1265 - ], - "score": 0.137 - }, - { - "category_id": 1, - "poly": [ - 1345, - 2152, - 1474, - 2152, - 1474, - 2183, - 1345, - 2183 - ], - "score": 0.123 - }, - { - "category_id": 1, - "poly": [ - 530, - 1160, - 1123, - 1160, - 1123, - 1200, - 530, - 1200 - ], - "score": 0.108 - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2185.0, - 166.0, - 2185.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1342.0, - 2151.0, - 1477.0, - 2151.0, - 1477.0, - 2184.0, - 1342.0, - 2184.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 3.0, - 1658.0, - 3.0, - 1658.0, - 42.0, - 1579.0, - 42.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 609.0, - 1228.0, - 1046.0, - 1228.0, - 1046.0, - 1264.0, - 609.0, - 1264.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 536.0, - 1165.0, - 1119.0, - 1165.0, - 1119.0, - 1195.0, - 536.0, - 1195.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 727.0, - 174.0, - 928.0, - 174.0, - 928.0, - 207.0, - 727.0, - 207.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 803.0, - 121.0, - 850.0, - 121.0, - 850.0, - 162.0, - 803.0, - 162.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 805.0, - 122.0, - 847.0, - 122.0, - 847.0, - 158.0, - 805.0, - 158.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 728.0, - 177.0, - 928.0, - 177.0, - 928.0, - 206.0, - 728.0, - 206.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 534.0, - 1164.0, - 1119.0, - 1164.0, - 1119.0, - 1195.0, - 534.0, - 1195.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 607.0, - 1228.0, - 1047.0, - 1228.0, - 1047.0, - 1264.0, - 607.0, - 1264.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 727.0, - 174.0, - 928.0, - 174.0, - 928.0, - 207.0, - 727.0, - 207.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 609.0, - 1228.0, - 1046.0, - 1228.0, - 1046.0, - 1264.0, - 609.0, - 1264.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1342.0, - 2151.0, - 1477.0, - 2151.0, - 1477.0, - 2184.0, - 1342.0, - 2184.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 536.0, - 1165.0, - 1119.0, - 1165.0, - 1119.0, - 1195.0, - 536.0, - 1195.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 38, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 205, - 1018, - 1033, - 1018, - 1033, - 1582, - 205, - 1582 - ], - "score": 0.966 - }, - { - "category_id": 3, - "poly": [ - 202, - 396, - 921, - 396, - 921, - 722, - 202, - 722 - ], - "score": 0.964 - }, - { - "category_id": 1, - "poly": [ - 199, - 833, - 1451, - 833, - 1451, - 908, - 199, - 908 - ], - "score": 0.929 - }, - { - "category_id": 1, - "poly": [ - 202, - 940, - 1078, - 940, - 1078, - 981, - 202, - 981 - ], - "score": 0.92 - }, - { - "category_id": 1, - "poly": [ - 200, - 761, - 1243, - 761, - 1243, - 802, - 200, - 802 - ], - "score": 0.916 - }, - { - "category_id": 1, - "poly": [ - 187, - 1633, - 1310, - 1633, - 1310, - 1675, - 187, - 1675 - ], - "score": 0.913 - }, - { - "category_id": 1, - "poly": [ - 122, - 317, - 1259, - 317, - 1259, - 358, - 122, - 358 - ], - "score": 0.912 - }, - { - "category_id": 2, - "poly": [ - 165, - 2162, - 267, - 2162, - 267, - 2186, - 165, - 2186 - ], - "score": 0.885 - }, - { - "category_id": 1, - "poly": [ - 652, - 246, - 1000, - 246, - 1000, - 285, - 652, - 285 - ], - "score": 0.879 - }, - { - "category_id": 2, - "poly": [ - 1582, - 5, - 1652, - 5, - 1652, - 39, - 1582, - 39 - ], - "score": 0.818 - }, - { - "category_id": 0, - "poly": [ - 739, - 171, - 913, - 171, - 913, - 210, - 739, - 210 - ], - "score": 0.778 - }, - { - "category_id": 1, - "poly": [ - 678, - 2105, - 1520, - 2105, - 1520, - 2145, - 678, - 2145 - ], - "score": 0.519 - }, - { - "category_id": 0, - "poly": [ - 808, - 123, - 848, - 123, - 848, - 156, - 808, - 156 - ], - "score": 0.362 - }, - { - "category_id": 2, - "poly": [ - 678, - 2105, - 1520, - 2105, - 1520, - 2145, - 678, - 2145 - ], - "score": 0.333 - }, - { - "category_id": 0, - "poly": [ - 742, - 122, - 910, - 122, - 910, - 212, - 742, - 212 - ], - "score": 0.274 - }, - { - "category_id": 13, - "poly": [ - 586, - 836, - 638, - 836, - 638, - 869, - 586, - 869 - ], - "score": 0.89, - "latex": "55^{\\circ}" - }, - { - "category_id": 13, - "poly": [ - 1088, - 1638, - 1153, - 1638, - 1153, - 1669, - 1088, - 1669 - ], - "score": 0.89, - "latex": "t=0" - }, - { - "category_id": 13, - "poly": [ - 1191, - 1636, - 1300, - 1636, - 1300, - 1670, - 1191, - 1670 - ], - "score": 0.87, - "latex": "t=8.05" - }, - { - "category_id": 13, - "poly": [ - 940, - 2113, - 970, - 2113, - 970, - 2138, - 940, - 2138 - ], - "score": 0.75, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 199, - 871, - 289, - 871, - 289, - 908, - 199, - 908 - ], - "score": 0.41, - "latex": "150\\mathsf{k g}" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 832.0, - 585.0, - 832.0, - 585.0, - 873.0, - 197.0, - 873.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 639.0, - 832.0, - 1450.0, - 832.0, - 1450.0, - 873.0, - 639.0, - 873.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 865.0, - 198.0, - 865.0, - 198.0, - 914.0, - 198.0, - 914.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 290.0, - 865.0, - 302.0, - 865.0, - 302.0, - 914.0, - 290.0, - 914.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 943.0, - 1075.0, - 943.0, - 1075.0, - 979.0, - 200.0, - 979.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 765.0, - 1241.0, - 765.0, - 1241.0, - 799.0, - 200.0, - 799.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 1635.0, - 1087.0, - 1635.0, - 1087.0, - 1676.0, - 197.0, - 1676.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1154.0, - 1635.0, - 1190.0, - 1635.0, - 1190.0, - 1676.0, - 1154.0, - 1676.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1301.0, - 1635.0, - 1312.0, - 1635.0, - 1312.0, - 1676.0, - 1301.0, - 1676.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 131.0, - 314.0, - 1260.0, - 314.0, - 1260.0, - 361.0, - 131.0, - 361.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 168.0, - 2166.0, - 269.0, - 2166.0, - 269.0, - 2185.0, - 168.0, - 2185.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 655.0, - 249.0, - 997.0, - 249.0, - 997.0, - 282.0, - 655.0, - 282.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 3.0, - 1658.0, - 3.0, - 1658.0, - 42.0, - 1579.0, - 42.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 744.0, - 177.0, - 911.0, - 177.0, - 911.0, - 206.0, - 744.0, - 206.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 682.0, - 2107.0, - 939.0, - 2107.0, - 939.0, - 2139.0, - 682.0, - 2139.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1430.0, - 2106.0, - 1518.0, - 2106.0, - 1518.0, - 2144.0, - 1430.0, - 2144.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 801.0, - 121.0, - 854.0, - 121.0, - 854.0, - 165.0, - 801.0, - 165.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 682.0, - 2107.0, - 939.0, - 2107.0, - 939.0, - 2139.0, - 682.0, - 2139.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1430.0, - 2106.0, - 1518.0, - 2106.0, - 1518.0, - 2144.0, - 1430.0, - 2144.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 803.0, - 121.0, - 852.0, - 121.0, - 852.0, - 159.0, - 803.0, - 159.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 742.0, - 176.0, - 912.0, - 176.0, - 912.0, - 208.0, - 742.0, - 208.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 39, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 166, - 2163, - 267, - 2163, - 267, - 2186, - 166, - 2186 - ], - "score": 0.871 - }, - { - "category_id": 1, - "poly": [ - 910, - 1363, - 1520, - 1363, - 1520, - 1406, - 910, - 1406 - ], - "score": 0.845 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 39, - 1582, - 39 - ], - "score": 0.784 - }, - { - "category_id": 2, - "poly": [ - 1344, - 2152, - 1474, - 2152, - 1474, - 2183, - 1344, - 2183 - ], - "score": 0.739 - }, - { - "category_id": 2, - "poly": [ - 1474, - 610, - 1518, - 610, - 1518, - 647, - 1474, - 647 - ], - "score": 0.673 - }, - { - "category_id": 1, - "poly": [ - 253, - 677, - 1498, - 677, - 1498, - 829, - 253, - 829 - ], - "score": 0.661 - }, - { - "category_id": 1, - "poly": [ - 199, - 173, - 1420, - 173, - 1420, - 288, - 199, - 288 - ], - "score": 0.576 - }, - { - "category_id": 2, - "poly": [ - 808, - 124, - 847, - 124, - 847, - 155, - 808, - 155 - ], - "score": 0.398 - }, - { - "category_id": 1, - "poly": [ - 244, - 244, - 1417, - 244, - 1417, - 286, - 244, - 286 - ], - "score": 0.353 - }, - { - "category_id": 1, - "poly": [ - 808, - 124, - 847, - 124, - 847, - 155, - 808, - 155 - ], - "score": 0.331 - }, - { - "category_id": 1, - "poly": [ - 321, - 786, - 1140, - 786, - 1140, - 827, - 321, - 827 - ], - "score": 0.321 - }, - { - "category_id": 1, - "poly": [ - 243, - 678, - 1500, - 678, - 1500, - 755, - 243, - 755 - ], - "score": 0.32 - }, - { - "category_id": 1, - "poly": [ - 196, - 173, - 763, - 173, - 763, - 214, - 196, - 214 - ], - "score": 0.253 - }, - { - "category_id": 1, - "poly": [ - 1344, - 2152, - 1474, - 2152, - 1474, - 2183, - 1344, - 2183 - ], - "score": 0.125 - }, - { - "category_id": 1, - "poly": [ - 1474, - 610, - 1518, - 610, - 1518, - 647, - 1474, - 647 - ], - "score": 0.103 - }, - { - "category_id": 13, - "poly": [ - 361, - 681, - 471, - 681, - 471, - 715, - 361, - 715 - ], - "score": 0.88, - "latex": "t=1.0\\mathsf{s}" - }, - { - "category_id": 13, - "poly": [ - 1285, - 244, - 1407, - 244, - 1407, - 283, - 1285, - 283 - ], - "score": 0.87, - "latex": "2.0\\mathsf{m}\\mathsf{s}^{-2}" - }, - { - "category_id": 13, - "poly": [ - 1143, - 247, - 1253, - 247, - 1253, - 283, - 1143, - 283 - ], - "score": 0.87, - "latex": "t=1.05" - }, - { - "category_id": 13, - "poly": [ - 298, - 175, - 409, - 175, - 409, - 209, - 298, - 209 - ], - "score": 0.85, - "latex": "t=1.0\\mathsf{s}" - }, - { - "category_id": 13, - "poly": [ - 459, - 790, - 489, - 790, - 489, - 822, - 459, - 822 - ], - "score": 0.62, - "latex": "R" - }, - { - "category_id": 13, - "poly": [ - 635, - 682, - 659, - 682, - 659, - 713, - 635, - 713 - ], - "score": 0.48, - "latex": "\\tau" - }, - { - "category_id": 13, - "poly": [ - 842, - 680, - 926, - 680, - 926, - 715, - 842, - 715 - ], - "score": 0.45, - "latex": "680\\mathsf{N}" - }, - { - "category_id": 13, - "poly": [ - 702, - 718, - 729, - 718, - 729, - 748, - 702, - 748 - ], - "score": 0.41, - "latex": "R" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 915.0, - 1368.0, - 969.0, - 1368.0, - 969.0, - 1399.0, - 915.0, - 1399.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1433.0, - 1365.0, - 1519.0, - 1365.0, - 1519.0, - 1405.0, - 1433.0, - 1405.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1342.0, - 2151.0, - 1478.0, - 2151.0, - 1478.0, - 2184.0, - 1342.0, - 2184.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 605.0, - 1525.0, - 605.0, - 1525.0, - 653.0, - 1471.0, - 653.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 683.0, - 301.0, - 683.0, - 301.0, - 715.0, - 259.0, - 715.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 679.0, - 360.0, - 679.0, - 360.0, - 719.0, - 319.0, - 719.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 472.0, - 679.0, - 634.0, - 679.0, - 634.0, - 719.0, - 472.0, - 719.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 660.0, - 679.0, - 841.0, - 679.0, - 841.0, - 719.0, - 660.0, - 719.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 927.0, - 679.0, - 1493.0, - 679.0, - 1493.0, - 719.0, - 927.0, - 719.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 322.0, - 718.0, - 701.0, - 718.0, - 701.0, - 754.0, - 322.0, - 754.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 730.0, - 718.0, - 738.0, - 718.0, - 738.0, - 754.0, - 730.0, - 754.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 324.0, - 788.0, - 458.0, - 788.0, - 458.0, - 827.0, - 324.0, - 827.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 490.0, - 788.0, - 1138.0, - 788.0, - 1138.0, - 827.0, - 490.0, - 827.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 173.0, - 297.0, - 173.0, - 297.0, - 214.0, - 199.0, - 214.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 410.0, - 173.0, - 760.0, - 173.0, - 760.0, - 214.0, - 410.0, - 214.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 243.0, - 1142.0, - 243.0, - 1142.0, - 288.0, - 258.0, - 288.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1254.0, - 243.0, - 1284.0, - 243.0, - 1284.0, - 288.0, - 1254.0, - 288.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1408.0, - 243.0, - 1416.0, - 243.0, - 1416.0, - 288.0, - 1408.0, - 288.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 804.0, - 123.0, - 850.0, - 123.0, - 850.0, - 160.0, - 804.0, - 160.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 247.0, - 304.0, - 247.0, - 304.0, - 287.0, - 263.0, - 287.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 313.0, - 246.0, - 1142.0, - 246.0, - 1142.0, - 284.0, - 313.0, - 284.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1254.0, - 246.0, - 1284.0, - 246.0, - 1284.0, - 284.0, - 1254.0, - 284.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1408.0, - 246.0, - 1413.0, - 246.0, - 1413.0, - 284.0, - 1408.0, - 284.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 804.0, - 123.0, - 850.0, - 123.0, - 850.0, - 160.0, - 804.0, - 160.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 325.0, - 789.0, - 458.0, - 789.0, - 458.0, - 825.0, - 325.0, - 825.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 490.0, - 789.0, - 1135.0, - 789.0, - 1135.0, - 825.0, - 490.0, - 825.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 682.0, - 305.0, - 682.0, - 305.0, - 718.0, - 257.0, - 718.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 678.0, - 360.0, - 678.0, - 360.0, - 719.0, - 316.0, - 719.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 472.0, - 678.0, - 634.0, - 678.0, - 634.0, - 719.0, - 472.0, - 719.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 660.0, - 678.0, - 841.0, - 678.0, - 841.0, - 719.0, - 660.0, - 719.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 927.0, - 678.0, - 1495.0, - 678.0, - 1495.0, - 719.0, - 927.0, - 719.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 324.0, - 719.0, - 701.0, - 719.0, - 701.0, - 754.0, - 324.0, - 754.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 730.0, - 719.0, - 737.0, - 719.0, - 737.0, - 754.0, - 730.0, - 754.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 175.0, - 297.0, - 175.0, - 297.0, - 212.0, - 200.0, - 212.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 410.0, - 175.0, - 761.0, - 175.0, - 761.0, - 212.0, - 410.0, - 212.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1342.0, - 2151.0, - 1478.0, - 2151.0, - 1478.0, - 2184.0, - 1342.0, - 2184.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 605.0, - 1525.0, - 605.0, - 1525.0, - 653.0, - 1471.0, - 653.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 40, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 135, - 173, - 1458, - 173, - 1458, - 284, - 135, - 284 - ], - "score": 0.966 - }, - { - "category_id": 1, - "poly": [ - 199, - 864, - 1258, - 864, - 1258, - 978, - 199, - 978 - ], - "score": 0.952 - }, - { - "category_id": 3, - "poly": [ - 206, - 319, - 653, - 319, - 653, - 820, - 206, - 820 - ], - "score": 0.944 - }, - { - "category_id": 1, - "poly": [ - 197, - 1010, - 1379, - 1010, - 1379, - 1049, - 197, - 1049 - ], - "score": 0.912 - }, - { - "category_id": 2, - "poly": [ - 166, - 2163, - 267, - 2163, - 267, - 2186, - 166, - 2186 - ], - "score": 0.887 - }, - { - "category_id": 2, - "poly": [ - 809, - 125, - 846, - 125, - 846, - 154, - 809, - 154 - ], - "score": 0.826 - }, - { - "category_id": 2, - "poly": [ - 1582, - 5, - 1652, - 5, - 1652, - 38, - 1582, - 38 - ], - "score": 0.822 - }, - { - "category_id": 5, - "poly": [ - 153, - 1079, - 1525, - 1079, - 1525, - 1848, - 153, - 1848 - ], - "score": 0.514, - "html": "
Position APosition BPosition C
25 cm45 cm76 cm
State of springground fully compressedground original lengthground original length
State of clownstationaryMoving vertically upwards atstationary
Height of platform above the ground/cm25maximum speed 4576
" - }, - { - "category_id": 3, - "poly": [ - 153, - 1079, - 1525, - 1079, - 1525, - 1848, - 153, - 1848 - ], - "score": 0.319 - }, - { - "category_id": 13, - "poly": [ - 667, - 864, - 874, - 864, - 874, - 902, - 667, - 902 - ], - "score": 0.92, - "latex": "1.7\\times10^{4}\\mathsf{N m}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 541, - 904, - 616, - 904, - 616, - 941, - 541, - 941 - ], - "score": 0.75, - "latex": "68\\mathsf{k g}" - }, - { - "category_id": 15, - "poly": [ - 132.0, - 171.0, - 1450.0, - 171.0, - 1450.0, - 214.0, - 132.0, - 214.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 214.0, - 1456.0, - 214.0, - 1456.0, - 250.0, - 198.0, - 250.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 248.0, - 631.0, - 248.0, - 631.0, - 286.0, - 198.0, - 286.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 866.0, - 666.0, - 866.0, - 666.0, - 904.0, - 195.0, - 904.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 875.0, - 866.0, - 885.0, - 866.0, - 885.0, - 904.0, - 875.0, - 904.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 903.0, - 540.0, - 903.0, - 540.0, - 941.0, - 198.0, - 941.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 617.0, - 903.0, - 626.0, - 903.0, - 626.0, - 941.0, - 617.0, - 941.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 940.0, - 1257.0, - 940.0, - 1257.0, - 978.0, - 197.0, - 978.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 1011.0, - 1377.0, - 1011.0, - 1377.0, - 1048.0, - 198.0, - 1048.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 803.0, - 121.0, - 852.0, - 121.0, - 852.0, - 161.0, - 803.0, - 161.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1580.0, - 5.0, - 1656.0, - 5.0, - 1656.0, - 41.0, - 1580.0, - 41.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 41, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 165, - 2162, - 267, - 2162, - 267, - 2186, - 165, - 2186 - ], - "score": 0.881 - }, - { - "category_id": 2, - "poly": [ - 1344, - 2151, - 1474, - 2151, - 1474, - 2183, - 1344, - 2183 - ], - "score": 0.841 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 39, - 1582, - 39 - ], - "score": 0.813 - }, - { - "category_id": 1, - "poly": [ - 189, - 785, - 1169, - 785, - 1169, - 828, - 189, - 828 - ], - "score": 0.792 - }, - { - "category_id": 1, - "poly": [ - 912, - 1256, - 1520, - 1256, - 1520, - 1298, - 912, - 1298 - ], - "score": 0.735 - }, - { - "category_id": 1, - "poly": [ - 198, - 568, - 1522, - 568, - 1522, - 756, - 198, - 756 - ], - "score": 0.688 - }, - { - "category_id": 1, - "poly": [ - 192, - 1328, - 1504, - 1328, - 1504, - 1403, - 192, - 1403 - ], - "score": 0.612 - }, - { - "category_id": 2, - "poly": [ - 808, - 123, - 848, - 123, - 848, - 156, - 808, - 156 - ], - "score": 0.549 - }, - { - "category_id": 1, - "poly": [ - 257, - 1419, - 1171, - 1419, - 1171, - 1485, - 257, - 1485 - ], - "score": 0.53 - }, - { - "category_id": 1, - "poly": [ - 250, - 1508, - 1413, - 1508, - 1413, - 1550, - 250, - 1550 - ], - "score": 0.516 - }, - { - "category_id": 1, - "poly": [ - 197, - 171, - 1517, - 171, - 1517, - 539, - 197, - 539 - ], - "score": 0.5 - }, - { - "category_id": 1, - "poly": [ - 194, - 173, - 1500, - 173, - 1500, - 249, - 194, - 249 - ], - "score": 0.473 - }, - { - "category_id": 1, - "poly": [ - 185, - 1327, - 1521, - 1327, - 1521, - 1698, - 185, - 1698 - ], - "score": 0.395 - }, - { - "category_id": 1, - "poly": [ - 241, - 1653, - 1520, - 1653, - 1520, - 1694, - 241, - 1694 - ], - "score": 0.366 - }, - { - "category_id": 1, - "poly": [ - 192, - 569, - 1220, - 569, - 1220, - 613, - 192, - 613 - ], - "score": 0.203 - }, - { - "category_id": 1, - "poly": [ - 808, - 123, - 848, - 123, - 848, - 156, - 808, - 156 - ], - "score": 0.16 - }, - { - "category_id": 1, - "poly": [ - 219, - 713, - 1524, - 713, - 1524, - 755, - 219, - 755 - ], - "score": 0.154 - }, - { - "category_id": 1, - "poly": [ - 228, - 494, - 1519, - 494, - 1519, - 538, - 228, - 538 - ], - "score": 0.14 - }, - { - "category_id": 1, - "poly": [ - 223, - 353, - 1520, - 353, - 1520, - 391, - 223, - 391 - ], - "score": 0.13 - }, - { - "category_id": 13, - "poly": [ - 691, - 790, - 718, - 790, - 718, - 821, - 691, - 821 - ], - "score": 0.74, - "latex": "E" - }, - { - "category_id": 13, - "poly": [ - 504, - 1441, - 531, - 1441, - 531, - 1471, - 504, - 1471 - ], - "score": 0.65, - "latex": "E" - }, - { - "category_id": 13, - "poly": [ - 1267, - 1336, - 1290, - 1336, - 1290, - 1363, - 1267, - 1363 - ], - "score": 0.52, - "latex": "V" - }, - { - "category_id": 14, - "poly": [ - 966, - 1415, - 1163, - 1415, - 1163, - 1486, - 966, - 1486 - ], - "score": 0.4, - "latex": "\\mathbf{\\delta}\\mathbf{\\sigma}={\\frac{1}{2}}\\times68\\times V^{2}." - }, - { - "category_id": 15, - "poly": [ - 168.0, - 2166.0, - 269.0, - 2166.0, - 269.0, - 2185.0, - 168.0, - 2185.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1343.0, - 2150.0, - 1477.0, - 2150.0, - 1477.0, - 2184.0, - 1343.0, - 2184.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 788.0, - 690.0, - 788.0, - 690.0, - 829.0, - 197.0, - 829.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 719.0, - 788.0, - 1166.0, - 788.0, - 1166.0, - 829.0, - 719.0, - 829.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 918.0, - 1259.0, - 967.0, - 1259.0, - 967.0, - 1290.0, - 918.0, - 1290.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1441.0, - 1258.0, - 1520.0, - 1258.0, - 1520.0, - 1299.0, - 1441.0, - 1299.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 571.0, - 1216.0, - 571.0, - 1216.0, - 611.0, - 197.0, - 611.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1467.0, - 718.0, - 1522.0, - 718.0, - 1522.0, - 756.0, - 1467.0, - 756.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 201.0, - 1333.0, - 1266.0, - 1333.0, - 1266.0, - 1367.0, - 201.0, - 1367.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1291.0, - 1333.0, - 1491.0, - 1333.0, - 1491.0, - 1367.0, - 1291.0, - 1367.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 1367.0, - 415.0, - 1367.0, - 415.0, - 1403.0, - 256.0, - 1403.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 804.0, - 123.0, - 851.0, - 123.0, - 851.0, - 160.0, - 804.0, - 160.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 1436.0, - 503.0, - 1436.0, - 503.0, - 1481.0, - 258.0, - 1481.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 532.0, - 1436.0, - 965.0, - 1436.0, - 965.0, - 1481.0, - 532.0, - 1481.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1164.0, - 1436.0, - 1164.0, - 1436.0, - 1164.0, - 1481.0, - 1164.0, - 1481.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 264.0, - 1511.0, - 1408.0, - 1511.0, - 1408.0, - 1548.0, - 264.0, - 1548.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 174.0, - 1499.0, - 174.0, - 1499.0, - 215.0, - 197.0, - 215.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 207.0, - 492.0, - 207.0, - 492.0, - 250.0, - 258.0, - 250.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1474.0, - 503.0, - 1517.0, - 503.0, - 1517.0, - 535.0, - 1474.0, - 535.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 175.0, - 1500.0, - 175.0, - 1500.0, - 214.0, - 198.0, - 214.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 211.0, - 493.0, - 211.0, - 493.0, - 250.0, - 257.0, - 250.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1331.0, - 1266.0, - 1331.0, - 1266.0, - 1368.0, - 199.0, - 1368.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1291.0, - 1331.0, - 1492.0, - 1331.0, - 1492.0, - 1368.0, - 1291.0, - 1368.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 1369.0, - 412.0, - 1369.0, - 412.0, - 1402.0, - 259.0, - 1402.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 1433.0, - 503.0, - 1433.0, - 503.0, - 1484.0, - 253.0, - 1484.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 532.0, - 1433.0, - 965.0, - 1433.0, - 965.0, - 1484.0, - 532.0, - 1484.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1164.0, - 1433.0, - 1173.0, - 1433.0, - 1173.0, - 1484.0, - 1164.0, - 1484.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 264.0, - 1511.0, - 1411.0, - 1511.0, - 1411.0, - 1548.0, - 264.0, - 1548.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1478.0, - 1658.0, - 1519.0, - 1658.0, - 1519.0, - 1692.0, - 1478.0, - 1692.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1461.0, - 1654.0, - 1523.0, - 1654.0, - 1523.0, - 1697.0, - 1461.0, - 1697.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 573.0, - 1216.0, - 573.0, - 1216.0, - 611.0, - 198.0, - 611.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 804.0, - 123.0, - 851.0, - 123.0, - 851.0, - 160.0, - 804.0, - 160.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1463.0, - 715.0, - 1523.0, - 715.0, - 1523.0, - 758.0, - 1463.0, - 758.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1465.0, - 495.0, - 1523.0, - 495.0, - 1523.0, - 542.0, - 1465.0, - 542.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 42, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 203, - 281, - 732, - 281, - 732, - 613, - 203, - 613 - ], - "score": 0.969 - }, - { - "category_id": 3, - "poly": [ - 211, - 910, - 966, - 910, - 966, - 1861, - 211, - 1861 - ], - "score": 0.968 - }, - { - "category_id": 1, - "poly": [ - 196, - 797, - 1494, - 797, - 1494, - 870, - 196, - 870 - ], - "score": 0.943 - }, - { - "category_id": 1, - "poly": [ - 137, - 174, - 1494, - 174, - 1494, - 248, - 137, - 248 - ], - "score": 0.937 - }, - { - "category_id": 1, - "poly": [ - 198, - 651, - 903, - 651, - 903, - 692, - 198, - 692 - ], - "score": 0.923 - }, - { - "category_id": 1, - "poly": [ - 198, - 724, - 862, - 724, - 862, - 763, - 198, - 763 - ], - "score": 0.921 - }, - { - "category_id": 2, - "poly": [ - 166, - 2163, - 267, - 2163, - 267, - 2186, - 166, - 2186 - ], - "score": 0.891 - }, - { - "category_id": 2, - "poly": [ - 809, - 125, - 846, - 125, - 846, - 154, - 809, - 154 - ], - "score": 0.847 - }, - { - "category_id": 2, - "poly": [ - 1582, - 5, - 1652, - 5, - 1652, - 38, - 1582, - 38 - ], - "score": 0.828 - }, - { - "category_id": 13, - "poly": [ - 809, - 653, - 892, - 653, - 892, - 691, - 809, - 691 - ], - "score": 0.79, - "latex": "3.0\\mathsf{k g}" - }, - { - "category_id": 13, - "poly": [ - 419, - 804, - 444, - 804, - 444, - 836, - 419, - 836 - ], - "score": 0.77, - "latex": "p" - }, - { - "category_id": 13, - "poly": [ - 435, - 653, - 519, - 653, - 519, - 691, - 435, - 691 - ], - "score": 0.74, - "latex": "2.0\\mathsf{k g}" - }, - { - "category_id": 13, - "poly": [ - 486, - 211, - 570, - 211, - 570, - 245, - 486, - 245 - ], - "score": 0.6, - "latex": "120\\ m" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 796.0, - 418.0, - 796.0, - 418.0, - 839.0, - 197.0, - 839.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 445.0, - 796.0, - 1495.0, - 796.0, - 1495.0, - 839.0, - 445.0, - 839.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 836.0, - 388.0, - 836.0, - 388.0, - 871.0, - 198.0, - 871.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 131.0, - 173.0, - 1491.0, - 173.0, - 1491.0, - 212.0, - 131.0, - 212.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 201.0, - 215.0, - 485.0, - 215.0, - 485.0, - 245.0, - 201.0, - 245.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 571.0, - 215.0, - 1198.0, - 215.0, - 1198.0, - 245.0, - 571.0, - 245.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 652.0, - 434.0, - 652.0, - 434.0, - 690.0, - 198.0, - 690.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 520.0, - 652.0, - 808.0, - 652.0, - 808.0, - 690.0, - 520.0, - 690.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 893.0, - 652.0, - 900.0, - 652.0, - 900.0, - 690.0, - 893.0, - 690.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 726.0, - 859.0, - 726.0, - 859.0, - 762.0, - 200.0, - 762.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 803.0, - 121.0, - 852.0, - 121.0, - 852.0, - 161.0, - 803.0, - 161.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1580.0, - 5.0, - 1656.0, - 5.0, - 1656.0, - 41.0, - 1580.0, - 41.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 43, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 190, - 859, - 1469, - 859, - 1469, - 936, - 190, - 936 - ], - "score": 0.88 - }, - { - "category_id": 2, - "poly": [ - 165, - 2162, - 267, - 2162, - 267, - 2187, - 165, - 2187 - ], - "score": 0.866 - }, - { - "category_id": 1, - "poly": [ - 193, - 460, - 1206, - 460, - 1206, - 503, - 193, - 503 - ], - "score": 0.851 - }, - { - "category_id": 1, - "poly": [ - 198, - 1400, - 1458, - 1400, - 1458, - 1515, - 198, - 1515 - ], - "score": 0.817 - }, - { - "category_id": 1, - "poly": [ - 918, - 1328, - 1522, - 1328, - 1522, - 1370, - 918, - 1370 - ], - "score": 0.809 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 39, - 1582, - 39 - ], - "score": 0.799 - }, - { - "category_id": 1, - "poly": [ - 792, - 2087, - 1520, - 2087, - 1520, - 2127, - 792, - 2127 - ], - "score": 0.786 - }, - { - "category_id": 1, - "poly": [ - 198, - 171, - 1523, - 171, - 1523, - 432, - 198, - 432 - ], - "score": 0.667 - }, - { - "category_id": 2, - "poly": [ - 808, - 123, - 847, - 123, - 847, - 155, - 808, - 155 - ], - "score": 0.62 - }, - { - "category_id": 1, - "poly": [ - 1473, - 789, - 1519, - 789, - 1519, - 827, - 1473, - 827 - ], - "score": 0.565 - }, - { - "category_id": 1, - "poly": [ - 1344, - 2150, - 1475, - 2150, - 1475, - 2184, - 1344, - 2184 - ], - "score": 0.55 - }, - { - "category_id": 1, - "poly": [ - 228, - 173, - 1253, - 173, - 1253, - 214, - 228, - 214 - ], - "score": 0.321 - }, - { - "category_id": 2, - "poly": [ - 1344, - 2150, - 1475, - 2150, - 1475, - 2184, - 1344, - 2184 - ], - "score": 0.278 - }, - { - "category_id": 1, - "poly": [ - 808, - 123, - 847, - 123, - 847, - 155, - 808, - 155 - ], - "score": 0.156 - }, - { - "category_id": 1, - "poly": [ - 194, - 1400, - 1130, - 1400, - 1130, - 1440, - 194, - 1440 - ], - "score": 0.147 - }, - { - "category_id": 1, - "poly": [ - 220, - 1472, - 1458, - 1472, - 1458, - 1514, - 220, - 1514 - ], - "score": 0.138 - }, - { - "category_id": 1, - "poly": [ - 221, - 318, - 1522, - 318, - 1522, - 356, - 221, - 356 - ], - "score": 0.121 - }, - { - "category_id": 1, - "poly": [ - 202, - 247, - 1526, - 247, - 1526, - 286, - 202, - 286 - ], - "score": 0.119 - }, - { - "category_id": 0, - "poly": [ - 1473, - 789, - 1519, - 789, - 1519, - 827, - 1473, - 827 - ], - "score": 0.105 - }, - { - "category_id": 13, - "poly": [ - 940, - 2096, - 970, - 2096, - 970, - 2121, - 940, - 2121 - ], - "score": 0.77, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 1387, - 1327, - 1464, - 1327, - 1464, - 1366, - 1387, - 1366 - ], - "score": 0.53, - "latex": "m\\mathtt{s}^{-1}" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 862.0, - 1459.0, - 862.0, - 1459.0, - 900.0, - 199.0, - 900.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 896.0, - 505.0, - 896.0, - 505.0, - 935.0, - 260.0, - 935.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 167.0, - 2165.0, - 270.0, - 2165.0, - 270.0, - 2186.0, - 167.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 194.0, - 460.0, - 1208.0, - 460.0, - 1208.0, - 506.0, - 194.0, - 506.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 202.0, - 1405.0, - 1116.0, - 1405.0, - 1116.0, - 1439.0, - 202.0, - 1439.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 1476.0, - 1453.0, - 1476.0, - 1453.0, - 1510.0, - 263.0, - 1510.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 925.0, - 1341.0, - 959.0, - 1341.0, - 959.0, - 1360.0, - 925.0, - 1360.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1465.0, - 1331.0, - 1518.0, - 1331.0, - 1518.0, - 1369.0, - 1465.0, - 1369.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 798.0, - 2093.0, - 939.0, - 2093.0, - 939.0, - 2121.0, - 798.0, - 2121.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1442.0, - 2089.0, - 1519.0, - 2089.0, - 1519.0, - 2127.0, - 1442.0, - 2127.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 175.0, - 1286.0, - 175.0, - 1286.0, - 211.0, - 197.0, - 211.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1472.0, - 392.0, - 1521.0, - 392.0, - 1521.0, - 431.0, - 1472.0, - 431.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 803.0, - 121.0, - 852.0, - 121.0, - 852.0, - 162.0, - 803.0, - 162.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1474.0, - 786.0, - 1522.0, - 786.0, - 1522.0, - 832.0, - 1474.0, - 832.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1343.0, - 2150.0, - 1477.0, - 2150.0, - 1477.0, - 2184.0, - 1343.0, - 2184.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 224.0, - 177.0, - 1257.0, - 177.0, - 1257.0, - 211.0, - 224.0, - 211.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1343.0, - 2150.0, - 1477.0, - 2150.0, - 1477.0, - 2184.0, - 1343.0, - 2184.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 803.0, - 121.0, - 852.0, - 121.0, - 852.0, - 162.0, - 803.0, - 162.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 1404.0, - 1121.0, - 1404.0, - 1121.0, - 1441.0, - 200.0, - 1441.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 1474.0, - 1454.0, - 1474.0, - 1454.0, - 1512.0, - 262.0, - 1512.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1474.0, - 786.0, - 1522.0, - 786.0, - 1522.0, - 832.0, - 1474.0, - 832.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 44, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 262, - 1319, - 1053, - 1319, - 1053, - 1576, - 262, - 1576 - ], - "score": 0.98, - "html": "
QuantityMeasurementPercentage uncertainty
f58Hz2.5
m9.7 x 10-4kg1.0
L0.62m0.5
" - }, - { - "category_id": 3, - "poly": [ - 263, - 653, - 873, - 653, - 873, - 873, - 263, - 873 - ], - "score": 0.966 - }, - { - "category_id": 1, - "poly": [ - 259, - 1208, - 1364, - 1208, - 1364, - 1282, - 259, - 1282 - ], - "score": 0.947 - }, - { - "category_id": 1, - "poly": [ - 260, - 1099, - 1468, - 1099, - 1468, - 1175, - 260, - 1175 - ], - "score": 0.946 - }, - { - "category_id": 1, - "poly": [ - 258, - 992, - 1508, - 992, - 1508, - 1065, - 258, - 1065 - ], - "score": 0.945 - }, - { - "category_id": 1, - "poly": [ - 139, - 173, - 1480, - 173, - 1480, - 248, - 139, - 248 - ], - "score": 0.915 - }, - { - "category_id": 1, - "poly": [ - 195, - 570, - 1052, - 570, - 1052, - 611, - 195, - 611 - ], - "score": 0.909 - }, - { - "category_id": 4, - "poly": [ - 518, - 918, - 624, - 918, - 624, - 958, - 518, - 958 - ], - "score": 0.894 - }, - { - "category_id": 2, - "poly": [ - 165, - 2162, - 267, - 2162, - 267, - 2186, - 165, - 2186 - ], - "score": 0.893 - }, - { - "category_id": 2, - "poly": [ - 1582, - 5, - 1652, - 5, - 1652, - 38, - 1582, - 38 - ], - "score": 0.838 - }, - { - "category_id": 2, - "poly": [ - 809, - 124, - 847, - 124, - 847, - 155, - 809, - 155 - ], - "score": 0.825 - }, - { - "category_id": 1, - "poly": [ - 262, - 1642, - 1429, - 1642, - 1429, - 1718, - 262, - 1718 - ], - "score": 0.757 - }, - { - "category_id": 1, - "poly": [ - 263, - 353, - 1125, - 353, - 1125, - 394, - 263, - 394 - ], - "score": 0.582 - }, - { - "category_id": 1, - "poly": [ - 259, - 282, - 931, - 282, - 931, - 322, - 259, - 322 - ], - "score": 0.582 - }, - { - "category_id": 1, - "poly": [ - 323, - 1969, - 1522, - 1969, - 1522, - 2007, - 323, - 2007 - ], - "score": 0.36 - }, - { - "category_id": 1, - "poly": [ - 257, - 279, - 1522, - 279, - 1522, - 538, - 257, - 538 - ], - "score": 0.321 - }, - { - "category_id": 1, - "poly": [ - 234, - 498, - 1521, - 498, - 1521, - 536, - 234, - 536 - ], - "score": 0.175 - }, - { - "category_id": 1, - "poly": [ - 310, - 1825, - 1522, - 1825, - 1522, - 1861, - 310, - 1861 - ], - "score": 0.15 - }, - { - "category_id": 1, - "poly": [ - 315, - 1896, - 1519, - 1896, - 1519, - 1932, - 315, - 1932 - ], - "score": 0.146 - }, - { - "category_id": 13, - "poly": [ - 1101, - 1099, - 1243, - 1099, - 1243, - 1135, - 1101, - 1135 - ], - "score": 0.91, - "latex": "T=4f^{2}m L" - }, - { - "category_id": 13, - "poly": [ - 451, - 1457, - 630, - 1457, - 630, - 1499, - 451, - 1499 - ], - "score": 0.82, - "latex": "9.7\\times10^{-4}\\mathrm{kg}" - }, - { - "category_id": 13, - "poly": [ - 1110, - 1140, - 1132, - 1140, - 1132, - 1170, - 1110, - 1170 - ], - "score": 0.7, - "latex": "L" - }, - { - "category_id": 13, - "poly": [ - 337, - 1399, - 357, - 1399, - 357, - 1430, - 337, - 1430 - ], - "score": 0.57, - "latex": "f" - }, - { - "category_id": 13, - "poly": [ - 1348, - 1103, - 1365, - 1103, - 1365, - 1134, - 1348, - 1134 - ], - "score": 0.55, - "latex": "f" - }, - { - "category_id": 13, - "poly": [ - 1321, - 996, - 1338, - 996, - 1338, - 1025, - 1321, - 1025 - ], - "score": 0.54, - "latex": "f" - }, - { - "category_id": 13, - "poly": [ - 1123, - 1211, - 1147, - 1211, - 1147, - 1242, - 1123, - 1242 - ], - "score": 0.52, - "latex": "\\tau" - }, - { - "category_id": 13, - "poly": [ - 432, - 1103, - 456, - 1103, - 456, - 1134, - 432, - 1134 - ], - "score": 0.48, - "latex": "\\tau" - }, - { - "category_id": 13, - "poly": [ - 330, - 1470, - 361, - 1470, - 361, - 1493, - 330, - 1493 - ], - "score": 0.43, - "latex": "m" - }, - { - "category_id": 13, - "poly": [ - 334, - 1528, - 356, - 1528, - 356, - 1557, - 334, - 1557 - ], - "score": 0.41, - "latex": "L" - }, - { - "category_id": 13, - "poly": [ - 704, - 1143, - 736, - 1143, - 736, - 1170, - 704, - 1170 - ], - "score": 0.39, - "latex": "m" - }, - { - "category_id": 13, - "poly": [ - 498, - 1396, - 582, - 1396, - 582, - 1434, - 498, - 1434 - ], - "score": 0.33, - "latex": "{58}{\\mathsf{H}}{z}" - }, - { - "category_id": 13, - "poly": [ - 492, - 1523, - 589, - 1523, - 589, - 1561, - 492, - 1561 - ], - "score": 0.3, - "latex": "0.62\\m m" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 1211.0, - 1122.0, - 1211.0, - 1122.0, - 1245.0, - 263.0, - 1245.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1148.0, - 1211.0, - 1360.0, - 1211.0, - 1360.0, - 1245.0, - 1148.0, - 1245.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 1248.0, - 868.0, - 1248.0, - 868.0, - 1280.0, - 262.0, - 1280.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 1100.0, - 431.0, - 1100.0, - 431.0, - 1138.0, - 260.0, - 1138.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 457.0, - 1100.0, - 1100.0, - 1100.0, - 1100.0, - 1138.0, - 457.0, - 1138.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1244.0, - 1100.0, - 1347.0, - 1100.0, - 1347.0, - 1138.0, - 1244.0, - 1138.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1366.0, - 1100.0, - 1444.0, - 1100.0, - 1444.0, - 1138.0, - 1366.0, - 1138.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 1140.0, - 703.0, - 1140.0, - 703.0, - 1174.0, - 262.0, - 1174.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 737.0, - 1140.0, - 1109.0, - 1140.0, - 1109.0, - 1174.0, - 737.0, - 1174.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1133.0, - 1140.0, - 1461.0, - 1140.0, - 1461.0, - 1174.0, - 1133.0, - 1174.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 993.0, - 1320.0, - 993.0, - 1320.0, - 1030.0, - 261.0, - 1030.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1339.0, - 993.0, - 1510.0, - 993.0, - 1510.0, - 1030.0, - 1339.0, - 1030.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 1031.0, - 515.0, - 1031.0, - 515.0, - 1065.0, - 261.0, - 1065.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 131.0, - 172.0, - 1474.0, - 172.0, - 1474.0, - 213.0, - 131.0, - 213.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 213.0, - 710.0, - 213.0, - 710.0, - 243.0, - 262.0, - 243.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 573.0, - 1050.0, - 573.0, - 1050.0, - 610.0, - 199.0, - 610.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 518.0, - 920.0, - 626.0, - 920.0, - 626.0, - 960.0, - 518.0, - 960.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 168.0, - 2166.0, - 269.0, - 2166.0, - 269.0, - 2185.0, - 168.0, - 2185.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1580.0, - 5.0, - 1656.0, - 5.0, - 1656.0, - 41.0, - 1580.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 802.0, - 122.0, - 852.0, - 122.0, - 852.0, - 163.0, - 802.0, - 163.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 1643.0, - 1421.0, - 1643.0, - 1421.0, - 1686.0, - 261.0, - 1686.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 324.0, - 1680.0, - 761.0, - 1680.0, - 761.0, - 1719.0, - 324.0, - 1719.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 357.0, - 1122.0, - 357.0, - 1122.0, - 390.0, - 263.0, - 390.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 284.0, - 927.0, - 284.0, - 927.0, - 318.0, - 263.0, - 318.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1460.0, - 1968.0, - 1521.0, - 1968.0, - 1521.0, - 2008.0, - 1460.0, - 2008.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 282.0, - 925.0, - 282.0, - 925.0, - 322.0, - 263.0, - 322.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 355.0, - 1124.0, - 355.0, - 1124.0, - 392.0, - 261.0, - 392.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1474.0, - 500.0, - 1521.0, - 500.0, - 1521.0, - 538.0, - 1474.0, - 538.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1460.0, - 495.0, - 1525.0, - 495.0, - 1525.0, - 543.0, - 1460.0, - 543.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 45, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 321, - 1075, - 1415, - 1075, - 1415, - 1151, - 321, - 1151 - ], - "score": 0.89 - }, - { - "category_id": 2, - "poly": [ - 165, - 2163, - 267, - 2163, - 267, - 2186, - 165, - 2186 - ], - "score": 0.87 - }, - { - "category_id": 1, - "poly": [ - 322, - 642, - 1169, - 642, - 1169, - 683, - 322, - 683 - ], - "score": 0.816 - }, - { - "category_id": 1, - "poly": [ - 847, - 1002, - 1521, - 1002, - 1521, - 1044, - 847, - 1044 - ], - "score": 0.808 - }, - { - "category_id": 1, - "poly": [ - 599, - 1617, - 1521, - 1617, - 1521, - 1658, - 599, - 1658 - ], - "score": 0.797 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 39, - 1582, - 39 - ], - "score": 0.782 - }, - { - "category_id": 1, - "poly": [ - 774, - 570, - 1520, - 570, - 1520, - 613, - 774, - 613 - ], - "score": 0.756 - }, - { - "category_id": 2, - "poly": [ - 1344, - 2151, - 1475, - 2151, - 1475, - 2183, - 1344, - 2183 - ], - "score": 0.735 - }, - { - "category_id": 1, - "poly": [ - 322, - 245, - 1237, - 245, - 1237, - 286, - 322, - 286 - ], - "score": 0.497 - }, - { - "category_id": 1, - "poly": [ - 253, - 172, - 1241, - 172, - 1241, - 287, - 253, - 287 - ], - "score": 0.423 - }, - { - "category_id": 1, - "poly": [ - 252, - 173, - 844, - 173, - 844, - 212, - 252, - 212 - ], - "score": 0.403 - }, - { - "category_id": 1, - "poly": [ - 808, - 124, - 846, - 124, - 846, - 155, - 808, - 155 - ], - "score": 0.36 - }, - { - "category_id": 2, - "poly": [ - 808, - 124, - 846, - 124, - 846, - 155, - 808, - 155 - ], - "score": 0.238 - }, - { - "category_id": 0, - "poly": [ - 808, - 124, - 846, - 124, - 846, - 155, - 808, - 155 - ], - "score": 0.196 - }, - { - "category_id": 1, - "poly": [ - 252, - 173, - 843, - 173, - 843, - 212, - 252, - 212 - ], - "score": 0.185 - }, - { - "category_id": 1, - "poly": [ - 1344, - 2151, - 1475, - 2151, - 1475, - 2183, - 1344, - 2183 - ], - "score": 0.126 - }, - { - "category_id": 13, - "poly": [ - 919, - 1621, - 970, - 1621, - 970, - 1653, - 919, - 1653 - ], - "score": 0.81, - "latex": "T=" - }, - { - "category_id": 13, - "poly": [ - 940, - 580, - 969, - 580, - 969, - 604, - 940, - 604 - ], - "score": 0.78, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 939, - 1013, - 969, - 1013, - 969, - 1037, - 939, - 1037 - ], - "score": 0.72, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 1387, - 1002, - 1463, - 1002, - 1463, - 1041, - 1387, - 1041 - ], - "score": 0.62, - "latex": "m\\mathtt{s}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 923, - 1079, - 949, - 1079, - 949, - 1110, - 923, - 1110 - ], - "score": 0.31, - "latex": "\\tau." - }, - { - "category_id": 15, - "poly": [ - 322.0, - 1077.0, - 351.0, - 1077.0, - 351.0, - 1114.0, - 322.0, - 1114.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 385.0, - 1076.0, - 922.0, - 1076.0, - 922.0, - 1116.0, - 385.0, - 1116.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 950.0, - 1076.0, - 1413.0, - 1076.0, - 1413.0, - 1116.0, - 950.0, - 1116.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 385.0, - 1113.0, - 494.0, - 1113.0, - 494.0, - 1153.0, - 385.0, - 1153.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 167.0, - 2165.0, - 270.0, - 2165.0, - 270.0, - 2186.0, - 167.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 322.0, - 644.0, - 350.0, - 644.0, - 350.0, - 681.0, - 322.0, - 681.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 388.0, - 648.0, - 1163.0, - 648.0, - 1163.0, - 679.0, - 388.0, - 679.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 854.0, - 1010.0, - 938.0, - 1010.0, - 938.0, - 1042.0, - 854.0, - 1042.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1386.0, - 1003.0, - 1386.0, - 1003.0, - 1386.0, - 1045.0, - 1386.0, - 1045.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1464.0, - 1003.0, - 1519.0, - 1003.0, - 1519.0, - 1045.0, - 1464.0, - 1045.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 605.0, - 1621.0, - 918.0, - 1621.0, - 918.0, - 1655.0, - 605.0, - 1655.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 971.0, - 1621.0, - 974.0, - 1621.0, - 974.0, - 1655.0, - 971.0, - 1655.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1432.0, - 1616.0, - 1520.0, - 1616.0, - 1520.0, - 1660.0, - 1432.0, - 1660.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 783.0, - 576.0, - 939.0, - 576.0, - 939.0, - 608.0, - 783.0, - 608.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1430.0, - 574.0, - 1518.0, - 574.0, - 1518.0, - 610.0, - 1430.0, - 610.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1343.0, - 2150.0, - 1477.0, - 2150.0, - 1477.0, - 2184.0, - 1343.0, - 2184.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 324.0, - 249.0, - 347.0, - 249.0, - 347.0, - 281.0, - 324.0, - 281.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 388.0, - 251.0, - 1234.0, - 251.0, - 1234.0, - 282.0, - 388.0, - 282.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 177.0, - 302.0, - 177.0, - 302.0, - 210.0, - 257.0, - 210.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 177.0, - 839.0, - 177.0, - 839.0, - 208.0, - 316.0, - 208.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 321.0, - 247.0, - 351.0, - 247.0, - 351.0, - 282.0, - 321.0, - 282.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 385.0, - 250.0, - 1235.0, - 250.0, - 1235.0, - 284.0, - 385.0, - 284.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 175.0, - 302.0, - 175.0, - 302.0, - 212.0, - 257.0, - 212.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 177.0, - 837.0, - 177.0, - 837.0, - 208.0, - 316.0, - 208.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 801.0, - 122.0, - 850.0, - 122.0, - 850.0, - 162.0, - 801.0, - 162.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 801.0, - 122.0, - 850.0, - 122.0, - 850.0, - 162.0, - 801.0, - 162.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 801.0, - 122.0, - 850.0, - 122.0, - 850.0, - 162.0, - 801.0, - 162.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 175.0, - 302.0, - 175.0, - 302.0, - 212.0, - 257.0, - 212.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 177.0, - 837.0, - 177.0, - 837.0, - 208.0, - 319.0, - 208.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1343.0, - 2150.0, - 1477.0, - 2150.0, - 1477.0, - 2184.0, - 1343.0, - 2184.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 46, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 261, - 563, - 1058, - 563, - 1058, - 895, - 261, - 895 - ], - "score": 0.97 - }, - { - "category_id": 3, - "poly": [ - 328, - 1446, - 768, - 1446, - 768, - 1761, - 328, - 1761 - ], - "score": 0.959 - }, - { - "category_id": 1, - "poly": [ - 262, - 1015, - 1053, - 1015, - 1053, - 1055, - 262, - 1055 - ], - "score": 0.923 - }, - { - "category_id": 4, - "poly": [ - 480, - 1802, - 612, - 1802, - 612, - 1840, - 480, - 1840 - ], - "score": 0.902 - }, - { - "category_id": 4, - "poly": [ - 592, - 942, - 720, - 942, - 720, - 982, - 592, - 982 - ], - "score": 0.896 - }, - { - "category_id": 2, - "poly": [ - 166, - 2163, - 267, - 2163, - 267, - 2186, - 166, - 2186 - ], - "score": 0.89 - }, - { - "category_id": 1, - "poly": [ - 198, - 497, - 753, - 497, - 753, - 538, - 198, - 538 - ], - "score": 0.889 - }, - { - "category_id": 1, - "poly": [ - 323, - 1376, - 1045, - 1376, - 1045, - 1415, - 323, - 1415 - ], - "score": 0.888 - }, - { - "category_id": 1, - "poly": [ - 265, - 1304, - 1137, - 1304, - 1137, - 1345, - 265, - 1345 - ], - "score": 0.863 - }, - { - "category_id": 2, - "poly": [ - 807, - 124, - 847, - 124, - 847, - 155, - 807, - 155 - ], - "score": 0.846 - }, - { - "category_id": 2, - "poly": [ - 1582, - 5, - 1652, - 5, - 1652, - 38, - 1582, - 38 - ], - "score": 0.833 - }, - { - "category_id": 2, - "poly": [ - 1475, - 1840, - 1518, - 1840, - 1518, - 1876, - 1475, - 1876 - ], - "score": 0.827 - }, - { - "category_id": 1, - "poly": [ - 267, - 1234, - 777, - 1234, - 777, - 1271, - 267, - 1271 - ], - "score": 0.766 - }, - { - "category_id": 1, - "poly": [ - 138, - 173, - 1477, - 173, - 1477, - 249, - 138, - 249 - ], - "score": 0.695 - }, - { - "category_id": 1, - "poly": [ - 252, - 1086, - 1526, - 1086, - 1526, - 1160, - 252, - 1160 - ], - "score": 0.672 - }, - { - "category_id": 1, - "poly": [ - 260, - 1086, - 1524, - 1086, - 1524, - 1271, - 260, - 1271 - ], - "score": 0.478 - }, - { - "category_id": 1, - "poly": [ - 261, - 282, - 944, - 282, - 944, - 322, - 261, - 322 - ], - "score": 0.445 - }, - { - "category_id": 1, - "poly": [ - 260, - 1163, - 1521, - 1163, - 1521, - 1232, - 260, - 1232 - ], - "score": 0.444 - }, - { - "category_id": 1, - "poly": [ - 132, - 172, - 1495, - 172, - 1495, - 468, - 132, - 468 - ], - "score": 0.177 - }, - { - "category_id": 1, - "poly": [ - 179, - 173, - 1509, - 173, - 1509, - 468, - 179, - 468 - ], - "score": 0.164 - }, - { - "category_id": 1, - "poly": [ - 240, - 427, - 1519, - 427, - 1519, - 464, - 240, - 464 - ], - "score": 0.145 - }, - { - "category_id": 1, - "poly": [ - 247, - 1159, - 1506, - 1159, - 1506, - 1271, - 247, - 1271 - ], - "score": 0.104 - }, - { - "category_id": 13, - "poly": [ - 519, - 1016, - 591, - 1016, - 591, - 1051, - 519, - 1051 - ], - "score": 0.47, - "latex": "1.5\\lor" - }, - { - "category_id": 13, - "poly": [ - 1456, - 1090, - 1485, - 1090, - 1485, - 1121, - 1456, - 1121 - ], - "score": 0.42, - "latex": "R" - }, - { - "category_id": 13, - "poly": [ - 506, - 1311, - 530, - 1311, - 530, - 1338, - 506, - 1338 - ], - "score": 0.41, - "latex": "x" - }, - { - "category_id": 13, - "poly": [ - 746, - 1234, - 771, - 1234, - 771, - 1266, - 746, - 1266 - ], - "score": 0.3, - "latex": "V." - }, - { - "category_id": 13, - "poly": [ - 804, - 1379, - 830, - 1379, - 830, - 1410, - 804, - 1410 - ], - "score": 0.29, - "latex": "V" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 1016.0, - 518.0, - 1016.0, - 518.0, - 1053.0, - 262.0, - 1053.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 592.0, - 1016.0, - 1051.0, - 1016.0, - 1051.0, - 1053.0, - 592.0, - 1053.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 480.0, - 1801.0, - 614.0, - 1801.0, - 614.0, - 1843.0, - 480.0, - 1843.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 594.0, - 946.0, - 720.0, - 946.0, - 720.0, - 982.0, - 594.0, - 982.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 500.0, - 750.0, - 500.0, - 750.0, - 535.0, - 198.0, - 535.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 326.0, - 1379.0, - 803.0, - 1379.0, - 803.0, - 1413.0, - 326.0, - 1413.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 831.0, - 1379.0, - 1044.0, - 1379.0, - 1044.0, - 1413.0, - 831.0, - 1413.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 265.0, - 1307.0, - 300.0, - 1307.0, - 300.0, - 1344.0, - 265.0, - 1344.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 317.0, - 1306.0, - 505.0, - 1306.0, - 505.0, - 1343.0, - 317.0, - 1343.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 531.0, - 1306.0, - 1134.0, - 1306.0, - 1134.0, - 1343.0, - 531.0, - 1343.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 801.0, - 120.0, - 853.0, - 120.0, - 853.0, - 165.0, - 801.0, - 165.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1580.0, - 5.0, - 1656.0, - 5.0, - 1656.0, - 41.0, - 1580.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 1836.0, - 1523.0, - 1836.0, - 1523.0, - 1882.0, - 1471.0, - 1882.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 264.0, - 1235.0, - 745.0, - 1235.0, - 745.0, - 1269.0, - 264.0, - 1269.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 772.0, - 1235.0, - 776.0, - 1235.0, - 776.0, - 1269.0, - 772.0, - 1269.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 132.0, - 172.0, - 1470.0, - 172.0, - 1470.0, - 212.0, - 132.0, - 212.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 210.0, - 725.0, - 210.0, - 725.0, - 251.0, - 259.0, - 251.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 1086.0, - 1455.0, - 1086.0, - 1455.0, - 1126.0, - 261.0, - 1126.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1486.0, - 1086.0, - 1522.0, - 1086.0, - 1522.0, - 1126.0, - 1486.0, - 1126.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 1123.0, - 498.0, - 1123.0, - 498.0, - 1161.0, - 261.0, - 1161.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 1088.0, - 1455.0, - 1088.0, - 1455.0, - 1125.0, - 263.0, - 1125.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1486.0, - 1088.0, - 1520.0, - 1088.0, - 1520.0, - 1125.0, - 1486.0, - 1125.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 1127.0, - 497.0, - 1127.0, - 497.0, - 1159.0, - 261.0, - 1159.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 1162.0, - 1519.0, - 1162.0, - 1519.0, - 1199.0, - 260.0, - 1199.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 1199.0, - 352.0, - 1199.0, - 352.0, - 1233.0, - 263.0, - 1233.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 1232.0, - 745.0, - 1232.0, - 745.0, - 1269.0, - 263.0, - 1269.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 772.0, - 1232.0, - 778.0, - 1232.0, - 778.0, - 1269.0, - 772.0, - 1269.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 264.0, - 286.0, - 944.0, - 286.0, - 944.0, - 320.0, - 264.0, - 320.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 1163.0, - 1516.0, - 1163.0, - 1516.0, - 1196.0, - 262.0, - 1196.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 1194.0, - 354.0, - 1194.0, - 354.0, - 1238.0, - 259.0, - 1238.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 131.0, - 170.0, - 1472.0, - 170.0, - 1472.0, - 215.0, - 131.0, - 215.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 212.0, - 727.0, - 212.0, - 727.0, - 250.0, - 259.0, - 250.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 286.0, - 945.0, - 286.0, - 945.0, - 320.0, - 263.0, - 320.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1483.0, - 444.0, - 1490.0, - 444.0, - 1490.0, - 451.0, - 1483.0, - 451.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 172.0, - 1471.0, - 172.0, - 1471.0, - 216.0, - 198.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 209.0, - 723.0, - 209.0, - 723.0, - 251.0, - 259.0, - 251.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 265.0, - 285.0, - 945.0, - 285.0, - 945.0, - 319.0, - 265.0, - 319.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1470.0, - 425.0, - 1517.0, - 425.0, - 1517.0, - 467.0, - 1470.0, - 467.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1460.0, - 427.0, - 1523.0, - 427.0, - 1523.0, - 468.0, - 1460.0, - 468.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 1163.0, - 1512.0, - 1163.0, - 1512.0, - 1196.0, - 262.0, - 1196.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 1200.0, - 350.0, - 1200.0, - 350.0, - 1232.0, - 262.0, - 1232.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 1236.0, - 745.0, - 1236.0, - 745.0, - 1267.0, - 262.0, - 1267.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 772.0, - 1236.0, - 777.0, - 1236.0, - 777.0, - 1267.0, - 772.0, - 1267.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 47, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 261, - 715, - 880, - 715, - 880, - 1051, - 261, - 1051 - ], - "score": 0.952 - }, - { - "category_id": 1, - "poly": [ - 200, - 607, - 1459, - 607, - 1459, - 682, - 200, - 682 - ], - "score": 0.933 - }, - { - "category_id": 4, - "poly": [ - 506, - 1091, - 638, - 1091, - 638, - 1131, - 506, - 1131 - ], - "score": 0.896 - }, - { - "category_id": 1, - "poly": [ - 256, - 1309, - 1234, - 1309, - 1234, - 1349, - 256, - 1349 - ], - "score": 0.895 - }, - { - "category_id": 2, - "poly": [ - 166, - 2163, - 267, - 2163, - 267, - 2186, - 166, - 2186 - ], - "score": 0.885 - }, - { - "category_id": 2, - "poly": [ - 1345, - 2152, - 1474, - 2152, - 1474, - 2182, - 1345, - 2182 - ], - "score": 0.87 - }, - { - "category_id": 2, - "poly": [ - 1582, - 5, - 1652, - 5, - 1652, - 39, - 1582, - 39 - ], - "score": 0.826 - }, - { - "category_id": 1, - "poly": [ - 253, - 171, - 1521, - 171, - 1521, - 576, - 253, - 576 - ], - "score": 0.756 - }, - { - "category_id": 2, - "poly": [ - 806, - 124, - 844, - 124, - 844, - 155, - 806, - 155 - ], - "score": 0.745 - }, - { - "category_id": 1, - "poly": [ - 262, - 1165, - 1520, - 1165, - 1520, - 1276, - 262, - 1276 - ], - "score": 0.706 - }, - { - "category_id": 1, - "poly": [ - 263, - 1165, - 704, - 1165, - 704, - 1200, - 263, - 1200 - ], - "score": 0.691 - }, - { - "category_id": 1, - "poly": [ - 915, - 1888, - 1520, - 1888, - 1520, - 1928, - 915, - 1928 - ], - "score": 0.658 - }, - { - "category_id": 1, - "poly": [ - 253, - 172, - 1479, - 172, - 1479, - 286, - 253, - 286 - ], - "score": 0.299 - }, - { - "category_id": 2, - "poly": [ - 915, - 1888, - 1520, - 1888, - 1520, - 1928, - 915, - 1928 - ], - "score": 0.232 - }, - { - "category_id": 1, - "poly": [ - 262, - 1202, - 937, - 1202, - 937, - 1237, - 262, - 1237 - ], - "score": 0.204 - }, - { - "category_id": 1, - "poly": [ - 259, - 1239, - 1511, - 1239, - 1511, - 1276, - 259, - 1276 - ], - "score": 0.193 - }, - { - "category_id": 1, - "poly": [ - 262, - 1202, - 938, - 1202, - 938, - 1237, - 262, - 1237 - ], - "score": 0.105 - }, - { - "category_id": 13, - "poly": [ - 1377, - 1235, - 1509, - 1235, - 1509, - 1272, - 1377, - 1272 - ], - "score": 0.87, - "latex": "0.54\\mathrm{mm}^{2}" - }, - { - "category_id": 13, - "poly": [ - 644, - 1316, - 668, - 1316, - 668, - 1348, - 644, - 1348 - ], - "score": 0.8, - "latex": "\\rho" - }, - { - "category_id": 13, - "poly": [ - 869, - 1201, - 942, - 1201, - 942, - 1236, - 869, - 1236 - ], - "score": 0.66, - "latex": "6.0\\vee." - }, - { - "category_id": 13, - "poly": [ - 749, - 1238, - 842, - 1238, - 842, - 1272, - 749, - 1272 - ], - "score": 0.65, - "latex": "25.0\\mathsf{m}" - }, - { - "category_id": 13, - "poly": [ - 854, - 252, - 879, - 252, - 879, - 280, - 854, - 280 - ], - "score": 0.64, - "latex": "x" - }, - { - "category_id": 13, - "poly": [ - 883, - 608, - 971, - 608, - 971, - 643, - 883, - 643 - ], - "score": 0.59, - "latex": "14.4\\lor" - }, - { - "category_id": 13, - "poly": [ - 920, - 1903, - 966, - 1903, - 966, - 1926, - 920, - 1926 - ], - "score": 0.5, - "latex": "\\rho=" - }, - { - "category_id": 13, - "poly": [ - 626, - 1165, - 697, - 1165, - 697, - 1200, - 626, - 1200 - ], - "score": 0.27, - "latex": "3.0\\mathsf{A}" - }, - { - "category_id": 15, - "poly": [ - 201.0, - 610.0, - 882.0, - 610.0, - 882.0, - 645.0, - 201.0, - 645.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 972.0, - 610.0, - 1454.0, - 610.0, - 1454.0, - 645.0, - 972.0, - 645.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 646.0, - 1397.0, - 646.0, - 1397.0, - 680.0, - 260.0, - 680.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 508.0, - 1095.0, - 637.0, - 1095.0, - 637.0, - 1131.0, - 508.0, - 1131.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 264.0, - 1311.0, - 301.0, - 1311.0, - 301.0, - 1349.0, - 264.0, - 1349.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1314.0, - 643.0, - 1314.0, - 643.0, - 1344.0, - 318.0, - 1344.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 669.0, - 1314.0, - 1226.0, - 1314.0, - 1226.0, - 1344.0, - 669.0, - 1344.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1342.0, - 2151.0, - 1477.0, - 2151.0, - 1477.0, - 2183.0, - 1342.0, - 2183.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 3.0, - 1658.0, - 3.0, - 1658.0, - 42.0, - 1579.0, - 42.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 176.0, - 304.0, - 176.0, - 304.0, - 213.0, - 256.0, - 213.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 176.0, - 1461.0, - 176.0, - 1461.0, - 211.0, - 318.0, - 211.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 327.0, - 249.0, - 853.0, - 249.0, - 853.0, - 285.0, - 327.0, - 285.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 880.0, - 249.0, - 1248.0, - 249.0, - 1248.0, - 285.0, - 880.0, - 285.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1477.0, - 540.0, - 1517.0, - 540.0, - 1517.0, - 571.0, - 1477.0, - 571.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 803.0, - 121.0, - 851.0, - 121.0, - 851.0, - 163.0, - 803.0, - 163.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 1168.0, - 625.0, - 1168.0, - 625.0, - 1201.0, - 263.0, - 1201.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 698.0, - 1168.0, - 701.0, - 1168.0, - 701.0, - 1201.0, - 698.0, - 1201.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 1203.0, - 868.0, - 1203.0, - 868.0, - 1236.0, - 263.0, - 1236.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 943.0, - 1203.0, - 946.0, - 1203.0, - 946.0, - 1236.0, - 943.0, - 1236.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 1238.0, - 748.0, - 1238.0, - 748.0, - 1272.0, - 261.0, - 1272.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 843.0, - 1238.0, - 1376.0, - 1238.0, - 1376.0, - 1272.0, - 843.0, - 1272.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1510.0, - 1238.0, - 1515.0, - 1238.0, - 1515.0, - 1272.0, - 1510.0, - 1272.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 1167.0, - 625.0, - 1167.0, - 625.0, - 1198.0, - 263.0, - 1198.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 698.0, - 1167.0, - 704.0, - 1167.0, - 704.0, - 1198.0, - 698.0, - 1198.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1405.0, - 1889.0, - 1517.0, - 1889.0, - 1517.0, - 1924.0, - 1405.0, - 1924.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 173.0, - 1464.0, - 173.0, - 1464.0, - 214.0, - 254.0, - 214.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 326.0, - 248.0, - 853.0, - 248.0, - 853.0, - 281.0, - 326.0, - 281.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 880.0, - 248.0, - 1249.0, - 248.0, - 1249.0, - 281.0, - 880.0, - 281.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1405.0, - 1889.0, - 1517.0, - 1889.0, - 1517.0, - 1924.0, - 1405.0, - 1924.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 264.0, - 1204.0, - 868.0, - 1204.0, - 868.0, - 1236.0, - 264.0, - 1236.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 1236.0, - 748.0, - 1236.0, - 748.0, - 1273.0, - 261.0, - 1273.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 843.0, - 1236.0, - 1376.0, - 1236.0, - 1376.0, - 1273.0, - 843.0, - 1273.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1510.0, - 1236.0, - 1513.0, - 1236.0, - 1513.0, - 1273.0, - 1510.0, - 1273.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 265.0, - 1204.0, - 868.0, - 1204.0, - 868.0, - 1236.0, - 265.0, - 1236.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 48, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 254, - 171, - 1374, - 171, - 1374, - 286, - 254, - 286 - ], - "score": 0.9 - }, - { - "category_id": 2, - "poly": [ - 166, - 2163, - 267, - 2163, - 267, - 2186, - 166, - 2186 - ], - "score": 0.865 - }, - { - "category_id": 1, - "poly": [ - 918, - 749, - 1521, - 749, - 1521, - 792, - 918, - 792 - ], - "score": 0.81 - }, - { - "category_id": 2, - "poly": [ - 1582, - 4, - 1652, - 4, - 1652, - 39, - 1582, - 39 - ], - "score": 0.795 - }, - { - "category_id": 2, - "poly": [ - 807, - 124, - 847, - 124, - 847, - 155, - 807, - 155 - ], - "score": 0.396 - }, - { - "category_id": 1, - "poly": [ - 807, - 124, - 847, - 124, - 847, - 155, - 807, - 155 - ], - "score": 0.277 - }, - { - "category_id": 0, - "poly": [ - 807, - 124, - 847, - 124, - 847, - 155, - 807, - 155 - ], - "score": 0.14 - }, - { - "category_id": 13, - "poly": [ - 1167, - 172, - 1364, - 172, - 1364, - 209, - 1167, - 209 - ], - "score": 0.92, - "latex": "8.5\\times10^{28}\\mathrm{m}^{-3}" - }, - { - "category_id": 13, - "poly": [ - 881, - 181, - 904, - 181, - 904, - 207, - 881, - 207 - ], - "score": 0.69, - "latex": "n" - }, - { - "category_id": 13, - "poly": [ - 1388, - 750, - 1463, - 750, - 1463, - 787, - 1388, - 787 - ], - "score": 0.44, - "latex": "m\\mathtt{s}^{-1}" - }, - { - "category_id": 13, - "poly": [ - 767, - 253, - 789, - 253, - 789, - 280, - 767, - 280 - ], - "score": 0.43, - "latex": "V" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 176.0, - 303.0, - 176.0, - 303.0, - 211.0, - 257.0, - 211.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 313.0, - 173.0, - 880.0, - 173.0, - 880.0, - 208.0, - 313.0, - 208.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 905.0, - 173.0, - 1166.0, - 173.0, - 1166.0, - 208.0, - 905.0, - 208.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1365.0, - 173.0, - 1369.0, - 173.0, - 1369.0, - 208.0, - 1365.0, - 208.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 326.0, - 249.0, - 766.0, - 249.0, - 766.0, - 282.0, - 326.0, - 282.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 790.0, - 249.0, - 1176.0, - 249.0, - 1176.0, - 282.0, - 790.0, - 282.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 926.0, - 765.0, - 959.0, - 765.0, - 959.0, - 781.0, - 926.0, - 781.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1386.0, - 747.0, - 1387.0, - 747.0, - 1387.0, - 794.0, - 1386.0, - 794.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1464.0, - 747.0, - 1520.0, - 747.0, - 1520.0, - 794.0, - 1464.0, - 794.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 4.0, - 1658.0, - 4.0, - 1658.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 801.0, - 120.0, - 853.0, - 120.0, - 853.0, - 165.0, - 801.0, - 165.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 801.0, - 120.0, - 853.0, - 120.0, - 853.0, - 165.0, - 801.0, - 165.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 801.0, - 120.0, - 853.0, - 120.0, - 853.0, - 165.0, - 801.0, - 165.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 49, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 260, - 248, - 897, - 248, - 897, - 379, - 260, - 379 - ], - "score": 0.972, - "html": "
MetalABCD
p/eV3.24.13.36.4
" - }, - { - "category_id": 1, - "poly": [ - 262, - 409, - 1293, - 409, - 1293, - 484, - 262, - 484 - ], - "score": 0.943 - }, - { - "category_id": 2, - "poly": [ - 166, - 2163, - 267, - 2163, - 267, - 2186, - 166, - 2186 - ], - "score": 0.878 - }, - { - "category_id": 2, - "poly": [ - 806, - 124, - 847, - 124, - 847, - 155, - 806, - 155 - ], - "score": 0.843 - }, - { - "category_id": 2, - "poly": [ - 1345, - 2152, - 1474, - 2152, - 1474, - 2183, - 1345, - 2183 - ], - "score": 0.839 - }, - { - "category_id": 1, - "poly": [ - 916, - 1745, - 1520, - 1745, - 1520, - 1786, - 916, - 1786 - ], - "score": 0.819 - }, - { - "category_id": 1, - "poly": [ - 261, - 515, - 1522, - 515, - 1522, - 699, - 261, - 699 - ], - "score": 0.817 - }, - { - "category_id": 2, - "poly": [ - 1582, - 5, - 1652, - 5, - 1652, - 39, - 1582, - 39 - ], - "score": 0.814 - }, - { - "category_id": 1, - "poly": [ - 246, - 732, - 1508, - 732, - 1508, - 810, - 246, - 810 - ], - "score": 0.794 - }, - { - "category_id": 1, - "poly": [ - 636, - 950, - 1519, - 950, - 1519, - 990, - 636, - 990 - ], - "score": 0.755 - }, - { - "category_id": 1, - "poly": [ - 236, - 1021, - 1456, - 1021, - 1456, - 1098, - 236, - 1098 - ], - "score": 0.667 - }, - { - "category_id": 1, - "poly": [ - 318, - 1130, - 1385, - 1130, - 1385, - 1171, - 318, - 1171 - ], - "score": 0.66 - }, - { - "category_id": 1, - "poly": [ - 130, - 172, - 1038, - 172, - 1038, - 213, - 130, - 213 - ], - "score": 0.566 - }, - { - "category_id": 0, - "poly": [ - 130, - 172, - 1038, - 172, - 1038, - 213, - 130, - 213 - ], - "score": 0.314 - }, - { - "category_id": 1, - "poly": [ - 244, - 1021, - 1448, - 1021, - 1448, - 1173, - 244, - 1173 - ], - "score": 0.17 - }, - { - "category_id": 13, - "poly": [ - 820, - 178, - 843, - 178, - 843, - 212, - 820, - 212 - ], - "score": 0.82, - "latex": "\\phi" - }, - { - "category_id": 13, - "poly": [ - 940, - 958, - 969, - 958, - 969, - 983, - 940, - 983 - ], - "score": 0.79, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 841, - 1060, - 930, - 1060, - 930, - 1095, - 841, - 1095 - ], - "score": 0.71, - "latex": "5.3{\\tt e V}." - }, - { - "category_id": 13, - "poly": [ - 810, - 411, - 914, - 411, - 914, - 445, - 810, - 445 - ], - "score": 0.65, - "latex": "380\\mathsf{n m}" - }, - { - "category_id": 13, - "poly": [ - 951, - 1135, - 976, - 1135, - 976, - 1164, - 951, - 1164 - ], - "score": 0.43, - "latex": "\\lambda" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 413.0, - 809.0, - 413.0, - 809.0, - 447.0, - 263.0, - 447.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 915.0, - 413.0, - 1294.0, - 413.0, - 1294.0, - 447.0, - 915.0, - 447.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 450.0, - 885.0, - 450.0, - 885.0, - 480.0, - 263.0, - 480.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 802.0, - 121.0, - 852.0, - 121.0, - 852.0, - 163.0, - 802.0, - 163.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1342.0, - 2151.0, - 1477.0, - 2151.0, - 1477.0, - 2184.0, - 1342.0, - 2184.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 921.0, - 1750.0, - 965.0, - 1750.0, - 965.0, - 1778.0, - 921.0, - 1778.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1430.0, - 1748.0, - 1518.0, - 1748.0, - 1518.0, - 1784.0, - 1430.0, - 1784.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 265.0, - 520.0, - 1467.0, - 520.0, - 1467.0, - 557.0, - 265.0, - 557.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1469.0, - 662.0, - 1521.0, - 662.0, - 1521.0, - 702.0, - 1469.0, - 702.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 3.0, - 1658.0, - 3.0, - 1658.0, - 42.0, - 1579.0, - 42.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 253.0, - 733.0, - 1507.0, - 733.0, - 1507.0, - 777.0, - 253.0, - 777.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 324.0, - 774.0, - 793.0, - 774.0, - 793.0, - 807.0, - 324.0, - 807.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 640.0, - 954.0, - 939.0, - 954.0, - 939.0, - 986.0, - 640.0, - 986.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1413.0, - 951.0, - 1519.0, - 951.0, - 1519.0, - 991.0, - 1413.0, - 991.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 248.0, - 1025.0, - 300.0, - 1025.0, - 300.0, - 1061.0, - 248.0, - 1061.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 319.0, - 1025.0, - 1444.0, - 1025.0, - 1444.0, - 1059.0, - 319.0, - 1059.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 324.0, - 1061.0, - 840.0, - 1061.0, - 840.0, - 1100.0, - 324.0, - 1100.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 931.0, - 1061.0, - 940.0, - 1061.0, - 940.0, - 1100.0, - 931.0, - 1100.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 324.0, - 1133.0, - 950.0, - 1133.0, - 950.0, - 1169.0, - 324.0, - 1169.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 977.0, - 1133.0, - 1383.0, - 1133.0, - 1383.0, - 1169.0, - 977.0, - 1169.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 132.0, - 170.0, - 819.0, - 170.0, - 819.0, - 216.0, - 132.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 844.0, - 170.0, - 1043.0, - 170.0, - 1043.0, - 216.0, - 844.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 132.0, - 170.0, - 819.0, - 170.0, - 819.0, - 216.0, - 132.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 844.0, - 170.0, - 1043.0, - 170.0, - 1043.0, - 216.0, - 844.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 248.0, - 1026.0, - 300.0, - 1026.0, - 300.0, - 1059.0, - 248.0, - 1059.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 320.0, - 1026.0, - 1442.0, - 1026.0, - 1442.0, - 1059.0, - 320.0, - 1059.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 323.0, - 1058.0, - 840.0, - 1058.0, - 840.0, - 1100.0, - 323.0, - 1100.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 931.0, - 1058.0, - 938.0, - 1058.0, - 938.0, - 1100.0, - 931.0, - 1100.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 323.0, - 1131.0, - 950.0, - 1131.0, - 950.0, - 1169.0, - 323.0, - 1169.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 977.0, - 1131.0, - 1383.0, - 1131.0, - 1383.0, - 1169.0, - 977.0, - 1169.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 50, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 3, - "poly": [ - 261, - 391, - 1478, - 391, - 1478, - 1118, - 261, - 1118 - ], - "score": 0.968 - }, - { - "category_id": 1, - "poly": [ - 198, - 173, - 1445, - 173, - 1445, - 287, - 198, - 287 - ], - "score": 0.947 - }, - { - "category_id": 1, - "poly": [ - 263, - 318, - 946, - 318, - 946, - 357, - 263, - 357 - ], - "score": 0.902 - }, - { - "category_id": 2, - "poly": [ - 166, - 2163, - 267, - 2163, - 267, - 2186, - 166, - 2186 - ], - "score": 0.878 - }, - { - "category_id": 2, - "poly": [ - 807, - 125, - 845, - 125, - 845, - 154, - 807, - 154 - ], - "score": 0.829 - }, - { - "category_id": 2, - "poly": [ - 1582, - 5, - 1652, - 5, - 1652, - 38, - 1582, - 38 - ], - "score": 0.815 - }, - { - "category_id": 2, - "poly": [ - 627, - 2063, - 1026, - 2063, - 1026, - 2100, - 627, - 2100 - ], - "score": 0.781 - }, - { - "category_id": 1, - "poly": [ - 248, - 1233, - 1455, - 1233, - 1455, - 1308, - 248, - 1308 - ], - "score": 0.77 - }, - { - "category_id": 2, - "poly": [ - 1474, - 1163, - 1518, - 1163, - 1518, - 1200, - 1474, - 1200 - ], - "score": 0.76 - }, - { - "category_id": 1, - "poly": [ - 918, - 1919, - 1520, - 1919, - 1520, - 1961, - 918, - 1961 - ], - "score": 0.708 - }, - { - "category_id": 1, - "poly": [ - 258, - 1160, - 1053, - 1160, - 1053, - 1200, - 258, - 1200 - ], - "score": 0.615 - }, - { - "category_id": 1, - "poly": [ - 256, - 1159, - 1460, - 1159, - 1460, - 1309, - 256, - 1309 - ], - "score": 0.255 - }, - { - "category_id": 2, - "poly": [ - 918, - 1919, - 1520, - 1919, - 1520, - 1961, - 918, - 1961 - ], - "score": 0.178 - }, - { - "category_id": 13, - "poly": [ - 599, - 248, - 689, - 248, - 689, - 289, - 599, - 289 - ], - "score": 0.91, - "latex": "K E_{\\mathrm{max}}" - }, - { - "category_id": 13, - "poly": [ - 1261, - 179, - 1284, - 179, - 1284, - 212, - 1261, - 212 - ], - "score": 0.83, - "latex": "\\phi" - }, - { - "category_id": 13, - "poly": [ - 513, - 1273, - 535, - 1273, - 535, - 1307, - 513, - 1307 - ], - "score": 0.81, - "latex": "\\phi" - }, - { - "category_id": 13, - "poly": [ - 922, - 1929, - 967, - 1929, - 967, - 1957, - 922, - 1957 - ], - "score": 0.53, - "latex": "\\phi=" - }, - { - "category_id": 13, - "poly": [ - 1316, - 213, - 1334, - 213, - 1334, - 243, - 1316, - 243 - ], - "score": 0.5, - "latex": "f" - }, - { - "category_id": 15, - "poly": [ - 200.0, - 175.0, - 1260.0, - 175.0, - 1260.0, - 213.0, - 200.0, - 213.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1285.0, - 175.0, - 1408.0, - 175.0, - 1408.0, - 213.0, - 1285.0, - 213.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 214.0, - 1315.0, - 214.0, - 1315.0, - 247.0, - 260.0, - 247.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1335.0, - 214.0, - 1440.0, - 214.0, - 1440.0, - 247.0, - 1335.0, - 247.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 257.0, - 245.0, - 598.0, - 245.0, - 598.0, - 296.0, - 257.0, - 296.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 690.0, - 245.0, - 1188.0, - 245.0, - 1188.0, - 296.0, - 690.0, - 296.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 320.0, - 946.0, - 320.0, - 946.0, - 355.0, - 262.0, - 355.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 803.0, - 122.0, - 853.0, - 122.0, - 853.0, - 163.0, - 803.0, - 163.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1580.0, - 5.0, - 1656.0, - 5.0, - 1656.0, - 41.0, - 1580.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 630.0, - 2067.0, - 1026.0, - 2067.0, - 1026.0, - 2096.0, - 630.0, - 2096.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 258.0, - 1236.0, - 304.0, - 1236.0, - 304.0, - 1272.0, - 258.0, - 1272.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 318.0, - 1236.0, - 1451.0, - 1236.0, - 1451.0, - 1271.0, - 318.0, - 1271.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 325.0, - 1273.0, - 512.0, - 1273.0, - 512.0, - 1307.0, - 325.0, - 1307.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 536.0, - 1273.0, - 744.0, - 1273.0, - 744.0, - 1307.0, - 536.0, - 1307.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1471.0, - 1158.0, - 1525.0, - 1158.0, - 1525.0, - 1206.0, - 1471.0, - 1206.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1444.0, - 1923.0, - 1517.0, - 1923.0, - 1517.0, - 1958.0, - 1444.0, - 1958.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 264.0, - 1161.0, - 301.0, - 1161.0, - 301.0, - 1202.0, - 264.0, - 1202.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 323.0, - 1164.0, - 1046.0, - 1164.0, - 1046.0, - 1196.0, - 323.0, - 1196.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 266.0, - 1165.0, - 301.0, - 1165.0, - 301.0, - 1199.0, - 266.0, - 1199.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 323.0, - 1162.0, - 1047.0, - 1162.0, - 1047.0, - 1198.0, - 323.0, - 1198.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 254.0, - 1234.0, - 304.0, - 1234.0, - 304.0, - 1274.0, - 254.0, - 1274.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 321.0, - 1234.0, - 1452.0, - 1234.0, - 1452.0, - 1272.0, - 321.0, - 1272.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 326.0, - 1273.0, - 512.0, - 1273.0, - 512.0, - 1306.0, - 326.0, - 1306.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 536.0, - 1273.0, - 745.0, - 1273.0, - 745.0, - 1306.0, - 536.0, - 1306.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1444.0, - 1923.0, - 1517.0, - 1923.0, - 1517.0, - 1958.0, - 1444.0, - 1958.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 51, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 137, - 246, - 1468, - 246, - 1468, - 321, - 137, - 321 - ], - "score": 0.939 - }, - { - "category_id": 0, - "poly": [ - 604, - 172, - 1051, - 172, - 1051, - 211, - 604, - 211 - ], - "score": 0.884 - }, - { - "category_id": 2, - "poly": [ - 1582, - 5, - 1652, - 5, - 1652, - 38, - 1582, - 38 - ], - "score": 0.82 - }, - { - "category_id": 2, - "poly": [ - 165, - 2162, - 268, - 2162, - 268, - 2187, - 165, - 2187 - ], - "score": 0.782 - }, - { - "category_id": 2, - "poly": [ - 806, - 123, - 848, - 123, - 848, - 156, - 806, - 156 - ], - "score": 0.292 - }, - { - "category_id": 0, - "poly": [ - 806, - 123, - 848, - 123, - 848, - 156, - 806, - 156 - ], - "score": 0.284 - }, - { - "category_id": 5, - "poly": [ - 129, - 331, - 1522, - 331, - 1522, - 2142, - 129, - 2142 - ], - "score": 0.249 - }, - { - "category_id": 1, - "poly": [ - 129, - 331, - 1522, - 331, - 1522, - 2142, - 129, - 2142 - ], - "score": 0.245 - }, - { - "category_id": 15, - "poly": [ - 136.0, - 248.0, - 1461.0, - 248.0, - 1461.0, - 285.0, - 136.0, - 285.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 288.0, - 670.0, - 288.0, - 670.0, - 322.0, - 135.0, - 322.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 606.0, - 176.0, - 1050.0, - 176.0, - 1050.0, - 207.0, - 606.0, - 207.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1580.0, - 5.0, - 1656.0, - 5.0, - 1656.0, - 41.0, - 1580.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 803.0, - 121.0, - 853.0, - 121.0, - 853.0, - 163.0, - 803.0, - 163.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 803.0, - 121.0, - 853.0, - 121.0, - 853.0, - 163.0, - 803.0, - 163.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 52, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1582, - 5, - 1652, - 5, - 1652, - 39, - 1582, - 39 - ], - "score": 0.814 - }, - { - "category_id": 2, - "poly": [ - 807, - 124, - 847, - 124, - 847, - 156, - 807, - 156 - ], - "score": 0.79 - }, - { - "category_id": 2, - "poly": [ - 164, - 2162, - 268, - 2162, - 268, - 2187, - 164, - 2187 - ], - "score": 0.769 - }, - { - "category_id": 1, - "poly": [ - 128, - 182, - 1523, - 182, - 1523, - 2145, - 128, - 2145 - ], - "score": 0.292 - }, - { - "category_id": 5, - "poly": [ - 128, - 182, - 1523, - 182, - 1523, - 2145, - 128, - 2145 - ], - "score": 0.269 - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 3.0, - 1658.0, - 3.0, - 1658.0, - 42.0, - 1579.0, - 42.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 803.0, - 120.0, - 852.0, - 120.0, - 852.0, - 162.0, - 803.0, - 162.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 53, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1582, - 5, - 1652, - 5, - 1652, - 39, - 1582, - 39 - ], - "score": 0.813 - }, - { - "category_id": 2, - "poly": [ - 807, - 124, - 846, - 124, - 846, - 155, - 807, - 155 - ], - "score": 0.787 - }, - { - "category_id": 2, - "poly": [ - 164, - 2162, - 268, - 2162, - 268, - 2187, - 164, - 2187 - ], - "score": 0.77 - }, - { - "category_id": 1, - "poly": [ - 128, - 182, - 1523, - 182, - 1523, - 2145, - 128, - 2145 - ], - "score": 0.303 - }, - { - "category_id": 5, - "poly": [ - 128, - 182, - 1523, - 182, - 1523, - 2145, - 128, - 2145 - ], - "score": 0.264 - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 3.0, - 1658.0, - 3.0, - 1658.0, - 42.0, - 1579.0, - 42.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 800.0, - 120.0, - 854.0, - 120.0, - 854.0, - 165.0, - 800.0, - 165.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2186.0, - 166.0, - 2186.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 54, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 135, - 1934, - 1475, - 1934, - 1475, - 2024, - 135, - 2024 - ], - "score": 0.97 - }, - { - "category_id": 0, - "poly": [ - 136, - 1904, - 315, - 1904, - 315, - 1927, - 136, - 1927 - ], - "score": 0.92 - }, - { - "category_id": 1, - "poly": [ - 125, - 2032, - 1436, - 2032, - 1436, - 2078, - 125, - 2078 - ], - "score": 0.892 - }, - { - "category_id": 1, - "poly": [ - 154, - 2084, - 1204, - 2084, - 1204, - 2108, - 154, - 2108 - ], - "score": 0.844 - }, - { - "category_id": 2, - "poly": [ - 1582, - 5, - 1652, - 5, - 1652, - 38, - 1582, - 38 - ], - "score": 0.825 - }, - { - "category_id": 0, - "poly": [ - 135, - 1801, - 353, - 1801, - 353, - 1868, - 135, - 1868 - ], - "score": 0.795 - }, - { - "category_id": 2, - "poly": [ - 807, - 125, - 846, - 125, - 846, - 155, - 807, - 155 - ], - "score": 0.794 - }, - { - "category_id": 1, - "poly": [ - 136, - 2114, - 1011, - 2114, - 1011, - 2139, - 136, - 2139 - ], - "score": 0.739 - }, - { - "category_id": 1, - "poly": [ - 139, - 1870, - 352, - 1870, - 352, - 1892, - 139, - 1892 - ], - "score": 0.706 - }, - { - "category_id": 1, - "poly": [ - 166, - 2164, - 267, - 2164, - 267, - 2185, - 166, - 2185 - ], - "score": 0.672 - }, - { - "category_id": 5, - "poly": [ - 130, - 218, - 1521, - 218, - 1521, - 1781, - 130, - 1781 - ], - "score": 0.495 - }, - { - "category_id": 1, - "poly": [ - 130, - 218, - 1521, - 218, - 1521, - 1781, - 130, - 1781 - ], - "score": 0.325 - }, - { - "category_id": 2, - "poly": [ - 166, - 2164, - 267, - 2164, - 267, - 2185, - 166, - 2185 - ], - "score": 0.256 - }, - { - "category_id": 13, - "poly": [ - 165, - 2164, - 184, - 2164, - 184, - 2184, - 165, - 2184 - ], - "score": 0.29, - "latex": "\\circledcirc" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 1936.0, - 1471.0, - 1936.0, - 1471.0, - 1960.0, - 136.0, - 1960.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 1958.0, - 1477.0, - 1958.0, - 1477.0, - 1982.0, - 135.0, - 1982.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 1980.0, - 1473.0, - 1980.0, - 1473.0, - 2004.0, - 135.0, - 2004.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 2004.0, - 190.0, - 2004.0, - 190.0, - 2025.0, - 135.0, - 2025.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 1906.0, - 317.0, - 1906.0, - 317.0, - 1930.0, - 136.0, - 1930.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 2032.0, - 1439.0, - 2032.0, - 1439.0, - 2057.0, - 135.0, - 2057.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 134.0, - 2053.0, - 228.0, - 2053.0, - 228.0, - 2082.0, - 134.0, - 2082.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 152.0, - 2087.0, - 1165.0, - 2087.0, - 1165.0, - 2108.0, - 152.0, - 2108.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1580.0, - 5.0, - 1656.0, - 5.0, - 1656.0, - 41.0, - 1580.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 137.0, - 1804.0, - 350.0, - 1804.0, - 350.0, - 1872.0, - 137.0, - 1872.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 803.0, - 122.0, - 851.0, - 122.0, - 851.0, - 163.0, - 803.0, - 163.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 137.0, - 2118.0, - 1008.0, - 2118.0, - 1008.0, - 2139.0, - 137.0, - 2139.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 142.0, - 1871.0, - 350.0, - 1871.0, - 350.0, - 1892.0, - 142.0, - 1892.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 185.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2186.0, - 185.0, - 2186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 185.0, - 2165.0, - 269.0, - 2165.0, - 269.0, - 2186.0, - 185.0, - 2186.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 55, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 173, - 2232, - 643, - 2232, - 643, - 2261, - 173, - 2261 - ], - "score": 0.886 - }, - { - "category_id": 1, - "poly": [ - 171, - 580, - 759, - 580, - 759, - 627, - 171, - 627 - ], - "score": 0.884 - }, - { - "category_id": 1, - "poly": [ - 174, - 669, - 638, - 669, - 638, - 715, - 174, - 715 - ], - "score": 0.846 - }, - { - "category_id": 2, - "poly": [ - 170, - 109, - 506, - 109, - 506, - 251, - 170, - 251 - ], - "score": 0.802 - }, - { - "category_id": 2, - "poly": [ - 1582, - 5, - 1650, - 5, - 1650, - 38, - 1582, - 38 - ], - "score": 0.779 - }, - { - "category_id": 0, - "poly": [ - 170, - 352, - 418, - 352, - 418, - 506, - 170, - 506 - ], - "score": 0.715 - }, - { - "category_id": 0, - "poly": [ - 168, - 783, - 836, - 783, - 836, - 843, - 168, - 843 - ], - "score": 0.705 - }, - { - "category_id": 0, - "poly": [ - 173, - 445, - 416, - 445, - 416, - 504, - 173, - 504 - ], - "score": 0.566 - }, - { - "category_id": 1, - "poly": [ - 168, - 783, - 836, - 783, - 836, - 843, - 168, - 843 - ], - "score": 0.215 - }, - { - "category_id": 0, - "poly": [ - 170, - 109, - 506, - 109, - 506, - 251, - 170, - 251 - ], - "score": 0.164 - }, - { - "category_id": 0, - "poly": [ - 172, - 353, - 288, - 353, - 288, - 410, - 172, - 410 - ], - "score": 0.137 - }, - { - "category_id": 15, - "poly": [ - 172.0, - 2231.0, - 643.0, - 2231.0, - 643.0, - 2262.0, - 172.0, - 2262.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 173.0, - 585.0, - 754.0, - 585.0, - 754.0, - 627.0, - 173.0, - 627.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 674.0, - 634.0, - 674.0, - 634.0, - 714.0, - 172.0, - 714.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 118.0, - 501.0, - 118.0, - 501.0, - 214.0, - 171.0, - 214.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 181.0, - 219.0, - 502.0, - 219.0, - 502.0, - 248.0, - 181.0, - 248.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 5.0, - 1655.0, - 5.0, - 1655.0, - 41.0, - 1579.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 358.0, - 287.0, - 358.0, - 287.0, - 408.0, - 170.0, - 408.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 452.0, - 414.0, - 452.0, - 414.0, - 503.0, - 172.0, - 503.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 175.0, - 792.0, - 831.0, - 792.0, - 831.0, - 834.0, - 175.0, - 834.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 173.0, - 452.0, - 413.0, - 452.0, - 413.0, - 503.0, - 173.0, - 503.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 175.0, - 792.0, - 831.0, - 792.0, - 831.0, - 834.0, - 175.0, - 834.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 118.0, - 501.0, - 118.0, - 501.0, - 214.0, - 171.0, - 214.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 181.0, - 219.0, - 502.0, - 219.0, - 502.0, - 248.0, - 181.0, - 248.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 358.0, - 286.0, - 358.0, - 286.0, - 408.0, - 170.0, - 408.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 56, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 173, - 406, - 1435, - 406, - 1435, - 549, - 173, - 549 - ], - "score": 0.973 - }, - { - "category_id": 1, - "poly": [ - 173, - 758, - 1420, - 758, - 1420, - 864, - 173, - 864 - ], - "score": 0.972 - }, - { - "category_id": 1, - "poly": [ - 173, - 195, - 1438, - 195, - 1438, - 374, - 173, - 374 - ], - "score": 0.972 - }, - { - "category_id": 1, - "poly": [ - 172, - 582, - 1474, - 582, - 1474, - 723, - 172, - 723 - ], - "score": 0.971 - }, - { - "category_id": 1, - "poly": [ - 166, - 899, - 1461, - 899, - 1461, - 970, - 166, - 970 - ], - "score": 0.928 - }, - { - "category_id": 1, - "poly": [ - 163, - 1003, - 1460, - 1003, - 1460, - 1041, - 163, - 1041 - ], - "score": 0.897 - }, - { - "category_id": 2, - "poly": [ - 1583, - 6, - 1651, - 6, - 1651, - 38, - 1583, - 38 - ], - "score": 0.817 - }, - { - "category_id": 1, - "poly": [ - 170, - 1075, - 352, - 1075, - 352, - 1109, - 170, - 1109 - ], - "score": 0.759 - }, - { - "category_id": 2, - "poly": [ - 170, - 1075, - 352, - 1075, - 352, - 1109, - 170, - 1109 - ], - "score": 0.158 - }, - { - "category_id": 13, - "poly": [ - 169, - 1076, - 200, - 1076, - 200, - 1108, - 169, - 1108 - ], - "score": 0.39, - "latex": "\\circledcirc" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 409.0, - 1431.0, - 409.0, - 1431.0, - 443.0, - 171.0, - 443.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 446.0, - 1391.0, - 446.0, - 1391.0, - 479.0, - 170.0, - 479.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 481.0, - 1397.0, - 481.0, - 1397.0, - 514.0, - 170.0, - 514.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 515.0, - 1112.0, - 515.0, - 1112.0, - 553.0, - 170.0, - 553.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 174.0, - 762.0, - 1412.0, - 762.0, - 1412.0, - 794.0, - 174.0, - 794.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 798.0, - 1398.0, - 798.0, - 1398.0, - 830.0, - 172.0, - 830.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 832.0, - 371.0, - 832.0, - 371.0, - 865.0, - 171.0, - 865.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 196.0, - 1437.0, - 196.0, - 1437.0, - 234.0, - 170.0, - 234.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 234.0, - 1394.0, - 234.0, - 1394.0, - 269.0, - 170.0, - 269.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 271.0, - 1342.0, - 271.0, - 1342.0, - 303.0, - 171.0, - 303.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 305.0, - 1425.0, - 305.0, - 1425.0, - 341.0, - 170.0, - 341.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 340.0, - 1435.0, - 340.0, - 1435.0, - 376.0, - 170.0, - 376.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 583.0, - 1466.0, - 583.0, - 1466.0, - 619.0, - 172.0, - 619.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 621.0, - 1458.0, - 621.0, - 1458.0, - 654.0, - 172.0, - 654.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 169.0, - 652.0, - 1477.0, - 652.0, - 1477.0, - 693.0, - 169.0, - 693.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 692.0, - 350.0, - 692.0, - 350.0, - 725.0, - 170.0, - 725.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 168.0, - 898.0, - 1462.0, - 898.0, - 1462.0, - 937.0, - 168.0, - 937.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 937.0, - 444.0, - 937.0, - 444.0, - 971.0, - 171.0, - 971.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 1003.0, - 1459.0, - 1003.0, - 1459.0, - 1041.0, - 171.0, - 1041.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1578.0, - 2.0, - 1655.0, - 2.0, - 1655.0, - 43.0, - 1578.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 201.0, - 1079.0, - 350.0, - 1079.0, - 350.0, - 1107.0, - 201.0, - 1107.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 201.0, - 1079.0, - 350.0, - 1079.0, - 350.0, - 1107.0, - 201.0, - 1107.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 57, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 126, - 254, - 2265, - 254, - 2265, - 1291, - 126, - 1291 - ], - "score": 0.892, - "html": "
AnnotationMeaning
BODBenefit of doubt given
CONContradiction
Incorrect response
ECFError carried forward
L1Level 1
L2Level 2
L3Level 3
TETranscription error
NBODBenefit of doubt not given
POTPower of 10 error
Omissionmark
SFError in number of significant figures
Correct response
Wrong physics or equation
" - }, - { - "category_id": 2, - "poly": [ - 1967, - 119, - 2120, - 119, - 2120, - 152, - 1967, - 152 - ], - "score": 0.882 - }, - { - "category_id": 2, - "poly": [ - 2268, - 6, - 2337, - 6, - 2337, - 38, - 2268, - 38 - ], - "score": 0.847 - }, - { - "category_id": 2, - "poly": [ - 1157, - 1542, - 1181, - 1542, - 1181, - 1571, - 1157, - 1571 - ], - "score": 0.845 - }, - { - "category_id": 0, - "poly": [ - 155, - 118, - 273, - 118, - 273, - 153, - 155, - 153 - ], - "score": 0.744 - }, - { - "category_id": 0, - "poly": [ - 1060, - 118, - 1263, - 118, - 1263, - 153, - 1060, - 153 - ], - "score": 0.741 - }, - { - "category_id": 1, - "poly": [ - 156, - 188, - 672, - 188, - 672, - 225, - 156, - 225 - ], - "score": 0.629 - }, - { - "category_id": 0, - "poly": [ - 156, - 188, - 672, - 188, - 672, - 225, - 156, - 225 - ], - "score": 0.174 - }, - { - "category_id": 2, - "poly": [ - 1060, - 118, - 1263, - 118, - 1263, - 153, - 1060, - 153 - ], - "score": 0.119 - }, - { - "category_id": 15, - "poly": [ - 1968.0, - 120.0, - 2120.0, - 120.0, - 2120.0, - 150.0, - 1968.0, - 150.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2263.0, - 2.0, - 2341.0, - 2.0, - 2341.0, - 43.0, - 2263.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1155.0, - 1538.0, - 1185.0, - 1538.0, - 1185.0, - 1577.0, - 1155.0, - 1577.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 119.0, - 274.0, - 119.0, - 274.0, - 152.0, - 155.0, - 152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1062.0, - 119.0, - 1263.0, - 119.0, - 1263.0, - 151.0, - 1062.0, - 151.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 157.0, - 192.0, - 672.0, - 192.0, - 672.0, - 221.0, - 157.0, - 221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 157.0, - 192.0, - 672.0, - 192.0, - 672.0, - 221.0, - 157.0, - 221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1062.0, - 119.0, - 1263.0, - 119.0, - 1263.0, - 151.0, - 1062.0, - 151.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 58, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 130, - 252, - 2238, - 252, - 2238, - 1053, - 130, - 1053 - ], - "score": 0.977, - "html": "
AnnotationMeaning
alternative and acceptable answers for the same marking point
rejectAnswers which are not worthy of credit
notAnswers which are not worthy of credit
IgnoreStatementswhich areirrelevant
AllowAnswers that can be accepted
()Words which are not essential to gain credit
Underlined words must be present in answer to score a mark
ECF AWError carried forward
ORAAlternative wording
Or reverse argument
" - }, - { - "category_id": 0, - "poly": [ - 1059, - 117, - 1263, - 117, - 1263, - 154, - 1059, - 154 - ], - "score": 0.875 - }, - { - "category_id": 2, - "poly": [ - 1966, - 119, - 2120, - 119, - 2120, - 152, - 1966, - 152 - ], - "score": 0.866 - }, - { - "category_id": 2, - "poly": [ - 2268, - 6, - 2337, - 6, - 2337, - 38, - 2268, - 38 - ], - "score": 0.849 - }, - { - "category_id": 2, - "poly": [ - 1158, - 1542, - 1181, - 1542, - 1181, - 1570, - 1158, - 1570 - ], - "score": 0.824 - }, - { - "category_id": 1, - "poly": [ - 167, - 186, - 2045, - 186, - 2045, - 227, - 167, - 227 - ], - "score": 0.804 - }, - { - "category_id": 0, - "poly": [ - 155, - 118, - 273, - 118, - 273, - 152, - 155, - 152 - ], - "score": 0.792 - }, - { - "category_id": 15, - "poly": [ - 1062.0, - 118.0, - 1263.0, - 118.0, - 1263.0, - 152.0, - 1062.0, - 152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1969.0, - 120.0, - 2119.0, - 120.0, - 2119.0, - 150.0, - 1969.0, - 150.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2263.0, - 2.0, - 2341.0, - 2.0, - 2341.0, - 43.0, - 2263.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1157.0, - 1541.0, - 1184.0, - 1541.0, - 1184.0, - 1574.0, - 1157.0, - 1574.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 162.0, - 187.0, - 2029.0, - 187.0, - 2029.0, - 229.0, - 162.0, - 229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 118.0, - 275.0, - 118.0, - 275.0, - 152.0, - 155.0, - 152.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 59, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 157, - 1029, - 1282, - 1029, - 1282, - 1136, - 157, - 1136 - ], - "score": 0.971 - }, - { - "category_id": 1, - "poly": [ - 156, - 536, - 2162, - 536, - 2162, - 644, - 156, - 644 - ], - "score": 0.958 - }, - { - "category_id": 1, - "poly": [ - 155, - 430, - 2123, - 430, - 2123, - 502, - 155, - 502 - ], - "score": 0.956 - }, - { - "category_id": 1, - "poly": [ - 156, - 675, - 2173, - 675, - 2173, - 749, - 156, - 749 - ], - "score": 0.953 - }, - { - "category_id": 1, - "poly": [ - 161, - 325, - 1013, - 325, - 1013, - 362, - 161, - 362 - ], - "score": 0.918 - }, - { - "category_id": 0, - "poly": [ - 157, - 958, - 599, - 958, - 599, - 996, - 157, - 996 - ], - "score": 0.914 - }, - { - "category_id": 0, - "poly": [ - 158, - 253, - 607, - 253, - 607, - 293, - 158, - 293 - ], - "score": 0.913 - }, - { - "category_id": 2, - "poly": [ - 1968, - 120, - 2119, - 120, - 2119, - 151, - 1968, - 151 - ], - "score": 0.906 - }, - { - "category_id": 1, - "poly": [ - 163, - 782, - 1715, - 782, - 1715, - 820, - 163, - 820 - ], - "score": 0.898 - }, - { - "category_id": 2, - "poly": [ - 156, - 118, - 272, - 118, - 272, - 152, - 156, - 152 - ], - "score": 0.876 - }, - { - "category_id": 2, - "poly": [ - 1061, - 119, - 1262, - 119, - 1262, - 152, - 1061, - 152 - ], - "score": 0.843 - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2337, - 6, - 2337, - 39, - 2267, - 39 - ], - "score": 0.832 - }, - { - "category_id": 2, - "poly": [ - 1158, - 1543, - 1181, - 1543, - 1181, - 1570, - 1158, - 1570 - ], - "score": 0.831 - }, - { - "category_id": 15, - "poly": [ - 155.0, - 1031.0, - 1259.0, - 1031.0, - 1259.0, - 1067.0, - 155.0, - 1067.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 153.0, - 1064.0, - 1281.0, - 1064.0, - 1281.0, - 1103.0, - 153.0, - 1103.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 1103.0, - 976.0, - 1103.0, - 976.0, - 1136.0, - 155.0, - 1136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 156.0, - 540.0, - 2137.0, - 540.0, - 2137.0, - 575.0, - 156.0, - 575.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 154.0, - 577.0, - 2166.0, - 577.0, - 2166.0, - 612.0, - 154.0, - 612.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 154.0, - 612.0, - 1903.0, - 612.0, - 1903.0, - 646.0, - 154.0, - 646.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 157.0, - 428.0, - 2115.0, - 428.0, - 2115.0, - 471.0, - 157.0, - 471.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 152.0, - 463.0, - 876.0, - 463.0, - 876.0, - 506.0, - 152.0, - 506.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 157.0, - 677.0, - 2177.0, - 677.0, - 2177.0, - 712.0, - 157.0, - 712.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 152.0, - 712.0, - 2016.0, - 712.0, - 2016.0, - 755.0, - 152.0, - 755.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 160.0, - 329.0, - 1014.0, - 329.0, - 1014.0, - 362.0, - 160.0, - 362.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 157.0, - 962.0, - 600.0, - 962.0, - 600.0, - 994.0, - 157.0, - 994.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 158.0, - 260.0, - 604.0, - 260.0, - 604.0, - 287.0, - 158.0, - 287.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1967.0, - 119.0, - 2120.0, - 119.0, - 2120.0, - 152.0, - 1967.0, - 152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 159.0, - 782.0, - 1715.0, - 782.0, - 1715.0, - 823.0, - 159.0, - 823.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 154.0, - 118.0, - 274.0, - 118.0, - 274.0, - 152.0, - 154.0, - 152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1062.0, - 119.0, - 1263.0, - 119.0, - 1263.0, - 151.0, - 1062.0, - 151.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2265.0, - 5.0, - 2339.0, - 5.0, - 2339.0, - 40.0, - 2265.0, - 40.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1155.0, - 1539.0, - 1185.0, - 1539.0, - 1185.0, - 1577.0, - 1155.0, - 1577.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 60, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 127, - 259, - 2215, - 259, - 2215, - 1181, - 127, - 1181 - ], - "score": 0.98, - "html": "
QuestionAnswerMarks Guidance
1C1
2B1
3C1
4D1
5B1
9A1
7B1
8B1
9A1
10C1
11D1
12B1
13C1
14C1
15C1
16A1
17D1
18C1
19D1
20B1
Total20
" - }, - { - "category_id": 2, - "poly": [ - 1967, - 120, - 2119, - 120, - 2119, - 152, - 1967, - 152 - ], - "score": 0.894 - }, - { - "category_id": 2, - "poly": [ - 1157, - 1543, - 1181, - 1543, - 1181, - 1571, - 1157, - 1571 - ], - "score": 0.849 - }, - { - "category_id": 2, - "poly": [ - 2268, - 7, - 2337, - 7, - 2337, - 38, - 2268, - 38 - ], - "score": 0.845 - }, - { - "category_id": 0, - "poly": [ - 1060, - 118, - 1263, - 118, - 1263, - 153, - 1060, - 153 - ], - "score": 0.828 - }, - { - "category_id": 0, - "poly": [ - 1080, - 186, - 1256, - 186, - 1256, - 223, - 1080, - 223 - ], - "score": 0.758 - }, - { - "category_id": 2, - "poly": [ - 155, - 118, - 273, - 118, - 273, - 152, - 155, - 152 - ], - "score": 0.635 - }, - { - "category_id": 0, - "poly": [ - 155, - 118, - 273, - 118, - 273, - 152, - 155, - 152 - ], - "score": 0.191 - }, - { - "category_id": 6, - "poly": [ - 1080, - 186, - 1256, - 186, - 1256, - 223, - 1080, - 223 - ], - "score": 0.15 - }, - { - "category_id": 15, - "poly": [ - 1967.0, - 118.0, - 2120.0, - 118.0, - 2120.0, - 151.0, - 1967.0, - 151.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1157.0, - 1540.0, - 1184.0, - 1540.0, - 1184.0, - 1575.0, - 1157.0, - 1575.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2264.0, - 5.0, - 2338.0, - 5.0, - 2338.0, - 41.0, - 2264.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1062.0, - 119.0, - 1263.0, - 119.0, - 1263.0, - 151.0, - 1062.0, - 151.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1086.0, - 190.0, - 1255.0, - 190.0, - 1255.0, - 221.0, - 1086.0, - 221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 118.0, - 275.0, - 118.0, - 275.0, - 152.0, - 155.0, - 152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 118.0, - 275.0, - 118.0, - 275.0, - 152.0, - 155.0, - 152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1086.0, - 190.0, - 1255.0, - 190.0, - 1255.0, - 221.0, - 1086.0, - 221.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 61, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 132, - 257, - 2218, - 257, - 2218, - 1281, - 132, - 1281 - ], - "score": 0.981, - "html": "
Question 21AnswerMarksGuidance
(a) Mass is a scalar (quantity) and velocity is a vector (quantity).B1
(q) (i)(Addition of) velocity depends on direction / sign / vector triangle / resolving (ORA) An arrow from trolley to ramp along the string (for the tension) and a downwards arrow from the trolley (for theB1 B1Allow‘Velocity can be cancelled out' Not arrow for the tension parallel to the rampAllow arrows in correct directions anywhere on Fig. 21 Not arrow perpendicular to the ramp for the weight
weight). (ii) t= 0.73 (s)(s = 12 at'); 0.80 = 1%2 × 3.0 × t (Any subject)C1 A1Not two arrow heads in opposite directions along the string for the tension
Allow full credit for alternative methods, e.g: v2 = 2 × 0.80 × 3.0; v= 2.19 (m s-1) 2.19Note: Apply SF penalty if 0.7 s is on the answer line or the final answer Allow 1 mark for 0.40 (s); 9.8 m s2 used instead of 3.0 m s-2
=1 C1 3.0 t= 0.73 (s) A1
Total 5
" - }, - { - "category_id": 2, - "poly": [ - 1967, - 119, - 2120, - 119, - 2120, - 152, - 1967, - 152 - ], - "score": 0.878 - }, - { - "category_id": 2, - "poly": [ - 2268, - 7, - 2337, - 7, - 2337, - 38, - 2268, - 38 - ], - "score": 0.841 - }, - { - "category_id": 0, - "poly": [ - 1059, - 117, - 1264, - 117, - 1264, - 153, - 1059, - 153 - ], - "score": 0.799 - }, - { - "category_id": 2, - "poly": [ - 1159, - 1542, - 1180, - 1542, - 1180, - 1569, - 1159, - 1569 - ], - "score": 0.735 - }, - { - "category_id": 0, - "poly": [ - 1080, - 186, - 1257, - 186, - 1257, - 223, - 1080, - 223 - ], - "score": 0.608 - }, - { - "category_id": 2, - "poly": [ - 154, - 118, - 273, - 118, - 273, - 152, - 154, - 152 - ], - "score": 0.512 - }, - { - "category_id": 0, - "poly": [ - 154, - 118, - 273, - 118, - 273, - 152, - 154, - 152 - ], - "score": 0.239 - }, - { - "category_id": 6, - "poly": [ - 1080, - 186, - 1257, - 186, - 1257, - 223, - 1080, - 223 - ], - "score": 0.182 - }, - { - "category_id": 2, - "poly": [ - 1159, - 1542, - 1180, - 1542, - 1180, - 1570, - 1159, - 1570 - ], - "score": 0.11 - }, - { - "category_id": 13, - "poly": [ - 1339, - 1010, - 1590, - 1010, - 1590, - 1047, - 1339, - 1047 - ], - "score": 0.89, - "latex": "V^{2}=2\\times0.80\\times3.0" - }, - { - "category_id": 13, - "poly": [ - 1694, - 901, - 1817, - 901, - 1817, - 940, - 1694, - 940 - ], - "score": 0.82, - "latex": "9.8\\mathrm{~m~s~}^{-2}" - }, - { - "category_id": 13, - "poly": [ - 2037, - 900, - 2159, - 900, - 2159, - 939, - 2037, - 939 - ], - "score": 0.77, - "latex": "3.0\\mathsf{m}\\mathsf{s}^{-2}" - }, - { - "category_id": 13, - "poly": [ - 517, - 729, - 770, - 729, - 770, - 767, - 517, - 767 - ], - "score": 0.69, - "latex": "0.80=\\%\\times3.0\\times t^{2}" - }, - { - "category_id": 13, - "poly": [ - 1338, - 1051, - 1455, - 1051, - 1455, - 1132, - 1338, - 1132 - ], - "score": 0.68, - "latex": "t={\\frac{2.19}{3.0}}" - }, - { - "category_id": 13, - "poly": [ - 1339, - 1134, - 1446, - 1134, - 1446, - 1169, - 1339, - 1169 - ], - "score": 0.6, - "latex": "t=0.73" - }, - { - "category_id": 13, - "poly": [ - 359, - 800, - 475, - 800, - 475, - 837, - 359, - 837 - ], - "score": 0.55, - "latex": "t=~0.73" - }, - { - "category_id": 13, - "poly": [ - 1603, - 1011, - 1811, - 1011, - 1811, - 1050, - 1603, - 1050 - ], - "score": 0.48, - "latex": "v=2.19(\\mathrm{m}\\mathrm{s}^{-1})" - }, - { - "category_id": 13, - "poly": [ - 363, - 729, - 497, - 729, - 497, - 768, - 363, - 768 - ], - "score": 0.44, - "latex": "(s=\\%a t^{2})" - }, - { - "category_id": 15, - "poly": [ - 1967.0, - 119.0, - 2121.0, - 119.0, - 2121.0, - 152.0, - 1967.0, - 152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2264.0, - 5.0, - 2338.0, - 5.0, - 2338.0, - 41.0, - 2264.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1063.0, - 118.0, - 1262.0, - 118.0, - 1262.0, - 151.0, - 1063.0, - 151.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1153.0, - 1538.0, - 1187.0, - 1538.0, - 1187.0, - 1578.0, - 1153.0, - 1578.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1086.0, - 190.0, - 1254.0, - 190.0, - 1254.0, - 221.0, - 1086.0, - 221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 118.0, - 274.0, - 118.0, - 274.0, - 152.0, - 155.0, - 152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 118.0, - 274.0, - 118.0, - 274.0, - 152.0, - 155.0, - 152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1086.0, - 190.0, - 1254.0, - 190.0, - 1254.0, - 221.0, - 1086.0, - 221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1154.0, - 1539.0, - 1185.0, - 1539.0, - 1185.0, - 1577.0, - 1154.0, - 1577.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 62, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 129, - 187, - 2215, - 187, - 2215, - 1090, - 129, - 1090 - ], - "score": 0.976, - "html": "
22 (a)QuestionAnswer The gradient remains the sameMarks B1Guidance Note: This mark is for the idea that the gradient / slope (of
the line) remains the same Allow: The line is (just) shifted (to the right) by the same amount (Aw)
(q)Gradient determined from Fig. 22 and gradient = 16C1Allow ± 0.5 for the value of the gradient Not u²/x value using the line or a data point because the
gradient is not determined Allow this mark even if gradient = a
gradient = 2a (F = ma); F= 920 × 8.0C1
F = 7.4 × 103 (N)A1Possible ECF for this A1 mark if the gradient is determined but its value is outside the range 15.5 to 16.5 and the second
C1 mark has also been scored Note: The answer to 3 SF is 7360 (N)
Total4Note: F= 920 × 16 = 14720 (N) can score the first C1 mark
" - }, - { - "category_id": 2, - "poly": [ - 1967, - 120, - 2120, - 120, - 2120, - 152, - 1967, - 152 - ], - "score": 0.878 - }, - { - "category_id": 2, - "poly": [ - 1157, - 1543, - 1181, - 1543, - 1181, - 1571, - 1157, - 1571 - ], - "score": 0.844 - }, - { - "category_id": 2, - "poly": [ - 2268, - 7, - 2337, - 7, - 2337, - 38, - 2268, - 38 - ], - "score": 0.839 - }, - { - "category_id": 0, - "poly": [ - 1059, - 118, - 1263, - 118, - 1263, - 153, - 1059, - 153 - ], - "score": 0.588 - }, - { - "category_id": 2, - "poly": [ - 154, - 118, - 273, - 118, - 273, - 152, - 154, - 152 - ], - "score": 0.384 - }, - { - "category_id": 6, - "poly": [ - 154, - 118, - 273, - 118, - 273, - 152, - 154, - 152 - ], - "score": 0.28 - }, - { - "category_id": 6, - "poly": [ - 1059, - 118, - 1263, - 118, - 1263, - 153, - 1059, - 153 - ], - "score": 0.166 - }, - { - "category_id": 0, - "poly": [ - 154, - 118, - 273, - 118, - 273, - 152, - 154, - 152 - ], - "score": 0.106 - }, - { - "category_id": 13, - "poly": [ - 1423, - 979, - 1716, - 979, - 1716, - 1014, - 1423, - 1014 - ], - "score": 0.84, - "latex": "F=920\\times16=14720" - }, - { - "category_id": 13, - "poly": [ - 1340, - 452, - 1501, - 452, - 1501, - 483, - 1340, - 483 - ], - "score": 0.71, - "latex": "\\mathbf{A}\\mathbf{I}\\mathbf{Io}\\mathbf{w}\\pm0.5" - }, - { - "category_id": 13, - "poly": [ - 1398, - 483, - 1457, - 483, - 1457, - 520, - 1398, - 520 - ], - "score": 0.65, - "latex": "u^{2}/x" - }, - { - "category_id": 14, - "poly": [ - 358, - 694, - 689, - 694, - 689, - 734, - 358, - 734 - ], - "score": 0.33, - "latex": "(F=m a);F=920\\times8.0" - }, - { - "category_id": 13, - "poly": [ - 1775, - 558, - 1830, - 558, - 1830, - 588, - 1775, - 588 - ], - "score": 0.29, - "latex": "=a" - }, - { - "category_id": 15, - "poly": [ - 1967.0, - 118.0, - 2121.0, - 118.0, - 2121.0, - 151.0, - 1967.0, - 151.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1156.0, - 1541.0, - 1184.0, - 1541.0, - 1184.0, - 1575.0, - 1156.0, - 1575.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2264.0, - 5.0, - 2338.0, - 5.0, - 2338.0, - 41.0, - 2264.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1062.0, - 116.0, - 1263.0, - 116.0, - 1263.0, - 152.0, - 1062.0, - 152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 118.0, - 274.0, - 118.0, - 274.0, - 152.0, - 155.0, - 152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 118.0, - 274.0, - 118.0, - 274.0, - 152.0, - 155.0, - 152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1062.0, - 116.0, - 1263.0, - 116.0, - 1263.0, - 152.0, - 1062.0, - 152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 118.0, - 274.0, - 118.0, - 274.0, - 152.0, - 155.0, - 152.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 63, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 124, - 174, - 2219, - 174, - 2219, - 1428, - 124, - 1428 - ], - "score": 0.981, - "html": "
Question 23(a)MarksGuidance Note: In this question any symbols used must be defined or
previously mentioned Note: Allow full credit for alternative methods, e.g. using the equation pressure = height x density × g
pressure = weight(of cyinder) areaB1Allowforce/area
Weight (of cylinder) determined using a newtonmeterB1
or Measure mass (of cylinder) using balance / scale(s) and multiplying by g / 9.8(1 m s-²)Not 'gravity' for g
Area determined by measuring the diameter with a ruler /B1Not measure radius
vernier callipers / micrometer and then using (area =) π × 2 A sensible suggestion that reduces the % uncertainty:B1Allow other correct methods Not 'repeat readings (of diameter etc.)' because this
Use micrometer / (vernier) calipers / travelling microscope Use balance / newtonmeter with smaller division (AW)procedure improves the accuracy and not the precision Allow balance / newtonmeter with ‘high resolution'
/ air displaced (L)8:6/0:6 (= ssew) 10 (N) 8'2 - 0:6 (= 4snudn)B1
C1Note: This C1 mark for determining the upthrust (1.2 N) or the mass (0.92 kg) of the cylinder
V = (1.2/9.81) or V= 1.2(23) × 10-4 (m²) 1000C1
(9.0/9.81) 1.223×10-4
(9.0) p
8
×1000 = 7.5×10² (kg m-3)
p = 7.5 × 10² (kg m-3)
A1Allow full credit for alternative methods, e.g:
1.2
" - }, - { - "category_id": 2, - "poly": [ - 1967, - 120, - 2120, - 120, - 2120, - 152, - 1967, - 152 - ], - "score": 0.866 - }, - { - "category_id": 2, - "poly": [ - 1157, - 1542, - 1181, - 1542, - 1181, - 1571, - 1157, - 1571 - ], - "score": 0.845 - }, - { - "category_id": 2, - "poly": [ - 2268, - 6, - 2337, - 6, - 2337, - 38, - 2268, - 38 - ], - "score": 0.841 - }, - { - "category_id": 0, - "poly": [ - 1059, - 118, - 1263, - 118, - 1263, - 153, - 1059, - 153 - ], - "score": 0.524 - }, - { - "category_id": 2, - "poly": [ - 154, - 118, - 273, - 118, - 273, - 152, - 154, - 152 - ], - "score": 0.487 - }, - { - "category_id": 6, - "poly": [ - 154, - 118, - 273, - 118, - 273, - 152, - 154, - 152 - ], - "score": 0.219 - }, - { - "category_id": 6, - "poly": [ - 1059, - 118, - 1263, - 118, - 1263, - 153, - 1059, - 153 - ], - "score": 0.196 - }, - { - "category_id": 13, - "poly": [ - 553, - 625, - 752, - 625, - 752, - 663, - 553, - 663 - ], - "score": 0.82, - "latex": "g/9.8(1\\mathrm{m}\\mathrm{s}^{-2})" - }, - { - "category_id": 13, - "poly": [ - 1601, - 347, - 1628, - 347, - 1628, - 372, - 1601, - 372 - ], - "score": 0.79, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 892, - 804, - 925, - 804, - 925, - 837, - 892, - 837 - ], - "score": 0.74, - "latex": "\\%" - }, - { - "category_id": 13, - "poly": [ - 1718, - 346, - 1746, - 346, - 1746, - 375, - 1718, - 375 - ], - "score": 0.72, - "latex": "\\times" - }, - { - "category_id": 14, - "poly": [ - 1347, - 1295, - 1848, - 1295, - 1848, - 1382, - 1347, - 1382 - ], - "score": 0.67, - "latex": "\\rho=\\left({\\frac{9.0}{1.2}}\\right)\\times1000=7.5\\times10^{3}({\\mathrm{kg}}{\\mathsf{m}}^{-3})" - }, - { - "category_id": 13, - "poly": [ - 484, - 425, - 514, - 425, - 514, - 452, - 484, - 452 - ], - "score": 0.66, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 1085, - 729, - 1163, - 729, - 1163, - 769, - 1085, - 769 - ], - "score": 0.66, - "latex": "\\pi\\times r^{2}" - }, - { - "category_id": 13, - "poly": [ - 359, - 1283, - 659, - 1283, - 659, - 1328, - 359, - 1328 - ], - "score": 0.58, - "latex": "\\rho=7.5\\times10^{3}(\\mathrm{kgm^{-3}})" - }, - { - "category_id": 13, - "poly": [ - 1849, - 346, - 1903, - 346, - 1903, - 380, - 1849, - 380 - ], - "score": 0.58, - "latex": "\\times g" - }, - { - "category_id": 13, - "poly": [ - 1485, - 1045, - 1605, - 1045, - 1605, - 1082, - 1485, - 1082 - ], - "score": 0.52, - "latex": "(0.92\\mathsf{k g})" - }, - { - "category_id": 13, - "poly": [ - 842, - 842, - 859, - 842, - 859, - 872, - 842, - 872 - ], - "score": 0.42, - "latex": "/" - }, - { - "category_id": 13, - "poly": [ - 1566, - 593, - 1591, - 593, - 1591, - 625, - 1566, - 625 - ], - "score": 0.41, - "latex": "g" - }, - { - "category_id": 13, - "poly": [ - 485, - 1014, - 510, - 1014, - 510, - 1039, - 485, - 1039 - ], - "score": 0.4, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 358, - 1168, - 591, - 1168, - 591, - 1252, - 358, - 1252 - ], - "score": 0.4, - "latex": "\\rho=\\frac{(9.0/9.81)}{1.223\\times10^{-4}}" - }, - { - "category_id": 13, - "poly": [ - 1120, - 697, - 1136, - 697, - 1136, - 728, - 1120, - 728 - ], - "score": 0.37, - "latex": "/" - }, - { - "category_id": 13, - "poly": [ - 1045, - 738, - 1072, - 738, - 1072, - 763, - 1045, - 763 - ], - "score": 0.37, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 1635, - 345, - 1894, - 345, - 1894, - 378, - 1635, - 378 - ], - "score": 0.32, - "latex": "{\\mathsf{h e i g h t}}\\times{\\mathsf{d e n s i t y}}\\times{\\mathsf{g}}" - }, - { - "category_id": 14, - "poly": [ - 685, - 1098, - 1004, - 1098, - 1004, - 1142, - 685, - 1142 - ], - "score": 0.3, - "latex": "V=1.2(23)\\times10^{-4}(\\mathrm{m}^{3})" - }, - { - "category_id": 15, - "poly": [ - 1967.0, - 118.0, - 2121.0, - 118.0, - 2121.0, - 151.0, - 1967.0, - 151.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1155.0, - 1539.0, - 1185.0, - 1539.0, - 1185.0, - 1577.0, - 1155.0, - 1577.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2263.0, - 2.0, - 2341.0, - 2.0, - 2341.0, - 43.0, - 2263.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1062.0, - 116.0, - 1263.0, - 116.0, - 1263.0, - 152.0, - 1062.0, - 152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 118.0, - 274.0, - 118.0, - 274.0, - 152.0, - 155.0, - 152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 118.0, - 274.0, - 118.0, - 274.0, - 152.0, - 155.0, - 152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1062.0, - 116.0, - 1263.0, - 116.0, - 1263.0, - 152.0, - 1062.0, - 152.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 64, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 126, - 185, - 2222, - 185, - 2222, - 1369, - 126, - 1369 - ], - "score": 0.981, - "html": "
QuestionAnswerMarksGuidance
24 (a)(Resultant) force is (directly) proportional / equal to the rate of change of momentumB1Notforce=mass× acceleration Not *force α change in momentum over time'
(q)(i)Any two from: momentum, (total) energy and massB1Not: kinetic energy
(ii)The force will have the same magnitude (at any time t) The force is in the opposite direction / has negative valueB1 B1Not 'This is because action = reaction'
Not Newton's third law Allow 1 mark for a correct graph if there is no description or explanation
(c)Method1:Momentumisconserved
1.7 × 10-27× 500 or 1.7 × 10-27 ×(-) 420 or 2.0 × 10-26 × vC1
1.7 × 10-27 × 500 = 1.7 × 10-27 × -420 + 2.0 × 10-26 × vC1
v = 78 (m s-1)A1Allow 1 mark for 6.8 (m s-1); + 420 used instead of - 420
Method 2: Kinetic energy is conserved
%2× 1.7 × 10-27 × 500² or %× 1.7 × 10-27 × 420² or 1%2 × 2.0 × 10-26 × v2C1Allow full credit for correct use of 'velocity of approach = -
1%2 × 1.7 × 10-27 × 5002 = 1%2 × 1.7 × 10-27 × 4202 + %2 × 2.0 xC1velocity of recession', e.g:
10-26 × v2 v= 79 (m s-1)'speed’ of approach = (-)'speed' of recession C1 500 = v+ 420 C1 v= 80 (m s-1) A1
TotalA1
7
" - }, - { - "category_id": 2, - "poly": [ - 1151, - 1541, - 1189, - 1541, - 1189, - 1572, - 1151, - 1572 - ], - "score": 0.868 - }, - { - "category_id": 2, - "poly": [ - 1966, - 119, - 2120, - 119, - 2120, - 152, - 1966, - 152 - ], - "score": 0.85 - }, - { - "category_id": 2, - "poly": [ - 2268, - 6, - 2337, - 6, - 2337, - 38, - 2268, - 38 - ], - "score": 0.842 - }, - { - "category_id": 0, - "poly": [ - 1059, - 118, - 1263, - 118, - 1263, - 153, - 1059, - 153 - ], - "score": 0.599 - }, - { - "category_id": 2, - "poly": [ - 154, - 118, - 274, - 118, - 274, - 152, - 154, - 152 - ], - "score": 0.46 - }, - { - "category_id": 6, - "poly": [ - 154, - 118, - 274, - 118, - 274, - 152, - 154, - 152 - ], - "score": 0.27 - }, - { - "category_id": 6, - "poly": [ - 1059, - 118, - 1263, - 118, - 1263, - 153, - 1059, - 153 - ], - "score": 0.184 - }, - { - "category_id": 13, - "poly": [ - 736, - 1014, - 1039, - 1014, - 1039, - 1053, - 736, - 1053 - ], - "score": 0.83, - "latex": "\\%\\times1.7\\times10^{-27}\\times420^{2}" - }, - { - "category_id": 13, - "poly": [ - 359, - 1014, - 668, - 1014, - 668, - 1052, - 359, - 1052 - ], - "score": 0.79, - "latex": "\\%\\times1.7\\times10^{-27}\\times500^{2}" - }, - { - "category_id": 13, - "poly": [ - 984, - 728, - 1184, - 728, - 1184, - 768, - 984, - 768 - ], - "score": 0.77, - "latex": "2.0\\times10^{-26}\\times v" - }, - { - "category_id": 13, - "poly": [ - 1622, - 1154, - 1687, - 1154, - 1687, - 1190, - 1622, - 1190 - ], - "score": 0.77, - "latex": "=(-)" - }, - { - "category_id": 13, - "poly": [ - 657, - 727, - 891, - 727, - 891, - 771, - 657, - 771 - ], - "score": 0.75, - "latex": "1.7\\times10^{-27}\\times(-)4_{.}" - }, - { - "category_id": 13, - "poly": [ - 1349, - 1189, - 1543, - 1189, - 1543, - 1220, - 1349, - 1220 - ], - "score": 0.74, - "latex": "500=v+420" - }, - { - "category_id": 13, - "poly": [ - 1725, - 419, - 1752, - 419, - 1752, - 443, - 1725, - 443 - ], - "score": 0.68, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 361, - 727, - 587, - 727, - 587, - 769, - 361, - 769 - ], - "score": 0.63, - "latex": "1.7\\times10^{-27}\\times500" - }, - { - "category_id": 13, - "poly": [ - 1492, - 280, - 1520, - 280, - 1520, - 305, - 1492, - 305 - ], - "score": 0.58, - "latex": "\\infty" - }, - { - "category_id": 13, - "poly": [ - 1591, - 243, - 1618, - 243, - 1618, - 268, - 1591, - 268 - ], - "score": 0.56, - "latex": "\\times" - }, - { - "category_id": 14, - "poly": [ - 357, - 799, - 1100, - 799, - 1100, - 842, - 357, - 842 - ], - "score": 0.55, - "latex": "1.7\\times10^{-27}\\times500=1.7\\times10^{-27}\\times-420+2.0\\times10^{-26}\\times V" - }, - { - "category_id": 13, - "poly": [ - 1600, - 869, - 1825, - 869, - 1825, - 909, - 1600, - 909 - ], - "score": 0.53, - "latex": "\\mathtt{b.8(m s^{-1})};+420" - }, - { - "category_id": 13, - "poly": [ - 1484, - 243, - 1510, - 243, - 1510, - 266, - 1484, - 266 - ], - "score": 0.53, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 2092, - 1051, - 2120, - 1051, - 2120, - 1076, - 2092, - 1076 - ], - "score": 0.46, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 1355, - 1221, - 1540, - 1221, - 1540, - 1260, - 1355, - 1260 - ], - "score": 0.46, - "latex": "v=80(\\ m s^{-1})" - }, - { - "category_id": 14, - "poly": [ - 357, - 1121, - 1157, - 1121, - 1157, - 1203, - 357, - 1203 - ], - "score": 0.41, - "latex": "\\begin{array}{l}{{\\mathcal{V}_{2}\\times1.7\\times10^{-27}\\times500^{2}=\\mathcal{V}_{2}\\times1.7\\times10^{-27}\\times420^{2}+\\mathcal{V}_{2}\\times2.0\\times}}\\ {{10^{-26}\\times V^{2}}}\\end{array}" - }, - { - "category_id": 13, - "poly": [ - 359, - 872, - 544, - 872, - 544, - 914, - 359, - 914 - ], - "score": 0.36, - "latex": "V=78(\\ m s^{-1})" - }, - { - "category_id": 13, - "poly": [ - 365, - 1053, - 630, - 1053, - 630, - 1092, - 365, - 1092 - ], - "score": 0.33, - "latex": "\\%\\times2.0\\times10^{-26}\\times V^{2}" - }, - { - "category_id": 13, - "poly": [ - 361, - 1233, - 553, - 1233, - 553, - 1274, - 361, - 1274 - ], - "score": 0.26, - "latex": "v=79(\\mathrm{m}\\mathrm{s}^{-1})" - }, - { - "category_id": 13, - "poly": [ - 359, - 1121, - 1157, - 1121, - 1157, - 1176, - 359, - 1176 - ], - "score": 0.25, - "latex": "1/2\\times1.7\\times10^{-27}\\times500^{2}=1/_{2}\\times1.7\\times10^{-27}\\times420^{2}+1/_{2}\\times2.0\\times" - }, - { - "category_id": 15, - "poly": [ - 1145.0, - 1538.0, - 1194.0, - 1538.0, - 1194.0, - 1578.0, - 1145.0, - 1578.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1969.0, - 120.0, - 2119.0, - 120.0, - 2119.0, - 150.0, - 1969.0, - 150.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2263.0, - 2.0, - 2341.0, - 2.0, - 2341.0, - 43.0, - 2263.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1062.0, - 116.0, - 1263.0, - 116.0, - 1263.0, - 152.0, - 1062.0, - 152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 118.0, - 274.0, - 118.0, - 274.0, - 152.0, - 155.0, - 152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 118.0, - 274.0, - 118.0, - 274.0, - 152.0, - 155.0, - 152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1062.0, - 116.0, - 1263.0, - 116.0, - 1263.0, - 152.0, - 1062.0, - 152.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 65, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 130, - 177, - 2205, - 177, - 2205, - 1439, - 130, - 1439 - ], - "score": 0.978, - "html": "
Question (i)Answer Similarity - same unit (Aw)Marks B1Guidance
25(a)Difference - For e.m.f, energy is transformed from chemical / other forms to electrical and for p.d., energy is transformedtoheat/otherformsfromelectricalB1 Allow any pair from: e.m.f. Energy (transformed) to electricalAllow *both defined as energy (transformed) per unit charge' or 'both defined as work done per unit charge' electricalp.d. Energy (transformed) from
(ii) n=9.6 ×1016 or n = 1.3(3...) × 1025 (m-3) 1.2x10-6 ×6.0x10-3C1heat /other forms Charges gain energy Work done on chargesCharges lose energy Work done by charges
(I = Anev)0.003 = 1.2 × 10-6 × 1.33... × 1025 × 1.6 × 10-19 × v
v= 1.2 × 10-3 (m s-1)C1Note Any subject for this equation
A1 Allow 1 mark for 1.6(3) × 105 (m s-1); n = 9.6 x1016 used
" - }, - { - "category_id": 2, - "poly": [ - 1966, - 119, - 2120, - 119, - 2120, - 152, - 1966, - 152 - ], - "score": 0.868 - }, - { - "category_id": 2, - "poly": [ - 1150, - 1542, - 1186, - 1542, - 1186, - 1572, - 1150, - 1572 - ], - "score": 0.852 - }, - { - "category_id": 2, - "poly": [ - 2268, - 6, - 2337, - 6, - 2337, - 39, - 2268, - 39 - ], - "score": 0.833 - }, - { - "category_id": 0, - "poly": [ - 1059, - 118, - 1263, - 118, - 1263, - 153, - 1059, - 153 - ], - "score": 0.499 - }, - { - "category_id": 2, - "poly": [ - 154, - 118, - 273, - 118, - 273, - 152, - 154, - 152 - ], - "score": 0.495 - }, - { - "category_id": 6, - "poly": [ - 1059, - 118, - 1263, - 118, - 1263, - 153, - 1059, - 153 - ], - "score": 0.243 - }, - { - "category_id": 6, - "poly": [ - 154, - 118, - 273, - 118, - 273, - 152, - 154, - 152 - ], - "score": 0.235 - }, - { - "category_id": 13, - "poly": [ - 1588, - 1304, - 1843, - 1304, - 1843, - 1346, - 1588, - 1346 - ], - "score": 0.87, - "latex": "1.6(3)\\times10^{5}(\\mathrm{m}\\mathrm{s}^{-1})" - }, - { - "category_id": 13, - "poly": [ - 1857, - 1304, - 2038, - 1304, - 2038, - 1344, - 1857, - 1344 - ], - "score": 0.85, - "latex": "\\eta=9.6\\times10^{16}" - }, - { - "category_id": 13, - "poly": [ - 391, - 1115, - 1068, - 1115, - 1068, - 1155, - 391, - 1155 - ], - "score": 0.73, - "latex": "0.003=1.2\\times10^{-6}\\times1.33...\\times10^{25}\\times1.6\\times10^{-19}\\times V" - }, - { - "category_id": 13, - "poly": [ - 839, - 946, - 1165, - 946, - 1165, - 989, - 839, - 989 - ], - "score": 0.47, - "latex": "n=1.3(3...)\\times10^{25}(\\mathrm{m}^{-3})" - }, - { - "category_id": 13, - "poly": [ - 528, - 931, - 652, - 931, - 652, - 962, - 528, - 962 - ], - "score": 0.37, - "latex": "9.6\\times10^{16}" - }, - { - "category_id": 13, - "poly": [ - 392, - 931, - 734, - 931, - 734, - 1013, - 392, - 1013 - ], - "score": 0.36, - "latex": "\\displaystyle{n=\\frac{9.6\\times10^{16}}{1.2\\times10^{-6}\\times6.0\\times10^{-3}}}" - }, - { - "category_id": 15, - "poly": [ - 1969.0, - 120.0, - 2119.0, - 120.0, - 2119.0, - 150.0, - 1969.0, - 150.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1146.0, - 1538.0, - 1192.0, - 1538.0, - 1192.0, - 1578.0, - 1146.0, - 1578.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2264.0, - 5.0, - 2339.0, - 5.0, - 2339.0, - 40.0, - 2264.0, - 40.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1062.0, - 116.0, - 1263.0, - 116.0, - 1263.0, - 152.0, - 1062.0, - 152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 118.0, - 274.0, - 118.0, - 274.0, - 152.0, - 155.0, - 152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1062.0, - 116.0, - 1263.0, - 116.0, - 1263.0, - 152.0, - 1062.0, - 152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 118.0, - 274.0, - 118.0, - 274.0, - 152.0, - 155.0, - 152.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 66, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 122, - 187, - 2217, - 187, - 2217, - 1050, - 122, - 1050 - ], - "score": 0.978, - "html": "
(q)QuestionAnswer Circuit withcell inserieswith an ammeter and variable resistor.A voltmeter is connected across thevariableMarks B1Guidance Allow thisB1 mark for a clearly drawn circuit with correct symbols for the cell, variable resistor, voltmeter and
resistor/(terminalsofthe)cellammeter.Allow a battery symbol instead of symbol for a cell
Measure current and p.d. / voltage across variable resistor / cellB1Allow 'terminal p.d' for p.d. across the cell Allow'measure I and V if the circuit is correct Allow'measure voltmeter and ammeter readings'if the
Correct description of how to get multiple readings (of currentorp.d)B1circuit is correct Possible ECF for incorrect symbol for variable resistor
E.g.change the resistance of the variableresistor / use different value resistors, etc. (E = V+ Ir)B1
line) is equal to (-) r (AW)Total 9
" - }, - { - "category_id": 2, - "poly": [ - 1967, - 120, - 2120, - 120, - 2120, - 152, - 1967, - 152 - ], - "score": 0.873 - }, - { - "category_id": 2, - "poly": [ - 1152, - 1542, - 1188, - 1542, - 1188, - 1571, - 1152, - 1571 - ], - "score": 0.86 - }, - { - "category_id": 2, - "poly": [ - 2268, - 7, - 2337, - 7, - 2337, - 38, - 2268, - 38 - ], - "score": 0.842 - }, - { - "category_id": 2, - "poly": [ - 154, - 118, - 273, - 118, - 273, - 152, - 154, - 152 - ], - "score": 0.466 - }, - { - "category_id": 0, - "poly": [ - 1060, - 119, - 1263, - 119, - 1263, - 152, - 1060, - 152 - ], - "score": 0.462 - }, - { - "category_id": 6, - "poly": [ - 1060, - 119, - 1263, - 119, - 1263, - 152, - 1060, - 152 - ], - "score": 0.277 - }, - { - "category_id": 6, - "poly": [ - 154, - 118, - 273, - 118, - 273, - 152, - 154, - 152 - ], - "score": 0.253 - }, - { - "category_id": 2, - "poly": [ - 1060, - 119, - 1263, - 119, - 1263, - 152, - 1060, - 152 - ], - "score": 0.104 - }, - { - "category_id": 13, - "poly": [ - 606, - 938, - 737, - 938, - 737, - 975, - 606, - 975 - ], - "score": 0.74, - "latex": "\\left(-\\right)r\\left(\\mathsf{A W}\\right)" - }, - { - "category_id": 13, - "poly": [ - 731, - 905, - 751, - 905, - 751, - 936, - 731, - 936 - ], - "score": 0.6, - "latex": "I" - }, - { - "category_id": 13, - "poly": [ - 601, - 903, - 627, - 903, - 627, - 934, - 601, - 934 - ], - "score": 0.58, - "latex": "V" - }, - { - "category_id": 13, - "poly": [ - 391, - 866, - 547, - 866, - 547, - 903, - 391, - 903 - ], - "score": 0.56, - "latex": "(E=V+I r)" - }, - { - "category_id": 13, - "poly": [ - 1655, - 481, - 1684, - 481, - 1684, - 512, - 1655, - 512 - ], - "score": 0.52, - "latex": "V" - }, - { - "category_id": 15, - "poly": [ - 1967.0, - 118.0, - 2121.0, - 118.0, - 2121.0, - 151.0, - 1967.0, - 151.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1143.0, - 1537.0, - 1196.0, - 1537.0, - 1196.0, - 1581.0, - 1143.0, - 1581.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2264.0, - 5.0, - 2338.0, - 5.0, - 2338.0, - 41.0, - 2264.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 118.0, - 274.0, - 118.0, - 274.0, - 152.0, - 155.0, - 152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1062.0, - 119.0, - 1263.0, - 119.0, - 1263.0, - 151.0, - 1062.0, - 151.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1062.0, - 119.0, - 1263.0, - 119.0, - 1263.0, - 151.0, - 1062.0, - 151.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 118.0, - 274.0, - 118.0, - 274.0, - 152.0, - 155.0, - 152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1062.0, - 119.0, - 1263.0, - 119.0, - 1263.0, - 151.0, - 1062.0, - 151.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 67, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 127, - 186, - 2222, - 186, - 2222, - 1098, - 127, - 1098 - ], - "score": 0.871, - "html": "
26Question (a)Answer (i) A and B move in opposite directionsMarks B1Guidance Allow A is moving up and B is moving down (or vice versa)
Allow they have a phase difference of 180(o) or π (rad) Allow they are in antiphase
(b)(i) = 0.80 (m)C1Allow 80 (cm) for this C1 mark
v= fn; v = 75× 0.80 v = 60 (m s-1) 2.0A1Allow 1 mark for 30 (m s-1) from the C1A1 marks; = 0.40 m used
absoluteuncertainty= x60 40 absolute uncertainty = 3.0 (m s-1)A1Note 60 ± 3 (m s-1) scores full marks Allow 2 marks for 6000 ± 300 (m s-1); in cm (POT error)
(i) Reflection (of progressive waves) at (fixed) end(s) / X / YB1Allow 2 marks for 30 ± 1.5 (m s-1); = 0.40 m used
Superposition (of these waves gives rise to the stationary wave)B1Allow: 'interference' instead of 'superposition'
The wavelength is twice the
length of cord / distance between X and YB1Allow = 2xY or equivalent
Total 7
" - }, - { - "category_id": 2, - "poly": [ - 1151, - 1542, - 1188, - 1542, - 1188, - 1571, - 1151, - 1571 - ], - "score": 0.866 - }, - { - "category_id": 2, - "poly": [ - 1967, - 120, - 2120, - 120, - 2120, - 152, - 1967, - 152 - ], - "score": 0.861 - }, - { - "category_id": 2, - "poly": [ - 2268, - 7, - 2337, - 7, - 2337, - 38, - 2268, - 38 - ], - "score": 0.841 - }, - { - "category_id": 0, - "poly": [ - 1060, - 118, - 1263, - 118, - 1263, - 153, - 1060, - 153 - ], - "score": 0.666 - }, - { - "category_id": 2, - "poly": [ - 154, - 118, - 273, - 118, - 273, - 152, - 154, - 152 - ], - "score": 0.448 - }, - { - "category_id": 5, - "poly": [ - 132, - 187, - 2219, - 187, - 2219, - 1098, - 132, - 1098 - ], - "score": 0.362, - "html": "
26Question (a)Answer A and B move in opposite directionsMarks B1Guidance Allow A is moving up and B is moving down (or vice versa)
(i) (ii) = 0.80 (m)C1Allow they have a phase difference of 180(o) or π (rad) Allow they are in antiphase Allow 80 (cm) for this C1 mark
v= f; v =75× 0.80 v = 60 (m s-1) 2.0 absolute uncertainty = ×60 40A1Allow 1 mark for 30 (m s-1) from the C1A1 marks; = 0.40 m used
A1Note 60 ± 3 (m s-1) scores full marks Allow 2 marks for 6000 ± 300 (m s-1); in cm (POT error)
(b) (i) (i)Reflection (of progressive waves) at (fixed) end(s) / X / YB1Allow 2 marks for 30 ± 1.5 (m s-1); = 0.40 m used
Superposition (of these waves gives rise to the stationaryB1Allow: ‘interference' instead of 'superposition'
The wavelength is twice the length of cord / distance between X and YB1
Total7Allow = 2xY or equivalent
" - }, - { - "category_id": 6, - "poly": [ - 154, - 118, - 273, - 118, - 273, - 152, - 154, - 152 - ], - "score": 0.264 - }, - { - "category_id": 6, - "poly": [ - 1060, - 118, - 1263, - 118, - 1263, - 153, - 1060, - 153 - ], - "score": 0.117 - }, - { - "category_id": 13, - "poly": [ - 2044, - 487, - 2169, - 487, - 2169, - 521, - 2044, - 521 - ], - "score": 0.85, - "latex": "\\lambda=0.40" - }, - { - "category_id": 13, - "poly": [ - 1838, - 704, - 1998, - 704, - 1998, - 739, - 1838, - 739 - ], - "score": 0.85, - "latex": "\\lambda=0.40\\:\\mathrm{m}" - }, - { - "category_id": 13, - "poly": [ - 1892, - 269, - 1972, - 269, - 1972, - 305, - 1892, - 305 - ], - "score": 0.81, - "latex": "180^{(\\circ)}" - }, - { - "category_id": 13, - "poly": [ - 1455, - 990, - 1570, - 990, - 1570, - 1025, - 1455, - 1025 - ], - "score": 0.79, - "latex": "\\lambda=2{\\tt X Y}" - }, - { - "category_id": 13, - "poly": [ - 1616, - 704, - 1823, - 704, - 1823, - 740, - 1616, - 740 - ], - "score": 0.77, - "latex": "30\\pm1.5(\\mathrm{m}\\mathrm{s}^{-1})" - }, - { - "category_id": 13, - "poly": [ - 1647, - 484, - 1732, - 484, - 1732, - 523, - 1647, - 523 - ], - "score": 0.68, - "latex": "(\\mathsf{m}\\thinspace\\mathsf{s}^{-1})" - }, - { - "category_id": 13, - "poly": [ - 645, - 526, - 796, - 526, - 796, - 608, - 645, - 608 - ], - "score": 0.61, - "latex": "=\\frac{2.0}{40}\\times60" - }, - { - "category_id": 13, - "poly": [ - 2010, - 277, - 2033, - 277, - 2033, - 304, - 2010, - 304 - ], - "score": 0.57, - "latex": "\\pi" - }, - { - "category_id": 13, - "poly": [ - 1881, - 668, - 1904, - 668, - 1904, - 700, - 1881, - 700 - ], - "score": 0.51, - "latex": "\\lambda" - }, - { - "category_id": 13, - "poly": [ - 647, - 642, - 818, - 642, - 818, - 682, - 647, - 682 - ], - "score": 0.49, - "latex": "=3.0(\\mathsf{m}\\mathsf{s}^{-1})" - }, - { - "category_id": 13, - "poly": [ - 1537, - 627, - 1624, - 627, - 1624, - 665, - 1537, - 665 - ], - "score": 0.49, - "latex": "(\\mathsf{m}\\thinspace\\mathsf{s}^{-1})" - }, - { - "category_id": 13, - "poly": [ - 468, - 418, - 660, - 418, - 660, - 454, - 468, - 454 - ], - "score": 0.47, - "latex": "v=75\\times0.80" - }, - { - "category_id": 13, - "poly": [ - 1782, - 665, - 1867, - 665, - 1867, - 702, - 1782, - 702 - ], - "score": 0.45, - "latex": "(\\mathsf{m}\\thinspace\\mathsf{s}^{-1})" - }, - { - "category_id": 13, - "poly": [ - 367, - 382, - 545, - 382, - 545, - 416, - 367, - 416 - ], - "score": 0.44, - "latex": "\\lambda=0.80(\\mathrm{m})" - }, - { - "category_id": 13, - "poly": [ - 1617, - 665, - 1774, - 665, - 1774, - 701, - 1617, - 701 - ], - "score": 0.44, - "latex": "6000\\pm300" - }, - { - "category_id": 13, - "poly": [ - 1442, - 628, - 1531, - 628, - 1531, - 663, - 1442, - 663 - ], - "score": 0.37, - "latex": "60\\pm3" - }, - { - "category_id": 13, - "poly": [ - 367, - 485, - 561, - 485, - 561, - 526, - 367, - 526 - ], - "score": 0.27, - "latex": "v=60(\\mathrm{m}\\mathrm{s}^{-1})" - }, - { - "category_id": 15, - "poly": [ - 1145.0, - 1538.0, - 1194.0, - 1538.0, - 1194.0, - 1578.0, - 1145.0, - 1578.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1967.0, - 118.0, - 2121.0, - 118.0, - 2121.0, - 151.0, - 1967.0, - 151.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2264.0, - 5.0, - 2338.0, - 5.0, - 2338.0, - 41.0, - 2264.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1062.0, - 119.0, - 1263.0, - 119.0, - 1263.0, - 151.0, - 1062.0, - 151.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 118.0, - 274.0, - 118.0, - 274.0, - 152.0, - 155.0, - 152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 118.0, - 274.0, - 118.0, - 274.0, - 152.0, - 155.0, - 152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1062.0, - 119.0, - 1263.0, - 119.0, - 1263.0, - 151.0, - 1062.0, - 151.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 68, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 121, - 175, - 2171, - 175, - 2171, - 1457, - 121, - 1457 - ], - "score": 0.979, - "html": "
QuestionAnswerMarks B1
-1.0 V to 2.6 V: I = 0 / negligible and R = oo / (very) large (AW)
2.6 Vto3.0V:RdecreasesB1 Allow'rapid decrease in R
3.0 V to 3.4 V:R decreases
B1 Allow'slow decrease in R' Not R is constant (because it is a straight line)
Justification of a B1 point in terms of R = V/I. For example to show:B1Not R = gradient1 Ignore powers of 10 and units
R is infinite: R = 2.0/0 = ∞0Note: V and I values within ± 1 small square
R decreases: R calculated once and has R = o, or R calculated twice
(The circuit does not work because) the LED is reverse biased / incorrect polarity of the cell (AW)B1Allow: (For the circuit to work) the LED must be forward- biased / 'reverse the LED'/ 'reverse the cell'
V must be greater than 2.6 (V for the LED to be lit)B1Allow ± 0.1 V Not V must be equal to / 'at least' 2.6 V
B1Allow this mark even if the LED is reverse biased Note: This B1 mark can be scored on Fig. 27.2
(c)6.63×10-34 ×3.0×108 E= or E = 4.1(4) × 10-19 (J) 480×10-9 1.2×10-3C1Allow this mark even if the LED is reverse biased
C1
4.1(4)×10-19 N = 2.9 × 1015 (s-1)A1
Total10
" - }, - { - "category_id": 2, - "poly": [ - 1132, - 1542, - 1169, - 1542, - 1169, - 1571, - 1132, - 1571 - ], - "score": 0.862 - }, - { - "category_id": 2, - "poly": [ - 1996, - 120, - 2149, - 120, - 2149, - 152, - 1996, - 152 - ], - "score": 0.842 - }, - { - "category_id": 2, - "poly": [ - 2268, - 7, - 2337, - 7, - 2337, - 38, - 2268, - 38 - ], - "score": 0.837 - }, - { - "category_id": 2, - "poly": [ - 154, - 118, - 273, - 118, - 273, - 152, - 154, - 152 - ], - "score": 0.603 - }, - { - "category_id": 0, - "poly": [ - 1041, - 118, - 1244, - 118, - 1244, - 153, - 1041, - 153 - ], - "score": 0.531 - }, - { - "category_id": 6, - "poly": [ - 1041, - 118, - 1244, - 118, - 1244, - 153, - 1041, - 153 - ], - "score": 0.188 - }, - { - "category_id": 6, - "poly": [ - 154, - 118, - 273, - 118, - 273, - 152, - 154, - 152 - ], - "score": 0.162 - }, - { - "category_id": 13, - "poly": [ - 855, - 489, - 958, - 489, - 958, - 522, - 855, - 522 - ], - "score": 0.89, - "latex": "R=V I I" - }, - { - "category_id": 13, - "poly": [ - 962, - 634, - 1045, - 634, - 1045, - 666, - 962, - 666 - ], - "score": 0.88, - "latex": "R=\\infty" - }, - { - "category_id": 13, - "poly": [ - 573, - 561, - 758, - 561, - 758, - 595, - 573, - 595 - ], - "score": 0.87, - "latex": "R=2.0/0=\\infty" - }, - { - "category_id": 13, - "poly": [ - 1398, - 484, - 1454, - 484, - 1454, - 519, - 1398, - 519 - ], - "score": 0.73, - "latex": "R=" - }, - { - "category_id": 13, - "poly": [ - 1719, - 558, - 1769, - 558, - 1769, - 590, - 1719, - 590 - ], - "score": 0.72, - "latex": "\\pm1" - }, - { - "category_id": 13, - "poly": [ - 594, - 634, - 623, - 634, - 623, - 665, - 594, - 665 - ], - "score": 0.52, - "latex": "R" - }, - { - "category_id": 13, - "poly": [ - 1427, - 557, - 1453, - 557, - 1453, - 589, - 1427, - 589 - ], - "score": 0.49, - "latex": "V" - }, - { - "category_id": 13, - "poly": [ - 1094, - 633, - 1124, - 633, - 1124, - 665, - 1094, - 665 - ], - "score": 0.49, - "latex": "R" - }, - { - "category_id": 13, - "poly": [ - 1399, - 415, - 1429, - 415, - 1429, - 446, - 1399, - 446 - ], - "score": 0.45, - "latex": "R" - }, - { - "category_id": 13, - "poly": [ - 565, - 241, - 636, - 241, - 636, - 275, - 565, - 275 - ], - "score": 0.44, - "latex": "I=0" - }, - { - "category_id": 13, - "poly": [ - 1694, - 780, - 1712, - 780, - 1712, - 811, - 1694, - 811 - ], - "score": 0.44, - "latex": "/" - }, - { - "category_id": 13, - "poly": [ - 853, - 241, - 939, - 241, - 939, - 275, - 853, - 275 - ], - "score": 0.41, - "latex": "R=\\infty" - }, - { - "category_id": 13, - "poly": [ - 1510, - 560, - 1530, - 560, - 1530, - 589, - 1510, - 589 - ], - "score": 0.4, - "latex": "I" - }, - { - "category_id": 13, - "poly": [ - 354, - 380, - 432, - 380, - 432, - 416, - 354, - 416 - ], - "score": 0.38, - "latex": "3.0\\vee" - }, - { - "category_id": 13, - "poly": [ - 1672, - 379, - 1706, - 379, - 1706, - 412, - 1672, - 412 - ], - "score": 0.33, - "latex": "\\boldsymbol{R}" - }, - { - "category_id": 13, - "poly": [ - 352, - 1228, - 602, - 1228, - 602, - 1314, - 352, - 1314 - ], - "score": 0.33, - "latex": "N=\\frac{1.2\\times10^{-3}}{4.1(4)\\times10^{-19}}" - }, - { - "category_id": 13, - "poly": [ - 405, - 633, - 434, - 633, - 434, - 665, - 405, - 665 - ], - "score": 0.32, - "latex": "R" - }, - { - "category_id": 13, - "poly": [ - 1339, - 850, - 1532, - 850, - 1532, - 885, - 1339, - 885 - ], - "score": 0.3, - "latex": "\\mathbf{A}||\\circ\\mathbf{w}\\pm0.1\\lor" - }, - { - "category_id": 15, - "poly": [ - 1126.0, - 1538.0, - 1174.0, - 1538.0, - 1174.0, - 1578.0, - 1126.0, - 1578.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1996.0, - 118.0, - 2150.0, - 118.0, - 2150.0, - 151.0, - 1996.0, - 151.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2264.0, - 5.0, - 2338.0, - 5.0, - 2338.0, - 41.0, - 2264.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 118.0, - 274.0, - 118.0, - 274.0, - 152.0, - 155.0, - 152.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1043.0, - 119.0, - 1243.0, - 119.0, - 1243.0, - 151.0, - 1043.0, - 151.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1043.0, - 119.0, - 1243.0, - 119.0, - 1243.0, - 151.0, - 1043.0, - 151.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 155.0, - 118.0, - 274.0, - 118.0, - 274.0, - 152.0, - 155.0, - 152.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 69, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 171, - 459, - 725, - 459, - 725, - 618, - 171, - 618 - ], - "score": 0.957 - }, - { - "category_id": 1, - "poly": [ - 171, - 2085, - 755, - 2085, - 755, - 2202, - 171, - 2202 - ], - "score": 0.947 - }, - { - "category_id": 2, - "poly": [ - 1179, - 2066, - 1487, - 2066, - 1487, - 2258, - 1179, - 2258 - ], - "score": 0.942 - }, - { - "category_id": 2, - "poly": [ - 1179, - 1880, - 1481, - 1880, - 1481, - 1982, - 1179, - 1982 - ], - "score": 0.936 - }, - { - "category_id": 1, - "poly": [ - 170, - 2229, - 320, - 2229, - 320, - 2259, - 170, - 2259 - ], - "score": 0.829 - }, - { - "category_id": 1, - "poly": [ - 175, - 381, - 621, - 381, - 621, - 419, - 175, - 419 - ], - "score": 0.814 - }, - { - "category_id": 1, - "poly": [ - 172, - 655, - 405, - 655, - 405, - 687, - 172, - 687 - ], - "score": 0.813 - }, - { - "category_id": 2, - "poly": [ - 1583, - 5, - 1650, - 5, - 1650, - 38, - 1583, - 38 - ], - "score": 0.787 - }, - { - "category_id": 0, - "poly": [ - 172, - 196, - 881, - 196, - 881, - 346, - 172, - 346 - ], - "score": 0.784 - }, - { - "category_id": 2, - "poly": [ - 171, - 758, - 1027, - 758, - 1027, - 827, - 171, - 827 - ], - "score": 0.561 - }, - { - "category_id": 1, - "poly": [ - 171, - 758, - 1027, - 758, - 1027, - 827, - 171, - 827 - ], - "score": 0.529 - }, - { - "category_id": 1, - "poly": [ - 172, - 1883, - 805, - 1883, - 805, - 2060, - 172, - 2060 - ], - "score": 0.524 - }, - { - "category_id": 2, - "poly": [ - 172, - 1883, - 805, - 1883, - 805, - 2060, - 172, - 2060 - ], - "score": 0.271 - }, - { - "category_id": 2, - "poly": [ - 170, - 2229, - 320, - 2229, - 320, - 2259, - 170, - 2259 - ], - "score": 0.1 - }, - { - "category_id": 13, - "poly": [ - 169, - 2230, - 195, - 2230, - 195, - 2257, - 169, - 2257 - ], - "score": 0.57, - "latex": "\\circledcirc" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 459.0, - 523.0, - 459.0, - 523.0, - 495.0, - 172.0, - 495.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 504.0, - 533.0, - 504.0, - 533.0, - 533.0, - 171.0, - 533.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 545.0, - 514.0, - 545.0, - 514.0, - 573.0, - 172.0, - 573.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 173.0, - 585.0, - 723.0, - 585.0, - 723.0, - 616.0, - 173.0, - 616.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 2088.0, - 753.0, - 2088.0, - 753.0, - 2117.0, - 172.0, - 2117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 2118.0, - 310.0, - 2118.0, - 310.0, - 2143.0, - 172.0, - 2143.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 2146.0, - 476.0, - 2146.0, - 476.0, - 2174.0, - 172.0, - 2174.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 2176.0, - 465.0, - 2176.0, - 465.0, - 2201.0, - 172.0, - 2201.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1227.0, - 2110.0, - 1307.0, - 2110.0, - 1307.0, - 2198.0, - 1227.0, - 2198.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1316.0, - 2119.0, - 1339.0, - 2119.0, - 1339.0, - 2176.0, - 1316.0, - 2176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1320.0, - 2183.0, - 1328.0, - 2183.0, - 1328.0, - 2192.0, - 1320.0, - 2192.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1376.0, - 2176.0, - 1460.0, - 2176.0, - 1460.0, - 2203.0, - 1376.0, - 2203.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 2197.0, - 1465.0, - 2197.0, - 1465.0, - 2217.0, - 1370.0, - 2217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1388.0, - 2210.0, - 1448.0, - 2210.0, - 1448.0, - 2229.0, - 1388.0, - 2229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1397.0, - 2233.0, - 1438.0, - 2233.0, - 1438.0, - 2257.0, - 1397.0, - 2257.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1253.0, - 2079.5, - 1320.0, - 2079.5, - 1320.0, - 2106.0, - 1253.0, - 2106.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1236.75, - 2209.0, - 1290.75, - 2209.0, - 1290.75, - 2226.0, - 1236.75, - 2226.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1188.0, - 1862.0, - 1388.0, - 1862.0, - 1388.0, - 2007.0, - 1188.0, - 2007.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1287.0, - 1946.0, - 1482.0, - 1946.0, - 1482.0, - 1966.0, - 1287.0, - 1966.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1287.0, - 1962.0, - 1348.0, - 1962.0, - 1348.0, - 1983.0, - 1287.0, - 1983.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 2232.0, - 320.0, - 2232.0, - 320.0, - 2258.0, - 196.0, - 2258.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 174.0, - 386.0, - 621.0, - 386.0, - 621.0, - 416.0, - 174.0, - 416.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 658.0, - 404.0, - 658.0, - 404.0, - 686.0, - 172.0, - 686.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1580.0, - 5.0, - 1654.0, - 5.0, - 1654.0, - 41.0, - 1580.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 200.0, - 881.0, - 200.0, - 881.0, - 235.0, - 172.0, - 235.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 237.0, - 352.0, - 237.0, - 352.0, - 273.0, - 171.0, - 273.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 274.0, - 338.0, - 274.0, - 338.0, - 314.0, - 170.0, - 314.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 313.0, - 308.0, - 313.0, - 308.0, - 347.0, - 171.0, - 347.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 758.0, - 1026.0, - 758.0, - 1026.0, - 797.0, - 170.0, - 797.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 173.0, - 799.0, - 871.0, - 799.0, - 871.0, - 826.0, - 173.0, - 826.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 758.0, - 1026.0, - 758.0, - 1026.0, - 797.0, - 170.0, - 797.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 173.0, - 799.0, - 871.0, - 799.0, - 871.0, - 826.0, - 173.0, - 826.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 1886.0, - 675.0, - 1886.0, - 675.0, - 1915.0, - 172.0, - 1915.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 1918.0, - 600.0, - 1918.0, - 600.0, - 1945.0, - 171.0, - 1945.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 1946.0, - 440.0, - 1946.0, - 440.0, - 1973.0, - 172.0, - 1973.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 1973.0, - 805.0, - 1973.0, - 805.0, - 2002.0, - 170.0, - 2002.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 2002.0, - 641.0, - 2002.0, - 641.0, - 2032.0, - 171.0, - 2032.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 2028.0, - 484.0, - 2028.0, - 484.0, - 2062.0, - 171.0, - 2062.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 1886.0, - 675.0, - 1886.0, - 675.0, - 1915.0, - 172.0, - 1915.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 1918.0, - 600.0, - 1918.0, - 600.0, - 1945.0, - 171.0, - 1945.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 1946.0, - 440.0, - 1946.0, - 440.0, - 1973.0, - 172.0, - 1973.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 1973.0, - 805.0, - 1973.0, - 805.0, - 2002.0, - 170.0, - 2002.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 2002.0, - 641.0, - 2002.0, - 641.0, - 2032.0, - 171.0, - 2032.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 2028.0, - 484.0, - 2028.0, - 484.0, - 2062.0, - 171.0, - 2062.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 2232.0, - 320.0, - 2232.0, - 320.0, - 2258.0, - 196.0, - 2258.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 70, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 157, - 89, - 485, - 89, - 485, - 229, - 157, - 229 - ], - "score": 0.915 - }, - { - "category_id": 1, - "poly": [ - 161, - 814, - 324, - 814, - 324, - 859, - 161, - 859 - ], - "score": 0.884 - }, - { - "category_id": 0, - "poly": [ - 163, - 554, - 404, - 554, - 404, - 613, - 163, - 613 - ], - "score": 0.862 - }, - { - "category_id": 2, - "poly": [ - 163, - 2267, - 583, - 2267, - 583, - 2294, - 163, - 2294 - ], - "score": 0.859 - }, - { - "category_id": 0, - "poly": [ - 158, - 962, - 827, - 962, - 827, - 1020, - 158, - 1020 - ], - "score": 0.858 - }, - { - "category_id": 0, - "poly": [ - 159, - 672, - 760, - 672, - 760, - 726, - 159, - 726 - ], - "score": 0.797 - }, - { - "category_id": 2, - "poly": [ - 1581, - 5, - 1649, - 5, - 1649, - 39, - 1581, - 39 - ], - "score": 0.769 - }, - { - "category_id": 0, - "poly": [ - 162, - 406, - 275, - 406, - 275, - 462, - 162, - 462 - ], - "score": 0.489 - }, - { - "category_id": 2, - "poly": [ - 162, - 406, - 275, - 406, - 275, - 462, - 162, - 462 - ], - "score": 0.228 - }, - { - "category_id": 1, - "poly": [ - 159, - 672, - 760, - 672, - 760, - 726, - 159, - 726 - ], - "score": 0.147 - }, - { - "category_id": 15, - "poly": [ - 161.0, - 96.0, - 479.0, - 96.0, - 479.0, - 188.0, - 161.0, - 188.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 198.0, - 480.0, - 198.0, - 480.0, - 227.0, - 172.0, - 227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 163.0, - 817.0, - 324.0, - 817.0, - 324.0, - 856.0, - 163.0, - 856.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 164.0, - 559.0, - 404.0, - 559.0, - 404.0, - 613.0, - 164.0, - 613.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2269.0, - 583.0, - 2269.0, - 583.0, - 2293.0, - 166.0, - 2293.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 167.0, - 970.0, - 822.0, - 970.0, - 822.0, - 1011.0, - 167.0, - 1011.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 164.0, - 678.0, - 756.0, - 678.0, - 756.0, - 726.0, - 164.0, - 726.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1578.0, - 4.0, - 1654.0, - 4.0, - 1654.0, - 41.0, - 1578.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 163.0, - 412.0, - 277.0, - 412.0, - 277.0, - 460.0, - 163.0, - 460.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 163.0, - 412.0, - 277.0, - 412.0, - 277.0, - 460.0, - 163.0, - 460.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 164.0, - 678.0, - 756.0, - 678.0, - 756.0, - 726.0, - 164.0, - 726.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 71, - "height": 2339, - "width": 1653 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 162, - 531, - 1427, - 531, - 1427, - 692, - 162, - 692 - ], - "score": 0.977 - }, - { - "category_id": 1, - "poly": [ - 162, - 301, - 1430, - 301, - 1430, - 503, - 162, - 503 - ], - "score": 0.977 - }, - { - "category_id": 1, - "poly": [ - 162, - 722, - 1466, - 722, - 1466, - 880, - 162, - 880 - ], - "score": 0.975 - }, - { - "category_id": 1, - "poly": [ - 163, - 911, - 1411, - 911, - 1411, - 1028, - 163, - 1028 - ], - "score": 0.973 - }, - { - "category_id": 1, - "poly": [ - 157, - 1060, - 1450, - 1060, - 1450, - 1137, - 157, - 1137 - ], - "score": 0.942 - }, - { - "category_id": 2, - "poly": [ - 163, - 2267, - 582, - 2267, - 582, - 2294, - 163, - 2294 - ], - "score": 0.883 - }, - { - "category_id": 2, - "poly": [ - 1581, - 6, - 1649, - 6, - 1649, - 38, - 1581, - 38 - ], - "score": 0.824 - }, - { - "category_id": 1, - "poly": [ - 161, - 1204, - 341, - 1204, - 341, - 1240, - 161, - 1240 - ], - "score": 0.764 - }, - { - "category_id": 2, - "poly": [ - 161, - 1204, - 341, - 1204, - 341, - 1240, - 161, - 1240 - ], - "score": 0.163 - }, - { - "category_id": 13, - "poly": [ - 161, - 1206, - 192, - 1206, - 192, - 1237, - 161, - 1237 - ], - "score": 0.28, - "latex": "\\circledcirc" - }, - { - "category_id": 15, - "poly": [ - 160.0, - 533.0, - 1427.0, - 533.0, - 1427.0, - 572.0, - 160.0, - 572.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 162.0, - 578.0, - 1383.0, - 578.0, - 1383.0, - 611.0, - 162.0, - 611.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 160.0, - 616.0, - 1389.0, - 616.0, - 1389.0, - 651.0, - 160.0, - 651.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 160.0, - 656.0, - 1106.0, - 656.0, - 1106.0, - 696.0, - 160.0, - 696.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 163.0, - 302.0, - 1429.0, - 302.0, - 1429.0, - 343.0, - 163.0, - 343.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 163.0, - 347.0, - 1384.0, - 347.0, - 1384.0, - 380.0, - 163.0, - 380.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 163.0, - 390.0, - 1332.0, - 390.0, - 1332.0, - 420.0, - 163.0, - 420.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 163.0, - 430.0, - 1413.0, - 430.0, - 1413.0, - 460.0, - 163.0, - 460.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 162.0, - 469.0, - 1426.0, - 469.0, - 1426.0, - 503.0, - 162.0, - 503.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 163.0, - 724.0, - 1458.0, - 724.0, - 1458.0, - 759.0, - 163.0, - 759.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 162.0, - 765.0, - 1452.0, - 765.0, - 1452.0, - 800.0, - 162.0, - 800.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 159.0, - 801.0, - 1469.0, - 801.0, - 1469.0, - 843.0, - 159.0, - 843.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 162.0, - 845.0, - 345.0, - 845.0, - 345.0, - 880.0, - 162.0, - 880.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 162.0, - 913.0, - 1405.0, - 913.0, - 1405.0, - 949.0, - 162.0, - 949.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 164.0, - 957.0, - 1391.0, - 957.0, - 1391.0, - 987.0, - 164.0, - 987.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 161.0, - 995.0, - 363.0, - 995.0, - 363.0, - 1029.0, - 161.0, - 1029.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 162.0, - 1061.0, - 1452.0, - 1061.0, - 1452.0, - 1099.0, - 162.0, - 1099.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 164.0, - 1107.0, - 435.0, - 1107.0, - 435.0, - 1137.0, - 164.0, - 1137.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2269.0, - 583.0, - 2269.0, - 583.0, - 2293.0, - 166.0, - 2293.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1578.0, - 1.0, - 1655.0, - 1.0, - 1655.0, - 43.0, - 1578.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 193.0, - 1209.0, - 342.0, - 1209.0, - 342.0, - 1237.0, - 193.0, - 1237.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 193.0, - 1209.0, - 342.0, - 1209.0, - 342.0, - 1237.0, - 193.0, - 1237.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 72, - "height": 2339, - "width": 1653 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 242, - 1160, - 2173, - 1160, - 2173, - 1299, - 242, - 1299 - ], - "score": 0.953 - }, - { - "category_id": 1, - "poly": [ - 234, - 984, - 2169, - 984, - 2169, - 1087, - 234, - 1087 - ], - "score": 0.927 - }, - { - "category_id": 0, - "poly": [ - 250, - 1123, - 922, - 1123, - 922, - 1157, - 250, - 1157 - ], - "score": 0.903 - }, - { - "category_id": 0, - "poly": [ - 171, - 171, - 818, - 171, - 818, - 210, - 171, - 210 - ], - "score": 0.9 - }, - { - "category_id": 2, - "poly": [ - 1983, - 104, - 2134, - 104, - 2134, - 136, - 1983, - 136 - ], - "score": 0.898 - }, - { - "category_id": 0, - "poly": [ - 173, - 948, - 606, - 948, - 606, - 981, - 173, - 981 - ], - "score": 0.881 - }, - { - "category_id": 2, - "poly": [ - 2267, - 6, - 2338, - 6, - 2338, - 39, - 2267, - 39 - ], - "score": 0.839 - }, - { - "category_id": 2, - "poly": [ - 1158, - 1508, - 1180, - 1508, - 1180, - 1535, - 1158, - 1535 - ], - "score": 0.814 - }, - { - "category_id": 0, - "poly": [ - 179, - 522, - 1541, - 522, - 1541, - 562, - 179, - 562 - ], - "score": 0.787 - }, - { - "category_id": 1, - "poly": [ - 162, - 597, - 2170, - 597, - 2170, - 913, - 162, - 913 - ], - "score": 0.655 - }, - { - "category_id": 1, - "poly": [ - 169, - 243, - 2135, - 243, - 2135, - 494, - 169, - 494 - ], - "score": 0.569 - }, - { - "category_id": 0, - "poly": [ - 1128, - 104, - 1329, - 104, - 1329, - 138, - 1128, - 138 - ], - "score": 0.555 - }, - { - "category_id": 0, - "poly": [ - 171, - 102, - 290, - 102, - 290, - 137, - 171, - 137 - ], - "score": 0.518 - }, - { - "category_id": 1, - "poly": [ - 175, - 594, - 701, - 594, - 701, - 632, - 175, - 632 - ], - "score": 0.486 - }, - { - "category_id": 1, - "poly": [ - 170, - 665, - 1036, - 665, - 1036, - 703, - 170, - 703 - ], - "score": 0.425 - }, - { - "category_id": 1, - "poly": [ - 166, - 452, - 2059, - 452, - 2059, - 493, - 166, - 493 - ], - "score": 0.406 - }, - { - "category_id": 2, - "poly": [ - 1128, - 104, - 1329, - 104, - 1329, - 138, - 1128, - 138 - ], - "score": 0.394 - }, - { - "category_id": 1, - "poly": [ - 165, - 243, - 2134, - 243, - 2134, - 317, - 165, - 317 - ], - "score": 0.349 - }, - { - "category_id": 1, - "poly": [ - 150, - 347, - 2145, - 347, - 2145, - 423, - 150, - 423 - ], - "score": 0.276 - }, - { - "category_id": 1, - "poly": [ - 171, - 102, - 290, - 102, - 290, - 137, - 171, - 137 - ], - "score": 0.247 - }, - { - "category_id": 1, - "poly": [ - 131, - 839, - 2186, - 839, - 2186, - 912, - 131, - 912 - ], - "score": 0.201 - }, - { - "category_id": 1, - "poly": [ - 167, - 734, - 2168, - 734, - 2168, - 808, - 167, - 808 - ], - "score": 0.2 - }, - { - "category_id": 1, - "poly": [ - 185, - 841, - 2164, - 841, - 2164, - 912, - 185, - 912 - ], - "score": 0.195 - }, - { - "category_id": 1, - "poly": [ - 179, - 522, - 1541, - 522, - 1541, - 562, - 179, - 562 - ], - "score": 0.112 - }, - { - "category_id": 1, - "poly": [ - 157, - 733, - 2181, - 733, - 2181, - 808, - 157, - 808 - ], - "score": 0.107 - }, - { - "category_id": 2, - "poly": [ - 171, - 102, - 290, - 102, - 290, - 137, - 171, - 137 - ], - "score": 0.101 - }, - { - "category_id": 13, - "poly": [ - 1423, - 736, - 1488, - 736, - 1488, - 770, - 1423, - 770 - ], - "score": 0.85, - "latex": "50\\%" - }, - { - "category_id": 13, - "poly": [ - 1553, - 736, - 1634, - 736, - 1634, - 770, - 1553, - 770 - ], - "score": 0.84, - "latex": "100\\%" - }, - { - "category_id": 15, - "poly": [ - 247.0, - 1155.0, - 2172.0, - 1155.0, - 2172.0, - 1198.0, - 247.0, - 1198.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 249.0, - 1198.0, - 2168.0, - 1198.0, - 2168.0, - 1228.0, - 249.0, - 1228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 245.0, - 1226.0, - 2172.0, - 1226.0, - 2172.0, - 1269.0, - 245.0, - 1269.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 1265.0, - 1114.0, - 1265.0, - 1114.0, - 1300.0, - 251.0, - 1300.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 246.0, - 978.0, - 2170.0, - 978.0, - 2170.0, - 1023.0, - 246.0, - 1023.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 250.0, - 1019.0, - 2168.0, - 1019.0, - 2168.0, - 1052.0, - 250.0, - 1052.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 248.0, - 1055.0, - 354.0, - 1055.0, - 354.0, - 1090.0, - 248.0, - 1090.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 1125.0, - 921.0, - 1125.0, - 921.0, - 1158.0, - 251.0, - 1158.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 173.0, - 177.0, - 815.0, - 177.0, - 815.0, - 205.0, - 173.0, - 205.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1983.0, - 106.0, - 2135.0, - 106.0, - 2135.0, - 135.0, - 1983.0, - 135.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 168.0, - 945.0, - 203.0, - 945.0, - 203.0, - 984.0, - 168.0, - 984.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 949.0, - 607.0, - 949.0, - 607.0, - 982.0, - 251.0, - 982.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2264.0, - 5.0, - 2339.0, - 5.0, - 2339.0, - 41.0, - 2264.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1155.0, - 1504.0, - 1184.0, - 1504.0, - 1184.0, - 1544.0, - 1155.0, - 1544.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 176.0, - 524.0, - 1535.0, - 524.0, - 1535.0, - 557.0, - 176.0, - 557.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 169.0, - 597.0, - 209.0, - 597.0, - 209.0, - 634.0, - 169.0, - 634.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 244.0, - 592.0, - 703.0, - 592.0, - 703.0, - 636.0, - 244.0, - 636.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 167.0, - 666.0, - 206.0, - 666.0, - 206.0, - 703.0, - 167.0, - 703.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 246.0, - 668.0, - 1039.0, - 668.0, - 1039.0, - 703.0, - 246.0, - 703.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 167.0, - 735.0, - 204.0, - 735.0, - 204.0, - 772.0, - 167.0, - 772.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 248.0, - 738.0, - 1422.0, - 738.0, - 1422.0, - 772.0, - 248.0, - 772.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1489.0, - 738.0, - 1552.0, - 738.0, - 1552.0, - 772.0, - 1489.0, - 772.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1635.0, - 738.0, - 2165.0, - 738.0, - 2165.0, - 772.0, - 1635.0, - 772.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 248.0, - 775.0, - 938.0, - 775.0, - 938.0, - 809.0, - 248.0, - 809.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 169.0, - 842.0, - 206.0, - 842.0, - 206.0, - 876.0, - 169.0, - 876.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 242.0, - 835.0, - 2174.0, - 835.0, - 2174.0, - 885.0, - 242.0, - 885.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 246.0, - 876.0, - 380.0, - 876.0, - 380.0, - 917.0, - 246.0, - 917.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 173.0, - 250.0, - 201.0, - 250.0, - 201.0, - 276.0, - 173.0, - 276.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 244.0, - 239.0, - 2131.0, - 239.0, - 2131.0, - 283.0, - 244.0, - 283.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 244.0, - 276.0, - 758.0, - 276.0, - 758.0, - 320.0, - 244.0, - 320.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 351.0, - 205.0, - 351.0, - 205.0, - 386.0, - 166.0, - 386.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 242.0, - 342.0, - 2142.0, - 342.0, - 2142.0, - 393.0, - 242.0, - 393.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 246.0, - 384.0, - 1662.0, - 384.0, - 1662.0, - 426.0, - 246.0, - 426.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 456.0, - 205.0, - 456.0, - 205.0, - 491.0, - 166.0, - 491.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 244.0, - 454.0, - 2069.0, - 454.0, - 2069.0, - 496.0, - 244.0, - 496.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1129.0, - 105.0, - 1329.0, - 105.0, - 1329.0, - 136.0, - 1129.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 105.0, - 290.0, - 105.0, - 290.0, - 135.0, - 171.0, - 135.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 595.0, - 203.0, - 595.0, - 203.0, - 631.0, - 170.0, - 631.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 599.0, - 699.0, - 599.0, - 699.0, - 629.0, - 252.0, - 629.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 167.0, - 662.0, - 204.0, - 662.0, - 204.0, - 703.0, - 167.0, - 703.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 249.0, - 666.0, - 1034.0, - 666.0, - 1034.0, - 701.0, - 249.0, - 701.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 164.0, - 450.0, - 2065.0, - 450.0, - 2065.0, - 495.0, - 164.0, - 495.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1129.0, - 105.0, - 1329.0, - 105.0, - 1329.0, - 136.0, - 1129.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 245.0, - 201.0, - 245.0, - 201.0, - 277.0, - 171.0, - 277.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 246.0, - 242.0, - 2132.0, - 242.0, - 2132.0, - 285.0, - 246.0, - 285.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 244.0, - 274.0, - 757.0, - 274.0, - 757.0, - 321.0, - 244.0, - 321.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 165.0, - 347.0, - 205.0, - 347.0, - 205.0, - 388.0, - 165.0, - 388.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 248.0, - 347.0, - 2138.0, - 347.0, - 2138.0, - 391.0, - 248.0, - 391.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 246.0, - 382.0, - 1660.0, - 382.0, - 1660.0, - 426.0, - 246.0, - 426.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 105.0, - 290.0, - 105.0, - 290.0, - 135.0, - 171.0, - 135.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 173.0, - 846.0, - 193.0, - 846.0, - 193.0, - 870.0, - 173.0, - 870.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 243.0, - 832.0, - 2173.0, - 832.0, - 2173.0, - 886.0, - 243.0, - 886.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 243.0, - 870.0, - 384.0, - 870.0, - 384.0, - 921.0, - 243.0, - 921.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 165.0, - 733.0, - 205.0, - 733.0, - 205.0, - 774.0, - 165.0, - 774.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 248.0, - 733.0, - 1422.0, - 733.0, - 1422.0, - 776.0, - 248.0, - 776.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1489.0, - 733.0, - 1552.0, - 733.0, - 1552.0, - 776.0, - 1489.0, - 776.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1635.0, - 733.0, - 2165.0, - 733.0, - 2165.0, - 776.0, - 1635.0, - 776.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 242.0, - 766.0, - 942.0, - 766.0, - 942.0, - 814.0, - 242.0, - 814.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 243.0, - 831.0, - 2173.0, - 831.0, - 2173.0, - 885.0, - 243.0, - 885.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 243.0, - 871.0, - 382.0, - 871.0, - 382.0, - 922.0, - 243.0, - 922.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 176.0, - 524.0, - 1535.0, - 524.0, - 1535.0, - 557.0, - 176.0, - 557.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 167.0, - 732.0, - 204.0, - 732.0, - 204.0, - 776.0, - 167.0, - 776.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 244.0, - 727.0, - 1422.0, - 727.0, - 1422.0, - 781.0, - 244.0, - 781.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1489.0, - 727.0, - 1552.0, - 727.0, - 1552.0, - 781.0, - 1489.0, - 781.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1635.0, - 727.0, - 2167.0, - 727.0, - 2167.0, - 781.0, - 1635.0, - 781.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 244.0, - 768.0, - 939.0, - 768.0, - 939.0, - 811.0, - 244.0, - 811.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 105.0, - 290.0, - 105.0, - 290.0, - 135.0, - 171.0, - 135.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 73, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 248, - 210, - 2170, - 210, - 2170, - 350, - 248, - 350 - ], - "score": 0.958 - }, - { - "category_id": 1, - "poly": [ - 241, - 808, - 2173, - 808, - 2173, - 911, - 241, - 911 - ], - "score": 0.941 - }, - { - "category_id": 1, - "poly": [ - 199, - 1127, - 2147, - 1127, - 2147, - 1199, - 199, - 1199 - ], - "score": 0.94 - }, - { - "category_id": 1, - "poly": [ - 249, - 522, - 2174, - 522, - 2174, - 736, - 249, - 736 - ], - "score": 0.914 - }, - { - "category_id": 0, - "poly": [ - 252, - 386, - 627, - 386, - 627, - 420, - 252, - 420 - ], - "score": 0.912 - }, - { - "category_id": 1, - "poly": [ - 239, - 978, - 2167, - 978, - 2167, - 1088, - 239, - 1088 - ], - "score": 0.911 - }, - { - "category_id": 0, - "poly": [ - 252, - 174, - 790, - 174, - 790, - 209, - 252, - 209 - ], - "score": 0.906 - }, - { - "category_id": 2, - "poly": [ - 1984, - 105, - 2134, - 105, - 2134, - 135, - 1984, - 135 - ], - "score": 0.902 - }, - { - "category_id": 2, - "poly": [ - 171, - 104, - 288, - 104, - 288, - 135, - 171, - 135 - ], - "score": 0.863 - }, - { - "category_id": 2, - "poly": [ - 2268, - 6, - 2337, - 6, - 2337, - 38, - 2268, - 38 - ], - "score": 0.841 - }, - { - "category_id": 1, - "poly": [ - 248, - 771, - 1521, - 771, - 1521, - 806, - 248, - 806 - ], - "score": 0.828 - }, - { - "category_id": 2, - "poly": [ - 1158, - 1508, - 1179, - 1508, - 1179, - 1535, - 1158, - 1535 - ], - "score": 0.808 - }, - { - "category_id": 1, - "poly": [ - 278, - 419, - 1924, - 419, - 1924, - 455, - 278, - 455 - ], - "score": 0.773 - }, - { - "category_id": 1, - "poly": [ - 251, - 947, - 1093, - 947, - 1093, - 982, - 251, - 982 - ], - "score": 0.732 - }, - { - "category_id": 1, - "poly": [ - 171, - 1233, - 1017, - 1233, - 1017, - 1305, - 171, - 1305 - ], - "score": 0.683 - }, - { - "category_id": 2, - "poly": [ - 1128, - 104, - 1329, - 104, - 1329, - 137, - 1128, - 137 - ], - "score": 0.514 - }, - { - "category_id": 1, - "poly": [ - 321, - 1336, - 1763, - 1336, - 1763, - 1409, - 321, - 1409 - ], - "score": 0.491 - }, - { - "category_id": 0, - "poly": [ - 1128, - 104, - 1329, - 104, - 1329, - 137, - 1128, - 137 - ], - "score": 0.447 - }, - { - "category_id": 1, - "poly": [ - 211, - 1231, - 1752, - 1231, - 1752, - 1410, - 211, - 1410 - ], - "score": 0.327 - }, - { - "category_id": 1, - "poly": [ - 320, - 1373, - 1751, - 1373, - 1751, - 1408, - 320, - 1408 - ], - "score": 0.257 - }, - { - "category_id": 13, - "poly": [ - 437, - 1337, - 472, - 1337, - 472, - 1370, - 437, - 1370 - ], - "score": 0.55, - "latex": "\\mathrm{^{6}0^{,}}" - }, - { - "category_id": 15, - "poly": [ - 244.0, - 205.0, - 2169.0, - 205.0, - 2169.0, - 248.0, - 244.0, - 248.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 246.0, - 246.0, - 2073.0, - 246.0, - 2073.0, - 282.0, - 246.0, - 282.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 249.0, - 276.0, - 2176.0, - 276.0, - 2176.0, - 319.0, - 249.0, - 319.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 244.0, - 314.0, - 596.0, - 314.0, - 596.0, - 353.0, - 244.0, - 353.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 248.0, - 805.0, - 2170.0, - 805.0, - 2170.0, - 845.0, - 248.0, - 845.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 250.0, - 845.0, - 2170.0, - 845.0, - 2170.0, - 879.0, - 250.0, - 879.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 248.0, - 881.0, - 492.0, - 881.0, - 492.0, - 914.0, - 248.0, - 914.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 1125.0, - 2146.0, - 1125.0, - 2146.0, - 1168.0, - 251.0, - 1168.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 249.0, - 1160.0, - 1566.0, - 1160.0, - 1566.0, - 1203.0, - 249.0, - 1203.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 248.0, - 525.0, - 2165.0, - 525.0, - 2165.0, - 562.0, - 248.0, - 562.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 250.0, - 564.0, - 2169.0, - 564.0, - 2169.0, - 596.0, - 250.0, - 596.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 250.0, - 600.0, - 2165.0, - 600.0, - 2165.0, - 631.0, - 250.0, - 631.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 248.0, - 633.0, - 2171.0, - 633.0, - 2171.0, - 670.0, - 248.0, - 670.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 248.0, - 668.0, - 2173.0, - 668.0, - 2173.0, - 706.0, - 248.0, - 706.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 245.0, - 704.0, - 420.0, - 704.0, - 420.0, - 741.0, - 245.0, - 741.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 251.0, - 386.0, - 626.0, - 386.0, - 626.0, - 422.0, - 251.0, - 422.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 246.0, - 980.0, - 2171.0, - 980.0, - 2171.0, - 1022.0, - 246.0, - 1022.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 248.0, - 1020.0, - 2171.0, - 1020.0, - 2171.0, - 1055.0, - 248.0, - 1055.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 248.0, - 1055.0, - 1995.0, - 1055.0, - 1995.0, - 1090.0, - 248.0, - 1090.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 252.0, - 177.0, - 791.0, - 177.0, - 791.0, - 208.0, - 252.0, - 208.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1984.0, - 106.0, - 2134.0, - 106.0, - 2134.0, - 135.0, - 1984.0, - 135.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 102.0, - 291.0, - 102.0, - 291.0, - 138.0, - 170.0, - 138.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2263.0, - 2.0, - 2341.0, - 2.0, - 2341.0, - 43.0, - 2263.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 247.0, - 769.0, - 1521.0, - 769.0, - 1521.0, - 810.0, - 247.0, - 810.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1155.0, - 1504.0, - 1184.0, - 1504.0, - 1184.0, - 1541.0, - 1155.0, - 1541.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 275.0, - 418.0, - 1930.0, - 418.0, - 1930.0, - 458.0, - 275.0, - 458.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 250.0, - 949.0, - 1089.0, - 949.0, - 1089.0, - 983.0, - 250.0, - 983.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 167.0, - 1231.0, - 205.0, - 1231.0, - 205.0, - 1271.0, - 167.0, - 1271.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 274.0, - 1236.0, - 662.0, - 1236.0, - 662.0, - 1270.0, - 274.0, - 1270.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 419.0, - 1270.0, - 1013.0, - 1270.0, - 1013.0, - 1306.0, - 419.0, - 1306.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1128.0, - 104.0, - 1329.0, - 104.0, - 1329.0, - 136.0, - 1128.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 316.0, - 1335.0, - 436.0, - 1335.0, - 436.0, - 1374.0, - 316.0, - 1374.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 473.0, - 1335.0, - 507.0, - 1335.0, - 507.0, - 1374.0, - 473.0, - 1374.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 409.0, - 1372.0, - 1746.0, - 1372.0, - 1746.0, - 1412.0, - 409.0, - 1412.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1128.0, - 104.0, - 1329.0, - 104.0, - 1329.0, - 136.0, - 1128.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 270.0, - 1233.0, - 664.0, - 1233.0, - 664.0, - 1272.0, - 270.0, - 1272.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 406.0, - 1268.0, - 1016.0, - 1268.0, - 1016.0, - 1308.0, - 406.0, - 1308.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 269.0, - 1336.0, - 436.0, - 1336.0, - 436.0, - 1375.0, - 269.0, - 1375.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 473.0, - 1336.0, - 510.0, - 1336.0, - 510.0, - 1375.0, - 473.0, - 1375.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 388.0, - 1373.0, - 1749.0, - 1373.0, - 1749.0, - 1411.0, - 388.0, - 1411.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 415.0, - 1374.0, - 1747.0, - 1374.0, - 1747.0, - 1409.0, - 415.0, - 1409.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 74, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 216, - 524, - 2149, - 524, - 2149, - 630, - 216, - 630 - ], - "score": 0.963 - }, - { - "category_id": 1, - "poly": [ - 216, - 801, - 2159, - 801, - 2159, - 909, - 216, - 909 - ], - "score": 0.957 - }, - { - "category_id": 1, - "poly": [ - 173, - 276, - 2058, - 276, - 2058, - 357, - 173, - 357 - ], - "score": 0.956 - }, - { - "category_id": 1, - "poly": [ - 301, - 981, - 1290, - 981, - 1290, - 1054, - 301, - 1054 - ], - "score": 0.93 - }, - { - "category_id": 1, - "poly": [ - 264, - 385, - 1926, - 385, - 1926, - 425, - 264, - 425 - ], - "score": 0.907 - }, - { - "category_id": 2, - "poly": [ - 1983, - 104, - 2134, - 104, - 2134, - 136, - 1983, - 136 - ], - "score": 0.901 - }, - { - "category_id": 1, - "poly": [ - 223, - 732, - 1004, - 732, - 1004, - 768, - 223, - 768 - ], - "score": 0.898 - }, - { - "category_id": 0, - "poly": [ - 170, - 456, - 575, - 456, - 575, - 494, - 170, - 494 - ], - "score": 0.892 - }, - { - "category_id": 1, - "poly": [ - 243, - 173, - 2100, - 173, - 2100, - 245, - 243, - 245 - ], - "score": 0.87 - }, - { - "category_id": 1, - "poly": [ - 221, - 944, - 392, - 944, - 392, - 979, - 221, - 979 - ], - "score": 0.868 - }, - { - "category_id": 1, - "poly": [ - 220, - 645, - 2150, - 645, - 2150, - 719, - 220, - 719 - ], - "score": 0.844 - }, - { - "category_id": 2, - "poly": [ - 2268, - 6, - 2337, - 6, - 2337, - 38, - 2268, - 38 - ], - "score": 0.836 - }, - { - "category_id": 2, - "poly": [ - 1158, - 1508, - 1180, - 1508, - 1180, - 1534, - 1158, - 1534 - ], - "score": 0.813 - }, - { - "category_id": 0, - "poly": [ - 1128, - 103, - 1329, - 103, - 1329, - 138, - 1128, - 138 - ], - "score": 0.75 - }, - { - "category_id": 2, - "poly": [ - 171, - 103, - 289, - 103, - 289, - 136, - 171, - 136 - ], - "score": 0.517 - }, - { - "category_id": 0, - "poly": [ - 171, - 103, - 289, - 103, - 289, - 136, - 171, - 136 - ], - "score": 0.27 - }, - { - "category_id": 2, - "poly": [ - 1128, - 103, - 1329, - 103, - 1329, - 138, - 1128, - 138 - ], - "score": 0.174 - }, - { - "category_id": 1, - "poly": [ - 252, - 172, - 2099, - 172, - 2099, - 245, - 252, - 245 - ], - "score": 0.113 - }, - { - "category_id": 15, - "poly": [ - 221.0, - 528.0, - 2104.0, - 528.0, - 2104.0, - 562.0, - 221.0, - 562.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 217.0, - 560.0, - 2138.0, - 560.0, - 2138.0, - 598.0, - 217.0, - 598.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 221.0, - 601.0, - 1223.0, - 601.0, - 1223.0, - 635.0, - 221.0, - 635.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 221.0, - 805.0, - 2158.0, - 805.0, - 2158.0, - 840.0, - 221.0, - 840.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 219.0, - 840.0, - 2043.0, - 840.0, - 2043.0, - 875.0, - 219.0, - 875.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 215.0, - 870.0, - 671.0, - 870.0, - 671.0, - 916.0, - 215.0, - 916.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 279.0, - 2034.0, - 279.0, - 2034.0, - 315.0, - 171.0, - 315.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 220.0, - 322.0, - 1678.0, - 322.0, - 1678.0, - 358.0, - 220.0, - 358.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 355.0, - 983.0, - 923.0, - 983.0, - 923.0, - 1012.0, - 355.0, - 1012.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 356.0, - 1020.0, - 1290.0, - 1020.0, - 1290.0, - 1050.0, - 356.0, - 1050.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 256.0, - 381.0, - 1932.0, - 381.0, - 1932.0, - 431.0, - 256.0, - 431.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1983.0, - 106.0, - 2135.0, - 106.0, - 2135.0, - 135.0, - 1983.0, - 135.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 222.0, - 734.0, - 1001.0, - 734.0, - 1001.0, - 766.0, - 222.0, - 766.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 457.0, - 572.0, - 457.0, - 572.0, - 496.0, - 170.0, - 496.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 270.0, - 175.0, - 2091.0, - 175.0, - 2091.0, - 209.0, - 270.0, - 209.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 268.0, - 213.0, - 591.0, - 213.0, - 591.0, - 247.0, - 268.0, - 247.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 220.0, - 944.0, - 395.0, - 944.0, - 395.0, - 982.0, - 220.0, - 982.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 221.0, - 648.0, - 2132.0, - 648.0, - 2132.0, - 682.0, - 221.0, - 682.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 219.0, - 684.0, - 2058.0, - 684.0, - 2058.0, - 718.0, - 219.0, - 718.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2263.0, - 2.0, - 2341.0, - 2.0, - 2341.0, - 43.0, - 2263.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1158.0, - 1506.0, - 1183.0, - 1506.0, - 1183.0, - 1539.0, - 1158.0, - 1539.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1128.0, - 104.0, - 1329.0, - 104.0, - 1329.0, - 136.0, - 1128.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 105.0, - 290.0, - 105.0, - 290.0, - 135.0, - 171.0, - 135.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 105.0, - 290.0, - 105.0, - 290.0, - 135.0, - 171.0, - 135.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1128.0, - 104.0, - 1329.0, - 104.0, - 1329.0, - 136.0, - 1128.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 267.0, - 171.0, - 2092.0, - 171.0, - 2092.0, - 212.0, - 267.0, - 212.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 269.0, - 212.0, - 589.0, - 212.0, - 589.0, - 246.0, - 269.0, - 246.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 75, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 221, - 1174, - 1347, - 1174, - 1347, - 1280, - 221, - 1280 - ], - "score": 0.967 - }, - { - "category_id": 1, - "poly": [ - 222, - 383, - 1080, - 383, - 1080, - 421, - 222, - 421 - ], - "score": 0.917 - }, - { - "category_id": 1, - "poly": [ - 172, - 208, - 1092, - 208, - 1092, - 245, - 172, - 245 - ], - "score": 0.915 - }, - { - "category_id": 0, - "poly": [ - 222, - 1101, - 565, - 1101, - 565, - 1139, - 222, - 1139 - ], - "score": 0.911 - }, - { - "category_id": 0, - "poly": [ - 224, - 311, - 672, - 311, - 672, - 350, - 224, - 350 - ], - "score": 0.911 - }, - { - "category_id": 2, - "poly": [ - 1984, - 104, - 2134, - 104, - 2134, - 136, - 1984, - 136 - ], - "score": 0.903 - }, - { - "category_id": 1, - "poly": [ - 386, - 453, - 2041, - 453, - 2041, - 526, - 386, - 526 - ], - "score": 0.879 - }, - { - "category_id": 1, - "poly": [ - 241, - 875, - 1828, - 875, - 1828, - 914, - 241, - 914 - ], - "score": 0.878 - }, - { - "category_id": 2, - "poly": [ - 1128, - 104, - 1328, - 104, - 1328, - 137, - 1128, - 137 - ], - "score": 0.845 - }, - { - "category_id": 2, - "poly": [ - 2268, - 6, - 2338, - 6, - 2338, - 38, - 2268, - 38 - ], - "score": 0.828 - }, - { - "category_id": 2, - "poly": [ - 1158, - 1508, - 1180, - 1508, - 1180, - 1535, - 1158, - 1535 - ], - "score": 0.825 - }, - { - "category_id": 1, - "poly": [ - 354, - 699, - 2110, - 699, - 2110, - 841, - 354, - 841 - ], - "score": 0.804 - }, - { - "category_id": 1, - "poly": [ - 379, - 558, - 2094, - 558, - 2094, - 666, - 379, - 666 - ], - "score": 0.797 - }, - { - "category_id": 2, - "poly": [ - 172, - 104, - 288, - 104, - 288, - 136, - 172, - 136 - ], - "score": 0.644 - }, - { - "category_id": 0, - "poly": [ - 236, - 702, - 353, - 702, - 353, - 735, - 236, - 735 - ], - "score": 0.424 - }, - { - "category_id": 0, - "poly": [ - 235, - 561, - 357, - 561, - 357, - 595, - 235, - 595 - ], - "score": 0.356 - }, - { - "category_id": 0, - "poly": [ - 172, - 104, - 288, - 104, - 288, - 136, - 172, - 136 - ], - "score": 0.234 - }, - { - "category_id": 0, - "poly": [ - 235, - 456, - 354, - 456, - 354, - 489, - 235, - 489 - ], - "score": 0.207 - }, - { - "category_id": 0, - "poly": [ - 235, - 877, - 354, - 877, - 354, - 911, - 235, - 911 - ], - "score": 0.15 - }, - { - "category_id": 15, - "poly": [ - 221.0, - 1174.0, - 1324.0, - 1174.0, - 1324.0, - 1213.0, - 221.0, - 1213.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 221.0, - 1212.0, - 1345.0, - 1212.0, - 1345.0, - 1246.0, - 221.0, - 1246.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 218.0, - 1246.0, - 1185.0, - 1246.0, - 1185.0, - 1281.0, - 218.0, - 1281.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 223.0, - 388.0, - 1077.0, - 388.0, - 1077.0, - 418.0, - 223.0, - 418.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 209.0, - 1091.0, - 209.0, - 1091.0, - 246.0, - 172.0, - 246.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 221.0, - 1105.0, - 563.0, - 1105.0, - 563.0, - 1136.0, - 221.0, - 1136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 223.0, - 315.0, - 671.0, - 315.0, - 671.0, - 346.0, - 223.0, - 346.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1984.0, - 106.0, - 2134.0, - 106.0, - 2134.0, - 135.0, - 1984.0, - 135.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 404.0, - 457.0, - 2032.0, - 457.0, - 2032.0, - 491.0, - 404.0, - 491.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 402.0, - 493.0, - 1321.0, - 493.0, - 1321.0, - 527.0, - 402.0, - 527.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 237.0, - 875.0, - 358.0, - 875.0, - 358.0, - 916.0, - 237.0, - 916.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 402.0, - 875.0, - 1831.0, - 875.0, - 1831.0, - 916.0, - 402.0, - 916.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1128.0, - 104.0, - 1329.0, - 104.0, - 1329.0, - 136.0, - 1128.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2263.0, - 2.0, - 2341.0, - 2.0, - 2341.0, - 44.0, - 2263.0, - 44.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1156.0, - 1504.0, - 1184.0, - 1504.0, - 1184.0, - 1542.0, - 1156.0, - 1542.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 403.0, - 702.0, - 2106.0, - 702.0, - 2106.0, - 738.0, - 403.0, - 738.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 403.0, - 738.0, - 2083.0, - 738.0, - 2083.0, - 774.0, - 403.0, - 774.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 401.0, - 770.0, - 2102.0, - 770.0, - 2102.0, - 808.0, - 401.0, - 808.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 401.0, - 808.0, - 936.0, - 808.0, - 936.0, - 844.0, - 401.0, - 844.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 403.0, - 562.0, - 2097.0, - 562.0, - 2097.0, - 597.0, - 403.0, - 597.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 401.0, - 599.0, - 1961.0, - 599.0, - 1961.0, - 634.0, - 401.0, - 634.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 401.0, - 634.0, - 881.0, - 634.0, - 881.0, - 668.0, - 401.0, - 668.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 104.0, - 291.0, - 104.0, - 291.0, - 136.0, - 170.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 236.0, - 702.0, - 355.0, - 702.0, - 355.0, - 735.0, - 236.0, - 735.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 235.0, - 559.0, - 359.0, - 559.0, - 359.0, - 596.0, - 235.0, - 596.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 104.0, - 291.0, - 104.0, - 291.0, - 136.0, - 170.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 237.0, - 456.0, - 355.0, - 456.0, - 355.0, - 489.0, - 237.0, - 489.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 234.0, - 876.0, - 355.0, - 876.0, - 355.0, - 913.0, - 234.0, - 913.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 76, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 128, - 230, - 2221, - 230, - 2221, - 1473, - 128, - 1473 - ], - "score": 0.984, - "html": "
AnnotationMeaning
Correct responseUsed to indicate the point at which a mark has been awarded (one tick per mark awarded).
Incorrect responseUsed toindicate anincorrect answer or a point where a mark islost.
AEArithmetic errorECF if there arenofurther errors.
BODBenefit of doubt givenUsed to indicate a mark awarded where the candidate provides an answer that is not totally satisfactory, but the examiner feels that sufficient workhasbeen done.
BPBlank pageUse BP on additional page(s) to show that there is no additional work provided by the candidates.
CONContradictionUsed in numerical answers only, unless specified otherwise in the mark scheme. Answers to later sections of
ECFError carried forwardWithin a question, ECF can be given for AE, TE and POT errors but not for XP.
L1Level 1L1 is used to show 2 marks awarded and L1^ is used to show 1 mark awarded.
L2Level 2L2 isused to show 4 marks awarded andL2^ is used to show3 marks awarded.
L3Level 3L3 is used to show6 marks awarded and L3^ is used to show 5 marks awarded.
POTPower of 10 errorThis isusuallylinked toconversionof Sl prefixes.Donot allowthemarkwheretheerror occurs.Thenfollow through the working/calculation giving ECF for subsequent marks if there are no further errors.
SEENSeen
SFError in number of significant figuresnecessary will be considered within the mark scheme.Penalised only once in the paper.
TETranscription errorsubsequent marks.
XPWrong physics or equationUsed in numerical answers only, unless otherwise specified in the mark scheme. Use of an incorrect equation is wrong physics even if it happens to lead to the correct answer.
OmissionUsed to indicate where more is needed for a mark to be awarded (what is written is not wrong but not enough).
" - }, - { - "category_id": 2, - "poly": [ - 1983, - 104, - 2134, - 104, - 2134, - 136, - 1983, - 136 - ], - "score": 0.891 - }, - { - "category_id": 2, - "poly": [ - 1157, - 1507, - 1181, - 1507, - 1181, - 1536, - 1157, - 1536 - ], - "score": 0.848 - }, - { - "category_id": 2, - "poly": [ - 2268, - 6, - 2337, - 6, - 2337, - 38, - 2268, - 38 - ], - "score": 0.846 - }, - { - "category_id": 0, - "poly": [ - 170, - 103, - 289, - 103, - 289, - 137, - 170, - 137 - ], - "score": 0.759 - }, - { - "category_id": 1, - "poly": [ - 171, - 173, - 741, - 173, - 741, - 210, - 171, - 210 - ], - "score": 0.645 - }, - { - "category_id": 0, - "poly": [ - 1127, - 104, - 1329, - 104, - 1329, - 137, - 1127, - 137 - ], - "score": 0.62 - }, - { - "category_id": 2, - "poly": [ - 1127, - 104, - 1329, - 104, - 1329, - 137, - 1127, - 137 - ], - "score": 0.303 - }, - { - "category_id": 1, - "poly": [ - 173, - 173, - 739, - 173, - 739, - 210, - 173, - 210 - ], - "score": 0.152 - }, - { - "category_id": 13, - "poly": [ - 1211, - 872, - 1265, - 872, - 1265, - 904, - 1211, - 904 - ], - "score": 0.63, - "latex": "L2^{\\wedge}" - }, - { - "category_id": 13, - "poly": [ - 1210, - 925, - 1265, - 925, - 1265, - 957, - 1210, - 957 - ], - "score": 0.58, - "latex": "\\mathsf{L3^{\\wedge}}" - }, - { - "category_id": 13, - "poly": [ - 1210, - 820, - 1265, - 820, - 1265, - 852, - 1210, - 852 - ], - "score": 0.56, - "latex": "L1^{\\wedge}" - }, - { - "category_id": 15, - "poly": [ - 1983.0, - 106.0, - 2135.0, - 106.0, - 2135.0, - 135.0, - 1983.0, - 135.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1157.0, - 1505.0, - 1184.0, - 1505.0, - 1184.0, - 1540.0, - 1157.0, - 1540.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2263.0, - 2.0, - 2341.0, - 2.0, - 2341.0, - 43.0, - 2263.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 103.0, - 291.0, - 103.0, - 291.0, - 137.0, - 171.0, - 137.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 174.0, - 177.0, - 738.0, - 177.0, - 738.0, - 206.0, - 174.0, - 206.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1130.0, - 104.0, - 1329.0, - 104.0, - 1329.0, - 136.0, - 1130.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1130.0, - 104.0, - 1329.0, - 104.0, - 1329.0, - 136.0, - 1130.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 175.0, - 177.0, - 739.0, - 177.0, - 739.0, - 206.0, - 175.0, - 206.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 77, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 165, - 274, - 1993, - 274, - 1993, - 1039, - 165, - 1039 - ], - "score": 0.981, - "html": "
AnnotationMeaning
alternative and acceptable answers for the same marking point
RejectAnswerswhicharenotworthyofcredit
NotAnswers which are not worthy of credit
IgnoreStatements which are irrelevant
AllowAnswers that can be accepted
()Words which are not essential to gain credit
Underlined words must be present in answer to score a mark
ECFError carried forward
AWAlternative wording
ORAOr reverse argument
" - }, - { - "category_id": 2, - "poly": [ - 1983, - 104, - 2134, - 104, - 2134, - 136, - 1983, - 136 - ], - "score": 0.887 - }, - { - "category_id": 2, - "poly": [ - 2268, - 6, - 2337, - 6, - 2337, - 38, - 2268, - 38 - ], - "score": 0.837 - }, - { - "category_id": 2, - "poly": [ - 1159, - 1507, - 1179, - 1507, - 1179, - 1534, - 1159, - 1534 - ], - "score": 0.81 - }, - { - "category_id": 0, - "poly": [ - 1128, - 104, - 1329, - 104, - 1329, - 138, - 1128, - 138 - ], - "score": 0.696 - }, - { - "category_id": 2, - "poly": [ - 171, - 103, - 289, - 103, - 289, - 137, - 171, - 137 - ], - "score": 0.573 - }, - { - "category_id": 6, - "poly": [ - 166, - 207, - 2029, - 207, - 2029, - 246, - 166, - 246 - ], - "score": 0.543 - }, - { - "category_id": 1, - "poly": [ - 166, - 207, - 2029, - 207, - 2029, - 246, - 166, - 246 - ], - "score": 0.33 - }, - { - "category_id": 0, - "poly": [ - 171, - 103, - 289, - 103, - 289, - 137, - 171, - 137 - ], - "score": 0.304 - }, - { - "category_id": 2, - "poly": [ - 1128, - 104, - 1329, - 104, - 1329, - 138, - 1128, - 138 - ], - "score": 0.229 - }, - { - "category_id": 15, - "poly": [ - 1983.0, - 106.0, - 2135.0, - 106.0, - 2135.0, - 135.0, - 1983.0, - 135.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2263.0, - 2.0, - 2341.0, - 2.0, - 2341.0, - 43.0, - 2263.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1153.0, - 1504.0, - 1186.0, - 1504.0, - 1186.0, - 1543.0, - 1153.0, - 1543.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1129.0, - 105.0, - 1329.0, - 105.0, - 1329.0, - 136.0, - 1129.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 103.0, - 291.0, - 103.0, - 291.0, - 137.0, - 170.0, - 137.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 207.0, - 2036.0, - 207.0, - 2036.0, - 248.0, - 171.0, - 248.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 207.0, - 2036.0, - 207.0, - 2036.0, - 248.0, - 171.0, - 248.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 103.0, - 291.0, - 103.0, - 291.0, - 137.0, - 170.0, - 137.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1129.0, - 105.0, - 1329.0, - 105.0, - 1329.0, - 136.0, - 1129.0, - 136.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 78, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 160, - 278, - 2157, - 278, - 2157, - 1199, - 160, - 1199 - ], - "score": 0.982, - "html": "
QuestionAnswerMarksGuidance
1D1
2A1
3C1
4B1
5C1
9C1
7B1
8C1
9A1
10C1
11D1
12B1
13A1
14A1
15 D1
16 B1
17 A1
18 D1
19 B1
20 B1 20
" - }, - { - "category_id": 2, - "poly": [ - 1984, - 105, - 2134, - 105, - 2134, - 136, - 1984, - 136 - ], - "score": 0.9 - }, - { - "category_id": 2, - "poly": [ - 171, - 104, - 288, - 104, - 288, - 136, - 171, - 136 - ], - "score": 0.86 - }, - { - "category_id": 2, - "poly": [ - 2268, - 6, - 2337, - 6, - 2337, - 38, - 2268, - 38 - ], - "score": 0.837 - }, - { - "category_id": 2, - "poly": [ - 1158, - 1508, - 1180, - 1508, - 1180, - 1535, - 1158, - 1535 - ], - "score": 0.835 - }, - { - "category_id": 0, - "poly": [ - 1081, - 207, - 1255, - 207, - 1255, - 244, - 1081, - 244 - ], - "score": 0.674 - }, - { - "category_id": 0, - "poly": [ - 1128, - 104, - 1329, - 104, - 1329, - 138, - 1128, - 138 - ], - "score": 0.538 - }, - { - "category_id": 2, - "poly": [ - 1128, - 104, - 1329, - 104, - 1329, - 138, - 1128, - 138 - ], - "score": 0.36 - }, - { - "category_id": 6, - "poly": [ - 1081, - 207, - 1255, - 207, - 1255, - 244, - 1081, - 244 - ], - "score": 0.321 - }, - { - "category_id": 15, - "poly": [ - 1983.0, - 104.0, - 2135.0, - 104.0, - 2135.0, - 137.0, - 1983.0, - 137.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 104.0, - 291.0, - 104.0, - 291.0, - 136.0, - 170.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2263.0, - 2.0, - 2341.0, - 2.0, - 2341.0, - 43.0, - 2263.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1156.0, - 1505.0, - 1184.0, - 1505.0, - 1184.0, - 1541.0, - 1156.0, - 1541.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1085.0, - 211.0, - 1255.0, - 211.0, - 1255.0, - 242.0, - 1085.0, - 242.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1129.0, - 105.0, - 1329.0, - 105.0, - 1329.0, - 136.0, - 1129.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1129.0, - 105.0, - 1329.0, - 105.0, - 1329.0, - 136.0, - 1129.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1085.0, - 211.0, - 1255.0, - 211.0, - 1255.0, - 242.0, - 1085.0, - 242.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 79, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 165, - 306, - 2186, - 306, - 2186, - 970, - 165, - 970 - ], - "score": 0.982, - "html": "
QuestionAnswerMarksGuidance
21(a)(b) (i)distance = area under the graph/suvat equationsC1Allow any attempt to calculate part of the area under the graph or suvat equations Allow any correct calculation of part of the area under the
1%2 (4.0 + 10.0) × 3.0 / 10.0 × 5.0C1 graph/suvat eqn e.g. 9, 12, 20,21, 30, 32, 50 (m)
horizontal distance = 71 (m)A1 C1
2.0 (ii)3.0A0Allow any correct gradient calculation
680cos55 / 150 × 2.0C1If both components given (vertical and horizontal) it must be clear that the 390N is the horizontal component.
680c0s55 - R = 150 × 2.0 R = 90 (N)C1
A1
Total 7
" - }, - { - "category_id": 2, - "poly": [ - 1983, - 104, - 2134, - 104, - 2134, - 136, - 1983, - 136 - ], - "score": 0.888 - }, - { - "category_id": 1, - "poly": [ - 182, - 243, - 1627, - 243, - 1627, - 281, - 182, - 281 - ], - "score": 0.887 - }, - { - "category_id": 0, - "poly": [ - 1081, - 171, - 1255, - 171, - 1255, - 209, - 1081, - 209 - ], - "score": 0.881 - }, - { - "category_id": 0, - "poly": [ - 1126, - 103, - 1330, - 103, - 1330, - 138, - 1126, - 138 - ], - "score": 0.846 - }, - { - "category_id": 2, - "poly": [ - 1157, - 1508, - 1180, - 1508, - 1180, - 1535, - 1157, - 1535 - ], - "score": 0.842 - }, - { - "category_id": 2, - "poly": [ - 2268, - 6, - 2337, - 6, - 2337, - 38, - 2268, - 38 - ], - "score": 0.837 - }, - { - "category_id": 2, - "poly": [ - 171, - 103, - 289, - 103, - 289, - 137, - 171, - 137 - ], - "score": 0.799 - }, - { - "category_id": 13, - "poly": [ - 532, - 367, - 560, - 367, - 560, - 390, - 532, - 390 - ], - "score": 0.66, - "latex": "=" - }, - { - "category_id": 14, - "poly": [ - 408, - 429, - 867, - 429, - 867, - 471, - 408, - 471 - ], - "score": 0.46, - "latex": "\\%(4.0+10.0)\\times3.0/10.0\\times5.0" - }, - { - "category_id": 13, - "poly": [ - 410, - 787, - 769, - 787, - 769, - 824, - 410, - 824 - ], - "score": 0.41, - "latex": "680{\\cos}55-R=150\\times2.0" - }, - { - "category_id": 14, - "poly": [ - 409, - 787, - 769, - 787, - 769, - 824, - 409, - 824 - ], - "score": 0.28, - "latex": "680{\\cos}55-R=150\\times2.0" - }, - { - "category_id": 15, - "poly": [ - 1983.0, - 106.0, - 2135.0, - 106.0, - 2135.0, - 135.0, - 1983.0, - 135.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 175.0, - 243.0, - 1617.0, - 243.0, - 1617.0, - 281.0, - 175.0, - 281.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1086.0, - 177.0, - 1254.0, - 177.0, - 1254.0, - 205.0, - 1086.0, - 205.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1129.0, - 104.0, - 1329.0, - 104.0, - 1329.0, - 136.0, - 1129.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1157.0, - 1506.0, - 1183.0, - 1506.0, - 1183.0, - 1539.0, - 1157.0, - 1539.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2263.0, - 2.0, - 2341.0, - 2.0, - 2341.0, - 43.0, - 2263.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 103.0, - 291.0, - 103.0, - 291.0, - 137.0, - 170.0, - 137.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 80, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 161, - 207, - 2173, - 207, - 2173, - 1070, - 161, - 1070 - ], - "score": 0.984, - "html": "
Question 22 (a)Answer Add (a range of) loads/force/weights to the spring andMarks B1Guidance Allow extension for compression throughout
determine the compression (for each load)B1Allow W = mg Not length for compression
force Allow force constant = - and k = F/x (k must compression be subject)
(q)(c)KE/kinetic to gravitational PE/potentialB1AllowKEtransferredtoGPE Not elastic potential energyIgnore increase of thermal store of the surroundings
(d)E = 12 × 1.7 × 104 × (0.45 -0.25)2C1Allow gain in GPE = 68g(0.76 - 0.25) lgnore E = % Fx
E= 340 (J) The gravitational potential energy store of the person has been omitted/(elastic) potential store of the spring has beenA1 B1lgnorereferencestoenergylosses
transferred to gravitational potential energy store(of the
person)Total 6
" - }, - { - "category_id": 2, - "poly": [ - 1983, - 105, - 2134, - 105, - 2134, - 136, - 1983, - 136 - ], - "score": 0.885 - }, - { - "category_id": 2, - "poly": [ - 1153, - 1508, - 1188, - 1508, - 1188, - 1535, - 1153, - 1535 - ], - "score": 0.873 - }, - { - "category_id": 2, - "poly": [ - 2268, - 7, - 2337, - 7, - 2337, - 38, - 2268, - 38 - ], - "score": 0.834 - }, - { - "category_id": 2, - "poly": [ - 1128, - 105, - 1329, - 105, - 1329, - 137, - 1128, - 137 - ], - "score": 0.636 - }, - { - "category_id": 2, - "poly": [ - 171, - 104, - 288, - 104, - 288, - 136, - 171, - 136 - ], - "score": 0.618 - }, - { - "category_id": 2, - "poly": [ - 171, - 104, - 289, - 104, - 289, - 136, - 171, - 136 - ], - "score": 0.384 - }, - { - "category_id": 0, - "poly": [ - 1128, - 105, - 1329, - 105, - 1329, - 137, - 1128, - 137 - ], - "score": 0.195 - }, - { - "category_id": 13, - "poly": [ - 396, - 715, - 854, - 715, - 854, - 754, - 396, - 754 - ], - "score": 0.85, - "latex": "E=\\%\\times1.7\\times10^{4}\\times(0.45-0.25)^{2}" - }, - { - "category_id": 13, - "poly": [ - 1909, - 485, - 2009, - 485, - 2009, - 521, - 1909, - 521 - ], - "score": 0.74, - "latex": "\\mathsf{k}=\\mathsf{F}/\\mathsf{x}" - }, - { - "category_id": 13, - "poly": [ - 1639, - 490, - 1666, - 490, - 1666, - 514, - 1639, - 514 - ], - "score": 0.61, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 1539, - 715, - 1869, - 715, - 1869, - 751, - 1539, - 751 - ], - "score": 0.61, - "latex": "\\mathtt{G P E}=689(0.76-0.25)" - }, - { - "category_id": 13, - "poly": [ - 1452, - 750, - 1583, - 750, - 1583, - 784, - 1452, - 784 - ], - "score": 0.39, - "latex": "\\mathsf{E}=\\mathsf{1}_{2}\\mathsf{F}\\mathsf{X}" - }, - { - "category_id": 13, - "poly": [ - 1476, - 293, - 1502, - 293, - 1502, - 320, - 1476, - 320 - ], - "score": 0.36, - "latex": "=" - }, - { - "category_id": 15, - "poly": [ - 1982.0, - 104.0, - 2136.0, - 104.0, - 2136.0, - 137.0, - 1982.0, - 137.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1146.0, - 1504.0, - 1194.0, - 1504.0, - 1194.0, - 1542.0, - 1146.0, - 1542.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2264.0, - 5.0, - 2338.0, - 5.0, - 2338.0, - 41.0, - 2264.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1129.0, - 106.0, - 1329.0, - 106.0, - 1329.0, - 135.0, - 1129.0, - 135.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 170.0, - 104.0, - 291.0, - 104.0, - 291.0, - 136.0, - 170.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 104.0, - 290.0, - 104.0, - 290.0, - 136.0, - 171.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1129.0, - 106.0, - 1329.0, - 106.0, - 1329.0, - 135.0, - 1129.0, - 135.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 81, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 168, - 169, - 2193, - 169, - 2193, - 1215, - 168, - 1215 - ], - "score": 0.983, - "html": "
QuestionAnswerMarksGuidance
23 (a)Gradients/rate of change of momentum are opposite/ positive & negativeB1Ignore change in momentum is the same for A and B
(q)Gradients/rate of change of momentum of the graphs have the same magnitude/Force on A and B = 24000NB1Allow calculations of the gradient for 2 marks A F = (20 - (-4)/1ms = 24000N and B F = (-30 - 6)/1ms = -24000N Ignore POT
Allow 1 mark if no reference to the graph - The forces acting on each object are opposite and the (magnitude) of
the forces are the same Allowalternativeanswerof: loss of momentum of A = 24 (kg/m/s)
momentum before = 20 - 30 (= -10 kg m s-1) momentum after = -4 -6 (= -10 kg m s-1)B1 B1
(Therefore, the momentum is conserved)gain of momentum by B = 24 (kg/m/s) (Therefore, the momentum is conserved)
(c) (2.0 + 3.0) v = 10C1 Allow answer of 2 1sf, without any SF penalty
v = 2.0 (m s-1)A1 Ignore sign
C1
" - }, - { - "category_id": 2, - "poly": [ - 1153, - 1507, - 1185, - 1507, - 1185, - 1536, - 1153, - 1536 - ], - "score": 0.857 - }, - { - "category_id": 2, - "poly": [ - 2268, - 6, - 2337, - 6, - 2337, - 38, - 2268, - 38 - ], - "score": 0.834 - }, - { - "category_id": 2, - "poly": [ - 1983, - 104, - 2135, - 104, - 2135, - 137, - 1983, - 137 - ], - "score": 0.811 - }, - { - "category_id": 6, - "poly": [ - 170, - 103, - 289, - 103, - 289, - 137, - 170, - 137 - ], - "score": 0.431 - }, - { - "category_id": 6, - "poly": [ - 1127, - 104, - 1330, - 104, - 1330, - 137, - 1127, - 137 - ], - "score": 0.403 - }, - { - "category_id": 2, - "poly": [ - 170, - 103, - 289, - 103, - 289, - 137, - 170, - 137 - ], - "score": 0.37 - }, - { - "category_id": 0, - "poly": [ - 1127, - 104, - 1330, - 104, - 1330, - 137, - 1127, - 137 - ], - "score": 0.329 - }, - { - "category_id": 13, - "poly": [ - 885, - 361, - 1054, - 361, - 1054, - 395, - 885, - 395 - ], - "score": 0.78, - "latex": "\\mathsf{B}=24000\\mathsf{N}" - }, - { - "category_id": 13, - "poly": [ - 1995, - 289, - 2130, - 289, - 2130, - 326, - 1995, - 326 - ], - "score": 0.77, - "latex": "\\mathsf{F}=(20-" - }, - { - "category_id": 13, - "poly": [ - 1688, - 326, - 2107, - 326, - 2107, - 362, - 1688, - 362 - ], - "score": 0.71, - "latex": "\\pmb{3}\\mathsf{F}=(-30-6)/1\\mathsf{m}\\mathsf{s}=-24000\\mathsf{N}" - }, - { - "category_id": 13, - "poly": [ - 1950, - 328, - 1979, - 328, - 1979, - 354, - 1950, - 354 - ], - "score": 0.65, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 1403, - 325, - 1615, - 325, - 1615, - 360, - 1403, - 360 - ], - "score": 0.6, - "latex": "/1\\mathsf{m s}=24000\\mathsf{N}" - }, - { - "category_id": 13, - "poly": [ - 385, - 962, - 509, - 962, - 509, - 999, - 385, - 999 - ], - "score": 0.58, - "latex": "s={\\frac{\\prime}{2}}g t^{2}" - }, - { - "category_id": 13, - "poly": [ - 611, - 641, - 921, - 641, - 921, - 681, - 611, - 681 - ], - "score": 0.57, - "latex": "=-4-6(=-10\\mathrm{kgms^{-1}})" - }, - { - "category_id": 13, - "poly": [ - 1645, - 653, - 1860, - 653, - 1860, - 690, - 1645, - 690 - ], - "score": 0.53, - "latex": "\\mathsf{B}=24(\\mathsf{k g}/\\mathsf{m}/\\mathsf{s})" - }, - { - "category_id": 13, - "poly": [ - 1636, - 614, - 1730, - 614, - 1730, - 647, - 1636, - 647 - ], - "score": 0.51, - "latex": "\\mathsf{A}=24" - }, - { - "category_id": 13, - "poly": [ - 384, - 784, - 622, - 784, - 622, - 822, - 384, - 822 - ], - "score": 0.47, - "latex": "\\left(2.0+3.0\\right)v=10" - }, - { - "category_id": 13, - "poly": [ - 1636, - 614, - 1850, - 614, - 1850, - 651, - 1636, - 651 - ], - "score": 0.41, - "latex": "\\mathsf{A}=24(\\mathsf{k g}/\\mathsf{m}/\\mathsf{s})" - }, - { - "category_id": 13, - "poly": [ - 1646, - 653, - 1741, - 653, - 1741, - 688, - 1646, - 688 - ], - "score": 0.39, - "latex": "\\mathsf{B}=24" - }, - { - "category_id": 13, - "poly": [ - 385, - 1104, - 475, - 1104, - 475, - 1139, - 385, - 1139 - ], - "score": 0.37, - "latex": "t=4.9" - }, - { - "category_id": 13, - "poly": [ - 385, - 1031, - 648, - 1031, - 648, - 1069, - 385, - 1069 - ], - "score": 0.36, - "latex": "120=\\%\\times9.81\\times t^{2}" - }, - { - "category_id": 13, - "poly": [ - 385, - 854, - 578, - 854, - 578, - 892, - 385, - 892 - ], - "score": 0.28, - "latex": "V=2.0(\\ m\\tt{s}^{-1})" - }, - { - "category_id": 13, - "poly": [ - 638, - 577, - 665, - 577, - 665, - 601, - 638, - 601 - ], - "score": 0.27, - "latex": "=" - }, - { - "category_id": 15, - "poly": [ - 1147.0, - 1503.0, - 1193.0, - 1503.0, - 1193.0, - 1543.0, - 1147.0, - 1543.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2263.0, - 2.0, - 2341.0, - 2.0, - 2341.0, - 43.0, - 2263.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1982.0, - 104.0, - 2136.0, - 104.0, - 2136.0, - 137.0, - 1982.0, - 137.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 103.0, - 291.0, - 103.0, - 291.0, - 137.0, - 171.0, - 137.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1129.0, - 104.0, - 1329.0, - 104.0, - 1329.0, - 136.0, - 1129.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 103.0, - 291.0, - 103.0, - 291.0, - 137.0, - 171.0, - 137.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1129.0, - 104.0, - 1329.0, - 104.0, - 1329.0, - 136.0, - 1129.0, - 136.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 82, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 127, - 194, - 2200, - 194, - 2200, - 1459, - 127, - 1459 - ], - "score": 0.976, - "html": "
Question 24Ignore the waves don't moveGuidance
(b)(i)Any acceptable methods e.g.B1Allow vibration generator connected to a variable
Note matched to a note produced by a speaker connected to a variable (calibrated) signal generator/ Reducebackground sound levelB1(calibrated)signal generator Allow Adjust signal generator to the fundamental
ORfrequency (whenastationarywaveisachieved)
Count the number of oscillations and divide by time
camera)taken (from a stopwatch/oscilloscope/slow motion
Take many oscillations e.g. 5 or 10/ longer time
OR
Microphone connected to oscilloscope to measure T/
period and f = 1/T/period
Reduce background sound level
OR
Use a (calibrated) strobe to determine the frequency
Dim down the lights (Aw) to get the best results
Allow 1.2(m)
(ii)1
1.24 (m)
" - }, - { - "category_id": 2, - "poly": [ - 1983, - 104, - 2134, - 104, - 2134, - 136, - 1983, - 136 - ], - "score": 0.877 - }, - { - "category_id": 2, - "poly": [ - 1153, - 1507, - 1189, - 1507, - 1189, - 1537, - 1153, - 1537 - ], - "score": 0.868 - }, - { - "category_id": 2, - "poly": [ - 2268, - 6, - 2337, - 6, - 2337, - 39, - 2268, - 39 - ], - "score": 0.833 - }, - { - "category_id": 2, - "poly": [ - 171, - 103, - 289, - 103, - 289, - 136, - 171, - 136 - ], - "score": 0.735 - }, - { - "category_id": 2, - "poly": [ - 1127, - 104, - 1329, - 104, - 1329, - 137, - 1127, - 137 - ], - "score": 0.515 - }, - { - "category_id": 0, - "poly": [ - 1127, - 104, - 1329, - 104, - 1329, - 137, - 1127, - 137 - ], - "score": 0.275 - }, - { - "category_id": 13, - "poly": [ - 574, - 959, - 672, - 959, - 672, - 994, - 574, - 994 - ], - "score": 0.49, - "latex": "f=1/T" - }, - { - "category_id": 13, - "poly": [ - 861, - 784, - 908, - 784, - 908, - 817, - 861, - 817 - ], - "score": 0.38, - "latex": "10/" - }, - { - "category_id": 15, - "poly": [ - 1983.0, - 106.0, - 2135.0, - 106.0, - 2135.0, - 135.0, - 1983.0, - 135.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1147.0, - 1503.0, - 1194.0, - 1503.0, - 1194.0, - 1544.0, - 1147.0, - 1544.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2264.0, - 5.0, - 2339.0, - 5.0, - 2339.0, - 40.0, - 2264.0, - 40.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 105.0, - 290.0, - 105.0, - 290.0, - 135.0, - 171.0, - 135.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1130.0, - 104.0, - 1329.0, - 104.0, - 1329.0, - 136.0, - 1130.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1130.0, - 104.0, - 1329.0, - 104.0, - 1329.0, - 136.0, - 1130.0, - 136.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 83, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 161, - 171, - 2172, - 171, - 2172, - 793, - 161, - 793 - ], - "score": 0.982, - "html": "
QuestionAnswerMarksGuidance
(ii)2(v= fn) v = 58 × 1.24 v = 72 (m s-1)C1 A1ECF from (b)(ii)1
(ii)3% uncertainty = [2 × 2.5] + 1.0 + 0.5 (= 6.5) 0.065 × [4 × 582 × 9.7 × 10-4 × 0.62] absolute uncertainty = 0.53 (N)C1 A1Answer to 2sf only Allow ECF 1 mark for %uncertainty of 4% and absolute
Total8uncertainty 0.32N 2sf
" - }, - { - "category_id": 2, - "poly": [ - 1153, - 1508, - 1188, - 1508, - 1188, - 1535, - 1153, - 1535 - ], - "score": 0.862 - }, - { - "category_id": 2, - "poly": [ - 2268, - 7, - 2337, - 7, - 2337, - 38, - 2268, - 38 - ], - "score": 0.834 - }, - { - "category_id": 2, - "poly": [ - 1983, - 104, - 2135, - 104, - 2135, - 137, - 1983, - 137 - ], - "score": 0.812 - }, - { - "category_id": 2, - "poly": [ - 170, - 103, - 289, - 103, - 289, - 137, - 170, - 137 - ], - "score": 0.392 - }, - { - "category_id": 0, - "poly": [ - 1127, - 104, - 1330, - 104, - 1330, - 137, - 1127, - 137 - ], - "score": 0.372 - }, - { - "category_id": 6, - "poly": [ - 170, - 103, - 289, - 103, - 289, - 137, - 170, - 137 - ], - "score": 0.347 - }, - { - "category_id": 6, - "poly": [ - 1127, - 104, - 1330, - 104, - 1330, - 137, - 1127, - 137 - ], - "score": 0.241 - }, - { - "category_id": 2, - "poly": [ - 1127, - 104, - 1330, - 104, - 1330, - 137, - 1127, - 137 - ], - "score": 0.166 - }, - { - "category_id": 13, - "poly": [ - 1868, - 648, - 1917, - 648, - 1917, - 681, - 1868, - 681 - ], - "score": 0.84, - "latex": "4\\%" - }, - { - "category_id": 13, - "poly": [ - 421, - 509, - 905, - 509, - 905, - 550, - 421, - 550 - ], - "score": 0.59, - "latex": "0.065\\times[4\\times58^{2}\\times9.7\\times10^{-4}\\times0.62]" - }, - { - "category_id": 13, - "poly": [ - 702, - 582, - 794, - 582, - 794, - 617, - 702, - 617 - ], - "score": 0.51, - "latex": "=0.53" - }, - { - "category_id": 13, - "poly": [ - 423, - 223, - 522, - 223, - 522, - 259, - 423, - 259 - ], - "score": 0.4, - "latex": "(v=t\\lambda)" - }, - { - "category_id": 13, - "poly": [ - 423, - 437, - 1009, - 437, - 1009, - 476, - 423, - 476 - ], - "score": 0.38, - "latex": "\\%\\mathsf{u n c e r t a i n t y}=[2\\times2.5]+1.0+0.5(=6.5)" - }, - { - "category_id": 13, - "poly": [ - 424, - 363, - 607, - 363, - 607, - 403, - 424, - 403 - ], - "score": 0.33, - "latex": "v=72(\\mathsf{m}\\mathsf{s}^{-1})" - }, - { - "category_id": 15, - "poly": [ - 1146.0, - 1504.0, - 1194.0, - 1504.0, - 1194.0, - 1542.0, - 1146.0, - 1542.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2264.0, - 5.0, - 2338.0, - 5.0, - 2338.0, - 41.0, - 2264.0, - 41.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1982.0, - 104.0, - 2136.0, - 104.0, - 2136.0, - 137.0, - 1982.0, - 137.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 103.0, - 291.0, - 103.0, - 291.0, - 137.0, - 171.0, - 137.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1129.0, - 104.0, - 1329.0, - 104.0, - 1329.0, - 136.0, - 1129.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 103.0, - 291.0, - 103.0, - 291.0, - 137.0, - 171.0, - 137.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1129.0, - 104.0, - 1329.0, - 104.0, - 1329.0, - 136.0, - 1129.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1129.0, - 104.0, - 1329.0, - 104.0, - 1329.0, - 136.0, - 1129.0, - 136.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 84, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 163, - 199, - 2196, - 199, - 2196, - 1364, - 163, - 1364 - ], - "score": 0.982, - "html": "
Question 25(a)AnswerMarksGuidance
Bothmeasured inVolts / same unitsB1Allow V for volt
(q)(i)Graph from 1.5 V at 0/A to 0 V at L/BM1Allow they are both voltages/they are both measured with a voltmeter Allow curve of increasing gradient/straight line
(ii)Curve of decreasing gradientA1 B1
At A / x = 0, V= 1.5 V and at B / x = L, V = 0.75 V/p.d is shared/halved Total resistance increases so current decreasesB1Allow V(across R) decreases as x increases (as S moves from A to B) Allow Explanation of potential divider e.g. At B resistance
(c)(i)(as length of wire L and resistor of R are in series)C1of length of wire = resistance of R
p.d across wire = 14.4 - 12.0 = (2.4 V) (= 0.80 Ω)C1
3.0 p x 25.0 0.80 = 0.54 x 10-6C1
p= 1.7 × 10-8 (Ω m)A1ECF R = 2.8 Ω (V = 8.4 V) to give p = 6.0 × 10-8 (Ω m) for 3 marks
(ii)(/ = Anev) 3.0 = 0.54 × 10-6 × 1.60 × 10-19 × 8.5 × 1028 × VC1Do not penalise the same PoT error in 0.54 mm2 from (c)(i) again
v = 4.1 x 10-4 (m s-1)A1 Total
" - }, - { - "category_id": 2, - "poly": [ - 1983, - 104, - 2134, - 104, - 2134, - 136, - 1983, - 136 - ], - "score": 0.879 - }, - { - "category_id": 2, - "poly": [ - 1153, - 1507, - 1188, - 1507, - 1188, - 1536, - 1153, - 1536 - ], - "score": 0.86 - }, - { - "category_id": 2, - "poly": [ - 2268, - 6, - 2337, - 6, - 2337, - 38, - 2268, - 38 - ], - "score": 0.836 - }, - { - "category_id": 2, - "poly": [ - 171, - 103, - 289, - 103, - 289, - 136, - 171, - 136 - ], - "score": 0.775 - }, - { - "category_id": 2, - "poly": [ - 1127, - 104, - 1330, - 104, - 1330, - 137, - 1127, - 137 - ], - "score": 0.552 - }, - { - "category_id": 0, - "poly": [ - 1127, - 104, - 1330, - 104, - 1330, - 137, - 1127, - 137 - ], - "score": 0.295 - }, - { - "category_id": 13, - "poly": [ - 1814, - 963, - 2083, - 963, - 2083, - 1001, - 1814, - 1001 - ], - "score": 0.88, - "latex": "\\rho=6.0\\times10^{-8}(\\Omega\\mathsf{m})" - }, - { - "category_id": 13, - "poly": [ - 1882, - 1141, - 2018, - 1141, - 2018, - 1176, - 1882, - 1176 - ], - "score": 0.82, - "latex": "0.54\\mathrm{mm}^{2}" - }, - { - "category_id": 13, - "poly": [ - 1572, - 648, - 1601, - 648, - 1601, - 673, - 1572, - 673 - ], - "score": 0.77, - "latex": "=" - }, - { - "category_id": 13, - "poly": [ - 562, - 503, - 691, - 503, - 691, - 538, - 562, - 538 - ], - "score": 0.72, - "latex": "V=1.5V" - }, - { - "category_id": 13, - "poly": [ - 1418, - 963, - 1557, - 963, - 1557, - 998, - 1418, - 998 - ], - "score": 0.72, - "latex": "\\mathsf{R}=2.8\\Omega" - }, - { - "category_id": 13, - "poly": [ - 1567, - 963, - 1706, - 963, - 1706, - 1000, - 1567, - 1000 - ], - "score": 0.71, - "latex": "(\\lor=8.4\\lor)" - }, - { - "category_id": 13, - "poly": [ - 636, - 784, - 852, - 784, - 852, - 843, - 636, - 843 - ], - "score": 0.66, - "latex": "=\\frac{2.4}{3.0}(=0.80\\Omega)" - }, - { - "category_id": 13, - "poly": [ - 392, - 1144, - 1026, - 1144, - 1026, - 1182, - 392, - 1182 - ], - "score": 0.62, - "latex": "3.0=0.54\\times10^{-6}\\times1.60\\times10^{-19}\\times8.5\\times10^{28}\\times V" - }, - { - "category_id": 14, - "poly": [ - 390, - 870, - 674, - 870, - 674, - 950, - 390, - 950 - ], - "score": 0.43, - "latex": "0.80=\\frac{\\rho\\times25.0}{0.54\\times10^{-6}}" - }, - { - "category_id": 13, - "poly": [ - 393, - 1252, - 669, - 1252, - 669, - 1290, - 393, - 1290 - ], - "score": 0.41, - "latex": "V=4.1\\times10^{-4}(\\mathrm{m}\\mathtt{s}^{-1})" - }, - { - "category_id": 13, - "poly": [ - 923, - 503, - 1119, - 503, - 1119, - 540, - 923, - 540 - ], - "score": 0.38, - "latex": "V=0.75\\mathrm{V/p.d}" - }, - { - "category_id": 13, - "poly": [ - 824, - 505, - 906, - 505, - 906, - 537, - 824, - 537 - ], - "score": 0.38, - "latex": "/\\textsf{X}=L" - }, - { - "category_id": 13, - "poly": [ - 472, - 505, - 545, - 505, - 545, - 536, - 472, - 536 - ], - "score": 0.36, - "latex": "x=0" - }, - { - "category_id": 14, - "poly": [ - 396, - 977, - 672, - 977, - 672, - 1019, - 396, - 1019 - ], - "score": 0.35, - "latex": "\\rho=1.7\\times10^{-8}\\left(\\Omega\\mathsf{m}\\right)" - }, - { - "category_id": 13, - "poly": [ - 598, - 715, - 916, - 715, - 916, - 753, - 598, - 753 - ], - "score": 0.32, - "latex": "=14.4-12.0=(2.4~\\vee)" - }, - { - "category_id": 13, - "poly": [ - 861, - 645, - 889, - 645, - 889, - 676, - 861, - 676 - ], - "score": 0.31, - "latex": "\\scriptstyle{\\mathsf{R}}" - }, - { - "category_id": 15, - "poly": [ - 1983.0, - 106.0, - 2135.0, - 106.0, - 2135.0, - 135.0, - 1983.0, - 135.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1147.0, - 1504.0, - 1193.0, - 1504.0, - 1193.0, - 1541.0, - 1147.0, - 1541.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2263.0, - 2.0, - 2341.0, - 2.0, - 2341.0, - 43.0, - 2263.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 105.0, - 290.0, - 105.0, - 290.0, - 135.0, - 171.0, - 135.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1129.0, - 104.0, - 1329.0, - 104.0, - 1329.0, - 136.0, - 1129.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1129.0, - 104.0, - 1329.0, - 104.0, - 1329.0, - 136.0, - 1129.0, - 136.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 85, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 164, - 168, - 2192, - 168, - 2192, - 1237, - 164, - 1237 - ], - "score": 0.983, - "html": "
QuestionAnswerMarksGuidance
26(a)(i)Energy (of photon) is less than work function/Φ (of C ) 3.3 (eV)B1Allow energy of photon / 3.2 (eV) < 3.3 (eV)/work function (of C) (so no photoelectrons)
(ii) (ii)190 (nm)B1Allow 194 (nm) from calculation E=hf
(hf = Φ + KEmax)
5.3 = 4.1 + KE(max) (KEmax =) 1.2 (eV) orC1Allow KE = 1.92 x 10-19 (J)
% × 9.11 × 10-31 × v2 = 1.2 × 1.6 × 10-19 6.63 × 10-34C1
入= 9.11 × 10-31 x 6.4924 x 105Allow v= 6.5 × 105 (m s-1) or p = 5.9 × 10-25 (kg m s-1)
(q)(i) (ii) = 1.1 × 10-9 (m)A1
Line of best fit drawnB1Not drawn through 0.5/5.0
gradient calculated and gradient = 6.2 × 10-34 (J s)C1Allow value in the range 5.8 to 6.6 × 10-34 (J s)
Correct use equation of straight line, and gradient to determine the y-intercept / Φ Φ= 2.7 × 10-19 (J)M1ECF from incorrect value of h
A1Allow value in the range 2.4 to 3.0 × 10-19 (J)
Total 9
" - }, - { - "category_id": 2, - "poly": [ - 1153, - 1507, - 1188, - 1507, - 1188, - 1536, - 1153, - 1536 - ], - "score": 0.872 - }, - { - "category_id": 2, - "poly": [ - 2268, - 6, - 2337, - 6, - 2337, - 38, - 2268, - 38 - ], - "score": 0.834 - }, - { - "category_id": 2, - "poly": [ - 1983, - 104, - 2135, - 104, - 2135, - 136, - 1983, - 136 - ], - "score": 0.595 - }, - { - "category_id": 2, - "poly": [ - 1983, - 105, - 2135, - 105, - 2135, - 137, - 1983, - 137 - ], - "score": 0.533 - }, - { - "category_id": 2, - "poly": [ - 170, - 103, - 289, - 103, - 289, - 137, - 170, - 137 - ], - "score": 0.438 - }, - { - "category_id": 6, - "poly": [ - 170, - 103, - 289, - 103, - 289, - 137, - 170, - 137 - ], - "score": 0.388 - }, - { - "category_id": 6, - "poly": [ - 1127, - 104, - 1330, - 104, - 1330, - 137, - 1127, - 137 - ], - "score": 0.35 - }, - { - "category_id": 0, - "poly": [ - 1127, - 104, - 1330, - 104, - 1330, - 137, - 1127, - 137 - ], - "score": 0.311 - }, - { - "category_id": 2, - "poly": [ - 1127, - 104, - 1330, - 104, - 1330, - 137, - 1127, - 137 - ], - "score": 0.199 - }, - { - "category_id": 13, - "poly": [ - 1778, - 1120, - 1922, - 1120, - 1922, - 1156, - 1778, - 1156 - ], - "score": 0.83, - "latex": "3.0\\times10^{-19}" - }, - { - "category_id": 13, - "poly": [ - 838, - 907, - 1035, - 907, - 1035, - 944, - 838, - 944 - ], - "score": 0.62, - "latex": "=6.2\\times10^{-34}(\\" - }, - { - "category_id": 13, - "poly": [ - 1752, - 612, - 2084, - 612, - 2084, - 652, - 1752, - 652 - ], - "score": 0.6, - "latex": "p=5.9\\times10^{-25}(\\mathrm{kg}\\textsf{m s}^{-1})" - }, - { - "category_id": 13, - "poly": [ - 395, - 544, - 927, - 544, - 927, - 582, - 395, - 582 - ], - "score": 0.6, - "latex": "\\%\\times9.11\\times10^{-31}\\times\\nu^{2}=1.2\\times1.6\\times10^{-19}" - }, - { - "category_id": 13, - "poly": [ - 1443, - 613, - 1713, - 613, - 1713, - 651, - 1443, - 651 - ], - "score": 0.58, - "latex": "v=6.5\\times10^{5}(\\mathrm{m}\\mathsf{s}^{-1})" - }, - { - "category_id": 13, - "poly": [ - 1778, - 907, - 1923, - 907, - 1923, - 944, - 1778, - 944 - ], - "score": 0.55, - "latex": "6.6\\times10^{-34}" - }, - { - "category_id": 14, - "poly": [ - 396, - 1120, - 632, - 1120, - 632, - 1161, - 396, - 1161 - ], - "score": 0.53, - "latex": "\\phi=2.7\\times10^{-19}\\left(\\mathrm{J}\\right)" - }, - { - "category_id": 13, - "poly": [ - 398, - 402, - 608, - 402, - 608, - 441, - 398, - 441 - ], - "score": 0.52, - "latex": "(h f=\\phi+K E_{\\mathsf{m a x}})" - }, - { - "category_id": 13, - "poly": [ - 759, - 1052, - 783, - 1052, - 783, - 1088, - 759, - 1088 - ], - "score": 0.42, - "latex": "\\phi" - }, - { - "category_id": 13, - "poly": [ - 397, - 1121, - 625, - 1121, - 625, - 1161, - 397, - 1161 - ], - "score": 0.41, - "latex": "\\phi=2.7\\times10^{-19}\\:(\\mathrm{J}" - }, - { - "category_id": 13, - "poly": [ - 1733, - 1014, - 1757, - 1014, - 1757, - 1045, - 1733, - 1045 - ], - "score": 0.39, - "latex": "h" - }, - { - "category_id": 13, - "poly": [ - 1442, - 469, - 1709, - 469, - 1709, - 507, - 1442, - 507 - ], - "score": 0.37, - "latex": "{\\mathsf{K E}}=1.92\\times10^{-19}({\\mathsf{J}}" - }, - { - "category_id": 14, - "poly": [ - 396, - 724, - 636, - 724, - 636, - 764, - 396, - 764 - ], - "score": 0.27, - "latex": "\\lambda=1.1\\times10^{-9}(\\mathrm{m})" - }, - { - "category_id": 13, - "poly": [ - 1628, - 615, - 1706, - 615, - 1706, - 649, - 1628, - 649 - ], - "score": 0.27, - "latex": "(\\mathsf{m}\\thinspace\\mathsf{s}^{-1})" - }, - { - "category_id": 15, - "poly": [ - 1146.0, - 1503.0, - 1194.0, - 1503.0, - 1194.0, - 1543.0, - 1146.0, - 1543.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2263.0, - 2.0, - 2341.0, - 2.0, - 2341.0, - 43.0, - 2263.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1983.0, - 106.0, - 2135.0, - 106.0, - 2135.0, - 135.0, - 1983.0, - 135.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1983.0, - 106.0, - 2135.0, - 106.0, - 2135.0, - 135.0, - 1983.0, - 135.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 103.0, - 291.0, - 103.0, - 291.0, - 137.0, - 171.0, - 137.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 103.0, - 291.0, - 103.0, - 291.0, - 137.0, - 171.0, - 137.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1129.0, - 104.0, - 1329.0, - 104.0, - 1329.0, - 136.0, - 1129.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1129.0, - 104.0, - 1329.0, - 104.0, - 1329.0, - 136.0, - 1129.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1129.0, - 104.0, - 1329.0, - 104.0, - 1329.0, - 136.0, - 1129.0, - 136.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 86, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 118, - 1875, - 1530, - 1875, - 1530, - 2000, - 118, - 2000 - ], - "score": 0.969 - }, - { - "category_id": 1, - "poly": [ - 119, - 1479, - 1522, - 1479, - 1522, - 1574, - 119, - 1574 - ], - "score": 0.968 - }, - { - "category_id": 1, - "poly": [ - 118, - 1730, - 1536, - 1730, - 1536, - 1853, - 118, - 1853 - ], - "score": 0.94 - }, - { - "category_id": 1, - "poly": [ - 119, - 1646, - 1500, - 1646, - 1500, - 1710, - 119, - 1710 - ], - "score": 0.937 - }, - { - "category_id": 1, - "poly": [ - 114, - 170, - 1515, - 170, - 1515, - 229, - 114, - 229 - ], - "score": 0.93 - }, - { - "category_id": 0, - "poly": [ - 116, - 118, - 376, - 118, - 376, - 149, - 116, - 149 - ], - "score": 0.926 - }, - { - "category_id": 1, - "poly": [ - 115, - 2021, - 1426, - 2021, - 1426, - 2085, - 115, - 2085 - ], - "score": 0.919 - }, - { - "category_id": 1, - "poly": [ - 111, - 1427, - 1271, - 1427, - 1271, - 1460, - 111, - 1460 - ], - "score": 0.914 - }, - { - "category_id": 1, - "poly": [ - 118, - 1594, - 851, - 1594, - 851, - 1627, - 118, - 1627 - ], - "score": 0.906 - }, - { - "category_id": 1, - "poly": [ - 110, - 2105, - 1506, - 2105, - 1506, - 2139, - 110, - 2139 - ], - "score": 0.881 - }, - { - "category_id": 1, - "poly": [ - 117, - 413, - 363, - 413, - 363, - 443, - 117, - 443 - ], - "score": 0.853 - }, - { - "category_id": 1, - "poly": [ - 116, - 305, - 282, - 305, - 282, - 335, - 116, - 335 - ], - "score": 0.832 - }, - { - "category_id": 2, - "poly": [ - 1583, - 6, - 1650, - 6, - 1650, - 38, - 1583, - 38 - ], - "score": 0.824 - }, - { - "category_id": 1, - "poly": [ - 117, - 466, - 431, - 466, - 431, - 495, - 117, - 495 - ], - "score": 0.72 - }, - { - "category_id": 1, - "poly": [ - 117, - 359, - 526, - 359, - 526, - 390, - 117, - 390 - ], - "score": 0.711 - }, - { - "category_id": 0, - "poly": [ - 117, - 253, - 240, - 253, - 240, - 283, - 117, - 283 - ], - "score": 0.704 - }, - { - "category_id": 0, - "poly": [ - 114, - 1279, - 630, - 1279, - 630, - 1374, - 114, - 1374 - ], - "score": 0.62 - }, - { - "category_id": 1, - "poly": [ - 188, - 519, - 676, - 519, - 676, - 549, - 188, - 549 - ], - "score": 0.461 - }, - { - "category_id": 2, - "poly": [ - 114, - 1279, - 630, - 1279, - 630, - 1374, - 114, - 1374 - ], - "score": 0.374 - }, - { - "category_id": 1, - "poly": [ - 142, - 515, - 677, - 515, - 677, - 816, - 142, - 816 - ], - "score": 0.331 - }, - { - "category_id": 1, - "poly": [ - 187, - 570, - 402, - 570, - 402, - 813, - 187, - 813 - ], - "score": 0.214 - }, - { - "category_id": 1, - "poly": [ - 117, - 253, - 240, - 253, - 240, - 283, - 117, - 283 - ], - "score": 0.178 - }, - { - "category_id": 2, - "poly": [ - 120, - 515, - 172, - 515, - 172, - 817, - 120, - 817 - ], - "score": 0.159 - }, - { - "category_id": 3, - "poly": [ - 120, - 515, - 172, - 515, - 172, - 817, - 120, - 817 - ], - "score": 0.125 - }, - { - "category_id": 2, - "poly": [ - 121, - 516, - 171, - 516, - 171, - 819, - 121, - 819 - ], - "score": 0.119 - }, - { - "category_id": 1, - "poly": [ - 117, - 359, - 525, - 359, - 525, - 390, - 117, - 390 - ], - "score": 0.104 - }, - { - "category_id": 13, - "poly": [ - 1400, - 1482, - 1425, - 1482, - 1425, - 1508, - 1400, - 1508 - ], - "score": 0.69, - "latex": "\\circledcirc" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 1879.0, - 1421.0, - 1879.0, - 1421.0, - 1908.0, - 118.0, - 1908.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1908.0, - 1528.0, - 1908.0, - 1528.0, - 1941.0, - 117.0, - 1941.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 1936.0, - 1504.0, - 1936.0, - 1504.0, - 1973.0, - 114.0, - 1973.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 1973.0, - 789.0, - 1973.0, - 789.0, - 2001.0, - 115.0, - 2001.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 1481.0, - 1399.0, - 1481.0, - 1399.0, - 1513.0, - 113.0, - 1513.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1426.0, - 1481.0, - 1491.0, - 1481.0, - 1491.0, - 1513.0, - 1426.0, - 1513.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 1511.0, - 1522.0, - 1511.0, - 1522.0, - 1546.0, - 113.0, - 1546.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 1543.0, - 830.0, - 1543.0, - 830.0, - 1575.0, - 114.0, - 1575.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1732.0, - 1539.0, - 1732.0, - 1539.0, - 1765.0, - 117.0, - 1765.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 1764.0, - 1516.0, - 1764.0, - 1516.0, - 1797.0, - 114.0, - 1797.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 1797.0, - 1480.0, - 1797.0, - 1480.0, - 1825.0, - 115.0, - 1825.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 1828.0, - 239.0, - 1828.0, - 239.0, - 1856.0, - 115.0, - 1856.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 1651.0, - 1487.0, - 1651.0, - 1487.0, - 1678.0, - 120.0, - 1678.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1680.0, - 1231.0, - 1680.0, - 1231.0, - 1712.0, - 117.0, - 1712.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 168.0, - 1518.0, - 168.0, - 1518.0, - 200.0, - 119.0, - 200.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 198.0, - 530.0, - 198.0, - 530.0, - 233.0, - 114.0, - 233.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 120.0, - 376.0, - 120.0, - 376.0, - 149.0, - 117.0, - 149.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 2022.0, - 1417.0, - 2022.0, - 1417.0, - 2055.0, - 116.0, - 2055.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 2051.0, - 665.0, - 2051.0, - 665.0, - 2085.0, - 114.0, - 2085.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 1431.0, - 1270.0, - 1431.0, - 1270.0, - 1462.0, - 119.0, - 1462.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 1597.0, - 848.0, - 1597.0, - 848.0, - 1628.0, - 116.0, - 1628.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 2108.0, - 1508.0, - 2108.0, - 1508.0, - 2139.0, - 116.0, - 2139.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 415.0, - 361.0, - 415.0, - 361.0, - 443.0, - 115.0, - 443.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 308.0, - 281.0, - 308.0, - 281.0, - 334.0, - 117.0, - 334.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1579.0, - 1.0, - 1656.0, - 1.0, - 1656.0, - 43.0, - 1579.0, - 43.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 466.0, - 431.0, - 466.0, - 431.0, - 494.0, - 116.0, - 494.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 361.0, - 524.0, - 361.0, - 524.0, - 390.0, - 118.0, - 390.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 254.0, - 241.0, - 254.0, - 241.0, - 283.0, - 117.0, - 283.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 1282.0, - 197.0, - 1282.0, - 197.0, - 1334.0, - 116.0, - 1334.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 208.0, - 1290.0, - 624.0, - 1290.0, - 624.0, - 1339.0, - 208.0, - 1339.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 209.0, - 1346.0, - 625.0, - 1346.0, - 625.0, - 1368.0, - 209.0, - 1368.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 124.75, - 1330.5, - 152.75, - 1330.5, - 152.75, - 1360.0, - 124.75, - 1360.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 191.0, - 521.0, - 676.0, - 521.0, - 676.0, - 547.0, - 191.0, - 547.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 1282.0, - 197.0, - 1282.0, - 197.0, - 1334.0, - 116.0, - 1334.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 208.0, - 1290.0, - 624.0, - 1290.0, - 624.0, - 1339.0, - 208.0, - 1339.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 209.0, - 1346.0, - 625.0, - 1346.0, - 625.0, - 1368.0, - 209.0, - 1368.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 124.75, - 1330.5, - 152.75, - 1330.5, - 152.75, - 1360.0, - 124.75, - 1360.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 142.0, - 524.0, - 166.0, - 524.0, - 166.0, - 560.0, - 142.0, - 560.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 192.0, - 521.0, - 675.0, - 521.0, - 675.0, - 548.0, - 192.0, - 548.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 572.0, - 171.0, - 572.0, - 171.0, - 616.0, - 138.0, - 616.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 188.0, - 573.0, - 310.0, - 573.0, - 310.0, - 603.0, - 188.0, - 603.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 618.0, - 171.0, - 618.0, - 171.0, - 667.0, - 135.0, - 667.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 191.0, - 625.0, - 403.0, - 625.0, - 403.0, - 654.0, - 191.0, - 654.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 189.0, - 680.0, - 318.0, - 680.0, - 318.0, - 705.0, - 189.0, - 705.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 142.0, - 741.0, - 166.0, - 741.0, - 166.0, - 764.0, - 142.0, - 764.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 189.0, - 732.0, - 357.0, - 732.0, - 357.0, - 760.0, - 189.0, - 760.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 146.0, - 798.0, - 157.0, - 798.0, - 157.0, - 811.0, - 146.0, - 811.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 189.0, - 785.0, - 318.0, - 785.0, - 318.0, - 810.0, - 189.0, - 810.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 190.0, - 574.0, - 310.0, - 574.0, - 310.0, - 602.0, - 190.0, - 602.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 191.0, - 626.0, - 401.0, - 626.0, - 401.0, - 653.0, - 191.0, - 653.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 188.0, - 678.0, - 319.0, - 678.0, - 319.0, - 706.0, - 188.0, - 706.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 189.0, - 731.0, - 358.0, - 731.0, - 358.0, - 760.0, - 189.0, - 760.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 188.0, - 783.0, - 319.0, - 783.0, - 319.0, - 815.0, - 188.0, - 815.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 254.0, - 241.0, - 254.0, - 241.0, - 283.0, - 117.0, - 283.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 516.0, - 175.0, - 516.0, - 175.0, - 800.0, - 118.0, - 800.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 124.0, - 773.0, - 170.0, - 773.0, - 170.0, - 824.0, - 124.0, - 824.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 515.0, - 175.0, - 515.0, - 175.0, - 794.0, - 118.0, - 794.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 125.0, - 776.0, - 169.0, - 776.0, - 169.0, - 822.0, - 125.0, - 822.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 360.0, - 525.0, - 360.0, - 525.0, - 390.0, - 117.0, - 390.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 87, - "height": 2339, - "width": 1654 - } - } -] \ No newline at end of file diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/H156_01_24_May_2016_1739552446_spans.pdf b/pdf_output/H156_01_24_May_2016_1739552446/auto/H156_01_24_May_2016_1739552446_spans.pdf deleted file mode 100644 index 3fb9b808912b9c71ba5bb9c65d7a9c8b00c4eaf9..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/H156_01_24_May_2016_1739552446_spans.pdf +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:55473445339694adac9fbfe7e0bab87217e8abb97979664c2055074f8f807ae3 -size 1325071 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/0405d3b9a885c49ae7f175d6bb98e454187c6debd810a809bcf9ff1b306b6410.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/0405d3b9a885c49ae7f175d6bb98e454187c6debd810a809bcf9ff1b306b6410.jpg deleted file mode 100644 index ec8cfe4d698a73466570cb62121de892d9801a21..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/0405d3b9a885c49ae7f175d6bb98e454187c6debd810a809bcf9ff1b306b6410.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b1fbbc53ebe4ff4f0b327699f043710b070a62c90a763730c295d563ed8a2ace -size 16109 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/0910735679979ad7850c8f6a7c57f5e6ef6bc894ea5d4375755d54bbaf964fdd.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/0910735679979ad7850c8f6a7c57f5e6ef6bc894ea5d4375755d54bbaf964fdd.jpg deleted file mode 100644 index 539f00954792288fae07ded3177e161a9bd5dfce..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/0910735679979ad7850c8f6a7c57f5e6ef6bc894ea5d4375755d54bbaf964fdd.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:99210310082ee734850ac2cd544bc5b2d62fd73491baa9e6c901dde567817594 -size 15931 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/0ae7e9629a22c026e7c45c5e99cfebe294445c273ff317a0b689c559a6e78b6a.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/0ae7e9629a22c026e7c45c5e99cfebe294445c273ff317a0b689c559a6e78b6a.jpg deleted file mode 100644 index fab5fc5ba891bf2f64e119337f44f49d9b41d2ea..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/0ae7e9629a22c026e7c45c5e99cfebe294445c273ff317a0b689c559a6e78b6a.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:72ea0b9ea054d96eb3387a5538f3ee156b37947b7e8fbe636fdb7e2d0dd1abeb -size 16021 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/0c78c3f78fe9d4f1a8c07f43b64e7b511f66acd2b2b3c49f3c1b54dfbb7583ae.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/0c78c3f78fe9d4f1a8c07f43b64e7b511f66acd2b2b3c49f3c1b54dfbb7583ae.jpg deleted file mode 100644 index cccd086052211d4ce49d0b26433de39e887b409e..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/0c78c3f78fe9d4f1a8c07f43b64e7b511f66acd2b2b3c49f3c1b54dfbb7583ae.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0c7dc975b5c3c18d6ee8ad2dd00c79c5345557f1057ed5a1bd95d6f0449cd675 -size 140992 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/0f1ce7dc23805e28e82d8f8de3afee9d6c9934d8abaa397800d3ed58cd4f7a1b.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/0f1ce7dc23805e28e82d8f8de3afee9d6c9934d8abaa397800d3ed58cd4f7a1b.jpg deleted file mode 100644 index 39a65701be007b7d61bc8e7b169b5aecc2320027..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/0f1ce7dc23805e28e82d8f8de3afee9d6c9934d8abaa397800d3ed58cd4f7a1b.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0877044c5fcbf0c49869ac6231125503a71baf2dc9e836fd50f97b5a0a06a6a7 -size 363814 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/1044891fa1892b2d1f2342e4caefeebf5afcabae6a99728935bb049219ebedcc.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/1044891fa1892b2d1f2342e4caefeebf5afcabae6a99728935bb049219ebedcc.jpg deleted file mode 100644 index 6320a96d5c36ed14f80bcefa755ec4c95559f308..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/1044891fa1892b2d1f2342e4caefeebf5afcabae6a99728935bb049219ebedcc.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:47c2c2b67b3ca38a12d503379addd5344fe9faf77de081e6a12aca99cff194f2 -size 15981 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/107616ddeafe24853b2e23661ac26c1d16be75b8421d02eb4eb9dbc462c1128d.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/107616ddeafe24853b2e23661ac26c1d16be75b8421d02eb4eb9dbc462c1128d.jpg deleted file mode 100644 index 6f4d0577632067bf7f20d9c4f34f73ae812e8708..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/107616ddeafe24853b2e23661ac26c1d16be75b8421d02eb4eb9dbc462c1128d.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3e1c4ea2c783a13e46586e39ef837e09f450b18ba52208bf38d8b2f6ac1aea3f -size 37117 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/110fe86f2ce536d9a157db1ef23083e839fa9ae612238b9d6fbe5c5870050f58.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/110fe86f2ce536d9a157db1ef23083e839fa9ae612238b9d6fbe5c5870050f58.jpg deleted file mode 100644 index fc5e51ae75de1541584fb811438302ca7898bc25..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/110fe86f2ce536d9a157db1ef23083e839fa9ae612238b9d6fbe5c5870050f58.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3b835cc7e4a3bd25605ae128caf03f7cc71775143801d45758d780871f8b064b -size 25094 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/180a3a373f25614bf39677e7e8f3f4958abaf7654fd4d7aa094b7b8a9ebfded3.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/180a3a373f25614bf39677e7e8f3f4958abaf7654fd4d7aa094b7b8a9ebfded3.jpg deleted file mode 100644 index 75ad760c66785b9b5a0ade5ce5bfec0e5fab622d..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/180a3a373f25614bf39677e7e8f3f4958abaf7654fd4d7aa094b7b8a9ebfded3.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3882e8ca06e3d221e159d9177a9b1354b306be4374ddf06d75172365108b2009 -size 236606 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/19eb8f3dd49cb948426b1519dbb0967d4166dfc4094e859f9012f850d4f812ed.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/19eb8f3dd49cb948426b1519dbb0967d4166dfc4094e859f9012f850d4f812ed.jpg deleted file mode 100644 index cbc535b4e68ca40bd5aabd8d13439b20f4d00ffc..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/19eb8f3dd49cb948426b1519dbb0967d4166dfc4094e859f9012f850d4f812ed.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c9aa8716a989d59c86a99365582beb1f951829df26ed8bf88ab7be906493ebb1 -size 290750 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/1a5f20b76804f23ddbca58502da5a06a8534fa105e7bc8eda75c3acf781d1d90.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/1a5f20b76804f23ddbca58502da5a06a8534fa105e7bc8eda75c3acf781d1d90.jpg deleted file mode 100644 index 26468724083b3aee11c9c2c4508537638b2fce6a..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/1a5f20b76804f23ddbca58502da5a06a8534fa105e7bc8eda75c3acf781d1d90.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:50ce77c8c32d7a621ddf3169d971a6c505e13edc45c4a40980991dafd05a508e -size 294550 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/1aa64be2021aebbf63a6c61259ae718dc8ac4ce7aa87ffe6bf6eced9bfbdcfcd.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/1aa64be2021aebbf63a6c61259ae718dc8ac4ce7aa87ffe6bf6eced9bfbdcfcd.jpg deleted file mode 100644 index 0eeeec62facac6a54118fff6b9769b24dbbd52ff..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/1aa64be2021aebbf63a6c61259ae718dc8ac4ce7aa87ffe6bf6eced9bfbdcfcd.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b14cdcdb2e04294c4c02df6b261614b9daee05e35b553f6260787727d1fc14c1 -size 290520 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/1b6f3d6ccbfcc1b05b01301802fde8c92591db380a22245c4f8b78ad65ac57fe.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/1b6f3d6ccbfcc1b05b01301802fde8c92591db380a22245c4f8b78ad65ac57fe.jpg deleted file mode 100644 index 8f632eb57a9357b63f19c21a95cce52f6264d6e9..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/1b6f3d6ccbfcc1b05b01301802fde8c92591db380a22245c4f8b78ad65ac57fe.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:07832518c9465c562cee8f7a1ba7158e9e76bc10399e667807d840844a577811 -size 10760 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/1e86329ffc2eca8ffbe0c52dfbe85e1edda831b8f8ec1c1f013cfdc8032dd9a9.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/1e86329ffc2eca8ffbe0c52dfbe85e1edda831b8f8ec1c1f013cfdc8032dd9a9.jpg deleted file mode 100644 index 772316cf64f78d5f26cdd75324b792a9350e1f91..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/1e86329ffc2eca8ffbe0c52dfbe85e1edda831b8f8ec1c1f013cfdc8032dd9a9.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9e297a97b341bfbb964692769bb725a183a6c6493108f6533b989a53793610af -size 26897 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/288e566eff169ddcb7bedda698de48fdbb163c75006474bf95bbcdcbf8dea31b.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/288e566eff169ddcb7bedda698de48fdbb163c75006474bf95bbcdcbf8dea31b.jpg deleted file mode 100644 index ec6b6dc234d4345bc8329d423f266aa1b57396f5..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/288e566eff169ddcb7bedda698de48fdbb163c75006474bf95bbcdcbf8dea31b.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8724d5764028e6a66d8a226853f6bb481621ab825f8bb69da328a2ae0e1b9175 -size 228710 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/2b08edd34263e502c6efede43667aa1c15931fa27efbfb6e1e29bc2128040448.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/2b08edd34263e502c6efede43667aa1c15931fa27efbfb6e1e29bc2128040448.jpg deleted file mode 100644 index 0bb3b5dd2399a6c0706a1ae5dc34f36a2beef332..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/2b08edd34263e502c6efede43667aa1c15931fa27efbfb6e1e29bc2128040448.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:662e3cda3983939f676aa6ed848036bc04b4b3663e4e99bda6e82c1ee4f46f00 -size 18834 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/2f2e5923e79ba2dec9ac4893989998778f71d28c3828c44fea54df613bf7197e.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/2f2e5923e79ba2dec9ac4893989998778f71d28c3828c44fea54df613bf7197e.jpg deleted file mode 100644 index 428894ecdc492296452261c138cd079da6ee067a..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/2f2e5923e79ba2dec9ac4893989998778f71d28c3828c44fea54df613bf7197e.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:34e799bcde779220a60c5fed249972c490da8b3b275f3aa9c8eddd08f11c726d -size 19439 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/32f55684a751af0623f631ef4474a33b8545811e010a8b8c081b1887a0455bcd.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/32f55684a751af0623f631ef4474a33b8545811e010a8b8c081b1887a0455bcd.jpg deleted file mode 100644 index ecf591e080bb1e589c7d2b566c3283f872861420..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/32f55684a751af0623f631ef4474a33b8545811e010a8b8c081b1887a0455bcd.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:01567da5bd1c3fcbe7df4c84ed0e9fb6da701f6b581f55a0ef6bd9365b8d120c -size 23757 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/3c2e653cc8c05cd228ba461dc12fbf3cfd6a141888adf692b0619572372d8020.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/3c2e653cc8c05cd228ba461dc12fbf3cfd6a141888adf692b0619572372d8020.jpg deleted file mode 100644 index 5e61a7f4eaac8ba677468dc455e8dfb0a681e584..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/3c2e653cc8c05cd228ba461dc12fbf3cfd6a141888adf692b0619572372d8020.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1abb54ec25cac17ebf6c0e651e4299765c2f5fb0f8bde3928c0620b4402735db -size 328107 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/3c7cf2a3add40669ef0cc2340baa0f14d432cce84c6659171375f6b5ffcc192b.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/3c7cf2a3add40669ef0cc2340baa0f14d432cce84c6659171375f6b5ffcc192b.jpg deleted file mode 100644 index 4bd8b8ea5704b7383a09a3948ebef78e4f5f0d58..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/3c7cf2a3add40669ef0cc2340baa0f14d432cce84c6659171375f6b5ffcc192b.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bfa7fdb5bb38a84f0c1cd138ceaee99775bb882a14b07270e831d797272d9d71 -size 292902 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/3cb73a3427a8d7e9d0b1b21f9f9f84d96002d6726b39f14d53880d43e9abdce7.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/3cb73a3427a8d7e9d0b1b21f9f9f84d96002d6726b39f14d53880d43e9abdce7.jpg deleted file mode 100644 index e290bd053e1c428547be479770d006d872dcd7f4..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/3cb73a3427a8d7e9d0b1b21f9f9f84d96002d6726b39f14d53880d43e9abdce7.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:83dbcd573ad0d84d2416f2e80a3754794b49caeab481961ea4491a31de5bd1ec -size 69723 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/42b0a6605aadd6f0622de116d198186998bf10ca88ec60e54c325d4d10de0690.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/42b0a6605aadd6f0622de116d198186998bf10ca88ec60e54c325d4d10de0690.jpg deleted file mode 100644 index 3df5a007c87b9d8809b6f723b5d568fbd167f46d..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/42b0a6605aadd6f0622de116d198186998bf10ca88ec60e54c325d4d10de0690.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4dee0dbe1e82cfe36237fafe3e2910d146ddb0f1399a6f9a9c2748214bb5bcab -size 255181 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/50ea7e80209d9ad5f19506f7711aa8cff2dba0eb7f370832eff2a7db057d2abc.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/50ea7e80209d9ad5f19506f7711aa8cff2dba0eb7f370832eff2a7db057d2abc.jpg deleted file mode 100644 index ae53340eccb98cadc44645464a1384135757dacb..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/50ea7e80209d9ad5f19506f7711aa8cff2dba0eb7f370832eff2a7db057d2abc.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:117a8ea577d0c82a3cddc4c6b6602952688ef361a5ed596b8630212bdb4f3e0c -size 207522 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/539d5ed47b3443f2ea5abbc5bfea2d768a40385a2e377d562e29f4eb185d7523.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/539d5ed47b3443f2ea5abbc5bfea2d768a40385a2e377d562e29f4eb185d7523.jpg deleted file mode 100644 index 674c3c7e6a7bb0a710b322c1efbcb286da5578d8..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/539d5ed47b3443f2ea5abbc5bfea2d768a40385a2e377d562e29f4eb185d7523.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:136b978d92f8604d794838879e3b8d37cf6f5dbf2e451272a945cd6f28e29e4c -size 18039 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/5a89028a357fa0b391ff81dbb822b99f4350e199f834f48a51e7691bd2f82340.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/5a89028a357fa0b391ff81dbb822b99f4350e199f834f48a51e7691bd2f82340.jpg deleted file mode 100644 index b5ce2785d032bab96ea18de96857011cfd0c607a..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/5a89028a357fa0b391ff81dbb822b99f4350e199f834f48a51e7691bd2f82340.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d2a7bf1a72a001aaa97be478ad6307f18c12f334b7adb78b57f031295f472407 -size 153685 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/5d59fc0e036b924018b5ec46a687e23898feb49163f70fbe4b29f96fe3459ceb.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/5d59fc0e036b924018b5ec46a687e23898feb49163f70fbe4b29f96fe3459ceb.jpg deleted file mode 100644 index 16ff7596dd319d0e14dca0e1081f0a41ce30e0e1..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/5d59fc0e036b924018b5ec46a687e23898feb49163f70fbe4b29f96fe3459ceb.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b859b4d92f132353651f538269d0f7b5839569d6c614cb9c2fa43747b35a151d -size 17677 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/60bb3f1d52fd6c94c403f957b4cce3527a510ae31164897011cf7b1fe4d82506.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/60bb3f1d52fd6c94c403f957b4cce3527a510ae31164897011cf7b1fe4d82506.jpg deleted file mode 100644 index 2a8b49b512755775fbc2f0b484cbf7a704501010..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/60bb3f1d52fd6c94c403f957b4cce3527a510ae31164897011cf7b1fe4d82506.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:078260c7aeb7fd27928d30bd623a929393af92e1c96140e73738d1cc8bf57763 -size 23385 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/60db3b4d1c7583e9afe708943a09a2d519f4fdf981d9aa03dc95c68585f2119d.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/60db3b4d1c7583e9afe708943a09a2d519f4fdf981d9aa03dc95c68585f2119d.jpg deleted file mode 100644 index 667ffeb87e8cfe1e2f43b400f2ffa653baeabb5f..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/60db3b4d1c7583e9afe708943a09a2d519f4fdf981d9aa03dc95c68585f2119d.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4f2a08e174fefd74c0468f126851fe0facc29d7e5ea44b51fdfe242113a17a14 -size 38598 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/60e29916eac776b4c6df2127d40e0b89ce7e8fe2f5e31f652651010aba4d77ef.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/60e29916eac776b4c6df2127d40e0b89ce7e8fe2f5e31f652651010aba4d77ef.jpg deleted file mode 100644 index 51c492a5db0a0c3fe97250cf54e2aae131a92cbc..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/60e29916eac776b4c6df2127d40e0b89ce7e8fe2f5e31f652651010aba4d77ef.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:af388c3b357862560702662e4b53981ae51d52bb21314dcbe8ea36e3cc908d55 -size 272355 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/645132a05ad83dd6e61ed607c026df252dff9a40d31b845f457519f7782b3b89.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/645132a05ad83dd6e61ed607c026df252dff9a40d31b845f457519f7782b3b89.jpg deleted file mode 100644 index 6167b01dde03fc81f071eb3fff53efdffd5d2fca..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/645132a05ad83dd6e61ed607c026df252dff9a40d31b845f457519f7782b3b89.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:618a79f1d6e948416d1b2c333864ea01f53f3302d6dbb38508879229ace50d15 -size 22183 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/64a6115ffbee9b67e051c1bc3fde99c48f14ba1f77329c7167adbf0d360e33b3.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/64a6115ffbee9b67e051c1bc3fde99c48f14ba1f77329c7167adbf0d360e33b3.jpg deleted file mode 100644 index df3d54b6d5822e0bd2daa381299a04c4f20e11b4..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/64a6115ffbee9b67e051c1bc3fde99c48f14ba1f77329c7167adbf0d360e33b3.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f0e4dedf50e990e3a983711bc14262f522cba192f4da7e6b3dda719b20278f73 -size 4816 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/64acc2a87d1e10ccc30190e18b446b2bfe0eae1c14620329e1194a5c4743b14f.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/64acc2a87d1e10ccc30190e18b446b2bfe0eae1c14620329e1194a5c4743b14f.jpg deleted file mode 100644 index 13069cbf05a504bc2cf8db3c1652899b606c9427..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/64acc2a87d1e10ccc30190e18b446b2bfe0eae1c14620329e1194a5c4743b14f.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7a3281a6b07933139ebc6f9a25cc22593def3a33e298e2109581f506bb6411ec -size 15833 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/66a324a6e2287e131efe2c00ac3811e863771ba3d162a69cfce813c3bbd0e3ea.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/66a324a6e2287e131efe2c00ac3811e863771ba3d162a69cfce813c3bbd0e3ea.jpg deleted file mode 100644 index 544e7c159aba50582490fa483c99463d7970a8b7..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/66a324a6e2287e131efe2c00ac3811e863771ba3d162a69cfce813c3bbd0e3ea.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e71fc556d4b17f3b65b19674c39110431bc81c1796275a1420c349397bdd330c -size 32020 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/69bcc7ab78c2418c6c58b3e6c18ab72b8ef505a549be0abf65f647811ca5d616.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/69bcc7ab78c2418c6c58b3e6c18ab72b8ef505a549be0abf65f647811ca5d616.jpg deleted file mode 100644 index 6d41de46071466ecd64d07da2811cd7df571c37d..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/69bcc7ab78c2418c6c58b3e6c18ab72b8ef505a549be0abf65f647811ca5d616.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d2deedd0d233c92c656d2aeb66edb879e80d509c83e68977ce9a97b960236a4c -size 335958 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/6d33415e347daed1c4c7abfe4fb0f1585698a0071e38861ad56099682f0cd9ad.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/6d33415e347daed1c4c7abfe4fb0f1585698a0071e38861ad56099682f0cd9ad.jpg deleted file mode 100644 index 92f2ceec71fdf035b0ec8aa325426fd24c831ddc..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/6d33415e347daed1c4c7abfe4fb0f1585698a0071e38861ad56099682f0cd9ad.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:dcfb69471374a6a3fb98ff2a4fc8f32dd14362a3a2c510baafcc2dbc5d75af1a -size 149172 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/71c74c00974f96021992aa3ccf5ef49ab0aec4e826f6afdcd313302a289abaf5.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/71c74c00974f96021992aa3ccf5ef49ab0aec4e826f6afdcd313302a289abaf5.jpg deleted file mode 100644 index 82ffd62f192239a0447b99e029a3ec23e100d879..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/71c74c00974f96021992aa3ccf5ef49ab0aec4e826f6afdcd313302a289abaf5.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f189e552b4bb209363717697b137e92306972808a063f4816ef18eb2c6bdb981 -size 291491 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/7a677d89dbd7850d8d60ee155f59b14fc5e084b7b662630729c59cfc12a7ffde.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/7a677d89dbd7850d8d60ee155f59b14fc5e084b7b662630729c59cfc12a7ffde.jpg deleted file mode 100644 index fc1c3ce193f3d49faa87a582f3168c2d7b80b933..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/7a677d89dbd7850d8d60ee155f59b14fc5e084b7b662630729c59cfc12a7ffde.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f79d58b3b52f4c88efcafe3cd8562d2fa9ba9edb63354cf14b5ab18ef0f12776 -size 38196 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/7c20c5b6e3fd0f61ed1163350073e5aa88303c7126de83071f9f7ddf2b54e63a.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/7c20c5b6e3fd0f61ed1163350073e5aa88303c7126de83071f9f7ddf2b54e63a.jpg deleted file mode 100644 index 087323e086095c02eee112f6c0128f527acdfc72..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/7c20c5b6e3fd0f61ed1163350073e5aa88303c7126de83071f9f7ddf2b54e63a.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e41f8f2b02ebe07b05c6d2d54c9c6b586986e471a63ec94e38c3393aad608be2 -size 27422 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/82d54580131e9f95905bf28f4b9f3585c6e8272d31e608afe853480770dccf41.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/82d54580131e9f95905bf28f4b9f3585c6e8272d31e608afe853480770dccf41.jpg deleted file mode 100644 index 25f741f19481588dbc8540ed7b916e30ca8273ca..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/82d54580131e9f95905bf28f4b9f3585c6e8272d31e608afe853480770dccf41.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3258d15a643a9962741778dd14b38d5c15cda522c23be88cd95e75d2c24405e1 -size 20683 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/8510cb467750fd0402f93a539cd94eca4f6908b0fb4f4da8788658a5e721d426.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/8510cb467750fd0402f93a539cd94eca4f6908b0fb4f4da8788658a5e721d426.jpg deleted file mode 100644 index 7c1094069cf636790390cf56ae21f2dedd47c304..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/8510cb467750fd0402f93a539cd94eca4f6908b0fb4f4da8788658a5e721d426.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:288670169c3a5f890162d8069ece69eb920e09f4b1c07d40b8a0d34f965366bd -size 193994 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/87dafde3b9b0b7f6b89a416c42f3ce45471c3e45abc8fea967864850217832c9.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/87dafde3b9b0b7f6b89a416c42f3ce45471c3e45abc8fea967864850217832c9.jpg deleted file mode 100644 index 8a64e81c2e0165e0b6977ee336000748eb9695ae..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/87dafde3b9b0b7f6b89a416c42f3ce45471c3e45abc8fea967864850217832c9.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8cb8498591fafdd632c27594f066514907e9ebb046f288e2baa53ab73d91934c -size 42910 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/88f240f841d9fa36cf6b0fe648606faf176f4f861d4ad8be6a9505c2cac86137.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/88f240f841d9fa36cf6b0fe648606faf176f4f861d4ad8be6a9505c2cac86137.jpg deleted file mode 100644 index 746760f97ac21b10750ee0dfd0fd2d7418ea3383..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/88f240f841d9fa36cf6b0fe648606faf176f4f861d4ad8be6a9505c2cac86137.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:411d29fcc3e929bb7a8b5bfef1f0f16f617b515ec607fa17ee9d7e124d778e20 -size 185372 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/93fd740b25714b5f886fddf99a0e8fdbf64d5ce7f1157d548b0a085ef042cac4.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/93fd740b25714b5f886fddf99a0e8fdbf64d5ce7f1157d548b0a085ef042cac4.jpg deleted file mode 100644 index 91e7b2267bd4a792cef64fec0d8dca4736b14007..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/93fd740b25714b5f886fddf99a0e8fdbf64d5ce7f1157d548b0a085ef042cac4.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ef937a866a328cc91f3dd890c3a22247649292cc6db4a2e19744295131136db2 -size 15755 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/954e65bf25f3c05465ea62bce785a475734ce23740d52af30d19ca9fecb4cc16.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/954e65bf25f3c05465ea62bce785a475734ce23740d52af30d19ca9fecb4cc16.jpg deleted file mode 100644 index ac661e9968d31d68e70cdebb336f0b73369be390..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/954e65bf25f3c05465ea62bce785a475734ce23740d52af30d19ca9fecb4cc16.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a2c018c0bd2449386783dfe8acfee4974050a280d53956da9cf80262b4f04aa6 -size 19333 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/9886600270ff0c79d601e923bc61ccd8cb06978790ac35bd3339c6345077723b.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/9886600270ff0c79d601e923bc61ccd8cb06978790ac35bd3339c6345077723b.jpg deleted file mode 100644 index 60ec1eeb03e13069cc81e361addea08e5e42e18e..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/9886600270ff0c79d601e923bc61ccd8cb06978790ac35bd3339c6345077723b.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1595ba4746345896ae3da3720f33d66fad199d5c82a36546d206d38264c95954 -size 290631 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/99a5e6a0104e575923f191780bcae50853e2a7b620ed54212346276037e2ecb8.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/99a5e6a0104e575923f191780bcae50853e2a7b620ed54212346276037e2ecb8.jpg deleted file mode 100644 index 092891e9aee3b898971b209eadc652ffbeb259a6..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/99a5e6a0104e575923f191780bcae50853e2a7b620ed54212346276037e2ecb8.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4f01636aec76953471be6b188f5d543e3958e425e9a5c5f6f373d32ed3fa6d5b -size 181947 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/9b142c1215ef0e56cf943a518bcb906bf2bc0a15ef5a053f1877390488ceceec.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/9b142c1215ef0e56cf943a518bcb906bf2bc0a15ef5a053f1877390488ceceec.jpg deleted file mode 100644 index 8744fd571df7c8c528c0cb4a69b6ce563f3011fa..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/9b142c1215ef0e56cf943a518bcb906bf2bc0a15ef5a053f1877390488ceceec.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:80db36b582d33ac974c11c085b951932beb13604f39253cffe246fc50d0711c3 -size 293099 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/a1078131086f257375fa52abc18814e6c5674f49a5698dfcd789ab629a0ef6bd.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/a1078131086f257375fa52abc18814e6c5674f49a5698dfcd789ab629a0ef6bd.jpg deleted file mode 100644 index 4cfc8d0865906d8dfa989e944bb553ce1a4e3222..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/a1078131086f257375fa52abc18814e6c5674f49a5698dfcd789ab629a0ef6bd.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:df53faecce857a5fdc90b6f1fd16617327c48c2cb78b4376616759f68f643718 -size 43313 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/a2b9f5608aefc8b2b64e6592ce217b39ea28535fe3fbf8fd957b83bf3aa17e0f.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/a2b9f5608aefc8b2b64e6592ce217b39ea28535fe3fbf8fd957b83bf3aa17e0f.jpg deleted file mode 100644 index 20b1e2c7424dde0a00163a71c7025863865f1dd8..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/a2b9f5608aefc8b2b64e6592ce217b39ea28535fe3fbf8fd957b83bf3aa17e0f.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8bdefb5814d696a930ea4afa3a32c98d31556e9e02a0d22bfb89a335659f686e -size 13901 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/a7436c9583f728006c718d859179d434851b1ae83b14a267da4f019758a9d140.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/a7436c9583f728006c718d859179d434851b1ae83b14a267da4f019758a9d140.jpg deleted file mode 100644 index 5d7b9b8c9ca1fa981655bb5cd0841e9948fb4a65..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/a7436c9583f728006c718d859179d434851b1ae83b14a267da4f019758a9d140.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:13b00fc007c0691e16bad14887cb02e194fbdc74b749578a4785c411ff92ac44 -size 36615 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/a7a340909246e3d100bb4ab6b88e52ffacc34e492be12ab1af2e7c6ab51195bc.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/a7a340909246e3d100bb4ab6b88e52ffacc34e492be12ab1af2e7c6ab51195bc.jpg deleted file mode 100644 index 632e92d7a28b03bddffa2ec644d7fd019b4217e3..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/a7a340909246e3d100bb4ab6b88e52ffacc34e492be12ab1af2e7c6ab51195bc.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5b3ab529bf897a4c6b54c20ff56085fda75dea78fda62851fcb4554f414a01e4 -size 126770 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/a7f8f3922ac8cc761f4fcebdfeb704b3d88481369642e3f95e9bc59d3e0d1517.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/a7f8f3922ac8cc761f4fcebdfeb704b3d88481369642e3f95e9bc59d3e0d1517.jpg deleted file mode 100644 index 27944f823395d8ae44a76ca2fd85bca37861410d..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/a7f8f3922ac8cc761f4fcebdfeb704b3d88481369642e3f95e9bc59d3e0d1517.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9e159ffc30e6d3fe4ee2d6a599b0471972548164cf9caf23dcfb0d554c84036b -size 166795 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/a84804dda1c347fcffc0102500692228139a5f9bd7c0f271b74cce52e91053c8.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/a84804dda1c347fcffc0102500692228139a5f9bd7c0f271b74cce52e91053c8.jpg deleted file mode 100644 index 814e04bb957ba7d8ffc386f0b42b3f37035a3334..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/a84804dda1c347fcffc0102500692228139a5f9bd7c0f271b74cce52e91053c8.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:16b91354ae87e9eea66c91f09064063c6e88087407e3e0e5d1377b940f3201c7 -size 32380 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/aadb899c6b3cec615a10e1ed72c6c54495e616ad50f992d56e2fe213ac8f47be.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/aadb899c6b3cec615a10e1ed72c6c54495e616ad50f992d56e2fe213ac8f47be.jpg deleted file mode 100644 index 5570d617c45679a01d649b03ae7de4812e943b55..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/aadb899c6b3cec615a10e1ed72c6c54495e616ad50f992d56e2fe213ac8f47be.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6cc52deb8bd34b5f5bdfd0036b89976104409392256b4f45a0b5340057a38318 -size 286479 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/ad3e775cc40b6b0083ee91f388ecd745cb0b670238724f4ea4829ff0d1796f58.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/ad3e775cc40b6b0083ee91f388ecd745cb0b670238724f4ea4829ff0d1796f58.jpg deleted file mode 100644 index 5356e71feb3af8d6820ed8670aa8493fb7838702..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/ad3e775cc40b6b0083ee91f388ecd745cb0b670238724f4ea4829ff0d1796f58.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:16f52e7bf57ffe710c4f6a34bc47f132a8413e521d64c6c2f0d63e7530e0c800 -size 17250 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/b1c3f7863de169f33197cc957a623c06f012e82a2aa0a7befe98ca76ab97c44e.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/b1c3f7863de169f33197cc957a623c06f012e82a2aa0a7befe98ca76ab97c44e.jpg deleted file mode 100644 index 9a533a3eff2fb2a3ead3a6b3bbe6d9e9da8fabfa..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/b1c3f7863de169f33197cc957a623c06f012e82a2aa0a7befe98ca76ab97c44e.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9ec21d1798ddf51b0260e57d4e3d61c51c1f640a9e3d32c41ad43ff297e48ebe -size 8964 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/bbb75f5d2b0006a7ff44334419cbd33193da0ca962f888f049327ad04dced260.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/bbb75f5d2b0006a7ff44334419cbd33193da0ca962f888f049327ad04dced260.jpg deleted file mode 100644 index bde6cbc45dc64ebee371120338c01c7a14e4ea82..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/bbb75f5d2b0006a7ff44334419cbd33193da0ca962f888f049327ad04dced260.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f819f5aee68f4fd2954de814673f097b41aec9fffa76072bd35c72578d996b33 -size 16556 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/c251b17a2619af1a1114c42aa9633ae595e95e25dc280d7c840301019fc2b12f.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/c251b17a2619af1a1114c42aa9633ae595e95e25dc280d7c840301019fc2b12f.jpg deleted file mode 100644 index 9a7141e6b229357fd800b46bb440bcb1ac9a0fa5..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/c251b17a2619af1a1114c42aa9633ae595e95e25dc280d7c840301019fc2b12f.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5b62d22d24877fefdf2ffa0ed5c37305777d82ba1ef23fbe59c02b818e9a3ac3 -size 205710 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/c377a1b930001a6bdfb1abb8d6ed4fed05eb68f2ec2fb76d4a0d72faf46dad2e.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/c377a1b930001a6bdfb1abb8d6ed4fed05eb68f2ec2fb76d4a0d72faf46dad2e.jpg deleted file mode 100644 index 985a0538adbe899e108957204268b0b4fe4646d8..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/c377a1b930001a6bdfb1abb8d6ed4fed05eb68f2ec2fb76d4a0d72faf46dad2e.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c604f9a5d2b87bfbc5a6730d130aefb04ed64f43147f4389133a30b4464d4829 -size 61730 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/d13d0bacb2747c0caaae2c3d90d709911fe909c8ff5a04b4dab9d38913a2b177.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/d13d0bacb2747c0caaae2c3d90d709911fe909c8ff5a04b4dab9d38913a2b177.jpg deleted file mode 100644 index 930344f325fce445c236467239be312d9b2db158..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/d13d0bacb2747c0caaae2c3d90d709911fe909c8ff5a04b4dab9d38913a2b177.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:65fa01518a6bc2ed5d876c85de342e33cee88d04292dc3a448428319b517934e -size 392551 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/d8142e5350cdae5d907ae6407a5ae916fcee9d32f462862f61e49d2d3f4b265a.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/d8142e5350cdae5d907ae6407a5ae916fcee9d32f462862f61e49d2d3f4b265a.jpg deleted file mode 100644 index 4943b1f23f42186b6880fdc52a1f5cc59ae16eda..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/d8142e5350cdae5d907ae6407a5ae916fcee9d32f462862f61e49d2d3f4b265a.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:77b32b67e512b90b2b319de57e907ca47334f5f4ccc6f013859036f7b3aaa23c -size 309167 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/d8cfb7d19f8dccbf4ba66c6980191fc426fadeb7935d80bfa302e5c191563c0f.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/d8cfb7d19f8dccbf4ba66c6980191fc426fadeb7935d80bfa302e5c191563c0f.jpg deleted file mode 100644 index fc2199daae3107ed0e7e4b0e1dd7eceeea0f44d5..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/d8cfb7d19f8dccbf4ba66c6980191fc426fadeb7935d80bfa302e5c191563c0f.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d006cdaaea73801594e43bdda2ddcbdc19f17bbe7cb8961e8acb73c245e480a7 -size 11262 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/db55862eee091ed45882894d34289e2cc148b09d99e5f464a66726056908cfca.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/db55862eee091ed45882894d34289e2cc148b09d99e5f464a66726056908cfca.jpg deleted file mode 100644 index 5001331758fe3fbfa6b928db7935cbe8105203b7..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/db55862eee091ed45882894d34289e2cc148b09d99e5f464a66726056908cfca.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e447cb8c359ab2a042bd7300e0f34497891821a804594923e9f0fcb4f8e75dcc -size 29641 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/de9a91b1869c584ce0fcdb402cfb99a6944424d64c90bbeff21ff66cc1889627.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/de9a91b1869c584ce0fcdb402cfb99a6944424d64c90bbeff21ff66cc1889627.jpg deleted file mode 100644 index d01c4986f96e011cf9e56e2949cae0ca94b11b07..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/de9a91b1869c584ce0fcdb402cfb99a6944424d64c90bbeff21ff66cc1889627.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:99372ad50dcab3e9b75b4b06dbd95787596c2a4991597d9cdb608f98292d8ac2 -size 212633 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/e0f088531d62ab5540281a2fc2e625feb527d32c2290e9c51b47acce9675c8d4.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/e0f088531d62ab5540281a2fc2e625feb527d32c2290e9c51b47acce9675c8d4.jpg deleted file mode 100644 index 1c3814f57d54b7ae10b979f0b81b83d780401510..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/e0f088531d62ab5540281a2fc2e625feb527d32c2290e9c51b47acce9675c8d4.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d2f2b7ed5de70167e21734afd47c6c832784221ca636d70af7cc3fccc3b0c882 -size 16360 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/e13ba473e1c4a5ee55519e2fc6f8728e3f90dc2938f57f4a70f123d9177bd5f1.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/e13ba473e1c4a5ee55519e2fc6f8728e3f90dc2938f57f4a70f123d9177bd5f1.jpg deleted file mode 100644 index 5bf33dff9173d4f05b0d8b9cc2e6f449338324af..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/e13ba473e1c4a5ee55519e2fc6f8728e3f90dc2938f57f4a70f123d9177bd5f1.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4112733c5e98f55287d2899e81765a24800f9909b521b9c7ec8967ad220bda0c -size 12277 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/e9d1c42f2298d6862122ca8ee400964ae9c1a0b4770b4a3e0d440d9707fde33d.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/e9d1c42f2298d6862122ca8ee400964ae9c1a0b4770b4a3e0d440d9707fde33d.jpg deleted file mode 100644 index afb8b789ae9e8aae900e3aba8e0fa58fb1aec6a1..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/e9d1c42f2298d6862122ca8ee400964ae9c1a0b4770b4a3e0d440d9707fde33d.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:25aac599f5573edcbf17ae276e74ab70d9e9be236eb95f91640fdf9cb87b2e67 -size 19245 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/ea4ddc2d92328235451c8d6a5b8eca8c0546627346f73846e88ac96980211816.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/ea4ddc2d92328235451c8d6a5b8eca8c0546627346f73846e88ac96980211816.jpg deleted file mode 100644 index 29f48160bc444cf1855401177a5f798b669f8bbe..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/ea4ddc2d92328235451c8d6a5b8eca8c0546627346f73846e88ac96980211816.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c7b097f9b226d6355d6e7ab6583ef30e00d8efa63f74fa9889893ff137e630cd -size 22621 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/ecbf0fb602de7045b16a421b4e7984ec69f52499df56770ec08351a7a3b08ace.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/ecbf0fb602de7045b16a421b4e7984ec69f52499df56770ec08351a7a3b08ace.jpg deleted file mode 100644 index 1ba3d447fc481d2f119d2e12d09118e399339a80..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/ecbf0fb602de7045b16a421b4e7984ec69f52499df56770ec08351a7a3b08ace.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c2a6650d389b56fa28d13f8b17e0f28097883c74b8a7afb13d049a9b7e845ffa -size 17416 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/ed2dbdb2cbd0686431b9eaf8375227ca25b5eaddad4dc3bd8ad295aef3e587d0.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/ed2dbdb2cbd0686431b9eaf8375227ca25b5eaddad4dc3bd8ad295aef3e587d0.jpg deleted file mode 100644 index a99a26b64910dbabef32e8bc41ce17312d235ee4..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/ed2dbdb2cbd0686431b9eaf8375227ca25b5eaddad4dc3bd8ad295aef3e587d0.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:282be22a5396aa7a4a69d037b361da9cc0b6c8b090460a194d44c62bc29835ed -size 763635 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/ef197c6dd1495e29a3fd1244f57ee8bb4da3c03684eb01aa922f263438b7287a.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/ef197c6dd1495e29a3fd1244f57ee8bb4da3c03684eb01aa922f263438b7287a.jpg deleted file mode 100644 index 064416067c0ceb456419aecb4ca67f441b3cc8ce..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/ef197c6dd1495e29a3fd1244f57ee8bb4da3c03684eb01aa922f263438b7287a.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1f3be270f7a4749e3b5c841d2d759f0bf98f54f1693c33de8ac7092f5d70fd15 -size 39819 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/f2f059b778c067ac4280f0129a141a0c7dfcd204a67514b930ad6be1a0fc8902.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/f2f059b778c067ac4280f0129a141a0c7dfcd204a67514b930ad6be1a0fc8902.jpg deleted file mode 100644 index abc415cf1e583062f7939d52461c728dd3b6f7bd..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/f2f059b778c067ac4280f0129a141a0c7dfcd204a67514b930ad6be1a0fc8902.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:eea308f236d9a6dc19bc2b1447e09e797458fa444918189efb016a650bb15acf -size 11062 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/f415aab86ff645a1fd0b9df8fc0219785e1ee582c0aa23822ee77008431ceaf1.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/f415aab86ff645a1fd0b9df8fc0219785e1ee582c0aa23822ee77008431ceaf1.jpg deleted file mode 100644 index 46724dc8a75d5db1115e0e3dbc1cdd071af2731d..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/f415aab86ff645a1fd0b9df8fc0219785e1ee582c0aa23822ee77008431ceaf1.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5579bb0af11ede4d045c1d9d99515d1ee23876f55a7f4c33d5e46677fcd1fa09 -size 433928 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/f697f69f4f597b907fdf9d12f49f05a9bd9923f89370366095cff7e716c734ca.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/f697f69f4f597b907fdf9d12f49f05a9bd9923f89370366095cff7e716c734ca.jpg deleted file mode 100644 index 6cce0d93d69e012669b304ed1f4db44e90cdd752..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/f697f69f4f597b907fdf9d12f49f05a9bd9923f89370366095cff7e716c734ca.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3c939e06d3331538ef60ca0ea3dfdc03915a58008500cab3e20247f16e912fa1 -size 294405 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/f6ac9e460d55687dbf1bdfa140f80dbc9ab4b22822b9d72e14ecc7bf7a846d76.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/f6ac9e460d55687dbf1bdfa140f80dbc9ab4b22822b9d72e14ecc7bf7a846d76.jpg deleted file mode 100644 index 3907e6e669043827b735f4d46eea386a1a73733f..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/f6ac9e460d55687dbf1bdfa140f80dbc9ab4b22822b9d72e14ecc7bf7a846d76.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3f7e48f3c66909b7dfe944de70311f007d6dc605d25da341f2c05b756022dfa4 -size 296916 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/fa3181d7e3d6df2514d248cbd09b1f8fb7b2cb6af00095983635d4357f428b4a.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/fa3181d7e3d6df2514d248cbd09b1f8fb7b2cb6af00095983635d4357f428b4a.jpg deleted file mode 100644 index 79a26b478bb3d7001834242d1b91bd06f6e0031d..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/fa3181d7e3d6df2514d248cbd09b1f8fb7b2cb6af00095983635d4357f428b4a.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2ec88b56b7565b79c943fa5d1462c19cd8de5a9364c16ce0742b86e14ce5c02c -size 33063 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/fa78cbba2e5837afe0d41bbb370018e994b402fe0392f4454e0044cb38956b2e.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/fa78cbba2e5837afe0d41bbb370018e994b402fe0392f4454e0044cb38956b2e.jpg deleted file mode 100644 index eba29d46fc41c178a820041e2a9b3483682350a0..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/fa78cbba2e5837afe0d41bbb370018e994b402fe0392f4454e0044cb38956b2e.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ec41c1a9ef0b33cb926bf307a74b5cdb3279f6a708e327d7488b99543f96d1fb -size 49693 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/fd7806cdf314bd6fe67dd8bcfdae097200c0e305f1f4323652e840ca2d30662a.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/fd7806cdf314bd6fe67dd8bcfdae097200c0e305f1f4323652e840ca2d30662a.jpg deleted file mode 100644 index 45823cba8de5544e0803bd72452e09ab6f31d8e6..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/fd7806cdf314bd6fe67dd8bcfdae097200c0e305f1f4323652e840ca2d30662a.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:42a4886df66656d969c515a9a3456098803343deb142f1465e497e386a8c3e88 -size 8681 diff --git a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/feba7e126e58c78f737a5123c38a9658eec0b965c617f175bcbc48f54c6513af.jpg b/pdf_output/H156_01_24_May_2016_1739552446/auto/images/feba7e126e58c78f737a5123c38a9658eec0b965c617f175bcbc48f54c6513af.jpg deleted file mode 100644 index 5182adbec395e81e468303edfa35346acb7c7f00..0000000000000000000000000000000000000000 --- a/pdf_output/H156_01_24_May_2016_1739552446/auto/images/feba7e126e58c78f737a5123c38a9658eec0b965c617f175bcbc48f54c6513af.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fead8acffa451e65e5fa3497bc2250885d8e55fc2211fdb047387b581d542d71 -size 23833 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/H580_03_November_2020_1739552419.md b/pdf_output/H580_03_November_2020_1739552419/auto/H580_03_November_2020_1739552419.md deleted file mode 100644 index f563f3e5538244117872f56f392b3e1b86cde055..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/H580_03_November_2020_1739552419.md +++ /dev/null @@ -1,250 +0,0 @@ -# Wednesday 21 October 2020 – Morning - -# A Level Sociology - -H580/03 Debates in contemporary society - -Time allowed: 2 hours 15 minutes - -You must have: • the OCR 12-page Answer Booklet - -# INSTRUCTIONS - -Use black ink. -Write your answer to each question in the Answer Booklet. The question numbers must be clearly shown. -• Fill in the boxes on the front of the Answer Booklet. -Answer all the questions in Section A. -Choose one option in Section B and answer all the questions for that option. - -# INFORMATION - -• The total mark for this paper is 105. -• The marks for each question are shown in brackets [ ]. -• Quality of extended response will be assessed in questions marked with an asterisk $(^{\star})$ . -• This document has 4 pages. - -# ADVICE - -Read each question carefully before you start your answer. - -# 2 - -# SECTION A - -Read the source material and answer all the questions in Section A. - -# Source A - -Recent research suggests that advances in digital forms of communication have transformed the lives of individuals in the UK and across the world. For example, when natural disasters such as tsunamis, volcanic eruptions and extreme flooding occur, social media enables a rapid response. For example, following the 2012 hurricane in Canada, Facebook launched an emergency check-in App called ‘Safety Check’. At the click of a button users can let friends and family know they are safe in the event of a natural disaster. Despite initial reservations, official organisations now use social media to help tackle disasters. In 2018, the USA National Weather Service asked people to use Facebook and Twitter to spread important safety messages and posts about tsunamis. Social media has also been effective in mobilising support for protests. Digital forms of communication such as social media have also helped strengthen relationships as time and location no longer present a barrier to maintaining contact across the world. - -# Source B - -Through advances in digital forms of communication people can now connect with others by joining online communities. Communicating in these virtual communities, where there are no geographical boundaries, is quick and easy. For example, support may be generated very quickly in response to major events. According to postmodern writers, people can share interests and also create and transform their identities in the virtual community, regardless of gender, ethnicity, social class, age or disability. However, while some postmodern writers have embraced the development of a virtual world, other sociologists have been more cautious worrying about issues such as who controls the virtual communities and how are they regulated? Also, concerns are often raised about the effects of virtual communities on both individual’s identities and their relationships with those in their offline world such as friends, family and peers. - -1\* With reference to both sources and your wider sociological knowledge, explain the positive impact of global developments in digital communication in responding to major events. [9] - -2 With reference to the source(s) and your wider sociological knowledge, evaluate the view that virtual communities have a positive impact on people’s identity. [10] - -3 Evaluate the sociological view that all digital forms of communication have a negative impact on social relationships. [16] - -# SECTION B - -Choose one option from Section B and answer all the questions for that option. - -# OPTION 1 - -# Crime and deviance - -${\pmb{4}}^{\star}$ In what ways is green crime a growing issue? [10] $\pmb{5}^{\star}$ Assess right realist explanations of crime and deviance. [20] ${\pmb6}^{\star}$ Evaluate sociological explanations of the over-representation of males in crime statistics. [40] - -# OPTION 2 - -# Education - -$7^{\star}$ In what ways are there gender differences in patterns of educational attainment? [10] ${\mathfrak{s}}^{\star}$ Assess the view that teacher labelling is the main cause of working-class pupils’ underachievement in school. [20] $\9^{\star}$ Evaluate functionalist explanations of the relationship between education and work. [40] - -# OPTION 3 - -# Religion, belief and faith - -${\bf10^{*}}$ In what ways is the significance of religion different between societies? - -$11^{\star}$ Assess feminist views of the role of religion in society. [20] - -$12^{\star}$ Evaluate the views of anti-secularisation theorists. [40] - -# Copyright Information - -OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. - -If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. - -r queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA. - -OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. - -# GCE - -# Sociology - -H580/03: Debates in contemporary society - -Advanced GCE - -# Mark Scheme for November 2020 - -OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills. - -It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today’s society. - -This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners’ meeting before marking commenced. - -All examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated. - -Mark schemes should be read in conjunction with the published question papers and the report on the examination. - -$\circledcirc$ OCR 2020 - -# 11. Annotations - -
AnnotationMeaning
KUKnowledgeandUnderstandingpoint
DEVDeveloped Point: fully explained in a relevant way
EGAnecdotal/ common sense/ asociological point
APPApplication/interpretation. On questions 1 and 2: clear reference to source. On other questions: explicit application to the question (optional)
EVALCritical Evaluation point
Unsubstantiated/ undeveloped/ implicit / accurate without explanation/ substantiation
Unclear/confused/lackssense/inaccurate
REPRepetition
Irrelevant material/ not clearly focused on question set
Juxtaposition of alternative theories/ideas without direct/ explicit evaluation
- -# 12. Subject Specific Marking Instructions - -# INTRODUCTION - -Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes: - -the specification, especially the assessment objectives the question paper and its rubrics the texts which candidates have studied - -H580/03 - -the mark scheme. - -You should ensure that you have copies of these materials. - -You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners. - -Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader. - -# USING THE MARK SCHEME - -Please study this Mark Scheme carefully. The Mark Scheme is an integral part of the process that begins with the setting of the question paper and ends with the awarding of grades. Question papers and Mark Schemes are developed in association with each other so that issues of differentiation and positive achievement can be addressed from the very start. - -This Mark Scheme is a working document; it is not exhaustive; it does not provide ‘correct’ answers. The Mark Scheme can only provide ‘best guesses’ about how the question will work out, and it is subject to revision after we have looked at a wide range of scripts. - -The Examiners’ Standardisation Meeting will ensure that the Mark Scheme covers the range of candidates’ responses to the questions, and that all Examiners understand and apply the Mark Scheme in the same way. The Mark Scheme will be discussed and amended at the meeting, and administrative procedures will be confirmed. Co-ordination scripts will be issued at the meeting to exemplify aspects of candidates’ responses and achievements; the coordination scripts then become part of this Mark Scheme. - -Before the Standardisation Meeting, you should read and mark in pencil a number of scripts, in order to gain an impression of the range of responses and achievement that may be expected. - -Please read carefully all the scripts in your allocation and make every effort to look positively for achievement throughout the ability range. Always be prepared to use the full range of marks. - -# USING THE MARK SCHEME - -Please study this Mark Scheme carefully. The Mark Scheme is an integral part of the process that begins with the setting of the question paper and ends with the awarding of grades. Question papers and Mark Schemes are developed in association with each other so that issues of differentiation and positive achievement can be addressed from the very start. - -This Mark Scheme is a working document; it is not exhaustive; it does not provide ‘correct’ answers. The Mark Scheme can only provide ‘best guesses’ about how the question will work out, and it is subject to revision after we have looked at a wide range of scripts. - -The Examiners’ Standardisation Meeting will ensure that the Mark Scheme covers the range of candidates’ responses to the questions, and that all Examiners understand and apply the Mark Scheme in the same way. The Mark Scheme will be discussed and amended at the meeting, and administrative procedures will be confirmed. Co-ordination scripts will be issued at the meeting to exemplify aspects of candidates’ responses and achievements; the coordination scripts then become part of this Mark Scheme. - -Before the Standardisation Meeting, you should read and mark in pencil a number of scripts, in order to gain an impression of the range of responses and achievement that may be expected. - -Please read carefully all the scripts in your allocation and make every effort to look positively for achievement throughout the ability range. Always be prepared to use the full range of marks. - -
1580/03 QuestionMarkscheme AnswerMarksNovember2020 Guidance
1WithreferencetotheSourcesandyourwider sociologicalknowledge,explainthe positiveimpact of globaldevelopmentsindigitalcommunicationin9AO1:Knowledge and understanding NOTE: Contemporary examples should be credited in AO1 in
responding to major events.thesamewayassociological studies.
AO1:Knowledge and understanding Level4:5marksSupporting evidence may include:oppression,protests,natural disasters,epidemics etc.
The candidate demonstrates an excellent knowledge and understandingofarangeofsociologicalevidence;theevidenceis generallyaccurateanddetailed.Theinformationpresentedis relevantandsubstantiated.StudyonSouthernCaliforniaWildfires-socialmedia enables rapid response; Sutton, Palen and Shlovski In response to unexpected global events such as an earthquake,orflooding,social mediasitescanbe used as a means of raising money for victims. Facebook and Twitter - able to reach millions of people from all over the world as events are happening; Lopes
Level3:3-4marksThere will typically be two developed points of knowledge. The candidate demonstrates a good knowledge and understandingThe Facebook Effect - as Facebook spreads globally,
The information presented is in the most part relevant and supportedbysomeevidence.exceeding5oomillionusers-becomeinstrumentalin
political protests from Colombia to Iran; Kirkpatrick
well-developedpoints. Level2:2marksTherewill typicallybeonedevelopedpoint ofknowledge,or2lessFacebook, Twitter, may give a voice to individuals that
otherwise would not be heard; the Arab Spring social movements; Shirky, Jurgenson, Castells Social mediaprovides new sources of information that
cannotbeeasilycontrolledby authoritarianregimes
Thecandidatedemonstratesabasicknowledgeand(TufekciandWilson)
Developments in digital communicationhad enabled
range and detail. The response may lack clarity at times and
people with a'muted voice'to be heard, e.g. Malala
contain some inaccuracies. The response may be partial andYousafzai
undeveloped. Theinformation has somerelevance and is
Socialmediaisnowthemostefficientmethodof
supportedbylimitedevidence.delivering emergency response messages'; Collins
There will typically be one underdeveloped point of knowledge, or
Use of digital communications as a response to the
twoundevelopedpoints.
coronavirus pandemic and local restrictions - keeping
Level 1: 1 markpeople in touch; spreading information.
Reference to the role of digital communications in recent
The candidate demonstrates a limited knowledge and understanding ofsociological evidence.Verylittlerelevantprotests such as Hong Kong pro-democracy protests, the
sociologicalevidenceispresented;theresponsecontains
Black Lives Matter protests, climate change/ extinction
considerable inaccuracy and lacks clarity. The information is basic
rebellionprotestsetc.
Otherreasonableresponse.
- -
3 Mark scheme November2020
and communicated in an unstructured way. There will typically be one undeveloped point, or a vagueAO2:Application
representation.In this question Ao2 is awarded for use of source(s). For example:
0 marks No relevant knowledge or understanding.Globally, new forms of digital communication increasingly used for dealing with major events such as disasters (As in
AO2:ApplicationSource A) Increased access to resources across the world (As in
Level4:4marks The candidate demonstrates an excellent ability to apply relevantSource A) Official organisations aiming for a collective response,
applied material from at least one of the sources in a developed way.beginning to embrace social media channels digital communication;(AsinSourceA:USANationalWeather Service,2018)
There will typically be two developed references to the source material. Level 3: 3 marksFacebook in 2012 launched an emergency check-in App called‘Safety Check'.At the click of a buttonusers can let friends and familyknow they are safe in the event of a
The candidate demonstrates a good ability to apply source material. The candidate has occasionally applied material from at least one of the sources in a developed way, or frequently appliednatural disaster (As in Source A) Communicating in avirtual community,where there are no B)
the source(s) in an underdeveloped way. There will typically be one developed or two underdeveloped referencestothesourcematerial.major events (As in Source B) Mobilising support for protests (As in Source A)
Level 2: 2 marks The candidatedemonstrates a basic ability to applysource
material. The candidate has occasionally made use of material from the source(s) in an underdeveloped way.
Therewill typicallybe oneunderdeveloped ortwoundeveloped/
recycled/implicitreferencestothesourcematerial.
- -
03 Markscheme With reference to the Source(s) and your wider 10
sociological knowledge, evaluate the view that virtualAO1: Knowledge and understanding NOTE: Contemporary examples should be credited in AO1 in
communities have a positive impact on people's identity.the same way as sociological studies.
AO1: Knowledge and understandingVirtualcommunity-asocialnetworkofindividualsthatcreate an online community which can cross geographical, political
Level4:4marks The candidate demonstrates an excellent knowledge andand social lines. There should be a focus on identity - more generalised
understanding of a range of sociological material; the evidence is generally accurate and detailed. The material presented is relevantpositive impacts should be credited as underdeveloped.
andsupportedbyevidence. There will typically be two developed points supporting the view in the question.Supporting evidence may include: Virtual worlds canchange ideas about people's identity
Level 3: 3 marksand society, people can choose an alternative identity; Boellstorff Carter -'Cybercity', a place to meet people, widen and
The candidate demonstrates a good knowledge and understanding ofeither arangeofsociological materialorsomematerial instrengthen social networks and relationships, positive effect on self-regard and identity.
detail.Thematerialisgenerallyaccuratebutunderdeveloped,or narrow. The material presented is mostly relevant and supported by some evidence.People free from their physical bodies and constraints -
There will typically be one developed point or two underdevelopedTushnet Virtual communities allow people to present 'better' versions ofthemselves;Turkle
Level 2: 2 marks The candidate demonstrates a basic knowledge andSocial networking sites - individuals create virtual profiles - Baudrillard calls this a simulacra, a mediated version of our
identity; Durham and Kellner Feminists: in virtual communities women can transcend
contain some inaccuracies. The response may be partial and undevelopedbutwill have somerelevance.gender to focus on other aspects of their identity, becoming cyborgs; Haraway
Therewill typicallybe oneunderdeveloped or two undevelopedPeople can develop different aspects of their identity, we
areallcyborgs;Case Access to people across the world may help with
Level 1: 1mark
The candidate demonstrates a limited knowledge andethnicminoritybackgrounds;Nakamura
understandingofsociological material.VerylittlerelevantInteractionists: individuals give meaning to interactions
within virtual communities, influencing identity and the
largely based on common sense; the response containspresentationofself-Gardner&Davis
considerable inaccuracy and lacks clarity.
Other reasonable response.
Therewill typicallybeoneundevelopedpoint supporting theview
- -
/03Markscheme
in the question, or a vague representation.AO2:ApplicationIn this questionAo2 is awarded foruse of source(s)
0 marks: No relevant knowledge or understanding.For example:
A02: Application Level2:2marksPostmodernview:virtualcommunitieshave apositive impact on individual's real and virtual identity (Source B)
Thecandidate demonstrates an excellentorgood abilityto applyIn virtual communities people can choose how they present themselves, i.e. their virtual identity (Source B).
relevant source material. The candidate has explicitly applied material from at least one of the sources.People can transform their identity regardless of gender, ethnicity, social class, age or disability. (Source B)
Therewilltypicallybeatleastonedevelopedreferencetosource material.Concerns about the effects of virtual communities on both individuals'identities (Source B)
Level 1: 1 mark The candidate shows abasic or limited ability to applysourceWho controls the virtual communities and how are they regulated (SourceB),
material. The candidatehas implicitlyreferred toissues raised inAO3:Analysisandevaluation
TherewilltypicallybeatleastoneundevelopedreferencetoNOTE: Contemporary examples should be credited in AO3 in the same way as sociological studies.
sourcematerial.Arguments against the view that virtual communities have a
0 marks No relevant sociological application.positive impact on people's identity, may include:
AO3:Analysis and evaluation Level4:4marksRecent concerns raised about young people who reveal mental health issues in virtual communities being
encouraged to internalise harmful negative self -
evaluate sociological material. There is a range of developedperceptions. Young people are becoming more narcissistic; Gardner &
conclusion.evaluation points. There may be a critical and reasonedDavis
in the question.There will typically be two developed points challenging the viewThe i-generation spend less time with friends and have
higher evels of anxiety and loneliness; Twenge Cyberbullying has a negative effect on identity;
Level 3: 3 marksLivingstone, Haddon, Vincent, Mascheroni and Olafsson,
The candidate demonstrates a good ability to analyse and evaluateO'Keefe& ClarkePearson
sociological material. There is some analysis and evaluation,but itWe knowless about people's identity if we are unable to
see facial expressions, intonation of voice etc.; Justice and
explicit but brief conclusion.Jamieson
Virtual communities may be used illegitimately, for
There will typically be one developed point or two underdeveloped
example grooming young people. Likely to negatively
impact on identity for many years.
Level2:2marks
Indirect, online communication is isolating; Turkle
- -
The candidate demonstrates a basic ability to analyse and evaluatesociological material.Evaluationpoints arelikely tobe undeveloped, with little supporting evidence. If present, the conclusionislikelytobesummative. There will typically be one underdeveloped or two undeveloped Level1:1markFeminists:thosewhocreateandcontrolvirtual communities more likely to be male, and the communities mayreflectpatriarchalattitudesreinforcingsubordinate identities. Communities may also be a course of genderedcyberhate';Jane ·Other reasonable response.
Thecandidatedemonstratesalimitedabilitytoanalyseand evaluatesociologicalmaterial.Onlybriefand/orimplicitevaluation ispresent.There isunlikelytobeaconclusion. Therewill typicallybeoneundevelopedpointchallengingtheview in the question, or a vague representation. 0 marks: No relevant sociological evaluation or analysis. Evaluate the sociological view that all digital forms of16AO1: Knowledge and understanding NOTE: Contemporary examples should be credited in AO1 in the same way as sociological studies.
communication have a negative impact on social relationships. AO1: Knowledge and understanding Level4:4marks The candidate demonstrates an excellent knowledge and understanding of a range of sociological material; the material isRelevant material supporting the view that all digital forms of communications have a negative impact on social relationshipsmayinclude: · Families/ friends may be 'alone together' - in the same roombutusingdevicestocommunicatewithothers or
There will typically be two developed points supporting the view in the question. Level3: 3 marks The candidate demonstrates a good knowledge and understanding of either a range ofsociological material or some material inengage in other tasks; Turkle Offline relationships may suffer as a result of time spent with onlinerelationships
betweenindividualsOnlinesocialties tend tobeweaker thanrelationships formed and maintained offline;Kraut Social media potential to cause tension and conflict Solitary activities - e.g. such as surfing the internet, negative impact on social ties; Zhao
Therewill typicallybe onedevelopedpoint ortwounderdeveloped Level2:2marks Thecandidatedemonstrates abasicknowledge andLack of privacy or different ideas about privacy may cause conflict Childrenwhocannotaffordsmartphonesoraccessto
- -
Markscheme understanding of some sociological material. The response lacksNovember2020 internet; disadvantaged in peer interaction in all countries
including UK; Berry
contain some inaccuracies. The response may be partial and undeveloped.
points supporting the view in the question.remove mistakes; Case, Ellison. Disputes can occur when private information disclosed on-
line; Case
Level1:1mark The candidate demonstrates a limitedknowledge andSocial networking sites can expose the unfaithful: dynamic
understanding of sociological material.Very little relevantof the news being 'public' can have an negative impact on relationship; Miller
considerableinaccuracy and lacks clarity.'Twitter-related conflict' can have negative impact on
in the question, or a vague representation.relationships: emotional and physical cheating, breakup and divorce; Clayton
MillerProblem if people believe the truth of another lies more in what is posted online than face-to-face communication;
0 marks: No relevant knowledge or understanding.
AO2:Application Level 4: 4 marks· Other reasonable response.
The candidate demonstrates an excellent ability to apply relevant sociological material. The material relevant and is consistently andA02: Application The selected knowledge should be directly specific to the
frequently related to the question Level3: 3 marksquestion -view that all digital forms of communicationhave a negative impact on social relationships.
The candidate demonstrates a good ability to apply sociological material. The material is potentially relevant but is explicitly related
to the question only occasionally.AO3:Analysisandevaluation NOTE: Contemporary examples should be credited in AO3 in
Level2:2 marksthe same way as sociological studies.
The candidate demonstrates a basic ability to apply sociologicalRelevant material challenging the view that all digital forms of
material. The material is related to the question mainly implicitly/communications have a negative impact on social
and lacks focus on the question. The response may berelationships may include:
generalised.Digital forms of communication have helped strengthen
relationships between family and friends as time and
Level 1: 1 mark The candidate demonstrates a limited ability to apply sociological material. The material is tangential to the question and of marginalcontact. communicationallowedfriendsandfamilytomaintaintheirlocation no longer presents a barrier to maintaining During the coronavirus pandemic and lockdown, digital
- -
0 marks : No relevant sociological application. AO3:Analysisandevaluation Level4:7-8marks The candidate demonstrates an excellent ability to analyse and evaluatesociological material.Therearearangeofevaluation criticalandreasonedconclusion. Therewilltypicallybethreedevelopedpointsortwodeveloped pointsandoneunderdevelopedpointchallengingtheviewinthe question. Level3: 5-6 marks The candidate demonstrates a good ability to analyse and evaluate maybe underdeveloped or narrow. The candidate may reach a criticalbutbriefconclusion. Therewilltypicallybetwodevelopedpointsorthree underdeveloped points challenging the view in the question. Level2:3-4marks The candidate demonstrates a basic ability to analyse and evaluate.Evaluationpoints arelikelytobeundeveloped.The evaluationmay lack clarity and containsome inaccuracies/ confusion. If present, the conclusion is likely to be summative. Therewilltypicallybeonedevelopedortwounderdeveloped points challenging the view in the question. A range of undeveloped points may also be seen at this level. Level 1: 1-2 marks The candidate demonstrates a limited ability to analyse and evaluate. Only brief and/or implicit evaluation is present. There is unlikelytobe aconclusion. Therewilltypicallybeoneortwoundevelopedorvaguepoints whichcouldpotentiallychallengetheviewinthequestion. 0 marks: No relevant sociological evaluation or analysis.
- -
4In what ways is green crime a growing issue? PLEASEREFERTOAPPENDIX110AO1: Knowledge and understanding Greencrime,orenvironmentalcrime-formofdeviant behaviour which has in part become criminalised. Involves direct or indirect damage to the environment. NOTE: Examples should be credited in the same way as sociologicalstudies. To be credited as‘developed',material MUST be linked to green crime as a 'growing issue'. Relevantmaterialmayinclude: Types of green crime: pollution (air, land, water); deforestation;wildlifecrimeetc. Greencrime involves actionwhichcreatesharm to the environment, including plants and living species, this can occurataglobal level;UN2012,FrankoAas Patterns and trendsreveal overlapbetweenglobal organised crime and green crime - link to globalisation. Definitions and measurements vary across the world, e.g. countriesplace different emphases on combating green crime, ; yet, it is becoming increasingly recognised and recorded as anissue;UN 2012 Two forms of green crime - primary and secondary; South,
- -
5 deviance.Assess right realist explanations of crime and PLEASEREFERTOAPPENDIX220 include:anothercountryandpoisonitswatercoursesanddestroy forests. Green crime transcending political and national borders;FrankoAas Manufacturedrisks;Beck Examples - climate change, Chernobyl, Deepwater Horizon, Bhopal A02:Application The selected knowledge should be directly specific to the question-ways green crime is a growing issue. AO1: Knowledge and understanding Relevant material supporting right realist explanations may Right realist view that‘typical criminal' in police recorded statisticsbasicallyreflectsreality Takeconventionaldefinitionsofcrimeforgrantedand focus on explaining 'street crime'. Explaincrimeinterms of individual offender;Wilson Emphasise trends in crime related to age profile of populations, strength of economy, social and cultural change - largely uncontrollable, believe government cannotpreventcrime atsource;Wilson Crimeoccurswhenapotential criminal doesnotbelieve s/he will be caught; Wilson Environmentalfocus:Lowleveldisordercauses community to 'stay indoors', less informal control, crime mayescalate.Wilson Tipping points', some move out, crime levels increase; Wilson and Kelling Broken Windows study; Wilson and Kelling Wicked people exist; Wilson Individual traits compounded by inadequate socialisation, particularly when immediategratificationemphasised;
- -
H580/03Markscheme November2020 AO2:Application
The selected knowledge should be directly specific to the question - right realist explanations of crime and deviance.
Ao3:Analysisandevaluation
Candidates are expected to discuss weaknesses in the right realist explanations.
They may consider alternative theories such as: Left Realism
· Marxism
·Feminism Relevant material challenging right realist explanations may
include: Right realism plays down causes of offending, focusing on
failures in social control and punishment, left realist; Young
Rightrealismoverstatesoffenders'rationalityandcost-benefit calculations before committing a crime; Matthews
Right realism ignores corporate crime; Snider
Right realists fail to focus on social injustice, particularly the relationshipbetween police and community,aspects of
radical criminology; Lea and Young Right realists fail to recognise the interplay of the criminal
Matthews and Youngjustice system,criminal offender, general public and victim of crime in their explanations of crime; left realists; Right realists ignore the link between economic exclusion
andsocialexclusion-breakdownofcommunitiesand families and increase in crime and disorder; Young
ratherthanculture;BoxRight Realism ignores wider structural causes of crime and deviance, such as poverty. Marxists offer an alternative explanation - crime product of capitalism and exploitation
Feminists; right realists tend to ignore influence of
- -
11380/03Markscreinepatriarchalideologyonwomenwhoarecriminaland deviant;Carlen ·Other reasonable response.
6*Evaluate sociological explanations of the over- 40 representation of males in crime statistics. PLEASEREFERTOAPPENDIX3AO1:Knowledgeandunderstanding NOTE:someofthematerialbelowmaybeusedtochallenge othersociological explanationspresented.Material shouldbe credited either as AO1 or AO3, in the best interests of the candidate.Donotdouble-credit.
Candidatesareexpected todemonstrateknowledgeand understandingof malepatterns of crime They may refer to both official and unofficial sources including, Police recorded figures, CSEW, self-report surveys.
They may consider sociological explanations such as: Subcultural theories, · Feminism, New Right; · Relevant material may include: Importance of male subcultures, status frustration; Cohen Focal concerns, masculinity and deviance; Miller Role of primary and secondary agents of socialisation,
- -
1300/03MiarkScleie studies Validity of the chivalry thesis. Delinquency and drift- young men may engage in deviant behaviour, but not all the time; Matza Liberation theory (Adler) also, increase in girl gangs Consider whether the class and ethnicity of the malesfemales;Pollak Self-report studies suggest, female crime under-reported; Graham and Bowling Other reasonable response. AO2:Application The selected knowledge should be directly specific to the question-sociological explanations of over representation of males in crime statistics. AO3:Analysisandevaluation NOTE: some of the above mentioned material (listed in AO1) may be used to challenge other sociological explanations presented.Material shouldbecredited either asAO1 orAO3, inthebestinterestsofthecandidate.Donotdouble-credit. Candidateswill discussweaknesses and strengths in the explanationsof theoverrepresentationofmalesincrime statistics. They may consider theories such as: Left and Right realism Interactionism Liberation theory/ feminism Relevant material may include: Reliability of statistics, particularly official statistics. Apparent increase in female crime, Empirical evidence from victimisation and self-report
- -
H500/03 7In what ways are there gender differences in patterns of educational attainment? PLEASEREFERTOAPPENDIX1Markscnerme 10 sociological studies.Novermberzo20 AO1:Knowledge and understanding NOTE:Examples should be credited in the same way as Candidates may approach this question by focusing on actual patterns oron relevant concepts/reasons for the gender differences.
- -
1500705MiarkSerere Globally evidence of'gender apartheid' in education; the UN, UNESCO; 'Gender apartheid' being ignored; Mayer Otherreasonableresponse
8school.Assess the view that teacher labelling is the main 20 cause ofworking-classpupils'underachievementin PLEASEREFERTOAPPENDIX2 Relevant material supporting the view that teacher labelling is the main cause of working-class pupils' underachievement in school mayinclude: Interactionist explanations - negative teacher labelling, "ideal pupil'-middle class; Becker impact negatively on working class achievement; RosenthalandJacobson. Middle class pupils more likely to be positively labelled -AO2:Application The selected knowledge should be directly related to the specific question - gender differences in patterns of educationalattainment. AO1:Knowledge and understanding Candidates'knowledgeandunderstandingoflabellingmust relate specifically to working-class pupils' patterns of achievement. NOTE: Patterns of working class achievement -incidence of freeschoolmealsoftentakenasarobustindicatorof disadvantage today; however sociological arguments continue to reference social class. Candidates may consider different theoretical approaches such as: · Interactionism ·Neo-Marxism
- -
H580/03MarkschemeNovember2020 GillbornandYoudell
Candidateswill discussweaknessesof/challenges to theview that the view that teacher labelling is the main cause of working-class pupils' underachievement in school. They may consider theories such as: Functionalism Marxism Feminism Relevant material challenging the view may include: Studies on labelling are small-scale, issues of generalisation Deterministic nature of Interactionist explanations ofEffects of streaming and banding on a child's performance, incorporates notion - how we are labelled by others affects wayweseeourselves;Hargreaves,Ball;Keddie Teachers tend to judge pupils not only by ability but also social class; Dunne and Gazeley Other reasonable response. A02:Application Theselectedknowledge shouldbedirectlyrelated to the specific question - view that teacher labelling is the main cause of working-class pupils' underachievement in school. AO3:Analysisandevaluation
- -
H500/03MarkscnemeNoble; MurrayNovember
9Evaluate Functionalist explanations of the relationship betweeneducationandwork PLEASEREFERTOAPPENDIX340Parental support -key variable in explaining social class differences in attainment; Feinstein, JRF 2010, Douglas Influence of economic, social and cultural capital; Bourdieu, Reay Gender and ethnicity alsorelevant inunderstanding underachievement of working class pupils; Gilbourn Otherreasonableresponse. AO1: Knowledge and understanding NOTE:duetothepotentialnarrownessofthequestion, candidates may include New Right view in support of functionalist views.This material may be credited as AO1 or as AO3, whichever most benefits the candidate. Do not double-credit. Thereshouldbeaclearunderstandingofandfocuson
- -
MiarkSerereSociety in miniature, life in modern society individualistic, competitive;Parsons
They may consider alternative theories such as: Relevant material challenging the functionalist view mayRole allocation and sifting and sorting for future work roles; DavisandMoore Transferable skills; Davis and Moore, Parsons Role of formal and the hidden curriculum. Vocationalism - New Right views echo functionalist ideas; Murray,ChubbandMoe Educational policy 14-19 year olds since 1988, designed to prepare young people for the workplace, e.g. EBacc - includes skills transferable to workplace and work experience. Introduction of BTEC exams specifically focussed on
workplace Enterprise initiatives taught through secondary education; New Right Otherreasonableresponse. AO2:Application The selected knowledge should be directly related to the specific question - Functionalist explanations of the relationship between education and work AO3:Analysisandevaluation Candidates are expected to discuss weaknesses in functionalist explanations.
- -
include: Critique of idea that role allocation is inherently successful; Bowlesand Gintis Problematic nature of concepts such as 'meritocracy'; Gorard,Gerwitz Marxist critiques of functionalism e.g. correspondence principal, cultural capital, and inequality of opportunity; Bowles and Gintis, Bourdieu, Gillies Marxist critiques of policies designed to prepare young
- -
H580/03 10Markscneme In what ways is the significance of religion different between societies?10AO1:Knowledgeandunderstanding NOTE: Examples should be credited in the same way as
PLEASEREFERTOAPPENDIX1sociological studies. Relevant material may include: ·Global North becoming more religiously diverse; Centre for theStudy of Global Christianity(CSGC),2013 Global South - religious diversity decreasing e.g. experience growth in just one religion, typically Christianity orIslam;CSGC,2013 Win/Gallup study 2015: worldwide 63% citizens say they are religious, 22% say they are not, 11% atheists Resurgence of religion in China;World Religions Database (WRD) 2008, although just 7% of Chinese citizens said they were a religious person; Win/Gallup study 2015 Africa and Middle East, over 80% portray themselves as religious, compared to 71% from Eastern Europe and 71% Americans, 62% from Asia; Win/Gallup, 2015 Globally two thirds of people consider themselves to be religious; Leger
- -
affiliations, opinions and convictions; Lynch. NORC report 42 countries: belief highest amongst older people;NORC 2012 Western societies association of religious rituals withkey moments in life course; Davie and Vincent Other reasonableresponse A02:Application The selected knowledge should be directly related to the specific question -ways significance of religion differs betweensocietiesbeliefs; Bibby Western Europe - increase in privatised religious forms, including spirituality of the New Age; Kendal Project Islam among minority ethnic groups in the UK possibly response to revival of Islam globally; Kepel Among young people: Britain, Sweden, Finland, Poland, Russia and UsA -'alternative ways of conceptualising belief' developing, they use 'belief' to refer to - identities,
11 *Assess feminist views of the role of religion in 20 society. PLEASEREFERTOAPPENDIX2AO1:Knowledge and understanding Candidates'knowledge and understanding should relate specifically to the feminist views of the role of religion in society. Candidates may consider different theoretical approaches such as:
Liberalfeminism Marxist feminism Radical feminism Relevant material may include: Religion serves needs of a particular group - in this case men, religions usually patriarchal institutions; radical feminists.
- -
Religious beliefs function as patriarchal ideology, the eyes of their god; Simone de Beauvoir Browne,Woodhead rituals and practices is patriarchal. therefore change possible; Armstrong ElSaadawilegitimising female subordination, oppression and exploitation. Christianity is a 'patriarchal myth'; Daly Women deceived by religion into think everyone equal in Marxist feminism: religion promotes false consciousness in a gendered form, religion serves to reinforce and justify patriarchal roleswithin thefamily;deBeauvoir Radical feminists - concept of'stained-glass ceiling' within from rising up religious hierarchy, e.g. Roman Catholicism womencannotbecomepriests,althoughwomenoften have a responsibility for religious nurture in the home ; Feminist views - nature of religious symbolism, teachings, Patriarchal dominance of men in positions of leadership in and emphasises their marginalised position in society, however in early religions women were central characters, Some argue practices carried out in the name of religion, suchasfemalecircumcisionwithinIslamiccountriesrests onaparticularinterpretationof theQur'an;therefore,it is the nature of society, i.e. patriarchy that lies at the root of the subordination and coincided with rise of monotheism; Liberal feminist view, contradiction between classical teachings of religions about equality of individuals and reality of women's lives mirrored in religion, suggest
- -
580/03Markscheme
menstruation; HolmNotion of a woman as sinful, temptress, in need of control
scattered in religious texts. Many religions legitimate and regulate women's traditional
domestic and reproductive role i.e. the Catholic Church bans abortion and artificial contraception. Liberal feminism, greater gender equality in society mirrored in reform of religious organisations e.g. introduction of womenpriests and bishops in Church of
England. Other reasonable response.
A02:ApplicationThe selected knowledge shouldbedirectly related tothe
in societyspecific question - feminist explanations of the role of religion
AO3: Analysis and evaluation
explanations.Candidates are expected to discuss weaknesses in feminist
FunctionalismThey may consider alternative theories such as:
Marxism Weberianism
Post feminism
include:Relevant material challenging feminist explanations may
Not all religions patriarchal, e.g. Liberal wing of the
Church of England encourages ordination of women and
legitimacy of homosexuality; Postfeminists.
Critique of Marxist and radical feminism, religion can help promote gender equality. ‘Religious forms of feminism', ways women can use religion to gain freedom; Woodhead,
- -
enter public sphere without losing culture and history; Woodhead Religious Society of Friends (Quakers)- Christian denomination with strong tradition of equality between men andwomen. Similarly,Sikhism originated in thePunjab in sixteenth century, strong tradition of equality between men and women, although most religious leaders are men Weberians and Liberation theologists focus on role of religion in bringing about change, therefore may criticise determinism of radical and Marxist feminists. Ethnocentric view: The burka may be interpreted as liberating Feminist views may be oversimplification of complex relationship; Davie and Walter, Watson Deprivation theory goes against experience of some deprived groups and white working-class men have low rates of religiosity; Davie and Walter Functionalists: role of religion to ensure social solidarity, strengthen bonds and prevent anomie,rather than oppression; Durkheim Marxists: role of religion ‘opium of the people' to supress the masses, not specifically females: Marx
12Evaluate the views of anti-secularisation theorists. PLEASEREFERTOAPPENDIX3AO1:Knowledgeandunderstanding Candidates will consider the view of the anti-secularisation theorists that the UK is not a secular in society. They may consider religious belief, religious practice, power and influence of religion in society.
- -
H580/03Markscneme such as: Anti-secularisationtheorists Postmodernviews Functionalism - religion still provides meaning; Parsons Relevant material may include: Over-emphasis on mainstream Christian religious groups - overlooks increased attendance in Baptist Churches, Pentecostal churches etc (Brierley). Idea there was an'age of faith'- illusion, partly created by focus on religious behaviour of elite groups in society; Hamilton Modern international affairs cannot be comprehended without understanding of religion; Kepel Global patterns - USA influence of New Christian Right; Roof and McKinne. Religion as protest: Martin. Latin America and liberation theology; against apartheidinSouthAfrica. Role of faith in Arab uprising. UK - rise in faith schools; Conservative government policy Religious Education remains legal requirement in UK schools
- -
globally; Davie Decline of established religion in developed world - not echoedglobally.Davie Berger - the world is furiously religious'. Religion less important when people feel secure about their survival and well-being, this can change; Norris and Inglehart Rate of decline in church membership and participation declined in last 15 years in UK, churches with a missionary zealincreasing;Brierley
World has more people with traditional religious beliefs than ever before; Norris and Inglehart Manypeople in theUSA continue to attend church and profess Christian faith. Migrant groups bring religious practices to UK; e.g. Pentecostal groups, Islam - fastest growing religion in Britain; Christianity in its Global Context 1970-2020 report, 2013 Global social changes enhancing importance of religion for some young Muslims; Moore GrowthinNRMs,oldersectssuchasJehovah'sWitnesses and Mormons, halting tide towards secularisation. Scandinavian countries most engage with religion at a vicariouslevel-ritualsandpracticesperformedbya minority on behalf of the majority are understood and approved of; Davie Few people define themselves as atheists; Census 2011 When tragedies occur many attend traditional places of
- -
·Pro-secularisation theorists Relevant material may include: · Secularisation: 'the process whereby religious thinking, practices and institutions lose social significance'; Wilson Changes in society due to rationalisation and societalisation, led to secularisation; religious institutions have lost significance; Wilson Science as the Enlightenment that challenged faith; Comte-Scienceasthetruth. Secularisationoccurredduetostructuralandsocial differentiation, individualism, societisation, schisms, pluralismand technology;Bruce Notions of a 'privatised religion' and 'holistic milieu' (Heelas)challenged-shift from‘belief in God'tobelief in a spirit or life force is evidence of secularization, influence of religion has declined; Bruce People increasingly marking important life events outside religious institutions; Martin Church becoming side-lined by secular leaders; Martin Fundamentalism rooted in economic, political system, not religion; Armstrong Pro-secularisation theorists suggest attendance in church on a Sunday is historically an important indicator of religious practice and this is declining; Brierley Decrease in church attendance figures evidence of decline in mainstream Christianity.AO2:Application The selected knowledge should be directly related to the
specific question -views of anti-secularisation theorists AO3:Analysisand evaluation Candidates are expected to discuss alternatives/weaknesses
oftheviewsofanti-secularisationtheorists: They may consider theories such as:
- -
New churches are opening, but more closing, so net decline. Decline in attendance at key religious ceremonies - baptisms, marriages, funerals; Sanderson, British Religion inNumbers Church attendance socially approved of in UsA, people may exaggerate their attendance; Hadaway While US presidents declare adherence to the Christian faith, British Prime Ministers are more reluctant, spokesman for Tony Blair 'We don't do God' ; Brown Growth in NRMs, older sects such as Jehovah's Witnesses and Mormons, does not compensate for the declining numbers from larger religious institutions; - evidence of secularisation;Wilson,Bruce NSMs “islands in a secular sea' (Berger), almost irrelevant to modern society; Wilson Fundamentalism rooted in economic, political system, not religion; Armstrong Decline in attendance greater amongst the young, suggesting - as congregations age and fewer young people join, they could die out altogether; Brierley Development of secularisation can be uneven, but will occur;Bruce Alternative view: religions remain powerful and influential in different places but patterns of decline in the UK are significant: Casanova Otherreasonableresponse.
- -# H580/03 APPENDIX 1 GENERIC MARKSCHEME FOR OPTIONS QUESTIONS 4, 7 and 10 - -AO1: Knowledge and understanding (6 marks) - - -
LevelMarksGeneric Mark Scheme questions 4,7 and 10
46The candidate demonstrates an excellent knowledge and understanding of a range of sociological material; the material is generally accurate and detailed.
There will typically be three developed knowledge points, or two developed points and one underdeveloped point There is a well-developed line of reasoning which is clear and logically structured. The response is relevant and substantiated.
34-5The candidate demonstrates a good knowledge and understanding of either a range of sociological material or some material in detail. The material is generally accurate but underdeveloped or narrow.
There will typically be at least one developed knowledge point with others which are underdeveloped, or at least three underdevelopedpoints.
22-3bysome evidence.
undeveloped. Therewill typicallybe one ortwounderdeveloped points, ora rangeof undeveloped points.
11The candidate demonstrates a limited knowledge and understanding of sociological material. Very little relevant sociological
material is presented; the response contains considerable inaccuracy and lacks clarity. Therewill typicallybe one undeveloped point or a vague representation.
The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the
relationship to the evidencemay not beclear.
00Norelevantsociologicalknowledgeorunderstanding
- -
LevelMarksGenericMarkSchemequestions 4,7 and 10
44The candidate demonstrates an excellent ability to apply relevant sociological material. The material is consistently and frequently related to the question.
33The candidate demonstrates a good ability to apply sociological material. The material is generally relevant but is explicitly related to thequestiononly occasionally.
22The candidate demonstrates a basic ability to apply sociological material. The material is related to the question mainly implicitly and lacks focus on the question. The response may be generalised.
11The candidate demonstrates a limited ability to apply sociological material. The material is tangential to the question and of marginalimportance.
00 Norelevantapplication.
- -H580/03 APPENDIX 2 GENERIC MARKSCHEME FOR OPTIONS QUESTIONS 5, 8 and 11 AO1: Knowledge and understanding (8 marks) - - -
Level 4Marks 7-8GenericMarkSchemequestions5,8and11 The candidate demonstrates an excellent knowledge and understanding of a range of sociological material; the material is
35-6generally accurate and detailed. There will typically be three developed knowledge points, or two developed points and one underdeveloped point.
There is a well-developed line of reasoning which is clear and logically structured. The information is relevant and substantiated.
The candidate demonstrates a good knowledge and understanding of either a range of sociological material or some material in detail. The material is generally accurate but underdeveloped or narrow.
Therewilltypicallybeatleastonedevelopedknowledgepointwithotherswhichareunderdeveloped,oratleastthree underdevelopedpoints.
evidence.
23-4The candidate demonstrates a basic knowledge and understanding of some sociological material. The response lacks range and
There will typically be one or two underdeveloped points, or a range of undeveloped points.
11-2Theinformation has some relevance and is presented with basic structure.Theresponse is supported bybasic evidence.
material is presented; the response contains considerable inaccuracy and lacks clarity.
The information is basic and communicated in an unstructured way. The response is supported by limited evidence and the
0 0relationship totheevidencemay not beclear. No relevant sociological knowledge or understanding.
- -
LevelMarksGenericMarkSchemequestions5,8and11
44The candidate demonstrates an excellent ability to apply relevant sociological material.The material is consistently and frequentlyrelatedtothequestion.
33The candidate demonstrates a good ability to applysociological material.The material isgenerallyrelevant but is explicitly relatedtothequestiononlyoccasionally.
22The candidate demonstrates a basic ability to apply sociological material. The material isrelated to thequestion mainlyimplicitly and lacks focus on the question. The response may be generalised.
11Thecandidatedemonstratesalimitedabilitytoapplysociologicalmaterial.Thematerialistangentialtothequestionand of marginalrelevance.
00Norelevantapplication.
- -AO3: Analysis and Evaluation (4 marks) - - -
LevelMarksGeneric MarkScheme questions 5,8 and 11
4 37-8 5-6The candidate demonstrates an excellent ability to analyse and evaluate sociological material. There are a range of evaluation points which are well developed, giving the response a reflective tone. The candidate may reach a critical and reasoned conclusion. There will typically be three developed evaluation points, or two developed points and one underdeveloped point. thesemaybeunderdeveloped.Thecandidatemayreachacriticalbutbriefconclusion.
23-4There will typically be at least one developed evaluation point with others which areunderdeveloped, or at least three underdevelopedpoints. The candidate demonstrates a basic ability to analyse and evaluate. Evaluation points are likely to be anecdotal and/or undeveloped or completely through juxtaposition. The evaluation may lack clarity and contain some inaccuracies/confusion. If
11-2present, the conclusion is likelyto be summative. Therewill typicallybe oneortwounderdevelopedpoints,orarangeofundevelopedpoints. The candidate demonstrates a limited ability to analyse and evaluate. Only implicit evaluation is present. There is unlikely to be a unsupported.
00Therewill typicallybe oneundevelopedpointor anassertivetone. Norelevantanalysisorevaluation.
- -H580/03 APPENDIX 3 GENERIC MARKSCHEME FOR OPTIONS QUESTIONS 6, 9 and 12 AO1: Knowledge and understanding (16 marks) - - -
Level 4Marks 13-16GenericMarkSchemequestions6,9and 12 The candidate demonstrates an excellent knowledge and understanding of a range of sociological material; the material is generallyaccurateand detailed.
39-12There will typically be four well-developed knowledge points, or three well-developed points towards the bottom of the level. There is awell-developed line of reasoningwhich isclear and logically structured.Theinformation is relevant and substantiated. The candidate demonstrates a good knowledge and understanding of either a range of sociological material or some material in detail. The material is generally accuratebutunderdeveloped or narrow.
Towards the bottom of the level there may be one well-developed knowledge point (depth). There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported bysomeevidence.
25-8The candidate demonstrates a basic knowledge and understanding of some sociological material. The response lacks range and There will typically be three or more undeveloped/ unsubstantiated points or one-two underdeveloped points. The informationhas some relevance and is presented with a basic structure.The response is supported bybasic evidence.
11-4The candidate demonstrates a limited knowledge and understanding of sociological material. Very little relevant sociological material is presented; the response contains considerable inaccuracy and lacks clarity. The information is limited and communicated in an unstructured way. The response is supported by limited evidence and the
0 0relationshiptotheevidencemaynotbeclear. Norelevantknowledge or understanding.
- -
LevelMarksGenericMarkSchemequestions6,9and 12
47-8The candidate demonstrates an excellent ability to apply relevantsociological material. The material is consistently and frequentlyrelatedtothequestion.
35-6The candidate demonstrates a good ability to apply sociological material. The material is generally relevant but is explicitly related
23-4tothequestiononlyoccasionally. The candidate demonstrates a basic ability to apply sociological material. The material is related to the question mainly implicitly
11-2and lacks focus on the question. The response may be generalised. The candidate demonstrates a limited ability to apply sociological material. The material is tangential to the question and of marginalrelevance.
00Norelevantsociologicalapplication.
- -AO3: Analysis and Evaluation (16 marks) - - -
LevelMarksGenericMarkSchemequestions6,9and12
413-16The candidate demonstrates an excellent ability to analyse and evaluate sociological material. There are a range of evaluation There will typically be four well-developed evaluation points, or three well-developed points towards the bottom of the level.
39-12There will typically be three or four evaluation points which may be less well developed in places, or two well-developed points! Towards thebottom ofthelevel there maybe one well-developed evaluationpoint (depth).
25-8The candidate demonstrates a basic ability to analyse and evaluate. Evaluation points are likely to be anecdotal, and/or undeveloped or completely through juxtaposition. The evaluation may lack clarity and contain some inaccuracies/confusion. If present, the conclusion is likely tobe summative. Therewill typicallybe threeormoreundeveloped/unsubstantiatedpointsor oneunderdevelopedpoint.
01-4The candidate demonstrates a limited ability to analyse and evaluate. Only implicit evaluation is present. If present, the conclusion islikelytobeassertedandunsupported. Therewill typicallybe oneortwo undeveloped/unsubstantiatedpointsoran assertivetone.
0Norelevantsociologicalevaluationoranalysis.
- -# OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA - -OCR Customer Contact Centre - -Education and Learning -Telephone: 01223 553998 -Facsimile: 01223 552627 -Email: general.qualifications@ocr.org.uk - -www.ocr.org.uk \ No newline at end of file diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/H580_03_November_2020_1739552419_content_list.json b/pdf_output/H580_03_November_2020_1739552419/auto/H580_03_November_2020_1739552419_content_list.json deleted file mode 100644 index b096766f2557900c78561a11172b7e2af77895a0..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/H580_03_November_2020_1739552419_content_list.json +++ /dev/null @@ -1,712 +0,0 @@ -[ - { - "type": "text", - "text": "Wednesday 21 October 2020 – Morning ", - "text_level": 1, - "page_idx": 0 - }, - { - "type": "text", - "text": "A Level Sociology ", - "text_level": 1, - "page_idx": 0 - }, - { - "type": "text", - "text": "H580/03 Debates in contemporary society ", - "page_idx": 0 - }, - { - "type": "text", - "text": "Time allowed: 2 hours 15 minutes ", - "page_idx": 0 - }, - { - "type": "text", - "text": "You must have: • the OCR 12-page Answer Booklet ", - "page_idx": 0 - }, - { - "type": "text", - "text": "INSTRUCTIONS ", - "text_level": 1, - "page_idx": 0 - }, - { - "type": "text", - "text": "Use black ink. \nWrite your answer to each question in the Answer Booklet. The question numbers must be clearly shown. \n• Fill in the boxes on the front of the Answer Booklet. \nAnswer all the questions in Section A. \nChoose one option in Section B and answer all the questions for that option. ", - "page_idx": 0 - }, - { - "type": "text", - "text": "INFORMATION ", - "text_level": 1, - "page_idx": 0 - }, - { - "type": "text", - "text": "• The total mark for this paper is 105. \n• The marks for each question are shown in brackets [ ]. \n• Quality of extended response will be assessed in questions marked with an asterisk $(^{\\star})$ . \n• This document has 4 pages. ", - "page_idx": 0 - }, - { - "type": "text", - "text": "ADVICE ", - "text_level": 1, - "page_idx": 0 - }, - { - "type": "text", - "text": "Read each question carefully before you start your answer. ", - "page_idx": 0 - }, - { - "type": "text", - "text": "2 ", - "text_level": 1, - "page_idx": 1 - }, - { - "type": "text", - "text": "SECTION A ", - "text_level": 1, - "page_idx": 1 - }, - { - "type": "text", - "text": "Read the source material and answer all the questions in Section A. ", - "page_idx": 1 - }, - { - "type": "text", - "text": "Source A ", - "text_level": 1, - "page_idx": 1 - }, - { - "type": "text", - "text": "Recent research suggests that advances in digital forms of communication have transformed the lives of individuals in the UK and across the world. For example, when natural disasters such as tsunamis, volcanic eruptions and extreme flooding occur, social media enables a rapid response. For example, following the 2012 hurricane in Canada, Facebook launched an emergency check-in App called ‘Safety Check’. At the click of a button users can let friends and family know they are safe in the event of a natural disaster. Despite initial reservations, official organisations now use social media to help tackle disasters. In 2018, the USA National Weather Service asked people to use Facebook and Twitter to spread important safety messages and posts about tsunamis. Social media has also been effective in mobilising support for protests. Digital forms of communication such as social media have also helped strengthen relationships as time and location no longer present a barrier to maintaining contact across the world. ", - "page_idx": 1 - }, - { - "type": "text", - "text": "Source B ", - "text_level": 1, - "page_idx": 1 - }, - { - "type": "text", - "text": "Through advances in digital forms of communication people can now connect with others by joining online communities. Communicating in these virtual communities, where there are no geographical boundaries, is quick and easy. For example, support may be generated very quickly in response to major events. According to postmodern writers, people can share interests and also create and transform their identities in the virtual community, regardless of gender, ethnicity, social class, age or disability. However, while some postmodern writers have embraced the development of a virtual world, other sociologists have been more cautious worrying about issues such as who controls the virtual communities and how are they regulated? Also, concerns are often raised about the effects of virtual communities on both individual’s identities and their relationships with those in their offline world such as friends, family and peers. ", - "page_idx": 1 - }, - { - "type": "text", - "text": "1\\* With reference to both sources and your wider sociological knowledge, explain the positive impact of global developments in digital communication in responding to major events. [9] ", - "page_idx": 1 - }, - { - "type": "text", - "text": "2 With reference to the source(s) and your wider sociological knowledge, evaluate the view that virtual communities have a positive impact on people’s identity. [10] ", - "page_idx": 1 - }, - { - "type": "text", - "text": "3 Evaluate the sociological view that all digital forms of communication have a negative impact on social relationships. [16] ", - "page_idx": 1 - }, - { - "type": "text", - "text": "SECTION B ", - "text_level": 1, - "page_idx": 2 - }, - { - "type": "text", - "text": "Choose one option from Section B and answer all the questions for that option. ", - "page_idx": 2 - }, - { - "type": "text", - "text": "OPTION 1 ", - "text_level": 1, - "page_idx": 2 - }, - { - "type": "text", - "text": "Crime and deviance ", - "text_level": 1, - "page_idx": 2 - }, - { - "type": "text", - "text": "${\\pmb{4}}^{\\star}$ In what ways is green crime a growing issue? [10] $\\pmb{5}^{\\star}$ Assess right realist explanations of crime and deviance. [20] ${\\pmb6}^{\\star}$ Evaluate sociological explanations of the over-representation of males in crime statistics. [40] ", - "page_idx": 2 - }, - { - "type": "text", - "text": "OPTION 2 ", - "text_level": 1, - "page_idx": 2 - }, - { - "type": "text", - "text": "Education ", - "text_level": 1, - "page_idx": 2 - }, - { - "type": "text", - "text": "$7^{\\star}$ In what ways are there gender differences in patterns of educational attainment? [10] ${\\mathfrak{s}}^{\\star}$ Assess the view that teacher labelling is the main cause of working-class pupils’ underachievement in school. [20] $\\9^{\\star}$ Evaluate functionalist explanations of the relationship between education and work. [40] ", - "page_idx": 2 - }, - { - "type": "text", - "text": "OPTION 3 ", - "text_level": 1, - "page_idx": 2 - }, - { - "type": "text", - "text": "Religion, belief and faith ", - "text_level": 1, - "page_idx": 2 - }, - { - "type": "text", - "text": "${\\bf10^{*}}$ In what ways is the significance of religion different between societies? ", - "page_idx": 2 - }, - { - "type": "text", - "text": "$11^{\\star}$ Assess feminist views of the role of religion in society. [20] ", - "page_idx": 2 - }, - { - "type": "text", - "text": "$12^{\\star}$ Evaluate the views of anti-secularisation theorists. [40] ", - "page_idx": 2 - }, - { - "type": "text", - "text": "Copyright Information ", - "text_level": 1, - "page_idx": 3 - }, - { - "type": "text", - "text": "OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. ", - "page_idx": 3 - }, - { - "type": "text", - "text": "If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. ", - "page_idx": 3 - }, - { - "type": "text", - "text": "r queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA. ", - "page_idx": 3 - }, - { - "type": "text", - "text": "OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. ", - "page_idx": 3 - }, - { - "type": "text", - "text": "GCE ", - "text_level": 1, - "page_idx": 4 - }, - { - "type": "text", - "text": "Sociology ", - "text_level": 1, - "page_idx": 4 - }, - { - "type": "text", - "text": "H580/03: Debates in contemporary society ", - "page_idx": 4 - }, - { - "type": "text", - "text": "Advanced GCE ", - "page_idx": 4 - }, - { - "type": "text", - "text": "Mark Scheme for November 2020 ", - "text_level": 1, - "page_idx": 4 - }, - { - "type": "text", - "text": "OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills. ", - "page_idx": 5 - }, - { - "type": "text", - "text": "It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today’s society. ", - "page_idx": 5 - }, - { - "type": "text", - "text": "This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners’ meeting before marking commenced. ", - "page_idx": 5 - }, - { - "type": "text", - "text": "All examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated. ", - "page_idx": 5 - }, - { - "type": "text", - "text": "Mark schemes should be read in conjunction with the published question papers and the report on the examination. ", - "page_idx": 5 - }, - { - "type": "text", - "text": "$\\circledcirc$ OCR 2020 ", - "page_idx": 5 - }, - { - "type": "text", - "text": "11. Annotations ", - "text_level": 1, - "page_idx": 6 - }, - { - "type": "table", - "img_path": "images/27a689b69b5444fd6f42fa0e9a449d884977523c7a74962e82aecd8187e421f8.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
AnnotationMeaning
KUKnowledgeandUnderstandingpoint
DEVDeveloped Point: fully explained in a relevant way
EGAnecdotal/ common sense/ asociological point
APPApplication/interpretation. On questions 1 and 2: clear reference to source. On other questions: explicit application to the question (optional)
EVALCritical Evaluation point
Unsubstantiated/ undeveloped/ implicit / accurate without explanation/ substantiation
Unclear/confused/lackssense/inaccurate
REPRepetition
Irrelevant material/ not clearly focused on question set
Juxtaposition of alternative theories/ideas without direct/ explicit evaluation
\n\n", - "page_idx": 6 - }, - { - "type": "text", - "text": "12. Subject Specific Marking Instructions ", - "text_level": 1, - "page_idx": 6 - }, - { - "type": "text", - "text": "INTRODUCTION ", - "text_level": 1, - "page_idx": 6 - }, - { - "type": "text", - "text": "Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes: ", - "page_idx": 6 - }, - { - "type": "text", - "text": "the specification, especially the assessment objectives the question paper and its rubrics the texts which candidates have studied ", - "page_idx": 6 - }, - { - "type": "text", - "text": "H580/03 ", - "page_idx": 7 - }, - { - "type": "text", - "text": "the mark scheme. ", - "page_idx": 7 - }, - { - "type": "text", - "text": "You should ensure that you have copies of these materials. ", - "page_idx": 7 - }, - { - "type": "text", - "text": "You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners. ", - "page_idx": 7 - }, - { - "type": "text", - "text": "Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader. ", - "page_idx": 7 - }, - { - "type": "text", - "text": "USING THE MARK SCHEME ", - "text_level": 1, - "page_idx": 7 - }, - { - "type": "text", - "text": "Please study this Mark Scheme carefully. The Mark Scheme is an integral part of the process that begins with the setting of the question paper and ends with the awarding of grades. Question papers and Mark Schemes are developed in association with each other so that issues of differentiation and positive achievement can be addressed from the very start. ", - "page_idx": 7 - }, - { - "type": "text", - "text": "This Mark Scheme is a working document; it is not exhaustive; it does not provide ‘correct’ answers. The Mark Scheme can only provide ‘best guesses’ about how the question will work out, and it is subject to revision after we have looked at a wide range of scripts. ", - "page_idx": 7 - }, - { - "type": "text", - "text": "The Examiners’ Standardisation Meeting will ensure that the Mark Scheme covers the range of candidates’ responses to the questions, and that all Examiners understand and apply the Mark Scheme in the same way. The Mark Scheme will be discussed and amended at the meeting, and administrative procedures will be confirmed. Co-ordination scripts will be issued at the meeting to exemplify aspects of candidates’ responses and achievements; the coordination scripts then become part of this Mark Scheme. ", - "page_idx": 7 - }, - { - "type": "text", - "text": "Before the Standardisation Meeting, you should read and mark in pencil a number of scripts, in order to gain an impression of the range of responses and achievement that may be expected. ", - "page_idx": 7 - }, - { - "type": "text", - "text": "Please read carefully all the scripts in your allocation and make every effort to look positively for achievement throughout the ability range. Always be prepared to use the full range of marks. ", - "page_idx": 7 - }, - { - "type": "text", - "text": "USING THE MARK SCHEME ", - "text_level": 1, - "page_idx": 8 - }, - { - "type": "text", - "text": "Please study this Mark Scheme carefully. The Mark Scheme is an integral part of the process that begins with the setting of the question paper and ends with the awarding of grades. Question papers and Mark Schemes are developed in association with each other so that issues of differentiation and positive achievement can be addressed from the very start. ", - "page_idx": 8 - }, - { - "type": "text", - "text": "This Mark Scheme is a working document; it is not exhaustive; it does not provide ‘correct’ answers. The Mark Scheme can only provide ‘best guesses’ about how the question will work out, and it is subject to revision after we have looked at a wide range of scripts. ", - "page_idx": 8 - }, - { - "type": "text", - "text": "The Examiners’ Standardisation Meeting will ensure that the Mark Scheme covers the range of candidates’ responses to the questions, and that all Examiners understand and apply the Mark Scheme in the same way. The Mark Scheme will be discussed and amended at the meeting, and administrative procedures will be confirmed. Co-ordination scripts will be issued at the meeting to exemplify aspects of candidates’ responses and achievements; the coordination scripts then become part of this Mark Scheme. ", - "page_idx": 8 - }, - { - "type": "text", - "text": "Before the Standardisation Meeting, you should read and mark in pencil a number of scripts, in order to gain an impression of the range of responses and achievement that may be expected. ", - "page_idx": 8 - }, - { - "type": "text", - "text": "Please read carefully all the scripts in your allocation and make every effort to look positively for achievement throughout the ability range. Always be prepared to use the full range of marks. ", - "page_idx": 8 - }, - { - "type": "table", - "img_path": "images/1eedd10ad3342d37c389cbe88c903a84f0be9b8ba45282eb581a49ced1fa150e.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
1580/03 QuestionMarkscheme AnswerMarksNovember2020 Guidance
1WithreferencetotheSourcesandyourwider sociologicalknowledge,explainthe positiveimpact of globaldevelopmentsindigitalcommunicationin9AO1:Knowledge and understanding NOTE: Contemporary examples should be credited in AO1 in
responding to major events.thesamewayassociological studies.
AO1:Knowledge and understanding Level4:5marksSupporting evidence may include:oppression,protests,natural disasters,epidemics etc.
The candidate demonstrates an excellent knowledge and understandingofarangeofsociologicalevidence;theevidenceis generallyaccurateanddetailed.Theinformationpresentedis relevantandsubstantiated.StudyonSouthernCaliforniaWildfires-socialmedia enables rapid response; Sutton, Palen and Shlovski In response to unexpected global events such as an earthquake,orflooding,social mediasitescanbe used as a means of raising money for victims. Facebook and Twitter - able to reach millions of people from all over the world as events are happening; Lopes
Level3:3-4marksThere will typically be two developed points of knowledge. The candidate demonstrates a good knowledge and understandingThe Facebook Effect - as Facebook spreads globally,
The information presented is in the most part relevant and supportedbysomeevidence.exceeding5oomillionusers-becomeinstrumentalin
political protests from Colombia to Iran; Kirkpatrick
well-developedpoints. Level2:2marksTherewill typicallybeonedevelopedpoint ofknowledge,or2lessFacebook, Twitter, may give a voice to individuals that
otherwise would not be heard; the Arab Spring social movements; Shirky, Jurgenson, Castells Social mediaprovides new sources of information that
cannotbeeasilycontrolledby authoritarianregimes
Thecandidatedemonstratesabasicknowledgeand(TufekciandWilson)
Developments in digital communicationhad enabled
range and detail. The response may lack clarity at times and
people with a'muted voice'to be heard, e.g. Malala
contain some inaccuracies. The response may be partial andYousafzai
undeveloped. Theinformation has somerelevance and is
Socialmediaisnowthemostefficientmethodof
supportedbylimitedevidence.delivering emergency response messages'; Collins
There will typically be one underdeveloped point of knowledge, or
Use of digital communications as a response to the
twoundevelopedpoints.
coronavirus pandemic and local restrictions - keeping
Level 1: 1 markpeople in touch; spreading information.
Reference to the role of digital communications in recent
The candidate demonstrates a limited knowledge and understanding ofsociological evidence.Verylittlerelevantprotests such as Hong Kong pro-democracy protests, the
sociologicalevidenceispresented;theresponsecontains
Black Lives Matter protests, climate change/ extinction
considerable inaccuracy and lacks clarity. The information is basic
rebellionprotestsetc.
Otherreasonableresponse.
\n\n", - "page_idx": 9 - }, - { - "type": "table", - "img_path": "images/876b5b1f56328dff70344372da3f5e14df10532436da17f730d01a5da9f00a0f.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
3 Mark scheme November2020
and communicated in an unstructured way. There will typically be one undeveloped point, or a vagueAO2:Application
representation.In this question Ao2 is awarded for use of source(s). For example:
0 marks No relevant knowledge or understanding.Globally, new forms of digital communication increasingly used for dealing with major events such as disasters (As in
AO2:ApplicationSource A) Increased access to resources across the world (As in
Level4:4marks The candidate demonstrates an excellent ability to apply relevantSource A) Official organisations aiming for a collective response,
applied material from at least one of the sources in a developed way.beginning to embrace social media channels digital communication;(AsinSourceA:USANationalWeather Service,2018)
There will typically be two developed references to the source material. Level 3: 3 marksFacebook in 2012 launched an emergency check-in App called‘Safety Check'.At the click of a buttonusers can let friends and familyknow they are safe in the event of a
The candidate demonstrates a good ability to apply source material. The candidate has occasionally applied material from at least one of the sources in a developed way, or frequently appliednatural disaster (As in Source A) Communicating in avirtual community,where there are no B)
the source(s) in an underdeveloped way. There will typically be one developed or two underdeveloped referencestothesourcematerial.major events (As in Source B) Mobilising support for protests (As in Source A)
Level 2: 2 marks The candidatedemonstrates a basic ability to applysource
material. The candidate has occasionally made use of material from the source(s) in an underdeveloped way.
Therewill typicallybe oneunderdeveloped ortwoundeveloped/
recycled/implicitreferencestothesourcematerial.
\n\n", - "page_idx": 10 - }, - { - "type": "table", - "img_path": "images/401be3e4fbfc84201018e1cc73b27fa48c41928ecc6e0f78719574008e44f297.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
03 Markscheme With reference to the Source(s) and your wider 10
sociological knowledge, evaluate the view that virtualAO1: Knowledge and understanding NOTE: Contemporary examples should be credited in AO1 in
communities have a positive impact on people's identity.the same way as sociological studies.
AO1: Knowledge and understandingVirtualcommunity-asocialnetworkofindividualsthatcreate an online community which can cross geographical, political
Level4:4marks The candidate demonstrates an excellent knowledge andand social lines. There should be a focus on identity - more generalised
understanding of a range of sociological material; the evidence is generally accurate and detailed. The material presented is relevantpositive impacts should be credited as underdeveloped.
andsupportedbyevidence. There will typically be two developed points supporting the view in the question.Supporting evidence may include: Virtual worlds canchange ideas about people's identity
Level 3: 3 marksand society, people can choose an alternative identity; Boellstorff Carter -'Cybercity', a place to meet people, widen and
The candidate demonstrates a good knowledge and understanding ofeither arangeofsociological materialorsomematerial instrengthen social networks and relationships, positive effect on self-regard and identity.
detail.Thematerialisgenerallyaccuratebutunderdeveloped,or narrow. The material presented is mostly relevant and supported by some evidence.People free from their physical bodies and constraints -
There will typically be one developed point or two underdevelopedTushnet Virtual communities allow people to present 'better' versions ofthemselves;Turkle
Level 2: 2 marks The candidate demonstrates a basic knowledge andSocial networking sites - individuals create virtual profiles - Baudrillard calls this a simulacra, a mediated version of our
identity; Durham and Kellner Feminists: in virtual communities women can transcend
contain some inaccuracies. The response may be partial and undevelopedbutwill have somerelevance.gender to focus on other aspects of their identity, becoming cyborgs; Haraway
Therewill typicallybe oneunderdeveloped or two undevelopedPeople can develop different aspects of their identity, we
areallcyborgs;Case Access to people across the world may help with
Level 1: 1mark
The candidate demonstrates a limited knowledge andethnicminoritybackgrounds;Nakamura
understandingofsociological material.VerylittlerelevantInteractionists: individuals give meaning to interactions
within virtual communities, influencing identity and the
largely based on common sense; the response containspresentationofself-Gardner&Davis
considerable inaccuracy and lacks clarity.
Other reasonable response.
Therewill typicallybeoneundevelopedpoint supporting theview
\n\n", - "page_idx": 11 - }, - { - "type": "table", - "img_path": "images/17392e03b9ec9aa305c7d7e24c87654d7b3104580f9b3ef799bff4b9fac03c74.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
/03Markscheme
in the question, or a vague representation.AO2:ApplicationIn this questionAo2 is awarded foruse of source(s)
0 marks: No relevant knowledge or understanding.For example:
A02: Application Level2:2marksPostmodernview:virtualcommunitieshave apositive impact on individual's real and virtual identity (Source B)
Thecandidate demonstrates an excellentorgood abilityto applyIn virtual communities people can choose how they present themselves, i.e. their virtual identity (Source B).
relevant source material. The candidate has explicitly applied material from at least one of the sources.People can transform their identity regardless of gender, ethnicity, social class, age or disability. (Source B)
Therewilltypicallybeatleastonedevelopedreferencetosource material.Concerns about the effects of virtual communities on both individuals'identities (Source B)
Level 1: 1 mark The candidate shows abasic or limited ability to applysourceWho controls the virtual communities and how are they regulated (SourceB),
material. The candidatehas implicitlyreferred toissues raised inAO3:Analysisandevaluation
TherewilltypicallybeatleastoneundevelopedreferencetoNOTE: Contemporary examples should be credited in AO3 in the same way as sociological studies.
sourcematerial.Arguments against the view that virtual communities have a
0 marks No relevant sociological application.positive impact on people's identity, may include:
AO3:Analysis and evaluation Level4:4marksRecent concerns raised about young people who reveal mental health issues in virtual communities being
encouraged to internalise harmful negative self -
evaluate sociological material. There is a range of developedperceptions. Young people are becoming more narcissistic; Gardner &
conclusion.evaluation points. There may be a critical and reasonedDavis
in the question.There will typically be two developed points challenging the viewThe i-generation spend less time with friends and have
higher evels of anxiety and loneliness; Twenge Cyberbullying has a negative effect on identity;
Level 3: 3 marksLivingstone, Haddon, Vincent, Mascheroni and Olafsson,
The candidate demonstrates a good ability to analyse and evaluateO'Keefe& ClarkePearson
sociological material. There is some analysis and evaluation,but itWe knowless about people's identity if we are unable to
see facial expressions, intonation of voice etc.; Justice and
explicit but brief conclusion.Jamieson
Virtual communities may be used illegitimately, for
There will typically be one developed point or two underdeveloped
example grooming young people. Likely to negatively
impact on identity for many years.
Level2:2marks
Indirect, online communication is isolating; Turkle
\n\n", - "page_idx": 12 - }, - { - "type": "table", - "img_path": "images/8feebaa0b2cdc5c5dca435056a6399a90810a07df7e294a96e89e4ad00085bb2.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
The candidate demonstrates a basic ability to analyse and evaluatesociological material.Evaluationpoints arelikely tobe undeveloped, with little supporting evidence. If present, the conclusionislikelytobesummative. There will typically be one underdeveloped or two undeveloped Level1:1markFeminists:thosewhocreateandcontrolvirtual communities more likely to be male, and the communities mayreflectpatriarchalattitudesreinforcingsubordinate identities. Communities may also be a course of genderedcyberhate';Jane ·Other reasonable response.
Thecandidatedemonstratesalimitedabilitytoanalyseand evaluatesociologicalmaterial.Onlybriefand/orimplicitevaluation ispresent.There isunlikelytobeaconclusion. Therewill typicallybeoneundevelopedpointchallengingtheview in the question, or a vague representation. 0 marks: No relevant sociological evaluation or analysis. Evaluate the sociological view that all digital forms of16AO1: Knowledge and understanding NOTE: Contemporary examples should be credited in AO1 in the same way as sociological studies.
communication have a negative impact on social relationships. AO1: Knowledge and understanding Level4:4marks The candidate demonstrates an excellent knowledge and understanding of a range of sociological material; the material isRelevant material supporting the view that all digital forms of communications have a negative impact on social relationshipsmayinclude: · Families/ friends may be 'alone together' - in the same roombutusingdevicestocommunicatewithothers or
There will typically be two developed points supporting the view in the question. Level3: 3 marks The candidate demonstrates a good knowledge and understanding of either a range ofsociological material or some material inengage in other tasks; Turkle Offline relationships may suffer as a result of time spent with onlinerelationships
betweenindividualsOnlinesocialties tend tobeweaker thanrelationships formed and maintained offline;Kraut Social media potential to cause tension and conflict Solitary activities - e.g. such as surfing the internet, negative impact on social ties; Zhao
Therewill typicallybe onedevelopedpoint ortwounderdeveloped Level2:2marks Thecandidatedemonstrates abasicknowledge andLack of privacy or different ideas about privacy may cause conflict Childrenwhocannotaffordsmartphonesoraccessto
\n\n", - "page_idx": 13 - }, - { - "type": "table", - "img_path": "images/f1cd4bc8a3a680c5fcd247cc8e18101d83555a85c79a3b08d63861aa44fc5c7a.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Markscheme understanding of some sociological material. The response lacksNovember2020 internet; disadvantaged in peer interaction in all countries
including UK; Berry
contain some inaccuracies. The response may be partial and undeveloped.
points supporting the view in the question.remove mistakes; Case, Ellison. Disputes can occur when private information disclosed on-
line; Case
Level1:1mark The candidate demonstrates a limitedknowledge andSocial networking sites can expose the unfaithful: dynamic
understanding of sociological material.Very little relevantof the news being 'public' can have an negative impact on relationship; Miller
considerableinaccuracy and lacks clarity.'Twitter-related conflict' can have negative impact on
in the question, or a vague representation.relationships: emotional and physical cheating, breakup and divorce; Clayton
MillerProblem if people believe the truth of another lies more in what is posted online than face-to-face communication;
0 marks: No relevant knowledge or understanding.
AO2:Application Level 4: 4 marks· Other reasonable response.
The candidate demonstrates an excellent ability to apply relevant sociological material. The material relevant and is consistently andA02: Application The selected knowledge should be directly specific to the
frequently related to the question Level3: 3 marksquestion -view that all digital forms of communicationhave a negative impact on social relationships.
The candidate demonstrates a good ability to apply sociological material. The material is potentially relevant but is explicitly related
to the question only occasionally.AO3:Analysisandevaluation NOTE: Contemporary examples should be credited in AO3 in
Level2:2 marksthe same way as sociological studies.
The candidate demonstrates a basic ability to apply sociologicalRelevant material challenging the view that all digital forms of
material. The material is related to the question mainly implicitly/communications have a negative impact on social
and lacks focus on the question. The response may berelationships may include:
generalised.Digital forms of communication have helped strengthen
relationships between family and friends as time and
Level 1: 1 mark The candidate demonstrates a limited ability to apply sociological material. The material is tangential to the question and of marginalcontact. communicationallowedfriendsandfamilytomaintaintheirlocation no longer presents a barrier to maintaining During the coronavirus pandemic and lockdown, digital
\n\n", - "page_idx": 14 - }, - { - "type": "table", - "img_path": "images/5812e3867cf69a74ab40114c7f15961ab224483e98d1d454c7c843b46be572aa.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
0 marks : No relevant sociological application. AO3:Analysisandevaluation Level4:7-8marks The candidate demonstrates an excellent ability to analyse and evaluatesociological material.Therearearangeofevaluation criticalandreasonedconclusion. Therewilltypicallybethreedevelopedpointsortwodeveloped pointsandoneunderdevelopedpointchallengingtheviewinthe question. Level3: 5-6 marks The candidate demonstrates a good ability to analyse and evaluate maybe underdeveloped or narrow. The candidate may reach a criticalbutbriefconclusion. Therewilltypicallybetwodevelopedpointsorthree underdeveloped points challenging the view in the question. Level2:3-4marks The candidate demonstrates a basic ability to analyse and evaluate.Evaluationpoints arelikelytobeundeveloped.The evaluationmay lack clarity and containsome inaccuracies/ confusion. If present, the conclusion is likely to be summative. Therewilltypicallybeonedevelopedortwounderdeveloped points challenging the view in the question. A range of undeveloped points may also be seen at this level. Level 1: 1-2 marks The candidate demonstrates a limited ability to analyse and evaluate. Only brief and/or implicit evaluation is present. There is unlikelytobe aconclusion. Therewilltypicallybeoneortwoundevelopedorvaguepoints whichcouldpotentiallychallengetheviewinthequestion. 0 marks: No relevant sociological evaluation or analysis.
\n\n", - "page_idx": 15 - }, - { - "type": "table", - "img_path": "images/5f1ee15eec3259c6f04bced8f1383e9624773f45cd5064b451bb779036df9599.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
4In what ways is green crime a growing issue? PLEASEREFERTOAPPENDIX110AO1: Knowledge and understanding Greencrime,orenvironmentalcrime-formofdeviant behaviour which has in part become criminalised. Involves direct or indirect damage to the environment. NOTE: Examples should be credited in the same way as sociologicalstudies. To be credited as‘developed',material MUST be linked to green crime as a 'growing issue'. Relevantmaterialmayinclude: Types of green crime: pollution (air, land, water); deforestation;wildlifecrimeetc. Greencrime involves actionwhichcreatesharm to the environment, including plants and living species, this can occurataglobal level;UN2012,FrankoAas Patterns and trendsreveal overlapbetweenglobal organised crime and green crime - link to globalisation. Definitions and measurements vary across the world, e.g. countriesplace different emphases on combating green crime, ; yet, it is becoming increasingly recognised and recorded as anissue;UN 2012 Two forms of green crime - primary and secondary; South,
\n\n", - "page_idx": 16 - }, - { - "type": "table", - "img_path": "images/d3fd29416ffffd7d8ced8387c2b7ddd2357b531102a67a7931433c2c3a7f2584.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
5 deviance.Assess right realist explanations of crime and PLEASEREFERTOAPPENDIX220 include:anothercountryandpoisonitswatercoursesanddestroy forests. Green crime transcending political and national borders;FrankoAas Manufacturedrisks;Beck Examples - climate change, Chernobyl, Deepwater Horizon, Bhopal A02:Application The selected knowledge should be directly specific to the question-ways green crime is a growing issue. AO1: Knowledge and understanding Relevant material supporting right realist explanations may Right realist view that‘typical criminal' in police recorded statisticsbasicallyreflectsreality Takeconventionaldefinitionsofcrimeforgrantedand focus on explaining 'street crime'. Explaincrimeinterms of individual offender;Wilson Emphasise trends in crime related to age profile of populations, strength of economy, social and cultural change - largely uncontrollable, believe government cannotpreventcrime atsource;Wilson Crimeoccurswhenapotential criminal doesnotbelieve s/he will be caught; Wilson Environmentalfocus:Lowleveldisordercauses community to 'stay indoors', less informal control, crime mayescalate.Wilson Tipping points', some move out, crime levels increase; Wilson and Kelling Broken Windows study; Wilson and Kelling Wicked people exist; Wilson Individual traits compounded by inadequate socialisation, particularly when immediategratificationemphasised;
\n\n", - "page_idx": 17 - }, - { - "type": "table", - "img_path": "images/0acdd853182b1b5c6987218ebcffb9e55fe575fe2918f05940acdcdbd6d709ff.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
H580/03Markscheme November2020 AO2:Application
The selected knowledge should be directly specific to the question - right realist explanations of crime and deviance.
Ao3:Analysisandevaluation
Candidates are expected to discuss weaknesses in the right realist explanations.
They may consider alternative theories such as: Left Realism
· Marxism
·Feminism Relevant material challenging right realist explanations may
include: Right realism plays down causes of offending, focusing on
failures in social control and punishment, left realist; Young
Rightrealismoverstatesoffenders'rationalityandcost-benefit calculations before committing a crime; Matthews
Right realism ignores corporate crime; Snider
Right realists fail to focus on social injustice, particularly the relationshipbetween police and community,aspects of
radical criminology; Lea and Young Right realists fail to recognise the interplay of the criminal
Matthews and Youngjustice system,criminal offender, general public and victim of crime in their explanations of crime; left realists; Right realists ignore the link between economic exclusion
andsocialexclusion-breakdownofcommunitiesand families and increase in crime and disorder; Young
ratherthanculture;BoxRight Realism ignores wider structural causes of crime and deviance, such as poverty. Marxists offer an alternative explanation - crime product of capitalism and exploitation
Feminists; right realists tend to ignore influence of
\n\n", - "page_idx": 18 - }, - { - "type": "table", - "img_path": "images/1d1edbe750c0dd0c8a9f93932e27579f65616a39113f9524411190febaa6d905.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
11380/03Markscreinepatriarchalideologyonwomenwhoarecriminaland deviant;Carlen ·Other reasonable response.
6*Evaluate sociological explanations of the over- 40 representation of males in crime statistics. PLEASEREFERTOAPPENDIX3AO1:Knowledgeandunderstanding NOTE:someofthematerialbelowmaybeusedtochallenge othersociological explanationspresented.Material shouldbe credited either as AO1 or AO3, in the best interests of the candidate.Donotdouble-credit.
Candidatesareexpected todemonstrateknowledgeand understandingof malepatterns of crime They may refer to both official and unofficial sources including, Police recorded figures, CSEW, self-report surveys.
They may consider sociological explanations such as: Subcultural theories, · Feminism, New Right; · Relevant material may include: Importance of male subcultures, status frustration; Cohen Focal concerns, masculinity and deviance; Miller Role of primary and secondary agents of socialisation,
\n\n", - "page_idx": 19 - }, - { - "type": "table", - "img_path": "images/6666e5415019e70485d9b9092a7ccf48a14f5c09c6de295697b980bbb23a9578.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
1300/03MiarkScleie studies Validity of the chivalry thesis. Delinquency and drift- young men may engage in deviant behaviour, but not all the time; Matza Liberation theory (Adler) also, increase in girl gangs Consider whether the class and ethnicity of the malesfemales;Pollak Self-report studies suggest, female crime under-reported; Graham and Bowling Other reasonable response. AO2:Application The selected knowledge should be directly specific to the question-sociological explanations of over representation of males in crime statistics. AO3:Analysisandevaluation NOTE: some of the above mentioned material (listed in AO1) may be used to challenge other sociological explanations presented.Material shouldbecredited either asAO1 orAO3, inthebestinterestsofthecandidate.Donotdouble-credit. Candidateswill discussweaknesses and strengths in the explanationsof theoverrepresentationofmalesincrime statistics. They may consider theories such as: Left and Right realism Interactionism Liberation theory/ feminism Relevant material may include: Reliability of statistics, particularly official statistics. Apparent increase in female crime, Empirical evidence from victimisation and self-report
\n\n", - "page_idx": 20 - }, - { - "type": "table", - "img_path": "images/39143344cb7e9200128572df9f508b4304bbcf1834955134488db38b00a6a963.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
H500/03 7In what ways are there gender differences in patterns of educational attainment? PLEASEREFERTOAPPENDIX1Markscnerme 10 sociological studies.Novermberzo20 AO1:Knowledge and understanding NOTE:Examples should be credited in the same way as Candidates may approach this question by focusing on actual patterns oron relevant concepts/reasons for the gender differences.
\n\n", - "page_idx": 21 - }, - { - "type": "table", - "img_path": "images/f53819b97850a1230b33a14a24445f2e269c3974cbc4b0e236539ac0d47e843f.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
1500705MiarkSerere Globally evidence of'gender apartheid' in education; the UN, UNESCO; 'Gender apartheid' being ignored; Mayer Otherreasonableresponse
8school.Assess the view that teacher labelling is the main 20 cause ofworking-classpupils'underachievementin PLEASEREFERTOAPPENDIX2 Relevant material supporting the view that teacher labelling is the main cause of working-class pupils' underachievement in school mayinclude: Interactionist explanations - negative teacher labelling, \"ideal pupil'-middle class; Becker impact negatively on working class achievement; RosenthalandJacobson. Middle class pupils more likely to be positively labelled -AO2:Application The selected knowledge should be directly related to the specific question - gender differences in patterns of educationalattainment. AO1:Knowledge and understanding Candidates'knowledgeandunderstandingoflabellingmust relate specifically to working-class pupils' patterns of achievement. NOTE: Patterns of working class achievement -incidence of freeschoolmealsoftentakenasarobustindicatorof disadvantage today; however sociological arguments continue to reference social class. Candidates may consider different theoretical approaches such as: · Interactionism ·Neo-Marxism
\n\n", - "page_idx": 22 - }, - { - "type": "table", - "img_path": "images/ca26ea239bb98d8b7f0f4407c1d49485e88852544ab2580e8ebe7675548d1a72.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
H580/03MarkschemeNovember2020 GillbornandYoudell
Candidateswill discussweaknessesof/challenges to theview that the view that teacher labelling is the main cause of working-class pupils' underachievement in school. They may consider theories such as: Functionalism Marxism Feminism Relevant material challenging the view may include: Studies on labelling are small-scale, issues of generalisation Deterministic nature of Interactionist explanations ofEffects of streaming and banding on a child's performance, incorporates notion - how we are labelled by others affects wayweseeourselves;Hargreaves,Ball;Keddie Teachers tend to judge pupils not only by ability but also social class; Dunne and Gazeley Other reasonable response. A02:Application Theselectedknowledge shouldbedirectlyrelated to the specific question - view that teacher labelling is the main cause of working-class pupils' underachievement in school. AO3:Analysisandevaluation
\n\n", - "page_idx": 23 - }, - { - "type": "table", - "img_path": "images/9ad3771d58da79922b42b4672f1a22e7b89940e6e5d56aaf823f4d00976b81ed.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
H500/03MarkscnemeNoble; MurrayNovember
9Evaluate Functionalist explanations of the relationship betweeneducationandwork PLEASEREFERTOAPPENDIX340Parental support -key variable in explaining social class differences in attainment; Feinstein, JRF 2010, Douglas Influence of economic, social and cultural capital; Bourdieu, Reay Gender and ethnicity alsorelevant inunderstanding underachievement of working class pupils; Gilbourn Otherreasonableresponse. AO1: Knowledge and understanding NOTE:duetothepotentialnarrownessofthequestion, candidates may include New Right view in support of functionalist views.This material may be credited as AO1 or as AO3, whichever most benefits the candidate. Do not double-credit. Thereshouldbeaclearunderstandingofandfocuson
\n\n", - "page_idx": 24 - }, - { - "type": "table", - "img_path": "images/a7d2c1649cd55243d2720d9410bff1990ad983fb766c00f579e0031010eb64c1.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
MiarkSerereSociety in miniature, life in modern society individualistic, competitive;Parsons
They may consider alternative theories such as: Relevant material challenging the functionalist view mayRole allocation and sifting and sorting for future work roles; DavisandMoore Transferable skills; Davis and Moore, Parsons Role of formal and the hidden curriculum. Vocationalism - New Right views echo functionalist ideas; Murray,ChubbandMoe Educational policy 14-19 year olds since 1988, designed to prepare young people for the workplace, e.g. EBacc - includes skills transferable to workplace and work experience. Introduction of BTEC exams specifically focussed on
workplace Enterprise initiatives taught through secondary education; New Right Otherreasonableresponse. AO2:Application The selected knowledge should be directly related to the specific question - Functionalist explanations of the relationship between education and work AO3:Analysisandevaluation Candidates are expected to discuss weaknesses in functionalist explanations.
\n\n", - "page_idx": 25 - }, - { - "type": "table", - "img_path": "images/3681821f06206b0cea6aef6fb2f3e311962c5e7f6cc2ef7a4b8d06e5feffbf74.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
include: Critique of idea that role allocation is inherently successful; Bowlesand Gintis Problematic nature of concepts such as 'meritocracy'; Gorard,Gerwitz Marxist critiques of functionalism e.g. correspondence principal, cultural capital, and inequality of opportunity; Bowles and Gintis, Bourdieu, Gillies Marxist critiques of policies designed to prepare young
\n\n", - "page_idx": 26 - }, - { - "type": "table", - "img_path": "images/9ad5515ffaa796e1c4f713ef91e7124f6beb97bd0791662a043abbcef20327de.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
H580/03 10Markscneme In what ways is the significance of religion different between societies?10AO1:Knowledgeandunderstanding NOTE: Examples should be credited in the same way as
PLEASEREFERTOAPPENDIX1sociological studies. Relevant material may include: ·Global North becoming more religiously diverse; Centre for theStudy of Global Christianity(CSGC),2013 Global South - religious diversity decreasing e.g. experience growth in just one religion, typically Christianity orIslam;CSGC,2013 Win/Gallup study 2015: worldwide 63% citizens say they are religious, 22% say they are not, 11% atheists Resurgence of religion in China;World Religions Database (WRD) 2008, although just 7% of Chinese citizens said they were a religious person; Win/Gallup study 2015 Africa and Middle East, over 80% portray themselves as religious, compared to 71% from Eastern Europe and 71% Americans, 62% from Asia; Win/Gallup, 2015 Globally two thirds of people consider themselves to be religious; Leger
\n\n", - "page_idx": 27 - }, - { - "type": "table", - "img_path": "images/563d22caa00ef8306bd6bfb15e01ed0c05d6542161dfdd2e554dee9384ad5b4b.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
affiliations, opinions and convictions; Lynch. NORC report 42 countries: belief highest amongst older people;NORC 2012 Western societies association of religious rituals withkey moments in life course; Davie and Vincent Other reasonableresponse A02:Application The selected knowledge should be directly related to the specific question -ways significance of religion differs betweensocietiesbeliefs; Bibby Western Europe - increase in privatised religious forms, including spirituality of the New Age; Kendal Project Islam among minority ethnic groups in the UK possibly response to revival of Islam globally; Kepel Among young people: Britain, Sweden, Finland, Poland, Russia and UsA -'alternative ways of conceptualising belief' developing, they use 'belief' to refer to - identities,
11 *Assess feminist views of the role of religion in 20 society. PLEASEREFERTOAPPENDIX2AO1:Knowledge and understanding Candidates'knowledge and understanding should relate specifically to the feminist views of the role of religion in society. Candidates may consider different theoretical approaches such as:
Liberalfeminism Marxist feminism Radical feminism Relevant material may include: Religion serves needs of a particular group - in this case men, religions usually patriarchal institutions; radical feminists.
\n\n", - "page_idx": 28 - }, - { - "type": "table", - "img_path": "images/6a3cd2c371fd1fe9d893e904bb23649743bae54fc0faba6932482c32d53ce09d.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
Religious beliefs function as patriarchal ideology, the eyes of their god; Simone de Beauvoir Browne,Woodhead rituals and practices is patriarchal. therefore change possible; Armstrong ElSaadawilegitimising female subordination, oppression and exploitation. Christianity is a 'patriarchal myth'; Daly Women deceived by religion into think everyone equal in Marxist feminism: religion promotes false consciousness in a gendered form, religion serves to reinforce and justify patriarchal roleswithin thefamily;deBeauvoir Radical feminists - concept of'stained-glass ceiling' within from rising up religious hierarchy, e.g. Roman Catholicism womencannotbecomepriests,althoughwomenoften have a responsibility for religious nurture in the home ; Feminist views - nature of religious symbolism, teachings, Patriarchal dominance of men in positions of leadership in and emphasises their marginalised position in society, however in early religions women were central characters, Some argue practices carried out in the name of religion, suchasfemalecircumcisionwithinIslamiccountriesrests onaparticularinterpretationof theQur'an;therefore,it is the nature of society, i.e. patriarchy that lies at the root of the subordination and coincided with rise of monotheism; Liberal feminist view, contradiction between classical teachings of religions about equality of individuals and reality of women's lives mirrored in religion, suggest
\n\n", - "page_idx": 29 - }, - { - "type": "table", - "img_path": "images/0ec8683c21327bcc5a39a3e26aba4e74d463a1916405d77aa320e41df2443c39.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
580/03Markscheme
menstruation; HolmNotion of a woman as sinful, temptress, in need of control
scattered in religious texts. Many religions legitimate and regulate women's traditional
domestic and reproductive role i.e. the Catholic Church bans abortion and artificial contraception. Liberal feminism, greater gender equality in society mirrored in reform of religious organisations e.g. introduction of womenpriests and bishops in Church of
England. Other reasonable response.
A02:ApplicationThe selected knowledge shouldbedirectly related tothe
in societyspecific question - feminist explanations of the role of religion
AO3: Analysis and evaluation
explanations.Candidates are expected to discuss weaknesses in feminist
FunctionalismThey may consider alternative theories such as:
Marxism Weberianism
Post feminism
include:Relevant material challenging feminist explanations may
Not all religions patriarchal, e.g. Liberal wing of the
Church of England encourages ordination of women and
legitimacy of homosexuality; Postfeminists.
Critique of Marxist and radical feminism, religion can help promote gender equality. ‘Religious forms of feminism', ways women can use religion to gain freedom; Woodhead,
\n\n", - "page_idx": 30 - }, - { - "type": "table", - "img_path": "images/ee5036fc43d74231596de9936054fc0a71492bee0f75169458c7c83ada3d9529.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
enter public sphere without losing culture and history; Woodhead Religious Society of Friends (Quakers)- Christian denomination with strong tradition of equality between men andwomen. Similarly,Sikhism originated in thePunjab in sixteenth century, strong tradition of equality between men and women, although most religious leaders are men Weberians and Liberation theologists focus on role of religion in bringing about change, therefore may criticise determinism of radical and Marxist feminists. Ethnocentric view: The burka may be interpreted as liberating Feminist views may be oversimplification of complex relationship; Davie and Walter, Watson Deprivation theory goes against experience of some deprived groups and white working-class men have low rates of religiosity; Davie and Walter Functionalists: role of religion to ensure social solidarity, strengthen bonds and prevent anomie,rather than oppression; Durkheim Marxists: role of religion ‘opium of the people' to supress the masses, not specifically females: Marx
12Evaluate the views of anti-secularisation theorists. PLEASEREFERTOAPPENDIX3AO1:Knowledgeandunderstanding Candidates will consider the view of the anti-secularisation theorists that the UK is not a secular in society. They may consider religious belief, religious practice, power and influence of religion in society.
\n\n", - "page_idx": 31 - }, - { - "type": "table", - "img_path": "images/a08edd7efa23f3cce894b0a3b7d08bf8bbb95dc23d3d65e345547f85cd4894cc.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
H580/03Markscneme such as: Anti-secularisationtheorists Postmodernviews Functionalism - religion still provides meaning; Parsons Relevant material may include: Over-emphasis on mainstream Christian religious groups - overlooks increased attendance in Baptist Churches, Pentecostal churches etc (Brierley). Idea there was an'age of faith'- illusion, partly created by focus on religious behaviour of elite groups in society; Hamilton Modern international affairs cannot be comprehended without understanding of religion; Kepel Global patterns - USA influence of New Christian Right; Roof and McKinne. Religion as protest: Martin. Latin America and liberation theology; against apartheidinSouthAfrica. Role of faith in Arab uprising. UK - rise in faith schools; Conservative government policy Religious Education remains legal requirement in UK schools
\n\n", - "page_idx": 32 - }, - { - "type": "table", - "img_path": "images/1b60ce41d10c635c62bea335b0d520a4483583a27b0160c688750db8e9b2979c.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
globally; Davie Decline of established religion in developed world - not echoedglobally.Davie Berger - the world is furiously religious'. Religion less important when people feel secure about their survival and well-being, this can change; Norris and Inglehart Rate of decline in church membership and participation declined in last 15 years in UK, churches with a missionary zealincreasing;Brierley
World has more people with traditional religious beliefs than ever before; Norris and Inglehart Manypeople in theUSA continue to attend church and profess Christian faith. Migrant groups bring religious practices to UK; e.g. Pentecostal groups, Islam - fastest growing religion in Britain; Christianity in its Global Context 1970-2020 report, 2013 Global social changes enhancing importance of religion for some young Muslims; Moore GrowthinNRMs,oldersectssuchasJehovah'sWitnesses and Mormons, halting tide towards secularisation. Scandinavian countries most engage with religion at a vicariouslevel-ritualsandpracticesperformedbya minority on behalf of the majority are understood and approved of; Davie Few people define themselves as atheists; Census 2011 When tragedies occur many attend traditional places of
\n\n", - "page_idx": 33 - }, - { - "type": "table", - "img_path": "images/0b2fc203f13ee36bcf3e9834e44e9cf8a957c02f0a18220c102f2ee7f7eaa6c9.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
·Pro-secularisation theorists Relevant material may include: · Secularisation: 'the process whereby religious thinking, practices and institutions lose social significance'; Wilson Changes in society due to rationalisation and societalisation, led to secularisation; religious institutions have lost significance; Wilson Science as the Enlightenment that challenged faith; Comte-Scienceasthetruth. Secularisationoccurredduetostructuralandsocial differentiation, individualism, societisation, schisms, pluralismand technology;Bruce Notions of a 'privatised religion' and 'holistic milieu' (Heelas)challenged-shift from‘belief in God'tobelief in a spirit or life force is evidence of secularization, influence of religion has declined; Bruce People increasingly marking important life events outside religious institutions; Martin Church becoming side-lined by secular leaders; Martin Fundamentalism rooted in economic, political system, not religion; Armstrong Pro-secularisation theorists suggest attendance in church on a Sunday is historically an important indicator of religious practice and this is declining; Brierley Decrease in church attendance figures evidence of decline in mainstream Christianity.AO2:Application The selected knowledge should be directly related to the
specific question -views of anti-secularisation theorists AO3:Analysisand evaluation Candidates are expected to discuss alternatives/weaknesses
oftheviewsofanti-secularisationtheorists: They may consider theories such as:
\n\n", - "page_idx": 34 - }, - { - "type": "table", - "img_path": "images/7e44dd578e70f44b19ac08891b9a3ad293f189d30bc9c8cc62b110196ac298dd.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
New churches are opening, but more closing, so net decline. Decline in attendance at key religious ceremonies - baptisms, marriages, funerals; Sanderson, British Religion inNumbers Church attendance socially approved of in UsA, people may exaggerate their attendance; Hadaway While US presidents declare adherence to the Christian faith, British Prime Ministers are more reluctant, spokesman for Tony Blair 'We don't do God' ; Brown Growth in NRMs, older sects such as Jehovah's Witnesses and Mormons, does not compensate for the declining numbers from larger religious institutions; - evidence of secularisation;Wilson,Bruce NSMs “islands in a secular sea' (Berger), almost irrelevant to modern society; Wilson Fundamentalism rooted in economic, political system, not religion; Armstrong Decline in attendance greater amongst the young, suggesting - as congregations age and fewer young people join, they could die out altogether; Brierley Development of secularisation can be uneven, but will occur;Bruce Alternative view: religions remain powerful and influential in different places but patterns of decline in the UK are significant: Casanova Otherreasonableresponse.
\n\n", - "page_idx": 35 - }, - { - "type": "text", - "text": "H580/03 APPENDIX 1 GENERIC MARKSCHEME FOR OPTIONS QUESTIONS 4, 7 and 10 ", - "text_level": 1, - "page_idx": 36 - }, - { - "type": "table", - "img_path": "images/fecf3a46de20e631ff0601c9cc087b7aa92887ddd9ac259e84473e75b12d0aca.jpg", - "table_caption": [ - "AO1: Knowledge and understanding (6 marks) " - ], - "table_footnote": [], - "table_body": "\n\n
LevelMarksGeneric Mark Scheme questions 4,7 and 10
46The candidate demonstrates an excellent knowledge and understanding of a range of sociological material; the material is generally accurate and detailed.
There will typically be three developed knowledge points, or two developed points and one underdeveloped point There is a well-developed line of reasoning which is clear and logically structured. The response is relevant and substantiated.
34-5The candidate demonstrates a good knowledge and understanding of either a range of sociological material or some material in detail. The material is generally accurate but underdeveloped or narrow.
There will typically be at least one developed knowledge point with others which are underdeveloped, or at least three underdevelopedpoints.
22-3bysome evidence.
undeveloped. Therewill typicallybe one ortwounderdeveloped points, ora rangeof undeveloped points.
11The candidate demonstrates a limited knowledge and understanding of sociological material. Very little relevant sociological
material is presented; the response contains considerable inaccuracy and lacks clarity. Therewill typicallybe one undeveloped point or a vague representation.
The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the
relationship to the evidencemay not beclear.
00Norelevantsociologicalknowledgeorunderstanding
\n\n", - "page_idx": 36 - }, - { - "type": "table", - "img_path": "images/0cd590847ee7d8dcfae823d48d773eafd3a9c9a2b8d72b81e03adeb4233a431e.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
LevelMarksGenericMarkSchemequestions 4,7 and 10
44The candidate demonstrates an excellent ability to apply relevant sociological material. The material is consistently and frequently related to the question.
33The candidate demonstrates a good ability to apply sociological material. The material is generally relevant but is explicitly related to thequestiononly occasionally.
22The candidate demonstrates a basic ability to apply sociological material. The material is related to the question mainly implicitly and lacks focus on the question. The response may be generalised.
11The candidate demonstrates a limited ability to apply sociological material. The material is tangential to the question and of marginalimportance.
00 Norelevantapplication.
\n\n", - "page_idx": 37 - }, - { - "type": "table", - "img_path": "images/0effdfa9105957faba6054f9981c07572e3675eab15bb748dc57d44b5f8e139b.jpg", - "table_caption": [ - "H580/03 APPENDIX 2 GENERIC MARKSCHEME FOR OPTIONS QUESTIONS 5, 8 and 11 AO1: Knowledge and understanding (8 marks) " - ], - "table_footnote": [], - "table_body": "\n\n
Level 4Marks 7-8GenericMarkSchemequestions5,8and11 The candidate demonstrates an excellent knowledge and understanding of a range of sociological material; the material is
35-6generally accurate and detailed. There will typically be three developed knowledge points, or two developed points and one underdeveloped point.
There is a well-developed line of reasoning which is clear and logically structured. The information is relevant and substantiated.
The candidate demonstrates a good knowledge and understanding of either a range of sociological material or some material in detail. The material is generally accurate but underdeveloped or narrow.
Therewilltypicallybeatleastonedevelopedknowledgepointwithotherswhichareunderdeveloped,oratleastthree underdevelopedpoints.
evidence.
23-4The candidate demonstrates a basic knowledge and understanding of some sociological material. The response lacks range and
There will typically be one or two underdeveloped points, or a range of undeveloped points.
11-2Theinformation has some relevance and is presented with basic structure.Theresponse is supported bybasic evidence.
material is presented; the response contains considerable inaccuracy and lacks clarity.
The information is basic and communicated in an unstructured way. The response is supported by limited evidence and the
0 0relationship totheevidencemay not beclear. No relevant sociological knowledge or understanding.
\n\n", - "page_idx": 38 - }, - { - "type": "table", - "img_path": "images/36d831aa8e8746823bf0920cb65918bcae911834c0f21271d9d63da955dce991.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
LevelMarksGenericMarkSchemequestions5,8and11
44The candidate demonstrates an excellent ability to apply relevant sociological material.The material is consistently and frequentlyrelatedtothequestion.
33The candidate demonstrates a good ability to applysociological material.The material isgenerallyrelevant but is explicitly relatedtothequestiononlyoccasionally.
22The candidate demonstrates a basic ability to apply sociological material. The material isrelated to thequestion mainlyimplicitly and lacks focus on the question. The response may be generalised.
11Thecandidatedemonstratesalimitedabilitytoapplysociologicalmaterial.Thematerialistangentialtothequestionand of marginalrelevance.
00Norelevantapplication.
\n\n", - "page_idx": 39 - }, - { - "type": "table", - "img_path": "images/cd761d87a5f965557441bc11d1ae2ec24653e3f7393ed3177911e37b266ef80e.jpg", - "table_caption": [ - "AO3: Analysis and Evaluation (4 marks) " - ], - "table_footnote": [], - "table_body": "\n\n
LevelMarksGeneric MarkScheme questions 5,8 and 11
4 37-8 5-6The candidate demonstrates an excellent ability to analyse and evaluate sociological material. There are a range of evaluation points which are well developed, giving the response a reflective tone. The candidate may reach a critical and reasoned conclusion. There will typically be three developed evaluation points, or two developed points and one underdeveloped point. thesemaybeunderdeveloped.Thecandidatemayreachacriticalbutbriefconclusion.
23-4There will typically be at least one developed evaluation point with others which areunderdeveloped, or at least three underdevelopedpoints. The candidate demonstrates a basic ability to analyse and evaluate. Evaluation points are likely to be anecdotal and/or undeveloped or completely through juxtaposition. The evaluation may lack clarity and contain some inaccuracies/confusion. If
11-2present, the conclusion is likelyto be summative. Therewill typicallybe oneortwounderdevelopedpoints,orarangeofundevelopedpoints. The candidate demonstrates a limited ability to analyse and evaluate. Only implicit evaluation is present. There is unlikely to be a unsupported.
00Therewill typicallybe oneundevelopedpointor anassertivetone. Norelevantanalysisorevaluation.
\n\n", - "page_idx": 39 - }, - { - "type": "table", - "img_path": "images/8e2e2c7f7b92fbfe305c8d6b99752a8606dc7031d8e4e1f5bc906a8fc2dc66af.jpg", - "table_caption": [ - "H580/03 APPENDIX 3 GENERIC MARKSCHEME FOR OPTIONS QUESTIONS 6, 9 and 12 AO1: Knowledge and understanding (16 marks) " - ], - "table_footnote": [], - "table_body": "\n\n
Level 4Marks 13-16GenericMarkSchemequestions6,9and 12 The candidate demonstrates an excellent knowledge and understanding of a range of sociological material; the material is generallyaccurateand detailed.
39-12There will typically be four well-developed knowledge points, or three well-developed points towards the bottom of the level. There is awell-developed line of reasoningwhich isclear and logically structured.Theinformation is relevant and substantiated. The candidate demonstrates a good knowledge and understanding of either a range of sociological material or some material in detail. The material is generally accuratebutunderdeveloped or narrow.
Towards the bottom of the level there may be one well-developed knowledge point (depth). There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported bysomeevidence.
25-8The candidate demonstrates a basic knowledge and understanding of some sociological material. The response lacks range and There will typically be three or more undeveloped/ unsubstantiated points or one-two underdeveloped points. The informationhas some relevance and is presented with a basic structure.The response is supported bybasic evidence.
11-4The candidate demonstrates a limited knowledge and understanding of sociological material. Very little relevant sociological material is presented; the response contains considerable inaccuracy and lacks clarity. The information is limited and communicated in an unstructured way. The response is supported by limited evidence and the
0 0relationshiptotheevidencemaynotbeclear. Norelevantknowledge or understanding.
\n\n", - "page_idx": 40 - }, - { - "type": "table", - "img_path": "images/5a902cfdb2fc6bed5ea1c9139a6f78f1cb111bec35041184e0626c9fd022a6f0.jpg", - "table_caption": [], - "table_footnote": [], - "table_body": "\n\n
LevelMarksGenericMarkSchemequestions6,9and 12
47-8The candidate demonstrates an excellent ability to apply relevantsociological material. The material is consistently and frequentlyrelatedtothequestion.
35-6The candidate demonstrates a good ability to apply sociological material. The material is generally relevant but is explicitly related
23-4tothequestiononlyoccasionally. The candidate demonstrates a basic ability to apply sociological material. The material is related to the question mainly implicitly
11-2and lacks focus on the question. The response may be generalised. The candidate demonstrates a limited ability to apply sociological material. The material is tangential to the question and of marginalrelevance.
00Norelevantsociologicalapplication.
\n\n", - "page_idx": 41 - }, - { - "type": "table", - "img_path": "images/ebe043d620521109fc8549ecbea534838f794ddf0125a9480ff6188d4aa1bb7f.jpg", - "table_caption": [ - "AO3: Analysis and Evaluation (16 marks) " - ], - "table_footnote": [], - "table_body": "\n\n
LevelMarksGenericMarkSchemequestions6,9and12
413-16The candidate demonstrates an excellent ability to analyse and evaluate sociological material. There are a range of evaluation There will typically be four well-developed evaluation points, or three well-developed points towards the bottom of the level.
39-12There will typically be three or four evaluation points which may be less well developed in places, or two well-developed points! Towards thebottom ofthelevel there maybe one well-developed evaluationpoint (depth).
25-8The candidate demonstrates a basic ability to analyse and evaluate. Evaluation points are likely to be anecdotal, and/or undeveloped or completely through juxtaposition. The evaluation may lack clarity and contain some inaccuracies/confusion. If present, the conclusion is likely tobe summative. Therewill typicallybe threeormoreundeveloped/unsubstantiatedpointsor oneunderdevelopedpoint.
01-4The candidate demonstrates a limited ability to analyse and evaluate. Only implicit evaluation is present. If present, the conclusion islikelytobeassertedandunsupported. Therewill typicallybe oneortwo undeveloped/unsubstantiatedpointsoran assertivetone.
0Norelevantsociologicalevaluationoranalysis.
\n\n", - "page_idx": 41 - }, - { - "type": "text", - "text": "OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA ", - "text_level": 1, - "page_idx": 42 - }, - { - "type": "text", - "text": "OCR Customer Contact Centre ", - "page_idx": 42 - }, - { - "type": "text", - "text": "Education and Learning \nTelephone: 01223 553998 \nFacsimile: 01223 552627 \nEmail: general.qualifications@ocr.org.uk ", - "page_idx": 42 - }, - { - "type": "text", - "text": "www.ocr.org.uk ", - "page_idx": 42 - } -] \ No newline at end of file diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/H580_03_November_2020_1739552419_layout.pdf b/pdf_output/H580_03_November_2020_1739552419/auto/H580_03_November_2020_1739552419_layout.pdf deleted file mode 100644 index 417b1a03af4bd6a7ee8b7d97f832cae999a8c7ff..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/H580_03_November_2020_1739552419_layout.pdf +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fc3631dc2752576252962a14509414b5d87feab330cb0d337a45e7959b0af77a -size 874496 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/H580_03_November_2020_1739552419_middle.json b/pdf_output/H580_03_November_2020_1739552419/auto/H580_03_November_2020_1739552419_middle.json deleted file mode 100644 index 4bafdfbf11193c472cb00e1b8f1d91a99612438a..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/H580_03_November_2020_1739552419_middle.json +++ /dev/null @@ -1,24598 +0,0 @@ -{ - "pdf_info": [ - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 95, - 105, - 468, - 128 - ], - "lines": [ - { - "bbox": [ - 93, - 105, - 466, - 129 - ], - "spans": [ - { - "bbox": [ - 93, - 105, - 466, - 129 - ], - "score": 1.0, - "content": "Wednesday 21 October 2020 – Morning", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "title", - "bbox": [ - 94, - 139, - 233, - 158 - ], - "lines": [ - { - "bbox": [ - 94, - 140, - 232, - 157 - ], - "spans": [ - { - "bbox": [ - 94, - 140, - 232, - 157 - ], - "score": 1.0, - "content": "A Level Sociology", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 92, - 167, - 360, - 183 - ], - "lines": [ - { - "bbox": [ - 94, - 168, - 357, - 183 - ], - "spans": [ - { - "bbox": [ - 94, - 168, - 357, - 183 - ], - "score": 1.0, - "content": "H580/03 Debates in contemporary society", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 95, - 190, - 272, - 204 - ], - "lines": [ - { - "bbox": [ - 94, - 192, - 271, - 202 - ], - "spans": [ - { - "bbox": [ - 94, - 192, - 271, - 202 - ], - "score": 0.9970146417617798, - "content": "Time allowed: 2 hours 15 minutes", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 100, - 225, - 245, - 248 - ], - "lines": [ - { - "bbox": [ - 100, - 226, - 168, - 236 - ], - "spans": [ - { - "bbox": [ - 100, - 226, - 168, - 236 - ], - "score": 1.0, - "content": "You must have:", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 101, - 237, - 244, - 248 - ], - "spans": [ - { - "bbox": [ - 101, - 237, - 244, - 248 - ], - "score": 1.0, - "content": "• the OCR 12-page Answer Booklet", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5 - }, - { - "type": "title", - "bbox": [ - 94, - 363, - 178, - 375 - ], - "lines": [ - { - "bbox": [ - 94, - 364, - 178, - 374 - ], - "spans": [ - { - "bbox": [ - 94, - 364, - 178, - 374 - ], - "score": 1.0, - "content": "INSTRUCTIONS", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 94, - 378, - 534, - 455 - ], - "lines": [ - { - "bbox": [ - 100, - 376, - 178, - 389 - ], - "spans": [ - { - "bbox": [ - 100, - 376, - 178, - 389 - ], - "score": 1.0, - "content": "Use black ink.", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 98, - 389, - 534, - 402 - ], - "spans": [ - { - "bbox": [ - 98, - 389, - 534, - 402 - ], - "score": 1.0, - "content": "Write your answer to each question in the Answer Booklet. The question numbers must", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 106, - 402, - 195, - 415 - ], - "spans": [ - { - "bbox": [ - 106, - 402, - 195, - 415 - ], - "score": 1.0, - "content": "be clearly shown.", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 96, - 415, - 357, - 428 - ], - "spans": [ - { - "bbox": [ - 96, - 415, - 357, - 428 - ], - "score": 1.0, - "content": "• Fill in the boxes on the front of the Answer Booklet.", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 98, - 428, - 295, - 441 - ], - "spans": [ - { - "bbox": [ - 98, - 428, - 295, - 441 - ], - "score": 1.0, - "content": "Answer all the questions in Section A.", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 99, - 442, - 481, - 454 - ], - "spans": [ - { - "bbox": [ - 99, - 442, - 481, - 454 - ], - "score": 1.0, - "content": "Choose one option in Section B and answer all the questions for that option.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 9.5 - }, - { - "type": "title", - "bbox": [ - 94, - 467, - 172, - 479 - ], - "lines": [ - { - "bbox": [ - 94, - 468, - 172, - 478 - ], - "spans": [ - { - "bbox": [ - 94, - 468, - 172, - 478 - ], - "score": 1.0, - "content": "INFORMATION", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "text", - "bbox": [ - 94, - 481, - 533, - 532 - ], - "lines": [ - { - "bbox": [ - 94, - 480, - 281, - 492 - ], - "spans": [ - { - "bbox": [ - 94, - 480, - 281, - 492 - ], - "score": 1.0, - "content": "• The total mark for this paper is 105.", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 93, - 493, - 378, - 506 - ], - "spans": [ - { - "bbox": [ - 93, - 493, - 378, - 506 - ], - "score": 1.0, - "content": "• The marks for each question are shown in brackets [ ].", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 93, - 506, - 532, - 519 - ], - "spans": [ - { - "bbox": [ - 93, - 506, - 518, - 519 - ], - "score": 1.0, - "content": "• Quality of extended response will be assessed in questions marked with an asterisk ", - "type": "text" - }, - { - "bbox": [ - 518, - 506, - 531, - 519 - ], - "score": 0.54, - "content": "(^{\\star})", - "type": "inline_equation", - "height": 13, - "width": 13 - }, - { - "bbox": [ - 531, - 506, - 532, - 519 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 93, - 518, - 247, - 533 - ], - "spans": [ - { - "bbox": [ - 93, - 518, - 247, - 533 - ], - "score": 1.0, - "content": "• This document has 4 pages.", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 15.5 - }, - { - "type": "title", - "bbox": [ - 94, - 546, - 137, - 557 - ], - "lines": [ - { - "bbox": [ - 94, - 546, - 138, - 557 - ], - "spans": [ - { - "bbox": [ - 94, - 546, - 138, - 557 - ], - "score": 1.0, - "content": "ADVICE", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18 - }, - { - "type": "text", - "bbox": [ - 95, - 559, - 396, - 571 - ], - "lines": [ - { - "bbox": [ - 103, - 559, - 396, - 570 - ], - "spans": [ - { - "bbox": [ - 103, - 559, - 396, - 570 - ], - "score": 1.0, - "content": "Read each question carefully before you start your answer.", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 19 - } - ], - "layout_bboxes": [], - "page_idx": 0, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 80, - 784, - 177, - 804 - ], - "lines": [ - { - "bbox": [ - 80, - 784, - 177, - 794 - ], - "spans": [ - { - "bbox": [ - 80, - 784, - 89, - 793 - ], - "score": 0.35, - "content": "\\copyright", - "type": "inline_equation", - "height": 9, - "width": 9 - }, - { - "bbox": [ - 89, - 784, - 177, - 794 - ], - "score": 1.0, - "content": " OCR 2020 [601/3997/3]", - "type": "text" - } - ] - }, - { - "bbox": [ - 81, - 794, - 148, - 804 - ], - "spans": [ - { - "bbox": [ - 81, - 794, - 148, - 804 - ], - "score": 1.0, - "content": "DC (CJ) 189869/7", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 95, - 47, - 216, - 98 - ], - "lines": [ - { - "bbox": [ - 97, - 49, - 214, - 84 - ], - "spans": [ - { - "bbox": [ - 97, - 49, - 214, - 84 - ], - "score": 0.9924426674842834, - "content": "OCR", - "type": "text" - } - ] - }, - { - "bbox": [ - 100, - 87, - 214, - 97 - ], - "spans": [ - { - "bbox": [ - 100, - 87, - 214, - 97 - ], - "score": 1.0, - "content": "Oxford Cambridge and RSA", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 262, - 785, - 357, - 794 - ], - "lines": [ - { - "bbox": [ - 263, - 785, - 356, - 794 - ], - "spans": [ - { - "bbox": [ - 263, - 785, - 356, - 794 - ], - "score": 1.0, - "content": "OCR is an exempt Charity", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 491, - 793, - 537, - 803 - ], - "lines": [ - { - "bbox": [ - 491, - 793, - 539, - 804 - ], - "spans": [ - { - "bbox": [ - 491, - 793, - 539, - 804 - ], - "score": 1.0, - "content": "Turn over", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 19, - 222, - 50, - 338 - ], - "lines": [ - { - "bbox": [ - 20, - 243, - 26, - 250 - ], - "spans": [ - { - "bbox": [ - 20, - 243, - 26, - 250 - ], - "score": 0.5532197952270508, - "content": "T", - "type": "text" - } - ] - }, - { - "bbox": [ - 20, - 253, - 26, - 260 - ], - "spans": [ - { - "bbox": [ - 20, - 253, - 26, - 260 - ], - "score": 0.5489367842674255, - "content": "0", - "type": "text" - } - ] - }, - { - "bbox": [ - 20, - 263, - 26, - 269 - ], - "spans": [ - { - "bbox": [ - 20, - 263, - 26, - 269 - ], - "score": 0.752830982208252, - "content": "V", - "type": "text" - } - ] - }, - { - "bbox": [ - 20, - 272, - 27, - 280 - ], - "spans": [ - { - "bbox": [ - 20, - 272, - 27, - 280 - ], - "score": 0.6754535436630249, - "content": "0", - "type": "text" - } - ] - }, - { - "bbox": [ - 20, - 282, - 26, - 289 - ], - "spans": [ - { - "bbox": [ - 20, - 282, - 26, - 289 - ], - "score": 0.7627697587013245, - "content": "00", - "type": "text" - } - ] - }, - { - "bbox": [ - 20, - 301, - 26, - 307 - ], - "spans": [ - { - "bbox": [ - 20, - 301, - 26, - 307 - ], - "score": 0.6775703430175781, - "content": "H", - "type": "text" - } - ] - }, - { - "bbox": [ - 20, - 311, - 26, - 318 - ], - "spans": [ - { - "bbox": [ - 20, - 311, - 26, - 318 - ], - "score": 0.5489367842674255, - "content": "0", - "type": "text" - } - ] - }, - { - "bbox": [ - 23, - 332, - 25, - 334 - ], - "spans": [ - { - "bbox": [ - 23, - 332, - 25, - 334 - ], - "score": 0.6196751594543457, - "content": "V", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 95, - 105, - 468, - 128 - ], - "lines": [ - { - "bbox": [ - 93, - 105, - 466, - 129 - ], - "spans": [ - { - "bbox": [ - 93, - 105, - 466, - 129 - ], - "score": 1.0, - "content": "Wednesday 21 October 2020 – Morning", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_0", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "title", - "bbox": [ - 94, - 139, - 233, - 158 - ], - "lines": [ - { - "bbox": [ - 94, - 140, - 232, - 157 - ], - "spans": [ - { - "bbox": [ - 94, - 140, - 232, - 157 - ], - "score": 1.0, - "content": "A Level Sociology", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_0", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 92, - 167, - 360, - 183 - ], - "lines": [ - { - "bbox": [ - 94, - 168, - 357, - 183 - ], - "spans": [ - { - "bbox": [ - 94, - 168, - 357, - 183 - ], - "score": 1.0, - "content": "H580/03 Debates in contemporary society", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_0", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 94, - 168, - 357, - 183 - ] - }, - { - "type": "text", - "bbox": [ - 95, - 190, - 272, - 204 - ], - "lines": [ - { - "bbox": [ - 94, - 192, - 271, - 202 - ], - "spans": [ - { - "bbox": [ - 94, - 192, - 271, - 202 - ], - "score": 0.9970146417617798, - "content": "Time allowed: 2 hours 15 minutes", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_0", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 94, - 192, - 271, - 202 - ] - }, - { - "type": "text", - "bbox": [ - 100, - 225, - 245, - 248 - ], - "lines": [ - { - "bbox": [ - 100, - 226, - 168, - 236 - ], - "spans": [ - { - "bbox": [ - 100, - 226, - 168, - 236 - ], - "score": 1.0, - "content": "You must have:", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 101, - 237, - 244, - 248 - ], - "spans": [ - { - "bbox": [ - 101, - 237, - 244, - 248 - ], - "score": 1.0, - "content": "• the OCR 12-page Answer Booklet", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5, - "page_num": "page_0", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 100, - 226, - 244, - 248 - ] - }, - { - "type": "title", - "bbox": [ - 94, - 363, - 178, - 375 - ], - "lines": [ - { - "bbox": [ - 94, - 364, - 178, - 374 - ], - "spans": [ - { - "bbox": [ - 94, - 364, - 178, - 374 - ], - "score": 1.0, - "content": "INSTRUCTIONS", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_0", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "list", - "bbox": [ - 94, - 378, - 534, - 455 - ], - "lines": [ - { - "bbox": [ - 100, - 376, - 178, - 389 - ], - "spans": [ - { - "bbox": [ - 100, - 376, - 178, - 389 - ], - "score": 1.0, - "content": "Use black ink.", - "type": "text" - } - ], - "index": 7, - "is_list_end_line": true - }, - { - "bbox": [ - 98, - 389, - 534, - 402 - ], - "spans": [ - { - "bbox": [ - 98, - 389, - 534, - 402 - ], - "score": 1.0, - "content": "Write your answer to each question in the Answer Booklet. The question numbers must", - "type": "text" - } - ], - "index": 8, - "is_list_start_line": true - }, - { - "bbox": [ - 106, - 402, - 195, - 415 - ], - "spans": [ - { - "bbox": [ - 106, - 402, - 195, - 415 - ], - "score": 1.0, - "content": "be clearly shown.", - "type": "text" - } - ], - "index": 9, - "is_list_end_line": true - }, - { - "bbox": [ - 96, - 415, - 357, - 428 - ], - "spans": [ - { - "bbox": [ - 96, - 415, - 357, - 428 - ], - "score": 1.0, - "content": "• Fill in the boxes on the front of the Answer Booklet.", - "type": "text" - } - ], - "index": 10, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 98, - 428, - 295, - 441 - ], - "spans": [ - { - "bbox": [ - 98, - 428, - 295, - 441 - ], - "score": 1.0, - "content": "Answer all the questions in Section A.", - "type": "text" - } - ], - "index": 11, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 99, - 442, - 481, - 454 - ], - "spans": [ - { - "bbox": [ - 99, - 442, - 481, - 454 - ], - "score": 1.0, - "content": "Choose one option in Section B and answer all the questions for that option.", - "type": "text" - } - ], - "index": 12, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 9.5, - "page_num": "page_0", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 96, - 376, - 534, - 454 - ] - }, - { - "type": "title", - "bbox": [ - 94, - 467, - 172, - 479 - ], - "lines": [ - { - "bbox": [ - 94, - 468, - 172, - 478 - ], - "spans": [ - { - "bbox": [ - 94, - 468, - 172, - 478 - ], - "score": 1.0, - "content": "INFORMATION", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_0", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "list", - "bbox": [ - 94, - 481, - 533, - 532 - ], - "lines": [ - { - "bbox": [ - 94, - 480, - 281, - 492 - ], - "spans": [ - { - "bbox": [ - 94, - 480, - 281, - 492 - ], - "score": 1.0, - "content": "• The total mark for this paper is 105.", - "type": "text" - } - ], - "index": 14, - "is_list_end_line": true - }, - { - "bbox": [ - 93, - 493, - 378, - 506 - ], - "spans": [ - { - "bbox": [ - 93, - 493, - 378, - 506 - ], - "score": 1.0, - "content": "• The marks for each question are shown in brackets [ ].", - "type": "text" - } - ], - "index": 15, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 93, - 506, - 532, - 519 - ], - "spans": [ - { - "bbox": [ - 93, - 506, - 518, - 519 - ], - "score": 1.0, - "content": "• Quality of extended response will be assessed in questions marked with an asterisk ", - "type": "text" - }, - { - "bbox": [ - 518, - 506, - 531, - 519 - ], - "score": 0.54, - "content": "(^{\\star})", - "type": "inline_equation", - "height": 13, - "width": 13 - }, - { - "bbox": [ - 531, - 506, - 532, - 519 - ], - "score": 1.0, - "content": ".", - "type": "text" - } - ], - "index": 16, - "is_list_start_line": true, - "is_list_end_line": true - }, - { - "bbox": [ - 93, - 518, - 247, - 533 - ], - "spans": [ - { - "bbox": [ - 93, - 518, - 247, - 533 - ], - "score": 1.0, - "content": "• This document has 4 pages.", - "type": "text" - } - ], - "index": 17, - "is_list_start_line": true, - "is_list_end_line": true - } - ], - "index": 15.5, - "page_num": "page_0", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 93, - 480, - 532, - 533 - ] - }, - { - "type": "title", - "bbox": [ - 94, - 546, - 137, - 557 - ], - "lines": [ - { - "bbox": [ - 94, - 546, - 138, - 557 - ], - "spans": [ - { - "bbox": [ - 94, - 546, - 138, - 557 - ], - "score": 1.0, - "content": "ADVICE", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18, - "page_num": "page_0", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 95, - 559, - 396, - 571 - ], - "lines": [ - { - "bbox": [ - 103, - 559, - 396, - 570 - ], - "spans": [ - { - "bbox": [ - 103, - 559, - 396, - 570 - ], - "score": 1.0, - "content": "Read each question carefully before you start your answer.", - "type": "text" - } - ], - "index": 19 - } - ], - "index": 19, - "page_num": "page_0", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 103, - 559, - 396, - 570 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 293, - 37, - 302, - 48 - ], - "lines": [ - { - "bbox": [ - 292, - 36, - 303, - 51 - ], - "spans": [ - { - "bbox": [ - 292, - 36, - 303, - 51 - ], - "score": 1.0, - "content": "2", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "title", - "bbox": [ - 267, - 60, - 328, - 73 - ], - "lines": [ - { - "bbox": [ - 267, - 61, - 328, - 72 - ], - "spans": [ - { - "bbox": [ - 267, - 61, - 328, - 72 - ], - "score": 1.0, - "content": "SECTION A", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 129, - 86, - 463, - 99 - ], - "lines": [ - { - "bbox": [ - 132, - 87, - 463, - 98 - ], - "spans": [ - { - "bbox": [ - 132, - 87, - 463, - 98 - ], - "score": 1.0, - "content": "Read the source material and answer all the questions in Section A.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "title", - "bbox": [ - 57, - 119, - 107, - 130 - ], - "lines": [ - { - "bbox": [ - 58, - 118, - 107, - 130 - ], - "spans": [ - { - "bbox": [ - 58, - 118, - 107, - 130 - ], - "score": 1.0, - "content": "Source A", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 57, - 132, - 540, - 274 - ], - "lines": [ - { - "bbox": [ - 58, - 132, - 538, - 144 - ], - "spans": [ - { - "bbox": [ - 58, - 132, - 538, - 144 - ], - "score": 1.0, - "content": "Recent research suggests that advances in digital forms of communication have transformed the", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 56, - 144, - 539, - 158 - ], - "spans": [ - { - "bbox": [ - 56, - 144, - 539, - 158 - ], - "score": 1.0, - "content": "lives of individuals in the UK and across the world. For example, when natural disasters such as ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 57, - 158, - 537, - 170 - ], - "spans": [ - { - "bbox": [ - 57, - 158, - 537, - 170 - ], - "score": 1.0, - "content": "tsunamis, volcanic eruptions and extreme flooding occur, social media enables a rapid response.", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 57, - 170, - 539, - 184 - ], - "spans": [ - { - "bbox": [ - 57, - 170, - 539, - 184 - ], - "score": 1.0, - "content": "For example, following the 2012 hurricane in Canada, Facebook launched an emergency check-in ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 57, - 183, - 539, - 197 - ], - "spans": [ - { - "bbox": [ - 57, - 183, - 539, - 197 - ], - "score": 1.0, - "content": "App called ‘Safety Check’. At the click of a button users can let friends and family know they are ", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 57, - 197, - 538, - 210 - ], - "spans": [ - { - "bbox": [ - 57, - 197, - 538, - 210 - ], - "score": 1.0, - "content": "safe in the event of a natural disaster. Despite initial reservations, official organisations now use", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 57, - 210, - 538, - 222 - ], - "spans": [ - { - "bbox": [ - 57, - 210, - 538, - 222 - ], - "score": 1.0, - "content": "social media to help tackle disasters. In 2018, the USA National Weather Service asked people to", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 57, - 222, - 538, - 236 - ], - "spans": [ - { - "bbox": [ - 57, - 222, - 538, - 236 - ], - "score": 1.0, - "content": "use Facebook and Twitter to spread important safety messages and posts about tsunamis. Social", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 57, - 236, - 538, - 249 - ], - "spans": [ - { - "bbox": [ - 57, - 236, - 538, - 249 - ], - "score": 1.0, - "content": "media has also been effective in mobilising support for protests. Digital forms of communication", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 57, - 250, - 538, - 262 - ], - "spans": [ - { - "bbox": [ - 57, - 250, - 538, - 262 - ], - "score": 1.0, - "content": "such as social media have also helped strengthen relationships as time and location no longer", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 56, - 262, - 336, - 275 - ], - "spans": [ - { - "bbox": [ - 56, - 262, - 336, - 275 - ], - "score": 1.0, - "content": "present a barrier to maintaining contact across the world.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 9 - }, - { - "type": "title", - "bbox": [ - 57, - 305, - 107, - 317 - ], - "lines": [ - { - "bbox": [ - 57, - 305, - 108, - 317 - ], - "spans": [ - { - "bbox": [ - 57, - 305, - 108, - 317 - ], - "score": 1.0, - "content": "Source B", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "text", - "bbox": [ - 56, - 318, - 540, - 447 - ], - "lines": [ - { - "bbox": [ - 57, - 318, - 537, - 331 - ], - "spans": [ - { - "bbox": [ - 57, - 318, - 537, - 331 - ], - "score": 1.0, - "content": "Through advances in digital forms of communication people can now connect with others by joining", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 58, - 332, - 539, - 345 - ], - "spans": [ - { - "bbox": [ - 58, - 332, - 539, - 345 - ], - "score": 1.0, - "content": "online communities. Communicating in these virtual communities, where there are no geographical ", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 57, - 345, - 539, - 358 - ], - "spans": [ - { - "bbox": [ - 57, - 345, - 539, - 358 - ], - "score": 1.0, - "content": "boundaries, is quick and easy. For example, support may be generated very quickly in response ", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 57, - 358, - 539, - 371 - ], - "spans": [ - { - "bbox": [ - 57, - 358, - 539, - 371 - ], - "score": 1.0, - "content": "to major events. According to postmodern writers, people can share interests and also create and ", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 56, - 370, - 538, - 383 - ], - "spans": [ - { - "bbox": [ - 56, - 370, - 538, - 383 - ], - "score": 1.0, - "content": "transform their identities in the virtual community, regardless of gender, ethnicity, social class, age", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 58, - 384, - 538, - 395 - ], - "spans": [ - { - "bbox": [ - 58, - 384, - 538, - 395 - ], - "score": 1.0, - "content": "or disability. However, while some postmodern writers have embraced the development of a virtual", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 57, - 397, - 539, - 410 - ], - "spans": [ - { - "bbox": [ - 57, - 397, - 539, - 410 - ], - "score": 1.0, - "content": "world, other sociologists have been more cautious worrying about issues such as who controls the ", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 57, - 410, - 539, - 422 - ], - "spans": [ - { - "bbox": [ - 57, - 410, - 539, - 422 - ], - "score": 1.0, - "content": "virtual communities and how are they regulated? Also, concerns are often raised about the effects ", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 58, - 423, - 538, - 434 - ], - "spans": [ - { - "bbox": [ - 58, - 423, - 538, - 434 - ], - "score": 1.0, - "content": "of virtual communities on both individual’s identities and their relationships with those in their offline", - "type": "text" - } - ], - "index": 24 - }, - { - "bbox": [ - 56, - 435, - 251, - 448 - ], - "spans": [ - { - "bbox": [ - 56, - 435, - 251, - 448 - ], - "score": 1.0, - "content": "world such as friends, family and peers.", - "type": "text" - } - ], - "index": 25 - } - ], - "index": 20.5 - }, - { - "type": "text", - "bbox": [ - 50, - 486, - 547, - 512 - ], - "lines": [ - { - "bbox": [ - 47, - 485, - 548, - 500 - ], - "spans": [ - { - "bbox": [ - 47, - 485, - 548, - 500 - ], - "score": 1.0, - "content": "1* With reference to both sources and your wider sociological knowledge, explain the positive impact ", - "type": "text" - } - ], - "index": 26 - }, - { - "bbox": [ - 71, - 499, - 549, - 515 - ], - "spans": [ - { - "bbox": [ - 71, - 500, - 457, - 512 - ], - "score": 1.0, - "content": "of global developments in digital communication in responding to major events.", - "type": "text" - }, - { - "bbox": [ - 529, - 499, - 549, - 515 - ], - "score": 1.0, - "content": "[9]", - "type": "text" - } - ], - "index": 27 - } - ], - "index": 26.5 - }, - { - "type": "text", - "bbox": [ - 49, - 524, - 548, - 551 - ], - "lines": [ - { - "bbox": [ - 47, - 525, - 548, - 538 - ], - "spans": [ - { - "bbox": [ - 47, - 525, - 58, - 537 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - }, - { - "bbox": [ - 70, - 525, - 548, - 538 - ], - "score": 1.0, - "content": "With reference to the source(s) and your wider sociological knowledge, evaluate the view that ", - "type": "text" - } - ], - "index": 28 - }, - { - "bbox": [ - 70, - 537, - 549, - 553 - ], - "spans": [ - { - "bbox": [ - 70, - 538, - 378, - 551 - ], - "score": 1.0, - "content": "virtual communities have a positive impact on people’s identity.", - "type": "text" - }, - { - "bbox": [ - 523, - 537, - 549, - 553 - ], - "score": 1.0, - "content": "[10]", - "type": "text" - } - ], - "index": 29 - } - ], - "index": 28.5 - }, - { - "type": "text", - "bbox": [ - 46, - 564, - 548, - 591 - ], - "lines": [ - { - "bbox": [ - 47, - 563, - 548, - 579 - ], - "spans": [ - { - "bbox": [ - 47, - 564, - 57, - 577 - ], - "score": 1.0, - "content": "3", - "type": "text" - }, - { - "bbox": [ - 69, - 563, - 548, - 579 - ], - "score": 1.0, - "content": "Evaluate the sociological view that all digital forms of communication have a negative impact on ", - "type": "text" - } - ], - "index": 30 - }, - { - "bbox": [ - 71, - 577, - 548, - 592 - ], - "spans": [ - { - "bbox": [ - 71, - 578, - 168, - 590 - ], - "score": 1.0, - "content": "social relationships.", - "type": "text" - }, - { - "bbox": [ - 524, - 577, - 548, - 592 - ], - "score": 1.0, - "content": "[16]", - "type": "text" - } - ], - "index": 31 - } - ], - "index": 30.5 - } - ], - "layout_bboxes": [], - "page_idx": 1, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 48, - 798, - 84, - 806 - ], - "lines": [ - { - "bbox": [ - 48, - 799, - 85, - 806 - ], - "spans": [ - { - "bbox": [ - 48, - 799, - 85, - 806 - ], - "score": 1.0, - "content": "© OCR 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 276, - 798, - 318, - 806 - ], - "lines": [ - { - "bbox": [ - 277, - 799, - 319, - 806 - ], - "spans": [ - { - "bbox": [ - 277, - 799, - 319, - 806 - ], - "score": 1.0, - "content": "H580/03 Jun20", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 293, - 37, - 302, - 48 - ], - "lines": [ - { - "bbox": [ - 292, - 36, - 303, - 51 - ], - "spans": [ - { - "bbox": [ - 292, - 36, - 303, - 51 - ], - "score": 1.0, - "content": "2", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_1", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "title", - "bbox": [ - 267, - 60, - 328, - 73 - ], - "lines": [ - { - "bbox": [ - 267, - 61, - 328, - 72 - ], - "spans": [ - { - "bbox": [ - 267, - 61, - 328, - 72 - ], - "score": 1.0, - "content": "SECTION A", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_1", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 129, - 86, - 463, - 99 - ], - "lines": [ - { - "bbox": [ - 132, - 87, - 463, - 98 - ], - "spans": [ - { - "bbox": [ - 132, - 87, - 463, - 98 - ], - "score": 1.0, - "content": "Read the source material and answer all the questions in Section A.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_1", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 132, - 87, - 463, - 98 - ] - }, - { - "type": "title", - "bbox": [ - 57, - 119, - 107, - 130 - ], - "lines": [ - { - "bbox": [ - 58, - 118, - 107, - 130 - ], - "spans": [ - { - "bbox": [ - 58, - 118, - 107, - 130 - ], - "score": 1.0, - "content": "Source A", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_1", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 57, - 132, - 540, - 274 - ], - "lines": [ - { - "bbox": [ - 58, - 132, - 538, - 144 - ], - "spans": [ - { - "bbox": [ - 58, - 132, - 538, - 144 - ], - "score": 1.0, - "content": "Recent research suggests that advances in digital forms of communication have transformed the", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 56, - 144, - 539, - 158 - ], - "spans": [ - { - "bbox": [ - 56, - 144, - 539, - 158 - ], - "score": 1.0, - "content": "lives of individuals in the UK and across the world. For example, when natural disasters such as ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 57, - 158, - 537, - 170 - ], - "spans": [ - { - "bbox": [ - 57, - 158, - 537, - 170 - ], - "score": 1.0, - "content": "tsunamis, volcanic eruptions and extreme flooding occur, social media enables a rapid response.", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 57, - 170, - 539, - 184 - ], - "spans": [ - { - "bbox": [ - 57, - 170, - 539, - 184 - ], - "score": 1.0, - "content": "For example, following the 2012 hurricane in Canada, Facebook launched an emergency check-in ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 57, - 183, - 539, - 197 - ], - "spans": [ - { - "bbox": [ - 57, - 183, - 539, - 197 - ], - "score": 1.0, - "content": "App called ‘Safety Check’. At the click of a button users can let friends and family know they are ", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 57, - 197, - 538, - 210 - ], - "spans": [ - { - "bbox": [ - 57, - 197, - 538, - 210 - ], - "score": 1.0, - "content": "safe in the event of a natural disaster. Despite initial reservations, official organisations now use", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 57, - 210, - 538, - 222 - ], - "spans": [ - { - "bbox": [ - 57, - 210, - 538, - 222 - ], - "score": 1.0, - "content": "social media to help tackle disasters. In 2018, the USA National Weather Service asked people to", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 57, - 222, - 538, - 236 - ], - "spans": [ - { - "bbox": [ - 57, - 222, - 538, - 236 - ], - "score": 1.0, - "content": "use Facebook and Twitter to spread important safety messages and posts about tsunamis. Social", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 57, - 236, - 538, - 249 - ], - "spans": [ - { - "bbox": [ - 57, - 236, - 538, - 249 - ], - "score": 1.0, - "content": "media has also been effective in mobilising support for protests. Digital forms of communication", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 57, - 250, - 538, - 262 - ], - "spans": [ - { - "bbox": [ - 57, - 250, - 538, - 262 - ], - "score": 1.0, - "content": "such as social media have also helped strengthen relationships as time and location no longer", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 56, - 262, - 336, - 275 - ], - "spans": [ - { - "bbox": [ - 56, - 262, - 336, - 275 - ], - "score": 1.0, - "content": "present a barrier to maintaining contact across the world.", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 9, - "page_num": "page_1", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 56, - 132, - 539, - 275 - ] - }, - { - "type": "title", - "bbox": [ - 57, - 305, - 107, - 317 - ], - "lines": [ - { - "bbox": [ - 57, - 305, - 108, - 317 - ], - "spans": [ - { - "bbox": [ - 57, - 305, - 108, - 317 - ], - "score": 1.0, - "content": "Source B", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_1", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 56, - 318, - 540, - 447 - ], - "lines": [ - { - "bbox": [ - 57, - 318, - 537, - 331 - ], - "spans": [ - { - "bbox": [ - 57, - 318, - 537, - 331 - ], - "score": 1.0, - "content": "Through advances in digital forms of communication people can now connect with others by joining", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 58, - 332, - 539, - 345 - ], - "spans": [ - { - "bbox": [ - 58, - 332, - 539, - 345 - ], - "score": 1.0, - "content": "online communities. Communicating in these virtual communities, where there are no geographical ", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 57, - 345, - 539, - 358 - ], - "spans": [ - { - "bbox": [ - 57, - 345, - 539, - 358 - ], - "score": 1.0, - "content": "boundaries, is quick and easy. For example, support may be generated very quickly in response ", - "type": "text" - } - ], - "index": 18 - }, - { - "bbox": [ - 57, - 358, - 539, - 371 - ], - "spans": [ - { - "bbox": [ - 57, - 358, - 539, - 371 - ], - "score": 1.0, - "content": "to major events. According to postmodern writers, people can share interests and also create and ", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 56, - 370, - 538, - 383 - ], - "spans": [ - { - "bbox": [ - 56, - 370, - 538, - 383 - ], - "score": 1.0, - "content": "transform their identities in the virtual community, regardless of gender, ethnicity, social class, age", - "type": "text" - } - ], - "index": 20 - }, - { - "bbox": [ - 58, - 384, - 538, - 395 - ], - "spans": [ - { - "bbox": [ - 58, - 384, - 538, - 395 - ], - "score": 1.0, - "content": "or disability. However, while some postmodern writers have embraced the development of a virtual", - "type": "text" - } - ], - "index": 21 - }, - { - "bbox": [ - 57, - 397, - 539, - 410 - ], - "spans": [ - { - "bbox": [ - 57, - 397, - 539, - 410 - ], - "score": 1.0, - "content": "world, other sociologists have been more cautious worrying about issues such as who controls the ", - "type": "text" - } - ], - "index": 22 - }, - { - "bbox": [ - 57, - 410, - 539, - 422 - ], - "spans": [ - { - "bbox": [ - 57, - 410, - 539, - 422 - ], - "score": 1.0, - "content": "virtual communities and how are they regulated? Also, concerns are often raised about the effects ", - "type": "text" - } - ], - "index": 23 - }, - { - "bbox": [ - 58, - 423, - 538, - 434 - ], - "spans": [ - { - "bbox": [ - 58, - 423, - 538, - 434 - ], - "score": 1.0, - "content": "of virtual communities on both individual’s identities and their relationships with those in their offline", - "type": "text" - } - ], - "index": 24 - }, - { - "bbox": [ - 56, - 435, - 251, - 448 - ], - "spans": [ - { - "bbox": [ - 56, - 435, - 251, - 448 - ], - "score": 1.0, - "content": "world such as friends, family and peers.", - "type": "text" - } - ], - "index": 25 - } - ], - "index": 20.5, - "page_num": "page_1", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 56, - 318, - 539, - 448 - ] - }, - { - "type": "text", - "bbox": [ - 50, - 486, - 547, - 512 - ], - "lines": [ - { - "bbox": [ - 47, - 485, - 548, - 500 - ], - "spans": [ - { - "bbox": [ - 47, - 485, - 548, - 500 - ], - "score": 1.0, - "content": "1* With reference to both sources and your wider sociological knowledge, explain the positive impact ", - "type": "text" - } - ], - "index": 26 - }, - { - "bbox": [ - 71, - 499, - 549, - 515 - ], - "spans": [ - { - "bbox": [ - 71, - 500, - 457, - 512 - ], - "score": 1.0, - "content": "of global developments in digital communication in responding to major events.", - "type": "text" - }, - { - "bbox": [ - 529, - 499, - 549, - 515 - ], - "score": 1.0, - "content": "[9]", - "type": "text" - } - ], - "index": 27 - } - ], - "index": 26.5, - "page_num": "page_1", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 485, - 549, - 515 - ] - }, - { - "type": "text", - "bbox": [ - 49, - 524, - 548, - 551 - ], - "lines": [ - { - "bbox": [ - 47, - 525, - 548, - 538 - ], - "spans": [ - { - "bbox": [ - 47, - 525, - 58, - 537 - ], - "score": 1.0, - "content": "2 ", - "type": "text" - }, - { - "bbox": [ - 70, - 525, - 548, - 538 - ], - "score": 1.0, - "content": "With reference to the source(s) and your wider sociological knowledge, evaluate the view that ", - "type": "text" - } - ], - "index": 28 - }, - { - "bbox": [ - 70, - 537, - 549, - 553 - ], - "spans": [ - { - "bbox": [ - 70, - 538, - 378, - 551 - ], - "score": 1.0, - "content": "virtual communities have a positive impact on people’s identity.", - "type": "text" - }, - { - "bbox": [ - 523, - 537, - 549, - 553 - ], - "score": 1.0, - "content": "[10]", - "type": "text" - } - ], - "index": 29 - } - ], - "index": 28.5, - "page_num": "page_1", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 525, - 549, - 553 - ] - }, - { - "type": "text", - "bbox": [ - 46, - 564, - 548, - 591 - ], - "lines": [ - { - "bbox": [ - 47, - 563, - 548, - 579 - ], - "spans": [ - { - "bbox": [ - 47, - 564, - 57, - 577 - ], - "score": 1.0, - "content": "3", - "type": "text" - }, - { - "bbox": [ - 69, - 563, - 548, - 579 - ], - "score": 1.0, - "content": "Evaluate the sociological view that all digital forms of communication have a negative impact on ", - "type": "text" - } - ], - "index": 30 - }, - { - "bbox": [ - 71, - 577, - 548, - 592 - ], - "spans": [ - { - "bbox": [ - 71, - 578, - 168, - 590 - ], - "score": 1.0, - "content": "social relationships.", - "type": "text" - }, - { - "bbox": [ - 524, - 577, - 548, - 592 - ], - "score": 1.0, - "content": "[16]", - "type": "text" - } - ], - "index": 31 - } - ], - "index": 30.5, - "page_num": "page_1", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 563, - 548, - 592 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 266, - 59, - 328, - 73 - ], - "lines": [ - { - "bbox": [ - 267, - 61, - 328, - 72 - ], - "spans": [ - { - "bbox": [ - 267, - 61, - 328, - 72 - ], - "score": 1.0, - "content": "SECTION B", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 103, - 85, - 491, - 100 - ], - "lines": [ - { - "bbox": [ - 104, - 87, - 491, - 99 - ], - "spans": [ - { - "bbox": [ - 104, - 87, - 491, - 99 - ], - "score": 1.0, - "content": "Choose one option from Section B and answer all the questions for that option.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "title", - "bbox": [ - 48, - 111, - 101, - 125 - ], - "lines": [ - { - "bbox": [ - 49, - 113, - 101, - 124 - ], - "spans": [ - { - "bbox": [ - 49, - 113, - 101, - 124 - ], - "score": 1.0, - "content": "OPTION 1", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "title", - "bbox": [ - 49, - 138, - 155, - 151 - ], - "lines": [ - { - "bbox": [ - 49, - 140, - 154, - 150 - ], - "spans": [ - { - "bbox": [ - 49, - 140, - 154, - 150 - ], - "score": 1.0, - "content": "Crime and deviance", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "text", - "bbox": [ - 47, - 163, - 549, - 231 - ], - "lines": [ - { - "bbox": [ - 47, - 163, - 549, - 180 - ], - "spans": [ - { - "bbox": [ - 47, - 164, - 61, - 176 - ], - "score": 0.61, - "content": "{\\pmb{4}}^{\\star}", - "type": "inline_equation", - "height": 12, - "width": 14 - }, - { - "bbox": [ - 61, - 163, - 294, - 179 - ], - "score": 1.0, - "content": " In what ways is green crime a growing issue?", - "type": "text" - }, - { - "bbox": [ - 523, - 163, - 549, - 180 - ], - "score": 1.0, - "content": "[10]", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 48, - 189, - 549, - 206 - ], - "spans": [ - { - "bbox": [ - 48, - 190, - 61, - 202 - ], - "score": 0.69, - "content": "\\pmb{5}^{\\star}", - "type": "inline_equation", - "height": 12, - "width": 13 - }, - { - "bbox": [ - 61, - 189, - 343, - 205 - ], - "score": 1.0, - "content": " Assess right realist explanations of crime and deviance.", - "type": "text" - }, - { - "bbox": [ - 524, - 189, - 549, - 206 - ], - "score": 1.0, - "content": "[20] ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 47, - 216, - 549, - 232 - ], - "spans": [ - { - "bbox": [ - 47, - 216, - 61, - 228 - ], - "score": 0.67, - "content": "{\\pmb6}^{\\star}", - "type": "inline_equation", - "height": 12, - "width": 14 - }, - { - "bbox": [ - 61, - 217, - 65, - 228 - ], - "score": 1.0, - "content": " ", - "type": "text" - }, - { - "bbox": [ - 69, - 216, - 503, - 230 - ], - "score": 1.0, - "content": "Evaluate sociological explanations of the over-representation of males in crime statistics.", - "type": "text" - }, - { - "bbox": [ - 523, - 216, - 549, - 232 - ], - "score": 1.0, - "content": "[40]", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5 - }, - { - "type": "title", - "bbox": [ - 49, - 254, - 102, - 268 - ], - "lines": [ - { - "bbox": [ - 49, - 256, - 101, - 267 - ], - "spans": [ - { - "bbox": [ - 49, - 256, - 101, - 267 - ], - "score": 1.0, - "content": "OPTION 2", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "title", - "bbox": [ - 49, - 281, - 104, - 294 - ], - "lines": [ - { - "bbox": [ - 49, - 281, - 104, - 294 - ], - "spans": [ - { - "bbox": [ - 49, - 281, - 104, - 294 - ], - "score": 1.0, - "content": "Education", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8 - }, - { - "type": "text", - "bbox": [ - 46, - 304, - 550, - 387 - ], - "lines": [ - { - "bbox": [ - 47, - 305, - 549, - 323 - ], - "spans": [ - { - "bbox": [ - 47, - 307, - 61, - 319 - ], - "score": 0.58, - "content": "7^{\\star}", - "type": "inline_equation", - "height": 12, - "width": 14 - }, - { - "bbox": [ - 61, - 305, - 465, - 321 - ], - "score": 1.0, - "content": " In what ways are there gender differences in patterns of educational attainment? ", - "type": "text" - }, - { - "bbox": [ - 522, - 305, - 549, - 323 - ], - "score": 1.0, - "content": "[10]", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 47, - 333, - 548, - 346 - ], - "spans": [ - { - "bbox": [ - 47, - 333, - 61, - 346 - ], - "score": 0.57, - "content": "{\\mathfrak{s}}^{\\star}", - "type": "inline_equation", - "height": 13, - "width": 14 - }, - { - "bbox": [ - 61, - 334, - 63, - 345 - ], - "score": 1.0, - "content": " ", - "type": "text" - }, - { - "bbox": [ - 70, - 334, - 548, - 346 - ], - "score": 1.0, - "content": "Assess the view that teacher labelling is the main cause of working-class pupils’ underachievement ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 69, - 345, - 549, - 362 - ], - "spans": [ - { - "bbox": [ - 69, - 345, - 120, - 359 - ], - "score": 1.0, - "content": "in school.", - "type": "text" - }, - { - "bbox": [ - 521, - 345, - 549, - 362 - ], - "score": 1.0, - "content": "[20]", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 47, - 371, - 550, - 388 - ], - "spans": [ - { - "bbox": [ - 47, - 372, - 61, - 384 - ], - "score": 0.63, - "content": "\\9^{\\star}", - "type": "inline_equation", - "height": 12, - "width": 14 - }, - { - "bbox": [ - 61, - 371, - 66, - 385 - ], - "score": 1.0, - "content": " ", - "type": "text" - }, - { - "bbox": [ - 69, - 372, - 477, - 385 - ], - "score": 1.0, - "content": "Evaluate functionalist explanations of the relationship between education and work.", - "type": "text" - }, - { - "bbox": [ - 522, - 371, - 550, - 388 - ], - "score": 1.0, - "content": "[40]", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 10.5 - }, - { - "type": "title", - "bbox": [ - 48, - 410, - 103, - 424 - ], - "lines": [ - { - "bbox": [ - 49, - 412, - 102, - 423 - ], - "spans": [ - { - "bbox": [ - 49, - 412, - 102, - 423 - ], - "score": 1.0, - "content": "OPTION 3", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13 - }, - { - "type": "title", - "bbox": [ - 49, - 437, - 178, - 451 - ], - "lines": [ - { - "bbox": [ - 49, - 438, - 177, - 450 - ], - "spans": [ - { - "bbox": [ - 49, - 438, - 177, - 450 - ], - "score": 1.0, - "content": "Religion, belief and faith", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 47, - 463, - 427, - 477 - ], - "lines": [ - { - "bbox": [ - 48, - 463, - 416, - 476 - ], - "spans": [ - { - "bbox": [ - 48, - 463, - 67, - 475 - ], - "score": 0.79, - "content": "{\\bf10^{*}}", - "type": "inline_equation", - "height": 12, - "width": 19 - }, - { - "bbox": [ - 68, - 464, - 416, - 476 - ], - "score": 1.0, - "content": "In what ways is the significance of religion different between societies?", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15 - }, - { - "type": "text", - "bbox": [ - 49, - 488, - 550, - 503 - ], - "lines": [ - { - "bbox": [ - 48, - 488, - 549, - 505 - ], - "spans": [ - { - "bbox": [ - 48, - 489, - 67, - 502 - ], - "score": 0.68, - "content": "11^{\\star}", - "type": "inline_equation", - "height": 13, - "width": 19 - }, - { - "bbox": [ - 67, - 488, - 334, - 503 - ], - "score": 1.0, - "content": " Assess feminist views of the role of religion in society.", - "type": "text" - }, - { - "bbox": [ - 523, - 488, - 549, - 505 - ], - "score": 1.0, - "content": "[20]", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16 - }, - { - "type": "text", - "bbox": [ - 50, - 515, - 551, - 529 - ], - "lines": [ - { - "bbox": [ - 48, - 514, - 550, - 531 - ], - "spans": [ - { - "bbox": [ - 48, - 515, - 67, - 528 - ], - "score": 0.78, - "content": "12^{\\star}", - "type": "inline_equation", - "height": 13, - "width": 19 - }, - { - "bbox": [ - 68, - 516, - 315, - 527 - ], - "score": 1.0, - "content": "Evaluate the views of anti-secularisation theorists.", - "type": "text" - }, - { - "bbox": [ - 523, - 514, - 550, - 531 - ], - "score": 1.0, - "content": "[40]", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 17 - } - ], - "layout_bboxes": [], - "page_idx": 2, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 48, - 798, - 84, - 806 - ], - "lines": [ - { - "bbox": [ - 48, - 799, - 85, - 806 - ], - "spans": [ - { - "bbox": [ - 48, - 799, - 85, - 806 - ], - "score": 1.0, - "content": "© OCR 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 276, - 798, - 319, - 806 - ], - "lines": [ - { - "bbox": [ - 277, - 799, - 318, - 806 - ], - "spans": [ - { - "bbox": [ - 277, - 799, - 318, - 806 - ], - "score": 1.0, - "content": "H580/03 Jun20", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 225, - 619, - 370, - 632 - ], - "lines": [ - { - "bbox": [ - 227, - 620, - 370, - 631 - ], - "spans": [ - { - "bbox": [ - 227, - 620, - 370, - 631 - ], - "score": 1.0, - "content": "END OF QUESTION PAPER", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 292, - 37, - 302, - 48 - ], - "lines": [ - { - "bbox": [ - 292, - 36, - 303, - 51 - ], - "spans": [ - { - "bbox": [ - 292, - 36, - 303, - 51 - ], - "score": 1.0, - "content": "3", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 266, - 59, - 328, - 73 - ], - "lines": [ - { - "bbox": [ - 267, - 61, - 328, - 72 - ], - "spans": [ - { - "bbox": [ - 267, - 61, - 328, - 72 - ], - "score": 1.0, - "content": "SECTION B", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_2", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 103, - 85, - 491, - 100 - ], - "lines": [ - { - "bbox": [ - 104, - 87, - 491, - 99 - ], - "spans": [ - { - "bbox": [ - 104, - 87, - 491, - 99 - ], - "score": 1.0, - "content": "Choose one option from Section B and answer all the questions for that option.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_2", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 104, - 87, - 491, - 99 - ] - }, - { - "type": "title", - "bbox": [ - 48, - 111, - 101, - 125 - ], - "lines": [ - { - "bbox": [ - 49, - 113, - 101, - 124 - ], - "spans": [ - { - "bbox": [ - 49, - 113, - 101, - 124 - ], - "score": 1.0, - "content": "OPTION 1", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_2", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "title", - "bbox": [ - 49, - 138, - 155, - 151 - ], - "lines": [ - { - "bbox": [ - 49, - 140, - 154, - 150 - ], - "spans": [ - { - "bbox": [ - 49, - 140, - 154, - 150 - ], - "score": 1.0, - "content": "Crime and deviance", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_2", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 47, - 163, - 549, - 231 - ], - "lines": [ - { - "bbox": [ - 47, - 163, - 549, - 180 - ], - "spans": [ - { - "bbox": [ - 47, - 164, - 61, - 176 - ], - "score": 0.61, - "content": "{\\pmb{4}}^{\\star}", - "type": "inline_equation", - "height": 12, - "width": 14 - }, - { - "bbox": [ - 61, - 163, - 294, - 179 - ], - "score": 1.0, - "content": " In what ways is green crime a growing issue?", - "type": "text" - }, - { - "bbox": [ - 523, - 163, - 549, - 180 - ], - "score": 1.0, - "content": "[10]", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 48, - 189, - 549, - 206 - ], - "spans": [ - { - "bbox": [ - 48, - 190, - 61, - 202 - ], - "score": 0.69, - "content": "\\pmb{5}^{\\star}", - "type": "inline_equation", - "height": 12, - "width": 13 - }, - { - "bbox": [ - 61, - 189, - 343, - 205 - ], - "score": 1.0, - "content": " Assess right realist explanations of crime and deviance.", - "type": "text" - }, - { - "bbox": [ - 524, - 189, - 549, - 206 - ], - "score": 1.0, - "content": "[20] ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 47, - 216, - 549, - 232 - ], - "spans": [ - { - "bbox": [ - 47, - 216, - 61, - 228 - ], - "score": 0.67, - "content": "{\\pmb6}^{\\star}", - "type": "inline_equation", - "height": 12, - "width": 14 - }, - { - "bbox": [ - 61, - 217, - 65, - 228 - ], - "score": 1.0, - "content": " ", - "type": "text" - }, - { - "bbox": [ - 69, - 216, - 503, - 230 - ], - "score": 1.0, - "content": "Evaluate sociological explanations of the over-representation of males in crime statistics.", - "type": "text" - }, - { - "bbox": [ - 523, - 216, - 549, - 232 - ], - "score": 1.0, - "content": "[40]", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 5, - "page_num": "page_2", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 163, - 549, - 232 - ] - }, - { - "type": "title", - "bbox": [ - 49, - 254, - 102, - 268 - ], - "lines": [ - { - "bbox": [ - 49, - 256, - 101, - 267 - ], - "spans": [ - { - "bbox": [ - 49, - 256, - 101, - 267 - ], - "score": 1.0, - "content": "OPTION 2", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_2", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "title", - "bbox": [ - 49, - 281, - 104, - 294 - ], - "lines": [ - { - "bbox": [ - 49, - 281, - 104, - 294 - ], - "spans": [ - { - "bbox": [ - 49, - 281, - 104, - 294 - ], - "score": 1.0, - "content": "Education", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 8, - "page_num": "page_2", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 46, - 304, - 550, - 387 - ], - "lines": [ - { - "bbox": [ - 47, - 305, - 549, - 323 - ], - "spans": [ - { - "bbox": [ - 47, - 307, - 61, - 319 - ], - "score": 0.58, - "content": "7^{\\star}", - "type": "inline_equation", - "height": 12, - "width": 14 - }, - { - "bbox": [ - 61, - 305, - 465, - 321 - ], - "score": 1.0, - "content": " In what ways are there gender differences in patterns of educational attainment? ", - "type": "text" - }, - { - "bbox": [ - 522, - 305, - 549, - 323 - ], - "score": 1.0, - "content": "[10]", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 47, - 333, - 548, - 346 - ], - "spans": [ - { - "bbox": [ - 47, - 333, - 61, - 346 - ], - "score": 0.57, - "content": "{\\mathfrak{s}}^{\\star}", - "type": "inline_equation", - "height": 13, - "width": 14 - }, - { - "bbox": [ - 61, - 334, - 63, - 345 - ], - "score": 1.0, - "content": " ", - "type": "text" - }, - { - "bbox": [ - 70, - 334, - 548, - 346 - ], - "score": 1.0, - "content": "Assess the view that teacher labelling is the main cause of working-class pupils’ underachievement ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 69, - 345, - 549, - 362 - ], - "spans": [ - { - "bbox": [ - 69, - 345, - 120, - 359 - ], - "score": 1.0, - "content": "in school.", - "type": "text" - }, - { - "bbox": [ - 521, - 345, - 549, - 362 - ], - "score": 1.0, - "content": "[20]", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 47, - 371, - 550, - 388 - ], - "spans": [ - { - "bbox": [ - 47, - 372, - 61, - 384 - ], - "score": 0.63, - "content": "\\9^{\\star}", - "type": "inline_equation", - "height": 12, - "width": 14 - }, - { - "bbox": [ - 61, - 371, - 66, - 385 - ], - "score": 1.0, - "content": " ", - "type": "text" - }, - { - "bbox": [ - 69, - 372, - 477, - 385 - ], - "score": 1.0, - "content": "Evaluate functionalist explanations of the relationship between education and work.", - "type": "text" - }, - { - "bbox": [ - 522, - 371, - 550, - 388 - ], - "score": 1.0, - "content": "[40]", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 10.5, - "page_num": "page_2", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 305, - 550, - 388 - ] - }, - { - "type": "title", - "bbox": [ - 48, - 410, - 103, - 424 - ], - "lines": [ - { - "bbox": [ - 49, - 412, - 102, - 423 - ], - "spans": [ - { - "bbox": [ - 49, - 412, - 102, - 423 - ], - "score": 1.0, - "content": "OPTION 3", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 13, - "page_num": "page_2", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "title", - "bbox": [ - 49, - 437, - 178, - 451 - ], - "lines": [ - { - "bbox": [ - 49, - 438, - 177, - 450 - ], - "spans": [ - { - "bbox": [ - 49, - 438, - 177, - 450 - ], - "score": 1.0, - "content": "Religion, belief and faith", - "type": "text" - } - ], - "index": 14 - } - ], - "index": 14, - "page_num": "page_2", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 47, - 463, - 427, - 477 - ], - "lines": [ - { - "bbox": [ - 48, - 463, - 416, - 476 - ], - "spans": [ - { - "bbox": [ - 48, - 463, - 67, - 475 - ], - "score": 0.79, - "content": "{\\bf10^{*}}", - "type": "inline_equation", - "height": 12, - "width": 19 - }, - { - "bbox": [ - 68, - 464, - 416, - 476 - ], - "score": 1.0, - "content": "In what ways is the significance of religion different between societies?", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 15, - "page_num": "page_2", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 48, - 463, - 416, - 476 - ] - }, - { - "type": "text", - "bbox": [ - 49, - 488, - 550, - 503 - ], - "lines": [ - { - "bbox": [ - 48, - 488, - 549, - 505 - ], - "spans": [ - { - "bbox": [ - 48, - 489, - 67, - 502 - ], - "score": 0.68, - "content": "11^{\\star}", - "type": "inline_equation", - "height": 13, - "width": 19 - }, - { - "bbox": [ - 67, - 488, - 334, - 503 - ], - "score": 1.0, - "content": " Assess feminist views of the role of religion in society.", - "type": "text" - }, - { - "bbox": [ - 523, - 488, - 549, - 505 - ], - "score": 1.0, - "content": "[20]", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 16, - "page_num": "page_2", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 48, - 488, - 549, - 505 - ] - }, - { - "type": "text", - "bbox": [ - 50, - 515, - 551, - 529 - ], - "lines": [ - { - "bbox": [ - 48, - 514, - 550, - 531 - ], - "spans": [ - { - "bbox": [ - 48, - 515, - 67, - 528 - ], - "score": 0.78, - "content": "12^{\\star}", - "type": "inline_equation", - "height": 13, - "width": 19 - }, - { - "bbox": [ - 68, - 516, - 315, - 527 - ], - "score": 1.0, - "content": "Evaluate the views of anti-secularisation theorists.", - "type": "text" - }, - { - "bbox": [ - 523, - 514, - 550, - 531 - ], - "score": 1.0, - "content": "[40]", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 17, - "page_num": "page_2", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 48, - 514, - 550, - 531 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 49, - 693, - 113, - 701 - ], - "lines": [ - { - "bbox": [ - 49, - 692, - 114, - 702 - ], - "spans": [ - { - "bbox": [ - 49, - 692, - 114, - 702 - ], - "score": 1.0, - "content": "Copyright Information", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 51, - 704, - 544, - 728 - ], - "lines": [ - { - "bbox": [ - 49, - 703, - 546, - 713 - ], - "spans": [ - { - "bbox": [ - 49, - 703, - 546, - 713 - ], - "score": 1.0, - "content": "OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 50, - 713, - 545, - 721 - ], - "spans": [ - { - "bbox": [ - 50, - 713, - 545, - 721 - ], - "score": 1.0, - "content": "whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 49, - 719, - 546, - 730 - ], - "spans": [ - { - "bbox": [ - 49, - 719, - 546, - 730 - ], - "score": 1.0, - "content": "Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 48, - 731, - 544, - 747 - ], - "lines": [ - { - "bbox": [ - 47, - 730, - 545, - 741 - ], - "spans": [ - { - "bbox": [ - 47, - 730, - 545, - 741 - ], - "score": 1.0, - "content": "If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 48, - 740, - 81, - 748 - ], - "spans": [ - { - "bbox": [ - 48, - 740, - 81, - 748 - ], - "score": 1.0, - "content": "opportunity.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5 - }, - { - "type": "text", - "bbox": [ - 57, - 749, - 447, - 758 - ], - "lines": [ - { - "bbox": [ - 56, - 750, - 420, - 758 - ], - "spans": [ - { - "bbox": [ - 56, - 750, - 420, - 758 - ], - "score": 1.0, - "content": "r queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 51, - 761, - 545, - 777 - ], - "lines": [ - { - "bbox": [ - 50, - 760, - 547, - 770 - ], - "spans": [ - { - "bbox": [ - 50, - 760, - 547, - 770 - ], - "score": 1.0, - "content": "OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 50, - 769, - 165, - 778 - ], - "spans": [ - { - "bbox": [ - 50, - 769, - 165, - 778 - ], - "score": 1.0, - "content": "department of the University of Cambridge.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7.5 - } - ], - "layout_bboxes": [], - "page_idx": 3, - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 48, - 798, - 84, - 806 - ], - "lines": [ - { - "bbox": [ - 48, - 799, - 85, - 806 - ], - "spans": [ - { - "bbox": [ - 48, - 799, - 85, - 806 - ], - "score": 1.0, - "content": "© OCR 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 276, - 798, - 318, - 806 - ], - "lines": [ - { - "bbox": [ - 277, - 799, - 319, - 806 - ], - "spans": [ - { - "bbox": [ - 277, - 799, - 319, - 806 - ], - "score": 1.0, - "content": "H580/03 Jun20", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 48, - 655, - 127, - 689 - ], - "lines": [ - { - "bbox": [ - 49, - 657, - 126, - 680 - ], - "spans": [ - { - "bbox": [ - 49, - 657, - 126, - 680 - ], - "score": 0.9938415884971619, - "content": "OCR", - "type": "text" - } - ] - }, - { - "bbox": [ - 50, - 681, - 126, - 689 - ], - "spans": [ - { - "bbox": [ - 50, - 681, - 126, - 689 - ], - "score": 1.0, - "content": "Oxford Cambridge and RSA", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 294, - 38, - 301, - 47 - ], - "lines": [ - { - "bbox": [ - 294, - 37, - 303, - 49 - ], - "spans": [ - { - "bbox": [ - 294, - 37, - 303, - 49 - ], - "score": 1.0, - "content": "4", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 49, - 693, - 113, - 701 - ], - "lines": [ - { - "bbox": [ - 49, - 692, - 114, - 702 - ], - "spans": [ - { - "bbox": [ - 49, - 692, - 114, - 702 - ], - "score": 1.0, - "content": "Copyright Information", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_3", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ] - }, - { - "type": "text", - "bbox": [ - 51, - 704, - 544, - 728 - ], - "lines": [ - { - "bbox": [ - 49, - 703, - 546, - 713 - ], - "spans": [ - { - "bbox": [ - 49, - 703, - 546, - 713 - ], - "score": 1.0, - "content": "OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 50, - 713, - 545, - 721 - ], - "spans": [ - { - "bbox": [ - 50, - 713, - 545, - 721 - ], - "score": 1.0, - "content": "whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 49, - 719, - 546, - 730 - ], - "spans": [ - { - "bbox": [ - 49, - 719, - 546, - 730 - ], - "score": 1.0, - "content": "Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2, - "page_num": "page_3", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 49, - 703, - 546, - 730 - ] - }, - { - "type": "text", - "bbox": [ - 48, - 731, - 544, - 747 - ], - "lines": [ - { - "bbox": [ - 47, - 730, - 545, - 741 - ], - "spans": [ - { - "bbox": [ - 47, - 730, - 545, - 741 - ], - "score": 1.0, - "content": "If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 48, - 740, - 81, - 748 - ], - "spans": [ - { - "bbox": [ - 48, - 740, - 81, - 748 - ], - "score": 1.0, - "content": "opportunity.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5, - "page_num": "page_3", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 47, - 730, - 545, - 748 - ] - }, - { - "type": "text", - "bbox": [ - 57, - 749, - 447, - 758 - ], - "lines": [ - { - "bbox": [ - 56, - 750, - 420, - 758 - ], - "spans": [ - { - "bbox": [ - 56, - 750, - 420, - 758 - ], - "score": 1.0, - "content": "r queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_3", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 56, - 750, - 420, - 758 - ] - }, - { - "type": "text", - "bbox": [ - 51, - 761, - 545, - 777 - ], - "lines": [ - { - "bbox": [ - 50, - 760, - 547, - 770 - ], - "spans": [ - { - "bbox": [ - 50, - 760, - 547, - 770 - ], - "score": 1.0, - "content": "OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 50, - 769, - 165, - 778 - ], - "spans": [ - { - "bbox": [ - 50, - 769, - 165, - 778 - ], - "score": 1.0, - "content": "department of the University of Cambridge.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 7.5, - "page_num": "page_3", - "page_size": [ - 595.2760009765625, - 841.8900146484375 - ], - "bbox_fs": [ - 50, - 760, - 547, - 778 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 58, - 110, - 98, - 129 - ], - "lines": [ - { - "bbox": [ - 58, - 111, - 100, - 128 - ], - "spans": [ - { - "bbox": [ - 58, - 111, - 100, - 128 - ], - "score": 1.0, - "content": "GCE", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "title", - "bbox": [ - 58, - 162, - 136, - 182 - ], - "lines": [ - { - "bbox": [ - 58, - 163, - 136, - 183 - ], - "spans": [ - { - "bbox": [ - 58, - 163, - 136, - 183 - ], - "score": 1.0, - "content": "Sociology", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 57, - 217, - 326, - 234 - ], - "lines": [ - { - "bbox": [ - 59, - 218, - 324, - 234 - ], - "spans": [ - { - "bbox": [ - 59, - 218, - 324, - 234 - ], - "score": 1.0, - "content": "H580/03: Debates in contemporary society", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 58, - 262, - 156, - 278 - ], - "lines": [ - { - "bbox": [ - 59, - 265, - 155, - 277 - ], - "spans": [ - { - "bbox": [ - 59, - 265, - 155, - 277 - ], - "score": 1.0, - "content": "Advanced GCE", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "title", - "bbox": [ - 57, - 316, - 344, - 336 - ], - "lines": [ - { - "bbox": [ - 59, - 318, - 341, - 334 - ], - "spans": [ - { - "bbox": [ - 59, - 318, - 341, - 334 - ], - "score": 1.0, - "content": "Mark Scheme for November 2020", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - } - ], - "layout_bboxes": [], - "page_idx": 4, - "page_size": [ - 594.9600219726562, - 842.0399780273438 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 56, - 32, - 174, - 82 - ], - "lines": [ - { - "bbox": [ - 59, - 34, - 172, - 67 - ], - "spans": [ - { - "bbox": [ - 59, - 34, - 172, - 67 - ], - "score": 0.9948404431343079, - "content": "OCR", - "type": "text" - } - ] - }, - { - "bbox": [ - 61, - 71, - 172, - 82 - ], - "spans": [ - { - "bbox": [ - 61, - 71, - 172, - 82 - ], - "score": 0.9998745322227478, - "content": "Oxford Cambridge and RSA", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 58, - 817, - 209, - 826 - ], - "lines": [ - { - "bbox": [ - 59, - 817, - 209, - 826 - ], - "spans": [ - { - "bbox": [ - 59, - 817, - 209, - 826 - ], - "score": 1.0, - "content": "Oxford Cambridge and RSA Examinations", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 58, - 110, - 98, - 129 - ], - "lines": [ - { - "bbox": [ - 58, - 111, - 100, - 128 - ], - "spans": [ - { - "bbox": [ - 58, - 111, - 100, - 128 - ], - "score": 1.0, - "content": "GCE", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_4", - "page_size": [ - 594.9600219726562, - 842.0399780273438 - ] - }, - { - "type": "title", - "bbox": [ - 58, - 162, - 136, - 182 - ], - "lines": [ - { - "bbox": [ - 58, - 163, - 136, - 183 - ], - "spans": [ - { - "bbox": [ - 58, - 163, - 136, - 183 - ], - "score": 1.0, - "content": "Sociology", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_4", - "page_size": [ - 594.9600219726562, - 842.0399780273438 - ] - }, - { - "type": "text", - "bbox": [ - 57, - 217, - 326, - 234 - ], - "lines": [ - { - "bbox": [ - 59, - 218, - 324, - 234 - ], - "spans": [ - { - "bbox": [ - 59, - 218, - 324, - 234 - ], - "score": 1.0, - "content": "H580/03: Debates in contemporary society", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_4", - "page_size": [ - 594.9600219726562, - 842.0399780273438 - ], - "bbox_fs": [ - 59, - 218, - 324, - 234 - ] - }, - { - "type": "text", - "bbox": [ - 58, - 262, - 156, - 278 - ], - "lines": [ - { - "bbox": [ - 59, - 265, - 155, - 277 - ], - "spans": [ - { - "bbox": [ - 59, - 265, - 155, - 277 - ], - "score": 1.0, - "content": "Advanced GCE", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3, - "page_num": "page_4", - "page_size": [ - 594.9600219726562, - 842.0399780273438 - ], - "bbox_fs": [ - 59, - 265, - 155, - 277 - ] - }, - { - "type": "title", - "bbox": [ - 57, - 316, - 344, - 336 - ], - "lines": [ - { - "bbox": [ - 59, - 318, - 341, - 334 - ], - "spans": [ - { - "bbox": [ - 59, - 318, - 341, - 334 - ], - "score": 1.0, - "content": "Mark Scheme for November 2020", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_4", - "page_size": [ - 594.9600219726562, - 842.0399780273438 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 58, - 108, - 515, - 181 - ], - "lines": [ - { - "bbox": [ - 58, - 108, - 515, - 123 - ], - "spans": [ - { - "bbox": [ - 58, - 108, - 515, - 123 - ], - "score": 1.0, - "content": "OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 58, - 124, - 499, - 136 - ], - "spans": [ - { - "bbox": [ - 58, - 124, - 499, - 136 - ], - "score": 1.0, - "content": "qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 58, - 140, - 480, - 151 - ], - "spans": [ - { - "bbox": [ - 58, - 140, - 480, - 151 - ], - "score": 1.0, - "content": "include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals,", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 58, - 154, - 509, - 165 - ], - "spans": [ - { - "bbox": [ - 58, - 154, - 509, - 165 - ], - "score": 1.0, - "content": "Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 58, - 168, - 514, - 181 - ], - "spans": [ - { - "bbox": [ - 58, - 168, - 514, - 181 - ], - "score": 1.0, - "content": "areas such as IT, business, languages, teaching/training, administration and secretarial skills.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 58, - 191, - 514, - 248 - ], - "lines": [ - { - "bbox": [ - 58, - 193, - 514, - 205 - ], - "spans": [ - { - "bbox": [ - 58, - 193, - 514, - 205 - ], - "score": 1.0, - "content": "It is also responsible for developing new specifications to meet national requirements and the ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 57, - 206, - 499, - 220 - ], - "spans": [ - { - "bbox": [ - 57, - 206, - 499, - 220 - ], - "score": 1.0, - "content": "needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is ", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 58, - 222, - 501, - 234 - ], - "spans": [ - { - "bbox": [ - 58, - 222, - 501, - 234 - ], - "score": 1.0, - "content": "invested back into the establishment to help towards the development of qualifications and ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 57, - 236, - 398, - 250 - ], - "spans": [ - { - "bbox": [ - 57, - 236, - 398, - 250 - ], - "score": 1.0, - "content": "support, which keep pace with the changing needs of today’s society.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 6.5 - }, - { - "type": "text", - "bbox": [ - 58, - 259, - 528, - 316 - ], - "lines": [ - { - "bbox": [ - 58, - 259, - 525, - 273 - ], - "spans": [ - { - "bbox": [ - 58, - 259, - 525, - 273 - ], - "score": 1.0, - "content": "This mark scheme is published as an aid to teachers and students, to indicate the requirements", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 58, - 275, - 523, - 287 - ], - "spans": [ - { - "bbox": [ - 58, - 275, - 523, - 287 - ], - "score": 1.0, - "content": "of the examination. It shows the basis on which marks were awarded by examiners. It does not ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 57, - 289, - 529, - 302 - ], - "spans": [ - { - "bbox": [ - 57, - 289, - 529, - 302 - ], - "score": 1.0, - "content": "indicate the details of the discussions which took place at an examiners’ meeting before marking", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 58, - 305, - 123, - 316 - ], - "spans": [ - { - "bbox": [ - 58, - 305, - 123, - 316 - ], - "score": 1.0, - "content": "commenced.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 10.5 - }, - { - "type": "text", - "bbox": [ - 58, - 327, - 508, - 370 - ], - "lines": [ - { - "bbox": [ - 58, - 328, - 506, - 341 - ], - "spans": [ - { - "bbox": [ - 58, - 328, - 506, - 341 - ], - "score": 1.0, - "content": "All examiners are instructed that alternative correct answers and unexpected approaches in", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 58, - 344, - 501, - 356 - ], - "spans": [ - { - "bbox": [ - 58, - 344, - 501, - 356 - ], - "score": 1.0, - "content": "candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 58, - 358, - 131, - 370 - ], - "spans": [ - { - "bbox": [ - 58, - 358, - 131, - 370 - ], - "score": 1.0, - "content": "demonstrated.", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 14 - }, - { - "type": "text", - "bbox": [ - 56, - 381, - 521, - 409 - ], - "lines": [ - { - "bbox": [ - 58, - 381, - 524, - 395 - ], - "spans": [ - { - "bbox": [ - 58, - 381, - 524, - 395 - ], - "score": 1.0, - "content": "Mark schemes should be read in conjunction with the published question papers and the report ", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 58, - 397, - 157, - 410 - ], - "spans": [ - { - "bbox": [ - 58, - 397, - 157, - 410 - ], - "score": 1.0, - "content": "on the examination.", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 16.5 - }, - { - "type": "text", - "bbox": [ - 58, - 433, - 123, - 446 - ], - "lines": [ - { - "bbox": [ - 58, - 434, - 123, - 445 - ], - "spans": [ - { - "bbox": [ - 58, - 434, - 69, - 445 - ], - "score": 0.29, - "content": "\\circledcirc", - "type": "inline_equation", - "height": 11, - "width": 11 - }, - { - "bbox": [ - 69, - 435, - 123, - 445 - ], - "score": 1.0, - "content": " OCR 2020", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18 - } - ], - "layout_bboxes": [], - "page_idx": 5, - "page_size": [ - 595.02001953125, - 841.97998046875 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 58, - 816, - 209, - 825 - ], - "lines": [ - { - "bbox": [ - 59, - 816, - 210, - 825 - ], - "spans": [ - { - "bbox": [ - 59, - 816, - 210, - 825 - ], - "score": 1.0, - "content": "Oxford Cambridge and RSA Examinations", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 58, - 108, - 515, - 181 - ], - "lines": [ - { - "bbox": [ - 58, - 108, - 515, - 123 - ], - "spans": [ - { - "bbox": [ - 58, - 108, - 515, - 123 - ], - "score": 1.0, - "content": "OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of ", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 58, - 124, - 499, - 136 - ], - "spans": [ - { - "bbox": [ - 58, - 124, - 499, - 136 - ], - "score": 1.0, - "content": "qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications ", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 58, - 140, - 480, - 151 - ], - "spans": [ - { - "bbox": [ - 58, - 140, - 480, - 151 - ], - "score": 1.0, - "content": "include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals,", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 58, - 154, - 509, - 165 - ], - "spans": [ - { - "bbox": [ - 58, - 154, - 509, - 165 - ], - "score": 1.0, - "content": "Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 58, - 168, - 514, - 181 - ], - "spans": [ - { - "bbox": [ - 58, - 168, - 514, - 181 - ], - "score": 1.0, - "content": "areas such as IT, business, languages, teaching/training, administration and secretarial skills.", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 2, - "page_num": "page_5", - "page_size": [ - 595.02001953125, - 841.97998046875 - ], - "bbox_fs": [ - 58, - 108, - 515, - 181 - ] - }, - { - "type": "text", - "bbox": [ - 58, - 191, - 514, - 248 - ], - "lines": [ - { - "bbox": [ - 58, - 193, - 514, - 205 - ], - "spans": [ - { - "bbox": [ - 58, - 193, - 514, - 205 - ], - "score": 1.0, - "content": "It is also responsible for developing new specifications to meet national requirements and the ", - "type": "text" - } - ], - "index": 5 - }, - { - "bbox": [ - 57, - 206, - 499, - 220 - ], - "spans": [ - { - "bbox": [ - 57, - 206, - 499, - 220 - ], - "score": 1.0, - "content": "needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is ", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 58, - 222, - 501, - 234 - ], - "spans": [ - { - "bbox": [ - 58, - 222, - 501, - 234 - ], - "score": 1.0, - "content": "invested back into the establishment to help towards the development of qualifications and ", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 57, - 236, - 398, - 250 - ], - "spans": [ - { - "bbox": [ - 57, - 236, - 398, - 250 - ], - "score": 1.0, - "content": "support, which keep pace with the changing needs of today’s society.", - "type": "text" - } - ], - "index": 8 - } - ], - "index": 6.5, - "page_num": "page_5", - "page_size": [ - 595.02001953125, - 841.97998046875 - ], - "bbox_fs": [ - 57, - 193, - 514, - 250 - ] - }, - { - "type": "text", - "bbox": [ - 58, - 259, - 528, - 316 - ], - "lines": [ - { - "bbox": [ - 58, - 259, - 525, - 273 - ], - "spans": [ - { - "bbox": [ - 58, - 259, - 525, - 273 - ], - "score": 1.0, - "content": "This mark scheme is published as an aid to teachers and students, to indicate the requirements", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 58, - 275, - 523, - 287 - ], - "spans": [ - { - "bbox": [ - 58, - 275, - 523, - 287 - ], - "score": 1.0, - "content": "of the examination. It shows the basis on which marks were awarded by examiners. It does not ", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 57, - 289, - 529, - 302 - ], - "spans": [ - { - "bbox": [ - 57, - 289, - 529, - 302 - ], - "score": 1.0, - "content": "indicate the details of the discussions which took place at an examiners’ meeting before marking", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 58, - 305, - 123, - 316 - ], - "spans": [ - { - "bbox": [ - 58, - 305, - 123, - 316 - ], - "score": 1.0, - "content": "commenced.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 10.5, - "page_num": "page_5", - "page_size": [ - 595.02001953125, - 841.97998046875 - ], - "bbox_fs": [ - 57, - 259, - 529, - 316 - ] - }, - { - "type": "text", - "bbox": [ - 58, - 327, - 508, - 370 - ], - "lines": [ - { - "bbox": [ - 58, - 328, - 506, - 341 - ], - "spans": [ - { - "bbox": [ - 58, - 328, - 506, - 341 - ], - "score": 1.0, - "content": "All examiners are instructed that alternative correct answers and unexpected approaches in", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 58, - 344, - 501, - 356 - ], - "spans": [ - { - "bbox": [ - 58, - 344, - 501, - 356 - ], - "score": 1.0, - "content": "candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 58, - 358, - 131, - 370 - ], - "spans": [ - { - "bbox": [ - 58, - 358, - 131, - 370 - ], - "score": 1.0, - "content": "demonstrated.", - "type": "text" - } - ], - "index": 15 - } - ], - "index": 14, - "page_num": "page_5", - "page_size": [ - 595.02001953125, - 841.97998046875 - ], - "bbox_fs": [ - 58, - 328, - 506, - 370 - ] - }, - { - "type": "text", - "bbox": [ - 56, - 381, - 521, - 409 - ], - "lines": [ - { - "bbox": [ - 58, - 381, - 524, - 395 - ], - "spans": [ - { - "bbox": [ - 58, - 381, - 524, - 395 - ], - "score": 1.0, - "content": "Mark schemes should be read in conjunction with the published question papers and the report ", - "type": "text" - } - ], - "index": 16 - }, - { - "bbox": [ - 58, - 397, - 157, - 410 - ], - "spans": [ - { - "bbox": [ - 58, - 397, - 157, - 410 - ], - "score": 1.0, - "content": "on the examination.", - "type": "text" - } - ], - "index": 17 - } - ], - "index": 16.5, - "page_num": "page_5", - "page_size": [ - 595.02001953125, - 841.97998046875 - ], - "bbox_fs": [ - 58, - 381, - 524, - 410 - ] - }, - { - "type": "text", - "bbox": [ - 58, - 433, - 123, - 446 - ], - "lines": [ - { - "bbox": [ - 58, - 434, - 123, - 445 - ], - "spans": [ - { - "bbox": [ - 58, - 434, - 69, - 445 - ], - "score": 0.29, - "content": "\\circledcirc", - "type": "inline_equation", - "height": 11, - "width": 11 - }, - { - "bbox": [ - 69, - 435, - 123, - 445 - ], - "score": 1.0, - "content": " OCR 2020", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 18, - "page_num": "page_5", - "page_size": [ - 595.02001953125, - 841.97998046875 - ], - "bbox_fs": [ - 58, - 434, - 123, - 445 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 42, - 61, - 136, - 74 - ], - "lines": [ - { - "bbox": [ - 42, - 62, - 135, - 73 - ], - "spans": [ - { - "bbox": [ - 42, - 62, - 135, - 73 - ], - "score": 1.0, - "content": "11. Annotations", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "table", - "bbox": [ - 28, - 86, - 769, - 400 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 86, - 769, - 400 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 86, - 769, - 400 - ], - "spans": [ - { - "bbox": [ - 28, - 86, - 769, - 400 - ], - "score": 0.967, - "html": "
AnnotationMeaning
KUKnowledgeandUnderstandingpoint
DEVDeveloped Point: fully explained in a relevant way
EGAnecdotal/ common sense/ asociological point
APPApplication/interpretation. On questions 1 and 2: clear reference to source. On other questions: explicit application to the question (optional)
EVALCritical Evaluation point
Unsubstantiated/ undeveloped/ implicit / accurate without explanation/ substantiation
Unclear/confused/lackssense/inaccurate
REPRepetition
Irrelevant material/ not clearly focused on question set
Juxtaposition of alternative theories/ideas without direct/ explicit evaluation
", - "type": "table", - "image_path": "27a689b69b5444fd6f42fa0e9a449d884977523c7a74962e82aecd8187e421f8.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 28, - 86, - 769, - 190.66666666666669 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 190.66666666666669, - 769, - 295.33333333333337 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 28, - 295.33333333333337, - 769, - 400.00000000000006 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - }, - { - "type": "title", - "bbox": [ - 42, - 435, - 268, - 449 - ], - "lines": [ - { - "bbox": [ - 41, - 436, - 267, - 449 - ], - "spans": [ - { - "bbox": [ - 41, - 436, - 60, - 449 - ], - "score": 1.0, - "content": "12. ", - "type": "text" - }, - { - "bbox": [ - 69, - 437, - 267, - 449 - ], - "score": 1.0, - "content": "Subject Specific Marking Instructions", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4 - }, - { - "type": "title", - "bbox": [ - 41, - 475, - 128, - 487 - ], - "lines": [ - { - "bbox": [ - 42, - 476, - 127, - 487 - ], - "spans": [ - { - "bbox": [ - 42, - 476, - 127, - 487 - ], - "score": 1.0, - "content": "INTRODUCTION", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 35, - 488, - 717, - 503 - ], - "lines": [ - { - "bbox": [ - 42, - 488, - 718, - 504 - ], - "spans": [ - { - "bbox": [ - 42, - 488, - 718, - 504 - ], - "score": 1.0, - "content": "Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "text", - "bbox": [ - 41, - 505, - 327, - 549 - ], - "lines": [ - { - "bbox": [ - 60, - 506, - 326, - 517 - ], - "spans": [ - { - "bbox": [ - 60, - 506, - 326, - 517 - ], - "score": 1.0, - "content": "the specification, especially the assessment objectives", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 59, - 521, - 224, - 533 - ], - "spans": [ - { - "bbox": [ - 59, - 521, - 224, - 533 - ], - "score": 1.0, - "content": "the question paper and its rubrics", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 60, - 537, - 255, - 547 - ], - "spans": [ - { - "bbox": [ - 60, - 537, - 255, - 547 - ], - "score": 1.0, - "content": "the texts which candidates have studied", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8 - } - ], - "layout_bboxes": [], - "page_idx": 6, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 28, - 86, - 769, - 400 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 86, - 769, - 400 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 86, - 769, - 400 - ], - "spans": [ - { - "bbox": [ - 28, - 86, - 769, - 400 - ], - "score": 0.967, - "html": "
AnnotationMeaning
KUKnowledgeandUnderstandingpoint
DEVDeveloped Point: fully explained in a relevant way
EGAnecdotal/ common sense/ asociological point
APPApplication/interpretation. On questions 1 and 2: clear reference to source. On other questions: explicit application to the question (optional)
EVALCritical Evaluation point
Unsubstantiated/ undeveloped/ implicit / accurate without explanation/ substantiation
Unclear/confused/lackssense/inaccurate
REPRepetition
Irrelevant material/ not clearly focused on question set
Juxtaposition of alternative theories/ideas without direct/ explicit evaluation
", - "type": "table", - "image_path": "27a689b69b5444fd6f42fa0e9a449d884977523c7a74962e82aecd8187e421f8.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 28, - 86, - 769, - 190.66666666666669 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 190.66666666666669, - 769, - 295.33333333333337 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 28, - 295.33333333333337, - 769, - 400.00000000000006 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 48 - ], - "lines": [ - { - "bbox": [ - 714, - 36, - 799, - 47 - ], - "spans": [ - { - "bbox": [ - 714, - 36, - 799, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 383, - 36, - 457, - 48 - ], - "lines": [ - { - "bbox": [ - 384, - 36, - 457, - 47 - ], - "spans": [ - { - "bbox": [ - 384, - 36, - 457, - 47 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 89, - 48 - ], - "lines": [ - { - "bbox": [ - 41, - 35, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 35, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 42, - 61, - 136, - 74 - ], - "lines": [ - { - "bbox": [ - 42, - 62, - 135, - 73 - ], - "spans": [ - { - "bbox": [ - 42, - 62, - 135, - 73 - ], - "score": 1.0, - "content": "11. Annotations", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_6", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - }, - { - "type": "table", - "bbox": [ - 28, - 86, - 769, - 400 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 86, - 769, - 400 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 86, - 769, - 400 - ], - "spans": [ - { - "bbox": [ - 28, - 86, - 769, - 400 - ], - "score": 0.967, - "html": "
AnnotationMeaning
KUKnowledgeandUnderstandingpoint
DEVDeveloped Point: fully explained in a relevant way
EGAnecdotal/ common sense/ asociological point
APPApplication/interpretation. On questions 1 and 2: clear reference to source. On other questions: explicit application to the question (optional)
EVALCritical Evaluation point
Unsubstantiated/ undeveloped/ implicit / accurate without explanation/ substantiation
Unclear/confused/lackssense/inaccurate
REPRepetition
Irrelevant material/ not clearly focused on question set
Juxtaposition of alternative theories/ideas without direct/ explicit evaluation
", - "type": "table", - "image_path": "27a689b69b5444fd6f42fa0e9a449d884977523c7a74962e82aecd8187e421f8.jpg" - } - ] - } - ], - "index": 2, - "virtual_lines": [ - { - "bbox": [ - 28, - 86, - 769, - 190.66666666666669 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 190.66666666666669, - 769, - 295.33333333333337 - ], - "spans": [], - "index": 2 - }, - { - "bbox": [ - 28, - 295.33333333333337, - 769, - 400.00000000000006 - ], - "spans": [], - "index": 3 - } - ] - } - ], - "index": 2, - "page_num": "page_6", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - }, - { - "type": "title", - "bbox": [ - 42, - 435, - 268, - 449 - ], - "lines": [ - { - "bbox": [ - 41, - 436, - 267, - 449 - ], - "spans": [ - { - "bbox": [ - 41, - 436, - 60, - 449 - ], - "score": 1.0, - "content": "12. ", - "type": "text" - }, - { - "bbox": [ - 69, - 437, - 267, - 449 - ], - "score": 1.0, - "content": "Subject Specific Marking Instructions", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 4, - "page_num": "page_6", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - }, - { - "type": "title", - "bbox": [ - 41, - 475, - 128, - 487 - ], - "lines": [ - { - "bbox": [ - 42, - 476, - 127, - 487 - ], - "spans": [ - { - "bbox": [ - 42, - 476, - 127, - 487 - ], - "score": 1.0, - "content": "INTRODUCTION", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_6", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - }, - { - "type": "text", - "bbox": [ - 35, - 488, - 717, - 503 - ], - "lines": [ - { - "bbox": [ - 42, - 488, - 718, - 504 - ], - "spans": [ - { - "bbox": [ - 42, - 488, - 718, - 504 - ], - "score": 1.0, - "content": "Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_6", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "bbox_fs": [ - 42, - 488, - 718, - 504 - ] - }, - { - "type": "text", - "bbox": [ - 41, - 505, - 327, - 549 - ], - "lines": [ - { - "bbox": [ - 60, - 506, - 326, - 517 - ], - "spans": [ - { - "bbox": [ - 60, - 506, - 326, - 517 - ], - "score": 1.0, - "content": "the specification, especially the assessment objectives", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 59, - 521, - 224, - 533 - ], - "spans": [ - { - "bbox": [ - 59, - 521, - 224, - 533 - ], - "score": 1.0, - "content": "the question paper and its rubrics", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 60, - 537, - 255, - 547 - ], - "spans": [ - { - "bbox": [ - 60, - 537, - 255, - 547 - ], - "score": 1.0, - "content": "the texts which candidates have studied", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 8, - "page_num": "page_6", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "bbox_fs": [ - 59, - 506, - 326, - 547 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "text", - "bbox": [ - 41, - 35, - 88, - 48 - ], - "lines": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 42, - 50, - 148, - 62 - ], - "lines": [ - { - "bbox": [ - 59, - 51, - 148, - 61 - ], - "spans": [ - { - "bbox": [ - 59, - 51, - 148, - 61 - ], - "score": 1.0, - "content": "the mark scheme.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1 - }, - { - "type": "text", - "bbox": [ - 42, - 78, - 331, - 91 - ], - "lines": [ - { - "bbox": [ - 41, - 79, - 331, - 91 - ], - "spans": [ - { - "bbox": [ - 41, - 79, - 331, - 91 - ], - "score": 1.0, - "content": "You should ensure that you have copies of these materials.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 42, - 94, - 782, - 135 - ], - "lines": [ - { - "bbox": [ - 41, - 94, - 768, - 107 - ], - "spans": [ - { - "bbox": [ - 41, - 94, - 768, - 107 - ], - "score": 1.0, - "content": "You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet ", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 40, - 108, - 779, - 123 - ], - "spans": [ - { - "bbox": [ - 40, - 108, - 779, - 123 - ], - "score": 1.0, - "content": "Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New ", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 39, - 121, - 103, - 138 - ], - "spans": [ - { - "bbox": [ - 39, - 121, - 103, - 138 - ], - "score": 1.0, - "content": "Examiners. ", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4 - }, - { - "type": "text", - "bbox": [ - 45, - 137, - 541, - 150 - ], - "lines": [ - { - "bbox": [ - 43, - 136, - 541, - 151 - ], - "spans": [ - { - "bbox": [ - 43, - 136, - 541, - 151 - ], - "score": 1.0, - "content": "Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader. ", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6 - }, - { - "type": "title", - "bbox": [ - 42, - 152, - 189, - 165 - ], - "lines": [ - { - "bbox": [ - 42, - 153, - 188, - 163 - ], - "spans": [ - { - "bbox": [ - 42, - 153, - 188, - 163 - ], - "score": 1.0, - "content": "USING THE MARK SCHEME", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7 - }, - { - "type": "text", - "bbox": [ - 40, - 165, - 797, - 208 - ], - "lines": [ - { - "bbox": [ - 39, - 165, - 785, - 180 - ], - "spans": [ - { - "bbox": [ - 39, - 165, - 785, - 180 - ], - "score": 1.0, - "content": "Please study this Mark Scheme carefully. The Mark Scheme is an integral part of the process that begins with the setting of the question paper and ends", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 40, - 182, - 797, - 195 - ], - "spans": [ - { - "bbox": [ - 40, - 182, - 797, - 195 - ], - "score": 1.0, - "content": "with the awarding of grades. Question papers and Mark Schemes are developed in association with each other so that issues of differentiation and positive", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 41, - 198, - 291, - 208 - ], - "spans": [ - { - "bbox": [ - 41, - 198, - 291, - 208 - ], - "score": 1.0, - "content": "achievement can be addressed from the very start.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9 - }, - { - "type": "text", - "bbox": [ - 40, - 223, - 784, - 252 - ], - "lines": [ - { - "bbox": [ - 42, - 224, - 779, - 240 - ], - "spans": [ - { - "bbox": [ - 42, - 224, - 779, - 240 - ], - "score": 1.0, - "content": "This Mark Scheme is a working document; it is not exhaustive; it does not provide ‘correct’ answers. The Mark Scheme can only provide ‘best guesses’ ", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 40, - 238, - 588, - 254 - ], - "spans": [ - { - "bbox": [ - 40, - 238, - 588, - 254 - ], - "score": 1.0, - "content": "about how the question will work out, and it is subject to revision after we have looked at a wide range of scripts.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11.5 - }, - { - "type": "text", - "bbox": [ - 40, - 267, - 796, - 325 - ], - "lines": [ - { - "bbox": [ - 41, - 267, - 759, - 282 - ], - "spans": [ - { - "bbox": [ - 41, - 267, - 759, - 282 - ], - "score": 1.0, - "content": "The Examiners’ Standardisation Meeting will ensure that the Mark Scheme covers the range of candidates’ responses to the questions, and that all ", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 41, - 282, - 797, - 296 - ], - "spans": [ - { - "bbox": [ - 41, - 282, - 797, - 296 - ], - "score": 1.0, - "content": "Examiners understand and apply the Mark Scheme in the same way. The Mark Scheme will be discussed and amended at the meeting, and administrative", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 40, - 297, - 791, - 311 - ], - "spans": [ - { - "bbox": [ - 40, - 297, - 791, - 311 - ], - "score": 1.0, - "content": "procedures will be confirmed. Co-ordination scripts will be issued at the meeting to exemplify aspects of candidates’ responses and achievements; the co-", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 41, - 313, - 321, - 325 - ], - "spans": [ - { - "bbox": [ - 41, - 313, - 321, - 325 - ], - "score": 1.0, - "content": "ordination scripts then become part of this Mark Scheme.", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 14.5 - }, - { - "type": "text", - "bbox": [ - 41, - 340, - 788, - 368 - ], - "lines": [ - { - "bbox": [ - 41, - 340, - 790, - 356 - ], - "spans": [ - { - "bbox": [ - 41, - 340, - 790, - 356 - ], - "score": 1.0, - "content": "Before the Standardisation Meeting, you should read and mark in pencil a number of scripts, in order to gain an impression of the range of responses and", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 41, - 354, - 218, - 370 - ], - "spans": [ - { - "bbox": [ - 41, - 354, - 218, - 370 - ], - "score": 1.0, - "content": "achievement that may be expected.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 17.5 - }, - { - "type": "text", - "bbox": [ - 41, - 384, - 772, - 413 - ], - "lines": [ - { - "bbox": [ - 41, - 384, - 767, - 399 - ], - "spans": [ - { - "bbox": [ - 41, - 384, - 767, - 399 - ], - "score": 1.0, - "content": "Please read carefully all the scripts in your allocation and make every effort to look positively for achievement throughout the ability range. Always be", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 41, - 400, - 235, - 413 - ], - "spans": [ - { - "bbox": [ - 41, - 400, - 235, - 413 - ], - "score": 1.0, - "content": "prepared to use the full range of marks.", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 19.5 - } - ], - "layout_bboxes": [], - "page_idx": 7, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 799, - 48 - ], - "lines": [ - { - "bbox": [ - 713, - 36, - 798, - 47 - ], - "spans": [ - { - "bbox": [ - 713, - 36, - 798, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 383, - 36, - 457, - 48 - ], - "lines": [ - { - "bbox": [ - 384, - 35, - 457, - 49 - ], - "spans": [ - { - "bbox": [ - 384, - 35, - 457, - 49 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "text", - "bbox": [ - 41, - 35, - 88, - 48 - ], - "lines": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_7", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "bbox_fs": [ - 41, - 36, - 88, - 48 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 50, - 148, - 62 - ], - "lines": [ - { - "bbox": [ - 59, - 51, - 148, - 61 - ], - "spans": [ - { - "bbox": [ - 59, - 51, - 148, - 61 - ], - "score": 1.0, - "content": "the mark scheme.", - "type": "text" - } - ], - "index": 1 - } - ], - "index": 1, - "page_num": "page_7", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "bbox_fs": [ - 59, - 51, - 148, - 61 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 78, - 331, - 91 - ], - "lines": [ - { - "bbox": [ - 41, - 79, - 331, - 91 - ], - "spans": [ - { - "bbox": [ - 41, - 79, - 331, - 91 - ], - "score": 1.0, - "content": "You should ensure that you have copies of these materials.", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 2, - "page_num": "page_7", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "bbox_fs": [ - 41, - 79, - 331, - 91 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 94, - 782, - 135 - ], - "lines": [ - { - "bbox": [ - 41, - 94, - 768, - 107 - ], - "spans": [ - { - "bbox": [ - 41, - 94, - 768, - 107 - ], - "score": 1.0, - "content": "You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet ", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 40, - 108, - 779, - 123 - ], - "spans": [ - { - "bbox": [ - 40, - 108, - 779, - 123 - ], - "score": 1.0, - "content": "Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New ", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 39, - 121, - 103, - 138 - ], - "spans": [ - { - "bbox": [ - 39, - 121, - 103, - 138 - ], - "score": 1.0, - "content": "Examiners. ", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4, - "page_num": "page_7", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "bbox_fs": [ - 39, - 94, - 779, - 138 - ] - }, - { - "type": "text", - "bbox": [ - 45, - 137, - 541, - 150 - ], - "lines": [ - { - "bbox": [ - 43, - 136, - 541, - 151 - ], - "spans": [ - { - "bbox": [ - 43, - 136, - 541, - 151 - ], - "score": 1.0, - "content": "Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader. ", - "type": "text" - } - ], - "index": 6 - } - ], - "index": 6, - "page_num": "page_7", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "bbox_fs": [ - 43, - 136, - 541, - 151 - ] - }, - { - "type": "title", - "bbox": [ - 42, - 152, - 189, - 165 - ], - "lines": [ - { - "bbox": [ - 42, - 153, - 188, - 163 - ], - "spans": [ - { - "bbox": [ - 42, - 153, - 188, - 163 - ], - "score": 1.0, - "content": "USING THE MARK SCHEME", - "type": "text" - } - ], - "index": 7 - } - ], - "index": 7, - "page_num": "page_7", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - }, - { - "type": "text", - "bbox": [ - 40, - 165, - 797, - 208 - ], - "lines": [ - { - "bbox": [ - 39, - 165, - 785, - 180 - ], - "spans": [ - { - "bbox": [ - 39, - 165, - 785, - 180 - ], - "score": 1.0, - "content": "Please study this Mark Scheme carefully. The Mark Scheme is an integral part of the process that begins with the setting of the question paper and ends", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 40, - 182, - 797, - 195 - ], - "spans": [ - { - "bbox": [ - 40, - 182, - 797, - 195 - ], - "score": 1.0, - "content": "with the awarding of grades. Question papers and Mark Schemes are developed in association with each other so that issues of differentiation and positive", - "type": "text" - } - ], - "index": 9 - }, - { - "bbox": [ - 41, - 198, - 291, - 208 - ], - "spans": [ - { - "bbox": [ - 41, - 198, - 291, - 208 - ], - "score": 1.0, - "content": "achievement can be addressed from the very start.", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 9, - "page_num": "page_7", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "bbox_fs": [ - 39, - 165, - 797, - 208 - ] - }, - { - "type": "text", - "bbox": [ - 40, - 223, - 784, - 252 - ], - "lines": [ - { - "bbox": [ - 42, - 224, - 779, - 240 - ], - "spans": [ - { - "bbox": [ - 42, - 224, - 779, - 240 - ], - "score": 1.0, - "content": "This Mark Scheme is a working document; it is not exhaustive; it does not provide ‘correct’ answers. The Mark Scheme can only provide ‘best guesses’ ", - "type": "text" - } - ], - "index": 11 - }, - { - "bbox": [ - 40, - 238, - 588, - 254 - ], - "spans": [ - { - "bbox": [ - 40, - 238, - 588, - 254 - ], - "score": 1.0, - "content": "about how the question will work out, and it is subject to revision after we have looked at a wide range of scripts.", - "type": "text" - } - ], - "index": 12 - } - ], - "index": 11.5, - "page_num": "page_7", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "bbox_fs": [ - 40, - 224, - 779, - 254 - ] - }, - { - "type": "text", - "bbox": [ - 40, - 267, - 796, - 325 - ], - "lines": [ - { - "bbox": [ - 41, - 267, - 759, - 282 - ], - "spans": [ - { - "bbox": [ - 41, - 267, - 759, - 282 - ], - "score": 1.0, - "content": "The Examiners’ Standardisation Meeting will ensure that the Mark Scheme covers the range of candidates’ responses to the questions, and that all ", - "type": "text" - } - ], - "index": 13 - }, - { - "bbox": [ - 41, - 282, - 797, - 296 - ], - "spans": [ - { - "bbox": [ - 41, - 282, - 797, - 296 - ], - "score": 1.0, - "content": "Examiners understand and apply the Mark Scheme in the same way. The Mark Scheme will be discussed and amended at the meeting, and administrative", - "type": "text" - } - ], - "index": 14 - }, - { - "bbox": [ - 40, - 297, - 791, - 311 - ], - "spans": [ - { - "bbox": [ - 40, - 297, - 791, - 311 - ], - "score": 1.0, - "content": "procedures will be confirmed. Co-ordination scripts will be issued at the meeting to exemplify aspects of candidates’ responses and achievements; the co-", - "type": "text" - } - ], - "index": 15 - }, - { - "bbox": [ - 41, - 313, - 321, - 325 - ], - "spans": [ - { - "bbox": [ - 41, - 313, - 321, - 325 - ], - "score": 1.0, - "content": "ordination scripts then become part of this Mark Scheme.", - "type": "text" - } - ], - "index": 16 - } - ], - "index": 14.5, - "page_num": "page_7", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "bbox_fs": [ - 40, - 267, - 797, - 325 - ] - }, - { - "type": "text", - "bbox": [ - 41, - 340, - 788, - 368 - ], - "lines": [ - { - "bbox": [ - 41, - 340, - 790, - 356 - ], - "spans": [ - { - "bbox": [ - 41, - 340, - 790, - 356 - ], - "score": 1.0, - "content": "Before the Standardisation Meeting, you should read and mark in pencil a number of scripts, in order to gain an impression of the range of responses and", - "type": "text" - } - ], - "index": 17 - }, - { - "bbox": [ - 41, - 354, - 218, - 370 - ], - "spans": [ - { - "bbox": [ - 41, - 354, - 218, - 370 - ], - "score": 1.0, - "content": "achievement that may be expected.", - "type": "text" - } - ], - "index": 18 - } - ], - "index": 17.5, - "page_num": "page_7", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "bbox_fs": [ - 41, - 340, - 790, - 370 - ] - }, - { - "type": "text", - "bbox": [ - 41, - 384, - 772, - 413 - ], - "lines": [ - { - "bbox": [ - 41, - 384, - 767, - 399 - ], - "spans": [ - { - "bbox": [ - 41, - 384, - 767, - 399 - ], - "score": 1.0, - "content": "Please read carefully all the scripts in your allocation and make every effort to look positively for achievement throughout the ability range. Always be", - "type": "text" - } - ], - "index": 19 - }, - { - "bbox": [ - 41, - 400, - 235, - 413 - ], - "spans": [ - { - "bbox": [ - 41, - 400, - 235, - 413 - ], - "score": 1.0, - "content": "prepared to use the full range of marks.", - "type": "text" - } - ], - "index": 20 - } - ], - "index": 19.5, - "page_num": "page_7", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "bbox_fs": [ - 41, - 384, - 767, - 413 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 42, - 63, - 189, - 76 - ], - "lines": [ - { - "bbox": [ - 42, - 65, - 188, - 74 - ], - "spans": [ - { - "bbox": [ - 42, - 65, - 188, - 74 - ], - "score": 1.0, - "content": "USING THE MARK SCHEME", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0 - }, - { - "type": "text", - "bbox": [ - 41, - 78, - 800, - 120 - ], - "lines": [ - { - "bbox": [ - 41, - 79, - 785, - 92 - ], - "spans": [ - { - "bbox": [ - 41, - 79, - 785, - 92 - ], - "score": 1.0, - "content": "Please study this Mark Scheme carefully. The Mark Scheme is an integral part of the process that begins with the setting of the question paper and ends", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 40, - 92, - 798, - 108 - ], - "spans": [ - { - "bbox": [ - 40, - 92, - 798, - 108 - ], - "score": 1.0, - "content": "with the awarding of grades. Question papers and Mark Schemes are developed in association with each other so that issues of differentiation and positive ", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 41, - 108, - 291, - 121 - ], - "spans": [ - { - "bbox": [ - 41, - 108, - 291, - 121 - ], - "score": 1.0, - "content": "achievement can be addressed from the very start.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 42, - 135, - 785, - 164 - ], - "lines": [ - { - "bbox": [ - 42, - 135, - 779, - 152 - ], - "spans": [ - { - "bbox": [ - 42, - 135, - 779, - 152 - ], - "score": 1.0, - "content": "This Mark Scheme is a working document; it is not exhaustive; it does not provide ‘correct’ answers. The Mark Scheme can only provide ‘best guesses’ ", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 40, - 150, - 588, - 166 - ], - "spans": [ - { - "bbox": [ - 40, - 150, - 588, - 166 - ], - "score": 1.0, - "content": "about how the question will work out, and it is subject to revision after we have looked at a wide range of scripts.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5 - }, - { - "type": "text", - "bbox": [ - 41, - 179, - 797, - 237 - ], - "lines": [ - { - "bbox": [ - 42, - 180, - 758, - 194 - ], - "spans": [ - { - "bbox": [ - 42, - 180, - 758, - 194 - ], - "score": 1.0, - "content": "The Examiners’ Standardisation Meeting will ensure that the Mark Scheme covers the range of candidates’ responses to the questions, and that all", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 42, - 194, - 797, - 208 - ], - "spans": [ - { - "bbox": [ - 42, - 194, - 797, - 208 - ], - "score": 1.0, - "content": "Examiners understand and apply the Mark Scheme in the same way. The Mark Scheme will be discussed and amended at the meeting, and administrative", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 41, - 209, - 791, - 223 - ], - "spans": [ - { - "bbox": [ - 41, - 209, - 791, - 223 - ], - "score": 1.0, - "content": "procedures will be confirmed. Co-ordination scripts will be issued at the meeting to exemplify aspects of candidates’ responses and achievements; the co-", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 42, - 225, - 322, - 237 - ], - "spans": [ - { - "bbox": [ - 42, - 225, - 322, - 237 - ], - "score": 1.0, - "content": "ordination scripts then become part of this Mark Scheme.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 7.5 - }, - { - "type": "text", - "bbox": [ - 40, - 251, - 787, - 280 - ], - "lines": [ - { - "bbox": [ - 41, - 251, - 790, - 268 - ], - "spans": [ - { - "bbox": [ - 41, - 251, - 790, - 268 - ], - "score": 1.0, - "content": "Before the Standardisation Meeting, you should read and mark in pencil a number of scripts, in order to gain an impression of the range of responses and", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 41, - 267, - 218, - 283 - ], - "spans": [ - { - "bbox": [ - 41, - 267, - 218, - 283 - ], - "score": 1.0, - "content": "achievement that may be expected.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5 - }, - { - "type": "text", - "bbox": [ - 42, - 296, - 771, - 325 - ], - "lines": [ - { - "bbox": [ - 41, - 295, - 767, - 310 - ], - "spans": [ - { - "bbox": [ - 41, - 295, - 767, - 310 - ], - "score": 1.0, - "content": "Please read carefully all the scripts in your allocation and make every effort to look positively for achievement throughout the ability range. Always be", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 41, - 312, - 235, - 325 - ], - "spans": [ - { - "bbox": [ - 41, - 312, - 235, - 325 - ], - "score": 1.0, - "content": "prepared to use the full range of marks.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 12.5 - } - ], - "layout_bboxes": [], - "page_idx": 8, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 799, - 48 - ], - "lines": [ - { - "bbox": [ - 713, - 36, - 798, - 47 - ], - "spans": [ - { - "bbox": [ - 713, - 36, - 798, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 384, - 36, - 457, - 48 - ], - "lines": [ - { - "bbox": [ - 384, - 35, - 457, - 49 - ], - "spans": [ - { - "bbox": [ - 384, - 35, - 457, - 49 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 48 - ], - "lines": [ - { - "bbox": [ - 41, - 35, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 35, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 42, - 63, - 189, - 76 - ], - "lines": [ - { - "bbox": [ - 42, - 65, - 188, - 74 - ], - "spans": [ - { - "bbox": [ - 42, - 65, - 188, - 74 - ], - "score": 1.0, - "content": "USING THE MARK SCHEME", - "type": "text" - } - ], - "index": 0 - } - ], - "index": 0, - "page_num": "page_8", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - }, - { - "type": "text", - "bbox": [ - 41, - 78, - 800, - 120 - ], - "lines": [ - { - "bbox": [ - 41, - 79, - 785, - 92 - ], - "spans": [ - { - "bbox": [ - 41, - 79, - 785, - 92 - ], - "score": 1.0, - "content": "Please study this Mark Scheme carefully. The Mark Scheme is an integral part of the process that begins with the setting of the question paper and ends", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 40, - 92, - 798, - 108 - ], - "spans": [ - { - "bbox": [ - 40, - 92, - 798, - 108 - ], - "score": 1.0, - "content": "with the awarding of grades. Question papers and Mark Schemes are developed in association with each other so that issues of differentiation and positive ", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 41, - 108, - 291, - 121 - ], - "spans": [ - { - "bbox": [ - 41, - 108, - 291, - 121 - ], - "score": 1.0, - "content": "achievement can be addressed from the very start.", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 2, - "page_num": "page_8", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "bbox_fs": [ - 40, - 79, - 798, - 121 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 135, - 785, - 164 - ], - "lines": [ - { - "bbox": [ - 42, - 135, - 779, - 152 - ], - "spans": [ - { - "bbox": [ - 42, - 135, - 779, - 152 - ], - "score": 1.0, - "content": "This Mark Scheme is a working document; it is not exhaustive; it does not provide ‘correct’ answers. The Mark Scheme can only provide ‘best guesses’ ", - "type": "text" - } - ], - "index": 4 - }, - { - "bbox": [ - 40, - 150, - 588, - 166 - ], - "spans": [ - { - "bbox": [ - 40, - 150, - 588, - 166 - ], - "score": 1.0, - "content": "about how the question will work out, and it is subject to revision after we have looked at a wide range of scripts.", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 4.5, - "page_num": "page_8", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "bbox_fs": [ - 40, - 135, - 779, - 166 - ] - }, - { - "type": "text", - "bbox": [ - 41, - 179, - 797, - 237 - ], - "lines": [ - { - "bbox": [ - 42, - 180, - 758, - 194 - ], - "spans": [ - { - "bbox": [ - 42, - 180, - 758, - 194 - ], - "score": 1.0, - "content": "The Examiners’ Standardisation Meeting will ensure that the Mark Scheme covers the range of candidates’ responses to the questions, and that all", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 42, - 194, - 797, - 208 - ], - "spans": [ - { - "bbox": [ - 42, - 194, - 797, - 208 - ], - "score": 1.0, - "content": "Examiners understand and apply the Mark Scheme in the same way. The Mark Scheme will be discussed and amended at the meeting, and administrative", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 41, - 209, - 791, - 223 - ], - "spans": [ - { - "bbox": [ - 41, - 209, - 791, - 223 - ], - "score": 1.0, - "content": "procedures will be confirmed. Co-ordination scripts will be issued at the meeting to exemplify aspects of candidates’ responses and achievements; the co-", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 42, - 225, - 322, - 237 - ], - "spans": [ - { - "bbox": [ - 42, - 225, - 322, - 237 - ], - "score": 1.0, - "content": "ordination scripts then become part of this Mark Scheme.", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 7.5, - "page_num": "page_8", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "bbox_fs": [ - 41, - 180, - 797, - 237 - ] - }, - { - "type": "text", - "bbox": [ - 40, - 251, - 787, - 280 - ], - "lines": [ - { - "bbox": [ - 41, - 251, - 790, - 268 - ], - "spans": [ - { - "bbox": [ - 41, - 251, - 790, - 268 - ], - "score": 1.0, - "content": "Before the Standardisation Meeting, you should read and mark in pencil a number of scripts, in order to gain an impression of the range of responses and", - "type": "text" - } - ], - "index": 10 - }, - { - "bbox": [ - 41, - 267, - 218, - 283 - ], - "spans": [ - { - "bbox": [ - 41, - 267, - 218, - 283 - ], - "score": 1.0, - "content": "achievement that may be expected.", - "type": "text" - } - ], - "index": 11 - } - ], - "index": 10.5, - "page_num": "page_8", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "bbox_fs": [ - 41, - 251, - 790, - 283 - ] - }, - { - "type": "text", - "bbox": [ - 42, - 296, - 771, - 325 - ], - "lines": [ - { - "bbox": [ - 41, - 295, - 767, - 310 - ], - "spans": [ - { - "bbox": [ - 41, - 295, - 767, - 310 - ], - "score": 1.0, - "content": "Please read carefully all the scripts in your allocation and make every effort to look positively for achievement throughout the ability range. Always be", - "type": "text" - } - ], - "index": 12 - }, - { - "bbox": [ - 41, - 312, - 235, - 325 - ], - "spans": [ - { - "bbox": [ - 41, - 312, - 235, - 325 - ], - "score": 1.0, - "content": "prepared to use the full range of marks.", - "type": "text" - } - ], - "index": 13 - } - ], - "index": 12.5, - "page_num": "page_8", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "bbox_fs": [ - 41, - 295, - 767, - 325 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 47, - 37, - 806, - 552 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 37, - 806, - 552 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 47, - 37, - 806, - 552 - ], - "spans": [ - { - "bbox": [ - 47, - 37, - 806, - 552 - ], - "score": 0.953, - "html": "
1580/03 QuestionMarkscheme AnswerMarksNovember2020 Guidance
1WithreferencetotheSourcesandyourwider sociologicalknowledge,explainthe positiveimpact of globaldevelopmentsindigitalcommunicationin9AO1:Knowledge and understanding NOTE: Contemporary examples should be credited in AO1 in
responding to major events.thesamewayassociological studies.
AO1:Knowledge and understanding Level4:5marksSupporting evidence may include:oppression,protests,natural disasters,epidemics etc.
The candidate demonstrates an excellent knowledge and understandingofarangeofsociologicalevidence;theevidenceis generallyaccurateanddetailed.Theinformationpresentedis relevantandsubstantiated.StudyonSouthernCaliforniaWildfires-socialmedia enables rapid response; Sutton, Palen and Shlovski In response to unexpected global events such as an earthquake,orflooding,social mediasitescanbe used as a means of raising money for victims. Facebook and Twitter - able to reach millions of people from all over the world as events are happening; Lopes
Level3:3-4marksThere will typically be two developed points of knowledge. The candidate demonstrates a good knowledge and understandingThe Facebook Effect - as Facebook spreads globally,
The information presented is in the most part relevant and supportedbysomeevidence.exceeding5oomillionusers-becomeinstrumentalin
political protests from Colombia to Iran; Kirkpatrick
well-developedpoints. Level2:2marksTherewill typicallybeonedevelopedpoint ofknowledge,or2lessFacebook, Twitter, may give a voice to individuals that
otherwise would not be heard; the Arab Spring social movements; Shirky, Jurgenson, Castells Social mediaprovides new sources of information that
cannotbeeasilycontrolledby authoritarianregimes
Thecandidatedemonstratesabasicknowledgeand(TufekciandWilson)
Developments in digital communicationhad enabled
range and detail. The response may lack clarity at times and
people with a'muted voice'to be heard, e.g. Malala
contain some inaccuracies. The response may be partial andYousafzai
undeveloped. Theinformation has somerelevance and is
Socialmediaisnowthemostefficientmethodof
supportedbylimitedevidence.delivering emergency response messages'; Collins
There will typically be one underdeveloped point of knowledge, or
Use of digital communications as a response to the
twoundevelopedpoints.
coronavirus pandemic and local restrictions - keeping
Level 1: 1 markpeople in touch; spreading information.
Reference to the role of digital communications in recent
The candidate demonstrates a limited knowledge and understanding ofsociological evidence.Verylittlerelevantprotests such as Hong Kong pro-democracy protests, the
sociologicalevidenceispresented;theresponsecontains
Black Lives Matter protests, climate change/ extinction
considerable inaccuracy and lacks clarity. The information is basic
rebellionprotestsetc.
Otherreasonableresponse.
", - "type": "table", - "image_path": "1eedd10ad3342d37c389cbe88c903a84f0be9b8ba45282eb581a49ced1fa150e.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 47, - 37, - 806, - 208.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 47, - 208.66666666666666, - 806, - 380.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 47, - 380.3333333333333, - 806, - 552.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 9, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 47, - 37, - 806, - 552 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 37, - 806, - 552 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 47, - 37, - 806, - 552 - ], - "spans": [ - { - "bbox": [ - 47, - 37, - 806, - 552 - ], - "score": 0.953, - "html": "
1580/03 QuestionMarkscheme AnswerMarksNovember2020 Guidance
1WithreferencetotheSourcesandyourwider sociologicalknowledge,explainthe positiveimpact of globaldevelopmentsindigitalcommunicationin9AO1:Knowledge and understanding NOTE: Contemporary examples should be credited in AO1 in
responding to major events.thesamewayassociological studies.
AO1:Knowledge and understanding Level4:5marksSupporting evidence may include:oppression,protests,natural disasters,epidemics etc.
The candidate demonstrates an excellent knowledge and understandingofarangeofsociologicalevidence;theevidenceis generallyaccurateanddetailed.Theinformationpresentedis relevantandsubstantiated.StudyonSouthernCaliforniaWildfires-socialmedia enables rapid response; Sutton, Palen and Shlovski In response to unexpected global events such as an earthquake,orflooding,social mediasitescanbe used as a means of raising money for victims. Facebook and Twitter - able to reach millions of people from all over the world as events are happening; Lopes
Level3:3-4marksThere will typically be two developed points of knowledge. The candidate demonstrates a good knowledge and understandingThe Facebook Effect - as Facebook spreads globally,
The information presented is in the most part relevant and supportedbysomeevidence.exceeding5oomillionusers-becomeinstrumentalin
political protests from Colombia to Iran; Kirkpatrick
well-developedpoints. Level2:2marksTherewill typicallybeonedevelopedpoint ofknowledge,or2lessFacebook, Twitter, may give a voice to individuals that
otherwise would not be heard; the Arab Spring social movements; Shirky, Jurgenson, Castells Social mediaprovides new sources of information that
cannotbeeasilycontrolledby authoritarianregimes
Thecandidatedemonstratesabasicknowledgeand(TufekciandWilson)
Developments in digital communicationhad enabled
range and detail. The response may lack clarity at times and
people with a'muted voice'to be heard, e.g. Malala
contain some inaccuracies. The response may be partial andYousafzai
undeveloped. Theinformation has somerelevance and is
Socialmediaisnowthemostefficientmethodof
supportedbylimitedevidence.delivering emergency response messages'; Collins
There will typically be one underdeveloped point of knowledge, or
Use of digital communications as a response to the
twoundevelopedpoints.
coronavirus pandemic and local restrictions - keeping
Level 1: 1 markpeople in touch; spreading information.
Reference to the role of digital communications in recent
The candidate demonstrates a limited knowledge and understanding ofsociological evidence.Verylittlerelevantprotests such as Hong Kong pro-democracy protests, the
sociologicalevidenceispresented;theresponsecontains
Black Lives Matter protests, climate change/ extinction
considerable inaccuracy and lacks clarity. The information is basic
rebellionprotestsetc.
Otherreasonableresponse.
", - "type": "table", - "image_path": "1eedd10ad3342d37c389cbe88c903a84f0be9b8ba45282eb581a49ced1fa150e.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 47, - 37, - 806, - 208.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 47, - 208.66666666666666, - 806, - 380.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 47, - 380.3333333333333, - 806, - 552.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 47 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 47 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 384, - 36, - 457, - 47 - ], - "lines": [] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 47, - 37, - 806, - 552 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 47, - 37, - 806, - 552 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 47, - 37, - 806, - 552 - ], - "spans": [ - { - "bbox": [ - 47, - 37, - 806, - 552 - ], - "score": 0.953, - "html": "
1580/03 QuestionMarkscheme AnswerMarksNovember2020 Guidance
1WithreferencetotheSourcesandyourwider sociologicalknowledge,explainthe positiveimpact of globaldevelopmentsindigitalcommunicationin9AO1:Knowledge and understanding NOTE: Contemporary examples should be credited in AO1 in
responding to major events.thesamewayassociological studies.
AO1:Knowledge and understanding Level4:5marksSupporting evidence may include:oppression,protests,natural disasters,epidemics etc.
The candidate demonstrates an excellent knowledge and understandingofarangeofsociologicalevidence;theevidenceis generallyaccurateanddetailed.Theinformationpresentedis relevantandsubstantiated.StudyonSouthernCaliforniaWildfires-socialmedia enables rapid response; Sutton, Palen and Shlovski In response to unexpected global events such as an earthquake,orflooding,social mediasitescanbe used as a means of raising money for victims. Facebook and Twitter - able to reach millions of people from all over the world as events are happening; Lopes
Level3:3-4marksThere will typically be two developed points of knowledge. The candidate demonstrates a good knowledge and understandingThe Facebook Effect - as Facebook spreads globally,
The information presented is in the most part relevant and supportedbysomeevidence.exceeding5oomillionusers-becomeinstrumentalin
political protests from Colombia to Iran; Kirkpatrick
well-developedpoints. Level2:2marksTherewill typicallybeonedevelopedpoint ofknowledge,or2lessFacebook, Twitter, may give a voice to individuals that
otherwise would not be heard; the Arab Spring social movements; Shirky, Jurgenson, Castells Social mediaprovides new sources of information that
cannotbeeasilycontrolledby authoritarianregimes
Thecandidatedemonstratesabasicknowledgeand(TufekciandWilson)
Developments in digital communicationhad enabled
range and detail. The response may lack clarity at times and
people with a'muted voice'to be heard, e.g. Malala
contain some inaccuracies. The response may be partial andYousafzai
undeveloped. Theinformation has somerelevance and is
Socialmediaisnowthemostefficientmethodof
supportedbylimitedevidence.delivering emergency response messages'; Collins
There will typically be one underdeveloped point of knowledge, or
Use of digital communications as a response to the
twoundevelopedpoints.
coronavirus pandemic and local restrictions - keeping
Level 1: 1 markpeople in touch; spreading information.
Reference to the role of digital communications in recent
The candidate demonstrates a limited knowledge and understanding ofsociological evidence.Verylittlerelevantprotests such as Hong Kong pro-democracy protests, the
sociologicalevidenceispresented;theresponsecontains
Black Lives Matter protests, climate change/ extinction
considerable inaccuracy and lacks clarity. The information is basic
rebellionprotestsetc.
Otherreasonableresponse.
", - "type": "table", - "image_path": "1eedd10ad3342d37c389cbe88c903a84f0be9b8ba45282eb581a49ced1fa150e.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 47, - 37, - 806, - 208.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 47, - 208.66666666666666, - 806, - 380.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 47, - 380.3333333333333, - 806, - 552.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_9", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 33, - 25, - 821, - 549 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 33, - 25, - 821, - 549 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 80, - 25, - 821, - 548 - ], - "spans": [ - { - "bbox": [ - 80, - 25, - 821, - 548 - ], - "score": 0.753, - "html": "
3 Mark scheme November2020
and communicated in an unstructured way. There will typically be one undeveloped point, or a vagueAO2:Application
representation.In this question Ao2 is awarded for use of source(s). For example:
0 marks No relevant knowledge or understanding.Globally, new forms of digital communication increasingly used for dealing with major events such as disasters (As in
AO2:ApplicationSource A) Increased access to resources across the world (As in
Level4:4marks The candidate demonstrates an excellent ability to apply relevantSource A) Official organisations aiming for a collective response,
applied material from at least one of the sources in a developed way.beginning to embrace social media channels digital communication;(AsinSourceA:USANationalWeather Service,2018)
There will typically be two developed references to the source material. Level 3: 3 marksFacebook in 2012 launched an emergency check-in App called‘Safety Check'.At the click of a buttonusers can let friends and familyknow they are safe in the event of a
The candidate demonstrates a good ability to apply source material. The candidate has occasionally applied material from at least one of the sources in a developed way, or frequently appliednatural disaster (As in Source A) Communicating in avirtual community,where there are no B)
the source(s) in an underdeveloped way. There will typically be one developed or two underdeveloped referencestothesourcematerial.major events (As in Source B) Mobilising support for protests (As in Source A)
Level 2: 2 marks The candidatedemonstrates a basic ability to applysource
material. The candidate has occasionally made use of material from the source(s) in an underdeveloped way.
Therewill typicallybe oneunderdeveloped ortwoundeveloped/
recycled/implicitreferencestothesourcematerial.
", - "type": "table", - "image_path": "876b5b1f56328dff70344372da3f5e14df10532436da17f730d01a5da9f00a0f.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 33, - 25, - 821, - 199.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 33, - 199.66666666666666, - 821, - 374.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 33, - 374.3333333333333, - 821, - 549.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 10, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 33, - 25, - 821, - 549 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 33, - 25, - 821, - 549 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 80, - 25, - 821, - 548 - ], - "spans": [ - { - "bbox": [ - 80, - 25, - 821, - 548 - ], - "score": 0.753, - "html": "
3 Mark scheme November2020
and communicated in an unstructured way. There will typically be one undeveloped point, or a vagueAO2:Application
representation.In this question Ao2 is awarded for use of source(s). For example:
0 marks No relevant knowledge or understanding.Globally, new forms of digital communication increasingly used for dealing with major events such as disasters (As in
AO2:ApplicationSource A) Increased access to resources across the world (As in
Level4:4marks The candidate demonstrates an excellent ability to apply relevantSource A) Official organisations aiming for a collective response,
applied material from at least one of the sources in a developed way.beginning to embrace social media channels digital communication;(AsinSourceA:USANationalWeather Service,2018)
There will typically be two developed references to the source material. Level 3: 3 marksFacebook in 2012 launched an emergency check-in App called‘Safety Check'.At the click of a buttonusers can let friends and familyknow they are safe in the event of a
The candidate demonstrates a good ability to apply source material. The candidate has occasionally applied material from at least one of the sources in a developed way, or frequently appliednatural disaster (As in Source A) Communicating in avirtual community,where there are no B)
the source(s) in an underdeveloped way. There will typically be one developed or two underdeveloped referencestothesourcematerial.major events (As in Source B) Mobilising support for protests (As in Source A)
Level 2: 2 marks The candidatedemonstrates a basic ability to applysource
material. The candidate has occasionally made use of material from the source(s) in an underdeveloped way.
Therewill typicallybe oneunderdeveloped ortwoundeveloped/
recycled/implicitreferencestothesourcematerial.
", - "type": "table", - "image_path": "876b5b1f56328dff70344372da3f5e14df10532436da17f730d01a5da9f00a0f.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 33, - 25, - 821, - 199.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 33, - 199.66666666666666, - 821, - 374.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 33, - 374.3333333333333, - 821, - 549.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 47 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 47 - ], - "lines": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 383, - 36, - 457, - 47 - ], - "lines": [] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 33, - 25, - 821, - 549 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 33, - 25, - 821, - 549 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 80, - 25, - 821, - 548 - ], - "spans": [ - { - "bbox": [ - 80, - 25, - 821, - 548 - ], - "score": 0.753, - "html": "
3 Mark scheme November2020
and communicated in an unstructured way. There will typically be one undeveloped point, or a vagueAO2:Application
representation.In this question Ao2 is awarded for use of source(s). For example:
0 marks No relevant knowledge or understanding.Globally, new forms of digital communication increasingly used for dealing with major events such as disasters (As in
AO2:ApplicationSource A) Increased access to resources across the world (As in
Level4:4marks The candidate demonstrates an excellent ability to apply relevantSource A) Official organisations aiming for a collective response,
applied material from at least one of the sources in a developed way.beginning to embrace social media channels digital communication;(AsinSourceA:USANationalWeather Service,2018)
There will typically be two developed references to the source material. Level 3: 3 marksFacebook in 2012 launched an emergency check-in App called‘Safety Check'.At the click of a buttonusers can let friends and familyknow they are safe in the event of a
The candidate demonstrates a good ability to apply source material. The candidate has occasionally applied material from at least one of the sources in a developed way, or frequently appliednatural disaster (As in Source A) Communicating in avirtual community,where there are no B)
the source(s) in an underdeveloped way. There will typically be one developed or two underdeveloped referencestothesourcematerial.major events (As in Source B) Mobilising support for protests (As in Source A)
Level 2: 2 marks The candidatedemonstrates a basic ability to applysource
material. The candidate has occasionally made use of material from the source(s) in an underdeveloped way.
Therewill typicallybe oneunderdeveloped ortwoundeveloped/
recycled/implicitreferencestothesourcematerial.
", - "type": "table", - "image_path": "876b5b1f56328dff70344372da3f5e14df10532436da17f730d01a5da9f00a0f.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 33, - 25, - 821, - 199.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 33, - 199.66666666666666, - 821, - 374.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 33, - 374.3333333333333, - 821, - 549.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_10", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 77, - 38, - 812, - 554 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 77, - 38, - 812, - 554 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 77, - 38, - 812, - 554 - ], - "spans": [ - { - "bbox": [ - 77, - 38, - 812, - 554 - ], - "score": 0.925, - "html": "
03 Markscheme With reference to the Source(s) and your wider 10
sociological knowledge, evaluate the view that virtualAO1: Knowledge and understanding NOTE: Contemporary examples should be credited in AO1 in
communities have a positive impact on people's identity.the same way as sociological studies.
AO1: Knowledge and understandingVirtualcommunity-asocialnetworkofindividualsthatcreate an online community which can cross geographical, political
Level4:4marks The candidate demonstrates an excellent knowledge andand social lines. There should be a focus on identity - more generalised
understanding of a range of sociological material; the evidence is generally accurate and detailed. The material presented is relevantpositive impacts should be credited as underdeveloped.
andsupportedbyevidence. There will typically be two developed points supporting the view in the question.Supporting evidence may include: Virtual worlds canchange ideas about people's identity
Level 3: 3 marksand society, people can choose an alternative identity; Boellstorff Carter -'Cybercity', a place to meet people, widen and
The candidate demonstrates a good knowledge and understanding ofeither arangeofsociological materialorsomematerial instrengthen social networks and relationships, positive effect on self-regard and identity.
detail.Thematerialisgenerallyaccuratebutunderdeveloped,or narrow. The material presented is mostly relevant and supported by some evidence.People free from their physical bodies and constraints -
There will typically be one developed point or two underdevelopedTushnet Virtual communities allow people to present 'better' versions ofthemselves;Turkle
Level 2: 2 marks The candidate demonstrates a basic knowledge andSocial networking sites - individuals create virtual profiles - Baudrillard calls this a simulacra, a mediated version of our
identity; Durham and Kellner Feminists: in virtual communities women can transcend
contain some inaccuracies. The response may be partial and undevelopedbutwill have somerelevance.gender to focus on other aspects of their identity, becoming cyborgs; Haraway
Therewill typicallybe oneunderdeveloped or two undevelopedPeople can develop different aspects of their identity, we
areallcyborgs;Case Access to people across the world may help with
Level 1: 1mark
The candidate demonstrates a limited knowledge andethnicminoritybackgrounds;Nakamura
understandingofsociological material.VerylittlerelevantInteractionists: individuals give meaning to interactions
within virtual communities, influencing identity and the
largely based on common sense; the response containspresentationofself-Gardner&Davis
considerable inaccuracy and lacks clarity.
Other reasonable response.
Therewill typicallybeoneundevelopedpoint supporting theview
", - "type": "table", - "image_path": "401be3e4fbfc84201018e1cc73b27fa48c41928ecc6e0f78719574008e44f297.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 77, - 38, - 812, - 210.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 77, - 210.0, - 812, - 382.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 77, - 382.0, - 812, - 554.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 11, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 77, - 38, - 812, - 554 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 77, - 38, - 812, - 554 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 77, - 38, - 812, - 554 - ], - "spans": [ - { - "bbox": [ - 77, - 38, - 812, - 554 - ], - "score": 0.925, - "html": "
03 Markscheme With reference to the Source(s) and your wider 10
sociological knowledge, evaluate the view that virtualAO1: Knowledge and understanding NOTE: Contemporary examples should be credited in AO1 in
communities have a positive impact on people's identity.the same way as sociological studies.
AO1: Knowledge and understandingVirtualcommunity-asocialnetworkofindividualsthatcreate an online community which can cross geographical, political
Level4:4marks The candidate demonstrates an excellent knowledge andand social lines. There should be a focus on identity - more generalised
understanding of a range of sociological material; the evidence is generally accurate and detailed. The material presented is relevantpositive impacts should be credited as underdeveloped.
andsupportedbyevidence. There will typically be two developed points supporting the view in the question.Supporting evidence may include: Virtual worlds canchange ideas about people's identity
Level 3: 3 marksand society, people can choose an alternative identity; Boellstorff Carter -'Cybercity', a place to meet people, widen and
The candidate demonstrates a good knowledge and understanding ofeither arangeofsociological materialorsomematerial instrengthen social networks and relationships, positive effect on self-regard and identity.
detail.Thematerialisgenerallyaccuratebutunderdeveloped,or narrow. The material presented is mostly relevant and supported by some evidence.People free from their physical bodies and constraints -
There will typically be one developed point or two underdevelopedTushnet Virtual communities allow people to present 'better' versions ofthemselves;Turkle
Level 2: 2 marks The candidate demonstrates a basic knowledge andSocial networking sites - individuals create virtual profiles - Baudrillard calls this a simulacra, a mediated version of our
identity; Durham and Kellner Feminists: in virtual communities women can transcend
contain some inaccuracies. The response may be partial and undevelopedbutwill have somerelevance.gender to focus on other aspects of their identity, becoming cyborgs; Haraway
Therewill typicallybe oneunderdeveloped or two undevelopedPeople can develop different aspects of their identity, we
areallcyborgs;Case Access to people across the world may help with
Level 1: 1mark
The candidate demonstrates a limited knowledge andethnicminoritybackgrounds;Nakamura
understandingofsociological material.VerylittlerelevantInteractionists: individuals give meaning to interactions
within virtual communities, influencing identity and the
largely based on common sense; the response containspresentationofself-Gardner&Davis
considerable inaccuracy and lacks clarity.
Other reasonable response.
Therewill typicallybeoneundevelopedpoint supporting theview
", - "type": "table", - "image_path": "401be3e4fbfc84201018e1cc73b27fa48c41928ecc6e0f78719574008e44f297.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 77, - 38, - 812, - 210.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 77, - 210.0, - 812, - 382.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 77, - 382.0, - 812, - 554.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 47 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 47 - ], - "lines": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 383, - 36, - 457, - 47 - ], - "lines": [] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 77, - 38, - 812, - 554 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 77, - 38, - 812, - 554 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 77, - 38, - 812, - 554 - ], - "spans": [ - { - "bbox": [ - 77, - 38, - 812, - 554 - ], - "score": 0.925, - "html": "
03 Markscheme With reference to the Source(s) and your wider 10
sociological knowledge, evaluate the view that virtualAO1: Knowledge and understanding NOTE: Contemporary examples should be credited in AO1 in
communities have a positive impact on people's identity.the same way as sociological studies.
AO1: Knowledge and understandingVirtualcommunity-asocialnetworkofindividualsthatcreate an online community which can cross geographical, political
Level4:4marks The candidate demonstrates an excellent knowledge andand social lines. There should be a focus on identity - more generalised
understanding of a range of sociological material; the evidence is generally accurate and detailed. The material presented is relevantpositive impacts should be credited as underdeveloped.
andsupportedbyevidence. There will typically be two developed points supporting the view in the question.Supporting evidence may include: Virtual worlds canchange ideas about people's identity
Level 3: 3 marksand society, people can choose an alternative identity; Boellstorff Carter -'Cybercity', a place to meet people, widen and
The candidate demonstrates a good knowledge and understanding ofeither arangeofsociological materialorsomematerial instrengthen social networks and relationships, positive effect on self-regard and identity.
detail.Thematerialisgenerallyaccuratebutunderdeveloped,or narrow. The material presented is mostly relevant and supported by some evidence.People free from their physical bodies and constraints -
There will typically be one developed point or two underdevelopedTushnet Virtual communities allow people to present 'better' versions ofthemselves;Turkle
Level 2: 2 marks The candidate demonstrates a basic knowledge andSocial networking sites - individuals create virtual profiles - Baudrillard calls this a simulacra, a mediated version of our
identity; Durham and Kellner Feminists: in virtual communities women can transcend
contain some inaccuracies. The response may be partial and undevelopedbutwill have somerelevance.gender to focus on other aspects of their identity, becoming cyborgs; Haraway
Therewill typicallybe oneunderdeveloped or two undevelopedPeople can develop different aspects of their identity, we
areallcyborgs;Case Access to people across the world may help with
Level 1: 1mark
The candidate demonstrates a limited knowledge andethnicminoritybackgrounds;Nakamura
understandingofsociological material.VerylittlerelevantInteractionists: individuals give meaning to interactions
within virtual communities, influencing identity and the
largely based on common sense; the response containspresentationofself-Gardner&Davis
considerable inaccuracy and lacks clarity.
Other reasonable response.
Therewill typicallybeoneundevelopedpoint supporting theview
", - "type": "table", - "image_path": "401be3e4fbfc84201018e1cc73b27fa48c41928ecc6e0f78719574008e44f297.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 77, - 38, - 812, - 210.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 77, - 210.0, - 812, - 382.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 77, - 382.0, - 812, - 554.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_11", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 37, - 31, - 830, - 565 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 37, - 31, - 830, - 565 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 70, - 38, - 830, - 546 - ], - "spans": [ - { - "bbox": [ - 70, - 38, - 830, - 546 - ], - "score": 0.879, - "html": "
/03Markscheme
in the question, or a vague representation.AO2:ApplicationIn this questionAo2 is awarded foruse of source(s)
0 marks: No relevant knowledge or understanding.For example:
A02: Application Level2:2marksPostmodernview:virtualcommunitieshave apositive impact on individual's real and virtual identity (Source B)
Thecandidate demonstrates an excellentorgood abilityto applyIn virtual communities people can choose how they present themselves, i.e. their virtual identity (Source B).
relevant source material. The candidate has explicitly applied material from at least one of the sources.People can transform their identity regardless of gender, ethnicity, social class, age or disability. (Source B)
Therewilltypicallybeatleastonedevelopedreferencetosource material.Concerns about the effects of virtual communities on both individuals'identities (Source B)
Level 1: 1 mark The candidate shows abasic or limited ability to applysourceWho controls the virtual communities and how are they regulated (SourceB),
material. The candidatehas implicitlyreferred toissues raised inAO3:Analysisandevaluation
TherewilltypicallybeatleastoneundevelopedreferencetoNOTE: Contemporary examples should be credited in AO3 in the same way as sociological studies.
sourcematerial.Arguments against the view that virtual communities have a
0 marks No relevant sociological application.positive impact on people's identity, may include:
AO3:Analysis and evaluation Level4:4marksRecent concerns raised about young people who reveal mental health issues in virtual communities being
encouraged to internalise harmful negative self -
evaluate sociological material. There is a range of developedperceptions. Young people are becoming more narcissistic; Gardner &
conclusion.evaluation points. There may be a critical and reasonedDavis
in the question.There will typically be two developed points challenging the viewThe i-generation spend less time with friends and have
higher evels of anxiety and loneliness; Twenge Cyberbullying has a negative effect on identity;
Level 3: 3 marksLivingstone, Haddon, Vincent, Mascheroni and Olafsson,
The candidate demonstrates a good ability to analyse and evaluateO'Keefe& ClarkePearson
sociological material. There is some analysis and evaluation,but itWe knowless about people's identity if we are unable to
see facial expressions, intonation of voice etc.; Justice and
explicit but brief conclusion.Jamieson
Virtual communities may be used illegitimately, for
There will typically be one developed point or two underdeveloped
example grooming young people. Likely to negatively
impact on identity for many years.
Level2:2marks
Indirect, online communication is isolating; Turkle
", - "type": "table", - "image_path": "17392e03b9ec9aa305c7d7e24c87654d7b3104580f9b3ef799bff4b9fac03c74.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 37, - 31, - 830, - 209.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 37, - 209.0, - 830, - 387.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 37, - 387.0, - 830, - 565.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 12, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 37, - 31, - 830, - 565 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 37, - 31, - 830, - 565 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 70, - 38, - 830, - 546 - ], - "spans": [ - { - "bbox": [ - 70, - 38, - 830, - 546 - ], - "score": 0.879, - "html": "
/03Markscheme
in the question, or a vague representation.AO2:ApplicationIn this questionAo2 is awarded foruse of source(s)
0 marks: No relevant knowledge or understanding.For example:
A02: Application Level2:2marksPostmodernview:virtualcommunitieshave apositive impact on individual's real and virtual identity (Source B)
Thecandidate demonstrates an excellentorgood abilityto applyIn virtual communities people can choose how they present themselves, i.e. their virtual identity (Source B).
relevant source material. The candidate has explicitly applied material from at least one of the sources.People can transform their identity regardless of gender, ethnicity, social class, age or disability. (Source B)
Therewilltypicallybeatleastonedevelopedreferencetosource material.Concerns about the effects of virtual communities on both individuals'identities (Source B)
Level 1: 1 mark The candidate shows abasic or limited ability to applysourceWho controls the virtual communities and how are they regulated (SourceB),
material. The candidatehas implicitlyreferred toissues raised inAO3:Analysisandevaluation
TherewilltypicallybeatleastoneundevelopedreferencetoNOTE: Contemporary examples should be credited in AO3 in the same way as sociological studies.
sourcematerial.Arguments against the view that virtual communities have a
0 marks No relevant sociological application.positive impact on people's identity, may include:
AO3:Analysis and evaluation Level4:4marksRecent concerns raised about young people who reveal mental health issues in virtual communities being
encouraged to internalise harmful negative self -
evaluate sociological material. There is a range of developedperceptions. Young people are becoming more narcissistic; Gardner &
conclusion.evaluation points. There may be a critical and reasonedDavis
in the question.There will typically be two developed points challenging the viewThe i-generation spend less time with friends and have
higher evels of anxiety and loneliness; Twenge Cyberbullying has a negative effect on identity;
Level 3: 3 marksLivingstone, Haddon, Vincent, Mascheroni and Olafsson,
The candidate demonstrates a good ability to analyse and evaluateO'Keefe& ClarkePearson
sociological material. There is some analysis and evaluation,but itWe knowless about people's identity if we are unable to
see facial expressions, intonation of voice etc.; Justice and
explicit but brief conclusion.Jamieson
Virtual communities may be used illegitimately, for
There will typically be one developed point or two underdeveloped
example grooming young people. Likely to negatively
impact on identity for many years.
Level2:2marks
Indirect, online communication is isolating; Turkle
", - "type": "table", - "image_path": "17392e03b9ec9aa305c7d7e24c87654d7b3104580f9b3ef799bff4b9fac03c74.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 37, - 31, - 830, - 209.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 37, - 209.0, - 830, - 387.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 37, - 387.0, - 830, - 565.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 47 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 47 - ], - "lines": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 383, - 36, - 457, - 47 - ], - "lines": [] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 37, - 31, - 830, - 565 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 37, - 31, - 830, - 565 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 70, - 38, - 830, - 546 - ], - "spans": [ - { - "bbox": [ - 70, - 38, - 830, - 546 - ], - "score": 0.879, - "html": "
/03Markscheme
in the question, or a vague representation.AO2:ApplicationIn this questionAo2 is awarded foruse of source(s)
0 marks: No relevant knowledge or understanding.For example:
A02: Application Level2:2marksPostmodernview:virtualcommunitieshave apositive impact on individual's real and virtual identity (Source B)
Thecandidate demonstrates an excellentorgood abilityto applyIn virtual communities people can choose how they present themselves, i.e. their virtual identity (Source B).
relevant source material. The candidate has explicitly applied material from at least one of the sources.People can transform their identity regardless of gender, ethnicity, social class, age or disability. (Source B)
Therewilltypicallybeatleastonedevelopedreferencetosource material.Concerns about the effects of virtual communities on both individuals'identities (Source B)
Level 1: 1 mark The candidate shows abasic or limited ability to applysourceWho controls the virtual communities and how are they regulated (SourceB),
material. The candidatehas implicitlyreferred toissues raised inAO3:Analysisandevaluation
TherewilltypicallybeatleastoneundevelopedreferencetoNOTE: Contemporary examples should be credited in AO3 in the same way as sociological studies.
sourcematerial.Arguments against the view that virtual communities have a
0 marks No relevant sociological application.positive impact on people's identity, may include:
AO3:Analysis and evaluation Level4:4marksRecent concerns raised about young people who reveal mental health issues in virtual communities being
encouraged to internalise harmful negative self -
evaluate sociological material. There is a range of developedperceptions. Young people are becoming more narcissistic; Gardner &
conclusion.evaluation points. There may be a critical and reasonedDavis
in the question.There will typically be two developed points challenging the viewThe i-generation spend less time with friends and have
higher evels of anxiety and loneliness; Twenge Cyberbullying has a negative effect on identity;
Level 3: 3 marksLivingstone, Haddon, Vincent, Mascheroni and Olafsson,
The candidate demonstrates a good ability to analyse and evaluateO'Keefe& ClarkePearson
sociological material. There is some analysis and evaluation,but itWe knowless about people's identity if we are unable to
see facial expressions, intonation of voice etc.; Justice and
explicit but brief conclusion.Jamieson
Virtual communities may be used illegitimately, for
There will typically be one developed point or two underdeveloped
example grooming young people. Likely to negatively
impact on identity for many years.
Level2:2marks
Indirect, online communication is isolating; Turkle
", - "type": "table", - "image_path": "17392e03b9ec9aa305c7d7e24c87654d7b3104580f9b3ef799bff4b9fac03c74.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 37, - 31, - 830, - 209.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 37, - 209.0, - 830, - 387.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 37, - 387.0, - 830, - 565.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_12", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 32, - 44, - 813, - 555 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 44, - 813, - 555 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 32, - 44, - 813, - 555 - ], - "spans": [ - { - "bbox": [ - 32, - 44, - 813, - 555 - ], - "score": 0.952, - "html": "
The candidate demonstrates a basic ability to analyse and evaluatesociological material.Evaluationpoints arelikely tobe undeveloped, with little supporting evidence. If present, the conclusionislikelytobesummative. There will typically be one underdeveloped or two undeveloped Level1:1markFeminists:thosewhocreateandcontrolvirtual communities more likely to be male, and the communities mayreflectpatriarchalattitudesreinforcingsubordinate identities. Communities may also be a course of genderedcyberhate';Jane ·Other reasonable response.
Thecandidatedemonstratesalimitedabilitytoanalyseand evaluatesociologicalmaterial.Onlybriefand/orimplicitevaluation ispresent.There isunlikelytobeaconclusion. Therewill typicallybeoneundevelopedpointchallengingtheview in the question, or a vague representation. 0 marks: No relevant sociological evaluation or analysis. Evaluate the sociological view that all digital forms of16AO1: Knowledge and understanding NOTE: Contemporary examples should be credited in AO1 in the same way as sociological studies.
communication have a negative impact on social relationships. AO1: Knowledge and understanding Level4:4marks The candidate demonstrates an excellent knowledge and understanding of a range of sociological material; the material isRelevant material supporting the view that all digital forms of communications have a negative impact on social relationshipsmayinclude: · Families/ friends may be 'alone together' - in the same roombutusingdevicestocommunicatewithothers or
There will typically be two developed points supporting the view in the question. Level3: 3 marks The candidate demonstrates a good knowledge and understanding of either a range ofsociological material or some material inengage in other tasks; Turkle Offline relationships may suffer as a result of time spent with onlinerelationships
betweenindividualsOnlinesocialties tend tobeweaker thanrelationships formed and maintained offline;Kraut Social media potential to cause tension and conflict Solitary activities - e.g. such as surfing the internet, negative impact on social ties; Zhao
Therewill typicallybe onedevelopedpoint ortwounderdeveloped Level2:2marks Thecandidatedemonstrates abasicknowledge andLack of privacy or different ideas about privacy may cause conflict Childrenwhocannotaffordsmartphonesoraccessto
", - "type": "table", - "image_path": "8feebaa0b2cdc5c5dca435056a6399a90810a07df7e294a96e89e4ad00085bb2.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 32, - 44, - 813, - 214.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 32, - 214.33333333333334, - 813, - 384.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 32, - 384.6666666666667, - 813, - 555.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 13, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 32, - 44, - 813, - 555 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 44, - 813, - 555 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 32, - 44, - 813, - 555 - ], - "spans": [ - { - "bbox": [ - 32, - 44, - 813, - 555 - ], - "score": 0.952, - "html": "
The candidate demonstrates a basic ability to analyse and evaluatesociological material.Evaluationpoints arelikely tobe undeveloped, with little supporting evidence. If present, the conclusionislikelytobesummative. There will typically be one underdeveloped or two undeveloped Level1:1markFeminists:thosewhocreateandcontrolvirtual communities more likely to be male, and the communities mayreflectpatriarchalattitudesreinforcingsubordinate identities. Communities may also be a course of genderedcyberhate';Jane ·Other reasonable response.
Thecandidatedemonstratesalimitedabilitytoanalyseand evaluatesociologicalmaterial.Onlybriefand/orimplicitevaluation ispresent.There isunlikelytobeaconclusion. Therewill typicallybeoneundevelopedpointchallengingtheview in the question, or a vague representation. 0 marks: No relevant sociological evaluation or analysis. Evaluate the sociological view that all digital forms of16AO1: Knowledge and understanding NOTE: Contemporary examples should be credited in AO1 in the same way as sociological studies.
communication have a negative impact on social relationships. AO1: Knowledge and understanding Level4:4marks The candidate demonstrates an excellent knowledge and understanding of a range of sociological material; the material isRelevant material supporting the view that all digital forms of communications have a negative impact on social relationshipsmayinclude: · Families/ friends may be 'alone together' - in the same roombutusingdevicestocommunicatewithothers or
There will typically be two developed points supporting the view in the question. Level3: 3 marks The candidate demonstrates a good knowledge and understanding of either a range ofsociological material or some material inengage in other tasks; Turkle Offline relationships may suffer as a result of time spent with onlinerelationships
betweenindividualsOnlinesocialties tend tobeweaker thanrelationships formed and maintained offline;Kraut Social media potential to cause tension and conflict Solitary activities - e.g. such as surfing the internet, negative impact on social ties; Zhao
Therewill typicallybe onedevelopedpoint ortwounderdeveloped Level2:2marks Thecandidatedemonstrates abasicknowledge andLack of privacy or different ideas about privacy may cause conflict Childrenwhocannotaffordsmartphonesoraccessto
", - "type": "table", - "image_path": "8feebaa0b2cdc5c5dca435056a6399a90810a07df7e294a96e89e4ad00085bb2.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 32, - 44, - 813, - 214.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 32, - 214.33333333333334, - 813, - 384.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 32, - 384.6666666666667, - 813, - 555.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 47 - ], - "lines": [ - { - "bbox": [ - 714, - 36, - 799, - 47 - ], - "spans": [ - { - "bbox": [ - 714, - 36, - 799, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 47 - ], - "lines": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 383, - 36, - 457, - 47 - ], - "lines": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "spans": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 32, - 44, - 813, - 555 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 44, - 813, - 555 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 32, - 44, - 813, - 555 - ], - "spans": [ - { - "bbox": [ - 32, - 44, - 813, - 555 - ], - "score": 0.952, - "html": "
The candidate demonstrates a basic ability to analyse and evaluatesociological material.Evaluationpoints arelikely tobe undeveloped, with little supporting evidence. If present, the conclusionislikelytobesummative. There will typically be one underdeveloped or two undeveloped Level1:1markFeminists:thosewhocreateandcontrolvirtual communities more likely to be male, and the communities mayreflectpatriarchalattitudesreinforcingsubordinate identities. Communities may also be a course of genderedcyberhate';Jane ·Other reasonable response.
Thecandidatedemonstratesalimitedabilitytoanalyseand evaluatesociologicalmaterial.Onlybriefand/orimplicitevaluation ispresent.There isunlikelytobeaconclusion. Therewill typicallybeoneundevelopedpointchallengingtheview in the question, or a vague representation. 0 marks: No relevant sociological evaluation or analysis. Evaluate the sociological view that all digital forms of16AO1: Knowledge and understanding NOTE: Contemporary examples should be credited in AO1 in the same way as sociological studies.
communication have a negative impact on social relationships. AO1: Knowledge and understanding Level4:4marks The candidate demonstrates an excellent knowledge and understanding of a range of sociological material; the material isRelevant material supporting the view that all digital forms of communications have a negative impact on social relationshipsmayinclude: · Families/ friends may be 'alone together' - in the same roombutusingdevicestocommunicatewithothers or
There will typically be two developed points supporting the view in the question. Level3: 3 marks The candidate demonstrates a good knowledge and understanding of either a range ofsociological material or some material inengage in other tasks; Turkle Offline relationships may suffer as a result of time spent with onlinerelationships
betweenindividualsOnlinesocialties tend tobeweaker thanrelationships formed and maintained offline;Kraut Social media potential to cause tension and conflict Solitary activities - e.g. such as surfing the internet, negative impact on social ties; Zhao
Therewill typicallybe onedevelopedpoint ortwounderdeveloped Level2:2marks Thecandidatedemonstrates abasicknowledge andLack of privacy or different ideas about privacy may cause conflict Childrenwhocannotaffordsmartphonesoraccessto
", - "type": "table", - "image_path": "8feebaa0b2cdc5c5dca435056a6399a90810a07df7e294a96e89e4ad00085bb2.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 32, - 44, - 813, - 214.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 32, - 214.33333333333334, - 813, - 384.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 32, - 384.6666666666667, - 813, - 555.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_13", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 35, - 29, - 830, - 550 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 29, - 830, - 550 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 83, - 37, - 830, - 550 - ], - "spans": [ - { - "bbox": [ - 83, - 37, - 830, - 550 - ], - "score": 0.725, - "html": "
Markscheme understanding of some sociological material. The response lacksNovember2020 internet; disadvantaged in peer interaction in all countries
including UK; Berry
contain some inaccuracies. The response may be partial and undeveloped.
points supporting the view in the question.remove mistakes; Case, Ellison. Disputes can occur when private information disclosed on-
line; Case
Level1:1mark The candidate demonstrates a limitedknowledge andSocial networking sites can expose the unfaithful: dynamic
understanding of sociological material.Very little relevantof the news being 'public' can have an negative impact on relationship; Miller
considerableinaccuracy and lacks clarity.'Twitter-related conflict' can have negative impact on
in the question, or a vague representation.relationships: emotional and physical cheating, breakup and divorce; Clayton
MillerProblem if people believe the truth of another lies more in what is posted online than face-to-face communication;
0 marks: No relevant knowledge or understanding.
AO2:Application Level 4: 4 marks· Other reasonable response.
The candidate demonstrates an excellent ability to apply relevant sociological material. The material relevant and is consistently andA02: Application The selected knowledge should be directly specific to the
frequently related to the question Level3: 3 marksquestion -view that all digital forms of communicationhave a negative impact on social relationships.
The candidate demonstrates a good ability to apply sociological material. The material is potentially relevant but is explicitly related
to the question only occasionally.AO3:Analysisandevaluation NOTE: Contemporary examples should be credited in AO3 in
Level2:2 marksthe same way as sociological studies.
The candidate demonstrates a basic ability to apply sociologicalRelevant material challenging the view that all digital forms of
material. The material is related to the question mainly implicitly/communications have a negative impact on social
and lacks focus on the question. The response may berelationships may include:
generalised.Digital forms of communication have helped strengthen
relationships between family and friends as time and
Level 1: 1 mark The candidate demonstrates a limited ability to apply sociological material. The material is tangential to the question and of marginalcontact. communicationallowedfriendsandfamilytomaintaintheirlocation no longer presents a barrier to maintaining During the coronavirus pandemic and lockdown, digital
", - "type": "table", - "image_path": "f1cd4bc8a3a680c5fcd247cc8e18101d83555a85c79a3b08d63861aa44fc5c7a.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 35, - 29, - 830, - 202.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 35, - 202.66666666666666, - 830, - 376.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 35, - 376.3333333333333, - 830, - 550.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 14, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 35, - 29, - 830, - 550 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 29, - 830, - 550 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 83, - 37, - 830, - 550 - ], - "spans": [ - { - "bbox": [ - 83, - 37, - 830, - 550 - ], - "score": 0.725, - "html": "
Markscheme understanding of some sociological material. The response lacksNovember2020 internet; disadvantaged in peer interaction in all countries
including UK; Berry
contain some inaccuracies. The response may be partial and undeveloped.
points supporting the view in the question.remove mistakes; Case, Ellison. Disputes can occur when private information disclosed on-
line; Case
Level1:1mark The candidate demonstrates a limitedknowledge andSocial networking sites can expose the unfaithful: dynamic
understanding of sociological material.Very little relevantof the news being 'public' can have an negative impact on relationship; Miller
considerableinaccuracy and lacks clarity.'Twitter-related conflict' can have negative impact on
in the question, or a vague representation.relationships: emotional and physical cheating, breakup and divorce; Clayton
MillerProblem if people believe the truth of another lies more in what is posted online than face-to-face communication;
0 marks: No relevant knowledge or understanding.
AO2:Application Level 4: 4 marks· Other reasonable response.
The candidate demonstrates an excellent ability to apply relevant sociological material. The material relevant and is consistently andA02: Application The selected knowledge should be directly specific to the
frequently related to the question Level3: 3 marksquestion -view that all digital forms of communicationhave a negative impact on social relationships.
The candidate demonstrates a good ability to apply sociological material. The material is potentially relevant but is explicitly related
to the question only occasionally.AO3:Analysisandevaluation NOTE: Contemporary examples should be credited in AO3 in
Level2:2 marksthe same way as sociological studies.
The candidate demonstrates a basic ability to apply sociologicalRelevant material challenging the view that all digital forms of
material. The material is related to the question mainly implicitly/communications have a negative impact on social
and lacks focus on the question. The response may berelationships may include:
generalised.Digital forms of communication have helped strengthen
relationships between family and friends as time and
Level 1: 1 mark The candidate demonstrates a limited ability to apply sociological material. The material is tangential to the question and of marginalcontact. communicationallowedfriendsandfamilytomaintaintheirlocation no longer presents a barrier to maintaining During the coronavirus pandemic and lockdown, digital
", - "type": "table", - "image_path": "f1cd4bc8a3a680c5fcd247cc8e18101d83555a85c79a3b08d63861aa44fc5c7a.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 35, - 29, - 830, - 202.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 35, - 202.66666666666666, - 830, - 376.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 35, - 376.3333333333333, - 830, - 550.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 47 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 383, - 36, - 457, - 47 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 47 - ], - "lines": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 35, - 29, - 830, - 550 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 29, - 830, - 550 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 83, - 37, - 830, - 550 - ], - "spans": [ - { - "bbox": [ - 83, - 37, - 830, - 550 - ], - "score": 0.725, - "html": "
Markscheme understanding of some sociological material. The response lacksNovember2020 internet; disadvantaged in peer interaction in all countries
including UK; Berry
contain some inaccuracies. The response may be partial and undeveloped.
points supporting the view in the question.remove mistakes; Case, Ellison. Disputes can occur when private information disclosed on-
line; Case
Level1:1mark The candidate demonstrates a limitedknowledge andSocial networking sites can expose the unfaithful: dynamic
understanding of sociological material.Very little relevantof the news being 'public' can have an negative impact on relationship; Miller
considerableinaccuracy and lacks clarity.'Twitter-related conflict' can have negative impact on
in the question, or a vague representation.relationships: emotional and physical cheating, breakup and divorce; Clayton
MillerProblem if people believe the truth of another lies more in what is posted online than face-to-face communication;
0 marks: No relevant knowledge or understanding.
AO2:Application Level 4: 4 marks· Other reasonable response.
The candidate demonstrates an excellent ability to apply relevant sociological material. The material relevant and is consistently andA02: Application The selected knowledge should be directly specific to the
frequently related to the question Level3: 3 marksquestion -view that all digital forms of communicationhave a negative impact on social relationships.
The candidate demonstrates a good ability to apply sociological material. The material is potentially relevant but is explicitly related
to the question only occasionally.AO3:Analysisandevaluation NOTE: Contemporary examples should be credited in AO3 in
Level2:2 marksthe same way as sociological studies.
The candidate demonstrates a basic ability to apply sociologicalRelevant material challenging the view that all digital forms of
material. The material is related to the question mainly implicitly/communications have a negative impact on social
and lacks focus on the question. The response may berelationships may include:
generalised.Digital forms of communication have helped strengthen
relationships between family and friends as time and
Level 1: 1 mark The candidate demonstrates a limited ability to apply sociological material. The material is tangential to the question and of marginalcontact. communicationallowedfriendsandfamilytomaintaintheirlocation no longer presents a barrier to maintaining During the coronavirus pandemic and lockdown, digital
", - "type": "table", - "image_path": "f1cd4bc8a3a680c5fcd247cc8e18101d83555a85c79a3b08d63861aa44fc5c7a.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 35, - 29, - 830, - 202.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 35, - 202.66666666666666, - 830, - 376.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 35, - 376.3333333333333, - 830, - 550.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_14", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 73, - 43, - 807, - 537 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 73, - 43, - 807, - 537 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 73, - 43, - 807, - 537 - ], - "spans": [ - { - "bbox": [ - 73, - 43, - 807, - 537 - ], - "score": 0.905, - "html": "
0 marks : No relevant sociological application. AO3:Analysisandevaluation Level4:7-8marks The candidate demonstrates an excellent ability to analyse and evaluatesociological material.Therearearangeofevaluation criticalandreasonedconclusion. Therewilltypicallybethreedevelopedpointsortwodeveloped pointsandoneunderdevelopedpointchallengingtheviewinthe question. Level3: 5-6 marks The candidate demonstrates a good ability to analyse and evaluate maybe underdeveloped or narrow. The candidate may reach a criticalbutbriefconclusion. Therewilltypicallybetwodevelopedpointsorthree underdeveloped points challenging the view in the question. Level2:3-4marks The candidate demonstrates a basic ability to analyse and evaluate.Evaluationpoints arelikelytobeundeveloped.The evaluationmay lack clarity and containsome inaccuracies/ confusion. If present, the conclusion is likely to be summative. Therewilltypicallybeonedevelopedortwounderdeveloped points challenging the view in the question. A range of undeveloped points may also be seen at this level. Level 1: 1-2 marks The candidate demonstrates a limited ability to analyse and evaluate. Only brief and/or implicit evaluation is present. There is unlikelytobe aconclusion. Therewilltypicallybeoneortwoundevelopedorvaguepoints whichcouldpotentiallychallengetheviewinthequestion. 0 marks: No relevant sociological evaluation or analysis.
", - "type": "table", - "image_path": "5812e3867cf69a74ab40114c7f15961ab224483e98d1d454c7c843b46be572aa.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 73, - 43, - 807, - 207.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 73, - 207.66666666666666, - 807, - 372.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 73, - 372.3333333333333, - 807, - 537.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 15, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 73, - 43, - 807, - 537 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 73, - 43, - 807, - 537 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 73, - 43, - 807, - 537 - ], - "spans": [ - { - "bbox": [ - 73, - 43, - 807, - 537 - ], - "score": 0.905, - "html": "
0 marks : No relevant sociological application. AO3:Analysisandevaluation Level4:7-8marks The candidate demonstrates an excellent ability to analyse and evaluatesociological material.Therearearangeofevaluation criticalandreasonedconclusion. Therewilltypicallybethreedevelopedpointsortwodeveloped pointsandoneunderdevelopedpointchallengingtheviewinthe question. Level3: 5-6 marks The candidate demonstrates a good ability to analyse and evaluate maybe underdeveloped or narrow. The candidate may reach a criticalbutbriefconclusion. Therewilltypicallybetwodevelopedpointsorthree underdeveloped points challenging the view in the question. Level2:3-4marks The candidate demonstrates a basic ability to analyse and evaluate.Evaluationpoints arelikelytobeundeveloped.The evaluationmay lack clarity and containsome inaccuracies/ confusion. If present, the conclusion is likely to be summative. Therewilltypicallybeonedevelopedortwounderdeveloped points challenging the view in the question. A range of undeveloped points may also be seen at this level. Level 1: 1-2 marks The candidate demonstrates a limited ability to analyse and evaluate. Only brief and/or implicit evaluation is present. There is unlikelytobe aconclusion. Therewilltypicallybeoneortwoundevelopedorvaguepoints whichcouldpotentiallychallengetheviewinthequestion. 0 marks: No relevant sociological evaluation or analysis.
", - "type": "table", - "image_path": "5812e3867cf69a74ab40114c7f15961ab224483e98d1d454c7c843b46be572aa.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 73, - 43, - 807, - 207.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 73, - 207.66666666666666, - 807, - 372.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 73, - 372.3333333333333, - 807, - 537.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 47 - ], - "lines": [ - { - "bbox": [ - 714, - 37, - 799, - 47 - ], - "spans": [ - { - "bbox": [ - 714, - 37, - 799, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 47 - ], - "lines": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 383, - 36, - 457, - 47 - ], - "lines": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "spans": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 73, - 43, - 807, - 537 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 73, - 43, - 807, - 537 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 73, - 43, - 807, - 537 - ], - "spans": [ - { - "bbox": [ - 73, - 43, - 807, - 537 - ], - "score": 0.905, - "html": "
0 marks : No relevant sociological application. AO3:Analysisandevaluation Level4:7-8marks The candidate demonstrates an excellent ability to analyse and evaluatesociological material.Therearearangeofevaluation criticalandreasonedconclusion. Therewilltypicallybethreedevelopedpointsortwodeveloped pointsandoneunderdevelopedpointchallengingtheviewinthe question. Level3: 5-6 marks The candidate demonstrates a good ability to analyse and evaluate maybe underdeveloped or narrow. The candidate may reach a criticalbutbriefconclusion. Therewilltypicallybetwodevelopedpointsorthree underdeveloped points challenging the view in the question. Level2:3-4marks The candidate demonstrates a basic ability to analyse and evaluate.Evaluationpoints arelikelytobeundeveloped.The evaluationmay lack clarity and containsome inaccuracies/ confusion. If present, the conclusion is likely to be summative. Therewilltypicallybeonedevelopedortwounderdeveloped points challenging the view in the question. A range of undeveloped points may also be seen at this level. Level 1: 1-2 marks The candidate demonstrates a limited ability to analyse and evaluate. Only brief and/or implicit evaluation is present. There is unlikelytobe aconclusion. Therewilltypicallybeoneortwoundevelopedorvaguepoints whichcouldpotentiallychallengetheviewinthequestion. 0 marks: No relevant sociological evaluation or analysis.
", - "type": "table", - "image_path": "5812e3867cf69a74ab40114c7f15961ab224483e98d1d454c7c843b46be572aa.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 73, - 43, - 807, - 207.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 73, - 207.66666666666666, - 807, - 372.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 73, - 372.3333333333333, - 807, - 537.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_15", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 26, - 44, - 817, - 545 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 44, - 817, - 545 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 26, - 44, - 817, - 545 - ], - "spans": [ - { - "bbox": [ - 26, - 44, - 817, - 545 - ], - "score": 0.889, - "html": "
4In what ways is green crime a growing issue? PLEASEREFERTOAPPENDIX110AO1: Knowledge and understanding Greencrime,orenvironmentalcrime-formofdeviant behaviour which has in part become criminalised. Involves direct or indirect damage to the environment. NOTE: Examples should be credited in the same way as sociologicalstudies. To be credited as‘developed',material MUST be linked to green crime as a 'growing issue'. Relevantmaterialmayinclude: Types of green crime: pollution (air, land, water); deforestation;wildlifecrimeetc. Greencrime involves actionwhichcreatesharm to the environment, including plants and living species, this can occurataglobal level;UN2012,FrankoAas Patterns and trendsreveal overlapbetweenglobal organised crime and green crime - link to globalisation. Definitions and measurements vary across the world, e.g. countriesplace different emphases on combating green crime, ; yet, it is becoming increasingly recognised and recorded as anissue;UN 2012 Two forms of green crime - primary and secondary; South,
", - "type": "table", - "image_path": "5f1ee15eec3259c6f04bced8f1383e9624773f45cd5064b451bb779036df9599.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 26, - 44, - 817, - 211.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 26, - 211.0, - 817, - 378.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 26, - 378.0, - 817, - 545.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 16, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 26, - 44, - 817, - 545 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 44, - 817, - 545 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 26, - 44, - 817, - 545 - ], - "spans": [ - { - "bbox": [ - 26, - 44, - 817, - 545 - ], - "score": 0.889, - "html": "
4In what ways is green crime a growing issue? PLEASEREFERTOAPPENDIX110AO1: Knowledge and understanding Greencrime,orenvironmentalcrime-formofdeviant behaviour which has in part become criminalised. Involves direct or indirect damage to the environment. NOTE: Examples should be credited in the same way as sociologicalstudies. To be credited as‘developed',material MUST be linked to green crime as a 'growing issue'. Relevantmaterialmayinclude: Types of green crime: pollution (air, land, water); deforestation;wildlifecrimeetc. Greencrime involves actionwhichcreatesharm to the environment, including plants and living species, this can occurataglobal level;UN2012,FrankoAas Patterns and trendsreveal overlapbetweenglobal organised crime and green crime - link to globalisation. Definitions and measurements vary across the world, e.g. countriesplace different emphases on combating green crime, ; yet, it is becoming increasingly recognised and recorded as anissue;UN 2012 Two forms of green crime - primary and secondary; South,
", - "type": "table", - "image_path": "5f1ee15eec3259c6f04bced8f1383e9624773f45cd5064b451bb779036df9599.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 26, - 44, - 817, - 211.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 26, - 211.0, - 817, - 378.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 26, - 378.0, - 817, - 545.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 47 - ], - "lines": [ - { - "bbox": [ - 714, - 37, - 799, - 47 - ], - "spans": [ - { - "bbox": [ - 714, - 37, - 799, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 47 - ], - "lines": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 383, - 36, - 457, - 47 - ], - "lines": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "spans": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 26, - 44, - 817, - 545 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 44, - 817, - 545 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 26, - 44, - 817, - 545 - ], - "spans": [ - { - "bbox": [ - 26, - 44, - 817, - 545 - ], - "score": 0.889, - "html": "
4In what ways is green crime a growing issue? PLEASEREFERTOAPPENDIX110AO1: Knowledge and understanding Greencrime,orenvironmentalcrime-formofdeviant behaviour which has in part become criminalised. Involves direct or indirect damage to the environment. NOTE: Examples should be credited in the same way as sociologicalstudies. To be credited as‘developed',material MUST be linked to green crime as a 'growing issue'. Relevantmaterialmayinclude: Types of green crime: pollution (air, land, water); deforestation;wildlifecrimeetc. Greencrime involves actionwhichcreatesharm to the environment, including plants and living species, this can occurataglobal level;UN2012,FrankoAas Patterns and trendsreveal overlapbetweenglobal organised crime and green crime - link to globalisation. Definitions and measurements vary across the world, e.g. countriesplace different emphases on combating green crime, ; yet, it is becoming increasingly recognised and recorded as anissue;UN 2012 Two forms of green crime - primary and secondary; South,
", - "type": "table", - "image_path": "5f1ee15eec3259c6f04bced8f1383e9624773f45cd5064b451bb779036df9599.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 26, - 44, - 817, - 211.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 26, - 211.0, - 817, - 378.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 26, - 378.0, - 817, - 545.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_16", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 27, - 45, - 812, - 550 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 27, - 45, - 812, - 550 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 27, - 45, - 812, - 550 - ], - "spans": [ - { - "bbox": [ - 27, - 45, - 812, - 550 - ], - "score": 0.938, - "html": "
5 deviance.Assess right realist explanations of crime and PLEASEREFERTOAPPENDIX220 include:anothercountryandpoisonitswatercoursesanddestroy forests. Green crime transcending political and national borders;FrankoAas Manufacturedrisks;Beck Examples - climate change, Chernobyl, Deepwater Horizon, Bhopal A02:Application The selected knowledge should be directly specific to the question-ways green crime is a growing issue. AO1: Knowledge and understanding Relevant material supporting right realist explanations may Right realist view that‘typical criminal' in police recorded statisticsbasicallyreflectsreality Takeconventionaldefinitionsofcrimeforgrantedand focus on explaining 'street crime'. Explaincrimeinterms of individual offender;Wilson Emphasise trends in crime related to age profile of populations, strength of economy, social and cultural change - largely uncontrollable, believe government cannotpreventcrime atsource;Wilson Crimeoccurswhenapotential criminal doesnotbelieve s/he will be caught; Wilson Environmentalfocus:Lowleveldisordercauses community to 'stay indoors', less informal control, crime mayescalate.Wilson Tipping points', some move out, crime levels increase; Wilson and Kelling Broken Windows study; Wilson and Kelling Wicked people exist; Wilson Individual traits compounded by inadequate socialisation, particularly when immediategratificationemphasised;
", - "type": "table", - "image_path": "d3fd29416ffffd7d8ced8387c2b7ddd2357b531102a67a7931433c2c3a7f2584.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 27, - 45, - 812, - 213.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 27, - 213.33333333333334, - 812, - 381.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 27, - 381.6666666666667, - 812, - 550.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 17, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 27, - 45, - 812, - 550 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 27, - 45, - 812, - 550 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 27, - 45, - 812, - 550 - ], - "spans": [ - { - "bbox": [ - 27, - 45, - 812, - 550 - ], - "score": 0.938, - "html": "
5 deviance.Assess right realist explanations of crime and PLEASEREFERTOAPPENDIX220 include:anothercountryandpoisonitswatercoursesanddestroy forests. Green crime transcending political and national borders;FrankoAas Manufacturedrisks;Beck Examples - climate change, Chernobyl, Deepwater Horizon, Bhopal A02:Application The selected knowledge should be directly specific to the question-ways green crime is a growing issue. AO1: Knowledge and understanding Relevant material supporting right realist explanations may Right realist view that‘typical criminal' in police recorded statisticsbasicallyreflectsreality Takeconventionaldefinitionsofcrimeforgrantedand focus on explaining 'street crime'. Explaincrimeinterms of individual offender;Wilson Emphasise trends in crime related to age profile of populations, strength of economy, social and cultural change - largely uncontrollable, believe government cannotpreventcrime atsource;Wilson Crimeoccurswhenapotential criminal doesnotbelieve s/he will be caught; Wilson Environmentalfocus:Lowleveldisordercauses community to 'stay indoors', less informal control, crime mayescalate.Wilson Tipping points', some move out, crime levels increase; Wilson and Kelling Broken Windows study; Wilson and Kelling Wicked people exist; Wilson Individual traits compounded by inadequate socialisation, particularly when immediategratificationemphasised;
", - "type": "table", - "image_path": "d3fd29416ffffd7d8ced8387c2b7ddd2357b531102a67a7931433c2c3a7f2584.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 27, - 45, - 812, - 213.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 27, - 213.33333333333334, - 812, - 381.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 27, - 381.6666666666667, - 812, - 550.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 48 - ], - "lines": [ - { - "bbox": [ - 714, - 36, - 798, - 47 - ], - "spans": [ - { - "bbox": [ - 714, - 36, - 798, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 383, - 36, - 457, - 47 - ], - "lines": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "spans": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 47 - ], - "lines": [ - { - "bbox": [ - 41, - 35, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 35, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 27, - 45, - 812, - 550 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 27, - 45, - 812, - 550 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 27, - 45, - 812, - 550 - ], - "spans": [ - { - "bbox": [ - 27, - 45, - 812, - 550 - ], - "score": 0.938, - "html": "
5 deviance.Assess right realist explanations of crime and PLEASEREFERTOAPPENDIX220 include:anothercountryandpoisonitswatercoursesanddestroy forests. Green crime transcending political and national borders;FrankoAas Manufacturedrisks;Beck Examples - climate change, Chernobyl, Deepwater Horizon, Bhopal A02:Application The selected knowledge should be directly specific to the question-ways green crime is a growing issue. AO1: Knowledge and understanding Relevant material supporting right realist explanations may Right realist view that‘typical criminal' in police recorded statisticsbasicallyreflectsreality Takeconventionaldefinitionsofcrimeforgrantedand focus on explaining 'street crime'. Explaincrimeinterms of individual offender;Wilson Emphasise trends in crime related to age profile of populations, strength of economy, social and cultural change - largely uncontrollable, believe government cannotpreventcrime atsource;Wilson Crimeoccurswhenapotential criminal doesnotbelieve s/he will be caught; Wilson Environmentalfocus:Lowleveldisordercauses community to 'stay indoors', less informal control, crime mayescalate.Wilson Tipping points', some move out, crime levels increase; Wilson and Kelling Broken Windows study; Wilson and Kelling Wicked people exist; Wilson Individual traits compounded by inadequate socialisation, particularly when immediategratificationemphasised;
", - "type": "table", - "image_path": "d3fd29416ffffd7d8ced8387c2b7ddd2357b531102a67a7931433c2c3a7f2584.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 27, - 45, - 812, - 213.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 27, - 213.33333333333334, - 812, - 381.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 27, - 381.6666666666667, - 812, - 550.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_17", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 27, - 39, - 807, - 550 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 27, - 39, - 807, - 550 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 27, - 39, - 807, - 549 - ], - "spans": [ - { - "bbox": [ - 27, - 39, - 807, - 549 - ], - "score": 0.461, - "html": "
H580/03Markscheme November2020 AO2:Application
The selected knowledge should be directly specific to the question - right realist explanations of crime and deviance.
Ao3:Analysisandevaluation
Candidates are expected to discuss weaknesses in the right realist explanations.
They may consider alternative theories such as: Left Realism
· Marxism
·Feminism Relevant material challenging right realist explanations may
include: Right realism plays down causes of offending, focusing on
failures in social control and punishment, left realist; Young
Rightrealismoverstatesoffenders'rationalityandcost-benefit calculations before committing a crime; Matthews
Right realism ignores corporate crime; Snider
Right realists fail to focus on social injustice, particularly the relationshipbetween police and community,aspects of
radical criminology; Lea and Young Right realists fail to recognise the interplay of the criminal
Matthews and Youngjustice system,criminal offender, general public and victim of crime in their explanations of crime; left realists; Right realists ignore the link between economic exclusion
andsocialexclusion-breakdownofcommunitiesand families and increase in crime and disorder; Young
ratherthanculture;BoxRight Realism ignores wider structural causes of crime and deviance, such as poverty. Marxists offer an alternative explanation - crime product of capitalism and exploitation
Feminists; right realists tend to ignore influence of
", - "type": "table", - "image_path": "0acdd853182b1b5c6987218ebcffb9e55fe575fe2918f05940acdcdbd6d709ff.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 27, - 39, - 807, - 209.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 27, - 209.33333333333334, - 807, - 379.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 27, - 379.6666666666667, - 807, - 550.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 18, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 27, - 39, - 807, - 550 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 27, - 39, - 807, - 550 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 27, - 39, - 807, - 549 - ], - "spans": [ - { - "bbox": [ - 27, - 39, - 807, - 549 - ], - "score": 0.461, - "html": "
H580/03Markscheme November2020 AO2:Application
The selected knowledge should be directly specific to the question - right realist explanations of crime and deviance.
Ao3:Analysisandevaluation
Candidates are expected to discuss weaknesses in the right realist explanations.
They may consider alternative theories such as: Left Realism
· Marxism
·Feminism Relevant material challenging right realist explanations may
include: Right realism plays down causes of offending, focusing on
failures in social control and punishment, left realist; Young
Rightrealismoverstatesoffenders'rationalityandcost-benefit calculations before committing a crime; Matthews
Right realism ignores corporate crime; Snider
Right realists fail to focus on social injustice, particularly the relationshipbetween police and community,aspects of
radical criminology; Lea and Young Right realists fail to recognise the interplay of the criminal
Matthews and Youngjustice system,criminal offender, general public and victim of crime in their explanations of crime; left realists; Right realists ignore the link between economic exclusion
andsocialexclusion-breakdownofcommunitiesand families and increase in crime and disorder; Young
ratherthanculture;BoxRight Realism ignores wider structural causes of crime and deviance, such as poverty. Marxists offer an alternative explanation - crime product of capitalism and exploitation
Feminists; right realists tend to ignore influence of
", - "type": "table", - "image_path": "0acdd853182b1b5c6987218ebcffb9e55fe575fe2918f05940acdcdbd6d709ff.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 27, - 39, - 807, - 209.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 27, - 209.33333333333334, - 807, - 379.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 27, - 379.6666666666667, - 807, - 550.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 47 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 383, - 36, - 457, - 47 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 47 - ], - "lines": [] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 27, - 39, - 807, - 550 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 27, - 39, - 807, - 550 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 27, - 39, - 807, - 549 - ], - "spans": [ - { - "bbox": [ - 27, - 39, - 807, - 549 - ], - "score": 0.461, - "html": "
H580/03Markscheme November2020 AO2:Application
The selected knowledge should be directly specific to the question - right realist explanations of crime and deviance.
Ao3:Analysisandevaluation
Candidates are expected to discuss weaknesses in the right realist explanations.
They may consider alternative theories such as: Left Realism
· Marxism
·Feminism Relevant material challenging right realist explanations may
include: Right realism plays down causes of offending, focusing on
failures in social control and punishment, left realist; Young
Rightrealismoverstatesoffenders'rationalityandcost-benefit calculations before committing a crime; Matthews
Right realism ignores corporate crime; Snider
Right realists fail to focus on social injustice, particularly the relationshipbetween police and community,aspects of
radical criminology; Lea and Young Right realists fail to recognise the interplay of the criminal
Matthews and Youngjustice system,criminal offender, general public and victim of crime in their explanations of crime; left realists; Right realists ignore the link between economic exclusion
andsocialexclusion-breakdownofcommunitiesand families and increase in crime and disorder; Young
ratherthanculture;BoxRight Realism ignores wider structural causes of crime and deviance, such as poverty. Marxists offer an alternative explanation - crime product of capitalism and exploitation
Feminists; right realists tend to ignore influence of
", - "type": "table", - "image_path": "0acdd853182b1b5c6987218ebcffb9e55fe575fe2918f05940acdcdbd6d709ff.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 27, - 39, - 807, - 209.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 27, - 209.33333333333334, - 807, - 379.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 27, - 379.6666666666667, - 807, - 550.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_18", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 29, - 42, - 826, - 554 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 29, - 42, - 826, - 554 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 29, - 42, - 826, - 554 - ], - "spans": [ - { - "bbox": [ - 29, - 42, - 826, - 554 - ], - "score": 0.91, - "html": "
11380/03Markscreinepatriarchalideologyonwomenwhoarecriminaland deviant;Carlen ·Other reasonable response.
6*Evaluate sociological explanations of the over- 40 representation of males in crime statistics. PLEASEREFERTOAPPENDIX3AO1:Knowledgeandunderstanding NOTE:someofthematerialbelowmaybeusedtochallenge othersociological explanationspresented.Material shouldbe credited either as AO1 or AO3, in the best interests of the candidate.Donotdouble-credit.
Candidatesareexpected todemonstrateknowledgeand understandingof malepatterns of crime They may refer to both official and unofficial sources including, Police recorded figures, CSEW, self-report surveys.
They may consider sociological explanations such as: Subcultural theories, · Feminism, New Right; · Relevant material may include: Importance of male subcultures, status frustration; Cohen Focal concerns, masculinity and deviance; Miller Role of primary and secondary agents of socialisation,
", - "type": "table", - "image_path": "1d1edbe750c0dd0c8a9f93932e27579f65616a39113f9524411190febaa6d905.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 29, - 42, - 826, - 212.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 29, - 212.66666666666666, - 826, - 383.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 29, - 383.3333333333333, - 826, - 554.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 19, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 29, - 42, - 826, - 554 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 29, - 42, - 826, - 554 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 29, - 42, - 826, - 554 - ], - "spans": [ - { - "bbox": [ - 29, - 42, - 826, - 554 - ], - "score": 0.91, - "html": "
11380/03Markscreinepatriarchalideologyonwomenwhoarecriminaland deviant;Carlen ·Other reasonable response.
6*Evaluate sociological explanations of the over- 40 representation of males in crime statistics. PLEASEREFERTOAPPENDIX3AO1:Knowledgeandunderstanding NOTE:someofthematerialbelowmaybeusedtochallenge othersociological explanationspresented.Material shouldbe credited either as AO1 or AO3, in the best interests of the candidate.Donotdouble-credit.
Candidatesareexpected todemonstrateknowledgeand understandingof malepatterns of crime They may refer to both official and unofficial sources including, Police recorded figures, CSEW, self-report surveys.
They may consider sociological explanations such as: Subcultural theories, · Feminism, New Right; · Relevant material may include: Importance of male subcultures, status frustration; Cohen Focal concerns, masculinity and deviance; Miller Role of primary and secondary agents of socialisation,
", - "type": "table", - "image_path": "1d1edbe750c0dd0c8a9f93932e27579f65616a39113f9524411190febaa6d905.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 29, - 42, - 826, - 212.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 29, - 212.66666666666666, - 826, - 383.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 29, - 383.3333333333333, - 826, - 554.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 47 - ], - "lines": [ - { - "bbox": [ - 714, - 36, - 799, - 47 - ], - "spans": [ - { - "bbox": [ - 714, - 36, - 799, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 384, - 36, - 457, - 47 - ], - "lines": [ - { - "bbox": [ - 384, - 37, - 457, - 47 - ], - "spans": [ - { - "bbox": [ - 384, - 37, - 457, - 47 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 47 - ], - "lines": [ - { - "bbox": [ - 41, - 35, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 35, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 29, - 42, - 826, - 554 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 29, - 42, - 826, - 554 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 29, - 42, - 826, - 554 - ], - "spans": [ - { - "bbox": [ - 29, - 42, - 826, - 554 - ], - "score": 0.91, - "html": "
11380/03Markscreinepatriarchalideologyonwomenwhoarecriminaland deviant;Carlen ·Other reasonable response.
6*Evaluate sociological explanations of the over- 40 representation of males in crime statistics. PLEASEREFERTOAPPENDIX3AO1:Knowledgeandunderstanding NOTE:someofthematerialbelowmaybeusedtochallenge othersociological explanationspresented.Material shouldbe credited either as AO1 or AO3, in the best interests of the candidate.Donotdouble-credit.
Candidatesareexpected todemonstrateknowledgeand understandingof malepatterns of crime They may refer to both official and unofficial sources including, Police recorded figures, CSEW, self-report surveys.
They may consider sociological explanations such as: Subcultural theories, · Feminism, New Right; · Relevant material may include: Importance of male subcultures, status frustration; Cohen Focal concerns, masculinity and deviance; Miller Role of primary and secondary agents of socialisation,
", - "type": "table", - "image_path": "1d1edbe750c0dd0c8a9f93932e27579f65616a39113f9524411190febaa6d905.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 29, - 42, - 826, - 212.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 29, - 212.66666666666666, - 826, - 383.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 29, - 383.3333333333333, - 826, - 554.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_19", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 28, - 42, - 803, - 538 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 42, - 803, - 538 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 42, - 803, - 538 - ], - "spans": [ - { - "bbox": [ - 28, - 42, - 803, - 538 - ], - "score": 0.546, - "html": "
1300/03MiarkScleie studies Validity of the chivalry thesis. Delinquency and drift- young men may engage in deviant behaviour, but not all the time; Matza Liberation theory (Adler) also, increase in girl gangs Consider whether the class and ethnicity of the malesfemales;Pollak Self-report studies suggest, female crime under-reported; Graham and Bowling Other reasonable response. AO2:Application The selected knowledge should be directly specific to the question-sociological explanations of over representation of males in crime statistics. AO3:Analysisandevaluation NOTE: some of the above mentioned material (listed in AO1) may be used to challenge other sociological explanations presented.Material shouldbecredited either asAO1 orAO3, inthebestinterestsofthecandidate.Donotdouble-credit. Candidateswill discussweaknesses and strengths in the explanationsof theoverrepresentationofmalesincrime statistics. They may consider theories such as: Left and Right realism Interactionism Liberation theory/ feminism Relevant material may include: Reliability of statistics, particularly official statistics. Apparent increase in female crime, Empirical evidence from victimisation and self-report
", - "type": "table", - "image_path": "6666e5415019e70485d9b9092a7ccf48a14f5c09c6de295697b980bbb23a9578.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 28, - 42, - 803, - 207.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 28, - 207.33333333333334, - 803, - 372.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 372.6666666666667, - 803, - 538.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 20, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 28, - 42, - 803, - 538 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 42, - 803, - 538 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 42, - 803, - 538 - ], - "spans": [ - { - "bbox": [ - 28, - 42, - 803, - 538 - ], - "score": 0.546, - "html": "
1300/03MiarkScleie studies Validity of the chivalry thesis. Delinquency and drift- young men may engage in deviant behaviour, but not all the time; Matza Liberation theory (Adler) also, increase in girl gangs Consider whether the class and ethnicity of the malesfemales;Pollak Self-report studies suggest, female crime under-reported; Graham and Bowling Other reasonable response. AO2:Application The selected knowledge should be directly specific to the question-sociological explanations of over representation of males in crime statistics. AO3:Analysisandevaluation NOTE: some of the above mentioned material (listed in AO1) may be used to challenge other sociological explanations presented.Material shouldbecredited either asAO1 orAO3, inthebestinterestsofthecandidate.Donotdouble-credit. Candidateswill discussweaknesses and strengths in the explanationsof theoverrepresentationofmalesincrime statistics. They may consider theories such as: Left and Right realism Interactionism Liberation theory/ feminism Relevant material may include: Reliability of statistics, particularly official statistics. Apparent increase in female crime, Empirical evidence from victimisation and self-report
", - "type": "table", - "image_path": "6666e5415019e70485d9b9092a7ccf48a14f5c09c6de295697b980bbb23a9578.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 28, - 42, - 803, - 207.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 28, - 207.33333333333334, - 803, - 372.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 372.6666666666667, - 803, - 538.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 47 - ], - "lines": [ - { - "bbox": [ - 714, - 37, - 799, - 47 - ], - "spans": [ - { - "bbox": [ - 714, - 37, - 799, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 383, - 36, - 457, - 47 - ], - "lines": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "spans": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 47 - ], - "lines": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 28, - 42, - 803, - 538 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 42, - 803, - 538 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 42, - 803, - 538 - ], - "spans": [ - { - "bbox": [ - 28, - 42, - 803, - 538 - ], - "score": 0.546, - "html": "
1300/03MiarkScleie studies Validity of the chivalry thesis. Delinquency and drift- young men may engage in deviant behaviour, but not all the time; Matza Liberation theory (Adler) also, increase in girl gangs Consider whether the class and ethnicity of the malesfemales;Pollak Self-report studies suggest, female crime under-reported; Graham and Bowling Other reasonable response. AO2:Application The selected knowledge should be directly specific to the question-sociological explanations of over representation of males in crime statistics. AO3:Analysisandevaluation NOTE: some of the above mentioned material (listed in AO1) may be used to challenge other sociological explanations presented.Material shouldbecredited either asAO1 orAO3, inthebestinterestsofthecandidate.Donotdouble-credit. Candidateswill discussweaknesses and strengths in the explanationsof theoverrepresentationofmalesincrime statistics. They may consider theories such as: Left and Right realism Interactionism Liberation theory/ feminism Relevant material may include: Reliability of statistics, particularly official statistics. Apparent increase in female crime, Empirical evidence from victimisation and self-report
", - "type": "table", - "image_path": "6666e5415019e70485d9b9092a7ccf48a14f5c09c6de295697b980bbb23a9578.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 28, - 42, - 803, - 207.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 28, - 207.33333333333334, - 803, - 372.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 372.6666666666667, - 803, - 538.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_20", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 26, - 41, - 828, - 548 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 41, - 828, - 548 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 26, - 41, - 828, - 548 - ], - "spans": [ - { - "bbox": [ - 26, - 41, - 828, - 548 - ], - "score": 0.795, - "html": "
H500/03 7In what ways are there gender differences in patterns of educational attainment? PLEASEREFERTOAPPENDIX1Markscnerme 10 sociological studies.Novermberzo20 AO1:Knowledge and understanding NOTE:Examples should be credited in the same way as Candidates may approach this question by focusing on actual patterns oron relevant concepts/reasons for the gender differences.
", - "type": "table", - "image_path": "39143344cb7e9200128572df9f508b4304bbcf1834955134488db38b00a6a963.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 26, - 41, - 828, - 210.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 26, - 210.0, - 828, - 379.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 26, - 379.0, - 828, - 548.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 21, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 26, - 41, - 828, - 548 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 41, - 828, - 548 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 26, - 41, - 828, - 548 - ], - "spans": [ - { - "bbox": [ - 26, - 41, - 828, - 548 - ], - "score": 0.795, - "html": "
H500/03 7In what ways are there gender differences in patterns of educational attainment? PLEASEREFERTOAPPENDIX1Markscnerme 10 sociological studies.Novermberzo20 AO1:Knowledge and understanding NOTE:Examples should be credited in the same way as Candidates may approach this question by focusing on actual patterns oron relevant concepts/reasons for the gender differences.
", - "type": "table", - "image_path": "39143344cb7e9200128572df9f508b4304bbcf1834955134488db38b00a6a963.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 26, - 41, - 828, - 210.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 26, - 210.0, - 828, - 379.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 26, - 379.0, - 828, - 548.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 47 - ], - "lines": [ - { - "bbox": [ - 713, - 36, - 799, - 47 - ], - "spans": [ - { - "bbox": [ - 713, - 36, - 799, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 47 - ], - "lines": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 383, - 36, - 457, - 47 - ], - "lines": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "spans": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 26, - 41, - 828, - 548 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 41, - 828, - 548 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 26, - 41, - 828, - 548 - ], - "spans": [ - { - "bbox": [ - 26, - 41, - 828, - 548 - ], - "score": 0.795, - "html": "
H500/03 7In what ways are there gender differences in patterns of educational attainment? PLEASEREFERTOAPPENDIX1Markscnerme 10 sociological studies.Novermberzo20 AO1:Knowledge and understanding NOTE:Examples should be credited in the same way as Candidates may approach this question by focusing on actual patterns oron relevant concepts/reasons for the gender differences.
", - "type": "table", - "image_path": "39143344cb7e9200128572df9f508b4304bbcf1834955134488db38b00a6a963.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 26, - 41, - 828, - 210.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 26, - 210.0, - 828, - 379.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 26, - 379.0, - 828, - 548.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_21", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 33, - 43, - 824, - 550 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 33, - 43, - 824, - 550 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 33, - 43, - 824, - 550 - ], - "spans": [ - { - "bbox": [ - 33, - 43, - 824, - 550 - ], - "score": 0.924, - "html": "
1500705MiarkSerere Globally evidence of'gender apartheid' in education; the UN, UNESCO; 'Gender apartheid' being ignored; Mayer Otherreasonableresponse
8school.Assess the view that teacher labelling is the main 20 cause ofworking-classpupils'underachievementin PLEASEREFERTOAPPENDIX2 Relevant material supporting the view that teacher labelling is the main cause of working-class pupils' underachievement in school mayinclude: Interactionist explanations - negative teacher labelling, \"ideal pupil'-middle class; Becker impact negatively on working class achievement; RosenthalandJacobson. Middle class pupils more likely to be positively labelled -AO2:Application The selected knowledge should be directly related to the specific question - gender differences in patterns of educationalattainment. AO1:Knowledge and understanding Candidates'knowledgeandunderstandingoflabellingmust relate specifically to working-class pupils' patterns of achievement. NOTE: Patterns of working class achievement -incidence of freeschoolmealsoftentakenasarobustindicatorof disadvantage today; however sociological arguments continue to reference social class. Candidates may consider different theoretical approaches such as: · Interactionism ·Neo-Marxism
", - "type": "table", - "image_path": "f53819b97850a1230b33a14a24445f2e269c3974cbc4b0e236539ac0d47e843f.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 33, - 43, - 824, - 212.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 33, - 212.0, - 824, - 381.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 33, - 381.0, - 824, - 550.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 22, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 33, - 43, - 824, - 550 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 33, - 43, - 824, - 550 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 33, - 43, - 824, - 550 - ], - "spans": [ - { - "bbox": [ - 33, - 43, - 824, - 550 - ], - "score": 0.924, - "html": "
1500705MiarkSerere Globally evidence of'gender apartheid' in education; the UN, UNESCO; 'Gender apartheid' being ignored; Mayer Otherreasonableresponse
8school.Assess the view that teacher labelling is the main 20 cause ofworking-classpupils'underachievementin PLEASEREFERTOAPPENDIX2 Relevant material supporting the view that teacher labelling is the main cause of working-class pupils' underachievement in school mayinclude: Interactionist explanations - negative teacher labelling, \"ideal pupil'-middle class; Becker impact negatively on working class achievement; RosenthalandJacobson. Middle class pupils more likely to be positively labelled -AO2:Application The selected knowledge should be directly related to the specific question - gender differences in patterns of educationalattainment. AO1:Knowledge and understanding Candidates'knowledgeandunderstandingoflabellingmust relate specifically to working-class pupils' patterns of achievement. NOTE: Patterns of working class achievement -incidence of freeschoolmealsoftentakenasarobustindicatorof disadvantage today; however sociological arguments continue to reference social class. Candidates may consider different theoretical approaches such as: · Interactionism ·Neo-Marxism
", - "type": "table", - "image_path": "f53819b97850a1230b33a14a24445f2e269c3974cbc4b0e236539ac0d47e843f.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 33, - 43, - 824, - 212.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 33, - 212.0, - 824, - 381.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 33, - 381.0, - 824, - 550.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 47 - ], - "lines": [ - { - "bbox": [ - 713, - 36, - 799, - 47 - ], - "spans": [ - { - "bbox": [ - 713, - 36, - 799, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 383, - 36, - 457, - 47 - ], - "lines": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "spans": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 47 - ], - "lines": [ - { - "bbox": [ - 41, - 35, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 35, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 33, - 43, - 824, - 550 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 33, - 43, - 824, - 550 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 33, - 43, - 824, - 550 - ], - "spans": [ - { - "bbox": [ - 33, - 43, - 824, - 550 - ], - "score": 0.924, - "html": "
1500705MiarkSerere Globally evidence of'gender apartheid' in education; the UN, UNESCO; 'Gender apartheid' being ignored; Mayer Otherreasonableresponse
8school.Assess the view that teacher labelling is the main 20 cause ofworking-classpupils'underachievementin PLEASEREFERTOAPPENDIX2 Relevant material supporting the view that teacher labelling is the main cause of working-class pupils' underachievement in school mayinclude: Interactionist explanations - negative teacher labelling, \"ideal pupil'-middle class; Becker impact negatively on working class achievement; RosenthalandJacobson. Middle class pupils more likely to be positively labelled -AO2:Application The selected knowledge should be directly related to the specific question - gender differences in patterns of educationalattainment. AO1:Knowledge and understanding Candidates'knowledgeandunderstandingoflabellingmust relate specifically to working-class pupils' patterns of achievement. NOTE: Patterns of working class achievement -incidence of freeschoolmealsoftentakenasarobustindicatorof disadvantage today; however sociological arguments continue to reference social class. Candidates may consider different theoretical approaches such as: · Interactionism ·Neo-Marxism
", - "type": "table", - "image_path": "f53819b97850a1230b33a14a24445f2e269c3974cbc4b0e236539ac0d47e843f.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 33, - 43, - 824, - 212.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 33, - 212.0, - 824, - 381.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 33, - 381.0, - 824, - 550.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_22", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 28, - 39, - 820, - 549 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 39, - 820, - 549 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 39, - 820, - 549 - ], - "spans": [ - { - "bbox": [ - 28, - 39, - 820, - 549 - ], - "score": 0.572, - "html": "
H580/03MarkschemeNovember2020 GillbornandYoudell
Candidateswill discussweaknessesof/challenges to theview that the view that teacher labelling is the main cause of working-class pupils' underachievement in school. They may consider theories such as: Functionalism Marxism Feminism Relevant material challenging the view may include: Studies on labelling are small-scale, issues of generalisation Deterministic nature of Interactionist explanations ofEffects of streaming and banding on a child's performance, incorporates notion - how we are labelled by others affects wayweseeourselves;Hargreaves,Ball;Keddie Teachers tend to judge pupils not only by ability but also social class; Dunne and Gazeley Other reasonable response. A02:Application Theselectedknowledge shouldbedirectlyrelated to the specific question - view that teacher labelling is the main cause of working-class pupils' underachievement in school. AO3:Analysisandevaluation
", - "type": "table", - "image_path": "ca26ea239bb98d8b7f0f4407c1d49485e88852544ab2580e8ebe7675548d1a72.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 28, - 39, - 820, - 209.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 28, - 209.0, - 820, - 379.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 379.0, - 820, - 549.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 23, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 28, - 39, - 820, - 549 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 39, - 820, - 549 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 39, - 820, - 549 - ], - "spans": [ - { - "bbox": [ - 28, - 39, - 820, - 549 - ], - "score": 0.572, - "html": "
H580/03MarkschemeNovember2020 GillbornandYoudell
Candidateswill discussweaknessesof/challenges to theview that the view that teacher labelling is the main cause of working-class pupils' underachievement in school. They may consider theories such as: Functionalism Marxism Feminism Relevant material challenging the view may include: Studies on labelling are small-scale, issues of generalisation Deterministic nature of Interactionist explanations ofEffects of streaming and banding on a child's performance, incorporates notion - how we are labelled by others affects wayweseeourselves;Hargreaves,Ball;Keddie Teachers tend to judge pupils not only by ability but also social class; Dunne and Gazeley Other reasonable response. A02:Application Theselectedknowledge shouldbedirectlyrelated to the specific question - view that teacher labelling is the main cause of working-class pupils' underachievement in school. AO3:Analysisandevaluation
", - "type": "table", - "image_path": "ca26ea239bb98d8b7f0f4407c1d49485e88852544ab2580e8ebe7675548d1a72.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 28, - 39, - 820, - 209.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 28, - 209.0, - 820, - 379.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 379.0, - 820, - 549.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 47 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 383, - 36, - 457, - 47 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 47 - ], - "lines": [] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 28, - 39, - 820, - 549 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 39, - 820, - 549 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 39, - 820, - 549 - ], - "spans": [ - { - "bbox": [ - 28, - 39, - 820, - 549 - ], - "score": 0.572, - "html": "
H580/03MarkschemeNovember2020 GillbornandYoudell
Candidateswill discussweaknessesof/challenges to theview that the view that teacher labelling is the main cause of working-class pupils' underachievement in school. They may consider theories such as: Functionalism Marxism Feminism Relevant material challenging the view may include: Studies on labelling are small-scale, issues of generalisation Deterministic nature of Interactionist explanations ofEffects of streaming and banding on a child's performance, incorporates notion - how we are labelled by others affects wayweseeourselves;Hargreaves,Ball;Keddie Teachers tend to judge pupils not only by ability but also social class; Dunne and Gazeley Other reasonable response. A02:Application Theselectedknowledge shouldbedirectlyrelated to the specific question - view that teacher labelling is the main cause of working-class pupils' underachievement in school. AO3:Analysisandevaluation
", - "type": "table", - "image_path": "ca26ea239bb98d8b7f0f4407c1d49485e88852544ab2580e8ebe7675548d1a72.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 28, - 39, - 820, - 209.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 28, - 209.0, - 820, - 379.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 379.0, - 820, - 549.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_23", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 27, - 41, - 825, - 555 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 27, - 41, - 825, - 555 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 27, - 41, - 825, - 555 - ], - "spans": [ - { - "bbox": [ - 27, - 41, - 825, - 555 - ], - "score": 0.921, - "html": "
H500/03MarkscnemeNoble; MurrayNovember
9Evaluate Functionalist explanations of the relationship betweeneducationandwork PLEASEREFERTOAPPENDIX340Parental support -key variable in explaining social class differences in attainment; Feinstein, JRF 2010, Douglas Influence of economic, social and cultural capital; Bourdieu, Reay Gender and ethnicity alsorelevant inunderstanding underachievement of working class pupils; Gilbourn Otherreasonableresponse. AO1: Knowledge and understanding NOTE:duetothepotentialnarrownessofthequestion, candidates may include New Right view in support of functionalist views.This material may be credited as AO1 or as AO3, whichever most benefits the candidate. Do not double-credit. Thereshouldbeaclearunderstandingofandfocuson
", - "type": "table", - "image_path": "9ad3771d58da79922b42b4672f1a22e7b89940e6e5d56aaf823f4d00976b81ed.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 27, - 41, - 825, - 212.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 27, - 212.33333333333334, - 825, - 383.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 27, - 383.6666666666667, - 825, - 555.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 24, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 27, - 41, - 825, - 555 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 27, - 41, - 825, - 555 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 27, - 41, - 825, - 555 - ], - "spans": [ - { - "bbox": [ - 27, - 41, - 825, - 555 - ], - "score": 0.921, - "html": "
H500/03MarkscnemeNoble; MurrayNovember
9Evaluate Functionalist explanations of the relationship betweeneducationandwork PLEASEREFERTOAPPENDIX340Parental support -key variable in explaining social class differences in attainment; Feinstein, JRF 2010, Douglas Influence of economic, social and cultural capital; Bourdieu, Reay Gender and ethnicity alsorelevant inunderstanding underachievement of working class pupils; Gilbourn Otherreasonableresponse. AO1: Knowledge and understanding NOTE:duetothepotentialnarrownessofthequestion, candidates may include New Right view in support of functionalist views.This material may be credited as AO1 or as AO3, whichever most benefits the candidate. Do not double-credit. Thereshouldbeaclearunderstandingofandfocuson
", - "type": "table", - "image_path": "9ad3771d58da79922b42b4672f1a22e7b89940e6e5d56aaf823f4d00976b81ed.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 27, - 41, - 825, - 212.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 27, - 212.33333333333334, - 825, - 383.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 27, - 383.6666666666667, - 825, - 555.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 47 - ], - "lines": [ - { - "bbox": [ - 714, - 37, - 799, - 47 - ], - "spans": [ - { - "bbox": [ - 714, - 37, - 799, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 384, - 36, - 457, - 47 - ], - "lines": [ - { - "bbox": [ - 384, - 37, - 457, - 47 - ], - "spans": [ - { - "bbox": [ - 384, - 37, - 457, - 47 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 47 - ], - "lines": [ - { - "bbox": [ - 41, - 35, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 35, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 27, - 41, - 825, - 555 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 27, - 41, - 825, - 555 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 27, - 41, - 825, - 555 - ], - "spans": [ - { - "bbox": [ - 27, - 41, - 825, - 555 - ], - "score": 0.921, - "html": "
H500/03MarkscnemeNoble; MurrayNovember
9Evaluate Functionalist explanations of the relationship betweeneducationandwork PLEASEREFERTOAPPENDIX340Parental support -key variable in explaining social class differences in attainment; Feinstein, JRF 2010, Douglas Influence of economic, social and cultural capital; Bourdieu, Reay Gender and ethnicity alsorelevant inunderstanding underachievement of working class pupils; Gilbourn Otherreasonableresponse. AO1: Knowledge and understanding NOTE:duetothepotentialnarrownessofthequestion, candidates may include New Right view in support of functionalist views.This material may be credited as AO1 or as AO3, whichever most benefits the candidate. Do not double-credit. Thereshouldbeaclearunderstandingofandfocuson
", - "type": "table", - "image_path": "9ad3771d58da79922b42b4672f1a22e7b89940e6e5d56aaf823f4d00976b81ed.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 27, - 41, - 825, - 212.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 27, - 212.33333333333334, - 825, - 383.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 27, - 383.6666666666667, - 825, - 555.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_24", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 27, - 43, - 824, - 549 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 27, - 43, - 824, - 549 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 27, - 43, - 824, - 549 - ], - "spans": [ - { - "bbox": [ - 27, - 43, - 824, - 549 - ], - "score": 0.697, - "html": "
MiarkSerereSociety in miniature, life in modern society individualistic, competitive;Parsons
They may consider alternative theories such as: Relevant material challenging the functionalist view mayRole allocation and sifting and sorting for future work roles; DavisandMoore Transferable skills; Davis and Moore, Parsons Role of formal and the hidden curriculum. Vocationalism - New Right views echo functionalist ideas; Murray,ChubbandMoe Educational policy 14-19 year olds since 1988, designed to prepare young people for the workplace, e.g. EBacc - includes skills transferable to workplace and work experience. Introduction of BTEC exams specifically focussed on
workplace Enterprise initiatives taught through secondary education; New Right Otherreasonableresponse. AO2:Application The selected knowledge should be directly related to the specific question - Functionalist explanations of the relationship between education and work AO3:Analysisandevaluation Candidates are expected to discuss weaknesses in functionalist explanations.
", - "type": "table", - "image_path": "a7d2c1649cd55243d2720d9410bff1990ad983fb766c00f579e0031010eb64c1.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 27, - 43, - 824, - 211.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 27, - 211.66666666666666, - 824, - 380.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 27, - 380.3333333333333, - 824, - 549.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 25, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 27, - 43, - 824, - 549 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 27, - 43, - 824, - 549 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 27, - 43, - 824, - 549 - ], - "spans": [ - { - "bbox": [ - 27, - 43, - 824, - 549 - ], - "score": 0.697, - "html": "
MiarkSerereSociety in miniature, life in modern society individualistic, competitive;Parsons
They may consider alternative theories such as: Relevant material challenging the functionalist view mayRole allocation and sifting and sorting for future work roles; DavisandMoore Transferable skills; Davis and Moore, Parsons Role of formal and the hidden curriculum. Vocationalism - New Right views echo functionalist ideas; Murray,ChubbandMoe Educational policy 14-19 year olds since 1988, designed to prepare young people for the workplace, e.g. EBacc - includes skills transferable to workplace and work experience. Introduction of BTEC exams specifically focussed on
workplace Enterprise initiatives taught through secondary education; New Right Otherreasonableresponse. AO2:Application The selected knowledge should be directly related to the specific question - Functionalist explanations of the relationship between education and work AO3:Analysisandevaluation Candidates are expected to discuss weaknesses in functionalist explanations.
", - "type": "table", - "image_path": "a7d2c1649cd55243d2720d9410bff1990ad983fb766c00f579e0031010eb64c1.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 27, - 43, - 824, - 211.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 27, - 211.66666666666666, - 824, - 380.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 27, - 380.3333333333333, - 824, - 549.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 47 - ], - "lines": [ - { - "bbox": [ - 713, - 36, - 799, - 47 - ], - "spans": [ - { - "bbox": [ - 713, - 36, - 799, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 383, - 36, - 457, - 47 - ], - "lines": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "spans": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 47 - ], - "lines": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 27, - 43, - 824, - 549 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 27, - 43, - 824, - 549 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 27, - 43, - 824, - 549 - ], - "spans": [ - { - "bbox": [ - 27, - 43, - 824, - 549 - ], - "score": 0.697, - "html": "
MiarkSerereSociety in miniature, life in modern society individualistic, competitive;Parsons
They may consider alternative theories such as: Relevant material challenging the functionalist view mayRole allocation and sifting and sorting for future work roles; DavisandMoore Transferable skills; Davis and Moore, Parsons Role of formal and the hidden curriculum. Vocationalism - New Right views echo functionalist ideas; Murray,ChubbandMoe Educational policy 14-19 year olds since 1988, designed to prepare young people for the workplace, e.g. EBacc - includes skills transferable to workplace and work experience. Introduction of BTEC exams specifically focussed on
workplace Enterprise initiatives taught through secondary education; New Right Otherreasonableresponse. AO2:Application The selected knowledge should be directly related to the specific question - Functionalist explanations of the relationship between education and work AO3:Analysisandevaluation Candidates are expected to discuss weaknesses in functionalist explanations.
", - "type": "table", - "image_path": "a7d2c1649cd55243d2720d9410bff1990ad983fb766c00f579e0031010eb64c1.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 27, - 43, - 824, - 211.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 27, - 211.66666666666666, - 824, - 380.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 27, - 380.3333333333333, - 824, - 549.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_25", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 32, - 48, - 816, - 362 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 48, - 816, - 362 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 32, - 48, - 816, - 362 - ], - "spans": [ - { - "bbox": [ - 32, - 48, - 816, - 362 - ], - "score": 0.724, - "html": "
include: Critique of idea that role allocation is inherently successful; Bowlesand Gintis Problematic nature of concepts such as 'meritocracy'; Gorard,Gerwitz Marxist critiques of functionalism e.g. correspondence principal, cultural capital, and inequality of opportunity; Bowles and Gintis, Bourdieu, Gillies Marxist critiques of policies designed to prepare young
", - "type": "table", - "image_path": "3681821f06206b0cea6aef6fb2f3e311962c5e7f6cc2ef7a4b8d06e5feffbf74.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 32, - 48, - 816, - 152.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 32, - 152.66666666666669, - 816, - 257.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 32, - 257.33333333333337, - 816, - 362.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 26, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 32, - 48, - 816, - 362 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 48, - 816, - 362 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 32, - 48, - 816, - 362 - ], - "spans": [ - { - "bbox": [ - 32, - 48, - 816, - 362 - ], - "score": 0.724, - "html": "
include: Critique of idea that role allocation is inherently successful; Bowlesand Gintis Problematic nature of concepts such as 'meritocracy'; Gorard,Gerwitz Marxist critiques of functionalism e.g. correspondence principal, cultural capital, and inequality of opportunity; Bowles and Gintis, Bourdieu, Gillies Marxist critiques of policies designed to prepare young
", - "type": "table", - "image_path": "3681821f06206b0cea6aef6fb2f3e311962c5e7f6cc2ef7a4b8d06e5feffbf74.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 32, - 48, - 816, - 152.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 32, - 152.66666666666669, - 816, - 257.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 32, - 257.33333333333337, - 816, - 362.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 47 - ], - "lines": [ - { - "bbox": [ - 714, - 37, - 799, - 47 - ], - "spans": [ - { - "bbox": [ - 714, - 37, - 799, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 383, - 36, - 457, - 47 - ], - "lines": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "spans": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 47 - ], - "lines": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 32, - 48, - 816, - 362 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 32, - 48, - 816, - 362 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 32, - 48, - 816, - 362 - ], - "spans": [ - { - "bbox": [ - 32, - 48, - 816, - 362 - ], - "score": 0.724, - "html": "
include: Critique of idea that role allocation is inherently successful; Bowlesand Gintis Problematic nature of concepts such as 'meritocracy'; Gorard,Gerwitz Marxist critiques of functionalism e.g. correspondence principal, cultural capital, and inequality of opportunity; Bowles and Gintis, Bourdieu, Gillies Marxist critiques of policies designed to prepare young
", - "type": "table", - "image_path": "3681821f06206b0cea6aef6fb2f3e311962c5e7f6cc2ef7a4b8d06e5feffbf74.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 32, - 48, - 816, - 152.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 32, - 152.66666666666669, - 816, - 257.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 32, - 257.33333333333337, - 816, - 362.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_26", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 28, - 40, - 817, - 549 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 40, - 817, - 549 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 40, - 817, - 549 - ], - "spans": [ - { - "bbox": [ - 28, - 40, - 817, - 549 - ], - "score": 0.731, - "html": "
H580/03 10Markscneme In what ways is the significance of religion different between societies?10AO1:Knowledgeandunderstanding NOTE: Examples should be credited in the same way as
PLEASEREFERTOAPPENDIX1sociological studies. Relevant material may include: ·Global North becoming more religiously diverse; Centre for theStudy of Global Christianity(CSGC),2013 Global South - religious diversity decreasing e.g. experience growth in just one religion, typically Christianity orIslam;CSGC,2013 Win/Gallup study 2015: worldwide 63% citizens say they are religious, 22% say they are not, 11% atheists Resurgence of religion in China;World Religions Database (WRD) 2008, although just 7% of Chinese citizens said they were a religious person; Win/Gallup study 2015 Africa and Middle East, over 80% portray themselves as religious, compared to 71% from Eastern Europe and 71% Americans, 62% from Asia; Win/Gallup, 2015 Globally two thirds of people consider themselves to be religious; Leger
", - "type": "table", - "image_path": "9ad5515ffaa796e1c4f713ef91e7124f6beb97bd0791662a043abbcef20327de.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 28, - 40, - 817, - 209.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 28, - 209.66666666666666, - 817, - 379.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 379.3333333333333, - 817, - 549.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 27, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 28, - 40, - 817, - 549 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 40, - 817, - 549 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 40, - 817, - 549 - ], - "spans": [ - { - "bbox": [ - 28, - 40, - 817, - 549 - ], - "score": 0.731, - "html": "
H580/03 10Markscneme In what ways is the significance of religion different between societies?10AO1:Knowledgeandunderstanding NOTE: Examples should be credited in the same way as
PLEASEREFERTOAPPENDIX1sociological studies. Relevant material may include: ·Global North becoming more religiously diverse; Centre for theStudy of Global Christianity(CSGC),2013 Global South - religious diversity decreasing e.g. experience growth in just one religion, typically Christianity orIslam;CSGC,2013 Win/Gallup study 2015: worldwide 63% citizens say they are religious, 22% say they are not, 11% atheists Resurgence of religion in China;World Religions Database (WRD) 2008, although just 7% of Chinese citizens said they were a religious person; Win/Gallup study 2015 Africa and Middle East, over 80% portray themselves as religious, compared to 71% from Eastern Europe and 71% Americans, 62% from Asia; Win/Gallup, 2015 Globally two thirds of people consider themselves to be religious; Leger
", - "type": "table", - "image_path": "9ad5515ffaa796e1c4f713ef91e7124f6beb97bd0791662a043abbcef20327de.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 28, - 40, - 817, - 209.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 28, - 209.66666666666666, - 817, - 379.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 379.3333333333333, - 817, - 549.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 47 - ], - "lines": [ - { - "bbox": [ - 713, - 36, - 799, - 47 - ], - "spans": [ - { - "bbox": [ - 713, - 36, - 799, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 47 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 383, - 36, - 457, - 47 - ], - "lines": [] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 28, - 40, - 817, - 549 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 40, - 817, - 549 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 40, - 817, - 549 - ], - "spans": [ - { - "bbox": [ - 28, - 40, - 817, - 549 - ], - "score": 0.731, - "html": "
H580/03 10Markscneme In what ways is the significance of religion different between societies?10AO1:Knowledgeandunderstanding NOTE: Examples should be credited in the same way as
PLEASEREFERTOAPPENDIX1sociological studies. Relevant material may include: ·Global North becoming more religiously diverse; Centre for theStudy of Global Christianity(CSGC),2013 Global South - religious diversity decreasing e.g. experience growth in just one religion, typically Christianity orIslam;CSGC,2013 Win/Gallup study 2015: worldwide 63% citizens say they are religious, 22% say they are not, 11% atheists Resurgence of religion in China;World Religions Database (WRD) 2008, although just 7% of Chinese citizens said they were a religious person; Win/Gallup study 2015 Africa and Middle East, over 80% portray themselves as religious, compared to 71% from Eastern Europe and 71% Americans, 62% from Asia; Win/Gallup, 2015 Globally two thirds of people consider themselves to be religious; Leger
", - "type": "table", - "image_path": "9ad5515ffaa796e1c4f713ef91e7124f6beb97bd0791662a043abbcef20327de.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 28, - 40, - 817, - 209.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 28, - 209.66666666666666, - 817, - 379.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 379.3333333333333, - 817, - 549.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_27", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 29, - 43, - 819, - 544 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 29, - 43, - 819, - 544 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 29, - 43, - 819, - 544 - ], - "spans": [ - { - "bbox": [ - 29, - 43, - 819, - 544 - ], - "score": 0.936, - "html": "
affiliations, opinions and convictions; Lynch. NORC report 42 countries: belief highest amongst older people;NORC 2012 Western societies association of religious rituals withkey moments in life course; Davie and Vincent Other reasonableresponse A02:Application The selected knowledge should be directly related to the specific question -ways significance of religion differs betweensocietiesbeliefs; Bibby Western Europe - increase in privatised religious forms, including spirituality of the New Age; Kendal Project Islam among minority ethnic groups in the UK possibly response to revival of Islam globally; Kepel Among young people: Britain, Sweden, Finland, Poland, Russia and UsA -'alternative ways of conceptualising belief' developing, they use 'belief' to refer to - identities,
11 *Assess feminist views of the role of religion in 20 society. PLEASEREFERTOAPPENDIX2AO1:Knowledge and understanding Candidates'knowledge and understanding should relate specifically to the feminist views of the role of religion in society. Candidates may consider different theoretical approaches such as:
Liberalfeminism Marxist feminism Radical feminism Relevant material may include: Religion serves needs of a particular group - in this case men, religions usually patriarchal institutions; radical feminists.
", - "type": "table", - "image_path": "563d22caa00ef8306bd6bfb15e01ed0c05d6542161dfdd2e554dee9384ad5b4b.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 29, - 43, - 819, - 210.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 29, - 210.0, - 819, - 377.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 29, - 377.0, - 819, - 544.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 28, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 29, - 43, - 819, - 544 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 29, - 43, - 819, - 544 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 29, - 43, - 819, - 544 - ], - "spans": [ - { - "bbox": [ - 29, - 43, - 819, - 544 - ], - "score": 0.936, - "html": "
affiliations, opinions and convictions; Lynch. NORC report 42 countries: belief highest amongst older people;NORC 2012 Western societies association of religious rituals withkey moments in life course; Davie and Vincent Other reasonableresponse A02:Application The selected knowledge should be directly related to the specific question -ways significance of religion differs betweensocietiesbeliefs; Bibby Western Europe - increase in privatised religious forms, including spirituality of the New Age; Kendal Project Islam among minority ethnic groups in the UK possibly response to revival of Islam globally; Kepel Among young people: Britain, Sweden, Finland, Poland, Russia and UsA -'alternative ways of conceptualising belief' developing, they use 'belief' to refer to - identities,
11 *Assess feminist views of the role of religion in 20 society. PLEASEREFERTOAPPENDIX2AO1:Knowledge and understanding Candidates'knowledge and understanding should relate specifically to the feminist views of the role of religion in society. Candidates may consider different theoretical approaches such as:
Liberalfeminism Marxist feminism Radical feminism Relevant material may include: Religion serves needs of a particular group - in this case men, religions usually patriarchal institutions; radical feminists.
", - "type": "table", - "image_path": "563d22caa00ef8306bd6bfb15e01ed0c05d6542161dfdd2e554dee9384ad5b4b.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 29, - 43, - 819, - 210.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 29, - 210.0, - 819, - 377.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 29, - 377.0, - 819, - 544.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 47 - ], - "lines": [ - { - "bbox": [ - 714, - 37, - 799, - 47 - ], - "spans": [ - { - "bbox": [ - 714, - 37, - 799, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 383, - 36, - 457, - 47 - ], - "lines": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "spans": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 47 - ], - "lines": [ - { - "bbox": [ - 41, - 35, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 35, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 29, - 43, - 819, - 544 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 29, - 43, - 819, - 544 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 29, - 43, - 819, - 544 - ], - "spans": [ - { - "bbox": [ - 29, - 43, - 819, - 544 - ], - "score": 0.936, - "html": "
affiliations, opinions and convictions; Lynch. NORC report 42 countries: belief highest amongst older people;NORC 2012 Western societies association of religious rituals withkey moments in life course; Davie and Vincent Other reasonableresponse A02:Application The selected knowledge should be directly related to the specific question -ways significance of religion differs betweensocietiesbeliefs; Bibby Western Europe - increase in privatised religious forms, including spirituality of the New Age; Kendal Project Islam among minority ethnic groups in the UK possibly response to revival of Islam globally; Kepel Among young people: Britain, Sweden, Finland, Poland, Russia and UsA -'alternative ways of conceptualising belief' developing, they use 'belief' to refer to - identities,
11 *Assess feminist views of the role of religion in 20 society. PLEASEREFERTOAPPENDIX2AO1:Knowledge and understanding Candidates'knowledge and understanding should relate specifically to the feminist views of the role of religion in society. Candidates may consider different theoretical approaches such as:
Liberalfeminism Marxist feminism Radical feminism Relevant material may include: Religion serves needs of a particular group - in this case men, religions usually patriarchal institutions; radical feminists.
", - "type": "table", - "image_path": "563d22caa00ef8306bd6bfb15e01ed0c05d6542161dfdd2e554dee9384ad5b4b.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 29, - 43, - 819, - 210.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 29, - 210.0, - 819, - 377.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 29, - 377.0, - 819, - 544.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_28", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 25, - 45, - 817, - 542 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 25, - 45, - 817, - 542 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 25, - 45, - 817, - 542 - ], - "spans": [ - { - "bbox": [ - 25, - 45, - 817, - 542 - ], - "score": 0.926, - "html": "
Religious beliefs function as patriarchal ideology, the eyes of their god; Simone de Beauvoir Browne,Woodhead rituals and practices is patriarchal. therefore change possible; Armstrong ElSaadawilegitimising female subordination, oppression and exploitation. Christianity is a 'patriarchal myth'; Daly Women deceived by religion into think everyone equal in Marxist feminism: religion promotes false consciousness in a gendered form, religion serves to reinforce and justify patriarchal roleswithin thefamily;deBeauvoir Radical feminists - concept of'stained-glass ceiling' within from rising up religious hierarchy, e.g. Roman Catholicism womencannotbecomepriests,althoughwomenoften have a responsibility for religious nurture in the home ; Feminist views - nature of religious symbolism, teachings, Patriarchal dominance of men in positions of leadership in and emphasises their marginalised position in society, however in early religions women were central characters, Some argue practices carried out in the name of religion, suchasfemalecircumcisionwithinIslamiccountriesrests onaparticularinterpretationof theQur'an;therefore,it is the nature of society, i.e. patriarchy that lies at the root of the subordination and coincided with rise of monotheism; Liberal feminist view, contradiction between classical teachings of religions about equality of individuals and reality of women's lives mirrored in religion, suggest
", - "type": "table", - "image_path": "6a3cd2c371fd1fe9d893e904bb23649743bae54fc0faba6932482c32d53ce09d.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 25, - 45, - 817, - 210.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 25, - 210.66666666666666, - 817, - 376.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 25, - 376.3333333333333, - 817, - 542.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 29, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 25, - 45, - 817, - 542 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 25, - 45, - 817, - 542 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 25, - 45, - 817, - 542 - ], - "spans": [ - { - "bbox": [ - 25, - 45, - 817, - 542 - ], - "score": 0.926, - "html": "
Religious beliefs function as patriarchal ideology, the eyes of their god; Simone de Beauvoir Browne,Woodhead rituals and practices is patriarchal. therefore change possible; Armstrong ElSaadawilegitimising female subordination, oppression and exploitation. Christianity is a 'patriarchal myth'; Daly Women deceived by religion into think everyone equal in Marxist feminism: religion promotes false consciousness in a gendered form, religion serves to reinforce and justify patriarchal roleswithin thefamily;deBeauvoir Radical feminists - concept of'stained-glass ceiling' within from rising up religious hierarchy, e.g. Roman Catholicism womencannotbecomepriests,althoughwomenoften have a responsibility for religious nurture in the home ; Feminist views - nature of religious symbolism, teachings, Patriarchal dominance of men in positions of leadership in and emphasises their marginalised position in society, however in early religions women were central characters, Some argue practices carried out in the name of religion, suchasfemalecircumcisionwithinIslamiccountriesrests onaparticularinterpretationof theQur'an;therefore,it is the nature of society, i.e. patriarchy that lies at the root of the subordination and coincided with rise of monotheism; Liberal feminist view, contradiction between classical teachings of religions about equality of individuals and reality of women's lives mirrored in religion, suggest
", - "type": "table", - "image_path": "6a3cd2c371fd1fe9d893e904bb23649743bae54fc0faba6932482c32d53ce09d.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 25, - 45, - 817, - 210.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 25, - 210.66666666666666, - 817, - 376.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 25, - 376.3333333333333, - 817, - 542.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 47 - ], - "lines": [ - { - "bbox": [ - 713, - 36, - 799, - 47 - ], - "spans": [ - { - "bbox": [ - 713, - 36, - 799, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 383, - 36, - 457, - 47 - ], - "lines": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "spans": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 47 - ], - "lines": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 25, - 45, - 817, - 542 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 25, - 45, - 817, - 542 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 25, - 45, - 817, - 542 - ], - "spans": [ - { - "bbox": [ - 25, - 45, - 817, - 542 - ], - "score": 0.926, - "html": "
Religious beliefs function as patriarchal ideology, the eyes of their god; Simone de Beauvoir Browne,Woodhead rituals and practices is patriarchal. therefore change possible; Armstrong ElSaadawilegitimising female subordination, oppression and exploitation. Christianity is a 'patriarchal myth'; Daly Women deceived by religion into think everyone equal in Marxist feminism: religion promotes false consciousness in a gendered form, religion serves to reinforce and justify patriarchal roleswithin thefamily;deBeauvoir Radical feminists - concept of'stained-glass ceiling' within from rising up religious hierarchy, e.g. Roman Catholicism womencannotbecomepriests,althoughwomenoften have a responsibility for religious nurture in the home ; Feminist views - nature of religious symbolism, teachings, Patriarchal dominance of men in positions of leadership in and emphasises their marginalised position in society, however in early religions women were central characters, Some argue practices carried out in the name of religion, suchasfemalecircumcisionwithinIslamiccountriesrests onaparticularinterpretationof theQur'an;therefore,it is the nature of society, i.e. patriarchy that lies at the root of the subordination and coincided with rise of monotheism; Liberal feminist view, contradiction between classical teachings of religions about equality of individuals and reality of women's lives mirrored in religion, suggest
", - "type": "table", - "image_path": "6a3cd2c371fd1fe9d893e904bb23649743bae54fc0faba6932482c32d53ce09d.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 25, - 45, - 817, - 210.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 25, - 210.66666666666666, - 817, - 376.3333333333333 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 25, - 376.3333333333333, - 817, - 542.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_29", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 34, - 37, - 815, - 560 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 37, - 815, - 560 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 51, - 37, - 815, - 560 - ], - "spans": [ - { - "bbox": [ - 51, - 37, - 815, - 560 - ], - "score": 0.202, - "html": "
580/03Markscheme
menstruation; HolmNotion of a woman as sinful, temptress, in need of control
scattered in religious texts. Many religions legitimate and regulate women's traditional
domestic and reproductive role i.e. the Catholic Church bans abortion and artificial contraception. Liberal feminism, greater gender equality in society mirrored in reform of religious organisations e.g. introduction of womenpriests and bishops in Church of
England. Other reasonable response.
A02:ApplicationThe selected knowledge shouldbedirectly related tothe
in societyspecific question - feminist explanations of the role of religion
AO3: Analysis and evaluation
explanations.Candidates are expected to discuss weaknesses in feminist
FunctionalismThey may consider alternative theories such as:
Marxism Weberianism
Post feminism
include:Relevant material challenging feminist explanations may
Not all religions patriarchal, e.g. Liberal wing of the
Church of England encourages ordination of women and
legitimacy of homosexuality; Postfeminists.
Critique of Marxist and radical feminism, religion can help promote gender equality. ‘Religious forms of feminism', ways women can use religion to gain freedom; Woodhead,
", - "type": "table", - "image_path": "0ec8683c21327bcc5a39a3e26aba4e74d463a1916405d77aa320e41df2443c39.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 34, - 37, - 815, - 211.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 34, - 211.33333333333334, - 815, - 385.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 34, - 385.6666666666667, - 815, - 560.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 30, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 34, - 37, - 815, - 560 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 37, - 815, - 560 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 51, - 37, - 815, - 560 - ], - "spans": [ - { - "bbox": [ - 51, - 37, - 815, - 560 - ], - "score": 0.202, - "html": "
580/03Markscheme
menstruation; HolmNotion of a woman as sinful, temptress, in need of control
scattered in religious texts. Many religions legitimate and regulate women's traditional
domestic and reproductive role i.e. the Catholic Church bans abortion and artificial contraception. Liberal feminism, greater gender equality in society mirrored in reform of religious organisations e.g. introduction of womenpriests and bishops in Church of
England. Other reasonable response.
A02:ApplicationThe selected knowledge shouldbedirectly related tothe
in societyspecific question - feminist explanations of the role of religion
AO3: Analysis and evaluation
explanations.Candidates are expected to discuss weaknesses in feminist
FunctionalismThey may consider alternative theories such as:
Marxism Weberianism
Post feminism
include:Relevant material challenging feminist explanations may
Not all religions patriarchal, e.g. Liberal wing of the
Church of England encourages ordination of women and
legitimacy of homosexuality; Postfeminists.
Critique of Marxist and radical feminism, religion can help promote gender equality. ‘Religious forms of feminism', ways women can use religion to gain freedom; Woodhead,
", - "type": "table", - "image_path": "0ec8683c21327bcc5a39a3e26aba4e74d463a1916405d77aa320e41df2443c39.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 34, - 37, - 815, - 211.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 34, - 211.33333333333334, - 815, - 385.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 34, - 385.6666666666667, - 815, - 560.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 47 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 383, - 36, - 457, - 47 - ], - "lines": [] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 47 - ], - "lines": [] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 34, - 37, - 815, - 560 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 34, - 37, - 815, - 560 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 51, - 37, - 815, - 560 - ], - "spans": [ - { - "bbox": [ - 51, - 37, - 815, - 560 - ], - "score": 0.202, - "html": "
580/03Markscheme
menstruation; HolmNotion of a woman as sinful, temptress, in need of control
scattered in religious texts. Many religions legitimate and regulate women's traditional
domestic and reproductive role i.e. the Catholic Church bans abortion and artificial contraception. Liberal feminism, greater gender equality in society mirrored in reform of religious organisations e.g. introduction of womenpriests and bishops in Church of
England. Other reasonable response.
A02:ApplicationThe selected knowledge shouldbedirectly related tothe
in societyspecific question - feminist explanations of the role of religion
AO3: Analysis and evaluation
explanations.Candidates are expected to discuss weaknesses in feminist
FunctionalismThey may consider alternative theories such as:
Marxism Weberianism
Post feminism
include:Relevant material challenging feminist explanations may
Not all religions patriarchal, e.g. Liberal wing of the
Church of England encourages ordination of women and
legitimacy of homosexuality; Postfeminists.
Critique of Marxist and radical feminism, religion can help promote gender equality. ‘Religious forms of feminism', ways women can use religion to gain freedom; Woodhead,
", - "type": "table", - "image_path": "0ec8683c21327bcc5a39a3e26aba4e74d463a1916405d77aa320e41df2443c39.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 34, - 37, - 815, - 211.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 34, - 211.33333333333334, - 815, - 385.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 34, - 385.6666666666667, - 815, - 560.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_30", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 26, - 46, - 809, - 542 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 46, - 809, - 542 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 26, - 46, - 809, - 542 - ], - "spans": [ - { - "bbox": [ - 26, - 46, - 809, - 542 - ], - "score": 0.918, - "html": "
enter public sphere without losing culture and history; Woodhead Religious Society of Friends (Quakers)- Christian denomination with strong tradition of equality between men andwomen. Similarly,Sikhism originated in thePunjab in sixteenth century, strong tradition of equality between men and women, although most religious leaders are men Weberians and Liberation theologists focus on role of religion in bringing about change, therefore may criticise determinism of radical and Marxist feminists. Ethnocentric view: The burka may be interpreted as liberating Feminist views may be oversimplification of complex relationship; Davie and Walter, Watson Deprivation theory goes against experience of some deprived groups and white working-class men have low rates of religiosity; Davie and Walter Functionalists: role of religion to ensure social solidarity, strengthen bonds and prevent anomie,rather than oppression; Durkheim Marxists: role of religion ‘opium of the people' to supress the masses, not specifically females: Marx
12Evaluate the views of anti-secularisation theorists. PLEASEREFERTOAPPENDIX3AO1:Knowledgeandunderstanding Candidates will consider the view of the anti-secularisation theorists that the UK is not a secular in society. They may consider religious belief, religious practice, power and influence of religion in society.
", - "type": "table", - "image_path": "ee5036fc43d74231596de9936054fc0a71492bee0f75169458c7c83ada3d9529.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 26, - 46, - 809, - 211.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 26, - 211.33333333333334, - 809, - 376.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 26, - 376.6666666666667, - 809, - 542.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 31, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 26, - 46, - 809, - 542 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 46, - 809, - 542 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 26, - 46, - 809, - 542 - ], - "spans": [ - { - "bbox": [ - 26, - 46, - 809, - 542 - ], - "score": 0.918, - "html": "
enter public sphere without losing culture and history; Woodhead Religious Society of Friends (Quakers)- Christian denomination with strong tradition of equality between men andwomen. Similarly,Sikhism originated in thePunjab in sixteenth century, strong tradition of equality between men and women, although most religious leaders are men Weberians and Liberation theologists focus on role of religion in bringing about change, therefore may criticise determinism of radical and Marxist feminists. Ethnocentric view: The burka may be interpreted as liberating Feminist views may be oversimplification of complex relationship; Davie and Walter, Watson Deprivation theory goes against experience of some deprived groups and white working-class men have low rates of religiosity; Davie and Walter Functionalists: role of religion to ensure social solidarity, strengthen bonds and prevent anomie,rather than oppression; Durkheim Marxists: role of religion ‘opium of the people' to supress the masses, not specifically females: Marx
12Evaluate the views of anti-secularisation theorists. PLEASEREFERTOAPPENDIX3AO1:Knowledgeandunderstanding Candidates will consider the view of the anti-secularisation theorists that the UK is not a secular in society. They may consider religious belief, religious practice, power and influence of religion in society.
", - "type": "table", - "image_path": "ee5036fc43d74231596de9936054fc0a71492bee0f75169458c7c83ada3d9529.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 26, - 46, - 809, - 211.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 26, - 211.33333333333334, - 809, - 376.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 26, - 376.6666666666667, - 809, - 542.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 712, - 36, - 800, - 47 - ], - "lines": [ - { - "bbox": [ - 714, - 36, - 799, - 47 - ], - "spans": [ - { - "bbox": [ - 714, - 36, - 799, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 383, - 36, - 457, - 47 - ], - "lines": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "spans": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 47 - ], - "lines": [ - { - "bbox": [ - 41, - 35, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 35, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 26, - 46, - 809, - 542 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 46, - 809, - 542 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 26, - 46, - 809, - 542 - ], - "spans": [ - { - "bbox": [ - 26, - 46, - 809, - 542 - ], - "score": 0.918, - "html": "
enter public sphere without losing culture and history; Woodhead Religious Society of Friends (Quakers)- Christian denomination with strong tradition of equality between men andwomen. Similarly,Sikhism originated in thePunjab in sixteenth century, strong tradition of equality between men and women, although most religious leaders are men Weberians and Liberation theologists focus on role of religion in bringing about change, therefore may criticise determinism of radical and Marxist feminists. Ethnocentric view: The burka may be interpreted as liberating Feminist views may be oversimplification of complex relationship; Davie and Walter, Watson Deprivation theory goes against experience of some deprived groups and white working-class men have low rates of religiosity; Davie and Walter Functionalists: role of religion to ensure social solidarity, strengthen bonds and prevent anomie,rather than oppression; Durkheim Marxists: role of religion ‘opium of the people' to supress the masses, not specifically females: Marx
12Evaluate the views of anti-secularisation theorists. PLEASEREFERTOAPPENDIX3AO1:Knowledgeandunderstanding Candidates will consider the view of the anti-secularisation theorists that the UK is not a secular in society. They may consider religious belief, religious practice, power and influence of religion in society.
", - "type": "table", - "image_path": "ee5036fc43d74231596de9936054fc0a71492bee0f75169458c7c83ada3d9529.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 26, - 46, - 809, - 211.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 26, - 211.33333333333334, - 809, - 376.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 26, - 376.6666666666667, - 809, - 542.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_31", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 30, - 41, - 812, - 549 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 30, - 41, - 812, - 549 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 30, - 41, - 812, - 548 - ], - "spans": [ - { - "bbox": [ - 30, - 41, - 812, - 548 - ], - "score": 0.692, - "html": "
H580/03Markscneme such as: Anti-secularisationtheorists Postmodernviews Functionalism - religion still provides meaning; Parsons Relevant material may include: Over-emphasis on mainstream Christian religious groups - overlooks increased attendance in Baptist Churches, Pentecostal churches etc (Brierley). Idea there was an'age of faith'- illusion, partly created by focus on religious behaviour of elite groups in society; Hamilton Modern international affairs cannot be comprehended without understanding of religion; Kepel Global patterns - USA influence of New Christian Right; Roof and McKinne. Religion as protest: Martin. Latin America and liberation theology; against apartheidinSouthAfrica. Role of faith in Arab uprising. UK - rise in faith schools; Conservative government policy Religious Education remains legal requirement in UK schools
", - "type": "table", - "image_path": "a08edd7efa23f3cce894b0a3b7d08bf8bbb95dc23d3d65e345547f85cd4894cc.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 30, - 41, - 812, - 210.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 30, - 210.33333333333334, - 812, - 379.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 30, - 379.6666666666667, - 812, - 549.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 32, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 30, - 41, - 812, - 549 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 30, - 41, - 812, - 549 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 30, - 41, - 812, - 548 - ], - "spans": [ - { - "bbox": [ - 30, - 41, - 812, - 548 - ], - "score": 0.692, - "html": "
H580/03Markscneme such as: Anti-secularisationtheorists Postmodernviews Functionalism - religion still provides meaning; Parsons Relevant material may include: Over-emphasis on mainstream Christian religious groups - overlooks increased attendance in Baptist Churches, Pentecostal churches etc (Brierley). Idea there was an'age of faith'- illusion, partly created by focus on religious behaviour of elite groups in society; Hamilton Modern international affairs cannot be comprehended without understanding of religion; Kepel Global patterns - USA influence of New Christian Right; Roof and McKinne. Religion as protest: Martin. Latin America and liberation theology; against apartheidinSouthAfrica. Role of faith in Arab uprising. UK - rise in faith schools; Conservative government policy Religious Education remains legal requirement in UK schools
", - "type": "table", - "image_path": "a08edd7efa23f3cce894b0a3b7d08bf8bbb95dc23d3d65e345547f85cd4894cc.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 30, - 41, - 812, - 210.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 30, - 210.33333333333334, - 812, - 379.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 30, - 379.6666666666667, - 812, - 549.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 47 - ], - "lines": [ - { - "bbox": [ - 714, - 37, - 799, - 47 - ], - "spans": [ - { - "bbox": [ - 714, - 37, - 799, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 383, - 36, - 457, - 47 - ], - "lines": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "spans": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 47 - ], - "lines": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 30, - 41, - 812, - 549 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 30, - 41, - 812, - 549 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 30, - 41, - 812, - 548 - ], - "spans": [ - { - "bbox": [ - 30, - 41, - 812, - 548 - ], - "score": 0.692, - "html": "
H580/03Markscneme such as: Anti-secularisationtheorists Postmodernviews Functionalism - religion still provides meaning; Parsons Relevant material may include: Over-emphasis on mainstream Christian religious groups - overlooks increased attendance in Baptist Churches, Pentecostal churches etc (Brierley). Idea there was an'age of faith'- illusion, partly created by focus on religious behaviour of elite groups in society; Hamilton Modern international affairs cannot be comprehended without understanding of religion; Kepel Global patterns - USA influence of New Christian Right; Roof and McKinne. Religion as protest: Martin. Latin America and liberation theology; against apartheidinSouthAfrica. Role of faith in Arab uprising. UK - rise in faith schools; Conservative government policy Religious Education remains legal requirement in UK schools
", - "type": "table", - "image_path": "a08edd7efa23f3cce894b0a3b7d08bf8bbb95dc23d3d65e345547f85cd4894cc.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 30, - 41, - 812, - 210.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 30, - 210.33333333333334, - 812, - 379.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 30, - 379.6666666666667, - 812, - 549.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_32", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 25, - 45, - 813, - 547 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 25, - 45, - 813, - 547 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 25, - 45, - 813, - 547 - ], - "spans": [ - { - "bbox": [ - 25, - 45, - 813, - 547 - ], - "score": 0.924, - "html": "
globally; Davie Decline of established religion in developed world - not echoedglobally.Davie Berger - the world is furiously religious'. Religion less important when people feel secure about their survival and well-being, this can change; Norris and Inglehart Rate of decline in church membership and participation declined in last 15 years in UK, churches with a missionary zealincreasing;Brierley
World has more people with traditional religious beliefs than ever before; Norris and Inglehart Manypeople in theUSA continue to attend church and profess Christian faith. Migrant groups bring religious practices to UK; e.g. Pentecostal groups, Islam - fastest growing religion in Britain; Christianity in its Global Context 1970-2020 report, 2013 Global social changes enhancing importance of religion for some young Muslims; Moore GrowthinNRMs,oldersectssuchasJehovah'sWitnesses and Mormons, halting tide towards secularisation. Scandinavian countries most engage with religion at a vicariouslevel-ritualsandpracticesperformedbya minority on behalf of the majority are understood and approved of; Davie Few people define themselves as atheists; Census 2011 When tragedies occur many attend traditional places of
", - "type": "table", - "image_path": "1b60ce41d10c635c62bea335b0d520a4483583a27b0160c688750db8e9b2979c.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 25, - 45, - 813, - 212.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 25, - 212.33333333333334, - 813, - 379.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 25, - 379.6666666666667, - 813, - 547.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 33, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 25, - 45, - 813, - 547 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 25, - 45, - 813, - 547 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 25, - 45, - 813, - 547 - ], - "spans": [ - { - "bbox": [ - 25, - 45, - 813, - 547 - ], - "score": 0.924, - "html": "
globally; Davie Decline of established religion in developed world - not echoedglobally.Davie Berger - the world is furiously religious'. Religion less important when people feel secure about their survival and well-being, this can change; Norris and Inglehart Rate of decline in church membership and participation declined in last 15 years in UK, churches with a missionary zealincreasing;Brierley
World has more people with traditional religious beliefs than ever before; Norris and Inglehart Manypeople in theUSA continue to attend church and profess Christian faith. Migrant groups bring religious practices to UK; e.g. Pentecostal groups, Islam - fastest growing religion in Britain; Christianity in its Global Context 1970-2020 report, 2013 Global social changes enhancing importance of religion for some young Muslims; Moore GrowthinNRMs,oldersectssuchasJehovah'sWitnesses and Mormons, halting tide towards secularisation. Scandinavian countries most engage with religion at a vicariouslevel-ritualsandpracticesperformedbya minority on behalf of the majority are understood and approved of; Davie Few people define themselves as atheists; Census 2011 When tragedies occur many attend traditional places of
", - "type": "table", - "image_path": "1b60ce41d10c635c62bea335b0d520a4483583a27b0160c688750db8e9b2979c.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 25, - 45, - 813, - 212.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 25, - 212.33333333333334, - 813, - 379.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 25, - 379.6666666666667, - 813, - 547.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 47 - ], - "lines": [ - { - "bbox": [ - 714, - 37, - 799, - 47 - ], - "spans": [ - { - "bbox": [ - 714, - 37, - 799, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 384, - 36, - 457, - 47 - ], - "lines": [ - { - "bbox": [ - 384, - 37, - 457, - 47 - ], - "spans": [ - { - "bbox": [ - 384, - 37, - 457, - 47 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 47 - ], - "lines": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 25, - 45, - 813, - 547 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 25, - 45, - 813, - 547 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 25, - 45, - 813, - 547 - ], - "spans": [ - { - "bbox": [ - 25, - 45, - 813, - 547 - ], - "score": 0.924, - "html": "
globally; Davie Decline of established religion in developed world - not echoedglobally.Davie Berger - the world is furiously religious'. Religion less important when people feel secure about their survival and well-being, this can change; Norris and Inglehart Rate of decline in church membership and participation declined in last 15 years in UK, churches with a missionary zealincreasing;Brierley
World has more people with traditional religious beliefs than ever before; Norris and Inglehart Manypeople in theUSA continue to attend church and profess Christian faith. Migrant groups bring religious practices to UK; e.g. Pentecostal groups, Islam - fastest growing religion in Britain; Christianity in its Global Context 1970-2020 report, 2013 Global social changes enhancing importance of religion for some young Muslims; Moore GrowthinNRMs,oldersectssuchasJehovah'sWitnesses and Mormons, halting tide towards secularisation. Scandinavian countries most engage with religion at a vicariouslevel-ritualsandpracticesperformedbya minority on behalf of the majority are understood and approved of; Davie Few people define themselves as atheists; Census 2011 When tragedies occur many attend traditional places of
", - "type": "table", - "image_path": "1b60ce41d10c635c62bea335b0d520a4483583a27b0160c688750db8e9b2979c.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 25, - 45, - 813, - 212.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 25, - 212.33333333333334, - 813, - 379.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 25, - 379.6666666666667, - 813, - 547.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_33", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 28, - 42, - 827, - 550 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 42, - 827, - 550 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 42, - 827, - 550 - ], - "spans": [ - { - "bbox": [ - 28, - 42, - 827, - 550 - ], - "score": 0.722, - "html": "
·Pro-secularisation theorists Relevant material may include: · Secularisation: 'the process whereby religious thinking, practices and institutions lose social significance'; Wilson Changes in society due to rationalisation and societalisation, led to secularisation; religious institutions have lost significance; Wilson Science as the Enlightenment that challenged faith; Comte-Scienceasthetruth. Secularisationoccurredduetostructuralandsocial differentiation, individualism, societisation, schisms, pluralismand technology;Bruce Notions of a 'privatised religion' and 'holistic milieu' (Heelas)challenged-shift from‘belief in God'tobelief in a spirit or life force is evidence of secularization, influence of religion has declined; Bruce People increasingly marking important life events outside religious institutions; Martin Church becoming side-lined by secular leaders; Martin Fundamentalism rooted in economic, political system, not religion; Armstrong Pro-secularisation theorists suggest attendance in church on a Sunday is historically an important indicator of religious practice and this is declining; Brierley Decrease in church attendance figures evidence of decline in mainstream Christianity.AO2:Application The selected knowledge should be directly related to the
specific question -views of anti-secularisation theorists AO3:Analysisand evaluation Candidates are expected to discuss alternatives/weaknesses
oftheviewsofanti-secularisationtheorists: They may consider theories such as:
", - "type": "table", - "image_path": "0b2fc203f13ee36bcf3e9834e44e9cf8a957c02f0a18220c102f2ee7f7eaa6c9.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 28, - 42, - 827, - 211.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 28, - 211.33333333333334, - 827, - 380.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 380.6666666666667, - 827, - 550.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 34, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 28, - 42, - 827, - 550 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 42, - 827, - 550 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 42, - 827, - 550 - ], - "spans": [ - { - "bbox": [ - 28, - 42, - 827, - 550 - ], - "score": 0.722, - "html": "
·Pro-secularisation theorists Relevant material may include: · Secularisation: 'the process whereby religious thinking, practices and institutions lose social significance'; Wilson Changes in society due to rationalisation and societalisation, led to secularisation; religious institutions have lost significance; Wilson Science as the Enlightenment that challenged faith; Comte-Scienceasthetruth. Secularisationoccurredduetostructuralandsocial differentiation, individualism, societisation, schisms, pluralismand technology;Bruce Notions of a 'privatised religion' and 'holistic milieu' (Heelas)challenged-shift from‘belief in God'tobelief in a spirit or life force is evidence of secularization, influence of religion has declined; Bruce People increasingly marking important life events outside religious institutions; Martin Church becoming side-lined by secular leaders; Martin Fundamentalism rooted in economic, political system, not religion; Armstrong Pro-secularisation theorists suggest attendance in church on a Sunday is historically an important indicator of religious practice and this is declining; Brierley Decrease in church attendance figures evidence of decline in mainstream Christianity.AO2:Application The selected knowledge should be directly related to the
specific question -views of anti-secularisation theorists AO3:Analysisand evaluation Candidates are expected to discuss alternatives/weaknesses
oftheviewsofanti-secularisationtheorists: They may consider theories such as:
", - "type": "table", - "image_path": "0b2fc203f13ee36bcf3e9834e44e9cf8a957c02f0a18220c102f2ee7f7eaa6c9.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 28, - 42, - 827, - 211.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 28, - 211.33333333333334, - 827, - 380.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 380.6666666666667, - 827, - 550.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 47 - ], - "lines": [ - { - "bbox": [ - 714, - 37, - 799, - 47 - ], - "spans": [ - { - "bbox": [ - 714, - 37, - 799, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 383, - 36, - 457, - 47 - ], - "lines": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "spans": [ - { - "bbox": [ - 385, - 37, - 457, - 47 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 47 - ], - "lines": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 28, - 42, - 827, - 550 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 28, - 42, - 827, - 550 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 28, - 42, - 827, - 550 - ], - "spans": [ - { - "bbox": [ - 28, - 42, - 827, - 550 - ], - "score": 0.722, - "html": "
·Pro-secularisation theorists Relevant material may include: · Secularisation: 'the process whereby religious thinking, practices and institutions lose social significance'; Wilson Changes in society due to rationalisation and societalisation, led to secularisation; religious institutions have lost significance; Wilson Science as the Enlightenment that challenged faith; Comte-Scienceasthetruth. Secularisationoccurredduetostructuralandsocial differentiation, individualism, societisation, schisms, pluralismand technology;Bruce Notions of a 'privatised religion' and 'holistic milieu' (Heelas)challenged-shift from‘belief in God'tobelief in a spirit or life force is evidence of secularization, influence of religion has declined; Bruce People increasingly marking important life events outside religious institutions; Martin Church becoming side-lined by secular leaders; Martin Fundamentalism rooted in economic, political system, not religion; Armstrong Pro-secularisation theorists suggest attendance in church on a Sunday is historically an important indicator of religious practice and this is declining; Brierley Decrease in church attendance figures evidence of decline in mainstream Christianity.AO2:Application The selected knowledge should be directly related to the
specific question -views of anti-secularisation theorists AO3:Analysisand evaluation Candidates are expected to discuss alternatives/weaknesses
oftheviewsofanti-secularisationtheorists: They may consider theories such as:
", - "type": "table", - "image_path": "0b2fc203f13ee36bcf3e9834e44e9cf8a957c02f0a18220c102f2ee7f7eaa6c9.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 28, - 42, - 827, - 211.33333333333334 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 28, - 211.33333333333334, - 827, - 380.6666666666667 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 28, - 380.6666666666667, - 827, - 550.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_34", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 26, - 48, - 807, - 413 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 48, - 807, - 413 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 26, - 48, - 807, - 413 - ], - "spans": [ - { - "bbox": [ - 26, - 48, - 807, - 413 - ], - "score": 0.903, - "html": "
New churches are opening, but more closing, so net decline. Decline in attendance at key religious ceremonies - baptisms, marriages, funerals; Sanderson, British Religion inNumbers Church attendance socially approved of in UsA, people may exaggerate their attendance; Hadaway While US presidents declare adherence to the Christian faith, British Prime Ministers are more reluctant, spokesman for Tony Blair 'We don't do God' ; Brown Growth in NRMs, older sects such as Jehovah's Witnesses and Mormons, does not compensate for the declining numbers from larger religious institutions; - evidence of secularisation;Wilson,Bruce NSMs “islands in a secular sea' (Berger), almost irrelevant to modern society; Wilson Fundamentalism rooted in economic, political system, not religion; Armstrong Decline in attendance greater amongst the young, suggesting - as congregations age and fewer young people join, they could die out altogether; Brierley Development of secularisation can be uneven, but will occur;Bruce Alternative view: religions remain powerful and influential in different places but patterns of decline in the UK are significant: Casanova Otherreasonableresponse.
", - "type": "table", - "image_path": "7e44dd578e70f44b19ac08891b9a3ad293f189d30bc9c8cc62b110196ac298dd.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 26, - 48, - 807, - 169.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 26, - 169.66666666666669, - 807, - 291.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 26, - 291.33333333333337, - 807, - 413.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 35, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 26, - 48, - 807, - 413 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 48, - 807, - 413 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 26, - 48, - 807, - 413 - ], - "spans": [ - { - "bbox": [ - 26, - 48, - 807, - 413 - ], - "score": 0.903, - "html": "
New churches are opening, but more closing, so net decline. Decline in attendance at key religious ceremonies - baptisms, marriages, funerals; Sanderson, British Religion inNumbers Church attendance socially approved of in UsA, people may exaggerate their attendance; Hadaway While US presidents declare adherence to the Christian faith, British Prime Ministers are more reluctant, spokesman for Tony Blair 'We don't do God' ; Brown Growth in NRMs, older sects such as Jehovah's Witnesses and Mormons, does not compensate for the declining numbers from larger religious institutions; - evidence of secularisation;Wilson,Bruce NSMs “islands in a secular sea' (Berger), almost irrelevant to modern society; Wilson Fundamentalism rooted in economic, political system, not religion; Armstrong Decline in attendance greater amongst the young, suggesting - as congregations age and fewer young people join, they could die out altogether; Brierley Development of secularisation can be uneven, but will occur;Bruce Alternative view: religions remain powerful and influential in different places but patterns of decline in the UK are significant: Casanova Otherreasonableresponse.
", - "type": "table", - "image_path": "7e44dd578e70f44b19ac08891b9a3ad293f189d30bc9c8cc62b110196ac298dd.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 26, - 48, - 807, - 169.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 26, - 169.66666666666669, - 807, - 291.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 26, - 291.33333333333337, - 807, - 413.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 47 - ], - "lines": [ - { - "bbox": [ - 713, - 36, - 799, - 47 - ], - "spans": [ - { - "bbox": [ - 713, - 36, - 799, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 384, - 36, - 457, - 47 - ], - "lines": [ - { - "bbox": [ - 384, - 37, - 457, - 47 - ], - "spans": [ - { - "bbox": [ - 384, - 37, - 457, - 47 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 47 - ], - "lines": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 26, - 48, - 807, - 413 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 26, - 48, - 807, - 413 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 26, - 48, - 807, - 413 - ], - "spans": [ - { - "bbox": [ - 26, - 48, - 807, - 413 - ], - "score": 0.903, - "html": "
New churches are opening, but more closing, so net decline. Decline in attendance at key religious ceremonies - baptisms, marriages, funerals; Sanderson, British Religion inNumbers Church attendance socially approved of in UsA, people may exaggerate their attendance; Hadaway While US presidents declare adherence to the Christian faith, British Prime Ministers are more reluctant, spokesman for Tony Blair 'We don't do God' ; Brown Growth in NRMs, older sects such as Jehovah's Witnesses and Mormons, does not compensate for the declining numbers from larger religious institutions; - evidence of secularisation;Wilson,Bruce NSMs “islands in a secular sea' (Berger), almost irrelevant to modern society; Wilson Fundamentalism rooted in economic, political system, not religion; Armstrong Decline in attendance greater amongst the young, suggesting - as congregations age and fewer young people join, they could die out altogether; Brierley Development of secularisation can be uneven, but will occur;Bruce Alternative view: religions remain powerful and influential in different places but patterns of decline in the UK are significant: Casanova Otherreasonableresponse.
", - "type": "table", - "image_path": "7e44dd578e70f44b19ac08891b9a3ad293f189d30bc9c8cc62b110196ac298dd.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 26, - 48, - 807, - 169.66666666666669 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 26, - 169.66666666666669, - 807, - 291.33333333333337 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 26, - 291.33333333333337, - 807, - 413.00000000000006 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_35", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 41, - 34, - 384, - 75 - ], - "lines": [ - { - "bbox": [ - 41, - 35, - 89, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 35, - 89, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 42, - 50, - 107, - 60 - ], - "spans": [ - { - "bbox": [ - 42, - 50, - 107, - 60 - ], - "score": 1.0, - "content": "APPENDIX 1", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 42, - 62, - 381, - 73 - ], - "spans": [ - { - "bbox": [ - 42, - 62, - 381, - 73 - ], - "score": 1.0, - "content": "GENERIC MARKSCHEME FOR OPTIONS QUESTIONS 4, 7 and 10", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 37, - 98, - 765, - 481 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 41, - 87, - 286, - 99 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 87, - 284, - 100 - ], - "spans": [ - { - "bbox": [ - 41, - 87, - 284, - 100 - ], - "score": 1.0, - "content": "AO1: Knowledge and understanding (6 marks)", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "table_body", - "bbox": [ - 37, - 98, - 765, - 481 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 37, - 98, - 765, - 481 - ], - "spans": [ - { - "bbox": [ - 37, - 98, - 765, - 481 - ], - "score": 0.979, - "html": "
LevelMarksGeneric Mark Scheme questions 4,7 and 10
46The candidate demonstrates an excellent knowledge and understanding of a range of sociological material; the material is generally accurate and detailed.
There will typically be three developed knowledge points, or two developed points and one underdeveloped point There is a well-developed line of reasoning which is clear and logically structured. The response is relevant and substantiated.
34-5The candidate demonstrates a good knowledge and understanding of either a range of sociological material or some material in detail. The material is generally accurate but underdeveloped or narrow.
There will typically be at least one developed knowledge point with others which are underdeveloped, or at least three underdevelopedpoints.
22-3bysome evidence.
undeveloped. Therewill typicallybe one ortwounderdeveloped points, ora rangeof undeveloped points.
11The candidate demonstrates a limited knowledge and understanding of sociological material. Very little relevant sociological
material is presented; the response contains considerable inaccuracy and lacks clarity. Therewill typicallybe one undeveloped point or a vague representation.
The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the
relationship to the evidencemay not beclear.
00Norelevantsociologicalknowledgeorunderstanding
", - "type": "table", - "image_path": "fecf3a46de20e631ff0601c9cc087b7aa92887ddd9ac259e84473e75b12d0aca.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 37, - 98, - 765, - 225.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 37, - 225.66666666666669, - 765, - 353.33333333333337 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 37, - 353.33333333333337, - 765, - 481.00000000000006 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 4.0 - } - ], - "layout_bboxes": [], - "page_idx": 36, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 37, - 98, - 765, - 481 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 41, - 87, - 286, - 99 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 87, - 284, - 100 - ], - "spans": [ - { - "bbox": [ - 41, - 87, - 284, - 100 - ], - "score": 1.0, - "content": "AO1: Knowledge and understanding (6 marks)", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "table_body", - "bbox": [ - 37, - 98, - 765, - 481 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 37, - 98, - 765, - 481 - ], - "spans": [ - { - "bbox": [ - 37, - 98, - 765, - 481 - ], - "score": 0.979, - "html": "
LevelMarksGeneric Mark Scheme questions 4,7 and 10
46The candidate demonstrates an excellent knowledge and understanding of a range of sociological material; the material is generally accurate and detailed.
There will typically be three developed knowledge points, or two developed points and one underdeveloped point There is a well-developed line of reasoning which is clear and logically structured. The response is relevant and substantiated.
34-5The candidate demonstrates a good knowledge and understanding of either a range of sociological material or some material in detail. The material is generally accurate but underdeveloped or narrow.
There will typically be at least one developed knowledge point with others which are underdeveloped, or at least three underdevelopedpoints.
22-3bysome evidence.
undeveloped. Therewill typicallybe one ortwounderdeveloped points, ora rangeof undeveloped points.
11The candidate demonstrates a limited knowledge and understanding of sociological material. Very little relevant sociological
material is presented; the response contains considerable inaccuracy and lacks clarity. Therewill typicallybe one undeveloped point or a vague representation.
The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the
relationship to the evidencemay not beclear.
00Norelevantsociologicalknowledgeorunderstanding
", - "type": "table", - "image_path": "fecf3a46de20e631ff0601c9cc087b7aa92887ddd9ac259e84473e75b12d0aca.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 37, - 98, - 765, - 225.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 37, - 225.66666666666669, - 765, - 353.33333333333337 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 37, - 353.33333333333337, - 765, - 481.00000000000006 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 4.0 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 48 - ], - "lines": [ - { - "bbox": [ - 713, - 36, - 799, - 47 - ], - "spans": [ - { - "bbox": [ - 713, - 36, - 799, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 384, - 36, - 457, - 48 - ], - "lines": [ - { - "bbox": [ - 384, - 36, - 457, - 47 - ], - "spans": [ - { - "bbox": [ - 384, - 36, - 457, - 47 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 41, - 34, - 384, - 75 - ], - "lines": [ - { - "bbox": [ - 41, - 35, - 89, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 35, - 89, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 42, - 50, - 107, - 60 - ], - "spans": [ - { - "bbox": [ - 42, - 50, - 107, - 60 - ], - "score": 1.0, - "content": "APPENDIX 1", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 42, - 62, - 381, - 73 - ], - "spans": [ - { - "bbox": [ - 42, - 62, - 381, - 73 - ], - "score": 1.0, - "content": "GENERIC MARKSCHEME FOR OPTIONS QUESTIONS 4, 7 and 10", - "type": "text" - } - ], - "index": 2 - } - ], - "index": 1, - "page_num": "page_36", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - }, - { - "type": "table", - "bbox": [ - 37, - 98, - 765, - 481 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 41, - 87, - 286, - 99 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 87, - 284, - 100 - ], - "spans": [ - { - "bbox": [ - 41, - 87, - 284, - 100 - ], - "score": 1.0, - "content": "AO1: Knowledge and understanding (6 marks)", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "table_body", - "bbox": [ - 37, - 98, - 765, - 481 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 37, - 98, - 765, - 481 - ], - "spans": [ - { - "bbox": [ - 37, - 98, - 765, - 481 - ], - "score": 0.979, - "html": "
LevelMarksGeneric Mark Scheme questions 4,7 and 10
46The candidate demonstrates an excellent knowledge and understanding of a range of sociological material; the material is generally accurate and detailed.
There will typically be three developed knowledge points, or two developed points and one underdeveloped point There is a well-developed line of reasoning which is clear and logically structured. The response is relevant and substantiated.
34-5The candidate demonstrates a good knowledge and understanding of either a range of sociological material or some material in detail. The material is generally accurate but underdeveloped or narrow.
There will typically be at least one developed knowledge point with others which are underdeveloped, or at least three underdevelopedpoints.
22-3bysome evidence.
undeveloped. Therewill typicallybe one ortwounderdeveloped points, ora rangeof undeveloped points.
11The candidate demonstrates a limited knowledge and understanding of sociological material. Very little relevant sociological
material is presented; the response contains considerable inaccuracy and lacks clarity. Therewill typicallybe one undeveloped point or a vague representation.
The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the
relationship to the evidencemay not beclear.
00Norelevantsociologicalknowledgeorunderstanding
", - "type": "table", - "image_path": "fecf3a46de20e631ff0601c9cc087b7aa92887ddd9ac259e84473e75b12d0aca.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 37, - 98, - 765, - 225.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 37, - 225.66666666666669, - 765, - 353.33333333333337 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 37, - 353.33333333333337, - 765, - 481.00000000000006 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 4.0, - "page_num": "page_36", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 33, - 63, - 766, - 270 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 33, - 63, - 766, - 270 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 33, - 63, - 766, - 270 - ], - "spans": [ - { - "bbox": [ - 33, - 63, - 766, - 270 - ], - "score": 0.974, - "html": "
LevelMarksGenericMarkSchemequestions 4,7 and 10
44The candidate demonstrates an excellent ability to apply relevant sociological material. The material is consistently and frequently related to the question.
33The candidate demonstrates a good ability to apply sociological material. The material is generally relevant but is explicitly related to thequestiononly occasionally.
22The candidate demonstrates a basic ability to apply sociological material. The material is related to the question mainly implicitly and lacks focus on the question. The response may be generalised.
11The candidate demonstrates a limited ability to apply sociological material. The material is tangential to the question and of marginalimportance.
00 Norelevantapplication.
", - "type": "table", - "image_path": "0cd590847ee7d8dcfae823d48d773eafd3a9c9a2b8d72b81e03adeb4233a431e.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 33, - 63, - 766, - 132.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 33, - 132.0, - 766, - 201.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 33, - 201.0, - 766, - 270.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "layout_bboxes": [], - "page_idx": 37, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 33, - 63, - 766, - 270 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 33, - 63, - 766, - 270 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 33, - 63, - 766, - 270 - ], - "spans": [ - { - "bbox": [ - 33, - 63, - 766, - 270 - ], - "score": 0.974, - "html": "
LevelMarksGenericMarkSchemequestions 4,7 and 10
44The candidate demonstrates an excellent ability to apply relevant sociological material. The material is consistently and frequently related to the question.
33The candidate demonstrates a good ability to apply sociological material. The material is generally relevant but is explicitly related to thequestiononly occasionally.
22The candidate demonstrates a basic ability to apply sociological material. The material is related to the question mainly implicitly and lacks focus on the question. The response may be generalised.
11The candidate demonstrates a limited ability to apply sociological material. The material is tangential to the question and of marginalimportance.
00 Norelevantapplication.
", - "type": "table", - "image_path": "0cd590847ee7d8dcfae823d48d773eafd3a9c9a2b8d72b81e03adeb4233a431e.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 33, - 63, - 766, - 132.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 33, - 132.0, - 766, - 201.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 33, - 201.0, - 766, - 270.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 48 - ], - "lines": [ - { - "bbox": [ - 713, - 36, - 799, - 47 - ], - "spans": [ - { - "bbox": [ - 713, - 36, - 799, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 384, - 36, - 457, - 48 - ], - "lines": [ - { - "bbox": [ - 384, - 36, - 457, - 48 - ], - "spans": [ - { - "bbox": [ - 384, - 36, - 457, - 48 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 40, - 35, - 185, - 62 - ], - "lines": [ - { - "bbox": [ - 42, - 36, - 87, - 47 - ], - "spans": [ - { - "bbox": [ - 42, - 36, - 87, - 47 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ] - }, - { - "bbox": [ - 41, - 49, - 184, - 62 - ], - "spans": [ - { - "bbox": [ - 41, - 49, - 184, - 62 - ], - "score": 1.0, - "content": "AO2: Application (4 marks)", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 33, - 63, - 766, - 270 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 33, - 63, - 766, - 270 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 33, - 63, - 766, - 270 - ], - "spans": [ - { - "bbox": [ - 33, - 63, - 766, - 270 - ], - "score": 0.974, - "html": "
LevelMarksGenericMarkSchemequestions 4,7 and 10
44The candidate demonstrates an excellent ability to apply relevant sociological material. The material is consistently and frequently related to the question.
33The candidate demonstrates a good ability to apply sociological material. The material is generally relevant but is explicitly related to thequestiononly occasionally.
22The candidate demonstrates a basic ability to apply sociological material. The material is related to the question mainly implicitly and lacks focus on the question. The response may be generalised.
11The candidate demonstrates a limited ability to apply sociological material. The material is tangential to the question and of marginalimportance.
00 Norelevantapplication.
", - "type": "table", - "image_path": "0cd590847ee7d8dcfae823d48d773eafd3a9c9a2b8d72b81e03adeb4233a431e.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 33, - 63, - 766, - 132.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 33, - 132.0, - 766, - 201.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 33, - 201.0, - 766, - 270.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_37", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 36, - 89, - 773, - 430 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 39, - 34, - 383, - 87 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 35, - 89, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 35, - 89, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 42, - 50, - 108, - 60 - ], - "spans": [ - { - "bbox": [ - 42, - 50, - 108, - 60 - ], - "score": 1.0, - "content": "APPENDIX 2", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 42, - 62, - 381, - 73 - ], - "spans": [ - { - "bbox": [ - 42, - 62, - 381, - 73 - ], - "score": 1.0, - "content": "GENERIC MARKSCHEME FOR OPTIONS QUESTIONS 5, 8 and 11", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 41, - 76, - 254, - 87 - ], - "spans": [ - { - "bbox": [ - 41, - 76, - 254, - 87 - ], - "score": 1.0, - "content": "AO1: Knowledge and understanding (8 marks)", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 1.5 - }, - { - "type": "table_body", - "bbox": [ - 36, - 89, - 773, - 430 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 36, - 89, - 773, - 430 - ], - "spans": [ - { - "bbox": [ - 36, - 89, - 773, - 430 - ], - "score": 0.978, - "html": "
Level 4Marks 7-8GenericMarkSchemequestions5,8and11 The candidate demonstrates an excellent knowledge and understanding of a range of sociological material; the material is
35-6generally accurate and detailed. There will typically be three developed knowledge points, or two developed points and one underdeveloped point.
There is a well-developed line of reasoning which is clear and logically structured. The information is relevant and substantiated.
The candidate demonstrates a good knowledge and understanding of either a range of sociological material or some material in detail. The material is generally accurate but underdeveloped or narrow.
Therewilltypicallybeatleastonedevelopedknowledgepointwithotherswhichareunderdeveloped,oratleastthree underdevelopedpoints.
evidence.
23-4The candidate demonstrates a basic knowledge and understanding of some sociological material. The response lacks range and
There will typically be one or two underdeveloped points, or a range of undeveloped points.
11-2Theinformation has some relevance and is presented with basic structure.Theresponse is supported bybasic evidence.
material is presented; the response contains considerable inaccuracy and lacks clarity.
The information is basic and communicated in an unstructured way. The response is supported by limited evidence and the
0 0relationship totheevidencemay not beclear. No relevant sociological knowledge or understanding.
", - "type": "table", - "image_path": "0effdfa9105957faba6054f9981c07572e3675eab15bb748dc57d44b5f8e139b.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 36, - 89, - 773, - 202.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 36, - 202.66666666666669, - 773, - 316.33333333333337 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 36, - 316.33333333333337, - 773, - 430.00000000000006 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 3.25 - } - ], - "layout_bboxes": [], - "page_idx": 38, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 36, - 89, - 773, - 430 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 39, - 34, - 383, - 87 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 35, - 89, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 35, - 89, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 42, - 50, - 108, - 60 - ], - "spans": [ - { - "bbox": [ - 42, - 50, - 108, - 60 - ], - "score": 1.0, - "content": "APPENDIX 2", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 42, - 62, - 381, - 73 - ], - "spans": [ - { - "bbox": [ - 42, - 62, - 381, - 73 - ], - "score": 1.0, - "content": "GENERIC MARKSCHEME FOR OPTIONS QUESTIONS 5, 8 and 11", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 41, - 76, - 254, - 87 - ], - "spans": [ - { - "bbox": [ - 41, - 76, - 254, - 87 - ], - "score": 1.0, - "content": "AO1: Knowledge and understanding (8 marks)", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 1.5 - }, - { - "type": "table_body", - "bbox": [ - 36, - 89, - 773, - 430 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 36, - 89, - 773, - 430 - ], - "spans": [ - { - "bbox": [ - 36, - 89, - 773, - 430 - ], - "score": 0.978, - "html": "
Level 4Marks 7-8GenericMarkSchemequestions5,8and11 The candidate demonstrates an excellent knowledge and understanding of a range of sociological material; the material is
35-6generally accurate and detailed. There will typically be three developed knowledge points, or two developed points and one underdeveloped point.
There is a well-developed line of reasoning which is clear and logically structured. The information is relevant and substantiated.
The candidate demonstrates a good knowledge and understanding of either a range of sociological material or some material in detail. The material is generally accurate but underdeveloped or narrow.
Therewilltypicallybeatleastonedevelopedknowledgepointwithotherswhichareunderdeveloped,oratleastthree underdevelopedpoints.
evidence.
23-4The candidate demonstrates a basic knowledge and understanding of some sociological material. The response lacks range and
There will typically be one or two underdeveloped points, or a range of undeveloped points.
11-2Theinformation has some relevance and is presented with basic structure.Theresponse is supported bybasic evidence.
material is presented; the response contains considerable inaccuracy and lacks clarity.
The information is basic and communicated in an unstructured way. The response is supported by limited evidence and the
0 0relationship totheevidencemay not beclear. No relevant sociological knowledge or understanding.
", - "type": "table", - "image_path": "0effdfa9105957faba6054f9981c07572e3675eab15bb748dc57d44b5f8e139b.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 36, - 89, - 773, - 202.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 36, - 202.66666666666669, - 773, - 316.33333333333337 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 36, - 316.33333333333337, - 773, - 430.00000000000006 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 3.25 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 48 - ], - "lines": [ - { - "bbox": [ - 713, - 36, - 799, - 47 - ], - "spans": [ - { - "bbox": [ - 713, - 36, - 799, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 384, - 36, - 457, - 48 - ], - "lines": [ - { - "bbox": [ - 384, - 35, - 457, - 49 - ], - "spans": [ - { - "bbox": [ - 384, - 35, - 457, - 49 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 36, - 89, - 773, - 430 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 39, - 34, - 383, - 87 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 35, - 89, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 35, - 89, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 42, - 50, - 108, - 60 - ], - "spans": [ - { - "bbox": [ - 42, - 50, - 108, - 60 - ], - "score": 1.0, - "content": "APPENDIX 2", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 42, - 62, - 381, - 73 - ], - "spans": [ - { - "bbox": [ - 42, - 62, - 381, - 73 - ], - "score": 1.0, - "content": "GENERIC MARKSCHEME FOR OPTIONS QUESTIONS 5, 8 and 11", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 41, - 76, - 254, - 87 - ], - "spans": [ - { - "bbox": [ - 41, - 76, - 254, - 87 - ], - "score": 1.0, - "content": "AO1: Knowledge and understanding (8 marks)", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 1.5 - }, - { - "type": "table_body", - "bbox": [ - 36, - 89, - 773, - 430 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 36, - 89, - 773, - 430 - ], - "spans": [ - { - "bbox": [ - 36, - 89, - 773, - 430 - ], - "score": 0.978, - "html": "
Level 4Marks 7-8GenericMarkSchemequestions5,8and11 The candidate demonstrates an excellent knowledge and understanding of a range of sociological material; the material is
35-6generally accurate and detailed. There will typically be three developed knowledge points, or two developed points and one underdeveloped point.
There is a well-developed line of reasoning which is clear and logically structured. The information is relevant and substantiated.
The candidate demonstrates a good knowledge and understanding of either a range of sociological material or some material in detail. The material is generally accurate but underdeveloped or narrow.
Therewilltypicallybeatleastonedevelopedknowledgepointwithotherswhichareunderdeveloped,oratleastthree underdevelopedpoints.
evidence.
23-4The candidate demonstrates a basic knowledge and understanding of some sociological material. The response lacks range and
There will typically be one or two underdeveloped points, or a range of undeveloped points.
11-2Theinformation has some relevance and is presented with basic structure.Theresponse is supported bybasic evidence.
material is presented; the response contains considerable inaccuracy and lacks clarity.
The information is basic and communicated in an unstructured way. The response is supported by limited evidence and the
0 0relationship totheevidencemay not beclear. No relevant sociological knowledge or understanding.
", - "type": "table", - "image_path": "0effdfa9105957faba6054f9981c07572e3675eab15bb748dc57d44b5f8e139b.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 36, - 89, - 773, - 202.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 36, - 202.66666666666669, - 773, - 316.33333333333337 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 36, - 316.33333333333337, - 773, - 430.00000000000006 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 3.25, - "page_num": "page_38", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 35, - 66, - 772, - 201 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 66, - 772, - 201 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 35, - 66, - 772, - 201 - ], - "spans": [ - { - "bbox": [ - 35, - 66, - 772, - 201 - ], - "score": 0.96, - "html": "
LevelMarksGenericMarkSchemequestions5,8and11
44The candidate demonstrates an excellent ability to apply relevant sociological material.The material is consistently and frequentlyrelatedtothequestion.
33The candidate demonstrates a good ability to applysociological material.The material isgenerallyrelevant but is explicitly relatedtothequestiononlyoccasionally.
22The candidate demonstrates a basic ability to apply sociological material. The material isrelated to thequestion mainlyimplicitly and lacks focus on the question. The response may be generalised.
11Thecandidatedemonstratesalimitedabilitytoapplysociologicalmaterial.Thematerialistangentialtothequestionand of marginalrelevance.
00Norelevantapplication.
", - "type": "table", - "image_path": "36d831aa8e8746823bf0920cb65918bcae911834c0f21271d9d63da955dce991.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 35, - 66, - 772, - 111.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 35, - 111.0, - 772, - 156.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 35, - 156.0, - 772, - 201.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 35, - 229, - 772, - 497 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 40, - 216, - 223, - 228 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 41, - 217, - 222, - 229 - ], - "spans": [ - { - "bbox": [ - 41, - 217, - 222, - 229 - ], - "score": 1.0, - "content": "AO3: Analysis and Evaluation (4 marks)", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "table_body", - "bbox": [ - 35, - 229, - 772, - 497 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 35, - 229, - 772, - 497 - ], - "spans": [ - { - "bbox": [ - 35, - 229, - 772, - 497 - ], - "score": 0.981, - "html": "
LevelMarksGeneric MarkScheme questions 5,8 and 11
4 37-8 5-6The candidate demonstrates an excellent ability to analyse and evaluate sociological material. There are a range of evaluation points which are well developed, giving the response a reflective tone. The candidate may reach a critical and reasoned conclusion. There will typically be three developed evaluation points, or two developed points and one underdeveloped point. thesemaybeunderdeveloped.Thecandidatemayreachacriticalbutbriefconclusion.
23-4There will typically be at least one developed evaluation point with others which areunderdeveloped, or at least three underdevelopedpoints. The candidate demonstrates a basic ability to analyse and evaluate. Evaluation points are likely to be anecdotal and/or undeveloped or completely through juxtaposition. The evaluation may lack clarity and contain some inaccuracies/confusion. If
11-2present, the conclusion is likelyto be summative. Therewill typicallybe oneortwounderdevelopedpoints,orarangeofundevelopedpoints. The candidate demonstrates a limited ability to analyse and evaluate. Only implicit evaluation is present. There is unlikely to be a unsupported.
00Therewill typicallybe oneundevelopedpointor anassertivetone. Norelevantanalysisorevaluation.
", - "type": "table", - "image_path": "cd761d87a5f965557441bc11d1ae2ec24653e3f7393ed3177911e37b266ef80e.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 35, - 229, - 772, - 318.3333333333333 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 35, - 318.3333333333333, - 772, - 407.66666666666663 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 35, - 407.66666666666663, - 772, - 496.99999999999994 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 4.0 - } - ], - "layout_bboxes": [], - "page_idx": 39, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 35, - 66, - 772, - 201 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 66, - 772, - 201 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 35, - 66, - 772, - 201 - ], - "spans": [ - { - "bbox": [ - 35, - 66, - 772, - 201 - ], - "score": 0.96, - "html": "
LevelMarksGenericMarkSchemequestions5,8and11
44The candidate demonstrates an excellent ability to apply relevant sociological material.The material is consistently and frequentlyrelatedtothequestion.
33The candidate demonstrates a good ability to applysociological material.The material isgenerallyrelevant but is explicitly relatedtothequestiononlyoccasionally.
22The candidate demonstrates a basic ability to apply sociological material. The material isrelated to thequestion mainlyimplicitly and lacks focus on the question. The response may be generalised.
11Thecandidatedemonstratesalimitedabilitytoapplysociologicalmaterial.Thematerialistangentialtothequestionand of marginalrelevance.
00Norelevantapplication.
", - "type": "table", - "image_path": "36d831aa8e8746823bf0920cb65918bcae911834c0f21271d9d63da955dce991.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 35, - 66, - 772, - 111.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 35, - 111.0, - 772, - 156.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 35, - 156.0, - 772, - 201.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 35, - 229, - 772, - 497 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 40, - 216, - 223, - 228 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 41, - 217, - 222, - 229 - ], - "spans": [ - { - "bbox": [ - 41, - 217, - 222, - 229 - ], - "score": 1.0, - "content": "AO3: Analysis and Evaluation (4 marks)", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "table_body", - "bbox": [ - 35, - 229, - 772, - 497 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 35, - 229, - 772, - 497 - ], - "spans": [ - { - "bbox": [ - 35, - 229, - 772, - 497 - ], - "score": 0.981, - "html": "
LevelMarksGeneric MarkScheme questions 5,8 and 11
4 37-8 5-6The candidate demonstrates an excellent ability to analyse and evaluate sociological material. There are a range of evaluation points which are well developed, giving the response a reflective tone. The candidate may reach a critical and reasoned conclusion. There will typically be three developed evaluation points, or two developed points and one underdeveloped point. thesemaybeunderdeveloped.Thecandidatemayreachacriticalbutbriefconclusion.
23-4There will typically be at least one developed evaluation point with others which areunderdeveloped, or at least three underdevelopedpoints. The candidate demonstrates a basic ability to analyse and evaluate. Evaluation points are likely to be anecdotal and/or undeveloped or completely through juxtaposition. The evaluation may lack clarity and contain some inaccuracies/confusion. If
11-2present, the conclusion is likelyto be summative. Therewill typicallybe oneortwounderdevelopedpoints,orarangeofundevelopedpoints. The candidate demonstrates a limited ability to analyse and evaluate. Only implicit evaluation is present. There is unlikely to be a unsupported.
00Therewill typicallybe oneundevelopedpointor anassertivetone. Norelevantanalysisorevaluation.
", - "type": "table", - "image_path": "cd761d87a5f965557441bc11d1ae2ec24653e3f7393ed3177911e37b266ef80e.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 35, - 229, - 772, - 318.3333333333333 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 35, - 318.3333333333333, - 772, - 407.66666666666663 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 35, - 407.66666666666663, - 772, - 496.99999999999994 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 4.0 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 48 - ], - "lines": [ - { - "bbox": [ - 713, - 36, - 799, - 47 - ], - "spans": [ - { - "bbox": [ - 713, - 36, - 799, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 41, - 35, - 88, - 48 - ], - "lines": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 358, - 36, - 483, - 62 - ], - "lines": [ - { - "bbox": [ - 384, - 36, - 457, - 49 - ], - "spans": [ - { - "bbox": [ - 384, - 36, - 457, - 49 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ] - }, - { - "bbox": [ - 358, - 50, - 482, - 62 - ], - "spans": [ - { - "bbox": [ - 358, - 50, - 482, - 62 - ], - "score": 1.0, - "content": "AO2: Application (4 marks)", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 35, - 66, - 772, - 201 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 35, - 66, - 772, - 201 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 35, - 66, - 772, - 201 - ], - "spans": [ - { - "bbox": [ - 35, - 66, - 772, - 201 - ], - "score": 0.96, - "html": "
LevelMarksGenericMarkSchemequestions5,8and11
44The candidate demonstrates an excellent ability to apply relevant sociological material.The material is consistently and frequentlyrelatedtothequestion.
33The candidate demonstrates a good ability to applysociological material.The material isgenerallyrelevant but is explicitly relatedtothequestiononlyoccasionally.
22The candidate demonstrates a basic ability to apply sociological material. The material isrelated to thequestion mainlyimplicitly and lacks focus on the question. The response may be generalised.
11Thecandidatedemonstratesalimitedabilitytoapplysociologicalmaterial.Thematerialistangentialtothequestionand of marginalrelevance.
00Norelevantapplication.
", - "type": "table", - "image_path": "36d831aa8e8746823bf0920cb65918bcae911834c0f21271d9d63da955dce991.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 35, - 66, - 772, - 111.0 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 35, - 111.0, - 772, - 156.0 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 35, - 156.0, - 772, - 201.0 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_39", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - }, - { - "type": "table", - "bbox": [ - 35, - 229, - 772, - 497 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 40, - 216, - 223, - 228 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 41, - 217, - 222, - 229 - ], - "spans": [ - { - "bbox": [ - 41, - 217, - 222, - 229 - ], - "score": 1.0, - "content": "AO3: Analysis and Evaluation (4 marks)", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "table_body", - "bbox": [ - 35, - 229, - 772, - 497 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 35, - 229, - 772, - 497 - ], - "spans": [ - { - "bbox": [ - 35, - 229, - 772, - 497 - ], - "score": 0.981, - "html": "
LevelMarksGeneric MarkScheme questions 5,8 and 11
4 37-8 5-6The candidate demonstrates an excellent ability to analyse and evaluate sociological material. There are a range of evaluation points which are well developed, giving the response a reflective tone. The candidate may reach a critical and reasoned conclusion. There will typically be three developed evaluation points, or two developed points and one underdeveloped point. thesemaybeunderdeveloped.Thecandidatemayreachacriticalbutbriefconclusion.
23-4There will typically be at least one developed evaluation point with others which areunderdeveloped, or at least three underdevelopedpoints. The candidate demonstrates a basic ability to analyse and evaluate. Evaluation points are likely to be anecdotal and/or undeveloped or completely through juxtaposition. The evaluation may lack clarity and contain some inaccuracies/confusion. If
11-2present, the conclusion is likelyto be summative. Therewill typicallybe oneortwounderdevelopedpoints,orarangeofundevelopedpoints. The candidate demonstrates a limited ability to analyse and evaluate. Only implicit evaluation is present. There is unlikely to be a unsupported.
00Therewill typicallybe oneundevelopedpointor anassertivetone. Norelevantanalysisorevaluation.
", - "type": "table", - "image_path": "cd761d87a5f965557441bc11d1ae2ec24653e3f7393ed3177911e37b266ef80e.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 35, - 229, - 772, - 318.3333333333333 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 35, - 318.3333333333333, - 772, - 407.66666666666663 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 35, - 407.66666666666663, - 772, - 496.99999999999994 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 4.0, - "page_num": "page_39", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 36, - 89, - 776, - 430 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 39, - 34, - 383, - 87 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 35, - 89, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 35, - 89, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 42, - 50, - 108, - 60 - ], - "spans": [ - { - "bbox": [ - 42, - 50, - 108, - 60 - ], - "score": 1.0, - "content": "APPENDIX 3", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 42, - 62, - 382, - 73 - ], - "spans": [ - { - "bbox": [ - 42, - 62, - 382, - 73 - ], - "score": 1.0, - "content": "GENERIC MARKSCHEME FOR OPTIONS QUESTIONS 6, 9 and 12", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 41, - 76, - 259, - 87 - ], - "spans": [ - { - "bbox": [ - 41, - 76, - 259, - 87 - ], - "score": 1.0, - "content": "AO1: Knowledge and understanding (16 marks)", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 1.5 - }, - { - "type": "table_body", - "bbox": [ - 36, - 89, - 776, - 430 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 36, - 89, - 776, - 430 - ], - "spans": [ - { - "bbox": [ - 36, - 89, - 776, - 430 - ], - "score": 0.979, - "html": "
Level 4Marks 13-16GenericMarkSchemequestions6,9and 12 The candidate demonstrates an excellent knowledge and understanding of a range of sociological material; the material is generallyaccurateand detailed.
39-12There will typically be four well-developed knowledge points, or three well-developed points towards the bottom of the level. There is awell-developed line of reasoningwhich isclear and logically structured.Theinformation is relevant and substantiated. The candidate demonstrates a good knowledge and understanding of either a range of sociological material or some material in detail. The material is generally accuratebutunderdeveloped or narrow.
Towards the bottom of the level there may be one well-developed knowledge point (depth). There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported bysomeevidence.
25-8The candidate demonstrates a basic knowledge and understanding of some sociological material. The response lacks range and There will typically be three or more undeveloped/ unsubstantiated points or one-two underdeveloped points. The informationhas some relevance and is presented with a basic structure.The response is supported bybasic evidence.
11-4The candidate demonstrates a limited knowledge and understanding of sociological material. Very little relevant sociological material is presented; the response contains considerable inaccuracy and lacks clarity. The information is limited and communicated in an unstructured way. The response is supported by limited evidence and the
0 0relationshiptotheevidencemaynotbeclear. Norelevantknowledge or understanding.
", - "type": "table", - "image_path": "8e2e2c7f7b92fbfe305c8d6b99752a8606dc7031d8e4e1f5bc906a8fc2dc66af.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 36, - 89, - 776, - 202.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 36, - 202.66666666666669, - 776, - 316.33333333333337 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 36, - 316.33333333333337, - 776, - 430.00000000000006 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 3.25 - } - ], - "layout_bboxes": [], - "page_idx": 40, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 36, - 89, - 776, - 430 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 39, - 34, - 383, - 87 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 35, - 89, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 35, - 89, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 42, - 50, - 108, - 60 - ], - "spans": [ - { - "bbox": [ - 42, - 50, - 108, - 60 - ], - "score": 1.0, - "content": "APPENDIX 3", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 42, - 62, - 382, - 73 - ], - "spans": [ - { - "bbox": [ - 42, - 62, - 382, - 73 - ], - "score": 1.0, - "content": "GENERIC MARKSCHEME FOR OPTIONS QUESTIONS 6, 9 and 12", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 41, - 76, - 259, - 87 - ], - "spans": [ - { - "bbox": [ - 41, - 76, - 259, - 87 - ], - "score": 1.0, - "content": "AO1: Knowledge and understanding (16 marks)", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 1.5 - }, - { - "type": "table_body", - "bbox": [ - 36, - 89, - 776, - 430 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 36, - 89, - 776, - 430 - ], - "spans": [ - { - "bbox": [ - 36, - 89, - 776, - 430 - ], - "score": 0.979, - "html": "
Level 4Marks 13-16GenericMarkSchemequestions6,9and 12 The candidate demonstrates an excellent knowledge and understanding of a range of sociological material; the material is generallyaccurateand detailed.
39-12There will typically be four well-developed knowledge points, or three well-developed points towards the bottom of the level. There is awell-developed line of reasoningwhich isclear and logically structured.Theinformation is relevant and substantiated. The candidate demonstrates a good knowledge and understanding of either a range of sociological material or some material in detail. The material is generally accuratebutunderdeveloped or narrow.
Towards the bottom of the level there may be one well-developed knowledge point (depth). There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported bysomeevidence.
25-8The candidate demonstrates a basic knowledge and understanding of some sociological material. The response lacks range and There will typically be three or more undeveloped/ unsubstantiated points or one-two underdeveloped points. The informationhas some relevance and is presented with a basic structure.The response is supported bybasic evidence.
11-4The candidate demonstrates a limited knowledge and understanding of sociological material. Very little relevant sociological material is presented; the response contains considerable inaccuracy and lacks clarity. The information is limited and communicated in an unstructured way. The response is supported by limited evidence and the
0 0relationshiptotheevidencemaynotbeclear. Norelevantknowledge or understanding.
", - "type": "table", - "image_path": "8e2e2c7f7b92fbfe305c8d6b99752a8606dc7031d8e4e1f5bc906a8fc2dc66af.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 36, - 89, - 776, - 202.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 36, - 202.66666666666669, - 776, - 316.33333333333337 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 36, - 316.33333333333337, - 776, - 430.00000000000006 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 3.25 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 48 - ], - "lines": [ - { - "bbox": [ - 713, - 36, - 799, - 47 - ], - "spans": [ - { - "bbox": [ - 713, - 36, - 799, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 384, - 36, - 457, - 48 - ], - "lines": [ - { - "bbox": [ - 384, - 35, - 457, - 49 - ], - "spans": [ - { - "bbox": [ - 384, - 35, - 457, - 49 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 36, - 89, - 776, - 430 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 39, - 34, - 383, - 87 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 41, - 35, - 89, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 35, - 89, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 42, - 50, - 108, - 60 - ], - "spans": [ - { - "bbox": [ - 42, - 50, - 108, - 60 - ], - "score": 1.0, - "content": "APPENDIX 3", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 42, - 62, - 382, - 73 - ], - "spans": [ - { - "bbox": [ - 42, - 62, - 382, - 73 - ], - "score": 1.0, - "content": "GENERIC MARKSCHEME FOR OPTIONS QUESTIONS 6, 9 and 12", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 41, - 76, - 259, - 87 - ], - "spans": [ - { - "bbox": [ - 41, - 76, - 259, - 87 - ], - "score": 1.0, - "content": "AO1: Knowledge and understanding (16 marks)", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 1.5 - }, - { - "type": "table_body", - "bbox": [ - 36, - 89, - 776, - 430 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 36, - 89, - 776, - 430 - ], - "spans": [ - { - "bbox": [ - 36, - 89, - 776, - 430 - ], - "score": 0.979, - "html": "
Level 4Marks 13-16GenericMarkSchemequestions6,9and 12 The candidate demonstrates an excellent knowledge and understanding of a range of sociological material; the material is generallyaccurateand detailed.
39-12There will typically be four well-developed knowledge points, or three well-developed points towards the bottom of the level. There is awell-developed line of reasoningwhich isclear and logically structured.Theinformation is relevant and substantiated. The candidate demonstrates a good knowledge and understanding of either a range of sociological material or some material in detail. The material is generally accuratebutunderdeveloped or narrow.
Towards the bottom of the level there may be one well-developed knowledge point (depth). There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported bysomeevidence.
25-8The candidate demonstrates a basic knowledge and understanding of some sociological material. The response lacks range and There will typically be three or more undeveloped/ unsubstantiated points or one-two underdeveloped points. The informationhas some relevance and is presented with a basic structure.The response is supported bybasic evidence.
11-4The candidate demonstrates a limited knowledge and understanding of sociological material. Very little relevant sociological material is presented; the response contains considerable inaccuracy and lacks clarity. The information is limited and communicated in an unstructured way. The response is supported by limited evidence and the
0 0relationshiptotheevidencemaynotbeclear. Norelevantknowledge or understanding.
", - "type": "table", - "image_path": "8e2e2c7f7b92fbfe305c8d6b99752a8606dc7031d8e4e1f5bc906a8fc2dc66af.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 36, - 89, - 776, - 202.66666666666669 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 36, - 202.66666666666669, - 776, - 316.33333333333337 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 36, - 316.33333333333337, - 776, - 430.00000000000006 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 3.25, - "page_num": "page_40", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "table", - "bbox": [ - 36, - 63, - 777, - 203 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 63, - 777, - 203 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 36, - 63, - 777, - 203 - ], - "spans": [ - { - "bbox": [ - 36, - 63, - 777, - 203 - ], - "score": 0.973, - "html": "
LevelMarksGenericMarkSchemequestions6,9and 12
47-8The candidate demonstrates an excellent ability to apply relevantsociological material. The material is consistently and frequentlyrelatedtothequestion.
35-6The candidate demonstrates a good ability to apply sociological material. The material is generally relevant but is explicitly related
23-4tothequestiononlyoccasionally. The candidate demonstrates a basic ability to apply sociological material. The material is related to the question mainly implicitly
11-2and lacks focus on the question. The response may be generalised. The candidate demonstrates a limited ability to apply sociological material. The material is tangential to the question and of marginalrelevance.
00Norelevantsociologicalapplication.
", - "type": "table", - "image_path": "5a902cfdb2fc6bed5ea1c9139a6f78f1cb111bec35041184e0626c9fd022a6f0.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 36, - 63, - 777, - 109.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 36, - 109.66666666666666, - 777, - 156.33333333333331 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 36, - 156.33333333333331, - 777, - 202.99999999999997 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 36, - 246, - 780, - 530 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 41, - 232, - 228, - 244 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 41, - 232, - 227, - 245 - ], - "spans": [ - { - "bbox": [ - 41, - 232, - 227, - 245 - ], - "score": 1.0, - "content": "AO3: Analysis and Evaluation (16 marks)", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "table_body", - "bbox": [ - 36, - 246, - 780, - 530 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 36, - 246, - 780, - 530 - ], - "spans": [ - { - "bbox": [ - 36, - 246, - 780, - 530 - ], - "score": 0.98, - "html": "
LevelMarksGenericMarkSchemequestions6,9and12
413-16The candidate demonstrates an excellent ability to analyse and evaluate sociological material. There are a range of evaluation There will typically be four well-developed evaluation points, or three well-developed points towards the bottom of the level.
39-12There will typically be three or four evaluation points which may be less well developed in places, or two well-developed points! Towards thebottom ofthelevel there maybe one well-developed evaluationpoint (depth).
25-8The candidate demonstrates a basic ability to analyse and evaluate. Evaluation points are likely to be anecdotal, and/or undeveloped or completely through juxtaposition. The evaluation may lack clarity and contain some inaccuracies/confusion. If present, the conclusion is likely tobe summative. Therewill typicallybe threeormoreundeveloped/unsubstantiatedpointsor oneunderdevelopedpoint.
01-4The candidate demonstrates a limited ability to analyse and evaluate. Only implicit evaluation is present. If present, the conclusion islikelytobeassertedandunsupported. Therewill typicallybe oneortwo undeveloped/unsubstantiatedpointsoran assertivetone.
0Norelevantsociologicalevaluationoranalysis.
", - "type": "table", - "image_path": "ebe043d620521109fc8549ecbea534838f794ddf0125a9480ff6188d4aa1bb7f.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 36, - 246, - 780, - 340.6666666666667 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 36, - 340.6666666666667, - 780, - 435.33333333333337 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 36, - 435.33333333333337, - 780, - 530.0 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 4.0 - } - ], - "layout_bboxes": [], - "page_idx": 41, - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ], - "_layout_tree": [], - "images": [], - "tables": [ - { - "type": "table", - "bbox": [ - 36, - 63, - 777, - 203 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 63, - 777, - 203 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 36, - 63, - 777, - 203 - ], - "spans": [ - { - "bbox": [ - 36, - 63, - 777, - 203 - ], - "score": 0.973, - "html": "
LevelMarksGenericMarkSchemequestions6,9and 12
47-8The candidate demonstrates an excellent ability to apply relevantsociological material. The material is consistently and frequentlyrelatedtothequestion.
35-6The candidate demonstrates a good ability to apply sociological material. The material is generally relevant but is explicitly related
23-4tothequestiononlyoccasionally. The candidate demonstrates a basic ability to apply sociological material. The material is related to the question mainly implicitly
11-2and lacks focus on the question. The response may be generalised. The candidate demonstrates a limited ability to apply sociological material. The material is tangential to the question and of marginalrelevance.
00Norelevantsociologicalapplication.
", - "type": "table", - "image_path": "5a902cfdb2fc6bed5ea1c9139a6f78f1cb111bec35041184e0626c9fd022a6f0.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 36, - 63, - 777, - 109.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 36, - 109.66666666666666, - 777, - 156.33333333333331 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 36, - 156.33333333333331, - 777, - 202.99999999999997 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1 - }, - { - "type": "table", - "bbox": [ - 36, - 246, - 780, - 530 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 41, - 232, - 228, - 244 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 41, - 232, - 227, - 245 - ], - "spans": [ - { - "bbox": [ - 41, - 232, - 227, - 245 - ], - "score": 1.0, - "content": "AO3: Analysis and Evaluation (16 marks)", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "table_body", - "bbox": [ - 36, - 246, - 780, - 530 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 36, - 246, - 780, - 530 - ], - "spans": [ - { - "bbox": [ - 36, - 246, - 780, - 530 - ], - "score": 0.98, - "html": "
LevelMarksGenericMarkSchemequestions6,9and12
413-16The candidate demonstrates an excellent ability to analyse and evaluate sociological material. There are a range of evaluation There will typically be four well-developed evaluation points, or three well-developed points towards the bottom of the level.
39-12There will typically be three or four evaluation points which may be less well developed in places, or two well-developed points! Towards thebottom ofthelevel there maybe one well-developed evaluationpoint (depth).
25-8The candidate demonstrates a basic ability to analyse and evaluate. Evaluation points are likely to be anecdotal, and/or undeveloped or completely through juxtaposition. The evaluation may lack clarity and contain some inaccuracies/confusion. If present, the conclusion is likely tobe summative. Therewill typicallybe threeormoreundeveloped/unsubstantiatedpointsor oneunderdevelopedpoint.
01-4The candidate demonstrates a limited ability to analyse and evaluate. Only implicit evaluation is present. If present, the conclusion islikelytobeassertedandunsupported. Therewill typicallybe oneortwo undeveloped/unsubstantiatedpointsoran assertivetone.
0Norelevantsociologicalevaluationoranalysis.
", - "type": "table", - "image_path": "ebe043d620521109fc8549ecbea534838f794ddf0125a9480ff6188d4aa1bb7f.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 36, - 246, - 780, - 340.6666666666667 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 36, - 340.6666666666667, - 780, - 435.33333333333337 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 36, - 435.33333333333337, - 780, - 530.0 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 4.0 - } - ], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 713, - 36, - 800, - 48 - ], - "lines": [ - { - "bbox": [ - 713, - 36, - 799, - 47 - ], - "spans": [ - { - "bbox": [ - 713, - 36, - 799, - 47 - ], - "score": 1.0, - "content": "November 2020", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 40, - 36, - 166, - 62 - ], - "lines": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "spans": [ - { - "bbox": [ - 41, - 36, - 88, - 48 - ], - "score": 1.0, - "content": "H580/03", - "type": "text" - } - ] - }, - { - "bbox": [ - 41, - 50, - 165, - 62 - ], - "spans": [ - { - "bbox": [ - 41, - 50, - 165, - 62 - ], - "score": 1.0, - "content": "AO2: Application (8 marks)", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 384, - 36, - 457, - 48 - ], - "lines": [ - { - "bbox": [ - 384, - 36, - 457, - 47 - ], - "spans": [ - { - "bbox": [ - 384, - 36, - 457, - 47 - ], - "score": 1.0, - "content": "Mark scheme", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "table", - "bbox": [ - 36, - 63, - 777, - 203 - ], - "blocks": [ - { - "type": "table_body", - "bbox": [ - 36, - 63, - 777, - 203 - ], - "group_id": 0, - "lines": [ - { - "bbox": [ - 36, - 63, - 777, - 203 - ], - "spans": [ - { - "bbox": [ - 36, - 63, - 777, - 203 - ], - "score": 0.973, - "html": "
LevelMarksGenericMarkSchemequestions6,9and 12
47-8The candidate demonstrates an excellent ability to apply relevantsociological material. The material is consistently and frequentlyrelatedtothequestion.
35-6The candidate demonstrates a good ability to apply sociological material. The material is generally relevant but is explicitly related
23-4tothequestiononlyoccasionally. The candidate demonstrates a basic ability to apply sociological material. The material is related to the question mainly implicitly
11-2and lacks focus on the question. The response may be generalised. The candidate demonstrates a limited ability to apply sociological material. The material is tangential to the question and of marginalrelevance.
00Norelevantsociologicalapplication.
", - "type": "table", - "image_path": "5a902cfdb2fc6bed5ea1c9139a6f78f1cb111bec35041184e0626c9fd022a6f0.jpg" - } - ] - } - ], - "index": 1, - "virtual_lines": [ - { - "bbox": [ - 36, - 63, - 777, - 109.66666666666666 - ], - "spans": [], - "index": 0 - }, - { - "bbox": [ - 36, - 109.66666666666666, - 777, - 156.33333333333331 - ], - "spans": [], - "index": 1 - }, - { - "bbox": [ - 36, - 156.33333333333331, - 777, - 202.99999999999997 - ], - "spans": [], - "index": 2 - } - ] - } - ], - "index": 1, - "page_num": "page_41", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - }, - { - "type": "table", - "bbox": [ - 36, - 246, - 780, - 530 - ], - "blocks": [ - { - "type": "table_caption", - "bbox": [ - 41, - 232, - 228, - 244 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 41, - 232, - 227, - 245 - ], - "spans": [ - { - "bbox": [ - 41, - 232, - 227, - 245 - ], - "score": 1.0, - "content": "AO3: Analysis and Evaluation (16 marks)", - "type": "text" - } - ], - "index": 3 - } - ], - "index": 3 - }, - { - "type": "table_body", - "bbox": [ - 36, - 246, - 780, - 530 - ], - "group_id": 1, - "lines": [ - { - "bbox": [ - 36, - 246, - 780, - 530 - ], - "spans": [ - { - "bbox": [ - 36, - 246, - 780, - 530 - ], - "score": 0.98, - "html": "
LevelMarksGenericMarkSchemequestions6,9and12
413-16The candidate demonstrates an excellent ability to analyse and evaluate sociological material. There are a range of evaluation There will typically be four well-developed evaluation points, or three well-developed points towards the bottom of the level.
39-12There will typically be three or four evaluation points which may be less well developed in places, or two well-developed points! Towards thebottom ofthelevel there maybe one well-developed evaluationpoint (depth).
25-8The candidate demonstrates a basic ability to analyse and evaluate. Evaluation points are likely to be anecdotal, and/or undeveloped or completely through juxtaposition. The evaluation may lack clarity and contain some inaccuracies/confusion. If present, the conclusion is likely tobe summative. Therewill typicallybe threeormoreundeveloped/unsubstantiatedpointsor oneunderdevelopedpoint.
01-4The candidate demonstrates a limited ability to analyse and evaluate. Only implicit evaluation is present. If present, the conclusion islikelytobeassertedandunsupported. Therewill typicallybe oneortwo undeveloped/unsubstantiatedpointsoran assertivetone.
0Norelevantsociologicalevaluationoranalysis.
", - "type": "table", - "image_path": "ebe043d620521109fc8549ecbea534838f794ddf0125a9480ff6188d4aa1bb7f.jpg" - } - ] - } - ], - "index": 5, - "virtual_lines": [ - { - "bbox": [ - 36, - 246, - 780, - 340.6666666666667 - ], - "spans": [], - "index": 4 - }, - { - "bbox": [ - 36, - 340.6666666666667, - 780, - 435.33333333333337 - ], - "spans": [], - "index": 5 - }, - { - "bbox": [ - 36, - 435.33333333333337, - 780, - 530.0 - ], - "spans": [], - "index": 6 - } - ] - } - ], - "index": 4.0, - "page_num": "page_41", - "page_size": [ - 841.7999877929688, - 595.4000244140625 - ] - } - ] - }, - { - "preproc_blocks": [ - { - "type": "title", - "bbox": [ - 58, - 108, - 315, - 176 - ], - "lines": [ - { - "bbox": [ - 59, - 109, - 314, - 121 - ], - "spans": [ - { - "bbox": [ - 59, - 109, - 314, - 121 - ], - "score": 1.0, - "content": "OCR (Oxford Cambridge and RSA Examinations)", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 58, - 123, - 173, - 136 - ], - "spans": [ - { - "bbox": [ - 58, - 123, - 173, - 136 - ], - "score": 1.0, - "content": "The Triangle Building", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 59, - 137, - 155, - 149 - ], - "spans": [ - { - "bbox": [ - 59, - 137, - 155, - 149 - ], - "score": 1.0, - "content": "Shaftesbury Road", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 58, - 150, - 118, - 164 - ], - "spans": [ - { - "bbox": [ - 58, - 150, - 118, - 164 - ], - "score": 1.0, - "content": "Cambridge", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 58, - 164, - 107, - 176 - ], - "spans": [ - { - "bbox": [ - 58, - 164, - 107, - 176 - ], - "score": 1.0, - "content": "CB2 8EA", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 2 - }, - { - "type": "text", - "bbox": [ - 59, - 188, - 220, - 201 - ], - "lines": [ - { - "bbox": [ - 59, - 190, - 221, - 201 - ], - "spans": [ - { - "bbox": [ - 59, - 190, - 221, - 201 - ], - "score": 1.0, - "content": "OCR Customer Contact Centre", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5 - }, - { - "type": "text", - "bbox": [ - 58, - 216, - 258, - 273 - ], - "lines": [ - { - "bbox": [ - 58, - 216, - 185, - 229 - ], - "spans": [ - { - "bbox": [ - 58, - 216, - 185, - 229 - ], - "score": 1.0, - "content": "Education and Learning", - "type": "text" - } - ], - "index": 6 - }, - { - "bbox": [ - 58, - 232, - 188, - 243 - ], - "spans": [ - { - "bbox": [ - 58, - 232, - 188, - 243 - ], - "score": 1.0, - "content": "Telephone: 01223 553998", - "type": "text" - } - ], - "index": 7 - }, - { - "bbox": [ - 58, - 246, - 182, - 257 - ], - "spans": [ - { - "bbox": [ - 58, - 246, - 182, - 257 - ], - "score": 1.0, - "content": "Facsimile: 01223 552627", - "type": "text" - } - ], - "index": 8 - }, - { - "bbox": [ - 59, - 261, - 257, - 273 - ], - "spans": [ - { - "bbox": [ - 59, - 261, - 257, - 273 - ], - "score": 1.0, - "content": "Email: general.qualifications@ocr.org.uk", - "type": "text" - } - ], - "index": 9 - } - ], - "index": 7.5 - }, - { - "type": "text", - "bbox": [ - 58, - 286, - 142, - 299 - ], - "lines": [ - { - "bbox": [ - 58, - 287, - 143, - 298 - ], - "spans": [ - { - "bbox": [ - 58, - 287, - 143, - 298 - ], - "score": 1.0, - "content": "www.ocr.org.uk", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10 - } - ], - "layout_bboxes": [], - "page_idx": 42, - "page_size": [ - 595.02001953125, - 841.97998046875 - ], - "_layout_tree": [], - "images": [], - "tables": [], - "interline_equations": [], - "discarded_blocks": [ - { - "type": "discarded", - "bbox": [ - 463, - 781, - 573, - 812 - ], - "lines": [ - { - "bbox": [ - 493, - 781, - 567, - 799 - ], - "spans": [ - { - "bbox": [ - 493, - 781, - 567, - 799 - ], - "score": 0.9687204360961914, - "content": "Cambridge", - "type": "text" - } - ] - }, - { - "bbox": [ - 495, - 798, - 574, - 812 - ], - "spans": [ - { - "bbox": [ - 495, - 798, - 574, - 812 - ], - "score": 0.9999402165412903, - "content": "Assessment", - "type": "text" - } - ] - } - ] - }, - { - "type": "discarded", - "bbox": [ - 56, - 323, - 510, - 349 - ], - "lines": [ - { - "bbox": [ - 58, - 323, - 509, - 337 - ], - "spans": [ - { - "bbox": [ - 58, - 323, - 509, - 337 - ], - "score": 1.0, - "content": "For staff training purposes and as part of our quality assurance programme your call may be", - "type": "text" - } - ] - }, - { - "bbox": [ - 58, - 338, - 169, - 348 - ], - "spans": [ - { - "bbox": [ - 58, - 338, - 169, - 348 - ], - "score": 1.0, - "content": "recorded or monitored", - "type": "text" - } - ] - } - ] - } - ], - "need_drop": false, - "drop_reason": [], - "para_blocks": [ - { - "type": "title", - "bbox": [ - 58, - 108, - 315, - 176 - ], - "lines": [ - { - "bbox": [ - 59, - 109, - 314, - 121 - ], - "spans": [ - { - "bbox": [ - 59, - 109, - 314, - 121 - ], - "score": 1.0, - "content": "OCR (Oxford Cambridge and RSA Examinations)", - "type": "text" - } - ], - "index": 0 - }, - { - "bbox": [ - 58, - 123, - 173, - 136 - ], - "spans": [ - { - "bbox": [ - 58, - 123, - 173, - 136 - ], - "score": 1.0, - "content": "The Triangle Building", - "type": "text" - } - ], - "index": 1 - }, - { - "bbox": [ - 59, - 137, - 155, - 149 - ], - "spans": [ - { - "bbox": [ - 59, - 137, - 155, - 149 - ], - "score": 1.0, - "content": "Shaftesbury Road", - "type": "text" - } - ], - "index": 2 - }, - { - "bbox": [ - 58, - 150, - 118, - 164 - ], - "spans": [ - { - "bbox": [ - 58, - 150, - 118, - 164 - ], - "score": 1.0, - "content": "Cambridge", - "type": "text" - } - ], - "index": 3 - }, - { - "bbox": [ - 58, - 164, - 107, - 176 - ], - "spans": [ - { - "bbox": [ - 58, - 164, - 107, - 176 - ], - "score": 1.0, - "content": "CB2 8EA", - "type": "text" - } - ], - "index": 4 - } - ], - "index": 2, - "page_num": "page_42", - "page_size": [ - 595.02001953125, - 841.97998046875 - ] - }, - { - "type": "text", - "bbox": [ - 59, - 188, - 220, - 201 - ], - "lines": [ - { - "bbox": [ - 59, - 190, - 221, - 201 - ], - "spans": [ - { - "bbox": [ - 59, - 190, - 221, - 201 - ], - "score": 1.0, - "content": "OCR Customer Contact Centre", - "type": "text" - } - ], - "index": 5 - } - ], - "index": 5, - "page_num": "page_42", - "page_size": [ - 595.02001953125, - 841.97998046875 - ], - "bbox_fs": [ - 59, - 190, - 221, - 201 - ] - }, - { - "type": "list", - "bbox": [ - 58, - 216, - 258, - 273 - ], - "lines": [ - { - "bbox": [ - 58, - 216, - 185, - 229 - ], - "spans": [ - { - "bbox": [ - 58, - 216, - 185, - 229 - ], - "score": 1.0, - "content": "Education and Learning", - "type": "text" - } - ], - "index": 6, - "is_list_start_line": true - }, - { - "bbox": [ - 58, - 232, - 188, - 243 - ], - "spans": [ - { - "bbox": [ - 58, - 232, - 188, - 243 - ], - "score": 1.0, - "content": "Telephone: 01223 553998", - "type": "text" - } - ], - "index": 7, - "is_list_start_line": true - }, - { - "bbox": [ - 58, - 246, - 182, - 257 - ], - "spans": [ - { - "bbox": [ - 58, - 246, - 182, - 257 - ], - "score": 1.0, - "content": "Facsimile: 01223 552627", - "type": "text" - } - ], - "index": 8, - "is_list_start_line": true - }, - { - "bbox": [ - 59, - 261, - 257, - 273 - ], - "spans": [ - { - "bbox": [ - 59, - 261, - 257, - 273 - ], - "score": 1.0, - "content": "Email: general.qualifications@ocr.org.uk", - "type": "text" - } - ], - "index": 9, - "is_list_start_line": true - } - ], - "index": 7.5, - "page_num": "page_42", - "page_size": [ - 595.02001953125, - 841.97998046875 - ], - "bbox_fs": [ - 58, - 216, - 257, - 273 - ] - }, - { - "type": "text", - "bbox": [ - 58, - 286, - 142, - 299 - ], - "lines": [ - { - "bbox": [ - 58, - 287, - 143, - 298 - ], - "spans": [ - { - "bbox": [ - 58, - 287, - 143, - 298 - ], - "score": 1.0, - "content": "www.ocr.org.uk", - "type": "text" - } - ], - "index": 10 - } - ], - "index": 10, - "page_num": "page_42", - "page_size": [ - 595.02001953125, - 841.97998046875 - ], - "bbox_fs": [ - 58, - 287, - 143, - 298 - ] - } - ] - } - ], - "_parse_type": "txt", - "_version_name": "1.1.0", - "lang": "en" -} \ No newline at end of file diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/H580_03_November_2020_1739552419_model.json b/pdf_output/H580_03_November_2020_1739552419/auto/H580_03_November_2020_1739552419_model.json deleted file mode 100644 index be86409d4d2c909427fe2a91f9185ab934bbd966..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/H580_03_November_2020_1739552419_model.json +++ /dev/null @@ -1,24310 +0,0 @@ -[ - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 261, - 1051, - 1484, - 1051, - 1484, - 1265, - 261, - 1265 - ], - "score": 0.968 - }, - { - "category_id": 1, - "poly": [ - 262, - 1337, - 1481, - 1337, - 1481, - 1480, - 262, - 1480 - ], - "score": 0.964 - }, - { - "category_id": 2, - "poly": [ - 224, - 2179, - 493, - 2179, - 493, - 2234, - 224, - 2234 - ], - "score": 0.937 - }, - { - "category_id": 2, - "poly": [ - 266, - 132, - 600, - 132, - 600, - 274, - 266, - 274 - ], - "score": 0.927 - }, - { - "category_id": 0, - "poly": [ - 261, - 1300, - 479, - 1300, - 479, - 1331, - 261, - 1331 - ], - "score": 0.914 - }, - { - "category_id": 0, - "poly": [ - 261, - 1010, - 494, - 1010, - 494, - 1043, - 261, - 1043 - ], - "score": 0.912 - }, - { - "category_id": 1, - "poly": [ - 264, - 1553, - 1101, - 1553, - 1101, - 1588, - 264, - 1588 - ], - "score": 0.908 - }, - { - "category_id": 0, - "poly": [ - 262, - 1517, - 381, - 1517, - 381, - 1548, - 262, - 1548 - ], - "score": 0.9 - }, - { - "category_id": 0, - "poly": [ - 264, - 294, - 1300, - 294, - 1300, - 357, - 264, - 357 - ], - "score": 0.879 - }, - { - "category_id": 2, - "poly": [ - 728, - 2181, - 991, - 2181, - 991, - 2206, - 728, - 2206 - ], - "score": 0.87 - }, - { - "category_id": 1, - "poly": [ - 258, - 465, - 1000, - 465, - 1000, - 510, - 258, - 510 - ], - "score": 0.866 - }, - { - "category_id": 2, - "poly": [ - 1364, - 2204, - 1493, - 2204, - 1493, - 2233, - 1364, - 2233 - ], - "score": 0.863 - }, - { - "category_id": 1, - "poly": [ - 265, - 530, - 755, - 530, - 755, - 567, - 265, - 567 - ], - "score": 0.846 - }, - { - "category_id": 2, - "poly": [ - 54, - 617, - 140, - 617, - 140, - 939, - 54, - 939 - ], - "score": 0.799 - }, - { - "category_id": 0, - "poly": [ - 262, - 388, - 649, - 388, - 649, - 441, - 262, - 441 - ], - "score": 0.565 - }, - { - "category_id": 0, - "poly": [ - 279, - 629, - 465, - 629, - 465, - 657, - 279, - 657 - ], - "score": 0.43 - }, - { - "category_id": 1, - "poly": [ - 281, - 660, - 679, - 660, - 679, - 690, - 281, - 690 - ], - "score": 0.385 - }, - { - "category_id": 1, - "poly": [ - 278, - 627, - 680, - 627, - 680, - 691, - 278, - 691 - ], - "score": 0.303 - }, - { - "category_id": 1, - "poly": [ - 262, - 388, - 649, - 388, - 649, - 441, - 262, - 441 - ], - "score": 0.133 - }, - { - "category_id": 13, - "poly": [ - 1439, - 1408, - 1474, - 1408, - 1474, - 1444, - 1439, - 1444 - ], - "score": 0.54, - "latex": "(^{\\star})" - }, - { - "category_id": 13, - "poly": [ - 224, - 2180, - 247, - 2180, - 247, - 2204, - 224, - 2204 - ], - "score": 0.35, - "latex": "\\copyright" - }, - { - "category_id": 15, - "poly": [ - 279.0, - 1046.0, - 494.0, - 1046.0, - 494.0, - 1081.0, - 279.0, - 1081.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 273.0, - 1081.0, - 1484.0, - 1081.0, - 1484.0, - 1117.0, - 273.0, - 1117.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 295.0, - 1117.0, - 543.0, - 1117.0, - 543.0, - 1155.0, - 295.0, - 1155.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 269.0, - 1154.0, - 992.0, - 1154.0, - 992.0, - 1189.0, - 269.0, - 1189.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 274.0, - 1190.0, - 820.0, - 1190.0, - 820.0, - 1227.0, - 274.0, - 1227.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 277.0, - 1228.0, - 1337.0, - 1228.0, - 1337.0, - 1263.0, - 277.0, - 1263.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 1335.0, - 782.0, - 1335.0, - 782.0, - 1369.0, - 263.0, - 1369.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 1371.0, - 1050.0, - 1371.0, - 1050.0, - 1407.0, - 260.0, - 1407.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 260.0, - 1407.0, - 1438.0, - 1407.0, - 1438.0, - 1444.0, - 260.0, - 1444.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1475.0, - 1407.0, - 1479.0, - 1407.0, - 1479.0, - 1444.0, - 1475.0, - 1444.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 1441.0, - 688.0, - 1441.0, - 688.0, - 1482.0, - 259.0, - 1482.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 248.0, - 2180.0, - 493.0, - 2180.0, - 493.0, - 2207.0, - 248.0, - 2207.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 226.0, - 2207.0, - 411.0, - 2207.0, - 411.0, - 2236.0, - 226.0, - 2236.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 270.0, - 138.0, - 595.0, - 138.0, - 595.0, - 234.0, - 270.0, - 234.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 280.0, - 242.0, - 594.0, - 242.0, - 594.0, - 272.0, - 280.0, - 272.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 1301.0, - 478.0, - 1301.0, - 478.0, - 1330.0, - 263.0, - 1330.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 1012.0, - 494.0, - 1012.0, - 494.0, - 1041.0, - 263.0, - 1041.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 286.0, - 1555.0, - 1101.0, - 1555.0, - 1101.0, - 1586.0, - 286.0, - 1586.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 1517.0, - 383.0, - 1517.0, - 383.0, - 1550.0, - 262.0, - 1550.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 259.0, - 292.0, - 1296.0, - 292.0, - 1296.0, - 359.0, - 259.0, - 359.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 730.0, - 2181.0, - 990.0, - 2181.0, - 990.0, - 2208.0, - 730.0, - 2208.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 261.0, - 468.0, - 993.0, - 468.0, - 993.0, - 509.0, - 261.0, - 509.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1363.0, - 2204.0, - 1497.0, - 2204.0, - 1497.0, - 2234.0, - 1363.0, - 2234.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 263.0, - 534.0, - 753.0, - 534.0, - 753.0, - 563.0, - 263.0, - 563.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 62.0, - 627.0, - 73.0, - 627.0, - 73.0, - 642.0, - 62.0, - 642.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 56.0, - 649.0, - 75.0, - 649.0, - 75.0, - 673.0, - 56.0, - 673.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 57.0, - 677.0, - 74.0, - 677.0, - 74.0, - 695.0, - 57.0, - 695.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 57.0, - 705.0, - 74.0, - 705.0, - 74.0, - 724.0, - 57.0, - 724.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 57.0, - 733.0, - 74.0, - 733.0, - 74.0, - 750.0, - 57.0, - 750.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 56.0, - 758.0, - 75.0, - 758.0, - 75.0, - 780.0, - 56.0, - 780.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 57.0, - 784.0, - 73.0, - 784.0, - 73.0, - 805.0, - 57.0, - 805.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 57.0, - 811.0, - 74.0, - 811.0, - 74.0, - 831.0, - 57.0, - 831.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 57.0, - 838.0, - 73.0, - 838.0, - 73.0, - 855.0, - 57.0, - 855.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 57.0, - 866.0, - 74.0, - 866.0, - 74.0, - 886.0, - 57.0, - 886.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 66.0, - 925.0, - 71.0, - 925.0, - 71.0, - 930.0, - 66.0, - 930.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 391.5, - 644.0, - 391.5, - 644.0, - 437.5, - 262.0, - 437.5 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 279.0, - 628.0, - 467.0, - 628.0, - 467.0, - 658.0, - 279.0, - 658.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 281.0, - 661.0, - 679.0, - 661.0, - 679.0, - 689.0, - 281.0, - 689.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 279.0, - 629.0, - 468.0, - 629.0, - 468.0, - 658.0, - 279.0, - 658.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 279.0, - 661.0, - 680.0, - 661.0, - 680.0, - 690.0, - 279.0, - 690.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 262.0, - 391.5, - 644.0, - 391.5, - 644.0, - 437.5, - 262.0, - 437.5 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 0, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 159, - 367, - 1499, - 367, - 1499, - 763, - 159, - 763 - ], - "score": 0.978 - }, - { - "category_id": 1, - "poly": [ - 158, - 884, - 1499, - 884, - 1499, - 1244, - 158, - 1244 - ], - "score": 0.976 - }, - { - "category_id": 1, - "poly": [ - 360, - 240, - 1287, - 240, - 1287, - 276, - 360, - 276 - ], - "score": 0.915 - }, - { - "category_id": 2, - "poly": [ - 135, - 2219, - 235, - 2219, - 235, - 2240, - 135, - 2240 - ], - "score": 0.895 - }, - { - "category_id": 0, - "poly": [ - 742, - 167, - 911, - 167, - 911, - 204, - 742, - 204 - ], - "score": 0.889 - }, - { - "category_id": 2, - "poly": [ - 768, - 2219, - 885, - 2219, - 885, - 2241, - 768, - 2241 - ], - "score": 0.866 - }, - { - "category_id": 0, - "poly": [ - 160, - 849, - 299, - 849, - 299, - 881, - 160, - 881 - ], - "score": 0.862 - }, - { - "category_id": 0, - "poly": [ - 160, - 331, - 298, - 331, - 298, - 363, - 160, - 363 - ], - "score": 0.861 - }, - { - "category_id": 1, - "poly": [ - 141, - 1351, - 1519, - 1351, - 1519, - 1425, - 141, - 1425 - ], - "score": 0.844 - }, - { - "category_id": 1, - "poly": [ - 129, - 1568, - 1522, - 1568, - 1522, - 1642, - 129, - 1642 - ], - "score": 0.69 - }, - { - "category_id": 1, - "poly": [ - 137, - 1458, - 1523, - 1458, - 1523, - 1532, - 137, - 1532 - ], - "score": 0.672 - }, - { - "category_id": 0, - "poly": [ - 814, - 104, - 839, - 104, - 839, - 135, - 814, - 135 - ], - "score": 0.367 - }, - { - "category_id": 2, - "poly": [ - 129, - 1568, - 1522, - 1568, - 1522, - 1642, - 129, - 1642 - ], - "score": 0.166 - }, - { - "category_id": 2, - "poly": [ - 814, - 104, - 839, - 104, - 839, - 135, - 814, - 135 - ], - "score": 0.154 - }, - { - "category_id": 1, - "poly": [ - 814, - 104, - 839, - 104, - 839, - 135, - 814, - 135 - ], - "score": 0.15 - }, - { - "category_id": 15, - "poly": [ - 161.0, - 368.0, - 1495.0, - 368.0, - 1495.0, - 402.0, - 161.0, - 402.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 157.0, - 401.0, - 1497.0, - 401.0, - 1497.0, - 441.0, - 157.0, - 441.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 160.0, - 441.0, - 1492.0, - 441.0, - 1492.0, - 475.0, - 160.0, - 475.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 159.0, - 475.0, - 1497.0, - 475.0, - 1497.0, - 512.0, - 159.0, - 512.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 160.0, - 511.0, - 1497.0, - 511.0, - 1497.0, - 549.0, - 160.0, - 549.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 160.0, - 549.0, - 1495.0, - 549.0, - 1495.0, - 584.0, - 160.0, - 584.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 159.0, - 584.0, - 1495.0, - 584.0, - 1495.0, - 619.0, - 159.0, - 619.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 159.0, - 619.0, - 1495.0, - 619.0, - 1495.0, - 658.0, - 159.0, - 658.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 160.0, - 658.0, - 1495.0, - 658.0, - 1495.0, - 692.0, - 160.0, - 692.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 160.0, - 695.0, - 1495.0, - 695.0, - 1495.0, - 729.0, - 160.0, - 729.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 157.0, - 728.0, - 935.0, - 728.0, - 935.0, - 765.0, - 157.0, - 765.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 159.0, - 884.0, - 1493.0, - 884.0, - 1493.0, - 922.0, - 159.0, - 922.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 161.0, - 923.0, - 1496.0, - 923.0, - 1496.0, - 959.0, - 161.0, - 959.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 159.0, - 959.0, - 1496.0, - 959.0, - 1496.0, - 995.0, - 159.0, - 995.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 159.0, - 995.0, - 1496.0, - 995.0, - 1496.0, - 1031.0, - 159.0, - 1031.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 158.0, - 1030.0, - 1495.0, - 1030.0, - 1495.0, - 1065.0, - 158.0, - 1065.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 161.0, - 1068.0, - 1495.0, - 1068.0, - 1495.0, - 1100.0, - 161.0, - 1100.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 159.0, - 1103.0, - 1496.0, - 1103.0, - 1496.0, - 1139.0, - 159.0, - 1139.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 159.0, - 1139.0, - 1496.0, - 1139.0, - 1496.0, - 1175.0, - 159.0, - 1175.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 162.0, - 1176.0, - 1495.0, - 1176.0, - 1495.0, - 1208.0, - 162.0, - 1208.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 158.0, - 1209.0, - 699.0, - 1209.0, - 699.0, - 1247.0, - 158.0, - 1247.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 368.0, - 244.0, - 1286.0, - 244.0, - 1286.0, - 274.0, - 368.0, - 274.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 2220.0, - 237.0, - 2220.0, - 237.0, - 2241.0, - 135.0, - 2241.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 743.0, - 171.0, - 913.0, - 171.0, - 913.0, - 202.0, - 743.0, - 202.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 769.0, - 2221.0, - 886.0, - 2221.0, - 886.0, - 2240.0, - 769.0, - 2240.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 160.0, - 849.0, - 300.0, - 849.0, - 300.0, - 881.0, - 160.0, - 881.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 161.0, - 330.0, - 299.0, - 330.0, - 299.0, - 363.0, - 161.0, - 363.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 1349.0, - 1523.0, - 1349.0, - 1523.0, - 1391.0, - 133.0, - 1391.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1391.0, - 1269.0, - 1391.0, - 1269.0, - 1425.0, - 199.0, - 1425.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1470.0, - 1387.0, - 1524.0, - 1387.0, - 1524.0, - 1431.0, - 1470.0, - 1431.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 1569.0, - 160.0, - 1569.0, - 160.0, - 1603.0, - 133.0, - 1603.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 194.0, - 1565.0, - 1521.0, - 1565.0, - 1521.0, - 1609.0, - 194.0, - 1609.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1607.0, - 469.0, - 1607.0, - 469.0, - 1641.0, - 199.0, - 1641.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1455.0, - 1603.0, - 1522.0, - 1603.0, - 1522.0, - 1647.0, - 1455.0, - 1647.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 1461.0, - 163.0, - 1461.0, - 163.0, - 1492.0, - 133.0, - 1492.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 1461.0, - 1522.0, - 1461.0, - 1522.0, - 1495.0, - 195.0, - 1495.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 197.0, - 1496.0, - 1050.0, - 1496.0, - 1050.0, - 1533.0, - 197.0, - 1533.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1452.0, - 1494.0, - 1525.0, - 1494.0, - 1525.0, - 1538.0, - 1452.0, - 1538.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 812.0, - 101.0, - 842.0, - 101.0, - 842.0, - 143.0, - 812.0, - 143.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 133.0, - 1569.0, - 160.0, - 1569.0, - 160.0, - 1603.0, - 133.0, - 1603.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 194.0, - 1565.0, - 1521.0, - 1565.0, - 1521.0, - 1609.0, - 194.0, - 1609.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 199.0, - 1607.0, - 469.0, - 1607.0, - 469.0, - 1641.0, - 199.0, - 1641.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1455.0, - 1603.0, - 1522.0, - 1603.0, - 1522.0, - 1647.0, - 1455.0, - 1647.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 812.0, - 101.0, - 842.0, - 101.0, - 842.0, - 143.0, - 812.0, - 143.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 812.0, - 101.0, - 842.0, - 101.0, - 842.0, - 143.0, - 812.0, - 143.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 1, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 286, - 238, - 1365, - 238, - 1365, - 278, - 286, - 278 - ], - "score": 0.901 - }, - { - "category_id": 0, - "poly": [ - 136, - 782, - 289, - 782, - 289, - 819, - 136, - 819 - ], - "score": 0.887 - }, - { - "category_id": 2, - "poly": [ - 134, - 2219, - 235, - 2219, - 235, - 2240, - 134, - 2240 - ], - "score": 0.886 - }, - { - "category_id": 0, - "poly": [ - 740, - 166, - 912, - 166, - 912, - 205, - 740, - 205 - ], - "score": 0.884 - }, - { - "category_id": 0, - "poly": [ - 137, - 384, - 431, - 384, - 431, - 422, - 137, - 422 - ], - "score": 0.867 - }, - { - "category_id": 0, - "poly": [ - 137, - 1215, - 494, - 1215, - 494, - 1253, - 137, - 1253 - ], - "score": 0.858 - }, - { - "category_id": 2, - "poly": [ - 767, - 2218, - 886, - 2218, - 886, - 2241, - 767, - 2241 - ], - "score": 0.804 - }, - { - "category_id": 0, - "poly": [ - 136, - 708, - 285, - 708, - 285, - 746, - 136, - 746 - ], - "score": 0.757 - }, - { - "category_id": 1, - "poly": [ - 141, - 852, - 1292, - 852, - 1292, - 894, - 141, - 894 - ], - "score": 0.754 - }, - { - "category_id": 1, - "poly": [ - 133, - 1287, - 1186, - 1287, - 1186, - 1327, - 133, - 1327 - ], - "score": 0.717 - }, - { - "category_id": 1, - "poly": [ - 138, - 925, - 1527, - 925, - 1527, - 1001, - 138, - 1001 - ], - "score": 0.691 - }, - { - "category_id": 1, - "poly": [ - 152, - 1358, - 1527, - 1358, - 1527, - 1400, - 152, - 1400 - ], - "score": 0.642 - }, - { - "category_id": 1, - "poly": [ - 143, - 1431, - 1531, - 1431, - 1531, - 1470, - 143, - 1470 - ], - "score": 0.62 - }, - { - "category_id": 1, - "poly": [ - 144, - 1032, - 1347, - 1032, - 1347, - 1074, - 144, - 1074 - ], - "score": 0.606 - }, - { - "category_id": 2, - "poly": [ - 626, - 1720, - 1028, - 1720, - 1028, - 1758, - 626, - 1758 - ], - "score": 0.579 - }, - { - "category_id": 1, - "poly": [ - 133, - 600, - 1410, - 600, - 1410, - 642, - 133, - 642 - ], - "score": 0.542 - }, - { - "category_id": 0, - "poly": [ - 135, - 311, - 283, - 311, - 283, - 349, - 135, - 349 - ], - "score": 0.535 - }, - { - "category_id": 0, - "poly": [ - 135, - 1141, - 286, - 1141, - 286, - 1179, - 135, - 1179 - ], - "score": 0.48 - }, - { - "category_id": 2, - "poly": [ - 813, - 103, - 840, - 103, - 840, - 135, - 813, - 135 - ], - "score": 0.459 - }, - { - "category_id": 1, - "poly": [ - 153, - 525, - 1523, - 525, - 1523, - 569, - 153, - 569 - ], - "score": 0.436 - }, - { - "category_id": 1, - "poly": [ - 161, - 454, - 1523, - 454, - 1523, - 497, - 161, - 497 - ], - "score": 0.424 - }, - { - "category_id": 1, - "poly": [ - 131, - 453, - 1524, - 453, - 1524, - 644, - 131, - 644 - ], - "score": 0.328 - }, - { - "category_id": 1, - "poly": [ - 135, - 1141, - 286, - 1141, - 286, - 1179, - 135, - 1179 - ], - "score": 0.308 - }, - { - "category_id": 1, - "poly": [ - 135, - 311, - 283, - 311, - 283, - 349, - 135, - 349 - ], - "score": 0.307 - }, - { - "category_id": 1, - "poly": [ - 137, - 1359, - 919, - 1359, - 919, - 1398, - 137, - 1398 - ], - "score": 0.285 - }, - { - "category_id": 1, - "poly": [ - 129, - 847, - 1527, - 847, - 1527, - 1076, - 129, - 1076 - ], - "score": 0.237 - }, - { - "category_id": 1, - "poly": [ - 141, - 1431, - 866, - 1431, - 866, - 1469, - 141, - 1469 - ], - "score": 0.23 - }, - { - "category_id": 1, - "poly": [ - 139, - 455, - 816, - 455, - 816, - 497, - 139, - 497 - ], - "score": 0.225 - }, - { - "category_id": 1, - "poly": [ - 626, - 1720, - 1028, - 1720, - 1028, - 1758, - 626, - 1758 - ], - "score": 0.193 - }, - { - "category_id": 1, - "poly": [ - 1457, - 854, - 1518, - 854, - 1518, - 893, - 1457, - 893 - ], - "score": 0.156 - }, - { - "category_id": 1, - "poly": [ - 1457, - 527, - 1518, - 527, - 1518, - 569, - 1457, - 569 - ], - "score": 0.149 - }, - { - "category_id": 1, - "poly": [ - 136, - 527, - 943, - 527, - 943, - 568, - 136, - 568 - ], - "score": 0.139 - }, - { - "category_id": 1, - "poly": [ - 1458, - 1034, - 1518, - 1034, - 1518, - 1075, - 1458, - 1075 - ], - "score": 0.137 - }, - { - "category_id": 0, - "poly": [ - 813, - 103, - 840, - 103, - 840, - 135, - 813, - 135 - ], - "score": 0.128 - }, - { - "category_id": 0, - "poly": [ - 626, - 1720, - 1028, - 1720, - 1028, - 1758, - 626, - 1758 - ], - "score": 0.124 - }, - { - "category_id": 1, - "poly": [ - 1458, - 458, - 1518, - 458, - 1518, - 497, - 1458, - 497 - ], - "score": 0.11 - }, - { - "category_id": 1, - "poly": [ - 813, - 103, - 840, - 103, - 840, - 135, - 813, - 135 - ], - "score": 0.1 - }, - { - "category_id": 13, - "poly": [ - 135, - 1288, - 188, - 1288, - 188, - 1322, - 135, - 1322 - ], - "score": 0.79, - "latex": "{\\bf10^{*}}" - }, - { - "category_id": 13, - "poly": [ - 135, - 1432, - 188, - 1432, - 188, - 1467, - 135, - 1467 - ], - "score": 0.78, - "latex": "12^{\\star}" - }, - { - "category_id": 13, - "poly": [ - 134, - 529, - 171, - 529, - 171, - 563, - 134, - 563 - ], - "score": 0.69, - "latex": "\\pmb{5}^{\\star}" - }, - { - "category_id": 13, - "poly": [ - 135, - 1359, - 187, - 1359, - 187, - 1395, - 135, - 1395 - ], - "score": 0.68, - "latex": "11^{\\star}" - }, - { - "category_id": 13, - "poly": [ - 133, - 602, - 171, - 602, - 171, - 636, - 133, - 636 - ], - "score": 0.67, - "latex": "{\\pmb6}^{\\star}" - }, - { - "category_id": 13, - "poly": [ - 133, - 1035, - 171, - 1035, - 171, - 1069, - 133, - 1069 - ], - "score": 0.63, - "latex": "\\9^{\\star}" - }, - { - "category_id": 13, - "poly": [ - 133, - 457, - 171, - 457, - 171, - 491, - 133, - 491 - ], - "score": 0.61, - "latex": "{\\pmb{4}}^{\\star}" - }, - { - "category_id": 13, - "poly": [ - 133, - 854, - 171, - 854, - 171, - 888, - 133, - 888 - ], - "score": 0.58, - "latex": "7^{\\star}" - }, - { - "category_id": 13, - "poly": [ - 133, - 927, - 170, - 927, - 170, - 962, - 133, - 962 - ], - "score": 0.57, - "latex": "{\\mathfrak{s}}^{\\star}" - }, - { - "category_id": 15, - "poly": [ - 289.0, - 242.0, - 1363.0, - 242.0, - 1363.0, - 277.0, - 289.0, - 277.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 782.0, - 290.0, - 782.0, - 290.0, - 819.0, - 136.0, - 819.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 2220.0, - 238.0, - 2220.0, - 238.0, - 2241.0, - 135.0, - 2241.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 742.0, - 170.0, - 911.0, - 170.0, - 911.0, - 202.0, - 742.0, - 202.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 389.0, - 428.0, - 389.0, - 428.0, - 419.0, - 138.0, - 419.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 137.0, - 1219.0, - 492.0, - 1219.0, - 492.0, - 1252.0, - 137.0, - 1252.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 769.0, - 2222.0, - 885.0, - 2222.0, - 885.0, - 2240.0, - 769.0, - 2240.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 138.0, - 712.0, - 283.0, - 712.0, - 283.0, - 743.0, - 138.0, - 743.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 858.0, - 174.0, - 858.0, - 174.0, - 885.0, - 172.0, - 885.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 194.0, - 857.0, - 1289.0, - 857.0, - 1289.0, - 889.0, - 194.0, - 889.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 189.0, - 1291.0, - 1157.0, - 1291.0, - 1157.0, - 1325.0, - 189.0, - 1325.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 929.0, - 176.0, - 929.0, - 176.0, - 960.0, - 171.0, - 960.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 929.0, - 1523.0, - 929.0, - 1523.0, - 963.0, - 195.0, - 963.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 193.0, - 960.0, - 335.0, - 960.0, - 335.0, - 1000.0, - 193.0, - 1000.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1447.0, - 960.0, - 1525.0, - 960.0, - 1525.0, - 1007.0, - 1447.0, - 1007.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 188.0, - 1358.0, - 927.0, - 1358.0, - 927.0, - 1400.0, - 188.0, - 1400.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1453.0, - 1357.0, - 1526.0, - 1357.0, - 1526.0, - 1404.0, - 1453.0, - 1404.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 189.0, - 1435.0, - 876.0, - 1435.0, - 876.0, - 1466.0, - 189.0, - 1466.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1452.0, - 1430.0, - 1528.0, - 1430.0, - 1528.0, - 1477.0, - 1452.0, - 1477.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 1035.0, - 178.0, - 1035.0, - 178.0, - 1069.0, - 172.0, - 1069.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 194.0, - 1034.0, - 1325.0, - 1034.0, - 1325.0, - 1072.0, - 194.0, - 1072.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 630.0, - 1724.0, - 1027.0, - 1724.0, - 1027.0, - 1754.0, - 630.0, - 1754.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 605.0, - 182.0, - 605.0, - 182.0, - 636.0, - 172.0, - 636.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 192.0, - 602.0, - 1398.0, - 602.0, - 1398.0, - 640.0, - 192.0, - 640.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 137.0, - 315.0, - 283.0, - 315.0, - 283.0, - 346.0, - 137.0, - 346.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 137.0, - 1145.0, - 284.0, - 1145.0, - 284.0, - 1176.0, - 137.0, - 1176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 812.0, - 101.0, - 842.0, - 101.0, - 842.0, - 142.0, - 812.0, - 142.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 526.0, - 954.0, - 526.0, - 954.0, - 570.0, - 172.0, - 570.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1455.0, - 527.0, - 1524.0, - 527.0, - 1524.0, - 573.0, - 1455.0, - 573.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 455.0, - 818.0, - 455.0, - 818.0, - 498.0, - 172.0, - 498.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1453.0, - 455.0, - 1526.0, - 455.0, - 1526.0, - 502.0, - 1453.0, - 502.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 461.0, - 176.0, - 461.0, - 176.0, - 491.0, - 172.0, - 491.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 191.0, - 459.0, - 818.0, - 459.0, - 818.0, - 497.0, - 191.0, - 497.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1454.0, - 455.0, - 1524.0, - 455.0, - 1524.0, - 500.0, - 1454.0, - 500.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 530.0, - 176.0, - 530.0, - 176.0, - 567.0, - 172.0, - 567.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 198.0, - 533.0, - 953.0, - 533.0, - 953.0, - 567.0, - 198.0, - 567.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1454.0, - 527.0, - 1524.0, - 527.0, - 1524.0, - 573.0, - 1454.0, - 573.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 603.0, - 176.0, - 603.0, - 176.0, - 638.0, - 172.0, - 638.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 195.0, - 602.0, - 1398.0, - 602.0, - 1398.0, - 641.0, - 195.0, - 641.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1454.0, - 602.0, - 1524.0, - 602.0, - 1524.0, - 645.0, - 1454.0, - 645.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 137.0, - 1145.0, - 284.0, - 1145.0, - 284.0, - 1176.0, - 137.0, - 1176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 137.0, - 315.0, - 283.0, - 315.0, - 283.0, - 346.0, - 137.0, - 346.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 188.0, - 1360.0, - 920.0, - 1360.0, - 920.0, - 1397.0, - 188.0, - 1397.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 129.0, - 850.0, - 132.0, - 850.0, - 132.0, - 892.0, - 129.0, - 892.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 850.0, - 1291.0, - 850.0, - 1291.0, - 892.0, - 172.0, - 892.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1451.0, - 850.0, - 1526.0, - 850.0, - 1526.0, - 898.0, - 1451.0, - 898.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 928.0, - 176.0, - 928.0, - 176.0, - 961.0, - 171.0, - 961.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 193.0, - 928.0, - 1524.0, - 928.0, - 1524.0, - 964.0, - 193.0, - 964.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 196.0, - 966.0, - 335.0, - 966.0, - 335.0, - 1000.0, - 196.0, - 1000.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1451.0, - 961.0, - 1526.0, - 961.0, - 1526.0, - 1009.0, - 1451.0, - 1009.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 130.0, - 1033.0, - 132.0, - 1033.0, - 132.0, - 1072.0, - 130.0, - 1072.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 1033.0, - 184.0, - 1033.0, - 184.0, - 1072.0, - 172.0, - 1072.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 193.0, - 1035.0, - 1326.0, - 1035.0, - 1326.0, - 1072.0, - 193.0, - 1072.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1451.0, - 1032.0, - 1527.0, - 1032.0, - 1527.0, - 1080.0, - 1451.0, - 1080.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 189.0, - 1435.0, - 869.0, - 1435.0, - 869.0, - 1465.0, - 189.0, - 1465.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 462.0, - 173.0, - 462.0, - 173.0, - 486.0, - 172.0, - 486.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 194.0, - 458.0, - 816.0, - 458.0, - 816.0, - 494.0, - 194.0, - 494.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 630.0, - 1724.0, - 1027.0, - 1724.0, - 1027.0, - 1754.0, - 630.0, - 1754.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1455.0, - 853.0, - 1522.0, - 853.0, - 1522.0, - 896.0, - 1455.0, - 896.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1456.0, - 528.0, - 1522.0, - 528.0, - 1522.0, - 571.0, - 1456.0, - 571.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 172.0, - 532.0, - 178.0, - 532.0, - 178.0, - 561.0, - 172.0, - 561.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 191.0, - 533.0, - 945.0, - 533.0, - 945.0, - 564.0, - 191.0, - 564.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1456.0, - 1034.0, - 1522.0, - 1034.0, - 1522.0, - 1078.0, - 1456.0, - 1078.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 812.0, - 101.0, - 842.0, - 101.0, - 842.0, - 142.0, - 812.0, - 142.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 630.0, - 1724.0, - 1027.0, - 1724.0, - 1027.0, - 1754.0, - 630.0, - 1754.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1456.0, - 456.0, - 1522.0, - 456.0, - 1522.0, - 499.0, - 1456.0, - 499.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 812.0, - 101.0, - 842.0, - 101.0, - 842.0, - 142.0, - 812.0, - 142.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 2, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 142, - 1956, - 1511, - 1956, - 1511, - 2023, - 142, - 2023 - ], - "score": 0.901 - }, - { - "category_id": 0, - "poly": [ - 137, - 1926, - 316, - 1926, - 316, - 1948, - 137, - 1948 - ], - "score": 0.9 - }, - { - "category_id": 2, - "poly": [ - 135, - 2219, - 235, - 2219, - 235, - 2240, - 135, - 2240 - ], - "score": 0.859 - }, - { - "category_id": 2, - "poly": [ - 768, - 2219, - 885, - 2219, - 885, - 2241, - 768, - 2241 - ], - "score": 0.816 - }, - { - "category_id": 1, - "poly": [ - 143, - 2114, - 1514, - 2114, - 1514, - 2161, - 143, - 2161 - ], - "score": 0.812 - }, - { - "category_id": 1, - "poly": [ - 134, - 2032, - 1510, - 2032, - 1510, - 2076, - 134, - 2076 - ], - "score": 0.81 - }, - { - "category_id": 1, - "poly": [ - 160, - 2082, - 1241, - 2082, - 1241, - 2107, - 160, - 2107 - ], - "score": 0.77 - }, - { - "category_id": 2, - "poly": [ - 135, - 1822, - 355, - 1822, - 355, - 1914, - 135, - 1914 - ], - "score": 0.738 - }, - { - "category_id": 2, - "poly": [ - 816, - 106, - 838, - 106, - 838, - 132, - 816, - 132 - ], - "score": 0.71 - }, - { - "category_id": 1, - "poly": [ - 162, - 2082, - 1235, - 2082, - 1235, - 2107, - 162, - 2107 - ], - "score": 0.19 - }, - { - "category_id": 15, - "poly": [ - 136.0, - 1953.0, - 1517.0, - 1953.0, - 1517.0, - 1983.0, - 136.0, - 1983.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 1981.0, - 1514.0, - 1981.0, - 1514.0, - 2003.0, - 139.0, - 2003.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 1998.0, - 1517.0, - 1998.0, - 1517.0, - 2028.0, - 136.0, - 2028.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 136.0, - 1925.0, - 317.0, - 1925.0, - 317.0, - 1951.0, - 136.0, - 1951.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 2220.0, - 237.0, - 2220.0, - 237.0, - 2241.0, - 135.0, - 2241.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 769.0, - 2221.0, - 886.0, - 2221.0, - 886.0, - 2240.0, - 769.0, - 2240.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 2113.0, - 1520.0, - 2113.0, - 1520.0, - 2139.0, - 139.0, - 2139.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 139.0, - 2138.0, - 458.0, - 2138.0, - 458.0, - 2162.0, - 139.0, - 2162.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 132.0, - 2028.0, - 1515.0, - 2028.0, - 1515.0, - 2059.0, - 132.0, - 2059.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 135.0, - 2056.0, - 227.0, - 2056.0, - 227.0, - 2080.0, - 135.0, - 2080.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 157.0, - 2084.0, - 1167.0, - 2084.0, - 1167.0, - 2108.0, - 157.0, - 2108.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 137.0, - 1826.0, - 351.0, - 1826.0, - 351.0, - 1891.0, - 137.0, - 1891.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 141.0, - 1892.0, - 351.0, - 1892.0, - 351.0, - 1914.0, - 141.0, - 1914.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 816.0, - 105.0, - 841.0, - 105.0, - 841.0, - 137.0, - 816.0, - 137.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 163.0, - 2084.0, - 1166.0, - 2084.0, - 1166.0, - 2108.0, - 163.0, - 2108.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 3, - "height": 2339, - "width": 1654 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 158, - 90, - 484, - 90, - 484, - 229, - 158, - 229 - ], - "score": 0.909 - }, - { - "category_id": 1, - "poly": [ - 160, - 604, - 906, - 604, - 906, - 650, - 160, - 650 - ], - "score": 0.889 - }, - { - "category_id": 1, - "poly": [ - 162, - 729, - 436, - 729, - 436, - 774, - 162, - 774 - ], - "score": 0.878 - }, - { - "category_id": 2, - "poly": [ - 163, - 2267, - 583, - 2267, - 583, - 2294, - 163, - 2294 - ], - "score": 0.868 - }, - { - "category_id": 0, - "poly": [ - 162, - 452, - 379, - 452, - 379, - 506, - 162, - 506 - ], - "score": 0.849 - }, - { - "category_id": 0, - "poly": [ - 159, - 877, - 956, - 877, - 956, - 935, - 159, - 935 - ], - "score": 0.823 - }, - { - "category_id": 0, - "poly": [ - 162, - 307, - 275, - 307, - 275, - 360, - 162, - 360 - ], - "score": 0.678 - }, - { - "category_id": 1, - "poly": [ - 159, - 877, - 956, - 877, - 956, - 935, - 159, - 935 - ], - "score": 0.109 - }, - { - "category_id": 15, - "poly": [ - 165.0, - 97.0, - 478.0, - 97.0, - 478.0, - 187.0, - 165.0, - 187.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 171.0, - 198.0, - 480.0, - 198.0, - 480.0, - 228.0, - 171.0, - 228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 164.0, - 607.0, - 901.0, - 607.0, - 901.0, - 651.0, - 164.0, - 651.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 737.0, - 433.0, - 737.0, - 433.0, - 769.0, - 166.0, - 769.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2269.0, - 583.0, - 2269.0, - 583.0, - 2293.0, - 166.0, - 2293.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 163.0, - 453.0, - 379.0, - 453.0, - 379.0, - 509.0, - 163.0, - 509.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 885.0, - 949.0, - 885.0, - 949.0, - 927.0, - 166.0, - 927.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 163.0, - 310.0, - 278.0, - 310.0, - 278.0, - 357.0, - 163.0, - 357.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 885.0, - 949.0, - 885.0, - 949.0, - 927.0, - 166.0, - 927.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 4, - "height": 2339, - "width": 1653 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 162, - 531, - 1427, - 531, - 1427, - 691, - 162, - 691 - ], - "score": 0.977 - }, - { - "category_id": 1, - "poly": [ - 162, - 301, - 1430, - 301, - 1430, - 503, - 162, - 503 - ], - "score": 0.977 - }, - { - "category_id": 1, - "poly": [ - 161, - 721, - 1466, - 721, - 1466, - 880, - 161, - 880 - ], - "score": 0.975 - }, - { - "category_id": 1, - "poly": [ - 163, - 911, - 1411, - 911, - 1411, - 1028, - 163, - 1028 - ], - "score": 0.974 - }, - { - "category_id": 1, - "poly": [ - 157, - 1060, - 1447, - 1060, - 1447, - 1137, - 157, - 1137 - ], - "score": 0.946 - }, - { - "category_id": 2, - "poly": [ - 163, - 2267, - 582, - 2267, - 582, - 2294, - 163, - 2294 - ], - "score": 0.884 - }, - { - "category_id": 1, - "poly": [ - 161, - 1204, - 342, - 1204, - 342, - 1240, - 161, - 1240 - ], - "score": 0.749 - }, - { - "category_id": 2, - "poly": [ - 161, - 1204, - 342, - 1204, - 342, - 1240, - 161, - 1240 - ], - "score": 0.178 - }, - { - "category_id": 13, - "poly": [ - 161, - 1206, - 192, - 1206, - 192, - 1237, - 161, - 1237 - ], - "score": 0.29, - "latex": "\\circledcirc" - }, - { - "category_id": 15, - "poly": [ - 163.0, - 537.0, - 1426.0, - 537.0, - 1426.0, - 570.0, - 163.0, - 570.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 159.0, - 573.0, - 1385.0, - 573.0, - 1385.0, - 612.0, - 159.0, - 612.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 162.0, - 618.0, - 1390.0, - 618.0, - 1390.0, - 652.0, - 162.0, - 652.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 160.0, - 656.0, - 1106.0, - 656.0, - 1106.0, - 695.0, - 160.0, - 695.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 163.0, - 302.0, - 1429.0, - 302.0, - 1429.0, - 343.0, - 163.0, - 343.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 163.0, - 347.0, - 1386.0, - 347.0, - 1386.0, - 380.0, - 163.0, - 380.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 162.0, - 390.0, - 1332.0, - 390.0, - 1332.0, - 420.0, - 162.0, - 420.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 162.0, - 428.0, - 1414.0, - 428.0, - 1414.0, - 461.0, - 162.0, - 461.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 162.0, - 469.0, - 1427.0, - 469.0, - 1427.0, - 503.0, - 162.0, - 503.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 162.0, - 722.0, - 1457.0, - 722.0, - 1457.0, - 759.0, - 162.0, - 759.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 161.0, - 764.0, - 1453.0, - 764.0, - 1453.0, - 799.0, - 161.0, - 799.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 159.0, - 805.0, - 1469.0, - 805.0, - 1469.0, - 841.0, - 159.0, - 841.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 161.0, - 848.0, - 343.0, - 848.0, - 343.0, - 880.0, - 161.0, - 880.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 162.0, - 913.0, - 1405.0, - 913.0, - 1405.0, - 949.0, - 162.0, - 949.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 162.0, - 956.0, - 1392.0, - 956.0, - 1392.0, - 990.0, - 162.0, - 990.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 162.0, - 995.0, - 364.0, - 995.0, - 364.0, - 1029.0, - 162.0, - 1029.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 161.0, - 1060.0, - 1454.0, - 1060.0, - 1454.0, - 1100.0, - 161.0, - 1100.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 162.0, - 1104.0, - 436.0, - 1104.0, - 436.0, - 1139.0, - 162.0, - 1139.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 2269.0, - 583.0, - 2269.0, - 583.0, - 2293.0, - 166.0, - 2293.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 193.0, - 1209.0, - 342.0, - 1209.0, - 342.0, - 1237.0, - 193.0, - 1237.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 193.0, - 1209.0, - 342.0, - 1209.0, - 342.0, - 1237.0, - 193.0, - 1237.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 5, - "height": 2339, - "width": 1653 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 79, - 239, - 2137, - 239, - 2137, - 1111, - 79, - 1111 - ], - "score": 0.967, - "html": "
AnnotationMeaning
KUKnowledgeandUnderstandingpoint
DEVDeveloped Point: fully explained in a relevant way
EGAnecdotal/ common sense/ asociological point
APPApplication/interpretation. On questions 1 and 2: clear reference to source. On other questions: explicit application to the question (optional)
EVALCritical Evaluation point
Unsubstantiated/ undeveloped/ implicit / accurate without explanation/ substantiation
Unclear/confused/lackssense/inaccurate
REPRepetition
Irrelevant material/ not clearly focused on question set
Juxtaposition of alternative theories/ideas without direct/ explicit evaluation
" - }, - { - "category_id": 1, - "poly": [ - 115, - 1403, - 909, - 1403, - 909, - 1525, - 115, - 1525 - ], - "score": 0.939 - }, - { - "category_id": 0, - "poly": [ - 117, - 1208, - 747, - 1208, - 747, - 1248, - 117, - 1248 - ], - "score": 0.934 - }, - { - "category_id": 0, - "poly": [ - 115, - 1319, - 356, - 1319, - 356, - 1353, - 115, - 1353 - ], - "score": 0.916 - }, - { - "category_id": 2, - "poly": [ - 1982, - 100, - 2223, - 100, - 2223, - 134, - 1982, - 134 - ], - "score": 0.887 - }, - { - "category_id": 2, - "poly": [ - 1066, - 101, - 1271, - 101, - 1271, - 135, - 1066, - 135 - ], - "score": 0.837 - }, - { - "category_id": 0, - "poly": [ - 117, - 171, - 379, - 171, - 379, - 208, - 117, - 208 - ], - "score": 0.835 - }, - { - "category_id": 1, - "poly": [ - 98, - 1357, - 1992, - 1357, - 1992, - 1397, - 98, - 1397 - ], - "score": 0.771 - }, - { - "category_id": 2, - "poly": [ - 115, - 98, - 248, - 98, - 248, - 135, - 115, - 135 - ], - "score": 0.522 - }, - { - "category_id": 0, - "poly": [ - 115, - 98, - 248, - 98, - 248, - 135, - 115, - 135 - ], - "score": 0.378 - }, - { - "category_id": 15, - "poly": [ - 168.0, - 1407.0, - 906.0, - 1407.0, - 906.0, - 1437.0, - 168.0, - 1437.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 1447.0, - 623.0, - 1447.0, - 623.0, - 1481.0, - 166.0, - 1481.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 168.0, - 1492.0, - 710.0, - 1492.0, - 710.0, - 1519.0, - 168.0, - 1519.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 1210.0, - 168.0, - 1210.0, - 168.0, - 1247.0, - 116.0, - 1247.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 194.0, - 1213.0, - 744.0, - 1213.0, - 744.0, - 1247.0, - 194.0, - 1247.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 1322.0, - 353.0, - 1322.0, - 353.0, - 1352.0, - 118.0, - 1352.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1984.0, - 102.0, - 2220.0, - 102.0, - 2220.0, - 133.0, - 1984.0, - 133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1069.0, - 102.0, - 1270.0, - 102.0, - 1270.0, - 133.0, - 1069.0, - 133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 173.0, - 377.0, - 173.0, - 377.0, - 204.0, - 117.0, - 204.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 1357.0, - 1996.0, - 1357.0, - 1996.0, - 1399.0, - 117.0, - 1399.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 99.0, - 247.0, - 99.0, - 247.0, - 135.0, - 115.0, - 135.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 99.0, - 247.0, - 99.0, - 247.0, - 135.0, - 115.0, - 135.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 6, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 113, - 742, - 2212, - 742, - 2212, - 902, - 113, - 902 - ], - "score": 0.968 - }, - { - "category_id": 1, - "poly": [ - 113, - 621, - 2180, - 621, - 2180, - 702, - 113, - 702 - ], - "score": 0.958 - }, - { - "category_id": 1, - "poly": [ - 113, - 460, - 2216, - 460, - 2216, - 580, - 113, - 580 - ], - "score": 0.956 - }, - { - "category_id": 1, - "poly": [ - 116, - 1066, - 2145, - 1066, - 2145, - 1147, - 116, - 1147 - ], - "score": 0.95 - }, - { - "category_id": 1, - "poly": [ - 114, - 945, - 2190, - 945, - 2190, - 1024, - 114, - 1024 - ], - "score": 0.947 - }, - { - "category_id": 1, - "poly": [ - 117, - 261, - 2175, - 261, - 2175, - 376, - 117, - 376 - ], - "score": 0.934 - }, - { - "category_id": 1, - "poly": [ - 117, - 140, - 412, - 140, - 412, - 174, - 117, - 174 - ], - "score": 0.9 - }, - { - "category_id": 2, - "poly": [ - 1983, - 101, - 2222, - 101, - 2222, - 134, - 1983, - 134 - ], - "score": 0.899 - }, - { - "category_id": 1, - "poly": [ - 127, - 381, - 1505, - 381, - 1505, - 418, - 127, - 418 - ], - "score": 0.889 - }, - { - "category_id": 0, - "poly": [ - 117, - 422, - 527, - 422, - 527, - 458, - 117, - 458 - ], - "score": 0.867 - }, - { - "category_id": 1, - "poly": [ - 117, - 219, - 921, - 219, - 921, - 255, - 117, - 255 - ], - "score": 0.86 - }, - { - "category_id": 2, - "poly": [ - 1066, - 100, - 1271, - 100, - 1271, - 135, - 1066, - 135 - ], - "score": 0.714 - }, - { - "category_id": 1, - "poly": [ - 116, - 99, - 247, - 99, - 247, - 134, - 116, - 134 - ], - "score": 0.504 - }, - { - "category_id": 0, - "poly": [ - 116, - 99, - 247, - 99, - 247, - 134, - 116, - 134 - ], - "score": 0.369 - }, - { - "category_id": 0, - "poly": [ - 1066, - 100, - 1271, - 100, - 1271, - 135, - 1066, - 135 - ], - "score": 0.161 - }, - { - "category_id": 15, - "poly": [ - 116.0, - 743.0, - 2109.0, - 743.0, - 2109.0, - 783.0, - 116.0, - 783.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 785.0, - 2216.0, - 785.0, - 2216.0, - 824.0, - 116.0, - 824.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 826.0, - 2200.0, - 826.0, - 2200.0, - 865.0, - 113.0, - 865.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 871.0, - 894.0, - 871.0, - 894.0, - 903.0, - 116.0, - 903.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 622.0, - 2165.0, - 622.0, - 2165.0, - 667.0, - 117.0, - 667.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 661.0, - 1636.0, - 661.0, - 1636.0, - 707.0, - 113.0, - 707.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 111.0, - 460.0, - 2183.0, - 460.0, - 2183.0, - 502.0, - 111.0, - 502.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 506.0, - 2216.0, - 506.0, - 2216.0, - 543.0, - 113.0, - 543.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 550.0, - 809.0, - 550.0, - 809.0, - 580.0, - 116.0, - 580.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 1067.0, - 2133.0, - 1067.0, - 2133.0, - 1108.0, - 115.0, - 1108.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 1112.0, - 654.0, - 1112.0, - 654.0, - 1148.0, - 115.0, - 1148.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 945.0, - 2197.0, - 945.0, - 2197.0, - 990.0, - 114.0, - 990.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 985.0, - 606.0, - 985.0, - 606.0, - 1029.0, - 114.0, - 1029.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 263.0, - 2135.0, - 263.0, - 2135.0, - 298.0, - 116.0, - 298.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 301.0, - 2164.0, - 301.0, - 2164.0, - 343.0, - 112.0, - 343.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 111.0, - 336.0, - 288.0, - 336.0, - 288.0, - 384.0, - 111.0, - 384.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 142.0, - 412.0, - 142.0, - 412.0, - 172.0, - 166.0, - 172.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1983.0, - 102.0, - 2219.0, - 102.0, - 2219.0, - 132.0, - 1983.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 120.0, - 380.0, - 1503.0, - 380.0, - 1503.0, - 421.0, - 120.0, - 421.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 425.0, - 525.0, - 425.0, - 525.0, - 455.0, - 118.0, - 455.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 220.0, - 922.0, - 220.0, - 922.0, - 254.0, - 116.0, - 254.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1068.0, - 99.0, - 1272.0, - 99.0, - 1272.0, - 136.0, - 1068.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 100.0, - 246.0, - 100.0, - 246.0, - 134.0, - 115.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 100.0, - 246.0, - 100.0, - 246.0, - 134.0, - 115.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1068.0, - 99.0, - 1272.0, - 99.0, - 1272.0, - 136.0, - 1068.0, - 136.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 7, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 114, - 497, - 2214, - 497, - 2214, - 658, - 114, - 658 - ], - "score": 0.97 - }, - { - "category_id": 1, - "poly": [ - 116, - 218, - 2225, - 218, - 2225, - 334, - 116, - 334 - ], - "score": 0.965 - }, - { - "category_id": 1, - "poly": [ - 118, - 377, - 2182, - 377, - 2182, - 456, - 118, - 456 - ], - "score": 0.959 - }, - { - "category_id": 1, - "poly": [ - 118, - 822, - 2143, - 822, - 2143, - 902, - 118, - 902 - ], - "score": 0.943 - }, - { - "category_id": 1, - "poly": [ - 112, - 699, - 2188, - 699, - 2188, - 778, - 112, - 778 - ], - "score": 0.935 - }, - { - "category_id": 0, - "poly": [ - 117, - 176, - 527, - 176, - 527, - 213, - 117, - 213 - ], - "score": 0.926 - }, - { - "category_id": 2, - "poly": [ - 1983, - 101, - 2222, - 101, - 2222, - 134, - 1983, - 134 - ], - "score": 0.905 - }, - { - "category_id": 2, - "poly": [ - 1067, - 100, - 1271, - 100, - 1271, - 135, - 1067, - 135 - ], - "score": 0.774 - }, - { - "category_id": 2, - "poly": [ - 116, - 98, - 247, - 98, - 247, - 135, - 116, - 135 - ], - "score": 0.617 - }, - { - "category_id": 0, - "poly": [ - 116, - 98, - 247, - 98, - 247, - 135, - 116, - 135 - ], - "score": 0.179 - }, - { - "category_id": 1, - "poly": [ - 116, - 98, - 247, - 98, - 247, - 135, - 116, - 135 - ], - "score": 0.116 - }, - { - "category_id": 15, - "poly": [ - 117.0, - 500.0, - 2108.0, - 500.0, - 2108.0, - 539.0, - 117.0, - 539.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 541.0, - 2216.0, - 541.0, - 2216.0, - 580.0, - 117.0, - 580.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 582.0, - 2200.0, - 582.0, - 2200.0, - 620.0, - 114.0, - 620.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 626.0, - 896.0, - 626.0, - 896.0, - 659.0, - 117.0, - 659.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 220.0, - 2183.0, - 220.0, - 2183.0, - 256.0, - 114.0, - 256.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 112.0, - 258.0, - 2217.0, - 258.0, - 2217.0, - 301.0, - 112.0, - 301.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 301.0, - 809.0, - 301.0, - 809.0, - 337.0, - 114.0, - 337.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 377.0, - 2164.0, - 377.0, - 2164.0, - 422.0, - 118.0, - 422.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 113.0, - 417.0, - 1635.0, - 417.0, - 1635.0, - 461.0, - 113.0, - 461.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 821.0, - 2131.0, - 821.0, - 2131.0, - 862.0, - 114.0, - 862.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 868.0, - 655.0, - 868.0, - 655.0, - 903.0, - 114.0, - 903.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 699.0, - 2197.0, - 699.0, - 2197.0, - 744.0, - 116.0, - 744.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 114.0, - 741.0, - 606.0, - 741.0, - 606.0, - 786.0, - 114.0, - 786.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 119.0, - 182.0, - 525.0, - 182.0, - 525.0, - 208.0, - 119.0, - 208.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1983.0, - 102.0, - 2219.0, - 102.0, - 2219.0, - 132.0, - 1983.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1068.0, - 99.0, - 1271.0, - 99.0, - 1271.0, - 136.0, - 1068.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 99.0, - 246.0, - 99.0, - 246.0, - 135.0, - 115.0, - 135.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 99.0, - 246.0, - 99.0, - 246.0, - 135.0, - 115.0, - 135.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 99.0, - 246.0, - 99.0, - 246.0, - 135.0, - 115.0, - 135.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 8, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 132, - 103, - 2239, - 103, - 2239, - 1534, - 132, - 1534 - ], - "score": 0.953, - "html": "
1580/03 QuestionMarkscheme AnswerMarksNovember2020 Guidance
1WithreferencetotheSourcesandyourwider sociologicalknowledge,explainthe positiveimpact of globaldevelopmentsindigitalcommunicationin9AO1:Knowledge and understanding NOTE: Contemporary examples should be credited in AO1 in
responding to major events.thesamewayassociological studies.
AO1:Knowledge and understanding Level4:5marksSupporting evidence may include:oppression,protests,natural disasters,epidemics etc.
The candidate demonstrates an excellent knowledge and understandingofarangeofsociologicalevidence;theevidenceis generallyaccurateanddetailed.Theinformationpresentedis relevantandsubstantiated.StudyonSouthernCaliforniaWildfires-socialmedia enables rapid response; Sutton, Palen and Shlovski In response to unexpected global events such as an earthquake,orflooding,social mediasitescanbe used as a means of raising money for victims. Facebook and Twitter - able to reach millions of people from all over the world as events are happening; Lopes
Level3:3-4marksThere will typically be two developed points of knowledge. The candidate demonstrates a good knowledge and understandingThe Facebook Effect - as Facebook spreads globally,
The information presented is in the most part relevant and supportedbysomeevidence.exceeding5oomillionusers-becomeinstrumentalin
political protests from Colombia to Iran; Kirkpatrick
well-developedpoints. Level2:2marksTherewill typicallybeonedevelopedpoint ofknowledge,or2lessFacebook, Twitter, may give a voice to individuals that
otherwise would not be heard; the Arab Spring social movements; Shirky, Jurgenson, Castells Social mediaprovides new sources of information that
cannotbeeasilycontrolledby authoritarianregimes
Thecandidatedemonstratesabasicknowledgeand(TufekciandWilson)
Developments in digital communicationhad enabled
range and detail. The response may lack clarity at times and
people with a'muted voice'to be heard, e.g. Malala
contain some inaccuracies. The response may be partial andYousafzai
undeveloped. Theinformation has somerelevance and is
Socialmediaisnowthemostefficientmethodof
supportedbylimitedevidence.delivering emergency response messages'; Collins
There will typically be one underdeveloped point of knowledge, or
Use of digital communications as a response to the
twoundevelopedpoints.
coronavirus pandemic and local restrictions - keeping
Level 1: 1 markpeople in touch; spreading information.
Reference to the role of digital communications in recent
The candidate demonstrates a limited knowledge and understanding ofsociological evidence.Verylittlerelevantprotests such as Hong Kong pro-democracy protests, the
sociologicalevidenceispresented;theresponsecontains
Black Lives Matter protests, climate change/ extinction
considerable inaccuracy and lacks clarity. The information is basic
rebellionprotestsetc.
Otherreasonableresponse.
" - }, - { - "category_id": 2, - "poly": [ - 1981, - 101, - 2223, - 101, - 2223, - 133, - 1981, - 133 - ], - "score": 0.853 - }, - { - "category_id": 2, - "poly": [ - 115, - 99, - 247, - 99, - 247, - 132, - 115, - 132 - ], - "score": 0.593 - }, - { - "category_id": 2, - "poly": [ - 1067, - 101, - 1271, - 101, - 1271, - 133, - 1067, - 133 - ], - "score": 0.581 - }, - { - "category_id": 6, - "poly": [ - 115, - 99, - 247, - 99, - 247, - 132, - 115, - 132 - ], - "score": 0.331 - }, - { - "category_id": 6, - "poly": [ - 1067, - 101, - 1271, - 101, - 1271, - 133, - 1067, - 133 - ], - "score": 0.315 - }, - { - "category_id": 1, - "poly": [ - 1370, - 850, - 2161, - 850, - 2161, - 953, - 1370, - 953 - ], - "score": 0.109 - }, - { - "category_id": 1, - "poly": [ - 1371, - 957, - 2160, - 957, - 2160, - 1061, - 1371, - 1061 - ], - "score": 0.102 - }, - { - "category_id": 15, - "poly": [ - 1984.0, - 103.0, - 2220.0, - 103.0, - 2220.0, - 132.0, - 1984.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 100.0, - 246.0, - 100.0, - 246.0, - 134.0, - 116.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1069.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1069.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 100.0, - 246.0, - 100.0, - 246.0, - 134.0, - 116.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1069.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1069.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 849.0, - 2158.0, - 849.0, - 2158.0, - 884.0, - 1417.0, - 884.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 885.0, - 2147.0, - 885.0, - 2147.0, - 918.0, - 1419.0, - 918.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 922.0, - 1968.0, - 922.0, - 1968.0, - 952.0, - 1417.0, - 952.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 956.0, - 2158.0, - 956.0, - 2158.0, - 990.0, - 1418.0, - 990.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 994.0, - 2120.0, - 994.0, - 2120.0, - 1024.0, - 1420.0, - 1024.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1421.0, - 1028.0, - 1702.0, - 1028.0, - 1702.0, - 1061.0, - 1421.0, - 1061.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 9, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1981, - 101, - 2223, - 101, - 2223, - 133, - 1981, - 133 - ], - "score": 0.911 - }, - { - "category_id": 2, - "poly": [ - 114, - 99, - 246, - 99, - 246, - 132, - 114, - 132 - ], - "score": 0.86 - }, - { - "category_id": 2, - "poly": [ - 1066, - 101, - 1271, - 101, - 1271, - 133, - 1066, - 133 - ], - "score": 0.83 - }, - { - "category_id": 1, - "poly": [ - 304, - 1475, - 935, - 1475, - 935, - 1509, - 304, - 1509 - ], - "score": 0.766 - }, - { - "category_id": 5, - "poly": [ - 224, - 72, - 2283, - 72, - 2283, - 1522, - 224, - 1522 - ], - "score": 0.753, - "html": "
3 Mark scheme November2020
and communicated in an unstructured way. There will typically be one undeveloped point, or a vagueAO2:Application
representation.In this question Ao2 is awarded for use of source(s). For example:
0 marks No relevant knowledge or understanding.Globally, new forms of digital communication increasingly used for dealing with major events such as disasters (As in
AO2:ApplicationSource A) Increased access to resources across the world (As in
Level4:4marks The candidate demonstrates an excellent ability to apply relevantSource A) Official organisations aiming for a collective response,
applied material from at least one of the sources in a developed way.beginning to embrace social media channels digital communication;(AsinSourceA:USANationalWeather Service,2018)
There will typically be two developed references to the source material. Level 3: 3 marksFacebook in 2012 launched an emergency check-in App called‘Safety Check'.At the click of a buttonusers can let friends and familyknow they are safe in the event of a
The candidate demonstrates a good ability to apply source material. The candidate has occasionally applied material from at least one of the sources in a developed way, or frequently appliednatural disaster (As in Source A) Communicating in avirtual community,where there are no B)
the source(s) in an underdeveloped way. There will typically be one developed or two underdeveloped referencestothesourcematerial.major events (As in Source B) Mobilising support for protests (As in Source A)
Level 2: 2 marks The candidatedemonstrates a basic ability to applysource
material. The candidate has occasionally made use of material from the source(s) in an underdeveloped way.
Therewill typicallybe oneunderdeveloped ortwoundeveloped/
recycled/implicitreferencestothesourcematerial.
" - }, - { - "category_id": 1, - "poly": [ - 304, - 457, - 1186, - 457, - 1186, - 595, - 304, - 595 - ], - "score": 0.739 - }, - { - "category_id": 1, - "poly": [ - 302, - 141, - 1079, - 141, - 1079, - 243, - 302, - 243 - ], - "score": 0.724 - }, - { - "category_id": 0, - "poly": [ - 303, - 1228, - 528, - 1228, - 528, - 1260, - 303, - 1260 - ], - "score": 0.679 - }, - { - "category_id": 0, - "poly": [ - 303, - 702, - 545, - 702, - 545, - 734, - 303, - 734 - ], - "score": 0.637 - }, - { - "category_id": 0, - "poly": [ - 303, - 281, - 422, - 281, - 422, - 311, - 303, - 311 - ], - "score": 0.63 - }, - { - "category_id": 1, - "poly": [ - 306, - 315, - 862, - 315, - 862, - 349, - 306, - 349 - ], - "score": 0.516 - }, - { - "category_id": 0, - "poly": [ - 304, - 385, - 553, - 385, - 553, - 419, - 304, - 419 - ], - "score": 0.508 - }, - { - "category_id": 1, - "poly": [ - 304, - 737, - 1195, - 737, - 1195, - 875, - 304, - 875 - ], - "score": 0.487 - }, - { - "category_id": 1, - "poly": [ - 301, - 1264, - 1201, - 1264, - 1201, - 1436, - 301, - 1436 - ], - "score": 0.441 - }, - { - "category_id": 1, - "poly": [ - 1368, - 248, - 1551, - 248, - 1551, - 279, - 1368, - 279 - ], - "score": 0.423 - }, - { - "category_id": 0, - "poly": [ - 302, - 984, - 545, - 984, - 545, - 1015, - 302, - 1015 - ], - "score": 0.412 - }, - { - "category_id": 5, - "poly": [ - 94, - 85, - 1225, - 85, - 1225, - 1526, - 94, - 1526 - ], - "score": 0.394, - "html": "
H580/03 and communicated in an unstructured way.
There will typically be one undeveloped point, or a vague representation. 0 marks No relevant knowledge or understanding. AO2: Application Level 4: 4 marks The candidate demonstrates an excellent ability to apply relevant source material. The candidate has explicitly and frequently applied material from at least one of the sources in a developed way. There will typically be two developed references to the source material. Level 3: 3 marks The candidate demonstrates a good ability to apply source material. The candidate has occasionally applied material from at least one of the sources in a developed way, or frequently applied the source(s) in an underdeveloped way. There will typically be one developed or two underdeveloped referencestothesourcematerial. Level 2: 2 marks The candidate demonstrates a basic ability to apply source material. The candidate has occasionally made use of material from the source(s) in an underdeveloped way.
" - }, - { - "category_id": 1, - "poly": [ - 304, - 596, - 1140, - 596, - 1140, - 662, - 304, - 662 - ], - "score": 0.379 - }, - { - "category_id": 1, - "poly": [ - 303, - 878, - 1128, - 878, - 1128, - 945, - 303, - 945 - ], - "score": 0.368 - }, - { - "category_id": 1, - "poly": [ - 1371, - 463, - 2185, - 463, - 2185, - 602, - 1371, - 602 - ], - "score": 0.338 - }, - { - "category_id": 1, - "poly": [ - 1374, - 392, - 2152, - 392, - 2152, - 459, - 1374, - 459 - ], - "score": 0.324 - }, - { - "category_id": 1, - "poly": [ - 1371, - 282, - 2222, - 282, - 2222, - 387, - 1371, - 387 - ], - "score": 0.322 - }, - { - "category_id": 1, - "poly": [ - 306, - 422, - 546, - 422, - 546, - 452, - 306, - 452 - ], - "score": 0.301 - }, - { - "category_id": 0, - "poly": [ - 1368, - 175, - 1621, - 175, - 1621, - 208, - 1368, - 208 - ], - "score": 0.294 - }, - { - "category_id": 1, - "poly": [ - 1367, - 271, - 2221, - 271, - 2221, - 958, - 1367, - 958 - ], - "score": 0.278 - }, - { - "category_id": 1, - "poly": [ - 1370, - 605, - 2214, - 605, - 2214, - 744, - 1370, - 744 - ], - "score": 0.234 - }, - { - "category_id": 1, - "poly": [ - 1368, - 210, - 2137, - 210, - 2137, - 244, - 1368, - 244 - ], - "score": 0.214 - }, - { - "category_id": 1, - "poly": [ - 305, - 596, - 1140, - 596, - 1140, - 663, - 305, - 663 - ], - "score": 0.21 - }, - { - "category_id": 1, - "poly": [ - 301, - 1019, - 1158, - 1019, - 1158, - 1121, - 301, - 1121 - ], - "score": 0.205 - }, - { - "category_id": 0, - "poly": [ - 1368, - 210, - 2137, - 210, - 2137, - 244, - 1368, - 244 - ], - "score": 0.192 - }, - { - "category_id": 1, - "poly": [ - 1370, - 748, - 2211, - 748, - 2211, - 851, - 1370, - 851 - ], - "score": 0.164 - }, - { - "category_id": 1, - "poly": [ - 305, - 1021, - 1166, - 1021, - 1166, - 1192, - 305, - 1192 - ], - "score": 0.16 - }, - { - "category_id": 1, - "poly": [ - 303, - 1124, - 1173, - 1124, - 1173, - 1191, - 303, - 1191 - ], - "score": 0.14 - }, - { - "category_id": 1, - "poly": [ - 1370, - 855, - 2152, - 855, - 2152, - 923, - 1370, - 923 - ], - "score": 0.138 - }, - { - "category_id": 1, - "poly": [ - 304, - 385, - 553, - 385, - 553, - 419, - 304, - 419 - ], - "score": 0.118 - }, - { - "category_id": 1, - "poly": [ - 1371, - 928, - 2060, - 928, - 2060, - 963, - 1371, - 963 - ], - "score": 0.114 - }, - { - "category_id": 15, - "poly": [ - 1984.0, - 103.0, - 2220.0, - 103.0, - 2220.0, - 132.0, - 1984.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 100.0, - 247.0, - 100.0, - 247.0, - 134.0, - 116.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1070.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1070.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 1475.0, - 934.0, - 1475.0, - 934.0, - 1508.0, - 304.0, - 1508.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 456.0, - 1187.0, - 456.0, - 1187.0, - 491.0, - 303.0, - 491.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 302.0, - 492.0, - 1110.0, - 492.0, - 1110.0, - 526.0, - 302.0, - 526.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 302.0, - 528.0, - 1167.0, - 528.0, - 1167.0, - 560.0, - 302.0, - 560.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 300.0, - 560.0, - 373.0, - 560.0, - 373.0, - 601.0, - 300.0, - 601.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 139.0, - 888.0, - 139.0, - 888.0, - 176.0, - 303.0, - 176.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 306.0, - 176.0, - 1078.0, - 176.0, - 1078.0, - 211.0, - 306.0, - 211.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 214.0, - 510.0, - 214.0, - 510.0, - 244.0, - 304.0, - 244.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 1230.0, - 527.0, - 1230.0, - 527.0, - 1259.0, - 304.0, - 1259.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 701.0, - 543.0, - 701.0, - 543.0, - 734.0, - 304.0, - 734.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 280.0, - 423.0, - 280.0, - 423.0, - 313.0, - 303.0, - 313.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 302.0, - 315.0, - 860.0, - 315.0, - 860.0, - 350.0, - 302.0, - 350.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 384.0, - 554.0, - 384.0, - 554.0, - 422.0, - 304.0, - 422.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 736.0, - 1099.0, - 736.0, - 1099.0, - 772.0, - 303.0, - 772.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 772.0, - 1190.0, - 772.0, - 1190.0, - 807.0, - 303.0, - 807.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 302.0, - 807.0, - 1195.0, - 807.0, - 1195.0, - 842.0, - 302.0, - 842.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 302.0, - 842.0, - 858.0, - 842.0, - 858.0, - 878.0, - 302.0, - 878.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 1263.0, - 1022.0, - 1263.0, - 1022.0, - 1300.0, - 304.0, - 1300.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 302.0, - 1300.0, - 1177.0, - 1300.0, - 1177.0, - 1332.0, - 302.0, - 1332.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 302.0, - 1335.0, - 1202.0, - 1335.0, - 1202.0, - 1370.0, - 302.0, - 1370.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 305.0, - 1369.0, - 1084.0, - 1369.0, - 1084.0, - 1404.0, - 305.0, - 1404.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 1406.0, - 747.0, - 1406.0, - 747.0, - 1436.0, - 304.0, - 1436.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1367.0, - 244.0, - 1552.0, - 244.0, - 1552.0, - 282.0, - 1367.0, - 282.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 305.0, - 985.0, - 542.0, - 985.0, - 542.0, - 1014.0, - 305.0, - 1014.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 306.0, - 595.0, - 1143.0, - 595.0, - 1143.0, - 631.0, - 306.0, - 631.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 302.0, - 631.0, - 424.0, - 631.0, - 424.0, - 664.0, - 302.0, - 664.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 306.0, - 877.0, - 1129.0, - 877.0, - 1129.0, - 910.0, - 306.0, - 910.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 305.0, - 915.0, - 760.0, - 915.0, - 760.0, - 944.0, - 305.0, - 944.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 461.0, - 2153.0, - 461.0, - 2153.0, - 498.0, - 1419.0, - 498.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 499.0, - 2115.0, - 499.0, - 2115.0, - 529.0, - 1419.0, - 529.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 534.0, - 2184.0, - 534.0, - 2184.0, - 566.0, - 1418.0, - 566.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 569.0, - 1621.0, - 569.0, - 1621.0, - 603.0, - 1419.0, - 603.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 391.0, - 2154.0, - 391.0, - 2154.0, - 423.0, - 1417.0, - 423.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 422.0, - 1561.0, - 422.0, - 1561.0, - 462.0, - 1417.0, - 462.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 282.0, - 2197.0, - 282.0, - 2197.0, - 317.0, - 1419.0, - 317.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 320.0, - 2218.0, - 320.0, - 2218.0, - 353.0, - 1418.0, - 353.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 352.0, - 1563.0, - 352.0, - 1563.0, - 389.0, - 1418.0, - 389.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 421.0, - 543.0, - 421.0, - 543.0, - 452.0, - 303.0, - 452.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 175.0, - 1621.0, - 175.0, - 1621.0, - 210.0, - 1369.0, - 210.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 281.0, - 2197.0, - 281.0, - 2197.0, - 317.0, - 1417.0, - 317.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 318.0, - 2218.0, - 318.0, - 2218.0, - 352.0, - 1418.0, - 352.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 352.0, - 1561.0, - 352.0, - 1561.0, - 386.0, - 1419.0, - 386.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 392.0, - 2154.0, - 392.0, - 2154.0, - 423.0, - 1418.0, - 423.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 426.0, - 1562.0, - 426.0, - 1562.0, - 460.0, - 1418.0, - 460.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 462.0, - 2153.0, - 462.0, - 2153.0, - 497.0, - 1417.0, - 497.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 499.0, - 2116.0, - 499.0, - 2116.0, - 530.0, - 1419.0, - 530.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 534.0, - 2184.0, - 534.0, - 2184.0, - 564.0, - 1417.0, - 564.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 569.0, - 1621.0, - 569.0, - 1621.0, - 601.0, - 1419.0, - 601.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 606.0, - 2185.0, - 606.0, - 2185.0, - 639.0, - 1417.0, - 639.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 642.0, - 2208.0, - 642.0, - 2208.0, - 673.0, - 1419.0, - 673.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 677.0, - 2154.0, - 677.0, - 2154.0, - 708.0, - 1419.0, - 708.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 712.0, - 1866.0, - 712.0, - 1866.0, - 745.0, - 1417.0, - 745.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 747.0, - 2214.0, - 747.0, - 2214.0, - 781.0, - 1418.0, - 781.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 783.0, - 2198.0, - 783.0, - 2198.0, - 817.0, - 1417.0, - 817.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 813.0, - 1461.0, - 813.0, - 1461.0, - 856.0, - 1417.0, - 856.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 857.0, - 2154.0, - 857.0, - 2154.0, - 887.0, - 1419.0, - 887.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 893.0, - 1831.0, - 893.0, - 1831.0, - 923.0, - 1420.0, - 923.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 926.0, - 2062.0, - 926.0, - 2062.0, - 962.0, - 1417.0, - 962.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 604.0, - 2184.0, - 604.0, - 2184.0, - 640.0, - 1417.0, - 640.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 642.0, - 2208.0, - 642.0, - 2208.0, - 672.0, - 1420.0, - 672.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 677.0, - 2156.0, - 677.0, - 2156.0, - 710.0, - 1418.0, - 710.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 712.0, - 1864.0, - 712.0, - 1864.0, - 745.0, - 1418.0, - 745.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 208.0, - 2136.0, - 208.0, - 2136.0, - 246.0, - 1369.0, - 246.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 306.0, - 595.0, - 1143.0, - 595.0, - 1143.0, - 632.0, - 306.0, - 632.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 302.0, - 632.0, - 425.0, - 632.0, - 425.0, - 665.0, - 302.0, - 665.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 1017.0, - 1102.0, - 1017.0, - 1102.0, - 1053.0, - 303.0, - 1053.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 1054.0, - 1155.0, - 1054.0, - 1155.0, - 1086.0, - 303.0, - 1086.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 302.0, - 1088.0, - 928.0, - 1088.0, - 928.0, - 1124.0, - 302.0, - 1124.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 208.0, - 2136.0, - 208.0, - 2136.0, - 246.0, - 1369.0, - 246.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 750.0, - 2213.0, - 750.0, - 2213.0, - 779.0, - 1420.0, - 779.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 785.0, - 2197.0, - 785.0, - 2197.0, - 816.0, - 1419.0, - 816.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 815.0, - 1460.0, - 815.0, - 1460.0, - 856.0, - 1418.0, - 856.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 1018.0, - 1102.0, - 1018.0, - 1102.0, - 1053.0, - 304.0, - 1053.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 1055.0, - 1155.0, - 1055.0, - 1155.0, - 1087.0, - 303.0, - 1087.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 302.0, - 1087.0, - 928.0, - 1087.0, - 928.0, - 1125.0, - 302.0, - 1125.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 305.0, - 1122.0, - 1169.0, - 1122.0, - 1169.0, - 1159.0, - 305.0, - 1159.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 1160.0, - 994.0, - 1160.0, - 994.0, - 1190.0, - 303.0, - 1190.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 305.0, - 1122.0, - 1172.0, - 1122.0, - 1172.0, - 1159.0, - 305.0, - 1159.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 305.0, - 1162.0, - 994.0, - 1162.0, - 994.0, - 1191.0, - 305.0, - 1191.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 853.0, - 2155.0, - 853.0, - 2155.0, - 890.0, - 1417.0, - 890.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 891.0, - 1830.0, - 891.0, - 1830.0, - 925.0, - 1419.0, - 925.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 384.0, - 554.0, - 384.0, - 554.0, - 422.0, - 304.0, - 422.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 926.0, - 2061.0, - 926.0, - 2061.0, - 961.0, - 1417.0, - 961.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 10, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 214, - 107, - 2256, - 107, - 2256, - 1539, - 214, - 1539 - ], - "score": 0.925, - "html": "
03 Markscheme With reference to the Source(s) and your wider 10
sociological knowledge, evaluate the view that virtualAO1: Knowledge and understanding NOTE: Contemporary examples should be credited in AO1 in
communities have a positive impact on people's identity.the same way as sociological studies.
AO1: Knowledge and understandingVirtualcommunity-asocialnetworkofindividualsthatcreate an online community which can cross geographical, political
Level4:4marks The candidate demonstrates an excellent knowledge andand social lines. There should be a focus on identity - more generalised
understanding of a range of sociological material; the evidence is generally accurate and detailed. The material presented is relevantpositive impacts should be credited as underdeveloped.
andsupportedbyevidence. There will typically be two developed points supporting the view in the question.Supporting evidence may include: Virtual worlds canchange ideas about people's identity
Level 3: 3 marksand society, people can choose an alternative identity; Boellstorff Carter -'Cybercity', a place to meet people, widen and
The candidate demonstrates a good knowledge and understanding ofeither arangeofsociological materialorsomematerial instrengthen social networks and relationships, positive effect on self-regard and identity.
detail.Thematerialisgenerallyaccuratebutunderdeveloped,or narrow. The material presented is mostly relevant and supported by some evidence.People free from their physical bodies and constraints -
There will typically be one developed point or two underdevelopedTushnet Virtual communities allow people to present 'better' versions ofthemselves;Turkle
Level 2: 2 marks The candidate demonstrates a basic knowledge andSocial networking sites - individuals create virtual profiles - Baudrillard calls this a simulacra, a mediated version of our
identity; Durham and Kellner Feminists: in virtual communities women can transcend
contain some inaccuracies. The response may be partial and undevelopedbutwill have somerelevance.gender to focus on other aspects of their identity, becoming cyborgs; Haraway
Therewill typicallybe oneunderdeveloped or two undevelopedPeople can develop different aspects of their identity, we
areallcyborgs;Case Access to people across the world may help with
Level 1: 1mark
The candidate demonstrates a limited knowledge andethnicminoritybackgrounds;Nakamura
understandingofsociological material.VerylittlerelevantInteractionists: individuals give meaning to interactions
within virtual communities, influencing identity and the
largely based on common sense; the response containspresentationofself-Gardner&Davis
considerable inaccuracy and lacks clarity.
Other reasonable response.
Therewill typicallybeoneundevelopedpoint supporting theview
" - }, - { - "category_id": 2, - "poly": [ - 1981, - 101, - 2223, - 101, - 2223, - 133, - 1981, - 133 - ], - "score": 0.917 - }, - { - "category_id": 2, - "poly": [ - 115, - 99, - 246, - 99, - 246, - 132, - 115, - 132 - ], - "score": 0.852 - }, - { - "category_id": 2, - "poly": [ - 1066, - 101, - 1271, - 101, - 1271, - 133, - 1066, - 133 - ], - "score": 0.815 - }, - { - "category_id": 0, - "poly": [ - 303, - 1285, - 528, - 1285, - 528, - 1317, - 303, - 1317 - ], - "score": 0.371 - }, - { - "category_id": 1, - "poly": [ - 303, - 408, - 1213, - 408, - 1213, - 544, - 303, - 544 - ], - "score": 0.367 - }, - { - "category_id": 1, - "poly": [ - 1371, - 1030, - 2178, - 1030, - 2178, - 1136, - 1371, - 1136 - ], - "score": 0.316 - }, - { - "category_id": 1, - "poly": [ - 1370, - 1139, - 2193, - 1139, - 2193, - 1207, - 1370, - 1207 - ], - "score": 0.313 - }, - { - "category_id": 1, - "poly": [ - 1365, - 176, - 2203, - 176, - 2203, - 244, - 1365, - 244 - ], - "score": 0.298 - }, - { - "category_id": 1, - "poly": [ - 1369, - 279, - 2209, - 279, - 2209, - 382, - 1369, - 382 - ], - "score": 0.224 - }, - { - "category_id": 1, - "poly": [ - 1373, - 1442, - 1802, - 1442, - 1802, - 1474, - 1373, - 1474 - ], - "score": 0.22 - }, - { - "category_id": 0, - "poly": [ - 304, - 336, - 836, - 336, - 836, - 372, - 304, - 372 - ], - "score": 0.215 - }, - { - "category_id": 0, - "poly": [ - 302, - 969, - 545, - 969, - 545, - 1002, - 302, - 1002 - ], - "score": 0.213 - }, - { - "category_id": 1, - "poly": [ - 304, - 547, - 1200, - 547, - 1200, - 615, - 304, - 615 - ], - "score": 0.212 - }, - { - "category_id": 1, - "poly": [ - 1370, - 924, - 2222, - 924, - 2222, - 1026, - 1370, - 1026 - ], - "score": 0.212 - }, - { - "category_id": 1, - "poly": [ - 1366, - 485, - 2225, - 485, - 2225, - 1509, - 1366, - 1509 - ], - "score": 0.21 - }, - { - "category_id": 1, - "poly": [ - 301, - 688, - 1204, - 688, - 1204, - 860, - 301, - 860 - ], - "score": 0.201 - }, - { - "category_id": 1, - "poly": [ - 1370, - 1211, - 2203, - 1211, - 2203, - 1327, - 1370, - 1327 - ], - "score": 0.199 - }, - { - "category_id": 1, - "poly": [ - 1370, - 851, - 2198, - 851, - 2198, - 919, - 1370, - 919 - ], - "score": 0.183 - }, - { - "category_id": 1, - "poly": [ - 1370, - 386, - 2126, - 386, - 2126, - 455, - 1370, - 455 - ], - "score": 0.131 - }, - { - "category_id": 1, - "poly": [ - 1370, - 1333, - 2168, - 1333, - 2168, - 1435, - 1370, - 1435 - ], - "score": 0.13 - }, - { - "category_id": 1, - "poly": [ - 305, - 863, - 1202, - 863, - 1202, - 934, - 305, - 934 - ], - "score": 0.112 - }, - { - "category_id": 0, - "poly": [ - 304, - 373, - 546, - 373, - 546, - 404, - 304, - 404 - ], - "score": 0.109 - }, - { - "category_id": 1, - "poly": [ - 1373, - 743, - 2166, - 743, - 2166, - 846, - 1373, - 846 - ], - "score": 0.103 - }, - { - "category_id": 0, - "poly": [ - 302, - 653, - 545, - 653, - 545, - 685, - 302, - 685 - ], - "score": 0.1 - }, - { - "category_id": 15, - "poly": [ - 1984.0, - 103.0, - 2220.0, - 103.0, - 2220.0, - 132.0, - 1984.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 100.0, - 246.0, - 100.0, - 246.0, - 134.0, - 116.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1070.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1070.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 1287.0, - 528.0, - 1287.0, - 528.0, - 1316.0, - 304.0, - 1316.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 305.0, - 410.0, - 1080.0, - 410.0, - 1080.0, - 439.0, - 305.0, - 439.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 302.0, - 443.0, - 1185.0, - 443.0, - 1185.0, - 476.0, - 302.0, - 476.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 301.0, - 479.0, - 1216.0, - 479.0, - 1216.0, - 511.0, - 301.0, - 511.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 514.0, - 681.0, - 514.0, - 681.0, - 547.0, - 303.0, - 547.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1032.0, - 2171.0, - 1032.0, - 2171.0, - 1062.0, - 1418.0, - 1062.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1067.0, - 2081.0, - 1067.0, - 2081.0, - 1100.0, - 1419.0, - 1100.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1100.0, - 1809.0, - 1100.0, - 1809.0, - 1138.0, - 1418.0, - 1138.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1139.0, - 2187.0, - 1139.0, - 2187.0, - 1172.0, - 1418.0, - 1172.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1176.0, - 1712.0, - 1176.0, - 1712.0, - 1209.0, - 1419.0, - 1209.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1368.0, - 173.0, - 2201.0, - 173.0, - 2201.0, - 212.0, - 1368.0, - 212.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1371.0, - 212.0, - 1882.0, - 212.0, - 1882.0, - 245.0, - 1371.0, - 245.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 280.0, - 2207.0, - 280.0, - 2207.0, - 314.0, - 1369.0, - 314.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1368.0, - 316.0, - 2183.0, - 316.0, - 2183.0, - 352.0, - 1368.0, - 352.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 353.0, - 1588.0, - 353.0, - 1588.0, - 382.0, - 1370.0, - 382.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1441.0, - 1801.0, - 1441.0, - 1801.0, - 1474.0, - 1419.0, - 1474.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 336.0, - 834.0, - 336.0, - 834.0, - 372.0, - 303.0, - 372.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 305.0, - 971.0, - 542.0, - 971.0, - 542.0, - 1000.0, - 305.0, - 1000.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 306.0, - 546.0, - 1196.0, - 546.0, - 1196.0, - 583.0, - 306.0, - 583.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 305.0, - 585.0, - 481.0, - 585.0, - 481.0, - 616.0, - 305.0, - 616.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 922.0, - 2212.0, - 922.0, - 2212.0, - 956.0, - 1419.0, - 956.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1421.0, - 960.0, - 2222.0, - 960.0, - 2222.0, - 990.0, - 1421.0, - 990.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 996.0, - 1810.0, - 996.0, - 1810.0, - 1026.0, - 1420.0, - 1026.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 491.0, - 1832.0, - 491.0, - 1832.0, - 527.0, - 1369.0, - 527.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1415.0, - 527.0, - 2166.0, - 527.0, - 2166.0, - 563.0, - 1415.0, - 563.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1416.0, - 561.0, - 2156.0, - 561.0, - 2156.0, - 600.0, - 1416.0, - 600.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 600.0, - 1563.0, - 600.0, - 1563.0, - 631.0, - 1420.0, - 631.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1416.0, - 634.0, - 2161.0, - 634.0, - 2161.0, - 672.0, - 1416.0, - 672.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 674.0, - 2146.0, - 674.0, - 2146.0, - 707.0, - 1420.0, - 707.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 707.0, - 1867.0, - 707.0, - 1867.0, - 742.0, - 1419.0, - 742.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 743.0, - 2170.0, - 743.0, - 2170.0, - 778.0, - 1417.0, - 778.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 779.0, - 2139.0, - 779.0, - 2139.0, - 812.0, - 1417.0, - 812.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 813.0, - 1540.0, - 813.0, - 1540.0, - 847.0, - 1419.0, - 847.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 851.0, - 2193.0, - 851.0, - 2193.0, - 887.0, - 1417.0, - 887.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 887.0, - 1702.0, - 887.0, - 1702.0, - 920.0, - 1420.0, - 920.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 924.0, - 2212.0, - 924.0, - 2212.0, - 957.0, - 1420.0, - 957.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1421.0, - 961.0, - 2222.0, - 961.0, - 2222.0, - 990.0, - 1421.0, - 990.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 995.0, - 1812.0, - 995.0, - 1812.0, - 1027.0, - 1419.0, - 1027.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1032.0, - 2172.0, - 1032.0, - 2172.0, - 1061.0, - 1419.0, - 1061.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1065.0, - 2081.0, - 1065.0, - 2081.0, - 1102.0, - 1417.0, - 1102.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1102.0, - 1811.0, - 1102.0, - 1811.0, - 1138.0, - 1418.0, - 1138.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1140.0, - 2187.0, - 1140.0, - 2187.0, - 1173.0, - 1419.0, - 1173.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1174.0, - 1713.0, - 1174.0, - 1713.0, - 1209.0, - 1419.0, - 1209.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1211.0, - 2081.0, - 1211.0, - 2081.0, - 1244.0, - 1417.0, - 1244.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1253.0, - 2201.0, - 1253.0, - 2201.0, - 1286.0, - 1420.0, - 1286.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1422.0, - 1294.0, - 1963.0, - 1294.0, - 1963.0, - 1324.0, - 1422.0, - 1324.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1333.0, - 2169.0, - 1333.0, - 2169.0, - 1367.0, - 1417.0, - 1367.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1369.0, - 2151.0, - 1369.0, - 2151.0, - 1401.0, - 1420.0, - 1401.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1404.0, - 1943.0, - 1404.0, - 1943.0, - 1437.0, - 1419.0, - 1437.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1441.0, - 1804.0, - 1441.0, - 1804.0, - 1476.0, - 1418.0, - 1476.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 688.0, - 1208.0, - 688.0, - 1208.0, - 723.0, - 303.0, - 723.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 723.0, - 1128.0, - 723.0, - 1128.0, - 757.0, - 303.0, - 757.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 302.0, - 758.0, - 1183.0, - 758.0, - 1183.0, - 793.0, - 302.0, - 793.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 302.0, - 796.0, - 1180.0, - 796.0, - 1180.0, - 826.0, - 302.0, - 826.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 830.0, - 558.0, - 830.0, - 558.0, - 860.0, - 304.0, - 860.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1213.0, - 2081.0, - 1213.0, - 2081.0, - 1243.0, - 1418.0, - 1243.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1253.0, - 2202.0, - 1253.0, - 2202.0, - 1288.0, - 1419.0, - 1288.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1422.0, - 1294.0, - 1963.0, - 1294.0, - 1963.0, - 1324.0, - 1422.0, - 1324.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 850.0, - 2193.0, - 850.0, - 2193.0, - 885.0, - 1419.0, - 885.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1421.0, - 888.0, - 1699.0, - 888.0, - 1699.0, - 919.0, - 1421.0, - 919.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1371.0, - 385.0, - 2113.0, - 385.0, - 2113.0, - 419.0, - 1371.0, - 419.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 423.0, - 2124.0, - 423.0, - 2124.0, - 455.0, - 1370.0, - 455.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1333.0, - 2168.0, - 1333.0, - 2168.0, - 1367.0, - 1417.0, - 1367.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1368.0, - 2151.0, - 1368.0, - 2151.0, - 1403.0, - 1418.0, - 1403.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1404.0, - 1943.0, - 1404.0, - 1943.0, - 1436.0, - 1419.0, - 1436.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 307.0, - 864.0, - 1202.0, - 864.0, - 1202.0, - 897.0, - 307.0, - 897.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 302.0, - 902.0, - 876.0, - 902.0, - 876.0, - 934.0, - 302.0, - 934.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 305.0, - 374.0, - 543.0, - 374.0, - 543.0, - 403.0, - 305.0, - 403.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 745.0, - 2166.0, - 745.0, - 2166.0, - 778.0, - 1419.0, - 778.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 780.0, - 2138.0, - 780.0, - 2138.0, - 812.0, - 1418.0, - 812.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 812.0, - 1538.0, - 812.0, - 1538.0, - 846.0, - 1419.0, - 846.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 652.0, - 542.0, - 652.0, - 542.0, - 685.0, - 304.0, - 685.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 11, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1981, - 101, - 2223, - 101, - 2223, - 133, - 1981, - 133 - ], - "score": 0.903 - }, - { - "category_id": 1, - "poly": [ - 1368, - 854, - 2218, - 854, - 2218, - 1503, - 1368, - 1503 - ], - "score": 0.899 - }, - { - "category_id": 5, - "poly": [ - 196, - 107, - 2308, - 107, - 2308, - 1516, - 196, - 1516 - ], - "score": 0.879, - "html": "
/03Markscheme
in the question, or a vague representation.AO2:ApplicationIn this questionAo2 is awarded foruse of source(s)
0 marks: No relevant knowledge or understanding.For example:
A02: Application Level2:2marksPostmodernview:virtualcommunitieshave apositive impact on individual's real and virtual identity (Source B)
Thecandidate demonstrates an excellentorgood abilityto applyIn virtual communities people can choose how they present themselves, i.e. their virtual identity (Source B).
relevant source material. The candidate has explicitly applied material from at least one of the sources.People can transform their identity regardless of gender, ethnicity, social class, age or disability. (Source B)
Therewilltypicallybeatleastonedevelopedreferencetosource material.Concerns about the effects of virtual communities on both individuals'identities (Source B)
Level 1: 1 mark The candidate shows abasic or limited ability to applysourceWho controls the virtual communities and how are they regulated (SourceB),
material. The candidatehas implicitlyreferred toissues raised inAO3:Analysisandevaluation
TherewilltypicallybeatleastoneundevelopedreferencetoNOTE: Contemporary examples should be credited in AO3 in the same way as sociological studies.
sourcematerial.Arguments against the view that virtual communities have a
0 marks No relevant sociological application.positive impact on people's identity, may include:
AO3:Analysis and evaluation Level4:4marksRecent concerns raised about young people who reveal mental health issues in virtual communities being
encouraged to internalise harmful negative self -
evaluate sociological material. There is a range of developedperceptions. Young people are becoming more narcissistic; Gardner &
conclusion.evaluation points. There may be a critical and reasonedDavis
in the question.There will typically be two developed points challenging the viewThe i-generation spend less time with friends and have
higher evels of anxiety and loneliness; Twenge Cyberbullying has a negative effect on identity;
Level 3: 3 marksLivingstone, Haddon, Vincent, Mascheroni and Olafsson,
The candidate demonstrates a good ability to analyse and evaluateO'Keefe& ClarkePearson
sociological material. There is some analysis and evaluation,but itWe knowless about people's identity if we are unable to
see facial expressions, intonation of voice etc.; Justice and
explicit but brief conclusion.Jamieson
Virtual communities may be used illegitimately, for
There will typically be one developed point or two underdeveloped
example grooming young people. Likely to negatively
impact on identity for many years.
Level2:2marks
Indirect, online communication is isolating; Turkle
" - }, - { - "category_id": 2, - "poly": [ - 114, - 99, - 247, - 99, - 247, - 132, - 114, - 132 - ], - "score": 0.847 - }, - { - "category_id": 2, - "poly": [ - 1066, - 102, - 1271, - 102, - 1271, - 133, - 1066, - 133 - ], - "score": 0.829 - }, - { - "category_id": 1, - "poly": [ - 1368, - 678, - 2203, - 678, - 2203, - 746, - 1368, - 746 - ], - "score": 0.69 - }, - { - "category_id": 1, - "poly": [ - 1366, - 781, - 2183, - 781, - 2183, - 852, - 1366, - 852 - ], - "score": 0.644 - }, - { - "category_id": 6, - "poly": [ - 303, - 1475, - 544, - 1475, - 544, - 1508, - 303, - 1508 - ], - "score": 0.553 - }, - { - "category_id": 1, - "poly": [ - 303, - 1229, - 1216, - 1229, - 1216, - 1367, - 303, - 1367 - ], - "score": 0.473 - }, - { - "category_id": 1, - "poly": [ - 299, - 1369, - 1204, - 1369, - 1204, - 1438, - 299, - 1438 - ], - "score": 0.427 - }, - { - "category_id": 5, - "poly": [ - 105, - 87, - 1418, - 87, - 1418, - 1569, - 105, - 1569 - ], - "score": 0.344, - "html": "
H580/03 Mark scheme in the question, or a vague representation.
0 marks: No relevant knowledge or understanding. AO2: Application Level 2: 2 marks The candidate demonstrates an excellent or good ability to apply material from at least one of the sources. There will typically be at least one developed reference to source material.
In tFor
Level 1: 1 mark sourcematerial. AO3: Analysis and evaluation Level 4: 4 marksThe candidate shows a basic or limited ability to apply source material. The candidate has implicitly referred to issues raised in the source(s) or recycled source materials in an undeveloped way. There will typically be at least one undeveloped reference to 0 marks No relevant sociological application.AO NO the Arg pos
The candidate demonstrates an excellent ability to analyse and evaluate sociological material. There is a range of developed evaluation points. There may be a critical and reasoned There will typically be two developed points challenging the view
conclusion. in the question. Level 3: 3 marks explicit but brief conclusion. pointschallengingtheviewinthequestion. Level 2: 2 marksThe candidate demonstrates a good ability to analyse and evaluate sociological material. There is some analysis and evaluation, but it There will typically be one developed point or two underdeveloped
" - }, - { - "category_id": 1, - "poly": [ - 1365, - 237, - 2226, - 237, - 2226, - 605, - 1365, - 605 - ], - "score": 0.335 - }, - { - "category_id": 0, - "poly": [ - 302, - 1193, - 545, - 1193, - 545, - 1225, - 302, - 1225 - ], - "score": 0.317 - }, - { - "category_id": 0, - "poly": [ - 303, - 561, - 528, - 561, - 528, - 593, - 303, - 593 - ], - "score": 0.261 - }, - { - "category_id": 1, - "poly": [ - 303, - 281, - 554, - 281, - 554, - 313, - 303, - 313 - ], - "score": 0.258 - }, - { - "category_id": 1, - "poly": [ - 303, - 1475, - 544, - 1475, - 544, - 1508, - 303, - 1508 - ], - "score": 0.247 - }, - { - "category_id": 1, - "poly": [ - 302, - 1088, - 1184, - 1088, - 1184, - 1157, - 302, - 1157 - ], - "score": 0.198 - }, - { - "category_id": 1, - "poly": [ - 301, - 947, - 1165, - 947, - 1165, - 1086, - 301, - 1086 - ], - "score": 0.183 - }, - { - "category_id": 1, - "poly": [ - 297, - 142, - 874, - 142, - 874, - 175, - 297, - 175 - ], - "score": 0.171 - }, - { - "category_id": 0, - "poly": [ - 304, - 316, - 546, - 316, - 546, - 347, - 304, - 347 - ], - "score": 0.159 - }, - { - "category_id": 1, - "poly": [ - 304, - 316, - 546, - 316, - 546, - 347, - 304, - 347 - ], - "score": 0.159 - }, - { - "category_id": 0, - "poly": [ - 1369, - 642, - 1803, - 642, - 1803, - 675, - 1369, - 675 - ], - "score": 0.157 - }, - { - "category_id": 1, - "poly": [ - 301, - 209, - 986, - 209, - 986, - 245, - 301, - 245 - ], - "score": 0.139 - }, - { - "category_id": 1, - "poly": [ - 303, - 351, - 1181, - 351, - 1181, - 453, - 303, - 453 - ], - "score": 0.132 - }, - { - "category_id": 0, - "poly": [ - 303, - 281, - 554, - 281, - 554, - 313, - 303, - 313 - ], - "score": 0.129 - }, - { - "category_id": 1, - "poly": [ - 1365, - 168, - 2226, - 168, - 2226, - 606, - 1365, - 606 - ], - "score": 0.122 - }, - { - "category_id": 1, - "poly": [ - 301, - 596, - 1198, - 596, - 1198, - 772, - 301, - 772 - ], - "score": 0.108 - }, - { - "category_id": 15, - "poly": [ - 1984.0, - 103.0, - 2220.0, - 103.0, - 2220.0, - 132.0, - 1984.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 856.0, - 2180.0, - 856.0, - 2180.0, - 891.0, - 1417.0, - 891.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 892.0, - 2086.0, - 892.0, - 2086.0, - 924.0, - 1418.0, - 924.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 927.0, - 2076.0, - 927.0, - 2076.0, - 958.0, - 1418.0, - 958.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 963.0, - 1588.0, - 963.0, - 1588.0, - 995.0, - 1420.0, - 995.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 997.0, - 2200.0, - 997.0, - 2200.0, - 1032.0, - 1419.0, - 1032.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1032.0, - 1502.0, - 1032.0, - 1502.0, - 1066.0, - 1417.0, - 1066.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1071.0, - 2163.0, - 1071.0, - 2163.0, - 1102.0, - 1420.0, - 1102.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1106.0, - 2056.0, - 1106.0, - 2056.0, - 1140.0, - 1419.0, - 1140.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1143.0, - 2055.0, - 1143.0, - 2055.0, - 1177.0, - 1419.0, - 1177.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1177.0, - 2195.0, - 1177.0, - 2195.0, - 1212.0, - 1419.0, - 1212.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1213.0, - 1784.0, - 1213.0, - 1784.0, - 1244.0, - 1420.0, - 1244.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1425.0, - 1250.0, - 2191.0, - 1250.0, - 2191.0, - 1283.0, - 1425.0, - 1283.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1287.0, - 2216.0, - 1287.0, - 2216.0, - 1316.0, - 1419.0, - 1316.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1320.0, - 1556.0, - 1320.0, - 1556.0, - 1355.0, - 1418.0, - 1355.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1358.0, - 2100.0, - 1358.0, - 2100.0, - 1391.0, - 1418.0, - 1391.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1394.0, - 2141.0, - 1394.0, - 2141.0, - 1429.0, - 1419.0, - 1429.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1429.0, - 1880.0, - 1429.0, - 1880.0, - 1462.0, - 1419.0, - 1462.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1466.0, - 2087.0, - 1466.0, - 2087.0, - 1498.0, - 1419.0, - 1498.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 100.0, - 246.0, - 100.0, - 246.0, - 134.0, - 115.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1068.0, - 101.0, - 1270.0, - 101.0, - 1270.0, - 134.0, - 1068.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1368.0, - 675.0, - 2202.0, - 675.0, - 2202.0, - 714.0, - 1368.0, - 714.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1368.0, - 713.0, - 1881.0, - 713.0, - 1881.0, - 747.0, - 1368.0, - 747.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 783.0, - 2179.0, - 783.0, - 2179.0, - 815.0, - 1369.0, - 815.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 820.0, - 2034.0, - 820.0, - 2034.0, - 852.0, - 1369.0, - 852.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 1477.0, - 543.0, - 1477.0, - 543.0, - 1506.0, - 304.0, - 1506.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 1228.0, - 1214.0, - 1228.0, - 1214.0, - 1263.0, - 304.0, - 1263.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 305.0, - 1267.0, - 1203.0, - 1267.0, - 1203.0, - 1297.0, - 305.0, - 1297.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 1302.0, - 1166.0, - 1302.0, - 1166.0, - 1332.0, - 304.0, - 1332.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 1336.0, - 678.0, - 1336.0, - 678.0, - 1366.0, - 304.0, - 1366.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 307.0, - 1370.0, - 1203.0, - 1370.0, - 1203.0, - 1404.0, - 307.0, - 1404.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 1408.0, - 888.0, - 1408.0, - 888.0, - 1437.0, - 303.0, - 1437.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1416.0, - 247.0, - 2222.0, - 247.0, - 2222.0, - 280.0, - 1416.0, - 280.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 284.0, - 2183.0, - 284.0, - 2183.0, - 316.0, - 1419.0, - 316.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1415.0, - 317.0, - 2226.0, - 317.0, - 2226.0, - 358.0, - 1415.0, - 358.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 357.0, - 2172.0, - 357.0, - 2172.0, - 390.0, - 1419.0, - 390.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 394.0, - 2220.0, - 394.0, - 2220.0, - 426.0, - 1418.0, - 426.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 429.0, - 2103.0, - 429.0, - 2103.0, - 462.0, - 1419.0, - 462.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 466.0, - 2203.0, - 466.0, - 2203.0, - 496.0, - 1419.0, - 496.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 502.0, - 1857.0, - 502.0, - 1857.0, - 533.0, - 1419.0, - 533.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 534.0, - 2222.0, - 534.0, - 2222.0, - 571.0, - 1417.0, - 571.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 574.0, - 1710.0, - 574.0, - 1710.0, - 605.0, - 1419.0, - 605.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 1192.0, - 542.0, - 1192.0, - 542.0, - 1225.0, - 304.0, - 1225.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 563.0, - 528.0, - 563.0, - 528.0, - 592.0, - 304.0, - 592.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 279.0, - 554.0, - 279.0, - 554.0, - 317.0, - 304.0, - 317.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 1477.0, - 543.0, - 1477.0, - 543.0, - 1506.0, - 304.0, - 1506.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 312.0, - 1088.0, - 1186.0, - 1088.0, - 1186.0, - 1124.0, - 312.0, - 1124.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 1126.0, - 513.0, - 1126.0, - 513.0, - 1156.0, - 304.0, - 1156.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 946.0, - 1160.0, - 946.0, - 1160.0, - 981.0, - 303.0, - 981.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 984.0, - 1131.0, - 984.0, - 1131.0, - 1018.0, - 303.0, - 1018.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 1021.0, - 1058.0, - 1021.0, - 1058.0, - 1051.0, - 304.0, - 1051.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 1055.0, - 459.0, - 1055.0, - 459.0, - 1086.0, - 304.0, - 1086.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 142.0, - 876.0, - 142.0, - 876.0, - 174.0, - 304.0, - 174.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 305.0, - 317.0, - 543.0, - 317.0, - 543.0, - 346.0, - 305.0, - 346.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 305.0, - 317.0, - 543.0, - 317.0, - 543.0, - 346.0, - 305.0, - 346.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 642.0, - 1803.0, - 642.0, - 1803.0, - 675.0, - 1369.0, - 675.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 208.0, - 989.0, - 208.0, - 989.0, - 245.0, - 303.0, - 245.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 349.0, - 1178.0, - 349.0, - 1178.0, - 385.0, - 303.0, - 385.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 302.0, - 384.0, - 1133.0, - 384.0, - 1133.0, - 420.0, - 302.0, - 420.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 422.0, - 860.0, - 422.0, - 860.0, - 454.0, - 303.0, - 454.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 279.0, - 554.0, - 279.0, - 554.0, - 317.0, - 304.0, - 317.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1368.0, - 173.0, - 2130.0, - 173.0, - 2130.0, - 210.0, - 1368.0, - 210.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1368.0, - 211.0, - 1552.0, - 211.0, - 1552.0, - 246.0, - 1368.0, - 246.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 248.0, - 2222.0, - 248.0, - 2222.0, - 280.0, - 1417.0, - 280.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 283.0, - 2183.0, - 283.0, - 2183.0, - 316.0, - 1419.0, - 316.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1416.0, - 318.0, - 2225.0, - 318.0, - 2225.0, - 356.0, - 1416.0, - 356.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 356.0, - 2172.0, - 356.0, - 2172.0, - 390.0, - 1418.0, - 390.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 395.0, - 2221.0, - 395.0, - 2221.0, - 426.0, - 1419.0, - 426.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 430.0, - 2103.0, - 430.0, - 2103.0, - 460.0, - 1420.0, - 460.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 466.0, - 2203.0, - 466.0, - 2203.0, - 497.0, - 1419.0, - 497.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 499.0, - 1858.0, - 499.0, - 1858.0, - 533.0, - 1418.0, - 533.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 535.0, - 2223.0, - 535.0, - 2223.0, - 571.0, - 1417.0, - 571.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 574.0, - 1711.0, - 574.0, - 1711.0, - 606.0, - 1419.0, - 606.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 594.0, - 1138.0, - 594.0, - 1138.0, - 631.0, - 304.0, - 631.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 632.0, - 1176.0, - 632.0, - 1176.0, - 666.0, - 303.0, - 666.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 302.0, - 667.0, - 1197.0, - 667.0, - 1197.0, - 702.0, - 302.0, - 702.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 305.0, - 701.0, - 1122.0, - 701.0, - 1122.0, - 738.0, - 305.0, - 738.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 739.0, - 524.0, - 739.0, - 524.0, - 769.0, - 303.0, - 769.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 12, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 90, - 124, - 2261, - 124, - 2261, - 1541, - 90, - 1541 - ], - "score": 0.952, - "html": "
The candidate demonstrates a basic ability to analyse and evaluatesociological material.Evaluationpoints arelikely tobe undeveloped, with little supporting evidence. If present, the conclusionislikelytobesummative. There will typically be one underdeveloped or two undeveloped Level1:1markFeminists:thosewhocreateandcontrolvirtual communities more likely to be male, and the communities mayreflectpatriarchalattitudesreinforcingsubordinate identities. Communities may also be a course of genderedcyberhate';Jane ·Other reasonable response.
Thecandidatedemonstratesalimitedabilitytoanalyseand evaluatesociologicalmaterial.Onlybriefand/orimplicitevaluation ispresent.There isunlikelytobeaconclusion. Therewill typicallybeoneundevelopedpointchallengingtheview in the question, or a vague representation. 0 marks: No relevant sociological evaluation or analysis. Evaluate the sociological view that all digital forms of16AO1: Knowledge and understanding NOTE: Contemporary examples should be credited in AO1 in the same way as sociological studies.
communication have a negative impact on social relationships. AO1: Knowledge and understanding Level4:4marks The candidate demonstrates an excellent knowledge and understanding of a range of sociological material; the material isRelevant material supporting the view that all digital forms of communications have a negative impact on social relationshipsmayinclude: · Families/ friends may be 'alone together' - in the same roombutusingdevicestocommunicatewithothers or
There will typically be two developed points supporting the view in the question. Level3: 3 marks The candidate demonstrates a good knowledge and understanding of either a range ofsociological material or some material inengage in other tasks; Turkle Offline relationships may suffer as a result of time spent with onlinerelationships
betweenindividualsOnlinesocialties tend tobeweaker thanrelationships formed and maintained offline;Kraut Social media potential to cause tension and conflict Solitary activities - e.g. such as surfing the internet, negative impact on social ties; Zhao
Therewill typicallybe onedevelopedpoint ortwounderdeveloped Level2:2marks Thecandidatedemonstrates abasicknowledge andLack of privacy or different ideas about privacy may cause conflict Childrenwhocannotaffordsmartphonesoraccessto
" - }, - { - "category_id": 2, - "poly": [ - 1981, - 100, - 2224, - 100, - 2224, - 133, - 1981, - 133 - ], - "score": 0.879 - }, - { - "category_id": 2, - "poly": [ - 114, - 99, - 247, - 99, - 247, - 132, - 114, - 132 - ], - "score": 0.777 - }, - { - "category_id": 2, - "poly": [ - 1066, - 101, - 1271, - 101, - 1271, - 133, - 1066, - 133 - ], - "score": 0.671 - }, - { - "category_id": 6, - "poly": [ - 1066, - 101, - 1271, - 101, - 1271, - 133, - 1066, - 133 - ], - "score": 0.257 - }, - { - "category_id": 15, - "poly": [ - 1984.0, - 102.0, - 2220.0, - 102.0, - 2220.0, - 132.0, - 1984.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 100.0, - 246.0, - 100.0, - 246.0, - 134.0, - 115.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1070.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1070.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1070.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1070.0, - 132.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 13, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 1367, - 869, - 2198, - 869, - 2198, - 973, - 1367, - 973 - ], - "score": 0.928 - }, - { - "category_id": 1, - "poly": [ - 301, - 1370, - 1205, - 1370, - 1205, - 1472, - 301, - 1472 - ], - "score": 0.919 - }, - { - "category_id": 1, - "poly": [ - 1372, - 1044, - 2202, - 1044, - 2202, - 1114, - 1372, - 1114 - ], - "score": 0.9 - }, - { - "category_id": 2, - "poly": [ - 1981, - 101, - 2223, - 101, - 2223, - 133, - 1981, - 133 - ], - "score": 0.897 - }, - { - "category_id": 1, - "poly": [ - 1366, - 1148, - 2205, - 1148, - 2205, - 1254, - 1366, - 1254 - ], - "score": 0.896 - }, - { - "category_id": 1, - "poly": [ - 302, - 983, - 1206, - 983, - 1206, - 1088, - 302, - 1088 - ], - "score": 0.896 - }, - { - "category_id": 1, - "poly": [ - 301, - 1158, - 1177, - 1158, - 1177, - 1298, - 301, - 1298 - ], - "score": 0.883 - }, - { - "category_id": 1, - "poly": [ - 1370, - 1257, - 2215, - 1257, - 2215, - 1499, - 1370, - 1499 - ], - "score": 0.869 - }, - { - "category_id": 2, - "poly": [ - 1066, - 102, - 1271, - 102, - 1271, - 133, - 1066, - 133 - ], - "score": 0.865 - }, - { - "category_id": 1, - "poly": [ - 1367, - 140, - 2216, - 140, - 2216, - 795, - 1367, - 795 - ], - "score": 0.841 - }, - { - "category_id": 2, - "poly": [ - 114, - 99, - 246, - 99, - 246, - 132, - 114, - 132 - ], - "score": 0.836 - }, - { - "category_id": 1, - "poly": [ - 300, - 280, - 1173, - 280, - 1173, - 349, - 300, - 349 - ], - "score": 0.741 - }, - { - "category_id": 0, - "poly": [ - 1369, - 833, - 1621, - 833, - 1621, - 866, - 1369, - 866 - ], - "score": 0.741 - }, - { - "category_id": 0, - "poly": [ - 303, - 385, - 528, - 385, - 528, - 418, - 303, - 418 - ], - "score": 0.727 - }, - { - "category_id": 5, - "poly": [ - 231, - 105, - 2308, - 105, - 2308, - 1528, - 231, - 1528 - ], - "score": 0.725, - "html": "
Markscheme understanding of some sociological material. The response lacksNovember2020 internet; disadvantaged in peer interaction in all countries
including UK; Berry
contain some inaccuracies. The response may be partial and undeveloped.
points supporting the view in the question.remove mistakes; Case, Ellison. Disputes can occur when private information disclosed on-
line; Case
Level1:1mark The candidate demonstrates a limitedknowledge andSocial networking sites can expose the unfaithful: dynamic
understanding of sociological material.Very little relevantof the news being 'public' can have an negative impact on relationship; Miller
considerableinaccuracy and lacks clarity.'Twitter-related conflict' can have negative impact on
in the question, or a vague representation.relationships: emotional and physical cheating, breakup and divorce; Clayton
MillerProblem if people believe the truth of another lies more in what is posted online than face-to-face communication;
0 marks: No relevant knowledge or understanding.
AO2:Application Level 4: 4 marks· Other reasonable response.
The candidate demonstrates an excellent ability to apply relevant sociological material. The material relevant and is consistently andA02: Application The selected knowledge should be directly specific to the
frequently related to the question Level3: 3 marksquestion -view that all digital forms of communicationhave a negative impact on social relationships.
The candidate demonstrates a good ability to apply sociological material. The material is potentially relevant but is explicitly related
to the question only occasionally.AO3:Analysisandevaluation NOTE: Contemporary examples should be credited in AO3 in
Level2:2 marksthe same way as sociological studies.
The candidate demonstrates a basic ability to apply sociologicalRelevant material challenging the view that all digital forms of
material. The material is related to the question mainly implicitly/communications have a negative impact on social
and lacks focus on the question. The response may berelationships may include:
generalised.Digital forms of communication have helped strengthen
relationships between family and friends as time and
Level 1: 1 mark The candidate demonstrates a limited ability to apply sociological material. The material is tangential to the question and of marginalcontact. communicationallowedfriendsandfamilytomaintaintheirlocation no longer presents a barrier to maintaining During the coronavirus pandemic and lockdown, digital
" - }, - { - "category_id": 1, - "poly": [ - 302, - 808, - 1206, - 808, - 1206, - 912, - 302, - 912 - ], - "score": 0.71 - }, - { - "category_id": 1, - "poly": [ - 302, - 665, - 997, - 665, - 997, - 701, - 302, - 701 - ], - "score": 0.695 - }, - { - "category_id": 0, - "poly": [ - 303, - 1335, - 528, - 1335, - 528, - 1366, - 303, - 1366 - ], - "score": 0.679 - }, - { - "category_id": 1, - "poly": [ - 298, - 139, - 1181, - 139, - 1181, - 277, - 298, - 277 - ], - "score": 0.616 - }, - { - "category_id": 0, - "poly": [ - 303, - 1123, - 544, - 1123, - 544, - 1155, - 303, - 1155 - ], - "score": 0.613 - }, - { - "category_id": 0, - "poly": [ - 303, - 947, - 544, - 947, - 544, - 979, - 303, - 979 - ], - "score": 0.577 - }, - { - "category_id": 0, - "poly": [ - 1371, - 1009, - 1803, - 1009, - 1803, - 1042, - 1371, - 1042 - ], - "score": 0.487 - }, - { - "category_id": 5, - "poly": [ - 99, - 83, - 1225, - 83, - 1225, - 1493, - 99, - 1493 - ], - "score": 0.478, - "html": "
H580/03 Mark sche
contain some inaccuracies. The response may be partial and undeveloped.
There will typically be one underdeveloped or two undeveloped Level 1: 1 mark The candidate demonstrates a limited knowledge and
understanding of sociological material. Very little relevant sociological material is presented; the response contains considerable inaccuracy and lacks clarity. in the question, or a vague representation.
0 marks: No relevant knowledge or understanding. AO2: Application Level 4: 4 marks
The candidate demonstrates an excellent ability to apply relevant sociological material. The material relevant and is consistently and frequently related to the question Level 3: 3 marks The candidate demonstrates a good ability to apply sociological
material. The material is potentially relevant but is explicitly related to thequestiononlyoccasionally. Level 2: 2 marks The candidate demonstrates a basic ability to apply sociological material. The material is related to the question mainly implicitly/ and lacks focus on the question. The response may be
" - }, - { - "category_id": 1, - "poly": [ - 304, - 421, - 1081, - 421, - 1081, - 558, - 304, - 558 - ], - "score": 0.369 - }, - { - "category_id": 1, - "poly": [ - 303, - 561, - 1189, - 561, - 1189, - 630, - 303, - 630 - ], - "score": 0.287 - }, - { - "category_id": 0, - "poly": [ - 303, - 737, - 553, - 737, - 553, - 770, - 303, - 770 - ], - "score": 0.193 - }, - { - "category_id": 1, - "poly": [ - 305, - 773, - 546, - 773, - 546, - 803, - 305, - 803 - ], - "score": 0.13 - }, - { - "category_id": 1, - "poly": [ - 303, - 737, - 553, - 737, - 553, - 770, - 303, - 770 - ], - "score": 0.122 - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 869.0, - 2144.0, - 869.0, - 2144.0, - 901.0, - 1370.0, - 901.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 905.0, - 2198.0, - 905.0, - 2198.0, - 936.0, - 1369.0, - 936.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 941.0, - 1902.0, - 941.0, - 1902.0, - 973.0, - 1369.0, - 973.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 1369.0, - 1186.0, - 1369.0, - 1186.0, - 1404.0, - 303.0, - 1404.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 1407.0, - 1203.0, - 1407.0, - 1203.0, - 1437.0, - 303.0, - 1437.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 1443.0, - 449.0, - 1443.0, - 449.0, - 1470.0, - 303.0, - 1470.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 1044.0, - 2201.0, - 1044.0, - 2201.0, - 1080.0, - 1369.0, - 1080.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 1082.0, - 1883.0, - 1082.0, - 1883.0, - 1115.0, - 1370.0, - 1115.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1984.0, - 103.0, - 2220.0, - 103.0, - 2220.0, - 132.0, - 1984.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 1150.0, - 2203.0, - 1150.0, - 2203.0, - 1186.0, - 1370.0, - 1186.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 1187.0, - 2048.0, - 1187.0, - 2048.0, - 1220.0, - 1370.0, - 1220.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1371.0, - 1224.0, - 1725.0, - 1224.0, - 1725.0, - 1254.0, - 1371.0, - 1254.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 302.0, - 983.0, - 1166.0, - 983.0, - 1166.0, - 1018.0, - 302.0, - 1018.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 1022.0, - 1203.0, - 1022.0, - 1203.0, - 1052.0, - 304.0, - 1052.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 302.0, - 1055.0, - 753.0, - 1055.0, - 753.0, - 1088.0, - 302.0, - 1088.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 1157.0, - 1169.0, - 1157.0, - 1169.0, - 1194.0, - 303.0, - 1194.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 302.0, - 1194.0, - 1171.0, - 1194.0, - 1171.0, - 1229.0, - 302.0, - 1229.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 1230.0, - 1048.0, - 1230.0, - 1048.0, - 1262.0, - 303.0, - 1262.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 302.0, - 1267.0, - 474.0, - 1267.0, - 474.0, - 1296.0, - 302.0, - 1296.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1257.0, - 2168.0, - 1257.0, - 2168.0, - 1292.0, - 1418.0, - 1292.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1300.0, - 2132.0, - 1300.0, - 2132.0, - 1330.0, - 1420.0, - 1330.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1337.0, - 2111.0, - 1337.0, - 2111.0, - 1373.0, - 1417.0, - 1373.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1381.0, - 1530.0, - 1381.0, - 1530.0, - 1411.0, - 1417.0, - 1411.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1424.0, - 2165.0, - 1424.0, - 2165.0, - 1454.0, - 1420.0, - 1454.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1464.0, - 2215.0, - 1464.0, - 2215.0, - 1495.0, - 1419.0, - 1495.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1068.0, - 101.0, - 1270.0, - 101.0, - 1270.0, - 134.0, - 1068.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 141.0, - 2196.0, - 141.0, - 2196.0, - 175.0, - 1418.0, - 175.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 178.0, - 1686.0, - 178.0, - 1686.0, - 217.0, - 1418.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 223.0, - 2179.0, - 223.0, - 2179.0, - 255.0, - 1419.0, - 255.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 268.0, - 1855.0, - 268.0, - 1855.0, - 295.0, - 1419.0, - 295.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 307.0, - 2211.0, - 307.0, - 2211.0, - 338.0, - 1420.0, - 338.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 346.0, - 1561.0, - 346.0, - 1561.0, - 380.0, - 1418.0, - 380.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 390.0, - 2213.0, - 390.0, - 2213.0, - 422.0, - 1419.0, - 422.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 430.0, - 2206.0, - 430.0, - 2206.0, - 464.0, - 1419.0, - 464.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 471.0, - 1672.0, - 471.0, - 1672.0, - 503.0, - 1420.0, - 503.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 510.0, - 2135.0, - 510.0, - 2135.0, - 546.0, - 1419.0, - 546.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 551.0, - 2174.0, - 551.0, - 2174.0, - 587.0, - 1418.0, - 587.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 595.0, - 1703.0, - 595.0, - 1703.0, - 627.0, - 1420.0, - 627.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 636.0, - 2198.0, - 636.0, - 2198.0, - 669.0, - 1418.0, - 669.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 677.0, - 2169.0, - 677.0, - 2169.0, - 709.0, - 1419.0, - 709.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1416.0, - 713.0, - 1501.0, - 713.0, - 1501.0, - 752.0, - 1416.0, - 752.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 759.0, - 1801.0, - 759.0, - 1801.0, - 790.0, - 1419.0, - 790.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 100.0, - 247.0, - 100.0, - 247.0, - 134.0, - 116.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 315.0, - 282.0, - 1171.0, - 282.0, - 1171.0, - 314.0, - 315.0, - 314.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 318.0, - 874.0, - 318.0, - 874.0, - 349.0, - 303.0, - 349.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 833.0, - 1621.0, - 833.0, - 1621.0, - 868.0, - 1370.0, - 868.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 386.0, - 528.0, - 386.0, - 528.0, - 416.0, - 304.0, - 416.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 807.0, - 1188.0, - 807.0, - 1188.0, - 842.0, - 303.0, - 842.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 845.0, - 1204.0, - 845.0, - 1204.0, - 875.0, - 304.0, - 875.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 880.0, - 752.0, - 880.0, - 752.0, - 910.0, - 304.0, - 910.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 666.0, - 995.0, - 666.0, - 995.0, - 701.0, - 303.0, - 701.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 1335.0, - 528.0, - 1335.0, - 528.0, - 1365.0, - 304.0, - 1365.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 143.0, - 1183.0, - 143.0, - 1183.0, - 173.0, - 304.0, - 173.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 302.0, - 177.0, - 1125.0, - 177.0, - 1125.0, - 210.0, - 302.0, - 210.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 212.0, - 1132.0, - 212.0, - 1132.0, - 245.0, - 303.0, - 245.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 247.0, - 490.0, - 247.0, - 490.0, - 278.0, - 303.0, - 278.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 1122.0, - 543.0, - 1122.0, - 543.0, - 1155.0, - 304.0, - 1155.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 946.0, - 543.0, - 946.0, - 543.0, - 979.0, - 304.0, - 979.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1371.0, - 1009.0, - 1803.0, - 1009.0, - 1803.0, - 1042.0, - 1371.0, - 1042.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 422.0, - 1031.0, - 422.0, - 1031.0, - 454.0, - 304.0, - 454.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 305.0, - 460.0, - 1080.0, - 460.0, - 1080.0, - 489.0, - 305.0, - 489.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 305.0, - 495.0, - 1073.0, - 495.0, - 1073.0, - 524.0, - 305.0, - 524.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 528.0, - 866.0, - 528.0, - 866.0, - 559.0, - 303.0, - 559.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 305.0, - 562.0, - 1188.0, - 562.0, - 1188.0, - 597.0, - 305.0, - 597.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 599.0, - 880.0, - 599.0, - 880.0, - 630.0, - 303.0, - 630.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 737.0, - 554.0, - 737.0, - 554.0, - 772.0, - 304.0, - 772.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 772.0, - 543.0, - 772.0, - 543.0, - 803.0, - 304.0, - 803.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 737.0, - 554.0, - 737.0, - 554.0, - 772.0, - 304.0, - 772.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 14, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1981, - 101, - 2223, - 101, - 2223, - 133, - 1981, - 133 - ], - "score": 0.911 - }, - { - "category_id": 5, - "poly": [ - 205, - 120, - 2242, - 120, - 2242, - 1493, - 205, - 1493 - ], - "score": 0.905, - "html": "
0 marks : No relevant sociological application. AO3:Analysisandevaluation Level4:7-8marks The candidate demonstrates an excellent ability to analyse and evaluatesociological material.Therearearangeofevaluation criticalandreasonedconclusion. Therewilltypicallybethreedevelopedpointsortwodeveloped pointsandoneunderdevelopedpointchallengingtheviewinthe question. Level3: 5-6 marks The candidate demonstrates a good ability to analyse and evaluate maybe underdeveloped or narrow. The candidate may reach a criticalbutbriefconclusion. Therewilltypicallybetwodevelopedpointsorthree underdeveloped points challenging the view in the question. Level2:3-4marks The candidate demonstrates a basic ability to analyse and evaluate.Evaluationpoints arelikelytobeundeveloped.The evaluationmay lack clarity and containsome inaccuracies/ confusion. If present, the conclusion is likely to be summative. Therewilltypicallybeonedevelopedortwounderdeveloped points challenging the view in the question. A range of undeveloped points may also be seen at this level. Level 1: 1-2 marks The candidate demonstrates a limited ability to analyse and evaluate. Only brief and/or implicit evaluation is present. There is unlikelytobe aconclusion. Therewilltypicallybeoneortwoundevelopedorvaguepoints whichcouldpotentiallychallengetheviewinthequestion. 0 marks: No relevant sociological evaluation or analysis.
" - }, - { - "category_id": 2, - "poly": [ - 114, - 99, - 247, - 99, - 247, - 132, - 114, - 132 - ], - "score": 0.859 - }, - { - "category_id": 1, - "poly": [ - 302, - 1403, - 1073, - 1403, - 1073, - 1439, - 302, - 1439 - ], - "score": 0.831 - }, - { - "category_id": 2, - "poly": [ - 1066, - 101, - 1271, - 101, - 1271, - 133, - 1066, - 133 - ], - "score": 0.817 - }, - { - "category_id": 1, - "poly": [ - 1371, - 372, - 2185, - 372, - 2185, - 442, - 1371, - 442 - ], - "score": 0.646 - }, - { - "category_id": 1, - "poly": [ - 1370, - 445, - 1992, - 445, - 1992, - 521, - 1370, - 521 - ], - "score": 0.628 - }, - { - "category_id": 1, - "poly": [ - 1370, - 527, - 2194, - 527, - 2194, - 644, - 1370, - 644 - ], - "score": 0.605 - }, - { - "category_id": 1, - "poly": [ - 1369, - 265, - 2197, - 265, - 2197, - 368, - 1369, - 368 - ], - "score": 0.59 - }, - { - "category_id": 1, - "poly": [ - 1371, - 857, - 2168, - 857, - 2168, - 973, - 1371, - 973 - ], - "score": 0.578 - }, - { - "category_id": 1, - "poly": [ - 1368, - 650, - 2198, - 650, - 2198, - 727, - 1368, - 727 - ], - "score": 0.543 - }, - { - "category_id": 1, - "poly": [ - 1370, - 181, - 2222, - 181, - 2222, - 257, - 1370, - 257 - ], - "score": 0.539 - }, - { - "category_id": 1, - "poly": [ - 1369, - 734, - 2157, - 734, - 2157, - 850, - 1369, - 850 - ], - "score": 0.533 - }, - { - "category_id": 1, - "poly": [ - 1371, - 1102, - 2193, - 1102, - 2193, - 1181, - 1371, - 1181 - ], - "score": 0.453 - }, - { - "category_id": 1, - "poly": [ - 1370, - 980, - 2181, - 980, - 2181, - 1095, - 1370, - 1095 - ], - "score": 0.452 - }, - { - "category_id": 0, - "poly": [ - 305, - 210, - 735, - 210, - 735, - 243, - 305, - 243 - ], - "score": 0.448 - }, - { - "category_id": 1, - "poly": [ - 302, - 281, - 1161, - 281, - 1161, - 418, - 302, - 418 - ], - "score": 0.427 - }, - { - "category_id": 1, - "poly": [ - 304, - 1299, - 1151, - 1299, - 1151, - 1369, - 304, - 1369 - ], - "score": 0.4 - }, - { - "category_id": 1, - "poly": [ - 301, - 421, - 1177, - 421, - 1177, - 524, - 301, - 524 - ], - "score": 0.342 - }, - { - "category_id": 1, - "poly": [ - 1376, - 1186, - 1973, - 1186, - 1973, - 1222, - 1376, - 1222 - ], - "score": 0.323 - }, - { - "category_id": 1, - "poly": [ - 302, - 596, - 1216, - 596, - 1216, - 735, - 302, - 735 - ], - "score": 0.293 - }, - { - "category_id": 1, - "poly": [ - 301, - 139, - 933, - 139, - 933, - 175, - 301, - 175 - ], - "score": 0.291 - }, - { - "category_id": 1, - "poly": [ - 302, - 1194, - 1184, - 1194, - 1184, - 1297, - 302, - 1297 - ], - "score": 0.261 - }, - { - "category_id": 1, - "poly": [ - 304, - 737, - 1112, - 737, - 1112, - 807, - 304, - 807 - ], - "score": 0.259 - }, - { - "category_id": 0, - "poly": [ - 302, - 842, - 579, - 842, - 579, - 874, - 302, - 874 - ], - "score": 0.249 - }, - { - "category_id": 0, - "poly": [ - 302, - 561, - 579, - 561, - 579, - 593, - 302, - 593 - ], - "score": 0.208 - }, - { - "category_id": 1, - "poly": [ - 1372, - 1229, - 1804, - 1229, - 1804, - 1263, - 1372, - 1263 - ], - "score": 0.204 - }, - { - "category_id": 0, - "poly": [ - 303, - 1158, - 579, - 1158, - 579, - 1190, - 303, - 1190 - ], - "score": 0.196 - }, - { - "category_id": 0, - "poly": [ - 304, - 246, - 580, - 246, - 580, - 276, - 304, - 276 - ], - "score": 0.182 - }, - { - "category_id": 1, - "poly": [ - 304, - 246, - 580, - 246, - 580, - 276, - 304, - 276 - ], - "score": 0.109 - }, - { - "category_id": 0, - "poly": [ - 1416, - 141, - 1601, - 141, - 1601, - 172, - 1416, - 172 - ], - "score": 0.108 - }, - { - "category_id": 15, - "poly": [ - 1984.0, - 103.0, - 2220.0, - 103.0, - 2220.0, - 132.0, - 1984.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 100.0, - 246.0, - 100.0, - 246.0, - 134.0, - 115.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 1405.0, - 1070.0, - 1405.0, - 1070.0, - 1437.0, - 304.0, - 1437.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1070.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1070.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 373.0, - 2181.0, - 373.0, - 2181.0, - 405.0, - 1420.0, - 405.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 410.0, - 2131.0, - 410.0, - 2131.0, - 440.0, - 1420.0, - 440.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 446.0, - 1979.0, - 446.0, - 1979.0, - 478.0, - 1418.0, - 478.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 489.0, - 1994.0, - 489.0, - 1994.0, - 520.0, - 1419.0, - 520.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 528.0, - 2195.0, - 528.0, - 2195.0, - 560.0, - 1419.0, - 560.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 569.0, - 2187.0, - 569.0, - 2187.0, - 602.0, - 1418.0, - 602.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 610.0, - 1965.0, - 610.0, - 1965.0, - 643.0, - 1420.0, - 643.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 267.0, - 2197.0, - 267.0, - 2197.0, - 300.0, - 1419.0, - 300.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 302.0, - 2086.0, - 302.0, - 2086.0, - 335.0, - 1419.0, - 335.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 339.0, - 1835.0, - 339.0, - 1835.0, - 368.0, - 1420.0, - 368.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 858.0, - 2148.0, - 858.0, - 2148.0, - 891.0, - 1419.0, - 891.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 899.0, - 2165.0, - 899.0, - 2165.0, - 933.0, - 1417.0, - 933.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 941.0, - 1991.0, - 941.0, - 1991.0, - 971.0, - 1419.0, - 971.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 654.0, - 2195.0, - 654.0, - 2195.0, - 684.0, - 1418.0, - 684.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 695.0, - 1965.0, - 695.0, - 1965.0, - 726.0, - 1419.0, - 726.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 184.0, - 2220.0, - 184.0, - 2220.0, - 215.0, - 1419.0, - 215.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 223.0, - 1888.0, - 223.0, - 1888.0, - 259.0, - 1418.0, - 259.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 735.0, - 2102.0, - 735.0, - 2102.0, - 767.0, - 1419.0, - 767.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 776.0, - 2154.0, - 776.0, - 2154.0, - 808.0, - 1418.0, - 808.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 815.0, - 1714.0, - 815.0, - 1714.0, - 848.0, - 1419.0, - 848.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1415.0, - 1104.0, - 2190.0, - 1104.0, - 2190.0, - 1137.0, - 1415.0, - 1137.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1146.0, - 1841.0, - 1146.0, - 1841.0, - 1181.0, - 1418.0, - 1181.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1416.0, - 980.0, - 2168.0, - 980.0, - 2168.0, - 1015.0, - 1416.0, - 1015.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1022.0, - 2177.0, - 1022.0, - 2177.0, - 1055.0, - 1419.0, - 1055.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1421.0, - 1063.0, - 1801.0, - 1063.0, - 1801.0, - 1093.0, - 1421.0, - 1093.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 210.0, - 736.0, - 210.0, - 736.0, - 243.0, - 304.0, - 243.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 280.0, - 1159.0, - 280.0, - 1159.0, - 315.0, - 304.0, - 315.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 317.0, - 1150.0, - 317.0, - 1150.0, - 349.0, - 304.0, - 349.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 352.0, - 1127.0, - 352.0, - 1127.0, - 384.0, - 304.0, - 384.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 387.0, - 749.0, - 387.0, - 749.0, - 416.0, - 304.0, - 416.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 306.0, - 1298.0, - 1150.0, - 1298.0, - 1150.0, - 1335.0, - 306.0, - 1335.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 1335.0, - 1087.0, - 1335.0, - 1087.0, - 1369.0, - 304.0, - 1369.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 307.0, - 423.0, - 1159.0, - 423.0, - 1159.0, - 456.0, - 307.0, - 456.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 302.0, - 459.0, - 1177.0, - 459.0, - 1177.0, - 489.0, - 302.0, - 489.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 302.0, - 493.0, - 431.0, - 493.0, - 431.0, - 526.0, - 302.0, - 526.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1185.0, - 1977.0, - 1185.0, - 1977.0, - 1221.0, - 1417.0, - 1221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 596.0, - 1213.0, - 596.0, - 1213.0, - 630.0, - 304.0, - 630.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 632.0, - 1196.0, - 632.0, - 1196.0, - 666.0, - 304.0, - 666.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 667.0, - 1165.0, - 667.0, - 1165.0, - 701.0, - 303.0, - 701.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 704.0, - 672.0, - 704.0, - 672.0, - 734.0, - 304.0, - 734.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 140.0, - 931.0, - 140.0, - 931.0, - 175.0, - 303.0, - 175.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 1193.0, - 1111.0, - 1193.0, - 1111.0, - 1228.0, - 304.0, - 1228.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 1229.0, - 1183.0, - 1229.0, - 1183.0, - 1262.0, - 303.0, - 1262.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 305.0, - 1269.0, - 671.0, - 1269.0, - 671.0, - 1295.0, - 305.0, - 1295.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 307.0, - 739.0, - 1007.0, - 739.0, - 1007.0, - 772.0, - 307.0, - 772.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 775.0, - 1113.0, - 775.0, - 1113.0, - 805.0, - 304.0, - 805.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 841.0, - 577.0, - 841.0, - 577.0, - 874.0, - 304.0, - 874.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 560.0, - 577.0, - 560.0, - 577.0, - 593.0, - 304.0, - 593.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1230.0, - 1801.0, - 1230.0, - 1801.0, - 1262.0, - 1420.0, - 1262.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 303.0, - 1157.0, - 577.0, - 1157.0, - 577.0, - 1190.0, - 303.0, - 1190.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 247.0, - 576.0, - 247.0, - 576.0, - 275.0, - 304.0, - 275.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 304.0, - 247.0, - 576.0, - 247.0, - 576.0, - 275.0, - 304.0, - 275.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 140.0, - 1603.0, - 140.0, - 1603.0, - 175.0, - 1419.0, - 175.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 15, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1981, - 101, - 2223, - 101, - 2223, - 133, - 1981, - 133 - ], - "score": 0.907 - }, - { - "category_id": 5, - "poly": [ - 75, - 124, - 2271, - 124, - 2271, - 1515, - 75, - 1515 - ], - "score": 0.889, - "html": "
4In what ways is green crime a growing issue? PLEASEREFERTOAPPENDIX110AO1: Knowledge and understanding Greencrime,orenvironmentalcrime-formofdeviant behaviour which has in part become criminalised. Involves direct or indirect damage to the environment. NOTE: Examples should be credited in the same way as sociologicalstudies. To be credited as‘developed',material MUST be linked to green crime as a 'growing issue'. Relevantmaterialmayinclude: Types of green crime: pollution (air, land, water); deforestation;wildlifecrimeetc. Greencrime involves actionwhichcreatesharm to the environment, including plants and living species, this can occurataglobal level;UN2012,FrankoAas Patterns and trendsreveal overlapbetweenglobal organised crime and green crime - link to globalisation. Definitions and measurements vary across the world, e.g. countriesplace different emphases on combating green crime, ; yet, it is becoming increasingly recognised and recorded as anissue;UN 2012 Two forms of green crime - primary and secondary; South,
" - }, - { - "category_id": 2, - "poly": [ - 115, - 99, - 247, - 99, - 247, - 132, - 115, - 132 - ], - "score": 0.805 - }, - { - "category_id": 2, - "poly": [ - 1066, - 101, - 1271, - 101, - 1271, - 133, - 1066, - 133 - ], - "score": 0.747 - }, - { - "category_id": 6, - "poly": [ - 1066, - 101, - 1271, - 101, - 1271, - 133, - 1066, - 133 - ], - "score": 0.148 - }, - { - "category_id": 1, - "poly": [ - 1362, - 486, - 2219, - 486, - 2219, - 1499, - 1362, - 1499 - ], - "score": 0.1 - }, - { - "category_id": 15, - "poly": [ - 1984.0, - 103.0, - 2220.0, - 103.0, - 2220.0, - 132.0, - 1984.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 100.0, - 246.0, - 100.0, - 246.0, - 134.0, - 116.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1070.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1070.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1070.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1070.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 495.0, - 2085.0, - 495.0, - 2085.0, - 528.0, - 1419.0, - 528.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 531.0, - 1848.0, - 531.0, - 1848.0, - 560.0, - 1420.0, - 560.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 566.0, - 2159.0, - 566.0, - 2159.0, - 597.0, - 1419.0, - 597.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 601.0, - 2192.0, - 601.0, - 2192.0, - 635.0, - 1418.0, - 635.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 638.0, - 2032.0, - 638.0, - 2032.0, - 669.0, - 1418.0, - 669.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 672.0, - 2107.0, - 672.0, - 2107.0, - 707.0, - 1417.0, - 707.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 711.0, - 2170.0, - 711.0, - 2170.0, - 742.0, - 1418.0, - 742.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 743.0, - 2201.0, - 743.0, - 2201.0, - 783.0, - 1417.0, - 783.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 781.0, - 2178.0, - 781.0, - 2178.0, - 816.0, - 1418.0, - 816.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 816.0, - 2168.0, - 816.0, - 2168.0, - 852.0, - 1418.0, - 852.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 851.0, - 1846.0, - 851.0, - 1846.0, - 884.0, - 1419.0, - 884.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 888.0, - 2212.0, - 888.0, - 2212.0, - 923.0, - 1417.0, - 923.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 929.0, - 1559.0, - 929.0, - 1559.0, - 962.0, - 1419.0, - 962.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 973.0, - 2185.0, - 973.0, - 2185.0, - 1005.0, - 1418.0, - 1005.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1010.0, - 2052.0, - 1010.0, - 2052.0, - 1048.0, - 1418.0, - 1048.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1055.0, - 2073.0, - 1055.0, - 2073.0, - 1084.0, - 1420.0, - 1084.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1096.0, - 2131.0, - 1096.0, - 2131.0, - 1128.0, - 1419.0, - 1128.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1136.0, - 2184.0, - 1136.0, - 2184.0, - 1169.0, - 1419.0, - 1169.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1176.0, - 1857.0, - 1176.0, - 1857.0, - 1210.0, - 1418.0, - 1210.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1216.0, - 2114.0, - 1216.0, - 2114.0, - 1253.0, - 1417.0, - 1253.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1255.0, - 2167.0, - 1255.0, - 2167.0, - 1287.0, - 1419.0, - 1287.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1289.0, - 1564.0, - 1289.0, - 1564.0, - 1319.0, - 1420.0, - 1319.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1324.0, - 2121.0, - 1324.0, - 2121.0, - 1360.0, - 1418.0, - 1360.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1360.0, - 2177.0, - 1360.0, - 2177.0, - 1396.0, - 1419.0, - 1396.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1421.0, - 1398.0, - 2087.0, - 1398.0, - 2087.0, - 1427.0, - 1421.0, - 1427.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1431.0, - 2197.0, - 1431.0, - 2197.0, - 1468.0, - 1417.0, - 1468.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1469.0, - 2136.0, - 1469.0, - 2136.0, - 1501.0, - 1418.0, - 1501.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 16, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 76, - 126, - 2258, - 126, - 2258, - 1527, - 76, - 1527 - ], - "score": 0.938, - "html": "
5 deviance.Assess right realist explanations of crime and PLEASEREFERTOAPPENDIX220 include:anothercountryandpoisonitswatercoursesanddestroy forests. Green crime transcending political and national borders;FrankoAas Manufacturedrisks;Beck Examples - climate change, Chernobyl, Deepwater Horizon, Bhopal A02:Application The selected knowledge should be directly specific to the question-ways green crime is a growing issue. AO1: Knowledge and understanding Relevant material supporting right realist explanations may Right realist view that‘typical criminal' in police recorded statisticsbasicallyreflectsreality Takeconventionaldefinitionsofcrimeforgrantedand focus on explaining 'street crime'. Explaincrimeinterms of individual offender;Wilson Emphasise trends in crime related to age profile of populations, strength of economy, social and cultural change - largely uncontrollable, believe government cannotpreventcrime atsource;Wilson Crimeoccurswhenapotential criminal doesnotbelieve s/he will be caught; Wilson Environmentalfocus:Lowleveldisordercauses community to 'stay indoors', less informal control, crime mayescalate.Wilson Tipping points', some move out, crime levels increase; Wilson and Kelling Broken Windows study; Wilson and Kelling Wicked people exist; Wilson Individual traits compounded by inadequate socialisation, particularly when immediategratificationemphasised;
" - }, - { - "category_id": 2, - "poly": [ - 1981, - 100, - 2224, - 100, - 2224, - 134, - 1981, - 134 - ], - "score": 0.864 - }, - { - "category_id": 2, - "poly": [ - 1066, - 101, - 1271, - 101, - 1271, - 133, - 1066, - 133 - ], - "score": 0.794 - }, - { - "category_id": 2, - "poly": [ - 114, - 99, - 247, - 99, - 247, - 133, - 114, - 133 - ], - "score": 0.694 - }, - { - "category_id": 15, - "poly": [ - 1984.0, - 102.0, - 2219.0, - 102.0, - 2219.0, - 133.0, - 1984.0, - 133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1070.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1070.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 99.0, - 246.0, - 99.0, - 246.0, - 134.0, - 116.0, - 134.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 17, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 1367, - 694, - 2225, - 694, - 2225, - 1508, - 1367, - 1508 - ], - "score": 0.966 - }, - { - "category_id": 1, - "poly": [ - 1370, - 316, - 2186, - 316, - 2186, - 383, - 1370, - 383 - ], - "score": 0.928 - }, - { - "category_id": 1, - "poly": [ - 1366, - 622, - 2182, - 622, - 2182, - 691, - 1366, - 691 - ], - "score": 0.924 - }, - { - "category_id": 1, - "poly": [ - 1369, - 420, - 2020, - 420, - 2020, - 455, - 1369, - 455 - ], - "score": 0.917 - }, - { - "category_id": 2, - "poly": [ - 1981, - 101, - 2223, - 101, - 2223, - 133, - 1981, - 133 - ], - "score": 0.913 - }, - { - "category_id": 5, - "poly": [ - 96, - 125, - 1356, - 125, - 1356, - 1527, - 96, - 1527 - ], - "score": 0.908 - }, - { - "category_id": 1, - "poly": [ - 1369, - 175, - 2168, - 175, - 2168, - 245, - 1369, - 245 - ], - "score": 0.88 - }, - { - "category_id": 1, - "poly": [ - 1369, - 459, - 1594, - 459, - 1594, - 577, - 1369, - 577 - ], - "score": 0.869 - }, - { - "category_id": 2, - "poly": [ - 1066, - 101, - 1271, - 101, - 1271, - 133, - 1066, - 133 - ], - "score": 0.837 - }, - { - "category_id": 0, - "poly": [ - 1367, - 140, - 1622, - 140, - 1622, - 173, - 1367, - 173 - ], - "score": 0.831 - }, - { - "category_id": 2, - "poly": [ - 115, - 99, - 247, - 99, - 247, - 132, - 115, - 132 - ], - "score": 0.757 - }, - { - "category_id": 0, - "poly": [ - 1371, - 280, - 1802, - 280, - 1802, - 313, - 1371, - 313 - ], - "score": 0.543 - }, - { - "category_id": 5, - "poly": [ - 76, - 111, - 2244, - 111, - 2244, - 1526, - 76, - 1526 - ], - "score": 0.461, - "html": "
H580/03Markscheme November2020 AO2:Application
The selected knowledge should be directly specific to the question - right realist explanations of crime and deviance.
Ao3:Analysisandevaluation
Candidates are expected to discuss weaknesses in the right realist explanations.
They may consider alternative theories such as: Left Realism
· Marxism
·Feminism Relevant material challenging right realist explanations may
include: Right realism plays down causes of offending, focusing on
failures in social control and punishment, left realist; Young
Rightrealismoverstatesoffenders'rationalityandcost-benefit calculations before committing a crime; Matthews
Right realism ignores corporate crime; Snider
Right realists fail to focus on social injustice, particularly the relationshipbetween police and community,aspects of
radical criminology; Lea and Young Right realists fail to recognise the interplay of the criminal
Matthews and Youngjustice system,criminal offender, general public and victim of crime in their explanations of crime; left realists; Right realists ignore the link between economic exclusion
andsocialexclusion-breakdownofcommunitiesand families and increase in crime and disorder; Young
ratherthanculture;BoxRight Realism ignores wider structural causes of crime and deviance, such as poverty. Marxists offer an alternative explanation - crime product of capitalism and exploitation
Feminists; right realists tend to ignore influence of
" - }, - { - "category_id": 1, - "poly": [ - 1371, - 280, - 1802, - 280, - 1802, - 313, - 1371, - 313 - ], - "score": 0.339 - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 696.0, - 2211.0, - 696.0, - 2211.0, - 730.0, - 1419.0, - 730.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 734.0, - 2220.0, - 734.0, - 2220.0, - 771.0, - 1417.0, - 771.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 779.0, - 2221.0, - 779.0, - 2221.0, - 809.0, - 1420.0, - 809.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 817.0, - 2060.0, - 817.0, - 2060.0, - 848.0, - 1420.0, - 848.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 858.0, - 2037.0, - 858.0, - 2037.0, - 892.0, - 1420.0, - 892.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 899.0, - 2176.0, - 899.0, - 2176.0, - 935.0, - 1418.0, - 935.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 939.0, - 2219.0, - 939.0, - 2219.0, - 975.0, - 1418.0, - 975.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 982.0, - 1902.0, - 982.0, - 1902.0, - 1015.0, - 1418.0, - 1015.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1023.0, - 2198.0, - 1023.0, - 2198.0, - 1057.0, - 1419.0, - 1057.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1065.0, - 2211.0, - 1065.0, - 2211.0, - 1096.0, - 1417.0, - 1096.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1105.0, - 2102.0, - 1105.0, - 2102.0, - 1138.0, - 1418.0, - 1138.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1141.0, - 1711.0, - 1141.0, - 1711.0, - 1180.0, - 1417.0, - 1180.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1188.0, - 2196.0, - 1188.0, - 2196.0, - 1218.0, - 1419.0, - 1218.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1229.0, - 2153.0, - 1229.0, - 2153.0, - 1259.0, - 1418.0, - 1259.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1264.0, - 2109.0, - 1264.0, - 2109.0, - 1303.0, - 1417.0, - 1303.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1311.0, - 2182.0, - 1311.0, - 2182.0, - 1341.0, - 1420.0, - 1341.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1350.0, - 2160.0, - 1350.0, - 2160.0, - 1381.0, - 1419.0, - 1381.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1421.0, - 1392.0, - 2191.0, - 1392.0, - 2191.0, - 1422.0, - 1421.0, - 1422.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1432.0, - 1743.0, - 1432.0, - 1743.0, - 1462.0, - 1418.0, - 1462.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1471.0, - 2099.0, - 1471.0, - 2099.0, - 1505.0, - 1417.0, - 1505.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 315.0, - 2187.0, - 315.0, - 2187.0, - 348.0, - 1370.0, - 348.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 353.0, - 1642.0, - 353.0, - 1642.0, - 382.0, - 1369.0, - 382.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1368.0, - 621.0, - 2180.0, - 621.0, - 2180.0, - 661.0, - 1368.0, - 661.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1368.0, - 660.0, - 1480.0, - 660.0, - 1480.0, - 690.0, - 1368.0, - 690.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 420.0, - 2020.0, - 420.0, - 2020.0, - 457.0, - 1370.0, - 457.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1984.0, - 103.0, - 2220.0, - 103.0, - 2220.0, - 132.0, - 1984.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 175.0, - 2144.0, - 175.0, - 2144.0, - 209.0, - 1370.0, - 209.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 214.0, - 2168.0, - 214.0, - 2168.0, - 242.0, - 1370.0, - 242.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1415.0, - 457.0, - 1593.0, - 457.0, - 1593.0, - 490.0, - 1415.0, - 490.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 500.0, - 1538.0, - 500.0, - 1538.0, - 533.0, - 1417.0, - 533.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1416.0, - 542.0, - 1557.0, - 542.0, - 1557.0, - 577.0, - 1416.0, - 577.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1070.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1070.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 140.0, - 1621.0, - 140.0, - 1621.0, - 175.0, - 1370.0, - 175.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 100.0, - 246.0, - 100.0, - 246.0, - 134.0, - 116.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 280.0, - 1803.0, - 280.0, - 1803.0, - 313.0, - 1370.0, - 313.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 280.0, - 1803.0, - 280.0, - 1803.0, - 313.0, - 1370.0, - 313.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 18, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 83, - 118, - 2297, - 118, - 2297, - 1538, - 83, - 1538 - ], - "score": 0.91, - "html": "
11380/03Markscreinepatriarchalideologyonwomenwhoarecriminaland deviant;Carlen ·Other reasonable response.
6*Evaluate sociological explanations of the over- 40 representation of males in crime statistics. PLEASEREFERTOAPPENDIX3AO1:Knowledgeandunderstanding NOTE:someofthematerialbelowmaybeusedtochallenge othersociological explanationspresented.Material shouldbe credited either as AO1 or AO3, in the best interests of the candidate.Donotdouble-credit.
Candidatesareexpected todemonstrateknowledgeand understandingof malepatterns of crime They may refer to both official and unofficial sources including, Police recorded figures, CSEW, self-report surveys.
They may consider sociological explanations such as: Subcultural theories, · Feminism, New Right; · Relevant material may include: Importance of male subcultures, status frustration; Cohen Focal concerns, masculinity and deviance; Miller Role of primary and secondary agents of socialisation,
" - }, - { - "category_id": 2, - "poly": [ - 1981, - 100, - 2224, - 100, - 2224, - 133, - 1981, - 133 - ], - "score": 0.852 - }, - { - "category_id": 2, - "poly": [ - 1067, - 101, - 1271, - 101, - 1271, - 133, - 1067, - 133 - ], - "score": 0.804 - }, - { - "category_id": 2, - "poly": [ - 114, - 99, - 247, - 99, - 247, - 133, - 114, - 133 - ], - "score": 0.716 - }, - { - "category_id": 1, - "poly": [ - 1364, - 900, - 2223, - 900, - 2223, - 1525, - 1364, - 1525 - ], - "score": 0.154 - }, - { - "category_id": 15, - "poly": [ - 1984.0, - 102.0, - 2220.0, - 102.0, - 2220.0, - 132.0, - 1984.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1069.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1069.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 99.0, - 246.0, - 99.0, - 246.0, - 134.0, - 116.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 919.0, - 2199.0, - 919.0, - 2199.0, - 947.0, - 1420.0, - 947.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 955.0, - 2088.0, - 955.0, - 2088.0, - 986.0, - 1419.0, - 986.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 992.0, - 2156.0, - 992.0, - 2156.0, - 1025.0, - 1418.0, - 1025.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1028.0, - 2119.0, - 1028.0, - 2119.0, - 1059.0, - 1420.0, - 1059.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1064.0, - 1687.0, - 1064.0, - 1687.0, - 1092.0, - 1420.0, - 1092.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1099.0, - 2086.0, - 1099.0, - 2086.0, - 1130.0, - 1419.0, - 1130.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1136.0, - 1963.0, - 1136.0, - 1963.0, - 1164.0, - 1419.0, - 1164.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1171.0, - 2131.0, - 1171.0, - 2131.0, - 1201.0, - 1418.0, - 1201.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1205.0, - 2219.0, - 1205.0, - 2219.0, - 1239.0, - 1419.0, - 1239.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1245.0, - 2103.0, - 1245.0, - 2103.0, - 1276.0, - 1420.0, - 1276.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1281.0, - 2122.0, - 1281.0, - 2122.0, - 1307.0, - 1419.0, - 1307.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1421.0, - 1317.0, - 2212.0, - 1317.0, - 2212.0, - 1347.0, - 1421.0, - 1347.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1351.0, - 1988.0, - 1351.0, - 1988.0, - 1382.0, - 1420.0, - 1382.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1421.0, - 1390.0, - 2077.0, - 1390.0, - 2077.0, - 1420.0, - 1421.0, - 1420.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1424.0, - 1671.0, - 1424.0, - 1671.0, - 1455.0, - 1420.0, - 1455.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1459.0, - 2084.0, - 1459.0, - 2084.0, - 1494.0, - 1419.0, - 1494.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1497.0, - 2131.0, - 1497.0, - 2131.0, - 1526.0, - 1418.0, - 1526.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 19, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 1369, - 1002, - 2202, - 1002, - 2202, - 1473, - 1369, - 1473 - ], - "score": 0.973 - }, - { - "category_id": 1, - "poly": [ - 1368, - 361, - 2205, - 361, - 2205, - 463, - 1368, - 463 - ], - "score": 0.958 - }, - { - "category_id": 1, - "poly": [ - 1367, - 710, - 2145, - 710, - 2145, - 815, - 1367, - 815 - ], - "score": 0.951 - }, - { - "category_id": 1, - "poly": [ - 1368, - 535, - 2209, - 535, - 2209, - 674, - 1368, - 674 - ], - "score": 0.941 - }, - { - "category_id": 1, - "poly": [ - 1368, - 819, - 1792, - 819, - 1792, - 928, - 1368, - 928 - ], - "score": 0.932 - }, - { - "category_id": 2, - "poly": [ - 1982, - 101, - 2223, - 101, - 2223, - 133, - 1982, - 133 - ], - "score": 0.915 - }, - { - "category_id": 5, - "poly": [ - 96, - 125, - 1356, - 125, - 1356, - 1493, - 96, - 1493 - ], - "score": 0.911 - }, - { - "category_id": 1, - "poly": [ - 1371, - 963, - 1791, - 963, - 1791, - 997, - 1371, - 997 - ], - "score": 0.886 - }, - { - "category_id": 2, - "poly": [ - 1066, - 101, - 1271, - 101, - 1271, - 133, - 1066, - 133 - ], - "score": 0.842 - }, - { - "category_id": 0, - "poly": [ - 1368, - 325, - 1622, - 325, - 1622, - 359, - 1368, - 359 - ], - "score": 0.825 - }, - { - "category_id": 1, - "poly": [ - 1369, - 141, - 2201, - 141, - 2201, - 284, - 1369, - 284 - ], - "score": 0.764 - }, - { - "category_id": 2, - "poly": [ - 115, - 99, - 247, - 99, - 247, - 132, - 115, - 132 - ], - "score": 0.757 - }, - { - "category_id": 0, - "poly": [ - 1371, - 500, - 1803, - 500, - 1803, - 533, - 1371, - 533 - ], - "score": 0.75 - }, - { - "category_id": 5, - "poly": [ - 80, - 119, - 2233, - 119, - 2233, - 1495, - 80, - 1495 - ], - "score": 0.546, - "html": "
1300/03MiarkScleie studies Validity of the chivalry thesis. Delinquency and drift- young men may engage in deviant behaviour, but not all the time; Matza Liberation theory (Adler) also, increase in girl gangs Consider whether the class and ethnicity of the malesfemales;Pollak Self-report studies suggest, female crime under-reported; Graham and Bowling Other reasonable response. AO2:Application The selected knowledge should be directly specific to the question-sociological explanations of over representation of males in crime statistics. AO3:Analysisandevaluation NOTE: some of the above mentioned material (listed in AO1) may be used to challenge other sociological explanations presented.Material shouldbecredited either asAO1 orAO3, inthebestinterestsofthecandidate.Donotdouble-credit. Candidateswill discussweaknesses and strengths in the explanationsof theoverrepresentationofmalesincrime statistics. They may consider theories such as: Left and Right realism Interactionism Liberation theory/ feminism Relevant material may include: Reliability of statistics, particularly official statistics. Apparent increase in female crime, Empirical evidence from victimisation and self-report
" - }, - { - "category_id": 1, - "poly": [ - 1368, - 177, - 2201, - 177, - 2201, - 283, - 1368, - 283 - ], - "score": 0.321 - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1004.0, - 2102.0, - 1004.0, - 2102.0, - 1034.0, - 1420.0, - 1034.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1039.0, - 1895.0, - 1039.0, - 1895.0, - 1072.0, - 1420.0, - 1072.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1075.0, - 2132.0, - 1075.0, - 2132.0, - 1109.0, - 1420.0, - 1109.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1416.0, - 1110.0, - 1523.0, - 1110.0, - 1523.0, - 1143.0, - 1416.0, - 1143.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1149.0, - 1810.0, - 1149.0, - 1810.0, - 1180.0, - 1420.0, - 1180.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1187.0, - 2198.0, - 1187.0, - 2198.0, - 1218.0, - 1420.0, - 1218.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1221.0, - 1925.0, - 1221.0, - 1925.0, - 1252.0, - 1419.0, - 1252.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1256.0, - 2120.0, - 1256.0, - 2120.0, - 1293.0, - 1418.0, - 1293.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1295.0, - 2147.0, - 1295.0, - 2147.0, - 1328.0, - 1419.0, - 1328.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1332.0, - 2047.0, - 1332.0, - 2047.0, - 1362.0, - 1420.0, - 1362.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1367.0, - 2090.0, - 1367.0, - 2090.0, - 1401.0, - 1419.0, - 1401.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1404.0, - 2039.0, - 1404.0, - 2039.0, - 1435.0, - 1420.0, - 1435.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1440.0, - 1796.0, - 1440.0, - 1796.0, - 1474.0, - 1419.0, - 1474.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 359.0, - 2144.0, - 359.0, - 2144.0, - 394.0, - 1370.0, - 394.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 397.0, - 2203.0, - 397.0, - 2203.0, - 428.0, - 1369.0, - 428.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 433.0, - 1704.0, - 433.0, - 1704.0, - 463.0, - 1369.0, - 463.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1371.0, - 713.0, - 2140.0, - 713.0, - 2140.0, - 743.0, - 1371.0, - 743.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 748.0, - 2141.0, - 748.0, - 2141.0, - 781.0, - 1370.0, - 781.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 783.0, - 2007.0, - 783.0, - 2007.0, - 816.0, - 1369.0, - 816.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1368.0, - 534.0, - 2197.0, - 534.0, - 2197.0, - 569.0, - 1368.0, - 569.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 575.0, - 2147.0, - 575.0, - 2147.0, - 605.0, - 1370.0, - 605.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 608.0, - 2209.0, - 608.0, - 2209.0, - 639.0, - 1369.0, - 639.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 642.0, - 2170.0, - 642.0, - 2170.0, - 672.0, - 1369.0, - 672.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1416.0, - 820.0, - 1718.0, - 820.0, - 1718.0, - 850.0, - 1416.0, - 850.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 859.0, - 1615.0, - 859.0, - 1615.0, - 888.0, - 1417.0, - 888.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1415.0, - 893.0, - 1790.0, - 893.0, - 1790.0, - 928.0, - 1415.0, - 928.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1984.0, - 103.0, - 2220.0, - 103.0, - 2220.0, - 132.0, - 1984.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1371.0, - 964.0, - 1790.0, - 964.0, - 1790.0, - 996.0, - 1371.0, - 996.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1070.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1070.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 324.0, - 1621.0, - 324.0, - 1621.0, - 362.0, - 1370.0, - 362.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 143.0, - 1630.0, - 143.0, - 1630.0, - 171.0, - 1419.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 177.0, - 2198.0, - 177.0, - 2198.0, - 212.0, - 1417.0, - 212.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 210.0, - 1709.0, - 210.0, - 1709.0, - 248.0, - 1419.0, - 248.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 248.0, - 1801.0, - 248.0, - 1801.0, - 283.0, - 1419.0, - 283.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 100.0, - 246.0, - 100.0, - 246.0, - 134.0, - 116.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 500.0, - 1803.0, - 500.0, - 1803.0, - 534.0, - 1370.0, - 534.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 176.0, - 2198.0, - 176.0, - 2198.0, - 212.0, - 1419.0, - 212.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 209.0, - 1708.0, - 209.0, - 1708.0, - 248.0, - 1419.0, - 248.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 249.0, - 1803.0, - 249.0, - 1803.0, - 283.0, - 1419.0, - 283.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 20, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1981, - 100, - 2223, - 100, - 2223, - 133, - 1981, - 133 - ], - "score": 0.896 - }, - { - "category_id": 2, - "poly": [ - 115, - 99, - 247, - 99, - 247, - 132, - 115, - 132 - ], - "score": 0.817 - }, - { - "category_id": 5, - "poly": [ - 74, - 116, - 2301, - 116, - 2301, - 1523, - 74, - 1523 - ], - "score": 0.795, - "html": "
H500/03 7In what ways are there gender differences in patterns of educational attainment? PLEASEREFERTOAPPENDIX1Markscnerme 10 sociological studies.Novermberzo20 AO1:Knowledge and understanding NOTE:Examples should be credited in the same way as Candidates may approach this question by focusing on actual patterns oron relevant concepts/reasons for the gender differences.
" - }, - { - "category_id": 2, - "poly": [ - 1066, - 101, - 1271, - 101, - 1271, - 133, - 1066, - 133 - ], - "score": 0.735 - }, - { - "category_id": 1, - "poly": [ - 1364, - 557, - 2217, - 557, - 2217, - 1504, - 1364, - 1504 - ], - "score": 0.231 - }, - { - "category_id": 5, - "poly": [ - 95, - 126, - 1361, - 126, - 1361, - 1523, - 95, - 1523 - ], - "score": 0.18, - "html": "
7* educationalattainment?In what ways are there gender differences in patterns of 10 PLEASEREFERTOAPPENDIX1
" - }, - { - "category_id": 6, - "poly": [ - 1066, - 101, - 1271, - 101, - 1271, - 133, - 1066, - 133 - ], - "score": 0.171 - }, - { - "category_id": 13, - "poly": [ - 1794, - 1469, - 1860, - 1469, - 1860, - 1504, - 1794, - 1504 - ], - "score": 0.83, - "latex": "55\\%" - }, - { - "category_id": 13, - "poly": [ - 1797, - 1388, - 1837, - 1388, - 1837, - 1422, - 1797, - 1422 - ], - "score": 0.76, - "latex": "\\mathsf{A}^{\\star}" - }, - { - "category_id": 13, - "poly": [ - 1550, - 726, - 1601, - 726, - 1601, - 759, - 1550, - 759 - ], - "score": 0.65, - "latex": "5+" - }, - { - "category_id": 15, - "poly": [ - 1983.0, - 102.0, - 2220.0, - 102.0, - 2220.0, - 132.0, - 1983.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 100.0, - 246.0, - 100.0, - 246.0, - 134.0, - 116.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1070.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1070.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1414.0, - 563.0, - 2200.0, - 563.0, - 2200.0, - 599.0, - 1414.0, - 599.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 605.0, - 2206.0, - 605.0, - 2206.0, - 640.0, - 1419.0, - 640.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 644.0, - 1827.0, - 644.0, - 1827.0, - 680.0, - 1417.0, - 680.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 686.0, - 2191.0, - 686.0, - 2191.0, - 723.0, - 1418.0, - 723.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 728.0, - 1549.0, - 728.0, - 1549.0, - 762.0, - 1420.0, - 762.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1602.0, - 728.0, - 2076.0, - 728.0, - 2076.0, - 762.0, - 1602.0, - 762.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 770.0, - 2161.0, - 770.0, - 2161.0, - 804.0, - 1420.0, - 804.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 809.0, - 1684.0, - 809.0, - 1684.0, - 844.0, - 1419.0, - 844.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 849.0, - 2173.0, - 849.0, - 2173.0, - 884.0, - 1417.0, - 884.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 891.0, - 1806.0, - 891.0, - 1806.0, - 928.0, - 1417.0, - 928.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 933.0, - 2063.0, - 933.0, - 2063.0, - 966.0, - 1418.0, - 966.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 977.0, - 2179.0, - 977.0, - 2179.0, - 1008.0, - 1420.0, - 1008.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1015.0, - 2056.0, - 1015.0, - 2056.0, - 1052.0, - 1418.0, - 1052.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1059.0, - 2145.0, - 1059.0, - 2145.0, - 1089.0, - 1420.0, - 1089.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1098.0, - 2049.0, - 1098.0, - 2049.0, - 1131.0, - 1418.0, - 1131.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1137.0, - 2168.0, - 1137.0, - 2168.0, - 1171.0, - 1419.0, - 1171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1180.0, - 2083.0, - 1180.0, - 2083.0, - 1215.0, - 1418.0, - 1215.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1224.0, - 2112.0, - 1224.0, - 2112.0, - 1254.0, - 1418.0, - 1254.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1263.0, - 2121.0, - 1263.0, - 2121.0, - 1296.0, - 1418.0, - 1296.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1304.0, - 1795.0, - 1304.0, - 1795.0, - 1343.0, - 1418.0, - 1343.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1415.0, - 1347.0, - 2160.0, - 1347.0, - 2160.0, - 1384.0, - 1415.0, - 1384.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1390.0, - 1796.0, - 1390.0, - 1796.0, - 1424.0, - 1418.0, - 1424.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1838.0, - 1390.0, - 2095.0, - 1390.0, - 2095.0, - 1424.0, - 1838.0, - 1424.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1430.0, - 2194.0, - 1430.0, - 2194.0, - 1466.0, - 1418.0, - 1466.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1469.0, - 1793.0, - 1469.0, - 1793.0, - 1508.0, - 1418.0, - 1508.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1861.0, - 1469.0, - 2033.0, - 1469.0, - 2033.0, - 1508.0, - 1861.0, - 1508.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1070.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1070.0, - 132.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 21, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 93, - 121, - 2291, - 121, - 2291, - 1527, - 93, - 1527 - ], - "score": 0.924, - "html": "
1500705MiarkSerere Globally evidence of'gender apartheid' in education; the UN, UNESCO; 'Gender apartheid' being ignored; Mayer Otherreasonableresponse
8school.Assess the view that teacher labelling is the main 20 cause ofworking-classpupils'underachievementin PLEASEREFERTOAPPENDIX2 Relevant material supporting the view that teacher labelling is the main cause of working-class pupils' underachievement in school mayinclude: Interactionist explanations - negative teacher labelling, \"ideal pupil'-middle class; Becker impact negatively on working class achievement; RosenthalandJacobson. Middle class pupils more likely to be positively labelled -AO2:Application The selected knowledge should be directly related to the specific question - gender differences in patterns of educationalattainment. AO1:Knowledge and understanding Candidates'knowledgeandunderstandingoflabellingmust relate specifically to working-class pupils' patterns of achievement. NOTE: Patterns of working class achievement -incidence of freeschoolmealsoftentakenasarobustindicatorof disadvantage today; however sociological arguments continue to reference social class. Candidates may consider different theoretical approaches such as: · Interactionism ·Neo-Marxism
" - }, - { - "category_id": 2, - "poly": [ - 1981, - 100, - 2223, - 100, - 2223, - 133, - 1981, - 133 - ], - "score": 0.875 - }, - { - "category_id": 2, - "poly": [ - 1066, - 101, - 1271, - 101, - 1271, - 133, - 1066, - 133 - ], - "score": 0.781 - }, - { - "category_id": 1, - "poly": [ - 1368, - 1117, - 2223, - 1117, - 2223, - 1522, - 1368, - 1522 - ], - "score": 0.76 - }, - { - "category_id": 2, - "poly": [ - 114, - 99, - 247, - 99, - 247, - 133, - 114, - 133 - ], - "score": 0.724 - }, - { - "category_id": 1, - "poly": [ - 1367, - 1006, - 2210, - 1006, - 2210, - 1112, - 1367, - 1112 - ], - "score": 0.266 - }, - { - "category_id": 2, - "poly": [ - 1066, - 101, - 1271, - 101, - 1271, - 133, - 1066, - 133 - ], - "score": 0.129 - }, - { - "category_id": 15, - "poly": [ - 1983.0, - 102.0, - 2220.0, - 102.0, - 2220.0, - 132.0, - 1983.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1070.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1070.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1117.0, - 2154.0, - 1117.0, - 2154.0, - 1150.0, - 1418.0, - 1150.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1421.0, - 1160.0, - 1883.0, - 1160.0, - 1883.0, - 1190.0, - 1421.0, - 1190.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1198.0, - 2222.0, - 1198.0, - 2222.0, - 1234.0, - 1417.0, - 1234.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1243.0, - 2084.0, - 1243.0, - 2084.0, - 1273.0, - 1418.0, - 1273.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1282.0, - 1769.0, - 1282.0, - 1769.0, - 1313.0, - 1419.0, - 1313.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1321.0, - 2182.0, - 1321.0, - 2182.0, - 1357.0, - 1417.0, - 1357.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1363.0, - 1755.0, - 1363.0, - 1755.0, - 1399.0, - 1420.0, - 1399.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1406.0, - 2067.0, - 1406.0, - 2067.0, - 1440.0, - 1418.0, - 1440.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1447.0, - 2158.0, - 1447.0, - 2158.0, - 1482.0, - 1417.0, - 1482.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1487.0, - 2146.0, - 1487.0, - 2146.0, - 1521.0, - 1418.0, - 1521.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 99.0, - 246.0, - 99.0, - 246.0, - 134.0, - 116.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 1007.0, - 2203.0, - 1007.0, - 2203.0, - 1043.0, - 1369.0, - 1043.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 1045.0, - 2197.0, - 1045.0, - 2197.0, - 1078.0, - 1369.0, - 1078.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1371.0, - 1082.0, - 1641.0, - 1082.0, - 1641.0, - 1112.0, - 1371.0, - 1112.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1070.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1070.0, - 132.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 22, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 1368, - 500, - 2170, - 500, - 2170, - 616, - 1368, - 616 - ], - "score": 0.956 - }, - { - "category_id": 1, - "poly": [ - 1368, - 691, - 2218, - 691, - 2218, - 796, - 1368, - 796 - ], - "score": 0.953 - }, - { - "category_id": 1, - "poly": [ - 1368, - 1032, - 2077, - 1032, - 2077, - 1069, - 1368, - 1069 - ], - "score": 0.923 - }, - { - "category_id": 1, - "poly": [ - 1369, - 1075, - 2218, - 1075, - 2218, - 1506, - 1369, - 1506 - ], - "score": 0.919 - }, - { - "category_id": 2, - "poly": [ - 1981, - 101, - 2223, - 101, - 2223, - 133, - 1981, - 133 - ], - "score": 0.914 - }, - { - "category_id": 1, - "poly": [ - 1371, - 830, - 1870, - 830, - 1870, - 866, - 1371, - 866 - ], - "score": 0.902 - }, - { - "category_id": 1, - "poly": [ - 1369, - 869, - 1613, - 869, - 1613, - 987, - 1369, - 987 - ], - "score": 0.898 - }, - { - "category_id": 2, - "poly": [ - 1066, - 101, - 1271, - 101, - 1271, - 133, - 1066, - 133 - ], - "score": 0.851 - }, - { - "category_id": 5, - "poly": [ - 96, - 124, - 1357, - 124, - 1357, - 1523, - 96, - 1523 - ], - "score": 0.823 - }, - { - "category_id": 0, - "poly": [ - 1367, - 464, - 1622, - 464, - 1622, - 498, - 1367, - 498 - ], - "score": 0.77 - }, - { - "category_id": 2, - "poly": [ - 115, - 99, - 247, - 99, - 247, - 132, - 115, - 132 - ], - "score": 0.761 - }, - { - "category_id": 0, - "poly": [ - 1371, - 655, - 1802, - 655, - 1802, - 689, - 1371, - 689 - ], - "score": 0.734 - }, - { - "category_id": 1, - "poly": [ - 1367, - 180, - 2221, - 180, - 2221, - 424, - 1367, - 424 - ], - "score": 0.705 - }, - { - "category_id": 5, - "poly": [ - 79, - 111, - 2279, - 111, - 2279, - 1525, - 79, - 1525 - ], - "score": 0.572, - "html": "
H580/03MarkschemeNovember2020 GillbornandYoudell
Candidateswill discussweaknessesof/challenges to theview that the view that teacher labelling is the main cause of working-class pupils' underachievement in school. They may consider theories such as: Functionalism Marxism Feminism Relevant material challenging the view may include: Studies on labelling are small-scale, issues of generalisation Deterministic nature of Interactionist explanations ofEffects of streaming and banding on a child's performance, incorporates notion - how we are labelled by others affects wayweseeourselves;Hargreaves,Ball;Keddie Teachers tend to judge pupils not only by ability but also social class; Dunne and Gazeley Other reasonable response. A02:Application Theselectedknowledge shouldbedirectlyrelated to the specific question - view that teacher labelling is the main cause of working-class pupils' underachievement in school. AO3:Analysisandevaluation
" - }, - { - "category_id": 1, - "poly": [ - 1417, - 140, - 1699, - 140, - 1699, - 173, - 1417, - 173 - ], - "score": 0.156 - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 500.0, - 2134.0, - 500.0, - 2134.0, - 532.0, - 1369.0, - 532.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1368.0, - 543.0, - 2134.0, - 543.0, - 2134.0, - 573.0, - 1368.0, - 573.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 583.0, - 2174.0, - 583.0, - 2174.0, - 613.0, - 1369.0, - 613.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 690.0, - 2218.0, - 690.0, - 2218.0, - 722.0, - 1370.0, - 722.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1368.0, - 725.0, - 2121.0, - 725.0, - 2121.0, - 757.0, - 1368.0, - 757.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1368.0, - 763.0, - 2050.0, - 763.0, - 2050.0, - 794.0, - 1368.0, - 794.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 1033.0, - 2075.0, - 1033.0, - 2075.0, - 1069.0, - 1370.0, - 1069.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1078.0, - 2042.0, - 1078.0, - 2042.0, - 1108.0, - 1420.0, - 1108.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1115.0, - 1614.0, - 1115.0, - 1614.0, - 1142.0, - 1419.0, - 1142.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1149.0, - 2127.0, - 1149.0, - 2127.0, - 1182.0, - 1419.0, - 1182.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1182.0, - 1960.0, - 1182.0, - 1960.0, - 1219.0, - 1418.0, - 1219.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1222.0, - 2162.0, - 1222.0, - 2162.0, - 1254.0, - 1420.0, - 1254.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1421.0, - 1259.0, - 1557.0, - 1259.0, - 1557.0, - 1288.0, - 1421.0, - 1288.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1291.0, - 2171.0, - 1291.0, - 2171.0, - 1329.0, - 1417.0, - 1329.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1331.0, - 2150.0, - 1331.0, - 2150.0, - 1361.0, - 1420.0, - 1361.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1366.0, - 2181.0, - 1366.0, - 2181.0, - 1401.0, - 1417.0, - 1401.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1402.0, - 1927.0, - 1402.0, - 1927.0, - 1433.0, - 1419.0, - 1433.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1439.0, - 2190.0, - 1439.0, - 2190.0, - 1471.0, - 1418.0, - 1471.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1476.0, - 2217.0, - 1476.0, - 2217.0, - 1505.0, - 1417.0, - 1505.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1984.0, - 103.0, - 2220.0, - 103.0, - 2220.0, - 132.0, - 1984.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 832.0, - 1871.0, - 832.0, - 1871.0, - 865.0, - 1370.0, - 865.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 868.0, - 1610.0, - 868.0, - 1610.0, - 901.0, - 1418.0, - 901.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 911.0, - 1539.0, - 911.0, - 1539.0, - 944.0, - 1418.0, - 944.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 952.0, - 1556.0, - 952.0, - 1556.0, - 986.0, - 1417.0, - 986.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1070.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1070.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 463.0, - 1621.0, - 463.0, - 1621.0, - 501.0, - 1370.0, - 501.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 100.0, - 246.0, - 100.0, - 246.0, - 134.0, - 116.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1371.0, - 656.0, - 1803.0, - 656.0, - 1803.0, - 689.0, - 1371.0, - 689.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 183.0, - 2219.0, - 183.0, - 2219.0, - 216.0, - 1419.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 226.0, - 2213.0, - 226.0, - 2213.0, - 256.0, - 1419.0, - 256.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 267.0, - 2077.0, - 267.0, - 2077.0, - 296.0, - 1417.0, - 296.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1416.0, - 305.0, - 2183.0, - 305.0, - 2183.0, - 340.0, - 1416.0, - 340.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 344.0, - 1869.0, - 344.0, - 1869.0, - 382.0, - 1417.0, - 382.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 389.0, - 1802.0, - 389.0, - 1802.0, - 423.0, - 1419.0, - 423.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1422.0, - 142.0, - 1698.0, - 142.0, - 1698.0, - 171.0, - 1422.0, - 171.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 23, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 76, - 116, - 2292, - 116, - 2292, - 1541, - 76, - 1541 - ], - "score": 0.921, - "html": "
H500/03MarkscnemeNoble; MurrayNovember
9Evaluate Functionalist explanations of the relationship betweeneducationandwork PLEASEREFERTOAPPENDIX340Parental support -key variable in explaining social class differences in attainment; Feinstein, JRF 2010, Douglas Influence of economic, social and cultural capital; Bourdieu, Reay Gender and ethnicity alsorelevant inunderstanding underachievement of working class pupils; Gilbourn Otherreasonableresponse. AO1: Knowledge and understanding NOTE:duetothepotentialnarrownessofthequestion, candidates may include New Right view in support of functionalist views.This material may be credited as AO1 or as AO3, whichever most benefits the candidate. Do not double-credit. Thereshouldbeaclearunderstandingofandfocuson
" - }, - { - "category_id": 2, - "poly": [ - 1981, - 101, - 2223, - 101, - 2223, - 133, - 1981, - 133 - ], - "score": 0.898 - }, - { - "category_id": 2, - "poly": [ - 1067, - 101, - 1271, - 101, - 1271, - 133, - 1067, - 133 - ], - "score": 0.804 - }, - { - "category_id": 2, - "poly": [ - 114, - 99, - 247, - 99, - 247, - 133, - 114, - 133 - ], - "score": 0.702 - }, - { - "category_id": 1, - "poly": [ - 1365, - 1077, - 2216, - 1077, - 2216, - 1529, - 1365, - 1529 - ], - "score": 0.162 - }, - { - "category_id": 15, - "poly": [ - 1984.0, - 103.0, - 2220.0, - 103.0, - 2220.0, - 132.0, - 1984.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1069.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1069.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 99.0, - 246.0, - 99.0, - 246.0, - 134.0, - 116.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1079.0, - 2163.0, - 1079.0, - 2163.0, - 1115.0, - 1417.0, - 1115.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1121.0, - 2157.0, - 1121.0, - 2157.0, - 1154.0, - 1419.0, - 1154.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1162.0, - 2006.0, - 1162.0, - 2006.0, - 1196.0, - 1418.0, - 1196.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1209.0, - 1994.0, - 1209.0, - 1994.0, - 1237.0, - 1420.0, - 1237.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1247.0, - 2081.0, - 1247.0, - 2081.0, - 1282.0, - 1417.0, - 1282.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1291.0, - 2185.0, - 1291.0, - 2185.0, - 1320.0, - 1419.0, - 1320.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1330.0, - 2213.0, - 1330.0, - 2213.0, - 1362.0, - 1419.0, - 1362.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1371.0, - 2121.0, - 1371.0, - 2121.0, - 1405.0, - 1420.0, - 1405.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1411.0, - 1821.0, - 1411.0, - 1821.0, - 1443.0, - 1420.0, - 1443.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1451.0, - 2088.0, - 1451.0, - 2088.0, - 1485.0, - 1418.0, - 1485.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1495.0, - 1704.0, - 1495.0, - 1704.0, - 1524.0, - 1419.0, - 1524.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 24, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 1367, - 921, - 2137, - 921, - 2137, - 1037, - 1367, - 1037 - ], - "score": 0.93 - }, - { - "category_id": 1, - "poly": [ - 1370, - 1263, - 1609, - 1263, - 1609, - 1425, - 1370, - 1425 - ], - "score": 0.919 - }, - { - "category_id": 1, - "poly": [ - 1370, - 1224, - 2021, - 1224, - 2021, - 1260, - 1370, - 1260 - ], - "score": 0.904 - }, - { - "category_id": 1, - "poly": [ - 1369, - 1121, - 2067, - 1121, - 2067, - 1189, - 1369, - 1189 - ], - "score": 0.902 - }, - { - "category_id": 2, - "poly": [ - 1981, - 100, - 2223, - 100, - 2223, - 133, - 1981, - 133 - ], - "score": 0.893 - }, - { - "category_id": 1, - "poly": [ - 1368, - 1469, - 2133, - 1469, - 2133, - 1505, - 1368, - 1505 - ], - "score": 0.875 - }, - { - "category_id": 2, - "poly": [ - 1066, - 101, - 1271, - 101, - 1271, - 133, - 1066, - 133 - ], - "score": 0.815 - }, - { - "category_id": 0, - "poly": [ - 1369, - 885, - 1622, - 885, - 1622, - 918, - 1369, - 918 - ], - "score": 0.768 - }, - { - "category_id": 2, - "poly": [ - 115, - 99, - 247, - 99, - 247, - 132, - 115, - 132 - ], - "score": 0.749 - }, - { - "category_id": 1, - "poly": [ - 1367, - 141, - 2224, - 141, - 2224, - 840, - 1367, - 840 - ], - "score": 0.73 - }, - { - "category_id": 5, - "poly": [ - 95, - 124, - 1355, - 124, - 1355, - 1520, - 95, - 1520 - ], - "score": 0.707 - }, - { - "category_id": 5, - "poly": [ - 77, - 121, - 2291, - 121, - 2291, - 1524, - 77, - 1524 - ], - "score": 0.697, - "html": "
MiarkSerereSociety in miniature, life in modern society individualistic, competitive;Parsons
They may consider alternative theories such as: Relevant material challenging the functionalist view mayRole allocation and sifting and sorting for future work roles; DavisandMoore Transferable skills; Davis and Moore, Parsons Role of formal and the hidden curriculum. Vocationalism - New Right views echo functionalist ideas; Murray,ChubbandMoe Educational policy 14-19 year olds since 1988, designed to prepare young people for the workplace, e.g. EBacc - includes skills transferable to workplace and work experience. Introduction of BTEC exams specifically focussed on
workplace Enterprise initiatives taught through secondary education; New Right Otherreasonableresponse. AO2:Application The selected knowledge should be directly related to the specific question - Functionalist explanations of the relationship between education and work AO3:Analysisandevaluation Candidates are expected to discuss weaknesses in functionalist explanations.
" - }, - { - "category_id": 0, - "poly": [ - 1371, - 1084, - 1804, - 1084, - 1804, - 1118, - 1371, - 1118 - ], - "score": 0.447 - }, - { - "category_id": 1, - "poly": [ - 1371, - 1084, - 1804, - 1084, - 1804, - 1118, - 1371, - 1118 - ], - "score": 0.131 - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 922.0, - 2135.0, - 922.0, - 2135.0, - 953.0, - 1370.0, - 953.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 964.0, - 2063.0, - 964.0, - 2063.0, - 993.0, - 1370.0, - 993.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 1004.0, - 1928.0, - 1004.0, - 1928.0, - 1034.0, - 1369.0, - 1034.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1263.0, - 1566.0, - 1263.0, - 1566.0, - 1296.0, - 1419.0, - 1296.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1305.0, - 1540.0, - 1305.0, - 1540.0, - 1338.0, - 1418.0, - 1338.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1346.0, - 1557.0, - 1346.0, - 1557.0, - 1381.0, - 1419.0, - 1381.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1392.0, - 1610.0, - 1392.0, - 1610.0, - 1422.0, - 1420.0, - 1422.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 1226.0, - 2021.0, - 1226.0, - 2021.0, - 1259.0, - 1370.0, - 1259.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 1119.0, - 2066.0, - 1119.0, - 2066.0, - 1154.0, - 1370.0, - 1154.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 1156.0, - 1722.0, - 1156.0, - 1722.0, - 1189.0, - 1370.0, - 1189.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1983.0, - 102.0, - 2220.0, - 102.0, - 2220.0, - 132.0, - 1983.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1368.0, - 1468.0, - 2135.0, - 1468.0, - 2135.0, - 1505.0, - 1368.0, - 1505.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1070.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1070.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 885.0, - 1621.0, - 885.0, - 1621.0, - 920.0, - 1370.0, - 920.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 100.0, - 246.0, - 100.0, - 246.0, - 134.0, - 116.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 144.0, - 2187.0, - 144.0, - 2187.0, - 175.0, - 1420.0, - 175.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 185.0, - 1707.0, - 185.0, - 1707.0, - 216.0, - 1420.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 227.0, - 2216.0, - 227.0, - 2216.0, - 258.0, - 1420.0, - 258.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1421.0, - 268.0, - 1654.0, - 268.0, - 1654.0, - 297.0, - 1421.0, - 297.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 307.0, - 2046.0, - 307.0, - 2046.0, - 339.0, - 1418.0, - 339.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 352.0, - 1982.0, - 352.0, - 1982.0, - 383.0, - 1419.0, - 383.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 390.0, - 2212.0, - 390.0, - 2212.0, - 428.0, - 1417.0, - 428.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 435.0, - 1754.0, - 435.0, - 1754.0, - 467.0, - 1420.0, - 467.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 475.0, - 2219.0, - 475.0, - 2219.0, - 509.0, - 1420.0, - 509.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 519.0, - 2146.0, - 519.0, - 2146.0, - 549.0, - 1420.0, - 549.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 556.0, - 2095.0, - 556.0, - 2095.0, - 589.0, - 1419.0, - 589.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 598.0, - 1579.0, - 598.0, - 1579.0, - 630.0, - 1420.0, - 630.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 639.0, - 2134.0, - 639.0, - 2134.0, - 672.0, - 1418.0, - 672.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 681.0, - 1563.0, - 681.0, - 1563.0, - 716.0, - 1418.0, - 716.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 723.0, - 2201.0, - 723.0, - 2201.0, - 756.0, - 1420.0, - 756.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 762.0, - 1568.0, - 762.0, - 1568.0, - 797.0, - 1418.0, - 797.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 806.0, - 1802.0, - 806.0, - 1802.0, - 838.0, - 1420.0, - 838.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1372.0, - 1086.0, - 1802.0, - 1086.0, - 1802.0, - 1119.0, - 1372.0, - 1119.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1372.0, - 1086.0, - 1802.0, - 1086.0, - 1802.0, - 1119.0, - 1372.0, - 1119.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 25, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1981, - 101, - 2223, - 101, - 2223, - 133, - 1981, - 133 - ], - "score": 0.905 - }, - { - "category_id": 5, - "poly": [ - 96, - 137, - 1356, - 137, - 1356, - 1003, - 96, - 1003 - ], - "score": 0.853 - }, - { - "category_id": 2, - "poly": [ - 1066, - 101, - 1271, - 101, - 1271, - 133, - 1066, - 133 - ], - "score": 0.766 - }, - { - "category_id": 5, - "poly": [ - 89, - 134, - 2268, - 134, - 2268, - 1006, - 89, - 1006 - ], - "score": 0.724, - "html": "
include: Critique of idea that role allocation is inherently successful; Bowlesand Gintis Problematic nature of concepts such as 'meritocracy'; Gorard,Gerwitz Marxist critiques of functionalism e.g. correspondence principal, cultural capital, and inequality of opportunity; Bowles and Gintis, Bourdieu, Gillies Marxist critiques of policies designed to prepare young
" - }, - { - "category_id": 2, - "poly": [ - 114, - 99, - 247, - 99, - 247, - 132, - 114, - 132 - ], - "score": 0.696 - }, - { - "category_id": 15, - "poly": [ - 1984.0, - 103.0, - 2220.0, - 103.0, - 2220.0, - 132.0, - 1984.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1070.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1070.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 100.0, - 246.0, - 100.0, - 246.0, - 134.0, - 115.0, - 134.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 26, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1981, - 100, - 2223, - 100, - 2223, - 133, - 1981, - 133 - ], - "score": 0.905 - }, - { - "category_id": 2, - "poly": [ - 115, - 99, - 247, - 99, - 247, - 132, - 115, - 132 - ], - "score": 0.806 - }, - { - "category_id": 2, - "poly": [ - 1066, - 101, - 1271, - 101, - 1271, - 133, - 1066, - 133 - ], - "score": 0.763 - }, - { - "category_id": 5, - "poly": [ - 80, - 113, - 2270, - 113, - 2270, - 1526, - 80, - 1526 - ], - "score": 0.731, - "html": "
H580/03 10Markscneme In what ways is the significance of religion different between societies?10AO1:Knowledgeandunderstanding NOTE: Examples should be credited in the same way as
PLEASEREFERTOAPPENDIX1sociological studies. Relevant material may include: ·Global North becoming more religiously diverse; Centre for theStudy of Global Christianity(CSGC),2013 Global South - religious diversity decreasing e.g. experience growth in just one religion, typically Christianity orIslam;CSGC,2013 Win/Gallup study 2015: worldwide 63% citizens say they are religious, 22% say they are not, 11% atheists Resurgence of religion in China;World Religions Database (WRD) 2008, although just 7% of Chinese citizens said they were a religious person; Win/Gallup study 2015 Africa and Middle East, over 80% portray themselves as religious, compared to 71% from Eastern Europe and 71% Americans, 62% from Asia; Win/Gallup, 2015 Globally two thirds of people consider themselves to be religious; Leger
" - }, - { - "category_id": 5, - "poly": [ - 94, - 118, - 1356, - 118, - 1356, - 1526, - 94, - 1526 - ], - "score": 0.258, - "html": "
101100/03In what ways is the significance of religion different10
* betweensocieties?PLEASEREFERTOAPPENDIX1
" - }, - { - "category_id": 5, - "poly": [ - 1361, - 262, - 2228, - 262, - 2228, - 1508, - 1361, - 1508 - ], - "score": 0.141, - "html": "
Relevant material may include: Global North becoming more religiously diverse; Centre for theStudyof GlobalChristianity(CSGC),2013
Global South - religious diversity decreasing e.g. experience growth in just one religion, typically Christianity
orIslam;CSGC,2013 Win/Gallupstudy2015:worldwide63%citizenssaythey are religious, 22% say they are not, 11% atheists
Resurgence of religion in China; World Religions Database (WRD) 2008, although just 7% of Chinese citizens said they were a religious person; Win/Gallup study 2015
Africa and Middle East, over 80% portray themselves as Americans, 62% from Asia; Win/Gallup, 2015
religious; Leger
Collapse of Communism , growth of Republican politics in USA, led to increase in religious influence and power; Casanova
Deprivatisation' of religion, crosses national boundaries, particularly Islam and Christianity; Casanova Globally 'affective religiousness', i.e. religious piety, more
common in females than males, with exception of religions in the Middle East; Sullins
Among Jews and Muslims - men significantly more religious than women; Sullins
Western Europe- decline of power, influence and active participation in Christianity; Davie
UK increase in “belief without belonging'; Davie Canada, 75% do not attend church, 80% hold religious
" - }, - { - "category_id": 6, - "poly": [ - 1066, - 101, - 1271, - 101, - 1271, - 133, - 1066, - 133 - ], - "score": 0.13 - }, - { - "category_id": 1, - "poly": [ - 1361, - 262, - 2228, - 262, - 2228, - 1508, - 1361, - 1508 - ], - "score": 0.123 - }, - { - "category_id": 13, - "poly": [ - 1727, - 770, - 1793, - 770, - 1793, - 804, - 1727, - 804 - ], - "score": 0.88, - "latex": "71\\%" - }, - { - "category_id": 13, - "poly": [ - 1810, - 729, - 1875, - 729, - 1875, - 764, - 1810, - 764 - ], - "score": 0.87, - "latex": "80\\%" - }, - { - "category_id": 13, - "poly": [ - 1601, - 563, - 1668, - 563, - 1668, - 597, - 1601, - 597 - ], - "score": 0.87, - "latex": "22\\%" - }, - { - "category_id": 13, - "poly": [ - 1894, - 523, - 1961, - 523, - 1961, - 556, - 1894, - 556 - ], - "score": 0.86, - "latex": "63\\%" - }, - { - "category_id": 13, - "poly": [ - 1579, - 810, - 1645, - 810, - 1645, - 844, - 1579, - 844 - ], - "score": 0.86, - "latex": "62\\%" - }, - { - "category_id": 13, - "poly": [ - 1907, - 1473, - 1973, - 1473, - 1973, - 1507, - 1907, - 1507 - ], - "score": 0.85, - "latex": "80\\%" - }, - { - "category_id": 13, - "poly": [ - 1787, - 646, - 1836, - 646, - 1836, - 680, - 1787, - 680 - ], - "score": 0.84, - "latex": "7\\%" - }, - { - "category_id": 13, - "poly": [ - 1907, - 563, - 1972, - 563, - 1972, - 597, - 1907, - 597 - ], - "score": 0.84, - "latex": "11\\%" - }, - { - "category_id": 13, - "poly": [ - 1542, - 1472, - 1608, - 1472, - 1608, - 1507, - 1542, - 1507 - ], - "score": 0.82, - "latex": "75\\%" - }, - { - "category_id": 13, - "poly": [ - 2147, - 769, - 2214, - 769, - 2214, - 804, - 2147, - 804 - ], - "score": 0.8, - "latex": "71\\%" - }, - { - "category_id": 15, - "poly": [ - 1983.0, - 102.0, - 2220.0, - 102.0, - 2220.0, - 132.0, - 1983.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 100.0, - 246.0, - 100.0, - 246.0, - 134.0, - 116.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1070.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1070.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1070.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1070.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1367.0, - 278.0, - 1792.0, - 278.0, - 1792.0, - 316.0, - 1367.0, - 316.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 316.0, - 2220.0, - 316.0, - 2220.0, - 355.0, - 1417.0, - 355.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1415.0, - 356.0, - 2047.0, - 356.0, - 2047.0, - 394.0, - 1415.0, - 394.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1416.0, - 396.0, - 2078.0, - 396.0, - 2078.0, - 441.0, - 1416.0, - 441.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 441.0, - 2212.0, - 441.0, - 2212.0, - 478.0, - 1418.0, - 478.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 481.0, - 1734.0, - 481.0, - 1734.0, - 516.0, - 1420.0, - 516.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 522.0, - 1893.0, - 522.0, - 1893.0, - 563.0, - 1417.0, - 563.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1962.0, - 522.0, - 2196.0, - 522.0, - 2196.0, - 563.0, - 1962.0, - 563.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 565.0, - 1600.0, - 565.0, - 1600.0, - 600.0, - 1418.0, - 600.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1669.0, - 565.0, - 1906.0, - 565.0, - 1906.0, - 600.0, - 1669.0, - 600.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1973.0, - 565.0, - 2087.0, - 565.0, - 2087.0, - 600.0, - 1973.0, - 600.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 607.0, - 2220.0, - 607.0, - 2220.0, - 642.0, - 1418.0, - 642.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 644.0, - 1786.0, - 644.0, - 1786.0, - 685.0, - 1418.0, - 685.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1837.0, - 644.0, - 2170.0, - 644.0, - 2170.0, - 685.0, - 1837.0, - 685.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 687.0, - 2139.0, - 687.0, - 2139.0, - 722.0, - 1417.0, - 722.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 728.0, - 1809.0, - 728.0, - 1809.0, - 766.0, - 1417.0, - 766.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1876.0, - 728.0, - 2186.0, - 728.0, - 2186.0, - 766.0, - 1876.0, - 766.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 771.0, - 1726.0, - 771.0, - 1726.0, - 806.0, - 1420.0, - 806.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1794.0, - 771.0, - 2146.0, - 771.0, - 2146.0, - 806.0, - 1794.0, - 806.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 2215.0, - 771.0, - 2215.0, - 771.0, - 2215.0, - 806.0, - 2215.0, - 806.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1415.0, - 809.0, - 1578.0, - 809.0, - 1578.0, - 847.0, - 1415.0, - 847.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1646.0, - 809.0, - 2040.0, - 809.0, - 2040.0, - 847.0, - 1646.0, - 847.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1415.0, - 850.0, - 2172.0, - 850.0, - 2172.0, - 891.0, - 1415.0, - 891.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 892.0, - 1637.0, - 892.0, - 1637.0, - 931.0, - 1417.0, - 931.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 935.0, - 2202.0, - 935.0, - 2202.0, - 972.0, - 1417.0, - 972.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 975.0, - 2149.0, - 975.0, - 2149.0, - 1014.0, - 1417.0, - 1014.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1018.0, - 1562.0, - 1018.0, - 1562.0, - 1050.0, - 1420.0, - 1050.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1062.0, - 2185.0, - 1062.0, - 2185.0, - 1093.0, - 1420.0, - 1093.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1100.0, - 2029.0, - 1100.0, - 2029.0, - 1137.0, - 1417.0, - 1137.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1142.0, - 2197.0, - 1142.0, - 2197.0, - 1178.0, - 1417.0, - 1178.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1184.0, - 2213.0, - 1184.0, - 2213.0, - 1219.0, - 1418.0, - 1219.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1226.0, - 1774.0, - 1226.0, - 1774.0, - 1257.0, - 1418.0, - 1257.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1265.0, - 2108.0, - 1265.0, - 2108.0, - 1300.0, - 1417.0, - 1300.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1307.0, - 1822.0, - 1307.0, - 1822.0, - 1341.0, - 1417.0, - 1341.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1415.0, - 1345.0, - 2183.0, - 1345.0, - 2183.0, - 1386.0, - 1415.0, - 1386.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1390.0, - 1877.0, - 1390.0, - 1877.0, - 1425.0, - 1420.0, - 1425.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1415.0, - 1428.0, - 2061.0, - 1428.0, - 2061.0, - 1470.0, - 1415.0, - 1470.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1475.0, - 1541.0, - 1475.0, - 1541.0, - 1510.0, - 1418.0, - 1510.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1609.0, - 1475.0, - 1906.0, - 1475.0, - 1906.0, - 1510.0, - 1609.0, - 1510.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1974.0, - 1475.0, - 2163.0, - 1475.0, - 2163.0, - 1510.0, - 1974.0, - 1510.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 27, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 81, - 120, - 2276, - 120, - 2276, - 1512, - 81, - 1512 - ], - "score": 0.936, - "html": "
affiliations, opinions and convictions; Lynch. NORC report 42 countries: belief highest amongst older people;NORC 2012 Western societies association of religious rituals withkey moments in life course; Davie and Vincent Other reasonableresponse A02:Application The selected knowledge should be directly related to the specific question -ways significance of religion differs betweensocietiesbeliefs; Bibby Western Europe - increase in privatised religious forms, including spirituality of the New Age; Kendal Project Islam among minority ethnic groups in the UK possibly response to revival of Islam globally; Kepel Among young people: Britain, Sweden, Finland, Poland, Russia and UsA -'alternative ways of conceptualising belief' developing, they use 'belief' to refer to - identities,
11 *Assess feminist views of the role of religion in 20 society. PLEASEREFERTOAPPENDIX2AO1:Knowledge and understanding Candidates'knowledge and understanding should relate specifically to the feminist views of the role of religion in society. Candidates may consider different theoretical approaches such as:
Liberalfeminism Marxist feminism Radical feminism Relevant material may include: Religion serves needs of a particular group - in this case men, religions usually patriarchal institutions; radical feminists.
" - }, - { - "category_id": 2, - "poly": [ - 1981, - 101, - 2223, - 101, - 2223, - 133, - 1981, - 133 - ], - "score": 0.9 - }, - { - "category_id": 2, - "poly": [ - 1066, - 101, - 1271, - 101, - 1271, - 133, - 1066, - 133 - ], - "score": 0.766 - }, - { - "category_id": 2, - "poly": [ - 114, - 99, - 247, - 99, - 247, - 133, - 114, - 133 - ], - "score": 0.682 - }, - { - "category_id": 1, - "poly": [ - 1372, - 1381, - 2184, - 1381, - 2184, - 1497, - 1372, - 1497 - ], - "score": 0.15 - }, - { - "category_id": 15, - "poly": [ - 1984.0, - 103.0, - 2220.0, - 103.0, - 2220.0, - 132.0, - 1984.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1070.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1070.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 99.0, - 246.0, - 99.0, - 246.0, - 134.0, - 116.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 1384.0, - 2183.0, - 1384.0, - 2183.0, - 1414.0, - 1420.0, - 1414.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1425.0, - 2129.0, - 1425.0, - 2129.0, - 1454.0, - 1419.0, - 1454.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1416.0, - 1462.0, - 1552.0, - 1462.0, - 1552.0, - 1496.0, - 1416.0, - 1496.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 28, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 71, - 127, - 2272, - 127, - 2272, - 1506, - 71, - 1506 - ], - "score": 0.926, - "html": "
Religious beliefs function as patriarchal ideology, the eyes of their god; Simone de Beauvoir Browne,Woodhead rituals and practices is patriarchal. therefore change possible; Armstrong ElSaadawilegitimising female subordination, oppression and exploitation. Christianity is a 'patriarchal myth'; Daly Women deceived by religion into think everyone equal in Marxist feminism: religion promotes false consciousness in a gendered form, religion serves to reinforce and justify patriarchal roleswithin thefamily;deBeauvoir Radical feminists - concept of'stained-glass ceiling' within from rising up religious hierarchy, e.g. Roman Catholicism womencannotbecomepriests,althoughwomenoften have a responsibility for religious nurture in the home ; Feminist views - nature of religious symbolism, teachings, Patriarchal dominance of men in positions of leadership in and emphasises their marginalised position in society, however in early religions women were central characters, Some argue practices carried out in the name of religion, suchasfemalecircumcisionwithinIslamiccountriesrests onaparticularinterpretationof theQur'an;therefore,it is the nature of society, i.e. patriarchy that lies at the root of the subordination and coincided with rise of monotheism; Liberal feminist view, contradiction between classical teachings of religions about equality of individuals and reality of women's lives mirrored in religion, suggest
" - }, - { - "category_id": 2, - "poly": [ - 1981, - 100, - 2223, - 100, - 2223, - 133, - 1981, - 133 - ], - "score": 0.868 - }, - { - "category_id": 2, - "poly": [ - 1066, - 101, - 1271, - 101, - 1271, - 133, - 1066, - 133 - ], - "score": 0.771 - }, - { - "category_id": 2, - "poly": [ - 114, - 99, - 247, - 99, - 247, - 132, - 114, - 132 - ], - "score": 0.725 - }, - { - "category_id": 15, - "poly": [ - 1983.0, - 102.0, - 2220.0, - 102.0, - 2220.0, - 132.0, - 1983.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1070.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1070.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 100.0, - 246.0, - 100.0, - 246.0, - 134.0, - 115.0, - 134.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 29, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 1366, - 669, - 2223, - 669, - 2223, - 773, - 1366, - 773 - ], - "score": 0.954 - }, - { - "category_id": 1, - "poly": [ - 1369, - 142, - 2210, - 142, - 2210, - 587, - 1369, - 587 - ], - "score": 0.945 - }, - { - "category_id": 1, - "poly": [ - 1369, - 850, - 2178, - 850, - 2178, - 917, - 1369, - 917 - ], - "score": 0.943 - }, - { - "category_id": 1, - "poly": [ - 1369, - 992, - 1616, - 992, - 1616, - 1136, - 1369, - 1136 - ], - "score": 0.932 - }, - { - "category_id": 1, - "poly": [ - 1369, - 1245, - 2220, - 1245, - 2220, - 1526, - 1369, - 1526 - ], - "score": 0.925 - }, - { - "category_id": 5, - "poly": [ - 97, - 123, - 1357, - 123, - 1357, - 1554, - 97, - 1554 - ], - "score": 0.915, - "html": "
" - }, - { - "category_id": 2, - "poly": [ - 1981, - 101, - 2223, - 101, - 2223, - 133, - 1981, - 133 - ], - "score": 0.913 - }, - { - "category_id": 1, - "poly": [ - 1369, - 953, - 2020, - 953, - 2020, - 988, - 1369, - 988 - ], - "score": 0.908 - }, - { - "category_id": 1, - "poly": [ - 1367, - 1171, - 2135, - 1171, - 2135, - 1241, - 1367, - 1241 - ], - "score": 0.86 - }, - { - "category_id": 2, - "poly": [ - 1066, - 101, - 1271, - 101, - 1271, - 133, - 1066, - 133 - ], - "score": 0.843 - }, - { - "category_id": 0, - "poly": [ - 1368, - 632, - 1622, - 632, - 1622, - 666, - 1368, - 666 - ], - "score": 0.779 - }, - { - "category_id": 2, - "poly": [ - 115, - 99, - 247, - 99, - 247, - 132, - 115, - 132 - ], - "score": 0.763 - }, - { - "category_id": 0, - "poly": [ - 1371, - 814, - 1802, - 814, - 1802, - 847, - 1371, - 847 - ], - "score": 0.644 - }, - { - "category_id": 5, - "poly": [ - 143, - 103, - 2265, - 103, - 2265, - 1555, - 143, - 1555 - ], - "score": 0.202, - "html": "
580/03Markscheme
menstruation; HolmNotion of a woman as sinful, temptress, in need of control
scattered in religious texts. Many religions legitimate and regulate women's traditional
domestic and reproductive role i.e. the Catholic Church bans abortion and artificial contraception. Liberal feminism, greater gender equality in society mirrored in reform of religious organisations e.g. introduction of womenpriests and bishops in Church of
England. Other reasonable response.
A02:ApplicationThe selected knowledge shouldbedirectly related tothe
in societyspecific question - feminist explanations of the role of religion
AO3: Analysis and evaluation
explanations.Candidates are expected to discuss weaknesses in feminist
FunctionalismThey may consider alternative theories such as:
Marxism Weberianism
Post feminism
include:Relevant material challenging feminist explanations may
Not all religions patriarchal, e.g. Liberal wing of the
Church of England encourages ordination of women and
legitimacy of homosexuality; Postfeminists.
Critique of Marxist and radical feminism, religion can help promote gender equality. ‘Religious forms of feminism', ways women can use religion to gain freedom; Woodhead,
" - }, - { - "category_id": 1, - "poly": [ - 1371, - 814, - 1802, - 814, - 1802, - 847, - 1371, - 847 - ], - "score": 0.157 - }, - { - "category_id": 1, - "poly": [ - 1367, - 1172, - 2135, - 1172, - 2135, - 1242, - 1367, - 1242 - ], - "score": 0.11 - }, - { - "category_id": 15, - "poly": [ - 1371.0, - 669.0, - 2222.0, - 669.0, - 2222.0, - 702.0, - 1371.0, - 702.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 705.0, - 2221.0, - 705.0, - 2221.0, - 737.0, - 1369.0, - 737.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1368.0, - 740.0, - 1500.0, - 740.0, - 1500.0, - 775.0, - 1368.0, - 775.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 142.0, - 1685.0, - 142.0, - 1685.0, - 171.0, - 1419.0, - 171.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 182.0, - 2203.0, - 182.0, - 2203.0, - 216.0, - 1417.0, - 216.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 225.0, - 1782.0, - 225.0, - 1782.0, - 256.0, - 1418.0, - 256.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 266.0, - 2209.0, - 266.0, - 2209.0, - 297.0, - 1418.0, - 297.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 307.0, - 2167.0, - 307.0, - 2167.0, - 338.0, - 1419.0, - 338.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 348.0, - 1979.0, - 348.0, - 1979.0, - 380.0, - 1419.0, - 380.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1415.0, - 387.0, - 2113.0, - 387.0, - 2113.0, - 426.0, - 1415.0, - 426.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 430.0, - 2072.0, - 430.0, - 2072.0, - 465.0, - 1417.0, - 465.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 471.0, - 2172.0, - 471.0, - 2172.0, - 505.0, - 1417.0, - 505.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1415.0, - 511.0, - 1546.0, - 511.0, - 1546.0, - 545.0, - 1415.0, - 545.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 552.0, - 1802.0, - 552.0, - 1802.0, - 586.0, - 1418.0, - 586.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1371.0, - 850.0, - 2181.0, - 850.0, - 2181.0, - 882.0, - 1371.0, - 882.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 884.0, - 1555.0, - 884.0, - 1555.0, - 920.0, - 1369.0, - 920.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 993.0, - 1611.0, - 993.0, - 1611.0, - 1021.0, - 1420.0, - 1021.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1029.0, - 1539.0, - 1029.0, - 1539.0, - 1062.0, - 1417.0, - 1062.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1067.0, - 1601.0, - 1067.0, - 1601.0, - 1097.0, - 1418.0, - 1097.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1103.0, - 1616.0, - 1103.0, - 1616.0, - 1136.0, - 1418.0, - 1136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1249.0, - 2115.0, - 1249.0, - 2115.0, - 1279.0, - 1419.0, - 1279.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1286.0, - 2188.0, - 1286.0, - 2188.0, - 1320.0, - 1418.0, - 1320.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1329.0, - 2002.0, - 1329.0, - 2002.0, - 1360.0, - 1418.0, - 1360.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1370.0, - 2195.0, - 1370.0, - 2195.0, - 1404.0, - 1419.0, - 1404.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1413.0, - 2166.0, - 1413.0, - 2166.0, - 1443.0, - 1418.0, - 1443.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1454.0, - 2216.0, - 1454.0, - 2216.0, - 1483.0, - 1417.0, - 1483.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1492.0, - 1526.0, - 1492.0, - 1526.0, - 1524.0, - 1419.0, - 1524.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1984.0, - 103.0, - 2220.0, - 103.0, - 2220.0, - 132.0, - 1984.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 953.0, - 2020.0, - 953.0, - 2020.0, - 990.0, - 1370.0, - 990.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1368.0, - 1172.0, - 2135.0, - 1172.0, - 2135.0, - 1209.0, - 1368.0, - 1209.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1367.0, - 1209.0, - 1481.0, - 1209.0, - 1481.0, - 1243.0, - 1367.0, - 1243.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1070.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1070.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 631.0, - 1621.0, - 631.0, - 1621.0, - 669.0, - 1370.0, - 669.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 100.0, - 246.0, - 100.0, - 246.0, - 134.0, - 116.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 814.0, - 1803.0, - 814.0, - 1803.0, - 847.0, - 1370.0, - 847.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 814.0, - 1803.0, - 814.0, - 1803.0, - 847.0, - 1370.0, - 847.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1368.0, - 1173.0, - 2135.0, - 1173.0, - 2135.0, - 1209.0, - 1368.0, - 1209.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1367.0, - 1209.0, - 1481.0, - 1209.0, - 1481.0, - 1243.0, - 1367.0, - 1243.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 30, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 74, - 128, - 2248, - 128, - 2248, - 1506, - 74, - 1506 - ], - "score": 0.918, - "html": "
enter public sphere without losing culture and history; Woodhead Religious Society of Friends (Quakers)- Christian denomination with strong tradition of equality between men andwomen. Similarly,Sikhism originated in thePunjab in sixteenth century, strong tradition of equality between men and women, although most religious leaders are men Weberians and Liberation theologists focus on role of religion in bringing about change, therefore may criticise determinism of radical and Marxist feminists. Ethnocentric view: The burka may be interpreted as liberating Feminist views may be oversimplification of complex relationship; Davie and Walter, Watson Deprivation theory goes against experience of some deprived groups and white working-class men have low rates of religiosity; Davie and Walter Functionalists: role of religion to ensure social solidarity, strengthen bonds and prevent anomie,rather than oppression; Durkheim Marxists: role of religion ‘opium of the people' to supress the masses, not specifically females: Marx
12Evaluate the views of anti-secularisation theorists. PLEASEREFERTOAPPENDIX3AO1:Knowledgeandunderstanding Candidates will consider the view of the anti-secularisation theorists that the UK is not a secular in society. They may consider religious belief, religious practice, power and influence of religion in society.
" - }, - { - "category_id": 2, - "poly": [ - 1980, - 100, - 2223, - 100, - 2223, - 133, - 1980, - 133 - ], - "score": 0.884 - }, - { - "category_id": 2, - "poly": [ - 1066, - 101, - 1271, - 101, - 1271, - 133, - 1066, - 133 - ], - "score": 0.757 - }, - { - "category_id": 2, - "poly": [ - 114, - 99, - 247, - 99, - 247, - 133, - 114, - 133 - ], - "score": 0.714 - }, - { - "category_id": 15, - "poly": [ - 1984.0, - 102.0, - 2220.0, - 102.0, - 2220.0, - 132.0, - 1984.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1070.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1070.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 99.0, - 246.0, - 99.0, - 246.0, - 134.0, - 116.0, - 134.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 31, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1982, - 101, - 2223, - 101, - 2223, - 133, - 1982, - 133 - ], - "score": 0.913 - }, - { - "category_id": 5, - "poly": [ - 95, - 121, - 1355, - 121, - 1355, - 1524, - 95, - 1524 - ], - "score": 0.808, - "html": "
MarkSeere
" - }, - { - "category_id": 2, - "poly": [ - 1066, - 101, - 1271, - 101, - 1271, - 133, - 1066, - 133 - ], - "score": 0.788 - }, - { - "category_id": 2, - "poly": [ - 115, - 99, - 247, - 99, - 247, - 132, - 115, - 132 - ], - "score": 0.739 - }, - { - "category_id": 5, - "poly": [ - 86, - 115, - 2258, - 115, - 2258, - 1521, - 86, - 1521 - ], - "score": 0.692, - "html": "
H580/03Markscneme such as: Anti-secularisationtheorists Postmodernviews Functionalism - religion still provides meaning; Parsons Relevant material may include: Over-emphasis on mainstream Christian religious groups - overlooks increased attendance in Baptist Churches, Pentecostal churches etc (Brierley). Idea there was an'age of faith'- illusion, partly created by focus on religious behaviour of elite groups in society; Hamilton Modern international affairs cannot be comprehended without understanding of religion; Kepel Global patterns - USA influence of New Christian Right; Roof and McKinne. Religion as protest: Martin. Latin America and liberation theology; against apartheidinSouthAfrica. Role of faith in Arab uprising. UK - rise in faith schools; Conservative government policy Religious Education remains legal requirement in UK schools
" - }, - { - "category_id": 1, - "poly": [ - 1366, - 181, - 2157, - 181, - 2157, - 250, - 1366, - 250 - ], - "score": 0.45 - }, - { - "category_id": 1, - "poly": [ - 1371, - 256, - 2206, - 256, - 2206, - 374, - 1371, - 374 - ], - "score": 0.165 - }, - { - "category_id": 5, - "poly": [ - 1365, - 393, - 2223, - 393, - 2223, - 1510, - 1365, - 1510 - ], - "score": 0.154, - "html": "
Relevant material may include:
Over-emphasis on mainstream Christian religious groups - overlooks increased attendance in Baptist Churches, Pentecostal churches etc (Brierley).
Idea there was an'age of faith'-illusion, partly created by focus on religious behaviour of elite groups in society; Hamilton
Modern international affairs cannot be comprehended without understanding of religion; Kepel
Global patterns - USA influence of New Christian Right; Roof and McKinne.
Religion asprotest: Martin. Latin America and liberation theology; against
apartheid in South Africa. Role of faith in Arab uprising.
UK - rise in faith schools; Conservative government policy
Religious Education remains legal requirement in UK schools
Decline in Church attendance on a Sunday may reflect change in religious practice rather than decline.
Difficult to measure covert aspects of religious practice such as prayer and meditation in the home; Jackson Religion increasingly a private matter, difficult to measure;
Hamilton NRMs and NAM - spirituality more‘privatised', but belief
still important: The Kendal Project, Woodhead and Heelas Distrust in science leads people to look for spiritual guidance; Postmodern view.
" - }, - { - "category_id": 1, - "poly": [ - 1372, - 424, - 1812, - 424, - 1812, - 458, - 1372, - 458 - ], - "score": 0.112 - }, - { - "category_id": 15, - "poly": [ - 1984.0, - 103.0, - 2220.0, - 103.0, - 2220.0, - 132.0, - 1984.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1070.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1070.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 100.0, - 246.0, - 100.0, - 246.0, - 134.0, - 116.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 183.0, - 2154.0, - 183.0, - 2154.0, - 217.0, - 1370.0, - 217.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1367.0, - 216.0, - 1489.0, - 216.0, - 1489.0, - 253.0, - 1367.0, - 253.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 258.0, - 1795.0, - 258.0, - 1795.0, - 285.0, - 1419.0, - 285.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 294.0, - 1672.0, - 294.0, - 1672.0, - 324.0, - 1418.0, - 324.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 340.0, - 2205.0, - 340.0, - 2205.0, - 370.0, - 1418.0, - 370.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 424.0, - 1810.0, - 424.0, - 1810.0, - 459.0, - 1369.0, - 459.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 32, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 72, - 126, - 2260, - 126, - 2260, - 1520, - 72, - 1520 - ], - "score": 0.924, - "html": "
globally; Davie Decline of established religion in developed world - not echoedglobally.Davie Berger - the world is furiously religious'. Religion less important when people feel secure about their survival and well-being, this can change; Norris and Inglehart Rate of decline in church membership and participation declined in last 15 years in UK, churches with a missionary zealincreasing;Brierley
World has more people with traditional religious beliefs than ever before; Norris and Inglehart Manypeople in theUSA continue to attend church and profess Christian faith. Migrant groups bring religious practices to UK; e.g. Pentecostal groups, Islam - fastest growing religion in Britain; Christianity in its Global Context 1970-2020 report, 2013 Global social changes enhancing importance of religion for some young Muslims; Moore GrowthinNRMs,oldersectssuchasJehovah'sWitnesses and Mormons, halting tide towards secularisation. Scandinavian countries most engage with religion at a vicariouslevel-ritualsandpracticesperformedbya minority on behalf of the majority are understood and approved of; Davie Few people define themselves as atheists; Census 2011 When tragedies occur many attend traditional places of
" - }, - { - "category_id": 2, - "poly": [ - 1981, - 101, - 2223, - 101, - 2223, - 133, - 1981, - 133 - ], - "score": 0.9 - }, - { - "category_id": 2, - "poly": [ - 1067, - 101, - 1271, - 101, - 1271, - 133, - 1067, - 133 - ], - "score": 0.786 - }, - { - "category_id": 2, - "poly": [ - 115, - 99, - 247, - 99, - 247, - 132, - 115, - 132 - ], - "score": 0.727 - }, - { - "category_id": 15, - "poly": [ - 1984.0, - 103.0, - 2220.0, - 103.0, - 2220.0, - 132.0, - 1984.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1069.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1069.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 100.0, - 246.0, - 100.0, - 246.0, - 134.0, - 116.0, - 134.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 33, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 2, - "poly": [ - 1981, - 101, - 2223, - 101, - 2223, - 133, - 1981, - 133 - ], - "score": 0.914 - }, - { - "category_id": 2, - "poly": [ - 1066, - 101, - 1271, - 101, - 1271, - 133, - 1066, - 133 - ], - "score": 0.809 - }, - { - "category_id": 2, - "poly": [ - 115, - 99, - 247, - 99, - 247, - 132, - 115, - 132 - ], - "score": 0.74 - }, - { - "category_id": 5, - "poly": [ - 80, - 119, - 2298, - 119, - 2298, - 1529, - 80, - 1529 - ], - "score": 0.722, - "html": "
·Pro-secularisation theorists Relevant material may include: · Secularisation: 'the process whereby religious thinking, practices and institutions lose social significance'; Wilson Changes in society due to rationalisation and societalisation, led to secularisation; religious institutions have lost significance; Wilson Science as the Enlightenment that challenged faith; Comte-Scienceasthetruth. Secularisationoccurredduetostructuralandsocial differentiation, individualism, societisation, schisms, pluralismand technology;Bruce Notions of a 'privatised religion' and 'holistic milieu' (Heelas)challenged-shift from‘belief in God'tobelief in a spirit or life force is evidence of secularization, influence of religion has declined; Bruce People increasingly marking important life events outside religious institutions; Martin Church becoming side-lined by secular leaders; Martin Fundamentalism rooted in economic, political system, not religion; Armstrong Pro-secularisation theorists suggest attendance in church on a Sunday is historically an important indicator of religious practice and this is declining; Brierley Decrease in church attendance figures evidence of decline in mainstream Christianity.AO2:Application The selected knowledge should be directly related to the
specific question -views of anti-secularisation theorists AO3:Analysisand evaluation Candidates are expected to discuss alternatives/weaknesses
oftheviewsofanti-secularisationtheorists: They may consider theories such as:
" - }, - { - "category_id": 1, - "poly": [ - 1369, - 211, - 2191, - 211, - 2191, - 281, - 1369, - 281 - ], - "score": 0.66 - }, - { - "category_id": 5, - "poly": [ - 95, - 125, - 1356, - 125, - 1356, - 1528, - 95, - 1528 - ], - "score": 0.588 - }, - { - "category_id": 1, - "poly": [ - 1371, - 353, - 2198, - 353, - 2198, - 420, - 1371, - 420 - ], - "score": 0.369 - }, - { - "category_id": 0, - "poly": [ - 1369, - 175, - 1621, - 175, - 1621, - 208, - 1369, - 208 - ], - "score": 0.213 - }, - { - "category_id": 1, - "poly": [ - 1364, - 600, - 2208, - 600, - 2208, - 1510, - 1364, - 1510 - ], - "score": 0.212 - }, - { - "category_id": 0, - "poly": [ - 1371, - 317, - 1803, - 317, - 1803, - 350, - 1371, - 350 - ], - "score": 0.165 - }, - { - "category_id": 1, - "poly": [ - 1371, - 457, - 1872, - 457, - 1872, - 491, - 1371, - 491 - ], - "score": 0.131 - }, - { - "category_id": 1, - "poly": [ - 1372, - 495, - 1797, - 495, - 1797, - 528, - 1372, - 528 - ], - "score": 0.11 - }, - { - "category_id": 15, - "poly": [ - 1984.0, - 103.0, - 2220.0, - 103.0, - 2220.0, - 132.0, - 1984.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1070.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1070.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 100.0, - 246.0, - 100.0, - 246.0, - 134.0, - 116.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1372.0, - 212.0, - 2135.0, - 212.0, - 2135.0, - 242.0, - 1372.0, - 242.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 249.0, - 2187.0, - 249.0, - 2187.0, - 278.0, - 1369.0, - 278.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1371.0, - 353.0, - 2199.0, - 353.0, - 2199.0, - 385.0, - 1371.0, - 385.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 390.0, - 1956.0, - 390.0, - 1956.0, - 419.0, - 1370.0, - 419.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 175.0, - 1621.0, - 175.0, - 1621.0, - 210.0, - 1370.0, - 210.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 602.0, - 2163.0, - 602.0, - 2163.0, - 637.0, - 1418.0, - 637.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 639.0, - 2193.0, - 639.0, - 2193.0, - 670.0, - 1418.0, - 670.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 686.0, - 2061.0, - 686.0, - 2061.0, - 715.0, - 1420.0, - 715.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 718.0, - 2062.0, - 718.0, - 2062.0, - 753.0, - 1418.0, - 753.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 755.0, - 2003.0, - 755.0, - 2003.0, - 787.0, - 1417.0, - 787.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 799.0, - 2150.0, - 799.0, - 2150.0, - 832.0, - 1419.0, - 832.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1421.0, - 836.0, - 1837.0, - 836.0, - 1837.0, - 866.0, - 1421.0, - 866.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1420.0, - 880.0, - 2149.0, - 880.0, - 2149.0, - 910.0, - 1420.0, - 910.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 916.0, - 2152.0, - 916.0, - 2152.0, - 948.0, - 1419.0, - 948.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 952.0, - 1881.0, - 952.0, - 1881.0, - 985.0, - 1419.0, - 985.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 997.0, - 2143.0, - 997.0, - 2143.0, - 1030.0, - 1418.0, - 1030.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1032.0, - 2197.0, - 1032.0, - 2197.0, - 1064.0, - 1419.0, - 1064.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1416.0, - 1068.0, - 2137.0, - 1068.0, - 2137.0, - 1100.0, - 1416.0, - 1100.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1101.0, - 1989.0, - 1101.0, - 1989.0, - 1135.0, - 1417.0, - 1135.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1148.0, - 2120.0, - 1148.0, - 2120.0, - 1180.0, - 1418.0, - 1180.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1183.0, - 1924.0, - 1183.0, - 1924.0, - 1214.0, - 1418.0, - 1214.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1226.0, - 2197.0, - 1226.0, - 2197.0, - 1261.0, - 1417.0, - 1261.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1265.0, - 2201.0, - 1265.0, - 2201.0, - 1297.0, - 1418.0, - 1297.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1299.0, - 1681.0, - 1299.0, - 1681.0, - 1335.0, - 1418.0, - 1335.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1417.0, - 1336.0, - 2201.0, - 1336.0, - 2201.0, - 1372.0, - 1417.0, - 1372.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 1374.0, - 2117.0, - 1374.0, - 2117.0, - 1405.0, - 1418.0, - 1405.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1410.0, - 2049.0, - 1410.0, - 2049.0, - 1442.0, - 1419.0, - 1442.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1445.0, - 2212.0, - 1445.0, - 2212.0, - 1478.0, - 1419.0, - 1478.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1419.0, - 1482.0, - 1781.0, - 1482.0, - 1781.0, - 1512.0, - 1419.0, - 1512.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1370.0, - 317.0, - 1803.0, - 317.0, - 1803.0, - 350.0, - 1370.0, - 350.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 459.0, - 1872.0, - 459.0, - 1872.0, - 492.0, - 1369.0, - 492.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1418.0, - 497.0, - 1790.0, - 497.0, - 1790.0, - 526.0, - 1418.0, - 526.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 34, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 74, - 135, - 2242, - 135, - 2242, - 1148, - 74, - 1148 - ], - "score": 0.903, - "html": "
New churches are opening, but more closing, so net decline. Decline in attendance at key religious ceremonies - baptisms, marriages, funerals; Sanderson, British Religion inNumbers Church attendance socially approved of in UsA, people may exaggerate their attendance; Hadaway While US presidents declare adherence to the Christian faith, British Prime Ministers are more reluctant, spokesman for Tony Blair 'We don't do God' ; Brown Growth in NRMs, older sects such as Jehovah's Witnesses and Mormons, does not compensate for the declining numbers from larger religious institutions; - evidence of secularisation;Wilson,Bruce NSMs “islands in a secular sea' (Berger), almost irrelevant to modern society; Wilson Fundamentalism rooted in economic, political system, not religion; Armstrong Decline in attendance greater amongst the young, suggesting - as congregations age and fewer young people join, they could die out altogether; Brierley Development of secularisation can be uneven, but will occur;Bruce Alternative view: religions remain powerful and influential in different places but patterns of decline in the UK are significant: Casanova Otherreasonableresponse.
" - }, - { - "category_id": 2, - "poly": [ - 1981, - 100, - 2223, - 100, - 2223, - 133, - 1981, - 133 - ], - "score": 0.875 - }, - { - "category_id": 2, - "poly": [ - 1067, - 101, - 1271, - 101, - 1271, - 133, - 1067, - 133 - ], - "score": 0.76 - }, - { - "category_id": 2, - "poly": [ - 115, - 99, - 247, - 99, - 247, - 132, - 115, - 132 - ], - "score": 0.698 - }, - { - "category_id": 15, - "poly": [ - 1983.0, - 102.0, - 2220.0, - 102.0, - 2220.0, - 132.0, - 1983.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1069.0, - 103.0, - 1270.0, - 103.0, - 1270.0, - 132.0, - 1069.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 100.0, - 246.0, - 100.0, - 246.0, - 134.0, - 116.0, - 134.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 35, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 103, - 274, - 2127, - 274, - 2127, - 1336, - 103, - 1336 - ], - "score": 0.979, - "html": "
LevelMarksGeneric Mark Scheme questions 4,7 and 10
46The candidate demonstrates an excellent knowledge and understanding of a range of sociological material; the material is generally accurate and detailed.
There will typically be three developed knowledge points, or two developed points and one underdeveloped point There is a well-developed line of reasoning which is clear and logically structured. The response is relevant and substantiated.
34-5The candidate demonstrates a good knowledge and understanding of either a range of sociological material or some material in detail. The material is generally accurate but underdeveloped or narrow.
There will typically be at least one developed knowledge point with others which are underdeveloped, or at least three underdevelopedpoints.
22-3bysome evidence.
undeveloped. Therewill typicallybe one ortwounderdeveloped points, ora rangeof undeveloped points.
11The candidate demonstrates a limited knowledge and understanding of sociological material. Very little relevant sociological
material is presented; the response contains considerable inaccuracy and lacks clarity. Therewill typicallybe one undeveloped point or a vague representation.
The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the
relationship to the evidencemay not beclear.
00Norelevantsociologicalknowledgeorunderstanding
" - }, - { - "category_id": 2, - "poly": [ - 1982, - 101, - 2223, - 101, - 2223, - 134, - 1982, - 134 - ], - "score": 0.893 - }, - { - "category_id": 6, - "poly": [ - 114, - 243, - 795, - 243, - 795, - 277, - 114, - 277 - ], - "score": 0.83 - }, - { - "category_id": 2, - "poly": [ - 1067, - 101, - 1271, - 101, - 1271, - 135, - 1067, - 135 - ], - "score": 0.823 - }, - { - "category_id": 0, - "poly": [ - 118, - 136, - 1069, - 136, - 1069, - 209, - 118, - 209 - ], - "score": 0.427 - }, - { - "category_id": 0, - "poly": [ - 115, - 97, - 1066, - 97, - 1066, - 209, - 115, - 209 - ], - "score": 0.318 - }, - { - "category_id": 15, - "poly": [ - 1983.0, - 102.0, - 2220.0, - 102.0, - 2220.0, - 132.0, - 1983.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 243.0, - 791.0, - 243.0, - 791.0, - 279.0, - 116.0, - 279.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1069.0, - 102.0, - 1270.0, - 102.0, - 1270.0, - 133.0, - 1069.0, - 133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 140.0, - 300.0, - 140.0, - 300.0, - 168.0, - 118.0, - 168.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 174.0, - 1061.0, - 174.0, - 1061.0, - 204.0, - 117.0, - 204.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 99.0, - 248.0, - 99.0, - 248.0, - 134.0, - 115.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 140.0, - 300.0, - 140.0, - 300.0, - 168.0, - 118.0, - 168.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 172.0, - 1062.0, - 172.0, - 1062.0, - 205.0, - 116.0, - 205.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 36, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 92, - 176, - 2128, - 176, - 2128, - 751, - 92, - 751 - ], - "score": 0.974, - "html": "
LevelMarksGenericMarkSchemequestions 4,7 and 10
44The candidate demonstrates an excellent ability to apply relevant sociological material. The material is consistently and frequently related to the question.
33The candidate demonstrates a good ability to apply sociological material. The material is generally relevant but is explicitly related to thequestiononly occasionally.
22The candidate demonstrates a basic ability to apply sociological material. The material is related to the question mainly implicitly and lacks focus on the question. The response may be generalised.
11The candidate demonstrates a limited ability to apply sociological material. The material is tangential to the question and of marginalimportance.
00 Norelevantapplication.
" - }, - { - "category_id": 2, - "poly": [ - 1982, - 100, - 2223, - 100, - 2223, - 135, - 1982, - 135 - ], - "score": 0.854 - }, - { - "category_id": 2, - "poly": [ - 1067, - 101, - 1271, - 101, - 1271, - 134, - 1067, - 134 - ], - "score": 0.742 - }, - { - "category_id": 2, - "poly": [ - 112, - 99, - 514, - 99, - 514, - 173, - 112, - 173 - ], - "score": 0.605 - }, - { - "category_id": 6, - "poly": [ - 112, - 99, - 514, - 99, - 514, - 173, - 112, - 173 - ], - "score": 0.487 - }, - { - "category_id": 15, - "poly": [ - 1983.0, - 102.0, - 2220.0, - 102.0, - 2220.0, - 132.0, - 1983.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1068.0, - 100.0, - 1271.0, - 100.0, - 1271.0, - 135.0, - 1068.0, - 135.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 101.0, - 244.0, - 101.0, - 244.0, - 133.0, - 117.0, - 133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 138.0, - 512.0, - 138.0, - 512.0, - 174.0, - 115.0, - 174.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 117.0, - 101.0, - 244.0, - 101.0, - 244.0, - 133.0, - 117.0, - 133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 138.0, - 512.0, - 138.0, - 512.0, - 174.0, - 115.0, - 174.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 37, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 102, - 247, - 2150, - 247, - 2150, - 1195, - 102, - 1195 - ], - "score": 0.978, - "html": "
Level 4Marks 7-8GenericMarkSchemequestions5,8and11 The candidate demonstrates an excellent knowledge and understanding of a range of sociological material; the material is
35-6generally accurate and detailed. There will typically be three developed knowledge points, or two developed points and one underdeveloped point.
There is a well-developed line of reasoning which is clear and logically structured. The information is relevant and substantiated.
The candidate demonstrates a good knowledge and understanding of either a range of sociological material or some material in detail. The material is generally accurate but underdeveloped or narrow.
Therewilltypicallybeatleastonedevelopedknowledgepointwithotherswhichareunderdeveloped,oratleastthree underdevelopedpoints.
evidence.
23-4The candidate demonstrates a basic knowledge and understanding of some sociological material. The response lacks range and
There will typically be one or two underdeveloped points, or a range of undeveloped points.
11-2Theinformation has some relevance and is presented with basic structure.Theresponse is supported bybasic evidence.
material is presented; the response contains considerable inaccuracy and lacks clarity.
The information is basic and communicated in an unstructured way. The response is supported by limited evidence and the
0 0relationship totheevidencemay not beclear. No relevant sociological knowledge or understanding.
" - }, - { - "category_id": 2, - "poly": [ - 1982, - 101, - 2223, - 101, - 2223, - 134, - 1982, - 134 - ], - "score": 0.891 - }, - { - "category_id": 6, - "poly": [ - 111, - 97, - 1064, - 97, - 1064, - 244, - 111, - 244 - ], - "score": 0.834 - }, - { - "category_id": 2, - "poly": [ - 1067, - 100, - 1271, - 100, - 1271, - 135, - 1067, - 135 - ], - "score": 0.673 - }, - { - "category_id": 0, - "poly": [ - 1067, - 100, - 1271, - 100, - 1271, - 135, - 1067, - 135 - ], - "score": 0.191 - }, - { - "category_id": 15, - "poly": [ - 1983.0, - 102.0, - 2220.0, - 102.0, - 2220.0, - 132.0, - 1983.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 99.0, - 249.0, - 99.0, - 249.0, - 134.0, - 115.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 140.0, - 302.0, - 140.0, - 302.0, - 168.0, - 118.0, - 168.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 174.0, - 1061.0, - 174.0, - 1061.0, - 205.0, - 118.0, - 205.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 212.0, - 706.0, - 212.0, - 706.0, - 243.0, - 116.0, - 243.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1068.0, - 99.0, - 1271.0, - 99.0, - 1271.0, - 136.0, - 1068.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1068.0, - 99.0, - 1271.0, - 99.0, - 1271.0, - 136.0, - 1068.0, - 136.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 38, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 100, - 637, - 2146, - 637, - 2146, - 1382, - 100, - 1382 - ], - "score": 0.981, - "html": "
LevelMarksGeneric MarkScheme questions 5,8 and 11
4 37-8 5-6The candidate demonstrates an excellent ability to analyse and evaluate sociological material. There are a range of evaluation points which are well developed, giving the response a reflective tone. The candidate may reach a critical and reasoned conclusion. There will typically be three developed evaluation points, or two developed points and one underdeveloped point. thesemaybeunderdeveloped.Thecandidatemayreachacriticalbutbriefconclusion.
23-4There will typically be at least one developed evaluation point with others which areunderdeveloped, or at least three underdevelopedpoints. The candidate demonstrates a basic ability to analyse and evaluate. Evaluation points are likely to be anecdotal and/or undeveloped or completely through juxtaposition. The evaluation may lack clarity and contain some inaccuracies/confusion. If
11-2present, the conclusion is likelyto be summative. Therewill typicallybe oneortwounderdevelopedpoints,orarangeofundevelopedpoints. The candidate demonstrates a limited ability to analyse and evaluate. Only implicit evaluation is present. There is unlikely to be a unsupported.
00Therewill typicallybe oneundevelopedpointor anassertivetone. Norelevantanalysisorevaluation.
" - }, - { - "category_id": 5, - "poly": [ - 100, - 184, - 2146, - 184, - 2146, - 560, - 100, - 560 - ], - "score": 0.96, - "html": "
LevelMarksGenericMarkSchemequestions5,8and11
44The candidate demonstrates an excellent ability to apply relevant sociological material.The material is consistently and frequentlyrelatedtothequestion.
33The candidate demonstrates a good ability to applysociological material.The material isgenerallyrelevant but is explicitly relatedtothequestiononlyoccasionally.
22The candidate demonstrates a basic ability to apply sociological material. The material isrelated to thequestion mainlyimplicitly and lacks focus on the question. The response may be generalised.
11Thecandidatedemonstratesalimitedabilitytoapplysociologicalmaterial.Thematerialistangentialtothequestionand of marginalrelevance.
00Norelevantapplication.
" - }, - { - "category_id": 2, - "poly": [ - 1982, - 100, - 2223, - 100, - 2223, - 135, - 1982, - 135 - ], - "score": 0.886 - }, - { - "category_id": 2, - "poly": [ - 115, - 99, - 246, - 99, - 246, - 134, - 115, - 134 - ], - "score": 0.873 - }, - { - "category_id": 6, - "poly": [ - 113, - 601, - 620, - 601, - 620, - 635, - 113, - 635 - ], - "score": 0.852 - }, - { - "category_id": 2, - "poly": [ - 995, - 100, - 1344, - 100, - 1344, - 173, - 995, - 173 - ], - "score": 0.818 - }, - { - "category_id": 15, - "poly": [ - 1983.0, - 102.0, - 2220.0, - 102.0, - 2220.0, - 132.0, - 1983.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 100.0, - 246.0, - 100.0, - 246.0, - 134.0, - 116.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 603.0, - 617.0, - 603.0, - 617.0, - 636.0, - 116.0, - 636.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1067.0, - 100.0, - 1272.0, - 100.0, - 1272.0, - 137.0, - 1067.0, - 137.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 996.0, - 141.0, - 1341.0, - 141.0, - 1341.0, - 173.0, - 996.0, - 173.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 39, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 101, - 247, - 2158, - 247, - 2158, - 1194, - 101, - 1194 - ], - "score": 0.979, - "html": "
Level 4Marks 13-16GenericMarkSchemequestions6,9and 12 The candidate demonstrates an excellent knowledge and understanding of a range of sociological material; the material is generallyaccurateand detailed.
39-12There will typically be four well-developed knowledge points, or three well-developed points towards the bottom of the level. There is awell-developed line of reasoningwhich isclear and logically structured.Theinformation is relevant and substantiated. The candidate demonstrates a good knowledge and understanding of either a range of sociological material or some material in detail. The material is generally accuratebutunderdeveloped or narrow.
Towards the bottom of the level there may be one well-developed knowledge point (depth). There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported bysomeevidence.
25-8The candidate demonstrates a basic knowledge and understanding of some sociological material. The response lacks range and There will typically be three or more undeveloped/ unsubstantiated points or one-two underdeveloped points. The informationhas some relevance and is presented with a basic structure.The response is supported bybasic evidence.
11-4The candidate demonstrates a limited knowledge and understanding of sociological material. Very little relevant sociological material is presented; the response contains considerable inaccuracy and lacks clarity. The information is limited and communicated in an unstructured way. The response is supported by limited evidence and the
0 0relationshiptotheevidencemaynotbeclear. Norelevantknowledge or understanding.
" - }, - { - "category_id": 2, - "poly": [ - 1982, - 101, - 2223, - 101, - 2223, - 134, - 1982, - 134 - ], - "score": 0.891 - }, - { - "category_id": 6, - "poly": [ - 111, - 97, - 1066, - 97, - 1066, - 244, - 111, - 244 - ], - "score": 0.828 - }, - { - "category_id": 2, - "poly": [ - 1067, - 100, - 1271, - 100, - 1271, - 135, - 1067, - 135 - ], - "score": 0.698 - }, - { - "category_id": 0, - "poly": [ - 1067, - 100, - 1271, - 100, - 1271, - 135, - 1067, - 135 - ], - "score": 0.158 - }, - { - "category_id": 15, - "poly": [ - 1983.0, - 102.0, - 2220.0, - 102.0, - 2220.0, - 132.0, - 1983.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 99.0, - 249.0, - 99.0, - 249.0, - 134.0, - 115.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 140.0, - 302.0, - 140.0, - 302.0, - 168.0, - 118.0, - 168.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 118.0, - 174.0, - 1063.0, - 174.0, - 1063.0, - 205.0, - 118.0, - 205.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 212.0, - 720.0, - 212.0, - 720.0, - 243.0, - 116.0, - 243.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1068.0, - 99.0, - 1271.0, - 99.0, - 1271.0, - 136.0, - 1068.0, - 136.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1068.0, - 99.0, - 1271.0, - 99.0, - 1271.0, - 136.0, - 1068.0, - 136.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 40, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 5, - "poly": [ - 102, - 683, - 2167, - 683, - 2167, - 1472, - 102, - 1472 - ], - "score": 0.98, - "html": "
LevelMarksGenericMarkSchemequestions6,9and12
413-16The candidate demonstrates an excellent ability to analyse and evaluate sociological material. There are a range of evaluation There will typically be four well-developed evaluation points, or three well-developed points towards the bottom of the level.
39-12There will typically be three or four evaluation points which may be less well developed in places, or two well-developed points! Towards thebottom ofthelevel there maybe one well-developed evaluationpoint (depth).
25-8The candidate demonstrates a basic ability to analyse and evaluate. Evaluation points are likely to be anecdotal, and/or undeveloped or completely through juxtaposition. The evaluation may lack clarity and contain some inaccuracies/confusion. If present, the conclusion is likely tobe summative. Therewill typicallybe threeormoreundeveloped/unsubstantiatedpointsor oneunderdevelopedpoint.
01-4The candidate demonstrates a limited ability to analyse and evaluate. Only implicit evaluation is present. If present, the conclusion islikelytobeassertedandunsupported. Therewill typicallybe oneortwo undeveloped/unsubstantiatedpointsoran assertivetone.
0Norelevantsociologicalevaluationoranalysis.
" - }, - { - "category_id": 5, - "poly": [ - 102, - 177, - 2161, - 177, - 2161, - 566, - 102, - 566 - ], - "score": 0.973, - "html": "
LevelMarksGenericMarkSchemequestions6,9and 12
47-8The candidate demonstrates an excellent ability to apply relevantsociological material. The material is consistently and frequentlyrelatedtothequestion.
35-6The candidate demonstrates a good ability to apply sociological material. The material is generally relevant but is explicitly related
23-4tothequestiononlyoccasionally. The candidate demonstrates a basic ability to apply sociological material. The material is related to the question mainly implicitly
11-2and lacks focus on the question. The response may be generalised. The candidate demonstrates a limited ability to apply sociological material. The material is tangential to the question and of marginalrelevance.
00Norelevantsociologicalapplication.
" - }, - { - "category_id": 2, - "poly": [ - 1982, - 100, - 2223, - 100, - 2223, - 135, - 1982, - 135 - ], - "score": 0.888 - }, - { - "category_id": 6, - "poly": [ - 114, - 645, - 636, - 645, - 636, - 679, - 114, - 679 - ], - "score": 0.848 - }, - { - "category_id": 2, - "poly": [ - 113, - 100, - 462, - 100, - 462, - 173, - 113, - 173 - ], - "score": 0.718 - }, - { - "category_id": 2, - "poly": [ - 1067, - 101, - 1271, - 101, - 1271, - 135, - 1067, - 135 - ], - "score": 0.678 - }, - { - "category_id": 6, - "poly": [ - 113, - 100, - 462, - 100, - 462, - 173, - 113, - 173 - ], - "score": 0.207 - }, - { - "category_id": 0, - "poly": [ - 1067, - 101, - 1271, - 101, - 1271, - 135, - 1067, - 135 - ], - "score": 0.198 - }, - { - "category_id": 0, - "poly": [ - 114, - 645, - 636, - 645, - 636, - 679, - 114, - 679 - ], - "score": 0.102 - }, - { - "category_id": 15, - "poly": [ - 1983.0, - 102.0, - 2220.0, - 102.0, - 2220.0, - 132.0, - 1983.0, - 132.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 645.0, - 633.0, - 645.0, - 633.0, - 680.0, - 116.0, - 680.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 100.0, - 247.0, - 100.0, - 247.0, - 134.0, - 116.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 141.0, - 460.0, - 141.0, - 460.0, - 173.0, - 115.0, - 173.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1069.0, - 102.0, - 1270.0, - 102.0, - 1270.0, - 133.0, - 1069.0, - 133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 100.0, - 247.0, - 100.0, - 247.0, - 134.0, - 116.0, - 134.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 115.0, - 141.0, - 460.0, - 141.0, - 460.0, - 173.0, - 115.0, - 173.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1069.0, - 102.0, - 1270.0, - 102.0, - 1270.0, - 133.0, - 1069.0, - 133.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 116.0, - 645.0, - 633.0, - 645.0, - 633.0, - 680.0, - 116.0, - 680.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 41, - "height": 1654, - "width": 2339 - } - }, - { - "layout_dets": [ - { - "category_id": 1, - "poly": [ - 161, - 602, - 716, - 602, - 716, - 761, - 161, - 761 - ], - "score": 0.95 - }, - { - "category_id": 2, - "poly": [ - 1286, - 2171, - 1591, - 2171, - 1591, - 2258, - 1286, - 2258 - ], - "score": 0.94 - }, - { - "category_id": 1, - "poly": [ - 164, - 524, - 612, - 524, - 612, - 561, - 164, - 561 - ], - "score": 0.826 - }, - { - "category_id": 0, - "poly": [ - 161, - 301, - 875, - 301, - 875, - 490, - 161, - 490 - ], - "score": 0.797 - }, - { - "category_id": 1, - "poly": [ - 162, - 797, - 396, - 797, - 396, - 831, - 162, - 831 - ], - "score": 0.773 - }, - { - "category_id": 2, - "poly": [ - 158, - 900, - 1416, - 900, - 1416, - 970, - 158, - 970 - ], - "score": 0.681 - }, - { - "category_id": 1, - "poly": [ - 158, - 900, - 1416, - 900, - 1416, - 970, - 158, - 970 - ], - "score": 0.164 - }, - { - "category_id": 15, - "poly": [ - 163.0, - 602.0, - 515.0, - 602.0, - 515.0, - 637.0, - 163.0, - 637.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 163.0, - 646.0, - 524.0, - 646.0, - 524.0, - 676.0, - 163.0, - 676.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 163.0, - 685.0, - 507.0, - 685.0, - 507.0, - 715.0, - 163.0, - 715.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 164.0, - 726.0, - 715.0, - 726.0, - 715.0, - 759.0, - 164.0, - 759.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1291.0, - 2175.0, - 1365.0, - 2175.0, - 1365.0, - 2208.0, - 1291.0, - 2208.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1369.0, - 2170.0, - 1573.0, - 2170.0, - 1573.0, - 2220.0, - 1369.0, - 2220.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1292.0, - 2202.0, - 1361.0, - 2202.0, - 1361.0, - 2221.0, - 1292.0, - 2221.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1296.0, - 2218.0, - 1320.0, - 2218.0, - 1320.0, - 2244.0, - 1296.0, - 2244.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 1373.0, - 2217.0, - 1593.0, - 2217.0, - 1593.0, - 2258.0, - 1373.0, - 2258.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 166.0, - 529.0, - 613.0, - 529.0, - 613.0, - 559.0, - 166.0, - 559.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 164.0, - 305.0, - 873.0, - 305.0, - 873.0, - 338.0, - 164.0, - 338.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 162.0, - 342.0, - 480.0, - 342.0, - 480.0, - 380.0, - 162.0, - 380.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 165.0, - 383.0, - 430.0, - 383.0, - 430.0, - 416.0, - 165.0, - 416.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 162.0, - 418.0, - 329.0, - 418.0, - 329.0, - 456.0, - 162.0, - 456.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 163.0, - 457.0, - 298.0, - 457.0, - 298.0, - 490.0, - 163.0, - 490.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 162.0, - 800.0, - 397.0, - 800.0, - 397.0, - 829.0, - 162.0, - 829.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 162.0, - 899.0, - 1414.0, - 899.0, - 1414.0, - 938.0, - 162.0, - 938.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 163.0, - 939.0, - 469.0, - 939.0, - 469.0, - 968.0, - 163.0, - 968.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 162.0, - 899.0, - 1414.0, - 899.0, - 1414.0, - 938.0, - 162.0, - 938.0 - ], - "score": 1.0, - "text": "" - }, - { - "category_id": 15, - "poly": [ - 163.0, - 939.0, - 469.0, - 939.0, - 469.0, - 968.0, - 163.0, - 968.0 - ], - "score": 1.0, - "text": "" - } - ], - "page_info": { - "page_no": 42, - "height": 2339, - "width": 1653 - } - } -] \ No newline at end of file diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/H580_03_November_2020_1739552419_spans.pdf b/pdf_output/H580_03_November_2020_1739552419/auto/H580_03_November_2020_1739552419_spans.pdf deleted file mode 100644 index 4f32a48d00a360dd79a7d03f0b31498878b1c0fd..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/H580_03_November_2020_1739552419_spans.pdf +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:73629c63f7fd5c18859389cc9f6393c933a740ac329ec6a38df02d83f3cb9637 -size 862938 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/0acdd853182b1b5c6987218ebcffb9e55fe575fe2918f05940acdcdbd6d709ff.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/0acdd853182b1b5c6987218ebcffb9e55fe575fe2918f05940acdcdbd6d709ff.jpg deleted file mode 100644 index 9ec9ec4d0bd1b3724c9988cbeb1e9140df1a2faf..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/0acdd853182b1b5c6987218ebcffb9e55fe575fe2918f05940acdcdbd6d709ff.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e451bd9724fdbe602787669819fa2339a3591280af3bea0fc1fee6b2fcad13f6 -size 445140 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/0b2fc203f13ee36bcf3e9834e44e9cf8a957c02f0a18220c102f2ee7f7eaa6c9.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/0b2fc203f13ee36bcf3e9834e44e9cf8a957c02f0a18220c102f2ee7f7eaa6c9.jpg deleted file mode 100644 index 6139ce7059c57c394e9aa916f1c5c1a2298c7d38..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/0b2fc203f13ee36bcf3e9834e44e9cf8a957c02f0a18220c102f2ee7f7eaa6c9.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cf3a69cb337a829c6aea3f308e35ff7fb4326b7569ad6d889ef104d29ee04c4c -size 469071 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/0cd590847ee7d8dcfae823d48d773eafd3a9c9a2b8d72b81e03adeb4233a431e.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/0cd590847ee7d8dcfae823d48d773eafd3a9c9a2b8d72b81e03adeb4233a431e.jpg deleted file mode 100644 index c61ad2cd0098faadef56c7cc71539d8fcfa28245..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/0cd590847ee7d8dcfae823d48d773eafd3a9c9a2b8d72b81e03adeb4233a431e.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:93842ffb286f1775c1262db846260fa58b0daa05035aa1bed581a57bc579760b -size 224925 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/0ec8683c21327bcc5a39a3e26aba4e74d463a1916405d77aa320e41df2443c39.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/0ec8683c21327bcc5a39a3e26aba4e74d463a1916405d77aa320e41df2443c39.jpg deleted file mode 100644 index 5107074c4486adb46dcc4c5c8f9d414ae3958bba..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/0ec8683c21327bcc5a39a3e26aba4e74d463a1916405d77aa320e41df2443c39.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f841f2c0e35ebc65c7a2ba98de8c50cb64ea134006231b0115ece548962d1bd7 -size 391571 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/0effdfa9105957faba6054f9981c07572e3675eab15bb748dc57d44b5f8e139b.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/0effdfa9105957faba6054f9981c07572e3675eab15bb748dc57d44b5f8e139b.jpg deleted file mode 100644 index 2ec80d58ba5c05992b4dbd3170d08a944c6fcde6..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/0effdfa9105957faba6054f9981c07572e3675eab15bb748dc57d44b5f8e139b.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4280ac79e26cf5ea61859cc320dfe5aaf628c24b5a1e7279d37ef1162e4c178e -size 490730 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/17392e03b9ec9aa305c7d7e24c87654d7b3104580f9b3ef799bff4b9fac03c74.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/17392e03b9ec9aa305c7d7e24c87654d7b3104580f9b3ef799bff4b9fac03c74.jpg deleted file mode 100644 index 45780b46628461a0eb854679063226647fe495aa..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/17392e03b9ec9aa305c7d7e24c87654d7b3104580f9b3ef799bff4b9fac03c74.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3e885348b8e43723c25c9057f0a7432c41f89d7efbc10fe3a8f7ce89d8e548b5 -size 837276 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/1b60ce41d10c635c62bea335b0d520a4483583a27b0160c688750db8e9b2979c.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/1b60ce41d10c635c62bea335b0d520a4483583a27b0160c688750db8e9b2979c.jpg deleted file mode 100644 index eaea1dabf9f8ef0fd30e5dfbfbc0b39dc4a0fe45..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/1b60ce41d10c635c62bea335b0d520a4483583a27b0160c688750db8e9b2979c.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b54c3170011de71938f465c818063c9d514a1ad6b77d5b58b68cb8bac4ccf3fe -size 506294 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/1d1edbe750c0dd0c8a9f93932e27579f65616a39113f9524411190febaa6d905.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/1d1edbe750c0dd0c8a9f93932e27579f65616a39113f9524411190febaa6d905.jpg deleted file mode 100644 index 3b6244ee41f0c14e8cc0266d3453292d205083b6..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/1d1edbe750c0dd0c8a9f93932e27579f65616a39113f9524411190febaa6d905.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aa31a14f72749c36b4414b5536dedc94dedad611be1543a8c33e4eea03745fbf -size 510689 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/1eedd10ad3342d37c389cbe88c903a84f0be9b8ba45282eb581a49ced1fa150e.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/1eedd10ad3342d37c389cbe88c903a84f0be9b8ba45282eb581a49ced1fa150e.jpg deleted file mode 100644 index 414bbd78237cf2311793a7beec15354699b7b533..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/1eedd10ad3342d37c389cbe88c903a84f0be9b8ba45282eb581a49ced1fa150e.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:94cd17094f397f102f3ccc61f0435293b97baedf4b2e5b900a64ded6b1fedc6a -size 939231 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/27a689b69b5444fd6f42fa0e9a449d884977523c7a74962e82aecd8187e421f8.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/27a689b69b5444fd6f42fa0e9a449d884977523c7a74962e82aecd8187e421f8.jpg deleted file mode 100644 index 49fe3c34f490dd64fccfe39cd6da4e99b568fcf4..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/27a689b69b5444fd6f42fa0e9a449d884977523c7a74962e82aecd8187e421f8.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:06e61fa9368f7a76a5d8c0ae9fd3f78f0bea65da1eb161e2bddccdfa3a2f472a -size 293127 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/3681821f06206b0cea6aef6fb2f3e311962c5e7f6cc2ef7a4b8d06e5feffbf74.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/3681821f06206b0cea6aef6fb2f3e311962c5e7f6cc2ef7a4b8d06e5feffbf74.jpg deleted file mode 100644 index f449950245300a3106acd265d18685690b05a946..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/3681821f06206b0cea6aef6fb2f3e311962c5e7f6cc2ef7a4b8d06e5feffbf74.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aaf0e289ce060939915990f0cced0033fe548ff30040d0228ee3af3bd7068536 -size 254133 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/36d831aa8e8746823bf0920cb65918bcae911834c0f21271d9d63da955dce991.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/36d831aa8e8746823bf0920cb65918bcae911834c0f21271d9d63da955dce991.jpg deleted file mode 100644 index 8ef0bfc2f1aabc799215995d46a438bceb9ca40c..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/36d831aa8e8746823bf0920cb65918bcae911834c0f21271d9d63da955dce991.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d5eac7330eb9e2c9729ee79524cf5556bbbe88023f4dadd31b93b10c0f6ee22d -size 213301 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/39143344cb7e9200128572df9f508b4304bbcf1834955134488db38b00a6a963.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/39143344cb7e9200128572df9f508b4304bbcf1834955134488db38b00a6a963.jpg deleted file mode 100644 index 7f85ad96a2f4faf5e7d0e1bd1f45aa2f16dda4fa..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/39143344cb7e9200128572df9f508b4304bbcf1834955134488db38b00a6a963.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:80bc4507bbe15ecd42a1e6e63b059b3f1f8d3cce2cb7903772b12804564d191c -size 512532 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/401be3e4fbfc84201018e1cc73b27fa48c41928ecc6e0f78719574008e44f297.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/401be3e4fbfc84201018e1cc73b27fa48c41928ecc6e0f78719574008e44f297.jpg deleted file mode 100644 index 4ef02cfcfc659275b1bb0a1b5aae67588455ddc9..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/401be3e4fbfc84201018e1cc73b27fa48c41928ecc6e0f78719574008e44f297.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:75686a38749dc9f4cc86efa3e5ec3b4507d36ac794df3b1cd99110fd3e016382 -size 907628 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/563d22caa00ef8306bd6bfb15e01ed0c05d6542161dfdd2e554dee9384ad5b4b.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/563d22caa00ef8306bd6bfb15e01ed0c05d6542161dfdd2e554dee9384ad5b4b.jpg deleted file mode 100644 index 5b38cc288aca41d8d12700076e4578022719e653..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/563d22caa00ef8306bd6bfb15e01ed0c05d6542161dfdd2e554dee9384ad5b4b.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:62aa029dc2cb785555b3a23d0ea4c07fc52c2526cee2d7e1ab1c117f5e164071 -size 421331 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/5812e3867cf69a74ab40114c7f15961ab224483e98d1d454c7c843b46be572aa.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/5812e3867cf69a74ab40114c7f15961ab224483e98d1d454c7c843b46be572aa.jpg deleted file mode 100644 index e5855371a4b71c49db45c314c3863e17b69f3ffb..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/5812e3867cf69a74ab40114c7f15961ab224483e98d1d454c7c843b46be572aa.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c545de0943b5404d1ecbcd381aa7b8071a8208689061dbcbe84f70668c88fa5b -size 804849 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/5a902cfdb2fc6bed5ea1c9139a6f78f1cb111bec35041184e0626c9fd022a6f0.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/5a902cfdb2fc6bed5ea1c9139a6f78f1cb111bec35041184e0626c9fd022a6f0.jpg deleted file mode 100644 index 9190e7ab666d8d98f7f22a3b9efbfd62689811b8..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/5a902cfdb2fc6bed5ea1c9139a6f78f1cb111bec35041184e0626c9fd022a6f0.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1534aae0437fe75945f03ead13d10f71ee6c66e117f161a641b9291adbc5e8ff -size 214606 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/5f1ee15eec3259c6f04bced8f1383e9624773f45cd5064b451bb779036df9599.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/5f1ee15eec3259c6f04bced8f1383e9624773f45cd5064b451bb779036df9599.jpg deleted file mode 100644 index ccdf5215d161baf45b65e3e2f62a84c2a8c82853..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/5f1ee15eec3259c6f04bced8f1383e9624773f45cd5064b451bb779036df9599.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f454acfd0c8e4d69a5cfdd0b7955c745d9e60fd5d39ace47c427d35a56661b6c -size 533795 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/6666e5415019e70485d9b9092a7ccf48a14f5c09c6de295697b980bbb23a9578.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/6666e5415019e70485d9b9092a7ccf48a14f5c09c6de295697b980bbb23a9578.jpg deleted file mode 100644 index 66ce2f885c18730842a1573d974335b710510401..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/6666e5415019e70485d9b9092a7ccf48a14f5c09c6de295697b980bbb23a9578.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7b610cd05b67a8ac40e87c4463930d0c89eeff7a169c5426b8ef483b7c817a1a -size 425368 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/6a3cd2c371fd1fe9d893e904bb23649743bae54fc0faba6932482c32d53ce09d.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/6a3cd2c371fd1fe9d893e904bb23649743bae54fc0faba6932482c32d53ce09d.jpg deleted file mode 100644 index af406b1fb610ece8db21089c7a868bc4e8397416..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/6a3cd2c371fd1fe9d893e904bb23649743bae54fc0faba6932482c32d53ce09d.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3b685ef1722dd55df314b52d8f2624c883d3524fd94fa9e1da2c817f085934ca -size 508272 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/7e44dd578e70f44b19ac08891b9a3ad293f189d30bc9c8cc62b110196ac298dd.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/7e44dd578e70f44b19ac08891b9a3ad293f189d30bc9c8cc62b110196ac298dd.jpg deleted file mode 100644 index 5892229fbdeb41c5d281bc814ed143d588fe9f5e..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/7e44dd578e70f44b19ac08891b9a3ad293f189d30bc9c8cc62b110196ac298dd.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3f18775ab6772da3624e18939d63a57ca151527f84488fb2b25f24fe580616a5 -size 361250 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/876b5b1f56328dff70344372da3f5e14df10532436da17f730d01a5da9f00a0f.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/876b5b1f56328dff70344372da3f5e14df10532436da17f730d01a5da9f00a0f.jpg deleted file mode 100644 index 58f843fefa29477335b65f58961617617704ecc6..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/876b5b1f56328dff70344372da3f5e14df10532436da17f730d01a5da9f00a0f.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6a4d570f6d3b69599ea9b70c1dc42c76a2276c42c874ea523f700052d550d494 -size 684402 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/8e2e2c7f7b92fbfe305c8d6b99752a8606dc7031d8e4e1f5bc906a8fc2dc66af.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/8e2e2c7f7b92fbfe305c8d6b99752a8606dc7031d8e4e1f5bc906a8fc2dc66af.jpg deleted file mode 100644 index c751caf28b7d87ffd9bbb9f45372a6dd3eb71ca4..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/8e2e2c7f7b92fbfe305c8d6b99752a8606dc7031d8e4e1f5bc906a8fc2dc66af.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:be09f48b61d45044ca645ca0e63cfe2d6a980c495e7d34d76005a35fa9461830 -size 524147 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/8feebaa0b2cdc5c5dca435056a6399a90810a07df7e294a96e89e4ad00085bb2.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/8feebaa0b2cdc5c5dca435056a6399a90810a07df7e294a96e89e4ad00085bb2.jpg deleted file mode 100644 index 13661d59263d652f7dff1a47caf4d84d4f4d3a27..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/8feebaa0b2cdc5c5dca435056a6399a90810a07df7e294a96e89e4ad00085bb2.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8a565171c55bfdabba483de073c98b60a8ad4c539b11ec770000c80b605cbc93 -size 789588 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/9ad3771d58da79922b42b4672f1a22e7b89940e6e5d56aaf823f4d00976b81ed.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/9ad3771d58da79922b42b4672f1a22e7b89940e6e5d56aaf823f4d00976b81ed.jpg deleted file mode 100644 index 414cd1c3e52592c54c63e5a69a80d6d92a26691b..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/9ad3771d58da79922b42b4672f1a22e7b89940e6e5d56aaf823f4d00976b81ed.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a93d7589bef2dc911728dfe5f2c89a7279c8c2e67421fa60888bfaa5c54f7857 -size 505701 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/9ad5515ffaa796e1c4f713ef91e7124f6beb97bd0791662a043abbcef20327de.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/9ad5515ffaa796e1c4f713ef91e7124f6beb97bd0791662a043abbcef20327de.jpg deleted file mode 100644 index 77f11519b346edd32fe6ba5f019c749613e01b9e..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/9ad5515ffaa796e1c4f713ef91e7124f6beb97bd0791662a043abbcef20327de.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0ecd75cde42735b6b5b0a7eca083b909361bb60859790accb8bb54a786980616 -size 512205 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/a08edd7efa23f3cce894b0a3b7d08bf8bbb95dc23d3d65e345547f85cd4894cc.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/a08edd7efa23f3cce894b0a3b7d08bf8bbb95dc23d3d65e345547f85cd4894cc.jpg deleted file mode 100644 index f7d1ed9a14565c42ef99587ea560ba718415b9f8..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/a08edd7efa23f3cce894b0a3b7d08bf8bbb95dc23d3d65e345547f85cd4894cc.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d7b79468a724038ab6ad9673560a6d6b13f22e8c1d54c8c648ec9de888f7c8bb -size 446598 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/a7d2c1649cd55243d2720d9410bff1990ad983fb766c00f579e0031010eb64c1.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/a7d2c1649cd55243d2720d9410bff1990ad983fb766c00f579e0031010eb64c1.jpg deleted file mode 100644 index d8a4328f02ef5f956e8a29d4e79c04b69fbf75ba..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/a7d2c1649cd55243d2720d9410bff1990ad983fb766c00f579e0031010eb64c1.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ff7b15ad6bf014dea262a4933803765d35aecb4b8f0cba542516411c965ef6aa -size 364140 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/ca26ea239bb98d8b7f0f4407c1d49485e88852544ab2580e8ebe7675548d1a72.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/ca26ea239bb98d8b7f0f4407c1d49485e88852544ab2580e8ebe7675548d1a72.jpg deleted file mode 100644 index 1227554cd4e8bd11623b526fb7c435c4246c1a82..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/ca26ea239bb98d8b7f0f4407c1d49485e88852544ab2580e8ebe7675548d1a72.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9c42c879a8dd3fab2c197fb0fcc750061ba8e1b0b1244a95568f16d5d944edc6 -size 432263 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/cd761d87a5f965557441bc11d1ae2ec24653e3f7393ed3177911e37b266ef80e.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/cd761d87a5f965557441bc11d1ae2ec24653e3f7393ed3177911e37b266ef80e.jpg deleted file mode 100644 index a9d50c9352e41d15dd53bda59c0dcc1689c6b6dd..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/cd761d87a5f965557441bc11d1ae2ec24653e3f7393ed3177911e37b266ef80e.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:275f3e49a8c3093fba52226479ca5657cac9edecdc2a57f4b14526146b26176f -size 406021 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/d3fd29416ffffd7d8ced8387c2b7ddd2357b531102a67a7931433c2c3a7f2584.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/d3fd29416ffffd7d8ced8387c2b7ddd2357b531102a67a7931433c2c3a7f2584.jpg deleted file mode 100644 index 1f2ce416e423481b50f6ea0a6d9af0cf39782835..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/d3fd29416ffffd7d8ced8387c2b7ddd2357b531102a67a7931433c2c3a7f2584.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:30c0f36ca098e3cca4b5dc0b2859faa9298b5635a54315d911cd89a19b201eb1 -size 469383 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/ebe043d620521109fc8549ecbea534838f794ddf0125a9480ff6188d4aa1bb7f.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/ebe043d620521109fc8549ecbea534838f794ddf0125a9480ff6188d4aa1bb7f.jpg deleted file mode 100644 index 24a02d0a0bb49b3bee1c2df1e8c0390dce53821a..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/ebe043d620521109fc8549ecbea534838f794ddf0125a9480ff6188d4aa1bb7f.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:de34affab5231e8061f2c213f30b5f2520abc0b3d46a98f1c0295bac88ceeb64 -size 422700 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/ee5036fc43d74231596de9936054fc0a71492bee0f75169458c7c83ada3d9529.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/ee5036fc43d74231596de9936054fc0a71492bee0f75169458c7c83ada3d9529.jpg deleted file mode 100644 index 8032b146347fc9a4bc0b93a8fab5f0419704f888..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/ee5036fc43d74231596de9936054fc0a71492bee0f75169458c7c83ada3d9529.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0c3aff8955688281e571d5ff7d07e5db7aabfbbb52f935beb54343b336d0a87f -size 468518 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/f1cd4bc8a3a680c5fcd247cc8e18101d83555a85c79a3b08d63861aa44fc5c7a.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/f1cd4bc8a3a680c5fcd247cc8e18101d83555a85c79a3b08d63861aa44fc5c7a.jpg deleted file mode 100644 index 690dd00fde0bce9d55e1c8e8d0fe68f6a09ea174..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/f1cd4bc8a3a680c5fcd247cc8e18101d83555a85c79a3b08d63861aa44fc5c7a.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2139dde31ed225a97880540c17c18446697f744c8c96ad69fc4ffe4da823d7b9 -size 793645 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/f53819b97850a1230b33a14a24445f2e269c3974cbc4b0e236539ac0d47e843f.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/f53819b97850a1230b33a14a24445f2e269c3974cbc4b0e236539ac0d47e843f.jpg deleted file mode 100644 index 10787b6e31919fcc1ae458b5f055176738cd3a05..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/f53819b97850a1230b33a14a24445f2e269c3974cbc4b0e236539ac0d47e843f.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:03dd7db965e61f53e6e1f0a1d0b49b8f147fdb5e97efa84e59fad37a0a3c7225 -size 482851 diff --git a/pdf_output/H580_03_November_2020_1739552419/auto/images/fecf3a46de20e631ff0601c9cc087b7aa92887ddd9ac259e84473e75b12d0aca.jpg b/pdf_output/H580_03_November_2020_1739552419/auto/images/fecf3a46de20e631ff0601c9cc087b7aa92887ddd9ac259e84473e75b12d0aca.jpg deleted file mode 100644 index a63639cc728a714ffb614bc7202a2cf75050dba4..0000000000000000000000000000000000000000 --- a/pdf_output/H580_03_November_2020_1739552419/auto/images/fecf3a46de20e631ff0601c9cc087b7aa92887ddd9ac259e84473e75b12d0aca.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d90cc1bf592a76766da899fa7cf5f43147174531257d1173fffa2170d50cdf47 -size 494387 diff --git a/test_parallel.py b/test_parallel.py deleted file mode 100755 index 34c610d13600fb2cfd9e61dcd680d208380adedf..0000000000000000000000000000000000000000 --- a/test_parallel.py +++ /dev/null @@ -1,28 +0,0 @@ -#!/usr/bin/env python3 - -import os -import glob -import logging -import torch.multiprocessing as mp -from parallel_multiproc import process_batch_in_parallel - -logging.basicConfig(level=logging.INFO) - -def main(): - pdf_dir = "/home/user/app/test_pdf" - output_dir = "/home/user/app/pdf_output" - os.makedirs(output_dir, exist_ok=True) - pdf_files = glob.glob(os.path.join(pdf_dir, "*.pdf")) - logging.info(f"Found {len(pdf_files)} PDF files to process") - - process_batch_in_parallel( - pdf_paths=pdf_files, - output_dir=output_dir, - num_workers=2, #for our T4 small specifically, do not change it - num_gpus=1 - ) - -if __name__ == "__main__": - mp.set_start_method("spawn", force=True) - - main() \ No newline at end of file diff --git a/test_pdf/7192_2_June_2020.pdf b/test_pdf/7192_2_June_2020.pdf deleted file mode 100644 index d2dd41438cc7f243e6748c7be7e84353a41e4082..0000000000000000000000000000000000000000 --- a/test_pdf/7192_2_June_2020.pdf +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:06116bc3b430b00edc2df2061e261bdb023891ba4bb101e5a6d4b27440cede8d -size 654596 diff --git a/test_pdf/7408_1_June_2019.pdf b/test_pdf/7408_1_June_2019.pdf deleted file mode 100644 index 863dee22acb2a3cccbce18e558a996510ff6db75..0000000000000000000000000000000000000000 --- a/test_pdf/7408_1_June_2019.pdf +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:160c69cb0ce79062d6e0aa0a42b506b8be6df95b235e241a77d66e669ab2a0e5 -size 2001617 diff --git a/test_pdf/8525_2.pdf b/test_pdf/8525_2.pdf deleted file mode 100644 index 0f8bebaa3cc6fc31f546062220f4fe254a0b727a..0000000000000000000000000000000000000000 --- a/test_pdf/8525_2.pdf +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e6053ba0a7156635830a2113da1c61fd4f04112a1c78f6c2359230629076950f -size 698680 diff --git a/test_pdf/H156_01_24_May_2016.pdf b/test_pdf/H156_01_24_May_2016.pdf deleted file mode 100644 index 4d76cbd7f3fee83ced9976ff0fe2d24c51114c3b..0000000000000000000000000000000000000000 --- a/test_pdf/H156_01_24_May_2016.pdf +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:03b1fe62f6a29ac2b4492db19141766f99842c7f484efe34c6e1df35a7b20173 -size 1091765 diff --git a/test_pdf/H580_03_November_2020.pdf b/test_pdf/H580_03_November_2020.pdf deleted file mode 100644 index d0c03f2cef4e67e99c42184a27f84ef564a86751..0000000000000000000000000000000000000000 --- a/test_pdf/H580_03_November_2020.pdf +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5e106d3059da495bf3246ed1165c07902ffd4054a0aa11665c16eebfbed48537 -size 815838 diff --git a/test_pdf/OCR_2022.pdf b/test_pdf/OCR_2022.pdf deleted file mode 100644 index 8c0a4e380a78f362bf7f69d5e418937ef3993e25..0000000000000000000000000000000000000000 --- a/test_pdf/OCR_2022.pdf +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:17559e099d50c73a0921b7b7f51d05df9dd3f3a3500c9276bd0e9966d3876463 -size 1240804