Qwen-Image-Edit / app.py
naykun's picture
Update app.py
09c0fb8 verified
raw
history blame
11.4 kB
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import QwenImageEditPipeline
import os
import base64
import json
SYSTEM_PROMPT = '''
# Edit Instruction Rewriter
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited.
Please strictly follow the rewriting rules below:
## 1. General Principles
- Keep the rewritten prompt **concise**. Avoid overly long sentences and reduce unnecessary descriptive language.
- If the instruction is contradictory, vague, or unachievable, prioritize reasonable inference and correction, and supplement details when necessary.
- Keep the core intention of the original instruction unchanged, only enhancing its clarity, rationality, and visual feasibility.
- All added objects or modifications must align with the logic and style of the edited input image’s overall scene.
## 2. Task Type Handling Rules
### 1. Add, Delete, Replace Tasks
- If the instruction is clear (already includes task type, target entity, position, quantity, attributes), preserve the original intent and only refine the grammar.
- If the description is vague, supplement with minimal but sufficient details (category, color, size, orientation, position, etc.). For example:
> Original: "Add an animal"
> Rewritten: "Add a light-gray cat in the bottom-right corner, sitting and facing the camera"
- Remove meaningless instructions: e.g., "Add 0 objects" should be ignored or flagged as invalid.
- For replacement tasks, specify "Replace Y with X" and briefly describe the key visual features of X.
### 2. Text Editing Tasks
- All text content must be enclosed in English double quotes `" "`. Do not translate or alter the original language of the text, and do not change the capitalization.
- **For text replacement tasks, always use the fixed template:**
- `Replace "xx" to "yy"`.
- `Replace the xx bounding box to "yy"`.
- If the user does not specify text content, infer and add concise text based on the instruction and the input image’s context. For example:
> Original: "Add a line of text" (poster)
> Rewritten: "Add text \"LIMITED EDITION\" at the top center with slight shadow"
- Specify text position, color, and layout in a concise way.
### 3. Human Editing Tasks
- Maintain the person’s core visual consistency (ethnicity, gender, age, hairstyle, expression, outfit, etc.).
- If modifying appearance (e.g., clothes, hairstyle), ensure the new element is consistent with the original style.
- **For expression changes, they must be natural and subtle, never exaggerated.**
- If deletion is not specifically emphasized, the most important subject in the original image (e.g., a person, an animal) should be preserved.
- For background change tasks, emphasize maintaining subject consistency at first.
- Example:
> Original: "Change the person’s hat"
> Rewritten: "Replace the man’s hat with a dark brown beret; keep smile, short hair, and gray jacket unchanged"
### 4. Style Transformation or Enhancement Tasks
- If a style is specified, describe it concisely with key visual traits. For example:
> Original: "Disco style"
> Rewritten: "1970s disco: flashing lights, disco ball, mirrored walls, colorful tones"
- If the instruction says "use reference style" or "keep current style," analyze the input image, extract main features (color, composition, texture, lighting, art style), and integrate them concisely.
- **For coloring tasks, including restoring old photos, always use the fixed template:** "Restore old photograph, remove scratches, reduce noise, enhance details, high resolution, realistic, natural skin tones, clear facial features, no distortion, vintage photo restoration"
- If there are other changes, place the style description at the end.
## 3. Rationality and Logic Checks
- Resolve contradictory instructions: e.g., "Remove all trees but keep all trees" should be logically corrected.
- Add missing key information: if position is unspecified, choose a reasonable area based on composition (near subject, empty space, center/edges).
# Output Format Example
```json
{
"Rewritten": "..."
}
'''
def polish_prompt(prompt, img):
prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {prompt}\n\nRewritten Prompt:"
success=False
while not success:
try:
result = api(prompt, [img])
# print(f"Result: {result}")
# print(f"Polished Prompt: {polished_prompt}")
if isinstance(result, str):
result = result.replace('```json','')
result = result.replace('```','')
result = json.loads(result)
else:
result = json.loads(result)
polished_prompt = result['Rewritten']
polished_prompt = polished_prompt.strip()
polished_prompt = polished_prompt.replace("\n", " ")
success = True
except Exception as e:
print(f"[Warning] Error during API call: {e}")
return polished_prompt
def encode_image(pil_image):
import io
buffered = io.BytesIO()
pil_image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def api(prompt, img_list, model="qwen-vl-max-latest", kwargs={}):
import dashscope
api_key = os.environ.get('DASH_API_KEY')
if not api_key:
raise EnvironmentError("DASH_API_KEY is not set")
assert model in ["qwen-vl-max-latest"], f"Not implemented model {model}"
sys_promot = "you are a helpful assistant, you should provide useful answers to users."
messages = [
{"role": "system", "content": sys_promot},
{"role": "user", "content": []}]
for img in img_list:
messages[1]["content"].append(
{"image": f"data:image/png;base64,{encode_image(img)}"})
messages[1]["content"].append({"text": f"{prompt}"})
response_format = kwargs.get('response_format', None)
response = dashscope.MultiModalConversation.call(
api_key=api_key,
model=model, # For example, use qwen-plus here. You can change the model name as needed. Model list: https://help.aliyun.com/zh/model-studio/getting-started/models
messages=messages,
result_format='message',
response_format=response_format,
)
if response.status_code == 200:
return response.output.choices[0].message.content[0]['text']
else:
raise Exception(f'Failed to post: {response}')
# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the model pipeline
pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype=dtype).to(device)
# --- UI Constants and Helpers ---
MAX_SEED = np.iinfo(np.int32).max
# --- Main Inference Function (with hardcoded negative prompt) ---
@spaces.GPU(duration=300)
def infer(
image,
prompt,
seed=42,
randomize_seed=False,
true_guidance_scale=1.0,
num_inference_steps=50,
rewrite_prompt=True,
num_images_per_prompt=1,
progress=gr.Progress(track_tqdm=True),
):
"""
Generates an image using the local Qwen-Image diffusers pipeline.
"""
# Hardcode the negative prompt as requested
negative_prompt = " "
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Set up the generator for reproducibility
generator = torch.Generator(device=device).manual_seed(seed)
print(f"Calling pipeline with prompt: '{prompt}'")
print(f"Negative Prompt: '{negative_prompt}'")
print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {true_guidance_scale}")
if rewrite_prompt:
prompt = polish_prompt(prompt, image)
print(f"Rewritten Prompt: {prompt}")
# Generate the image
image = pipe(
image,
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=num_images_per_prompt
).images
return image, seed
# --- Examples and UI Layout ---
examples = []
css = """
#col-container {
margin: 0 auto;
max-width: 1024px;
}
#edit_text{margin-top: -62px !important}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML('<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_edit_logo.png" alt="Qwen-Image Logo" width="400" style="display: block; margin: 0 auto;">')
gr.Markdown("[Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series. Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit) to run locally with ComfyUI or diffusers.")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", show_label=False, type="pil")
# result = gr.Image(label="Result", show_label=False, type="pil")
result = gr.Gallery(label="Result", show_label=False, type="pil")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
placeholder="describe the edit instruction",
container=False,
)
run_button = gr.Button("Edit!", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
# Negative prompt UI element is removed here
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
true_guidance_scale = gr.Slider(
label="True guidance scale",
minimum=1.0,
maximum=10.0,
step=0.1,
value=4.0
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=50,
)
num_images_per_prompt = gr.Slider(
label="Number of images per prompt",
minimum=1,
maximum=4,
step=1,
value=1,
)
rewrite_prompt = gr.Checkbox(label="Rewrite prompt", value=True)
# gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
input_image,
prompt,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
rewrite_prompt,
num_images_per_prompt,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()