Spaces:
Sleeping
Sleeping
File size: 6,868 Bytes
e899e0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import os
import re
import ast
import html
import time
import gradio as gr
from openai import OpenAI
from typing import List, Tuple
from src.load_config import LoadConfig
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_groq import ChatGroq
from langchain.vectorstores import Chroma
from uuid import uuid4
import os
APP_CONFIG = LoadConfig()
# URGENT NOTICE
unique_id = uuid4().hex[0:8]
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_PROJECT"] = f"Ragas_RAG_Eval"
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
class ChatBot:
"""
Class representing a chatbot with document retrieval and response generation capabilities.
This class provides static methods for responding to user queries, handling feedback, and
cleaning references from retrieved documents.
"""
vectordb = None
@staticmethod
def respond(chatbot: List, message: str, data_type: str = "Existing database", temperature: float = 0.0, model_choice: str = APP_CONFIG.llama3_70bmodel) -> Tuple:
"""
Generate a response to a user query using document retrieval and language model completion.
Parameters:
chatbot (List): List representing the chatbot's conversation history.
message (str): The user's query.
data_type (str): Type of data used for document retrieval ("Existing database" or "Upload new data").
temperature (float): Temperature parameter for language model completion.
Returns:
Tuple: A tuple containing an empty string, the updated chat history, and references from retrieved documents.
"""
# Check if the vector database needs to be created
if ChatBot.vectordb is None:
if data_type == "Existing database":
if os.path.exists(APP_CONFIG.persist_directory):
ChatBot.vectordb = Chroma(persist_directory=APP_CONFIG.persist_directory,
embedding_function=APP_CONFIG.embedding_model)
else:
chatbot.append(
(message, f"VectorDB does not exist. Please first execute the 'upload_data_manually.py' module. For further information please visit README.md of this repository."))
return "", chatbot, None
elif data_type == "Upload new data":
if os.path.exists(APP_CONFIG.custom_persist_directory):
ChatBot.vectordb = Chroma(persist_directory=APP_CONFIG.custom_persist_directory,
embedding_function=APP_CONFIG.embedding_model)
else:
chatbot.append(
(message, f"No file uploaded. Please first upload your files using the 'upload' button."))
return "", chatbot, None
# single step proces for embed user query, serach in vectordb, and get retrieved docs
docs = ChatBot.vectordb.similarity_search(message, k=APP_CONFIG.k)
question = "# User new question:\n" + message
retrieved_content = ChatBot.clean_references(docs)
# Memory: previous Q-n-A pairs
chat_history = f"Chat history:\n {str(chatbot[-APP_CONFIG.qa_pair_count:])}\n\n"
prompt = f"{chat_history}{retrieved_content}{question}"
print("========================")
print(prompt)
if model_choice == "gpt-3.5-turbo":
client = OpenAI()
response = client.chat.completions.create(model=model_choice,
messages=[
{"role": "system", "content": APP_CONFIG.llm_system_role},
{"role": "user", "content": prompt}
],
temperature=temperature)
print(f"Running {model_choice}...", response)
chatbot.append((message, response.choices[0].message.content))
else:
chat_llm = ChatGroq(
api_key = os.getenv("GROQ_API_KEY"),
model = model_choice,
temperature=APP_CONFIG.temperature
)
# Prompt template
prompt = ChatPromptTemplate.from_messages(
[
("system", APP_CONFIG.llm_system_role),
("human", prompt) # Directly using the message
]
)
chain = prompt | chat_llm | StrOutputParser()
response = chain.invoke({})
print("Running {model_choice} via groq...", response)
chatbot.append((message, response))
time.sleep(2)
return "", chatbot, retrieved_content
@staticmethod
def extract_content(input_text):
begin_pattern = r"""page_content='"""
end_pattern = r"""'\s*metadata="""
between_pattern = rf'{begin_pattern}(.*?){end_pattern}'
from_end_pattern = rf"{end_pattern}(.*)"
between_match = re.search(between_pattern, input_text, re.DOTALL)
from_end_match = re.search(from_end_pattern, input_text, re.DOTALL)
between_text = between_match.group(1) if between_match else None
from_end_text = from_end_match.group(1) if from_end_match else None
return between_text, from_end_text
@staticmethod
def clean_references(documents: List,) -> str:
server_url = "http://localhost:8000"
documents = [str(x)+"\n\n" for x in documents]
markdown_documents = ""
counter = 1
for doc in documents:
content, metadata = re.match(r"page_content=(.*?)( metadata=\{.*\})", doc).groups()
metadata = metadata.split('=', 1)[1]
metadata_dict = ast.literal_eval(metadata)
content = bytes(content, "utf-8").decode("unicode_escape")
content = re.sub(r'\\n', '\n', content)
content = re.sub(r'\s*<EOS>\s*<pad>\s*', ' ', content)
content = re.sub(r'\s+', ' ', content).strip()
content = html.unescape(content)
content = content.encode('latin1').decode('utf-8', 'ignore')
pdf_url = f"{server_url}/{os.path.basename(metadata_dict['source'])}"
markdown_documents += f"# Retrieved content {counter}:\n" + content + "\n\n" + \
f"Source: {os.path.basename(metadata_dict['source'])}" + " | " +\
f"Page number: {str(metadata_dict['page'])}" + " | " +\
f"[View PDF]({pdf_url})" "\n\n"
counter += 1
return markdown_documents |