import os import re import ast import html import time import gradio as gr from openai import OpenAI from typing import List, Tuple from src.load_config import LoadConfig from langchain_core.messages import HumanMessage, SystemMessage from langchain_core.prompts import ChatPromptTemplate from langchain_core.output_parsers import StrOutputParser from langchain_groq import ChatGroq from langchain.vectorstores import Chroma from uuid import uuid4 import os APP_CONFIG = LoadConfig() # URGENT NOTICE unique_id = uuid4().hex[0:8] os.environ["LANGCHAIN_TRACING_V2"] = "true" os.environ["LANGCHAIN_PROJECT"] = f"Ragas_RAG_Eval" os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com" class ChatBot: """ Class representing a chatbot with document retrieval and response generation capabilities. This class provides static methods for responding to user queries, handling feedback, and cleaning references from retrieved documents. """ vectordb = None @staticmethod def respond(chatbot: List, message: str, data_type: str = "Existing database", temperature: float = 0.0, model_choice: str = APP_CONFIG.llama3_70bmodel) -> Tuple: """ Generate a response to a user query using document retrieval and language model completion. Parameters: chatbot (List): List representing the chatbot's conversation history. message (str): The user's query. data_type (str): Type of data used for document retrieval ("Existing database" or "Upload new data"). temperature (float): Temperature parameter for language model completion. Returns: Tuple: A tuple containing an empty string, the updated chat history, and references from retrieved documents. """ # Check if the vector database needs to be created if ChatBot.vectordb is None: if data_type == "Existing database": if os.path.exists(APP_CONFIG.persist_directory): ChatBot.vectordb = Chroma(persist_directory=APP_CONFIG.persist_directory, embedding_function=APP_CONFIG.embedding_model) else: chatbot.append( (message, f"VectorDB does not exist. Please first execute the 'upload_data_manually.py' module. For further information please visit README.md of this repository.")) return "", chatbot, None elif data_type == "Upload new data": if os.path.exists(APP_CONFIG.custom_persist_directory): ChatBot.vectordb = Chroma(persist_directory=APP_CONFIG.custom_persist_directory, embedding_function=APP_CONFIG.embedding_model) else: chatbot.append( (message, f"No file uploaded. Please first upload your files using the 'upload' button.")) return "", chatbot, None # single step proces for embed user query, serach in vectordb, and get retrieved docs docs = ChatBot.vectordb.similarity_search(message, k=APP_CONFIG.k) question = "# User new question:\n" + message retrieved_content = ChatBot.clean_references(docs) # Memory: previous Q-n-A pairs chat_history = f"Chat history:\n {str(chatbot[-APP_CONFIG.qa_pair_count:])}\n\n" prompt = f"{chat_history}{retrieved_content}{question}" print("========================") print(prompt) if model_choice == "gpt-3.5-turbo": client = OpenAI() response = client.chat.completions.create(model=model_choice, messages=[ {"role": "system", "content": APP_CONFIG.llm_system_role}, {"role": "user", "content": prompt} ], temperature=temperature) print(f"Running {model_choice}...", response) chatbot.append((message, response.choices[0].message.content)) else: chat_llm = ChatGroq( api_key = os.getenv("GROQ_API_KEY"), model = model_choice, temperature=APP_CONFIG.temperature ) # Prompt template prompt = ChatPromptTemplate.from_messages( [ ("system", APP_CONFIG.llm_system_role), ("human", prompt) # Directly using the message ] ) chain = prompt | chat_llm | StrOutputParser() response = chain.invoke({}) print("Running {model_choice} via groq...", response) chatbot.append((message, response)) time.sleep(2) return "", chatbot, retrieved_content @staticmethod def extract_content(input_text): begin_pattern = r"""page_content='""" end_pattern = r"""'\s*metadata=""" between_pattern = rf'{begin_pattern}(.*?){end_pattern}' from_end_pattern = rf"{end_pattern}(.*)" between_match = re.search(between_pattern, input_text, re.DOTALL) from_end_match = re.search(from_end_pattern, input_text, re.DOTALL) between_text = between_match.group(1) if between_match else None from_end_text = from_end_match.group(1) if from_end_match else None return between_text, from_end_text @staticmethod def clean_references(documents: List,) -> str: server_url = "http://localhost:8000" documents = [str(x)+"\n\n" for x in documents] markdown_documents = "" counter = 1 for doc in documents: content, metadata = re.match(r"page_content=(.*?)( metadata=\{.*\})", doc).groups() metadata = metadata.split('=', 1)[1] metadata_dict = ast.literal_eval(metadata) content = bytes(content, "utf-8").decode("unicode_escape") content = re.sub(r'\\n', '\n', content) content = re.sub(r'\s*\s*\s*', ' ', content) content = re.sub(r'\s+', ' ', content).strip() content = html.unescape(content) content = content.encode('latin1').decode('utf-8', 'ignore') pdf_url = f"{server_url}/{os.path.basename(metadata_dict['source'])}" markdown_documents += f"# Retrieved content {counter}:\n" + content + "\n\n" + \ f"Source: {os.path.basename(metadata_dict['source'])}" + " | " +\ f"Page number: {str(metadata_dict['page'])}" + " | " +\ f"[View PDF]({pdf_url})" "\n\n" counter += 1 return markdown_documents