R-Kentaren commited on
Commit
733d870
·
verified ·
1 Parent(s): 4cb9f32

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +102 -62
app.py CHANGED
@@ -1,88 +1,128 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient, login
 
 
3
 
 
 
 
 
 
 
4
 
5
-
 
 
 
 
 
 
6
 
7
  def respond(
8
- message,
9
- history: list[tuple[str, str]],
10
- system_message,
11
- max_tokens,
12
- temperature,
13
- top_p,
14
- model,
15
- token,
16
- ):
17
  """
18
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
 
19
  """
20
-
21
- login(token)
22
- client = InferenceClient(model)
23
- messages = [
24
- {
25
- "role": "system",
26
- "content": system_message,
27
- }
28
- ]
29
 
30
- for val in history:
31
- if val[0]:
32
- messages.append(
33
- {"role": "user",
34
- "content": val[0],
35
- },
36
- )
37
- if val[1]:
38
- messages.append(
39
- {"role": "assistant",
40
- "content": val[1],
41
- }
42
- )
43
 
44
- messages.append(
45
- {"role": "user",
46
- "content": message,
47
- }
48
- )
 
 
 
49
 
 
50
  response = ""
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
- for message in client.chat_completion(
53
- messages,
54
- max_tokens=max_tokens,
55
- stream=True,
56
- temperature=temperature,
57
- top_p=top_p,
58
- ):
59
- token = message.choices[0].delta.content
60
-
61
- response += token
62
- yield response
63
-
64
 
65
- """
66
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
67
- """
68
  demo = gr.ChatInterface(
69
- respond,
70
  additional_inputs=[
71
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
72
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
73
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
  gr.Slider(
75
  minimum=0.1,
76
  maximum=1.0,
77
  value=0.95,
78
  step=0.05,
79
- label="Top-p (nucleus sampling)",
 
 
 
 
 
 
 
 
 
 
 
 
 
80
  ),
81
- gr.Textbox(value="Qwen/Qwen3-Coder-480B-A35B-Instruct", label="Qwen Models"),
82
- gr.Textbox(value="HF...", label="System Api"),
83
  ],
 
 
 
 
 
 
 
84
  )
85
 
86
-
87
  if __name__ == "__main__":
88
- demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient, login
3
+ import os
4
+ from typing import List, Tuple, Optional
5
 
6
+ # Available models for selection
7
+ AVAILABLE_MODELS = [
8
+ "Qwen/Qwen3-Coder-480B-A35B-Instruct",
9
+ "mistralai/Mixtral-8x7B-Instruct-v0.1",
10
+ "meta-llama/Llama-3-70B-Instruct",
11
+ ]
12
 
13
+ def initialize_client(token: str, model: str) -> Optional[InferenceClient]:
14
+ """Initialize the InferenceClient with the provided token and model."""
15
+ try:
16
+ login(token)
17
+ return InferenceClient(model=model)
18
+ except Exception as e:
19
+ return gr.Error(f"Failed to initialize client: {str(e)}")
20
 
21
  def respond(
22
+ message: str,
23
+ history: List[Tuple[str, str]],
24
+ system_message: str,
25
+ max_tokens: int,
26
+ temperature: float,
27
+ top_p: float,
28
+ model: str,
29
+ token: str,
30
+ ) -> str:
31
  """
32
+ Generate a response using the Hugging Face Inference API.
33
+ Docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
34
  """
35
+ if not token:
36
+ raise gr.Error("Please provide a valid Hugging Face API token.")
37
+ if not message.strip():
38
+ raise gr.Error("Input message cannot be empty.")
 
 
 
 
 
39
 
40
+ client = initialize_client(token, model)
41
+ if isinstance(client, gr.Error):
42
+ raise client
 
 
 
 
 
 
 
 
 
 
43
 
44
+ # Build message history
45
+ messages = [{"role": "system", "content": system_message}]
46
+ for user_msg, assistant_msg in history:
47
+ if user_msg:
48
+ messages.append({"role": "user", "content": user_msg})
49
+ if assistant_msg:
50
+ messages.append({"role": "assistant", "content": assistant_msg})
51
+ messages.append({"role": "user", "content": message})
52
 
53
+ # Generate response
54
  response = ""
55
+ try:
56
+ for chunk in client.chat_completion(
57
+ messages=messages,
58
+ max_tokens=max_tokens,
59
+ stream=True,
60
+ temperature=temperature,
61
+ top_p=top_p,
62
+ ):
63
+ token = chunk.choices[0].delta.content or ""
64
+ response += token
65
+ yield response
66
+ except Exception as e:
67
+ raise gr.Error(f"Error during inference: {str(e)}")
68
 
69
+ # Load token from environment variable for security
70
+ HF_TOKEN = os.getenv("HF_TOKEN", "")
 
 
 
 
 
 
 
 
 
 
71
 
72
+ # Create Gradio interface
 
 
73
  demo = gr.ChatInterface(
74
+ fn=respond,
75
  additional_inputs=[
76
+ gr.Textbox(
77
+ value="You are a friendly and helpful Chatbot.",
78
+ label="System Message",
79
+ placeholder="Enter the system prompt here...",
80
+ ),
81
+ gr.Slider(
82
+ minimum=1,
83
+ maximum=2048,
84
+ value=512,
85
+ step=1,
86
+ label="Max New Tokens",
87
+ info="Controls the maximum length of the generated response.",
88
+ ),
89
+ gr.Slider(
90
+ minimum=0.1,
91
+ maximum=4.0,
92
+ value=0.7,
93
+ step=0.1,
94
+ label="Temperature",
95
+ info="Controls randomness (higher = more creative, lower = more deterministic).",
96
+ ),
97
  gr.Slider(
98
  minimum=0.1,
99
  maximum=1.0,
100
  value=0.95,
101
  step=0.05,
102
+ label="Top-p (Nucleus Sampling)",
103
+ info="Controls diversity via nucleus sampling.",
104
+ ),
105
+ gr.Dropdown(
106
+ choices=AVAILABLE_MODELS,
107
+ value=AVAILABLE_MODELS[0],
108
+ label="Model Selection",
109
+ info="Select the model to use for inference.",
110
+ ),
111
+ gr.Textbox(
112
+ value=HF_TOKEN,
113
+ label="Hugging Face API Token",
114
+ type="password",
115
+ placeholder="Enter your HF API token (or set HF_TOKEN env variable)",
116
  ),
 
 
117
  ],
118
+ title="Chatbot with Hugging Face Inference API",
119
+ description="Interact with a chatbot powered by Hugging Face models. Provide your API token and customize settings.",
120
+ theme="soft",
121
+ submit_btn="Send Message",
122
+ retry_btn="Retry",
123
+ undo_btn="Undo",
124
+ clear_btn="Clear Chat",
125
  )
126
 
 
127
  if __name__ == "__main__":
128
+ demo.launch()