Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from fastai.text.all import * | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
# Initialize Hugging Face Client | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# Load the medical model | |
medical_learn = load_learner('model.pkl') | |
# Medical model configuration | |
medical_categories = ['Allergy', 'Anemia', 'Bronchitis', 'Diabetes', 'Diarrhea', 'Fatigue', 'Flu', 'Malaria', 'Stress'] | |
def classify_medical_text(txt): | |
try: | |
pred, idx, probs = medical_learn.predict(txt) | |
return dict(zip(medical_categories, map(float, probs))) | |
except Exception as e: | |
return {"error": str(e)} | |
# Load the psychiatric model | |
psychiatric_model_name = "nlp4good/psych-search" # Replace with the appropriate model | |
psychiatric_tokenizer = AutoTokenizer.from_pretrained(psychiatric_model_name) | |
psychiatric_model = AutoModelForSequenceClassification.from_pretrained(psychiatric_model_name) | |
# Psychiatric model configuration | |
psychiatric_labels = ['Depression', 'Anxiety', 'Bipolar Disorder', 'PTSD', 'OCD', 'Stress', 'Schizophrenia'] | |
def classify_psychiatric_text(txt): | |
try: | |
inputs = psychiatric_tokenizer(txt, return_tensors="pt", truncation=True, padding=True) | |
with torch.no_grad(): | |
outputs = psychiatric_model(**inputs) | |
logits = outputs.logits | |
probabilities = torch.softmax(logits, dim=1).squeeze().tolist() | |
return dict(zip(psychiatric_labels, probabilities)) | |
except Exception as e: | |
return {"error": str(e)} | |
# Chat-based Interface | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
try: | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
except Exception as e: | |
yield f"Error: {str(e)}" | |
# Gradio Interfaces | |
medical_interface = gr.Interface( | |
fn=classify_medical_text, | |
inputs=gr.Textbox(lines=2, label="Describe your symptoms in detail"), | |
outputs=gr.Label(label="Medical Diagnosis"), | |
examples=["I feel short of breath and have a high fever.", "My throat hurts and I keep sneezing.", "I am always thirsty."], | |
description="Identify potential medical conditions based on symptoms." | |
) | |
psychiatric_interface = gr.Interface( | |
fn=classify_psychiatric_text, | |
inputs=gr.Textbox(lines=2, label="Describe your mental health concerns in detail"), | |
outputs=gr.Label(label="Psychiatric Analysis"), | |
examples=["I feel hopeless and have no energy.", "I am unable to concentrate and feel anxious all the time.", "I have recurring intrusive thoughts."], | |
description="Analyze potential mental health concerns based on input." | |
) | |
chat_interface = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
description="Chat with an AI assistant for general inquiries or extended conversation." | |
) | |
# Unified Gradio App with Tabs | |
with gr.Blocks() as app: | |
gr.Markdown("# Unified Medical and Psychiatric Assistant") | |
with gr.Tab("Chat Assistant"): | |
chat_interface.render() | |
with gr.Tab("Medical Diagnosis"): | |
medical_interface.render() | |
with gr.Tab("Psychiatric Analysis"): | |
psychiatric_interface.render() | |
# Launch the App | |
if __name__ == "__main__": | |
app.launch() | |