#!/usr/bin/env python3 import cv2 import numpy as np import os from joblib import load class SVMModel: def __init__(self): path = os.getenv("SVM_MODEL_PATH", "/home/user/app/model_classification/svm_model.joblib") self.model = load(path) def classify_image( self, image_bytes: bytes, image_size=(128, 128) ) -> int: img = cv2.imdecode(np.frombuffer(image_bytes, np.uint8), cv2.IMREAD_COLOR) if img is None: # If image fails to load, default to "irrelevant" or handle differently return 0 img = cv2.resize(img, image_size) x = img.flatten().reshape(1, -1) pred = self.model.predict(x)[0] return pred if __name__ == "__main__": model = load_svm_model("/home/user/app/model_classification/svm_model_2.joblib") result = classify_image("test.jpg", model) print("Classification result:", result)