import os
import re
import ast
import html
import time
import gradio as gr
from openai import OpenAI
from typing import List, Tuple
from src.load_config import LoadConfig
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_groq import ChatGroq
from langchain.vectorstores import Chroma
from uuid import uuid4
import os
APP_CONFIG = LoadConfig()
# URGENT NOTICE
unique_id = uuid4().hex[0:8]
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_PROJECT"] = f"Ragas_RAG_Eval"
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
class ChatBot:
"""
Class representing a chatbot with document retrieval and response generation capabilities.
This class provides static methods for responding to user queries, handling feedback, and
cleaning references from retrieved documents.
"""
vectordb = None
@staticmethod
def respond(chatbot: List, message: str, data_type: str = "Existing database", temperature: float = 0.0, model_choice: str = APP_CONFIG.llama3_70bmodel) -> Tuple:
"""
Generate a response to a user query using document retrieval and language model completion.
Parameters:
chatbot (List): List representing the chatbot's conversation history.
message (str): The user's query.
data_type (str): Type of data used for document retrieval ("Existing database" or "Upload new data").
temperature (float): Temperature parameter for language model completion.
Returns:
Tuple: A tuple containing an empty string, the updated chat history, and references from retrieved documents.
"""
# Check if the vector database needs to be created
if ChatBot.vectordb is None:
if data_type == "Existing database":
if os.path.exists(APP_CONFIG.persist_directory):
ChatBot.vectordb = Chroma(persist_directory=APP_CONFIG.persist_directory,
embedding_function=APP_CONFIG.embedding_model)
else:
chatbot.append(
(message, f"VectorDB does not exist. Please first execute the 'upload_data_manually.py' module. For further information please visit README.md of this repository."))
return "", chatbot, None
elif data_type == "Upload new data":
if os.path.exists(APP_CONFIG.custom_persist_directory):
ChatBot.vectordb = Chroma(persist_directory=APP_CONFIG.custom_persist_directory,
embedding_function=APP_CONFIG.embedding_model)
else:
chatbot.append(
(message, f"No file uploaded. Please first upload your files using the 'upload' button."))
return "", chatbot, None
# single step proces for embed user query, serach in vectordb, and get retrieved docs
docs = ChatBot.vectordb.similarity_search(message, k=APP_CONFIG.k)
question = "# User new question:\n" + message
retrieved_content = ChatBot.clean_references(docs)
# Memory: previous Q-n-A pairs
chat_history = f"Chat history:\n {str(chatbot[-APP_CONFIG.qa_pair_count:])}\n\n"
prompt = f"{chat_history}{retrieved_content}{question}"
print("========================")
print(prompt)
if model_choice == "gpt-3.5-turbo":
client = OpenAI()
response = client.chat.completions.create(model=model_choice,
messages=[
{"role": "system", "content": APP_CONFIG.llm_system_role},
{"role": "user", "content": prompt}
],
temperature=temperature)
print(f"Running {model_choice}...", response)
chatbot.append((message, response.choices[0].message.content))
else:
chat_llm = ChatGroq(
api_key = os.getenv("GROQ_API_KEY"),
model = model_choice,
temperature=APP_CONFIG.temperature
)
# Prompt template
prompt = ChatPromptTemplate.from_messages(
[
("system", APP_CONFIG.llm_system_role),
("human", prompt) # Directly using the message
]
)
chain = prompt | chat_llm | StrOutputParser()
response = chain.invoke({})
print("Running {model_choice} via groq...", response)
chatbot.append((message, response))
time.sleep(2)
return "", chatbot, retrieved_content
@staticmethod
def extract_content(input_text):
begin_pattern = r"""page_content='"""
end_pattern = r"""'\s*metadata="""
between_pattern = rf'{begin_pattern}(.*?){end_pattern}'
from_end_pattern = rf"{end_pattern}(.*)"
between_match = re.search(between_pattern, input_text, re.DOTALL)
from_end_match = re.search(from_end_pattern, input_text, re.DOTALL)
between_text = between_match.group(1) if between_match else None
from_end_text = from_end_match.group(1) if from_end_match else None
return between_text, from_end_text
@staticmethod
def clean_references(documents: List,) -> str:
server_url = "http://localhost:8000"
documents = [str(x)+"\n\n" for x in documents]
markdown_documents = ""
counter = 1
for doc in documents:
content, metadata = re.match(r"page_content=(.*?)( metadata=\{.*\})", doc).groups()
metadata = metadata.split('=', 1)[1]
metadata_dict = ast.literal_eval(metadata)
content = bytes(content, "utf-8").decode("unicode_escape")
content = re.sub(r'\\n', '\n', content)
content = re.sub(r'\s*\s*\s*', ' ', content)
content = re.sub(r'\s+', ' ', content).strip()
content = html.unescape(content)
content = content.encode('latin1').decode('utf-8', 'ignore')
pdf_url = f"{server_url}/{os.path.basename(metadata_dict['source'])}"
markdown_documents += f"# Retrieved content {counter}:\n" + content + "\n\n" + \
f"Source: {os.path.basename(metadata_dict['source'])}" + " | " +\
f"Page number: {str(metadata_dict['page'])}" + " | " +\
f"[View PDF]({pdf_url})" "\n\n"
counter += 1
return markdown_documents