Spaces:
Runtime error
Runtime error
Commit
·
cffbd0f
1
Parent(s):
2beda2c
hotfix
Browse files
app.py
CHANGED
@@ -8,9 +8,14 @@ st.set_page_config(
|
|
8 |
page_title="KoQuillBot", layout="wide", initial_sidebar_state="expanded"
|
9 |
)
|
10 |
|
|
|
|
|
|
|
|
|
|
|
11 |
tokenizer = AutoTokenizer.from_pretrained("QuoQA-NLP/KE-T5-Ko2En-Base")
|
12 |
-
ko2en_model =
|
13 |
-
en2ko_model =
|
14 |
|
15 |
|
16 |
st.title("🤖 KoQuillBot")
|
@@ -27,57 +32,52 @@ print(src_text)
|
|
27 |
|
28 |
|
29 |
|
30 |
-
if
|
31 |
-
|
32 |
-
st.warning("Please **enter text** for translation")
|
33 |
-
|
34 |
-
else:
|
35 |
-
# translate into english sentence
|
36 |
-
english_translation = ko2en_model.generate(
|
37 |
-
**tokenizer(
|
38 |
-
src_text,
|
39 |
-
return_tensors="pt",
|
40 |
-
padding="max_length",
|
41 |
-
truncation=True,
|
42 |
-
max_length=64,
|
43 |
-
),
|
44 |
-
max_length=64,
|
45 |
-
num_beams=5,
|
46 |
-
repetition_penalty=1.3,
|
47 |
-
no_repeat_ngram_size=3,
|
48 |
-
num_return_sequences=1,
|
49 |
-
)
|
50 |
-
english_translation = tokenizer.decode(
|
51 |
-
english_translation[0],
|
52 |
-
clean_up_tokenization_spaces=True,
|
53 |
-
skip_special_tokens=True,
|
54 |
-
)
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
st.write(korean_translation)
|
83 |
print(korean_translation)
|
|
|
8 |
page_title="KoQuillBot", layout="wide", initial_sidebar_state="expanded"
|
9 |
)
|
10 |
|
11 |
+
@st.cache
|
12 |
+
def load_model(model_name):
|
13 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
14 |
+
return model
|
15 |
+
|
16 |
tokenizer = AutoTokenizer.from_pretrained("QuoQA-NLP/KE-T5-Ko2En-Base")
|
17 |
+
ko2en_model = load_model("QuoQA-NLP/KE-T5-Ko2En-Base")
|
18 |
+
en2ko_model = load_model("QuoQA-NLP/KE-T5-En2Ko-Base")
|
19 |
|
20 |
|
21 |
st.title("🤖 KoQuillBot")
|
|
|
32 |
|
33 |
|
34 |
|
35 |
+
if src_text == "":
|
36 |
+
st.warning("Please **enter text** for translation")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
# translate into english sentence
|
39 |
+
english_translation = ko2en_model.generate(
|
40 |
+
**tokenizer(
|
41 |
+
src_text,
|
42 |
+
return_tensors="pt",
|
43 |
+
padding="max_length",
|
44 |
+
truncation=True,
|
45 |
+
max_length=64,
|
46 |
+
),
|
47 |
+
max_length=64,
|
48 |
+
num_beams=5,
|
49 |
+
repetition_penalty=1.3,
|
50 |
+
no_repeat_ngram_size=3,
|
51 |
+
num_return_sequences=1,
|
52 |
+
)
|
53 |
+
english_translation = tokenizer.decode(
|
54 |
+
english_translation[0],
|
55 |
+
clean_up_tokenization_spaces=True,
|
56 |
+
skip_special_tokens=True,
|
57 |
+
)
|
58 |
|
59 |
+
# translate back to korean
|
60 |
+
korean_translation = en2ko_model.generate(
|
61 |
+
**tokenizer(
|
62 |
+
english_translation,
|
63 |
+
return_tensors="pt",
|
64 |
+
padding="max_length",
|
65 |
+
truncation=True,
|
66 |
+
max_length=64,
|
67 |
+
),
|
68 |
+
max_length=64,
|
69 |
+
num_beams=5,
|
70 |
+
repetition_penalty=1.3,
|
71 |
+
no_repeat_ngram_size=3,
|
72 |
+
num_return_sequences=1,
|
73 |
+
)
|
74 |
|
75 |
+
korean_translation = tokenizer.decode(
|
76 |
+
korean_translation[0],
|
77 |
+
clean_up_tokenization_spaces=True,
|
78 |
+
skip_special_tokens=True,
|
79 |
+
)
|
80 |
+
print(f"{src_text} -> {english_translation} -> {korean_translation}")
|
81 |
|
82 |
st.write(korean_translation)
|
83 |
print(korean_translation)
|