File size: 2,268 Bytes
dc6144b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# -*- coding: utf-8 -*-
import numpy as np
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM


st.set_page_config(
    page_title="λ²ˆμ—­κΈ°", layout="wide", initial_sidebar_state="expanded"
)

@st.cache
def load_model(model_name):
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
    return model

tokenizer = AutoTokenizer.from_pretrained("QuoQA-NLP/KE-T5-Ko2En-Base")
ko2en_model = load_model("QuoQA-NLP/KE-T5-Ko2En-Base")
en2ko_model = load_model("QuoQA-NLP/KE-T5-En2Ko-Base")


st.title("πŸ€– λ²ˆμ—­κΈ°")
st.write("μ’ŒμΈ‘μ— λ²ˆμ—­ λͺ¨λ“œλ₯Ό μ„ νƒν•˜κ³ , CTRL+Enter(CMD+Enter)λ₯Ό λˆ„λ₯΄μ„Έμš” πŸ€—")
st.write("Select Translation Mode at the left and press CTRL+Enter(CMD+Enter)πŸ€—")

translation_list = ["ν•œκ΅­μ–΄μ—μ„œ μ˜μ–΄ | Korean to English", "μ˜μ–΄μ—μ„œ ν•œκ΅­μ–΄ | English to Korean"]
translation_mode = st.sidebar.radio("λ²ˆμ—­ λͺ¨λ“œλ₯Ό 선택(Translation Mode):", translation_list)


default_value = "ν”„λ‘œμ νŠΈ κ°€μΉ˜κ°€ λ―Έν™” 1백만 λ‹¬λŸ¬ 이상인 곡곡 νŒŒνŠΈλ„ˆκ°€ μ‹œμž‘ν•œ PPP ν”„λ‘œμ νŠΈμ— λŒ€ν•΄ 2단계 μž…μ°°μ΄ μ‹€μ‹œλ©λ‹ˆλ‹€. μž…μ°°μ„ μ „μž λ°©μ‹μœΌλ‘œ μ§„ν–‰ν•˜λŠ” 것이 ν—ˆμš©λ©λ‹ˆλ‹€. (즉, μ‹ μ²­μ„œ 및 μž…μ°° μ œμ•ˆμ˜ μ „μž 제좜). COVID-19 전염병과 그에 λ”°λ₯Έ μ—¬ν–‰ μ œν•œμœΌλ‘œ 인해 μ˜€λŠ˜λ‚ μ—λŠ” 일반적인 관행이 λ˜μ—ˆμŠ΅λ‹ˆλ‹€."
src_text = st.text_area(
    "λ²ˆμ—­ν•˜κ³  싢은 λ¬Έμž₯을 μž…λ ₯ν•˜μ„Έμš”:",
    default_value,
    height=100,
    max_chars=200,
)
print(src_text)



if src_text == "":
    st.warning("Please **enter text** for translation")

# translate into english sentence
if translation_mode == translation_list[0]:
    model = ko2en_model
else: 
    model = en2ko_model

translation_result = model.generate(
    **tokenizer(
        src_text,
        return_tensors="pt",
        padding="max_length",
        truncation=True,
        max_length=64,
    ),
    max_length=64,
    num_beams=5,
    repetition_penalty=1.3,
    no_repeat_ngram_size=3,
    num_return_sequences=1,
)
translation_result = tokenizer.decode(
    translation_result[0],
    clean_up_tokenization_spaces=True,
    skip_special_tokens=True,
)

print(f"{src_text} -> {translation_result}")

st.write(translation_result)
print(translation_result)