REALME5-pro commited on
Commit
4eaa6ce
·
verified ·
1 Parent(s): cc60d4f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -21
app.py CHANGED
@@ -1,24 +1,61 @@
1
  from fastai.text.all import *
 
 
2
  import gradio as gr
3
 
4
-
5
- learn = load_learner('model.pkl')
6
-
7
-
8
- description = "Medical Diagnosis"
9
- categories = (['Allergy', 'Anemia', 'Bronchitis', 'Diabetes', 'Diarrhea', 'Fatigue', 'Flu', 'Malaria', 'Stress'])
10
-
11
-
12
-
13
- def classify_text(txt):
14
- pred,idx,probs = learn.predict(txt)
15
- return dict(zip(categories, map(float,probs)))
16
-
17
-
18
-
19
- text = gr.Textbox(lines=2, label='Describe how you feel in great detail')
20
- label = gr.Label()
21
- examples = ['I have no intrest in physical activity. i am always thirsty', 'I am freezing', 'My eyes are pale']
22
-
23
- intf = gr.Interface(fn=classify_text, inputs=text, outputs=label, examples=examples, description=description)
24
- intf.launch(inline=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  from fastai.text.all import *
2
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
+ import torch
4
  import gradio as gr
5
 
6
+ # Load the medical model
7
+ medical_learn = load_learner('model.pkl')
8
+
9
+ # Medical model configuration
10
+ medical_description = "Medical Diagnosis"
11
+ medical_categories = ['Allergy', 'Anemia', 'Bronchitis', 'Diabetes', 'Diarrhea', 'Fatigue', 'Flu', 'Malaria', 'Stress']
12
+
13
+ def classify_medical_text(txt):
14
+ pred, idx, probs = medical_learn.predict(txt)
15
+ return dict(zip(medical_categories, map(float, probs)))
16
+
17
+ # Load the psychiatric model from Hugging Face
18
+ psychiatric_model_name = "nlp4good/psych-search" # Replace with the appropriate model
19
+ psychiatric_tokenizer = AutoTokenizer.from_pretrained(psychiatric_model_name)
20
+ psychiatric_model = AutoModelForSequenceClassification.from_pretrained(psychiatric_model_name)
21
+
22
+ # Psychiatric model configuration
23
+ psychiatric_description = "Psychiatric Analysis"
24
+ psychiatric_labels = ['Depression', 'Anxiety', 'Bipolar Disorder', 'PTSD', 'OCD', 'Stress', 'Schizophrenia'] # Adjust based on the model
25
+
26
+ def classify_psychiatric_text(txt):
27
+ inputs = psychiatric_tokenizer(txt, return_tensors="pt", truncation=True, padding=True)
28
+ with torch.no_grad():
29
+ outputs = psychiatric_model(**inputs)
30
+ logits = outputs.logits
31
+ probabilities = torch.softmax(logits, dim=1).squeeze().tolist()
32
+ return dict(zip(psychiatric_labels, probabilities))
33
+
34
+ # Gradio Interfaces
35
+ medical_text = gr.Textbox(lines=2, label='Describe your symptoms in detail')
36
+ medical_label = gr.Label()
37
+ medical_examples = ['I feel short of breath and have a high fever.', 'My throat hurts and I keep sneezing.', 'I am always thirsty.']
38
+
39
+ psychiatric_text = gr.Textbox(lines=2, label='Describe your mental health concerns in detail')
40
+ psychiatric_label = gr.Label()
41
+ psychiatric_examples = ['I feel hopeless and have no energy.', 'I am unable to concentrate and feel anxious all the time.', 'I have recurring intrusive thoughts.']
42
+
43
+ medical_interface = gr.Interface(
44
+ fn=classify_medical_text,
45
+ inputs=medical_text,
46
+ outputs=medical_label,
47
+ examples=medical_examples,
48
+ description=medical_description,
49
+ )
50
+
51
+ psychiatric_interface = gr.Interface(
52
+ fn=classify_psychiatric_text,
53
+ inputs=psychiatric_text,
54
+ outputs=psychiatric_label,
55
+ examples=psychiatric_examples,
56
+ description=psychiatric_description,
57
+ )
58
+
59
+ # Combine interfaces using Tabs
60
+ app = gr.TabbedInterface([medical_interface, psychiatric_interface], ["Medical Diagnosis", "Psychiatric Analysis"])
61
+ app.launch(inline=False)