Spaces:
Sleeping
Sleeping
File size: 33,975 Bytes
6e9c433 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 |
import math
import re
from collections import OrderedDict
from functools import partial
from typing import Dict, Iterable, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from torchvision.ops import MLP
from einops import rearrange, repeat
from torch import Tensor, nn
from definition import PRETRAINED_BACKBONE
from ..configs.base_config import base_cfg
from ..utils import count_parameters
from .components import (
build_2d_sincos_posemb,
drop_path,
pair,
trunc_normal_,
)
class PatchedInputAdapter(nn.Module):
"""Adapter for spatial inputs, like images or feature maps.
Creates tokens from patches over the image.
:param num_channels: Number of input channels of the image/feature map
:param stride_level: Stride level compared to the full-sized image.
E.g. 4 for 1/4th the size of the image.
:param patch_size_full: Int or tuple of the patch size over the full image size.
Patch size for smaller inputs will be computed accordingly.
:param dim_tokens: Dimension of output tokens. Can be set using init method.
:param sincos_pos_emb: Set to True (default) to use fixed 2D sin-cos positional embeddings
:param learnable_pos_emb: Set to True to learn positional embeddings instead
:param image_size: Default image size. Used to initialize size of positional embeddings.
"""
def __init__(
self,
num_channels: int,
stride_level: int,
patch_size_full: Union[int, Tuple[int, int]],
dim_tokens: Optional[int] = None,
sincos_pos_emb: bool = True,
learnable_pos_emb: bool = False,
image_size: Union[int, Tuple[int]] = 224,
):
super().__init__()
self.num_channels = num_channels
self.stride_level = stride_level
self.patch_size_full = pair(patch_size_full)
self.dim_tokens = dim_tokens
self.sincos_pos_emb = sincos_pos_emb
self.learnable_pos_emb = learnable_pos_emb
self.image_size = pair(image_size)
self.num_patches = (self.image_size[0] // patch_size_full) * (
self.image_size[1] // patch_size_full
)
# Actual patch height and width, taking into account stride of input
self.P_H = max(1, self.patch_size_full[0] // stride_level)
self.P_W = max(1, self.patch_size_full[1] // stride_level)
if self.dim_tokens is not None:
self.init(dim_tokens=dim_tokens)
def init(self, dim_tokens: int = 768):
"""
Initialize parts of encoder that are dependent on dimension of tokens.
Should be called when setting up MultiMAE.
:param dim_tokens: Dimension of tokens
"""
self.dim_tokens = dim_tokens
# Task embedding identifying from which task a given token comes from
# Fixed-size positional embeddings. Can be interpolated to different input sizes
h_posemb = self.image_size[0] // (self.stride_level * self.P_H)
w_posemb = self.image_size[1] // (self.stride_level * self.P_W)
if self.sincos_pos_emb:
self.pos_emb = build_2d_sincos_posemb(
h=h_posemb, w=w_posemb, embed_dim=self.dim_tokens
)
self.pos_emb = nn.Parameter(
self.pos_emb, requires_grad=self.learnable_pos_emb
)
else:
self.pos_emb = nn.Parameter(
torch.zeros(1, self.dim_tokens, h_posemb, w_posemb)
)
trunc_normal_(self.pos_emb, std=0.02)
# Image -> tokens projection
self.proj = nn.Conv2d(
in_channels=self.num_channels,
out_channels=self.dim_tokens,
kernel_size=(self.P_H, self.P_W),
stride=(self.P_H, self.P_W),
)
@torch.jit.ignore
def no_weight_decay(self):
return {"pos_emb"}
def forward(self, x: Tensor) -> Tensor:
"""
Forward pass through input adapter, transforming image to sequence of tokens.
Adds task and positional encodings.
:param x: Input image tensor
"""
B, C, H, W = x.shape
assert (
self.dim_tokens is not None
), "Need to call init(dim_tokens) function first"
assert (H % self.P_H == 0) and (
W % self.P_W == 0
), f"Image sizes {H}x{W} must be divisible by patch sizes {self.P_H}x{self.P_W}"
N_H, N_W = H // self.P_H, W // self.P_W # Number of patches in height and width
# Create patches [B, C, H, W] -> [B, (H*W), C]
projected_x = self.proj(x)
x_patch = rearrange(projected_x, "b d nh nw -> b (nh nw) d")
# Create positional embedding
x_pos_emb = F.interpolate(
self.pos_emb, size=(N_H, N_W), mode="bicubic", align_corners=False
)
x_pos_emb = rearrange(x_pos_emb, "b d nh nw -> b (nh nw) d")
# Add patches and positional embeddings
x = x_patch + x_pos_emb
return x
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x: Tensor) -> Tensor:
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class ConvNeXtBlock(nn.Module):
r"""ConvNeXt Block. There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
We use (2) as we find it slightly faster in PyTorch
Args:
dim (int): Number of input channels.
drop_path: Stochastic depth rate. Default: 0.0
layer_scale_init_value (float): Init value for Layer Scale. Default: 0 (disabled for isotropic ConvNeXt).
Code from: https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py
"""
def __init__(self, dim, drop_path=0.0, layer_scale_init_value=0.0):
super().__init__()
self.dwconv = nn.Conv2d(
dim, dim, kernel_size=7, padding=3, groups=dim
) # depthwise conv
self.norm = nn.LayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(
dim, 4 * dim
) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.pwconv2 = nn.Linear(4 * dim, dim)
self.gamma = (
nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
if layer_scale_init_value > 0
else None
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
def forward(self, x: Tensor) -> Tensor:
input = x
x = self.dwconv(x)
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
x = input + self.drop_path(x)
return x
class ConvNeXtAdapter(nn.Module):
"""Output adapter with ConvNext blocks for semantic segmentation
:param num_classes: Number of classes
:param num_heads: Number of attention heads
:param embed_dim: Token dimension after projection, and before reshaping operation.
:param preds_per_patch: Increases size of feature map by reshaping each patch Each patch gets reshaped
from embed_dim x 1 x 1 to (embed_dim / preds_per_patch) x (preds_per_patch ** 0.5) x (preds_per_patch ** 0.5)
:param main_tasks: Tasks to use for the adapter. Only tokens coming from these tasks are kept.
:param patch_size: Size of patches
:param depth: Number of ConvNeXt blocks
:interpolate_mode: Interpolation mode for final upsampling
"""
def __init__(
self,
image_size: int,
num_classes: int,
embed_dim: int = 6144,
preds_per_patch: int = 16,
main_tasks: Iterable[str] = ("rgb",),
patch_size: int = 16,
depth: int = 4,
interpolate_mode: str = "bilinear",
act_fn: nn.Module = nn.GELU,
dec_kernel: int = 1,
):
super().__init__()
self.main_tasks = main_tasks
self.patch_size = patch_size
self.embed_dim = embed_dim
self.preds_per_patch = preds_per_patch
self.class_dim = embed_dim // preds_per_patch
self.num_classes = num_classes
self.interpolate_mode = interpolate_mode
self.image_size = image_size
self.blocks = nn.Sequential(
*[ConvNeXtBlock(dim=self.class_dim) for _ in range(depth)]
)
if dec_kernel == 1:
self.final_layer_1 = nn.Sequential(
nn.Conv2d(self.class_dim, self.class_dim // 4, 1),
nn.BatchNorm2d(self.class_dim // 4),
act_fn(),
nn.Upsample(scale_factor=2, mode=self.interpolate_mode),
)
self.final_layer_2 = nn.Sequential(
nn.Conv2d(self.class_dim // 4, self.class_dim // 16, 1),
nn.BatchNorm2d(self.class_dim // 16),
act_fn(),
nn.Upsample(size=image_size, mode=self.interpolate_mode),
)
self.final_layer = nn.Conv2d(self.class_dim // 16, self.num_classes, 1)
elif dec_kernel == 3:
self.final_layer_1 = nn.Sequential(
nn.Conv2d(
self.class_dim,
self.class_dim // 4,
kernel_size=3,
stride=1,
padding=1,
),
nn.BatchNorm2d(self.class_dim // 4),
act_fn(),
nn.Upsample(scale_factor=2, mode=self.interpolate_mode),
)
self.final_layer_2 = nn.Sequential(
nn.Conv2d(
self.class_dim // 4,
self.class_dim // 16,
kernel_size=3,
stride=1,
padding=1,
),
nn.BatchNorm2d(self.class_dim // 16),
act_fn(),
nn.Upsample(size=image_size, mode=self.interpolate_mode),
)
self.final_layer = nn.Conv2d(
self.class_dim // 16,
self.num_classes,
kernel_size=3,
stride=1,
padding=1,
)
else:
raise Exception(f"Unsupported dec_kernel {dec_kernel}")
self.apply(self._init_weights)
def init(self, dim_tokens_enc: int = 768):
"""
Initialize parts of decoder that are dependent on dimension of encoder tokens.
Should be called when setting up MultiMAE.
:param dim_tokens_enc: Dimension of tokens coming from encoder
"""
self.in_channels = dim_tokens_enc * len(self.main_tasks)
# Projection of encoder tokens to the patch dimension
self.proj_dec = nn.Linear(self.in_channels, self.embed_dim)
self._init_weights(self.proj_dec)
def _init_weights(self, m: nn.Module):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def adapt_tokens(self, encoder_tokens: Tensor, input_info: Dict):
# Adapt tokens
x = []
for task in self.main_tasks:
start_idx = input_info["tasks"][task]["start_idx"]
end_idx = input_info["tasks"][task]["end_idx"]
x.append(encoder_tokens[:, start_idx:end_idx])
x = torch.cat(x, dim=-1)
return x
def forward(self, encoder_tokens: Tensor, input_info: Dict) -> Tensor:
H, W = input_info["image_size"]
N_H, N_W = H // self.patch_size, W // self.patch_size
x = self.adapt_tokens(encoder_tokens, input_info)
x = self.proj_dec(x)
x = rearrange(
x,
"b n (p c) -> b (n p) c",
n=N_H * N_W,
p=self.preds_per_patch,
c=self.class_dim,
)
x = rearrange(
x,
"b (nh nw ph pw) c -> b c (nh ph) (nw pw)",
nh=N_H,
nw=N_W,
ph=int(self.preds_per_patch**0.5),
pw=int(self.preds_per_patch**0.5),
)
x = self.blocks(x)
# for block in self.blocks:
# x = block(x)
# print(x.shape)
# print(x.shape)
x = self.final_layer_1(x)
# print(x.shape)
x = self.final_layer_2(x)
# print(x.shape)
x = self.final_layer(x)
# print(x.shape)
# Interpolate to sod res
# x = F.interpolate(x, size=(H, W), mode=self.interpolate_mode)
return x
class Attention(nn.Module):
def __init__(
self,
dim: int,
num_heads=8,
qkv_bias=False,
attn_drop=0.0,
proj_drop=0.0,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x: Tensor) -> Tensor:
B, N, C = x.shape
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Mlp(nn.Module):
def __init__(
self,
in_features: int,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
act_layer: nn.Module = nn.GELU,
drop: float = 0.0,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x: Tensor) -> Tensor:
x = self.fc1(x)
x = self.act(x)
# x = self.drop(x)
# commit this for the orignal BERT implement
x = self.fc2(x)
x = self.drop(x)
return x
class Block(nn.Module):
def __init__(
self,
dim: int,
num_heads: int,
mlp_ratio=4.0,
qkv_bias=False,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=drop,
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
def forward(self, x: Tensor) -> Tensor:
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class MultiMAE(nn.Module):
"""MultiMAE: Multi-task Multi-modal Masked Autoencoder
This module performs masking in its forward pass.
The MultiViT module defined below inherits from this module and performs a regular forward pass,
and should be used instead for downstream tasks
:param input_adapters: Dictionary of task -> input adapters
:param output_adapters: Optional dictionary of task -> output adapters
:param num_global_tokens: Number of additional global tokens to add (like cls tokens), default is 1
:param dim_tokens: Dimension of encoder tokens
:param depth: Depth of encoder
:param num_heads: Number of attention heads
:param mlp_ratio: MLP hidden dim ratio
:param qkv_bias: Set to False to disable bias
:param drop_rate: Dropout after MLPs and Attention
:param attn_drop_rate: Attention matrix drop rate
:param drop_path_rate: DropPath drop rate
:param norm_layer: Type of normalization layer
"""
def __init__(
self,
input_adapters: Dict[str, PatchedInputAdapter],
output_adapters: Dict[str, ConvNeXtAdapter],
num_global_tokens: int = 1,
dim_tokens: int = 768,
depth: int = 12,
num_heads: int = 12,
mlp_ratio: float = 4.0,
qkv_bias: bool = True,
drop_rate: float = 0.0,
attn_drop_rate: float = 0.0,
drop_path_rate: float = 0.0,
norm_layer: nn.Module = partial(nn.LayerNorm, eps=1e-6),
freeze_encoder: bool = False,
num_additional_gt_tokens: int = 0, # @deprecated
actual_num_additional_gt_tokens: int = 0, # @deprecated
learnable_additional_gt_tokens: bool = False,
additional_gt_tokens_mlp_channels: List[int] = [],
ground_truth_version: int = -1,
A: float = 0.5,
):
super().__init__()
self.dim_tokens = dim_tokens
self.ground_truth_version = ground_truth_version
# Initialize input and output adapters
for adapter in input_adapters.values():
adapter.init(dim_tokens=dim_tokens)
self.input_adapters = nn.ModuleDict(input_adapters)
for adapter in output_adapters.values():
adapter.init(dim_tokens_enc=dim_tokens)
self.output_adapters = nn.ModuleDict(output_adapters)
# Additional learnable tokens that can be used by encoder to process/store global information
self.num_global_tokens = num_global_tokens
self.global_tokens = nn.Parameter(torch.zeros(1, num_global_tokens, dim_tokens))
trunc_normal_(self.global_tokens, std=0.02)
self.num_additional_gt_tokens = num_additional_gt_tokens # @deprecated
self.actual_num_additional_gt_tokens = (
actual_num_additional_gt_tokens # @deprecated
)
self.A = A
self.additional_gt_tokens_mlp_channels = additional_gt_tokens_mlp_channels
self.learnable_additional_gt_tokens = learnable_additional_gt_tokens
self.init_gt_tokens()
# Transformer encoder
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, depth)
] # stochastic depth decay rule
self.encoder = nn.Sequential(
*[
Block(
dim=dim_tokens,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
)
for i in range(depth)
]
)
print(f"Encoder {count_parameters(self.encoder)}")
if freeze_encoder:
print("Freeze encoder")
for param in self.encoder.parameters():
param.requires_grad = False
self.apply(self._init_weights)
for name, m in self.named_modules():
if isinstance(m, nn.Linear):
if "qkv" in name:
# treat the weights of Q, K, V separately
val = math.sqrt(
6.0 / float(m.weight.shape[0] // 3 + m.weight.shape[1])
)
nn.init.uniform_(m.weight, -val, val)
elif "kv" in name:
# treat the weights of K, V separately
val = math.sqrt(
6.0 / float(m.weight.shape[0] // 2 + m.weight.shape[1])
)
nn.init.uniform_(m.weight, -val, val)
if isinstance(m, nn.Conv2d):
if ".proj" in name:
# From MAE, initialize projection like nn.Linear (instead of nn.Conv2d)
w = m.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
print(f"Total params: {count_parameters(self)}")
def init_gt_tokens(self):
"""Just prepare beforehand to save time in training
In inference, there is no need"""
addtional_gt_tokens: List[Tensor] = []
if self.num_additional_gt_tokens == 0:
self.token_mlp = nn.Identity()
return
if len(self.additional_gt_tokens_mlp_channels) > 0:
self.token_mlp = MLP(
self.dim_tokens,
self.additional_gt_tokens_mlp_channels + [self.dim_tokens],
)
else:
self.token_mlp = nn.Identity()
if self.ground_truth_version != 6:
T = 1 / (self.num_additional_gt_tokens * 4)
for i in range(self.actual_num_additional_gt_tokens):
t = [
2 * math.pi * (offset / self.dim_tokens - i * T)
for offset in range(self.dim_tokens)
]
addtional_gt_tokens.append(
nn.Parameter(
self.A * torch.cos(Tensor(t).unsqueeze(0).unsqueeze(0)),
requires_grad=self.learnable_additional_gt_tokens,
)
)
self.addtional_gt_tokens = nn.ParameterList(addtional_gt_tokens)
def _init_weights(self, m: nn.Module) -> None:
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
no_wd_set = {"global_tokens"}
for task, adapter in self.input_adapters.items():
if hasattr(adapter, "no_weight_decay"):
to_skip = adapter.no_weight_decay()
to_skip = set([f"input_adapters.{task}.{name}" for name in to_skip])
no_wd_set = no_wd_set | to_skip
for task, adapter in self.output_adapters.items():
if hasattr(adapter, "no_weight_decay"):
to_skip = adapter.no_weight_decay()
to_skip = set([f"output_adapters.{task}.{name}" for name in to_skip])
no_wd_set = no_wd_set | to_skip
return no_wd_set
def generate_input_info(
self, input_task_tokens: Dict[str, Tensor], image_size: Tuple[int, int]
) -> Dict[str, Tensor]:
input_info = OrderedDict()
i = 0
input_info["tasks"] = {}
for domain, tensor in input_task_tokens.items():
num_tokens: Union[int, Tensor] = tensor.shape[1]
if type(num_tokens) == Tensor:
num_tokens = num_tokens.item()
d = {
"num_tokens": num_tokens,
"has_2d_posemb": True,
"start_idx": i,
"end_idx": i + num_tokens,
}
i += num_tokens
input_info["tasks"][domain] = d
input_info["image_size"] = image_size
input_info["num_task_tokens"] = i
input_info["num_global_tokens"] = self.num_global_tokens
return input_info
class MultiViT(MultiMAE):
def extract_B_H_W(self, x: Dict[str, Tensor]) -> Tuple[int, int, int]:
# If input x is a Tensor, assume it's RGB
# x = {'rgb': x} if isinstance(x, Tensor) else x
# Need image size for tokens->image reconstruction
if "rgb" in x:
B, _, H, W = x["rgb"].shape
elif "sod" in x:
B, H, W = x["sod"].shape
H *= self.input_adapters["sod"].stride_level
W *= self.input_adapters["sod"].stride_level
else:
B, _, H, W = list(x.values())[0].shape
return B, H, W
def process_input(
self,
x: Dict[str, Tensor],
gt_index_lst: List[int],
num_gts_lst: List[int],
) -> Tuple[Tensor, Dict[str, Tensor]]:
"""
len(gt_i) must equal to x.shape[0] when self.num_additional_gt_tokens > 0
"""
B, H, W = self.extract_B_H_W(x)
# Encode selected inputs to tokens
input_task_tokens: Dict[str, Tensor] = {
domain: self.input_adapters[domain](tensor)
for domain, tensor in x.items()
if domain in self.input_adapters
}
input_info = self.generate_input_info(
input_task_tokens=input_task_tokens, image_size=(H, W)
)
input_tokens = torch.cat(
[task_tokens for task_tokens in input_task_tokens.values()], dim=1
)
# Add global tokens to input tokens
global_tokens = repeat(self.global_tokens, "() n d -> b n d", b=B)
if self.ground_truth_version == 6:
# We need two inputs: gt_index, num_gts
assert len(gt_index_lst) == len(num_gts_lst)
additional_gt_tokens = []
for gt_index, num_gts in zip(gt_index_lst, num_gts_lst):
T = 1 / num_gts
i = gt_index
t = [
2 * math.pi * (offset / self.dim_tokens - i * T)
for offset in range(self.dim_tokens)
]
additional_gt_token = self.A * torch.cos(
Tensor(t).unsqueeze(0).unsqueeze(0)
)
additional_gt_tokens.append(additional_gt_token)
additional_gt_tokens = torch.cat(additional_gt_tokens, dim=0).to(
input_tokens.device
)
additional_gt_tokens = self.token_mlp(additional_gt_tokens)
input_tokens = torch.cat(
[input_tokens, global_tokens, additional_gt_tokens], dim=1
)
else:
if self.num_additional_gt_tokens > 0:
assert gt_index_lst is not None and len(gt_index_lst) == B
additional_gt_tokens: Tensor = torch.cat(
[self.addtional_gt_tokens[gt_i] for gt_i in gt_index_lst], dim=0
)
additional_gt_tokens = self.token_mlp(additional_gt_tokens)
input_tokens = torch.cat(
[input_tokens, global_tokens, additional_gt_tokens], dim=1
)
else:
input_tokens = torch.cat([input_tokens, global_tokens], dim=1)
return input_tokens, input_info
def forward(
self,
x: Dict[str, Tensor],
gt_index_lst: Optional[List[int]] = None,
max_gts_lst: Optional[List[int]] = None,
) -> Dict[str, Tensor]:
"""
Forward pass through input adapters, transformer encoder and output adapters.
:param x: Dictionary of tensors
:param outputs: List of outputs. For ex: outputs=['sod', 'depth']. Make sure 'sod' placed first!
"""
input_tokens, input_info = self.process_input(x, gt_index_lst, max_gts_lst)
# Pass tokens through Transformer
encoder_tokens = self.encoder(input_tokens)
# Decode tokens for each task using task-specific output adapters
preds = {
domain: self.output_adapters[domain](
encoder_tokens=encoder_tokens,
input_info=input_info,
)
for domain in self.output_adapters
}
return preds
def interpolate_pos_embed_multimae(
model: MultiViT,
checkpoint_model: Dict[str, Tensor],
) -> None:
pattern = "input_adapters\.(.*)\.pos_emb"
matched_keys = [k for k in checkpoint_model if bool(re.match(pattern, k))]
for key in matched_keys:
domain = re.match(pattern, key).group(1) # group(0) is entire matched regex
if getattr(model.input_adapters, domain, None) is not None:
pos_embed_checkpoint = checkpoint_model[key]
_, _, orig_H, orig_W = pos_embed_checkpoint.shape
_, _, new_H, new_W = getattr(model.input_adapters, domain).pos_emb.shape
if (orig_H != new_H) or (orig_W != new_W):
print(
f"Key {key}: Position interpolate from {orig_H}x{orig_W} to {new_H}x{new_W}"
)
pos_embed_checkpoint = torch.nn.functional.interpolate(
pos_embed_checkpoint,
size=(new_H, new_W),
mode="bicubic",
align_corners=False,
)
checkpoint_model[key] = pos_embed_checkpoint
def construct_adapters(cfg: base_cfg):
INPUT_ADAPTERS = {
"rgb": PatchedInputAdapter(
num_channels=3,
stride_level=1,
patch_size_full=cfg.input_patch_size,
image_size=cfg.image_size,
learnable_pos_emb=cfg.learnable_pos_emb,
),
"depth": PatchedInputAdapter(
num_channels=1,
stride_level=1,
patch_size_full=cfg.input_patch_size,
image_size=cfg.image_size,
learnable_pos_emb=cfg.learnable_pos_emb,
),
}
num_classes = cfg.num_classes
if cfg.ground_truth_version in [5, 6]:
num_classes = 1
OUTPUT_ADAPTERS = {
"sod": partial(
ConvNeXtAdapter,
num_classes=num_classes,
image_size=cfg.image_size,
embed_dim=cfg.embed_dim,
patch_size=cfg.input_patch_size,
preds_per_patch=cfg.output_patch_size,
depth=cfg.decoder_depth,
interpolate_mode=cfg.decoder_interpolate_mode,
main_tasks=cfg.decoder_main_tasks,
act_fn=cfg.act_fn,
dec_kernel=cfg.dec_kernel,
),
"rgb": partial(
ConvNeXtAdapter,
num_classes=3,
image_size=cfg.image_size,
embed_dim=cfg.embed_dim,
patch_size=cfg.input_patch_size,
preds_per_patch=cfg.output_patch_size,
depth=cfg.decoder_depth,
interpolate_mode=cfg.decoder_interpolate_mode,
main_tasks=cfg.decoder_main_tasks,
act_fn=cfg.act_fn,
dec_kernel=cfg.dec_kernel,
),
"depth": partial(
ConvNeXtAdapter,
num_classes=1,
image_size=cfg.image_size,
embed_dim=cfg.embed_dim,
patch_size=cfg.input_patch_size,
preds_per_patch=cfg.output_patch_size,
depth=cfg.decoder_depth,
interpolate_mode=cfg.decoder_interpolate_mode,
main_tasks=cfg.decoder_main_tasks,
act_fn=cfg.act_fn,
dec_kernel=cfg.dec_kernel,
),
}
if cfg.ground_truth_version == 3:
for i in range(cfg.num_classes):
OUTPUT_ADAPTERS[f"sod{i}"] = partial(
ConvNeXtAdapter,
num_classes=1,
image_size=cfg.image_size,
embed_dim=cfg.embed_dim,
patch_size=cfg.input_patch_size,
preds_per_patch=cfg.output_patch_size,
depth=cfg.decoder_depth,
interpolate_mode=cfg.decoder_interpolate_mode,
main_tasks=cfg.decoder_main_tasks,
act_fn=cfg.act_fn,
dec_kernel=cfg.dec_kernel,
)
return INPUT_ADAPTERS, OUTPUT_ADAPTERS
def generate_smultimae_model(cfg: base_cfg) -> Tuple[MultiViT, List[Dict]]:
"""MULTIMAE"""
assert len(cfg.decoder_main_tasks) == len(
cfg.outputs
), "Length of decoder main tasks must match length of outputs"
INPUT_ADAPTERS, OUTPUT_ADAPTERS = construct_adapters(cfg)
input_adapters = dict()
for input_key in cfg.inputs:
input_adapters[input_key] = INPUT_ADAPTERS[input_key]
output_adapters = dict()
for output_key, decoder_main_tasks_per_output in zip(
cfg.outputs, cfg.decoder_main_tasks
):
output_adapters[output_key] = OUTPUT_ADAPTERS[output_key](
main_tasks=decoder_main_tasks_per_output
)
num_additional_gt_tokens = 0 # @deprecated
actual_num_additional_gt_tokens = 0 # @deprecated
if cfg.ground_truth_version in [5, 6]: # @deprecated
num_additional_gt_tokens = cfg.num_classes # @deprecated
actual_num_additional_gt_tokens = cfg.actual_num_classes # @deprecated
model = MultiViT(
input_adapters=input_adapters,
output_adapters=output_adapters,
freeze_encoder=cfg.freeze_encoder,
drop_path_rate=0.1,
dim_tokens=cfg.dim_tokens,
depth=cfg.encoder_depth,
num_heads=cfg.num_heads,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
num_additional_gt_tokens=num_additional_gt_tokens, # @deprecated
actual_num_additional_gt_tokens=actual_num_additional_gt_tokens, # @deprecated
ground_truth_version=cfg.ground_truth_version,
)
# return load_pretrained_backbone(cfg, model)
return model, []
|