Last commit not found
from diffusers import TCDScheduler, DPMSolverSinglestepScheduler | |
from diffusers.schedulers.scheduling_tcd import * | |
from diffusers.schedulers.scheduling_dpmsolver_singlestep import * | |
class TDDScheduler(DPMSolverSinglestepScheduler): | |
def __init__( | |
self, | |
num_train_timesteps: int = 1000, | |
beta_start: float = 0.0001, | |
beta_end: float = 0.02, | |
beta_schedule: str = "linear", | |
trained_betas: Optional[np.ndarray] = None, | |
solver_order: int = 1, | |
prediction_type: str = "epsilon", | |
thresholding: bool = False, | |
dynamic_thresholding_ratio: float = 0.995, | |
sample_max_value: float = 1.0, | |
algorithm_type: str = "dpmsolver++", | |
solver_type: str = "midpoint", | |
lower_order_final: bool = False, | |
use_karras_sigmas: Optional[bool] = False, | |
final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min" | |
lambda_min_clipped: float = -float("inf"), | |
variance_type: Optional[str] = None, | |
tdd_train_step: int = 250, | |
special_jump: bool = False, | |
t_l: int = -1 | |
): | |
self.t_l = t_l | |
self.special_jump = special_jump | |
self.tdd_train_step = tdd_train_step | |
if algorithm_type == "dpmsolver": | |
deprecation_message = "algorithm_type `dpmsolver` is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead" | |
deprecate("algorithm_types=dpmsolver", "1.0.0", deprecation_message) | |
if trained_betas is not None: | |
self.betas = torch.tensor(trained_betas, dtype=torch.float32) | |
elif beta_schedule == "linear": | |
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) | |
elif beta_schedule == "scaled_linear": | |
# this schedule is very specific to the latent diffusion model. | |
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 | |
elif beta_schedule == "squaredcos_cap_v2": | |
# Glide cosine schedule | |
self.betas = betas_for_alpha_bar(num_train_timesteps) | |
else: | |
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") | |
self.alphas = 1.0 - self.betas | |
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) | |
# Currently we only support VP-type noise schedule | |
self.alpha_t = torch.sqrt(self.alphas_cumprod) | |
self.sigma_t = torch.sqrt(1 - self.alphas_cumprod) | |
self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t) | |
self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 | |
# standard deviation of the initial noise distribution | |
self.init_noise_sigma = 1.0 | |
# settings for DPM-Solver | |
if algorithm_type not in ["dpmsolver", "dpmsolver++"]: | |
if algorithm_type == "deis": | |
self.register_to_config(algorithm_type="dpmsolver++") | |
else: | |
raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}") | |
if solver_type not in ["midpoint", "heun"]: | |
if solver_type in ["logrho", "bh1", "bh2"]: | |
self.register_to_config(solver_type="midpoint") | |
else: | |
raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}") | |
if algorithm_type != "dpmsolver++" and final_sigmas_type == "zero": | |
raise ValueError( | |
f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please chooose `sigma_min` instead." | |
) | |
# setable values | |
self.num_inference_steps = None | |
timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy() | |
self.timesteps = torch.from_numpy(timesteps) | |
self.model_outputs = [None] * solver_order | |
self.sample = None | |
self.order_list = self.get_order_list(num_train_timesteps) | |
self._step_index = None | |
self._begin_index = None | |
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication | |
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): | |
self.num_inference_steps = num_inference_steps | |
# Clipping the minimum of all lambda(t) for numerical stability. | |
# This is critical for cosine (squaredcos_cap_v2) noise schedule. | |
#original_steps = self.config.original_inference_steps | |
if True: | |
original_steps=self.tdd_train_step | |
k = 1000 / original_steps | |
tcd_origin_timesteps = np.asarray(list(range(1, int(original_steps) + 1))) * k - 1 | |
else: | |
tcd_origin_timesteps = np.asarray(list(range(0, int(self.config.num_train_timesteps)))) | |
# TCD Inference Steps Schedule | |
tcd_origin_timesteps = tcd_origin_timesteps[::-1].copy() | |
# Select (approximately) evenly spaced indices from tcd_origin_timesteps. | |
inference_indices = np.linspace(0, len(tcd_origin_timesteps), num=num_inference_steps, endpoint=False) | |
inference_indices = np.floor(inference_indices).astype(np.int64) | |
timesteps = tcd_origin_timesteps[inference_indices] | |
if self.special_jump: | |
if self.tdd_train_step == 50: | |
#timesteps = np.array([999., 879., 759., 499., 259.]) | |
print(timesteps) | |
elif self.tdd_train_step == 250: | |
if num_inference_steps == 5: | |
timesteps = np.array([999., 875., 751., 499., 251.]) | |
elif num_inference_steps == 6: | |
timesteps = np.array([999., 875., 751., 627., 499., 251.]) | |
elif num_inference_steps == 7: | |
timesteps = np.array([999., 875., 751., 627., 499., 375., 251.]) | |
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) | |
if self.config.use_karras_sigmas: | |
log_sigmas = np.log(sigmas) | |
sigmas = np.flip(sigmas).copy() | |
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps) | |
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round() | |
else: | |
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) | |
if self.config.final_sigmas_type == "sigma_min": | |
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5 | |
elif self.config.final_sigmas_type == "zero": | |
sigma_last = 0 | |
else: | |
raise ValueError( | |
f" `final_sigmas_type` must be one of `sigma_min` or `zero`, but got {self.config.final_sigmas_type}" | |
) | |
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32) | |
self.sigmas = torch.from_numpy(sigmas).to(device=device) | |
self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64) | |
self.model_outputs = [None] * self.config.solver_order | |
self.sample = None | |
if not self.config.lower_order_final and num_inference_steps % self.config.solver_order != 0: | |
logger.warning( | |
"Changing scheduler {self.config} to have `lower_order_final` set to True to handle uneven amount of inference steps. Please make sure to always use an even number of `num_inference steps when using `lower_order_final=False`." | |
) | |
self.register_to_config(lower_order_final=True) | |
if not self.config.lower_order_final and self.config.final_sigmas_type == "zero": | |
logger.warning( | |
" `last_sigmas_type='zero'` is not supported for `lower_order_final=False`. Changing scheduler {self.config} to have `lower_order_final` set to True." | |
) | |
self.register_to_config(lower_order_final=True) | |
self.order_list = self.get_order_list(num_inference_steps) | |
# add an index counter for schedulers that allow duplicated timesteps | |
self._step_index = None | |
self._begin_index = None | |
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication | |
def set_timesteps_s(self, eta: float = 0.0): | |
# Clipping the minimum of all lambda(t) for numerical stability. | |
# This is critical for cosine (squaredcos_cap_v2) noise schedule. | |
num_inference_steps = self.num_inference_steps | |
device = self.timesteps.device | |
if True: | |
original_steps=self.tdd_train_step | |
k = 1000 / original_steps | |
tcd_origin_timesteps = np.asarray(list(range(1, int(original_steps) + 1))) * k - 1 | |
else: | |
tcd_origin_timesteps = np.asarray(list(range(0, int(self.config.num_train_timesteps)))) | |
# TCD Inference Steps Schedule | |
tcd_origin_timesteps = tcd_origin_timesteps[::-1].copy() | |
# Select (approximately) evenly spaced indices from tcd_origin_timesteps. | |
inference_indices = np.linspace(0, len(tcd_origin_timesteps), num=num_inference_steps, endpoint=False) | |
inference_indices = np.floor(inference_indices).astype(np.int64) | |
timesteps = tcd_origin_timesteps[inference_indices] | |
if self.special_jump: | |
if self.tdd_train_step == 50: | |
timesteps = np.array([999., 879., 759., 499., 259.]) | |
elif self.tdd_train_step == 250: | |
if num_inference_steps == 5: | |
timesteps = np.array([999., 875., 751., 499., 251.]) | |
elif num_inference_steps == 6: | |
timesteps = np.array([999., 875., 751., 627., 499., 251.]) | |
elif num_inference_steps == 7: | |
timesteps = np.array([999., 875., 751., 627., 499., 375., 251.]) | |
timesteps_s = np.floor((1 - eta) * timesteps).astype(np.int64) | |
sigmas_s = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) | |
if self.config.use_karras_sigmas: | |
print("have not write") | |
pass | |
else: | |
sigmas_s = np.interp(timesteps_s, np.arange(0, len(sigmas_s)), sigmas_s) | |
if self.config.final_sigmas_type == "sigma_min": | |
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5 | |
elif self.config.final_sigmas_type == "zero": | |
sigma_last = 0 | |
else: | |
raise ValueError( | |
f" `final_sigmas_type` must be one of `sigma_min` or `zero`, but got {self.config.final_sigmas_type}" | |
) | |
sigmas_s = np.concatenate([sigmas_s, [sigma_last]]).astype(np.float32) | |
self.sigmas_s = torch.from_numpy(sigmas_s).to(device=device) | |
self.timesteps_s = torch.from_numpy(timesteps_s).to(device=device, dtype=torch.int64) | |
def step( | |
self, | |
model_output: torch.FloatTensor, | |
timestep: int, | |
sample: torch.FloatTensor, | |
eta: float, | |
generator: Optional[torch.Generator] = None, | |
return_dict: bool = True, | |
) -> Union[SchedulerOutput, Tuple]: | |
if self.num_inference_steps is None: | |
raise ValueError( | |
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | |
) | |
if self.step_index is None: | |
self._init_step_index(timestep) | |
if self.step_index == 0: | |
self.set_timesteps_s(eta) | |
model_output = self.convert_model_output(model_output, sample=sample) | |
for i in range(self.config.solver_order - 1): | |
self.model_outputs[i] = self.model_outputs[i + 1] | |
self.model_outputs[-1] = model_output | |
order = self.order_list[self.step_index] | |
# For img2img denoising might start with order>1 which is not possible | |
# In this case make sure that the first two steps are both order=1 | |
while self.model_outputs[-order] is None: | |
order -= 1 | |
# For single-step solvers, we use the initial value at each time with order = 1. | |
if order == 1: | |
self.sample = sample | |
prev_sample = self.singlestep_dpm_solver_update(self.model_outputs, sample=self.sample, order=order) | |
if eta > 0: | |
if self.step_index != self.num_inference_steps - 1: | |
alpha_prod_s = self.alphas_cumprod[self.timesteps_s[self.step_index + 1]] | |
alpha_prod_t_prev = self.alphas_cumprod[self.timesteps[self.step_index + 1]] | |
noise = randn_tensor( | |
model_output.shape, generator=generator, device=model_output.device, dtype=prev_sample.dtype | |
) | |
prev_sample = (alpha_prod_t_prev / alpha_prod_s).sqrt() * prev_sample + ( | |
1 - alpha_prod_t_prev / alpha_prod_s | |
).sqrt() * noise | |
# upon completion increase step index by one | |
self._step_index += 1 | |
if not return_dict: | |
return (prev_sample,) | |
return SchedulerOutput(prev_sample=prev_sample) | |
def dpm_solver_first_order_update( | |
self, | |
model_output: torch.FloatTensor, | |
*args, | |
sample: torch.FloatTensor = None, | |
**kwargs, | |
) -> torch.FloatTensor: | |
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None) | |
prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None) | |
if sample is None: | |
if len(args) > 2: | |
sample = args[2] | |
else: | |
raise ValueError(" missing `sample` as a required keyward argument") | |
if timestep is not None: | |
deprecate( | |
"timesteps", | |
"1.0.0", | |
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", | |
) | |
if prev_timestep is not None: | |
deprecate( | |
"prev_timestep", | |
"1.0.0", | |
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", | |
) | |
sigma_t, sigma_s = self.sigmas_s[self.step_index + 1], self.sigmas[self.step_index] | |
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) | |
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s) | |
lambda_t = torch.log(alpha_t) - torch.log(sigma_t) | |
lambda_s = torch.log(alpha_s) - torch.log(sigma_s) | |
h = lambda_t - lambda_s | |
if self.config.algorithm_type == "dpmsolver++": | |
x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output | |
elif self.config.algorithm_type == "dpmsolver": | |
x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output | |
return x_t | |
def singlestep_dpm_solver_second_order_update( | |
self, | |
model_output_list: List[torch.FloatTensor], | |
*args, | |
sample: torch.FloatTensor = None, | |
**kwargs, | |
) -> torch.FloatTensor: | |
timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None) | |
prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None) | |
if sample is None: | |
if len(args) > 2: | |
sample = args[2] | |
else: | |
raise ValueError(" missing `sample` as a required keyward argument") | |
if timestep_list is not None: | |
deprecate( | |
"timestep_list", | |
"1.0.0", | |
"Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", | |
) | |
if prev_timestep is not None: | |
deprecate( | |
"prev_timestep", | |
"1.0.0", | |
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", | |
) | |
sigma_t, sigma_s0, sigma_s1 = ( | |
self.sigmas_s[self.step_index + 1], | |
self.sigmas[self.step_index], | |
self.sigmas[self.step_index - 1], | |
) | |
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) | |
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0) | |
alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1) | |
lambda_t = torch.log(alpha_t) - torch.log(sigma_t) | |
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) | |
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) | |
m0, m1 = model_output_list[-1], model_output_list[-2] | |
h, h_0 = lambda_t - lambda_s1, lambda_s0 - lambda_s1 | |
r0 = h_0 / h | |
D0, D1 = m1, (1.0 / r0) * (m0 - m1) | |
if self.config.algorithm_type == "dpmsolver++": | |
# See https://arxiv.org/abs/2211.01095 for detailed derivations | |
if self.config.solver_type == "midpoint": | |
x_t = ( | |
(sigma_t / sigma_s1) * sample | |
- (alpha_t * (torch.exp(-h) - 1.0)) * D0 | |
- 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1 | |
) | |
elif self.config.solver_type == "heun": | |
x_t = ( | |
(sigma_t / sigma_s1) * sample | |
- (alpha_t * (torch.exp(-h) - 1.0)) * D0 | |
+ (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1 | |
) | |
elif self.config.algorithm_type == "dpmsolver": | |
# See https://arxiv.org/abs/2206.00927 for detailed derivations | |
if self.config.solver_type == "midpoint": | |
x_t = ( | |
(alpha_t / alpha_s1) * sample | |
- (sigma_t * (torch.exp(h) - 1.0)) * D0 | |
- 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1 | |
) | |
elif self.config.solver_type == "heun": | |
x_t = ( | |
(alpha_t / alpha_s1) * sample | |
- (sigma_t * (torch.exp(h) - 1.0)) * D0 | |
- (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 | |
) | |
return x_t | |
def singlestep_dpm_solver_update( | |
self, | |
model_output_list: List[torch.FloatTensor], | |
*args, | |
sample: torch.FloatTensor = None, | |
order: int = None, | |
**kwargs, | |
) -> torch.FloatTensor: | |
timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None) | |
prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None) | |
if sample is None: | |
if len(args) > 2: | |
sample = args[2] | |
else: | |
raise ValueError(" missing`sample` as a required keyward argument") | |
if order is None: | |
if len(args) > 3: | |
order = args[3] | |
else: | |
raise ValueError(" missing `order` as a required keyward argument") | |
if timestep_list is not None: | |
deprecate( | |
"timestep_list", | |
"1.0.0", | |
"Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", | |
) | |
if prev_timestep is not None: | |
deprecate( | |
"prev_timestep", | |
"1.0.0", | |
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", | |
) | |
if order == 1: | |
return self.dpm_solver_first_order_update(model_output_list[-1], sample=sample) | |
elif order == 2: | |
return self.singlestep_dpm_solver_second_order_update(model_output_list, sample=sample) | |
else: | |
raise ValueError(f"Order must be 1, 2, got {order}") | |
def convert_model_output( | |
self, | |
model_output: torch.FloatTensor, | |
*args, | |
sample: torch.FloatTensor = None, | |
**kwargs, | |
) -> torch.FloatTensor: | |
""" | |
Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is | |
designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an | |
integral of the data prediction model. | |
<Tip> | |
The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise | |
prediction and data prediction models. | |
</Tip> | |
Args: | |
model_output (`torch.FloatTensor`): | |
The direct output from the learned diffusion model. | |
sample (`torch.FloatTensor`): | |
A current instance of a sample created by the diffusion process. | |
Returns: | |
`torch.FloatTensor`: | |
The converted model output. | |
""" | |
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None) | |
if sample is None: | |
if len(args) > 1: | |
sample = args[1] | |
else: | |
raise ValueError("missing `sample` as a required keyward argument") | |
if timestep is not None: | |
deprecate( | |
"timesteps", | |
"1.0.0", | |
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", | |
) | |
# DPM-Solver++ needs to solve an integral of the data prediction model. | |
if self.config.algorithm_type == "dpmsolver++": | |
if self.config.prediction_type == "epsilon": | |
# DPM-Solver and DPM-Solver++ only need the "mean" output. | |
if self.config.variance_type in ["learned_range"]: | |
model_output = model_output[:, :3] | |
sigma = self.sigmas[self.step_index] | |
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) | |
x0_pred = (sample - sigma_t * model_output) / alpha_t | |
elif self.config.prediction_type == "sample": | |
x0_pred = model_output | |
elif self.config.prediction_type == "v_prediction": | |
sigma = self.sigmas[self.step_index] | |
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) | |
x0_pred = alpha_t * sample - sigma_t * model_output | |
else: | |
raise ValueError( | |
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" | |
" `v_prediction` for the DPMSolverSinglestepScheduler." | |
) | |
if self.step_index <= self.t_l: | |
if self.config.thresholding: | |
x0_pred = self._threshold_sample(x0_pred) | |
return x0_pred | |
# DPM-Solver needs to solve an integral of the noise prediction model. | |
elif self.config.algorithm_type == "dpmsolver": | |
if self.config.prediction_type == "epsilon": | |
# DPM-Solver and DPM-Solver++ only need the "mean" output. | |
if self.config.variance_type in ["learned_range"]: | |
model_output = model_output[:, :3] | |
return model_output | |
elif self.config.prediction_type == "sample": | |
sigma = self.sigmas[self.step_index] | |
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) | |
epsilon = (sample - alpha_t * model_output) / sigma_t | |
return epsilon | |
elif self.config.prediction_type == "v_prediction": | |
sigma = self.sigmas[self.step_index] | |
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) | |
epsilon = alpha_t * model_output + sigma_t * sample | |
return epsilon | |
else: | |
raise ValueError( | |
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" | |
" `v_prediction` for the DPMSolverSinglestepScheduler." | |
) | |