KoQuillBot / app.py
snoop2head's picture
update with stabilized performance
2beda2c
raw
history blame
2.32 kB
# -*- coding: utf-8 -*-
import numpy as np
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
st.set_page_config(
page_title="KoQuillBot", layout="wide", initial_sidebar_state="expanded"
)
tokenizer = AutoTokenizer.from_pretrained("QuoQA-NLP/KE-T5-Ko2En-Base")
ko2en_model = AutoModelForSeq2SeqLM.from_pretrained("QuoQA-NLP/KE-T5-Ko2En-Base")
en2ko_model = AutoModelForSeq2SeqLM.from_pretrained("QuoQA-NLP/KE-T5-En2Ko-Base")
st.title("🤖 KoQuillBot")
default_value = "이건 한국어 문장 변환기 QuillBot입니다."
src_text = st.text_area(
"바꾸고 싶은 문장을 입력하세요:",
default_value,
height=50,
max_chars=200,
)
print(src_text)
if st.button("문장 변환") or src_text == default_value:
if src_text == "":
st.warning("Please **enter text** for translation")
else:
# translate into english sentence
english_translation = ko2en_model.generate(
**tokenizer(
src_text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=64,
),
max_length=64,
num_beams=5,
repetition_penalty=1.3,
no_repeat_ngram_size=3,
num_return_sequences=1,
)
english_translation = tokenizer.decode(
english_translation[0],
clean_up_tokenization_spaces=True,
skip_special_tokens=True,
)
# translate back to korean
korean_translation = en2ko_model.generate(
**tokenizer(
english_translation,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=64,
),
max_length=64,
num_beams=5,
repetition_penalty=1.3,
no_repeat_ngram_size=3,
num_return_sequences=1,
)
korean_translation = tokenizer.decode(
korean_translation[0],
clean_up_tokenization_spaces=True,
skip_special_tokens=True,
)
print(f"{src_text} -> {english_translation} -> {korean_translation}")
else:
pass
st.write(korean_translation)
print(korean_translation)