File size: 6,868 Bytes
e899e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import re
import ast
import html
import time
import gradio as gr
from openai import OpenAI
from typing import List, Tuple
from src.load_config import LoadConfig
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_groq import ChatGroq
from langchain.vectorstores import Chroma

from  uuid import uuid4
import os

APP_CONFIG = LoadConfig()


# URGENT NOTICE
unique_id = uuid4().hex[0:8]
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_PROJECT"] = f"Ragas_RAG_Eval"
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"

class ChatBot:
    """
    Class representing a chatbot with document retrieval and response generation capabilities.

    This class provides static methods for responding to user queries, handling feedback, and
    cleaning references from retrieved documents.
    """
    vectordb = None 
    @staticmethod
    def respond(chatbot: List, message: str, data_type: str = "Existing database", temperature: float = 0.0, model_choice: str = APP_CONFIG.llama3_70bmodel) -> Tuple:
        """
        Generate a response to a user query using document retrieval and language model completion.

        Parameters:
            chatbot (List): List representing the chatbot's conversation history.
            message (str): The user's query.
            data_type (str): Type of data used for document retrieval ("Existing database" or "Upload new data").
            temperature (float): Temperature parameter for language model completion.

        Returns:
            Tuple: A tuple containing an empty string, the updated chat history, and references from retrieved documents.
        """

        # Check if the vector database needs to be created
        if ChatBot.vectordb is None:
            if data_type == "Existing database":
                if os.path.exists(APP_CONFIG.persist_directory):
                    ChatBot.vectordb = Chroma(persist_directory=APP_CONFIG.persist_directory,
                                        embedding_function=APP_CONFIG.embedding_model)
                else:
                    chatbot.append(
                        (message, f"VectorDB does not exist. Please first execute the 'upload_data_manually.py' module. For further information please visit README.md of this repository."))
                    return "", chatbot, None

            elif data_type == "Upload new data":
                if os.path.exists(APP_CONFIG.custom_persist_directory):
                    ChatBot.vectordb = Chroma(persist_directory=APP_CONFIG.custom_persist_directory,
                                        embedding_function=APP_CONFIG.embedding_model)
                else:
                    chatbot.append(
                        (message, f"No file uploaded. Please first upload your files using the 'upload' button."))
                    return "", chatbot, None
                
        # single step proces for embed user query, serach in vectordb, and get retrieved docs
        docs = ChatBot.vectordb.similarity_search(message, k=APP_CONFIG.k)

        question = "# User new question:\n" + message
        retrieved_content = ChatBot.clean_references(docs)

        # Memory: previous  Q-n-A pairs
        chat_history = f"Chat history:\n {str(chatbot[-APP_CONFIG.qa_pair_count:])}\n\n"
        prompt = f"{chat_history}{retrieved_content}{question}"
        print("========================")
        print(prompt)
        
        if model_choice == "gpt-3.5-turbo":
            client = OpenAI()
            response = client.chat.completions.create(model=model_choice,
                                                  messages=[
                                                      {"role": "system", "content": APP_CONFIG.llm_system_role},
                                                      {"role": "user", "content": prompt}
                                                      ],
                                                      temperature=temperature)
            print(f"Running {model_choice}...", response)
            chatbot.append((message, response.choices[0].message.content))

        else:
            chat_llm = ChatGroq(
                api_key = os.getenv("GROQ_API_KEY"),
                model = model_choice,
                temperature=APP_CONFIG.temperature
                )
            # Prompt template
            prompt = ChatPromptTemplate.from_messages(
                [
                    ("system", APP_CONFIG.llm_system_role),
                    ("human", prompt) # Directly using the message
                ]
            )
            chain = prompt | chat_llm | StrOutputParser()
            response = chain.invoke({})
            print("Running {model_choice} via groq...", response)
            chatbot.append((message, response))
        
        time.sleep(2)
        return "", chatbot, retrieved_content

    @staticmethod
    def extract_content(input_text):
        begin_pattern = r"""page_content='"""
        end_pattern = r"""'\s*metadata="""

        between_pattern = rf'{begin_pattern}(.*?){end_pattern}'
        from_end_pattern = rf"{end_pattern}(.*)"

        between_match = re.search(between_pattern, input_text, re.DOTALL)
        from_end_match = re.search(from_end_pattern, input_text, re.DOTALL)

        between_text = between_match.group(1) if between_match else None
        from_end_text = from_end_match.group(1) if from_end_match else None

        return between_text, from_end_text
    @staticmethod
    def clean_references(documents: List,) -> str:
        server_url = "http://localhost:8000"
        documents = [str(x)+"\n\n" for x in documents]
        markdown_documents = ""
        counter = 1
        for doc in documents:
            content, metadata = re.match(r"page_content=(.*?)( metadata=\{.*\})", doc).groups()
            metadata = metadata.split('=', 1)[1]
            metadata_dict = ast.literal_eval(metadata)
            content = bytes(content, "utf-8").decode("unicode_escape")
            content = re.sub(r'\\n', '\n', content)
            content = re.sub(r'\s*<EOS>\s*<pad>\s*', ' ', content)
            content = re.sub(r'\s+', ' ', content).strip()
            content = html.unescape(content)
            content = content.encode('latin1').decode('utf-8', 'ignore')

            pdf_url = f"{server_url}/{os.path.basename(metadata_dict['source'])}"
            markdown_documents += f"# Retrieved content {counter}:\n" + content + "\n\n" + \
                f"Source: {os.path.basename(metadata_dict['source'])}" + " | " +\
                f"Page number: {str(metadata_dict['page'])}" + " | " +\
                f"[View PDF]({pdf_url})" "\n\n"
            counter += 1

        return markdown_documents