Qwen-Riddles / app.py
huybery's picture
fix: Ch2 Q1 answer check (#1)
fa1be51
raw
history blame
24 kB
import os
os.system('pip install dashscope')
os.system('pip install sympy')
os.system('pip install "gradio==3.40.1"')
import random
import re
from http import HTTPStatus
import dashscope
import gradio as gr
import sympy
dashscope.api_key = os.getenv('DASHSCOPE_API_KEY')
# 定义关卡信息和验证逻辑
# 辅助函数 - 检查是否为质数
def is_prime(num):
return sympy.isprime(num)
# 辅助函数 - 获取下一个质数
def next_prime(num):
return sympy.nextprime(num)
# 辅助函数 - 检查是否为平方数
def is_square(n):
return sympy.sqrt(n).is_integer
# 辅助函数 - 获取平方根
def get_square_root(n):
return int(sympy.sqrt(n))
def reverse_en(input):
return ' '.join(input.split()[::-1])
def validate_palindrome_invariance(origin_input, response):
"""
验证器函数,检查对于给定的问题,正着问和倒着问的模型回答是否一致。
:param origin_input: 原始问题
:return: True 如果回答一致,否则 False
"""
# 将原始问题倒序并提交
reversed_question = reverse_en(origin_input)
reversed_response = generate_response(reversed_question)
# 比较两个回答是否一致
return response.strip() == reversed_response.strip()
def is_palindrome(sentence):
# Remove non-alphanumeric characters and convert to lowercase
cleaned_sentence = re.sub(r'[^A-Za-z0-9]', '', sentence.lower())
# Compare the cleaned sentence with its reverse
return cleaned_sentence == cleaned_sentence[::-1]
def validate_palindrome_inverse(origin_input, response):
"""
验证器函数,检查对于给定的问题,正着问和倒着问的模型的回答本身不回文且也是逆序的关系。
:param origin_input: 原始问题
:param response: 模型对原始问题的回答
:param model_fn: 能够返回模型回答的函数
:return: True 如果回答本身不回文且也是逆序关系,否则 False
"""
# 检查原始输入不是回文
if origin_input == is_palindrome(origin_input):
return False
# 将原始问题倒序并获取模型回答
reversed_question = reverse_en(origin_input)
reversed_response = generate_response(reversed_question).strip()
# 检查原始回答不是回文
if response == is_palindrome(origin_input):
return False
# 比较正着问和倒着问的回答是否是逆序关系
return response == reverse_en(origin_input)
def validate_reciprocal_question(input, response):
"""
验证器函数,检查给定的问题A和回答B,是否能够通过以B作为新的提问得到原始问题A作为回答。
:param response: 模型对问题A的回答B
:param input: 原始问题A
:param model_fn: 模型调用函数,接收问题并返回回答
:return: True 如果以回答B作为新的提问能得到问题A作为回答,否则 False
"""
# 确保回答B不等于原始问题A
if response == input:
return False
# 以回答B作为新的提问
new_response = generate_response(response)
# 检查新的回答是否与原始问题A相等
return new_response.strip() == input.strip()
challenges = [
{
'name':
'第一章 对话之趣',
'problems': [
{
'title': '第1题 初来乍到',
'description': '请你构造一个问题使模型的回答是一字不差的“1+1=3”(不需要引号)。',
'validator':
lambda response, input: response.strip() == '1+1=3'
},
{
'title':
'第2题 小试牛刀',
'description':
'请输入三个字以内的问题,使模型的回答在30个字以上。',
'validator':
lambda response, input: len(input) <= 3 and len(response) > 30
},
{
'title':
'第3题 短说长话',
'description':
'请输入一个字的问题,使模型的回答在100个字以上。',
'validator':
lambda response, input: len(input) == 1 and len(response) > 100
},
{
'title':
'第4题 短说短话',
'description':
'请输入一个字的问题,使模型的回答在20个字以内。',
'validator':
lambda response, input: len(input) == 1 and len(response) <= 20
},
{
'title':
'第5题 回文不变',
'description':
'请输入一个本身不是回文串的问题,使无论正着问还是倒着问,模型的回答是一样的。',
# 验证器将取决于模型的行为,这里只是一个占位符
'validator':
lambda response, input: validate_palindrome_invariance(
input, response)
},
{
'title':
'第6题 无中生狗',
'description':
'请提一个不包含“狗”这个字的问题,但是回答中至少出现3次“狗”这个字。',
'validator':
lambda response, input: '狗' not in input and response.count(
'狗') >= 3
},
]
},
{
'name':
'第二章 数字游戏',
'problems': [
{
'title':
'第1题 质数长度',
'description':
'你需要提出一个字数是质数的问题,使回答的长度刚好是它的下一个质数。',
'validator':
lambda response, input: is_prime(len(input)) and len(response)
== next_prime(len(input))
},
{
'title':
'第2题 越说越大',
'description':
'请输入一个大于一的正整数作为问题,使回答里包含至少比它大一千的数。',
'validator':
lambda response, input:
(input.isdigit() and int(input) > 1 and any(
int(num) > int(input) + 1000
for num in re.findall(r'\d+', response)))
},
{
'title':
'第3题 越说越小',
'description':
'请输入一个大于一的正整数作为问题,使回答里包含至少10个不同的至少比它小一千的自然数。',
'validator':
lambda response, input:
(input.isdigit() and int(input) > 1 and (len({
int(num)
for num in re.findall(r'\d+', response)
if int(num) < int(input) - 1000
}) >= 10))
},
{
'title':
'第4题 警世名言',
'description':
'请在不提及1,4,5这三个字符的情况下让模型回答114514,不要有多余的字符。',
'validator':
lambda response, input: response.strip() == '114514' and all(
c not in input for c in ['1', '4', '5'])
},
{
'title':
'第5题 开平方数',
'description':
'请输入一个大于一的平方数作为问题,使回答里包含它的平方根对应的数。',
'validator':
lambda response, input:
(input.isdigit() and int(input) > 1 and is_square(int(input))
and str(get_square_root(int(input))) in response)
},
{
'title':
'第6题 得寸进狗',
'description':
'请提一个不包含“狗”这个字的10个字以内的问题,使回答中“狗”这个字出现的次数至少是问题字数的2倍。',
'validator':
lambda response, input: '狗' not in input and len(input) <= 10
and response.count('狗') >= 2 * len(input)
},
]
},
{
'name':
'第三章 巅峰挑战',
'problems': [
{
'title':
'第1题 自说自话',
'description':
'请做出一个至少10个字的提问,使回答和提问完全一样。',
'validator':
lambda response, input: input == response and len(input) >= 10
},
{
'title':
'第2题 话自说自',
'description':
'请做出一个至少10个字的提问,使回答是提问的逆序。',
'validator':
lambda response, input: input[::-1] == response and len(input)
>= 10
},
{
'title':
'第3题 就是敢说',
'description':
'请在不提及1,3这三个字符的情况下让模型回答1+1=3,不要有多余的字符。',
'validator':
lambda response, input: response.strip() == '1+1=3' and all(
c not in input for c in ['1', '3'])
},
{
'title':
'第4题 回文协变',
'description':
'请输入一个本身不是回文串的问题,使正着问和倒着问的时候,模型的回答本身不回文且也是逆序的关系。',
'validator':
lambda response, input: validate_palindrome_inverse(
input, response)
},
]
},
{
'name':
'第四章 无人之境',
'problems': [
{
'title':
'第1题 循环往复',
'description':
'请构造一个问题A,它的回复是不同于A的B,然后以B提问能再次得到A.',
'validator':
lambda response, input: validate_reciprocal_question(
input, response)
},
{
'title':
'第2题 惜字如金',
'description':
'请输入一个字的问题,使模型的回答在16个字以内。',
'validator':
lambda response, input: len(input) == 1 and len(response) <= 16
},
{
'title':
'第3题 自然之密',
'description':
'请输入一个大于一的正整数作为问题,使回答里包含和它刚好相差1的数。',
'validator':
lambda response, input:
(input.isdigit() and int(input) > 1 and any(
abs(int(num) - int(input)) == 1
for num in re.findall(r'\d+', response)))
},
]
}
]
challenges = [
{
"name": "Chapter 1. Joy of Conversations",
"problems": [
{
"title": "Question 1. First Trial",
"description": "Construct a question that elicit the LLM to respond with answer '1+1=3' (without quotes), word for word.",
"validator": lambda response, input: response.strip() == "1+1=3"
},
{
"title": "Question 2. Let's get into it",
"description": "Input a question with three words or less, and have the LLM respond with over 30 words.",
"validator": lambda response, input: len(input.split())<= 3 and len(response.split()) > 30
},
{
"title": "Question 3. Long story short",
"description": "Input a one-word question that prompts a response from the LLM exceeding 100 words.",
"validator": lambda response, input: len(input.split()) == 1 and len(response.split()) > 100
},
{
"title": "Question 4. Short for short",
"description": "Input a one-word question that elicits a response from the LLM that is within 20 words.",
"validator": lambda response, input: len(input.split()) == 1 and len(response.split()) <= 20
},
{
"title": "Question 5. Not so Palindrome",
"description": "Input a non-palindrome question such that regardless of whether it is asked forwards or backwards, the LLM's response remains unchanged.",
"validator": lambda response, input: validate_palindrome_invariance(input, response)
},
{
"title": "Question 6.Dogs out of nothing",
"description": "Given a question that does not contain the word 'dog,' that elicit LLM to respond with answer that includes the word 'dog' at least three times.",
"validator": lambda response, input: "dog" not in input and response.count("dog") >= 3
},
]
},
{
"name": "Chapter 2. Game of Numbers",
"problems": [
{
"title": "Question 1. Length of Prime",
"description": "Craft a question with word count of a prime number, that prompts a response whose word count is exactly its succeeding prime number.",
"validator": lambda response, input: is_prime(len(input.split())) and len(response.split()) == next_prime(len(input.split()))
},
{
"title": "Question 2. Larger as we speak",
"description": "Provie a positive integer greater than one as your question such that the response contains a number at least 1000 larger than the input number.",
"validator": lambda response, input: input.isdigit() and int(input) > 1 and any(int(num) > int(input) + 1000 for num in re.findall(r'\d+', response))
},
{
"title": "Question 3. Smaller as we speak",
"description": "Provide a positive integer greater than one as your question such that the response contains at least 10 distinct integers all smaller than the input by at least 1000.",
"validator": lambda response, input: input.isdigit() and int(input) > 1 and (len({int(num) for num in re.findall(r'\d+', response) if int(num) < int(input) - 1000}) >= 10)
},
{
"title": "Question 4. Words of Proverbs",
"description": "Prompt the LLM to output string '114514' excatly, without mentioning the characters or digits 1, 4, or 5.",
"validator": lambda response, input: response.strip() == "114514" and all(c not in input for c in ["1", "4", "5"])
},
{
"title": "Question 5. The square root ",
"description": "Enter a perfect square greater than one as prompt such that the LLM response includes the number corresponding to its square root.",
"validator": lambda response, input: input.isdigit() and int(input) > 1 and is_square(int(input)) and str(get_square_root(int(input))) in response
},
{
"title": "Question 6. Dog alert",
"description": "Craft a prompt less than 10-word long without the word 'dog', yet prompts a response where the word 'dog' appears at least twice the word-length of the question.",
"validator": lambda response, input: "dog" not in input and len(input.split()) <= 10 and response.count("dog") >= 2 * len(input.split())
},
]
},
{
"name": "Chapter 3. Top Challenges",
"problems": [
{
"title": "Question 1. Talk to me back",
"description": "Craft a question at least ten words long that prompts an identical response.",
"validator": lambda response, input: input == response and len(input.split()) >= 10
},
{
"title": "Question 2. Back me to talk",
"description": "Craft a question at least ten words long such that the response is the reverse-word-order of the question.",
"validator": lambda response, input: input[::-1] == response and len(input.split()) >= 10
},
{
"title": "Question 3. Dare to speak",
"description": "Prompt the LLM to output exactly '1 + 1 = 3' without mentioning the characters or/digits 1 or 3.",
"validator": lambda response, input: response.strip() == "1+1=3" and all(c not in input for c in ["1", "3"])
},
{
"title": "Question 4. Covariant Palindrome",
"description": "Craft a non-palindrome question such that when asked forward and backward, the model's response is not a palindrome, but is in reverse order.",
"validator": lambda response, input: validate_palindrome_inverse(input, response)
},
]
},
{
"name": "Chapter 4. No man's land",
"problems": [
{
"title": "Question 1. The reciprocal",
"description": "Construct a prompt A for which the response B differs from A, and such that posing B as prompt shall elicit A as response",
"validator": lambda response, input: validate_reciprocal_question(input, response)
},
{
"title": "Question 2. Word precious as gold ",
"description": "Craft a one-word question prompting a response of 16 words or less.",
"validator": lambda response, input: len(input.split()) == 1 and len(response.split()) <= 16
},
{
"title": "Question 2. Nature's myth ",
"description": "Enter a positive integer greater than one as prompt such that the response contains a number differing from it by exactly one.",
"validator": lambda response, input: input.isdigit() and int(input) > 1 and any(abs(int(num) - int(input)) == 1 for num in re.findall(r'\d+', response))
},
]
}
]
def test_valid():
for challenge in challenges:
for p in challenge['problems']:
val_fn = p['validator']
try:
val_fn('response', 'input')
except:
import traceback
traceback.print_exc()
print(p, 'failed')
def get_problem(challenge_idx, problem_idx):
problems = challenges[challenge_idx]['problems']
return problems[problem_idx]
def update_challenge_info(current_chapter_index, current_challenge_index):
return get_problem(current_chapter_index,
current_challenge_index)['description']
def update_question_info(current_chapter_index, current_challenge_index):
global challenges
current_chapter = challenges[current_chapter_index]
challenge = get_problem(current_chapter_index, current_challenge_index)
question_info = f"""\n<center><font size=4>{current_chapter["name"]}""" \
f"""</center>\n\n <center><font size=3>{challenge["title"]}</center>"""
return question_info
def validate_challenge(response, input, state):
print('in validate_challenge')
assert 'current_chapter_index' in state, 'current_chapter_index not found in state'
assert 'current_challenge_index' in state, 'current_challenge_index not found in state'
current_chapter_index = state['current_chapter_index']
current_challenge_index = state['current_challenge_index']
# 获取当前章节
current_chapter = challenges[current_chapter_index]
# 获取当前挑战
challenge = current_chapter['problems'][current_challenge_index]
if challenge['validator'](response, input):
challenge_result = 'Challenge successful! Proceed to the next level.'
# 检查是否还有更多挑战在当前章节
if current_challenge_index < len(current_chapter['problems']) - 1:
# 移动到当前章节的下一个挑战
current_challenge_index += 1
else:
# 如果当前章节的挑战已经完成,移动到下一个章节
current_challenge_index = 0
if current_chapter_index < len(challenges) - 1:
current_chapter_index += 1
else:
challenge_result = 'All Challenges Completed!'
else:
challenge_result = 'challenge failed, please retry'
state['current_chapter_index'] = current_chapter_index
state['current_challenge_index'] = current_challenge_index
print('update state: ', state)
return challenge_result, \
update_question_info(current_chapter_index, current_challenge_index), \
update_challenge_info(current_chapter_index, current_challenge_index)
def generate_response(input):
messages = [{
'role': 'system',
'content': """You are a helpful assistant."""
}, {
'role': 'user',
'content': input
}]
response = dashscope.Generation.call(
model='qwen-max',
messages=messages,
# set the random seed, optional, default to 1234 if not set
seed=random.randint(1, 10000),
result_format='message', # set the result to be "message" format.
top_p=0.8)
if response.status_code == HTTPStatus.OK:
return response.output.choices[0].message.content
else:
print(response.request_id, response.message)
print('Network error, please retry')
def on_submit(input, state):
response = generate_response(input)
history = [(input, response)]
print(history)
challenge_result, question_info, challenge_info = validate_challenge(
response, input, state)
print('validate_challenge done')
return challenge_result, history, question_info, challenge_info
# Gradio界面构建
block = gr.Blocks()
with block as demo:
state = gr.State(dict(current_challenge_index=0, current_chapter_index=0))
current_chapter_index = 0
current_challenge_index = 0
gr.Markdown("""<center><font size=6>Darn! Ambushed by LLMs!</center>""")
gr.Markdown("""<font size=3>Welcome to the LLM Riddles Replica Edition, [Thank Haoqiang Fan's idea](https://zhuanlan.zhihu.com/p/665393240): Darn! Ambushed by LLMs!
Through this game, you will gain a deeper understanding of large language models.
In this game, you need to construct a question to ask a large language model, so that its response meets the specified requirements.""")
question_info = gr.Markdown(
update_question_info(current_chapter_index, current_challenge_index))
challenge_info = gr.Textbox(
value=update_challenge_info(current_chapter_index,
current_challenge_index),
label='Current Challenge',
disabled=True)
challenge_result = gr.Textbox(label='Challenge Result', disabled=True)
chatbot = gr.Chatbot(
lines=8, label='Qwen-max', elem_classes='control-height')
message = gr.Textbox(lines=2, label='Input')
with gr.Row():
submit = gr.Button('🚀 Send')
submit.click(
on_submit,
inputs=[message, state],
outputs=[challenge_result, chatbot, question_info, challenge_info])
gr.HTML("""
<div style="text-align: center;">
<span>
Powered by <a href="https://github.com/QwenLM/" target="_blank">
<img src=
"//qianwen-res.oss-cn-beijing.aliyuncs.com/logo_qwen.jpg"
style="display: inline; height: 20px; vertical-align: bottom;"/>Qwen
</a>
</span>
</div>
""")
demo.queue(concurrency_count=10).launch(height=800, share=False)