from fastai.text.all import * from transformers import AutoModelForSequenceClassification, AutoTokenizer, BlenderbotForConditionalGeneration, BlenderbotTokenizer import torch import gradio as gr # Load the medical model medical_learn = load_learner('model.pkl') # Medical model configuration medical_description = "Medical Diagnosis" medical_categories = ['Allergy', 'Anemia', 'Bronchitis', 'Diabetes', 'Diarrhea', 'Fatigue', 'Flu', 'Malaria', 'Stress'] def classify_medical_text(txt): pred, idx, probs = medical_learn.predict(txt) return dict(zip(medical_categories, map(float, probs))) # Load the psychiatric model from Hugging Face psychiatric_model_name = "nlp4good/psych-search" # Replace with the appropriate model psychiatric_tokenizer = AutoTokenizer.from_pretrained(psychiatric_model_name) psychiatric_model = AutoModelForSequenceClassification.from_pretrained(psychiatric_model_name) # Psychiatric model configuration psychiatric_description = "Psychiatric Analysis" psychiatric_labels = ['Depression', 'Anxiety', 'Bipolar Disorder', 'PTSD', 'OCD', 'Stress', 'Schizophrenia'] # Adjust based on the model def classify_psychiatric_text(txt): inputs = psychiatric_tokenizer(txt, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): outputs = psychiatric_model(**inputs) logits = outputs.logits probabilities = torch.softmax(logits, dim=1).squeeze().tolist() return dict(zip(psychiatric_labels, probabilities)) # Load BlenderBot for Lifestyle and Nutrition Chatbot blender_model_name = "facebook/blenderbot-3B" # Pre-trained BlenderBot 3B model blender_tokenizer = BlenderbotTokenizer.from_pretrained(blender_model_name) blender_model = BlenderbotForConditionalGeneration.from_pretrained(blender_model_name) # Chat function for Lifestyle and Nutrition chat_history = [] def chatbot_response(user_input): global chat_history new_input_ids = blender_tokenizer.encode(user_input + blender_tokenizer.eos_token, return_tensors='pt') bot_input_ids = torch.cat([chat_history, new_input_ids], dim=-1) if chat_history else new_input_ids chat_history = blender_model.generate(bot_input_ids, max_length=1000, pad_token_id=blender_tokenizer.eos_token_id) response = blender_tokenizer.decode(chat_history[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) return response def clear_chat(): global chat_history chat_history = [] return [] # Gradio Interfaces medical_text = gr.Textbox(lines=2, label='Describe your symptoms in detail') medical_label = gr.Label() medical_examples = ['I feel short of breath and have a high fever.', 'My throat hurts and I keep sneezing.', 'I am always thirsty.'] psychiatric_text = gr.Textbox(lines=2, label='Describe your mental health concerns in detail') psychiatric_label = gr.Label() psychiatric_examples = ['I feel hopeless and have no energy.', 'I am unable to concentrate and feel anxious all the time.', 'I have recurring intrusive thoughts.'] lifestyle_chatbot = gr.Chatbot(label="Chat with me about diet and nutrition!") lifestyle_msg = gr.Textbox(placeholder="Ask your question here...", label="Your Question") lifestyle_clear = gr.Button("Clear Chat") def user_message(input_text): if not input_text.strip(): return lifestyle_chatbot, "Please enter a question." response = chatbot_response(input_text) lifestyle_chatbot.append((input_text, response)) return lifestyle_chatbot, "" # Lifestyle & Nutrition Interface lifestyle_interface = gr.Interface( fn=user_message, inputs=[lifestyle_msg], outputs=[lifestyle_chatbot, lifestyle_msg], live=True, title="Nutritionist Chatbot", description="Ask me anything about diet, food, and nutrition!" ) # Medical Diagnosis Interface medical_interface = gr.Interface( fn=classify_medical_text, inputs=medical_text, outputs=medical_label, examples=medical_examples, description=medical_description, ) # Psychiatric Analysis Interface psychiatric_interface = gr.Interface( fn=classify_psychiatric_text, inputs=psychiatric_text, outputs=psychiatric_label, examples=psychiatric_examples, description=psychiatric_description, ) # Combine interfaces using Tabs app = gr.TabbedInterface( [medical_interface, psychiatric_interface, lifestyle_interface], ["Medical Diagnosis", "Psychiatric Analysis", "Lifestyle & Nutrition Chat"] ) app.launch(inline=False)