File size: 5,719 Bytes
6e9c433
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
% Encoding: UTF-8

% An Empirical Study of Training Self-Supervised Vision Transformers
@inproceedings{chen2021empirical,
title={An empirical study of training self-supervised vision transformers},
author={Chen, Xinlei and Xie, Saining and He, Kaiming},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={9640--9649},
year={2021}
}

% 2D positional embedding
@article{raisi20202d,
title={2D positional embedding-based transformer for scene text recognition},
author={Raisi, Zobeir and Naiel, Mohamed A and Fieguth, Paul and Wardell, Steven and Zelek, John},
journal={Journal of Computational Vision and Imaging Systems},
volume={6},
number={1},
pages={1--4},
year={2020}
}

% Layer Normalization
@article{ba2016layer,
title={Layer normalization},
author={Ba, Jimmy Lei and Kiros, Jamie Ryan and Hinton, Geoffrey E},
journal={arXiv preprint arXiv:1607.06450},
year={2016}
}

% Batch Normalization
@inproceedings{ioffe2015batch,
title={Batch normalization: Accelerating deep network training by reducing internal covariate shift},
author={Ioffe, Sergey and Szegedy, Christian},
booktitle={International conference on machine learning},
pages={448--456},
year={2015},
organization={PMLR}
}

% ReLU
@article{fukushima1975cognitron,
title={Cognitron: A self-organizing multilayered neural network},
author={Fukushima, Kunihiko},
journal={Biological cybernetics},
volume={20},
number={3},
pages={121--136},
year={1975},
publisher={Springer}
}

% Weight Normalization
@article{salimans2016weight,
title={Weight normalization: A simple reparameterization to accelerate training of deep neural networks},
author={Salimans, Tim and Kingma, Durk P},
journal={Advances in neural information processing systems},
volume={29},
year={2016}
}

% Stochastic depth
@inproceedings{huang2016deep,
title={Deep networks with stochastic depth},
author={Huang, Gao and Sun, Yu and Liu, Zhuang and Sedra, Daniel and Weinberger, Kilian Q},
booktitle={European conference on computer vision},
pages={646--661},
year={2016},
organization={Springer}
}

% Stereo Matching Algorithm
@article{zhong2020displacement,
title={Displacement-invariant cost computation for efficient stereo matching},
author={Zhong, Yiran and Loop, Charles and Byeon, Wonmin and Birchfield, Stan and Dai, Yuchao and Zhang, Kaihao and Kamenev, Alexey and Breuel, Thomas and Li, Hongdong and Kautz, Jan},
journal={arXiv preprint arXiv:2012.00899},
year={2020}
}

% wandb
@misc{wandb,
title = {Experiment Tracking with Weights and Biases},
year = {2020},
note = {Software available from wandb.com},
url={https://www.wandb.com/},
author = {Biewald, Lukas},
}

% 
@article{borji2015salient,
title={Salient object detection: A benchmark},
author={Borji, Ali and Cheng, Ming-Ming and Jiang, Huaizu and Li, Jia},
journal={IEEE transactions on image processing},
volume={24},
number={12},
pages={5706--5722},
year={2015},
publisher={IEEE}
}

% SOD metrics
@misc{sodmetrics,
title = {PySODMetrics: A simple and efficient implementation of SOD metrics},
howpublished = {\url{https://github.com/lartpang/PySODMetrics}},
note = {Accessed: 2022-10-31}
}

% MAE
@inproceedings{perazzi2012saliency,
title={Saliency filters: Contrast based filtering for salient region detection},
author={Perazzi, Federico and Kr{\"a}henb{\"u}hl, Philipp and Pritch, Yael and Hornung, Alexander},
booktitle={2012 IEEE conference on computer vision and pattern recognition},
pages={733--740},
year={2012},
organization={IEEE}
}

% F-measure
@inproceedings{achanta2009frequency,
title={Frequency-tuned salient region detection},
author={Achanta, Radhakrishna and Hemami, Sheila and Estrada, Francisco and Susstrunk, Sabine},
booktitle={2009 IEEE conference on computer vision and pattern recognition},
pages={1597--1604},
year={2009},
organization={IEEE}
}

% E-measure
@article{fan2018enhanced,
title={Enhanced-alignment measure for binary foreground map evaluation},
author={Fan, Deng-Ping and Gong, Cheng and Cao, Yang and Ren, Bo and Cheng, Ming-Ming and Borji, Ali},
journal={arXiv preprint arXiv:1805.10421},
year={2018}
}

% S-measure
@inproceedings{fan2017structure,
title={Structure-measure: A new way to evaluate foreground maps},
author={Fan, Deng-Ping and Cheng, Ming-Ming and Liu, Yun and Li, Tao and Borji, Ali},
booktitle={Proceedings of the IEEE international conference on computer vision},
pages={4548--4557},
year={2017}
}

% GELU
@article{hendrycks2016gaussian,
title={Gaussian error linear units (gelus)},
author={Hendrycks, Dan and Gimpel, Kevin},
journal={arXiv preprint arXiv:1606.08415},
year={2016}
}

% Instance normalization
@article{ulyanov2016instance,
title={Instance normalization: The missing ingredient for fast stylization},
author={Ulyanov, Dmitry and Vedaldi, Andrea and Lempitsky, Victor},
journal={arXiv preprint arXiv:1607.08022},
year={2016}
}

% Group normalization 
@inproceedings{wu2018group,
title={Group normalization},
author={Wu, Yuxin and He, Kaiming},
booktitle={Proceedings of the European conference on computer vision (ECCV)},
pages={3--19},
year={2018}
}

% timm
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}

% taskonomy
@inproceedings{zamir2018taskonomy,
title={Taskonomy: Disentangling task transfer learning},
author={Zamir, Amir R and Sax, Alexander and Shen, William and Guibas, Leonidas J and Malik, Jitendra and Savarese, Silvio},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={3712--3722},
year={2018}
}

@Comment{jabref-meta: databaseType:bibtex;}