Spaces:
Sleeping
Sleeping
from fastai.text.all import * | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
import gradio as gr | |
# Load the medical model | |
medical_learn = load_learner('model.pkl') | |
# Medical model configuration | |
medical_description = "Medical Diagnosis" | |
medical_categories = ['Allergy', 'Anemia', 'Bronchitis', 'Diabetes', 'Diarrhea', 'Fatigue', 'Flu', 'Malaria', 'Stress'] | |
def classify_medical_text(txt): | |
pred, idx, probs = medical_learn.predict(txt) | |
return dict(zip(medical_categories, map(float, probs))) | |
# Load the psychiatric model from Hugging Face | |
psychiatric_model_name = "mental/mental-bert-base-uncased" # Replace with the appropriate model | |
psychiatric_tokenizer = AutoTokenizer.from_pretrained(psychiatric_model_name) | |
psychiatric_model = AutoModelForSequenceClassification.from_pretrained(psychiatric_model_name) | |
# Psychiatric model configuration | |
psychiatric_description = "Psychiatric Analysis" | |
psychiatric_labels = ['Depression', 'Anxiety', 'Bipolar Disorder', 'PTSD', 'OCD', 'Stress', 'Schizophrenia'] # Adjust based on the model | |
def classify_psychiatric_text(txt): | |
inputs = psychiatric_tokenizer(txt, return_tensors="pt", truncation=True, padding=True) | |
with torch.no_grad(): | |
outputs = psychiatric_model(**inputs) | |
logits = outputs.logits | |
probabilities = torch.softmax(logits, dim=1).squeeze().tolist() | |
return dict(zip(psychiatric_labels, probabilities)) | |
# Gradio Interfaces | |
medical_text = gr.Textbox(lines=2, label='Describe your symptoms in detail') | |
medical_label = gr.Label() | |
medical_examples = ['I feel short of breath and have a high fever.', 'My throat hurts and I keep sneezing.', 'I am always thirsty.'] | |
psychiatric_text = gr.Textbox(lines=2, label='Describe your mental health concerns in detail') | |
psychiatric_label = gr.Label() | |
psychiatric_examples = ['I feel hopeless and have no energy.', 'I am unable to concentrate and feel anxious all the time.', 'I have recurring intrusive thoughts.'] | |
medical_interface = gr.Interface( | |
fn=classify_medical_text, | |
inputs=medical_text, | |
outputs=medical_label, | |
examples=medical_examples, | |
description=medical_description, | |
) | |
psychiatric_interface = gr.Interface( | |
fn=classify_psychiatric_text, | |
inputs=psychiatric_text, | |
outputs=psychiatric_label, | |
examples=psychiatric_examples, | |
description=psychiatric_description, | |
) | |
# Combine interfaces using Tabs | |
app = gr.TabbedInterface([medical_interface, psychiatric_interface], ["Medical Diagnosis", "Psychiatric Analysis"]) | |
app.launch(inline=False) | |