File size: 33,975 Bytes
6e9c433
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
import math
import re
from collections import OrderedDict
from functools import partial
from typing import Dict, Iterable, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from torchvision.ops import MLP
from einops import rearrange, repeat
from torch import Tensor, nn

from definition import PRETRAINED_BACKBONE
from ..configs.base_config import base_cfg
from ..utils import count_parameters
from .components import (
    build_2d_sincos_posemb,
    drop_path,
    pair,
    trunc_normal_,
)


class PatchedInputAdapter(nn.Module):
    """Adapter for spatial inputs, like images or feature maps.
    Creates tokens from patches over the image.

    :param num_channels: Number of input channels of the image/feature map
    :param stride_level: Stride level compared to the full-sized image.
        E.g. 4 for 1/4th the size of the image.
    :param patch_size_full: Int or tuple of the patch size over the full image size.
        Patch size for smaller inputs will be computed accordingly.
    :param dim_tokens: Dimension of output tokens. Can be set using init method.
    :param sincos_pos_emb: Set to True (default) to use fixed 2D sin-cos positional embeddings
    :param learnable_pos_emb: Set to True to learn positional embeddings instead
    :param image_size: Default image size. Used to initialize size of positional embeddings.
    """

    def __init__(
        self,
        num_channels: int,
        stride_level: int,
        patch_size_full: Union[int, Tuple[int, int]],
        dim_tokens: Optional[int] = None,
        sincos_pos_emb: bool = True,
        learnable_pos_emb: bool = False,
        image_size: Union[int, Tuple[int]] = 224,
    ):
        super().__init__()
        self.num_channels = num_channels
        self.stride_level = stride_level
        self.patch_size_full = pair(patch_size_full)
        self.dim_tokens = dim_tokens
        self.sincos_pos_emb = sincos_pos_emb
        self.learnable_pos_emb = learnable_pos_emb
        self.image_size = pair(image_size)
        self.num_patches = (self.image_size[0] // patch_size_full) * (
            self.image_size[1] // patch_size_full
        )

        # Actual patch height and width, taking into account stride of input
        self.P_H = max(1, self.patch_size_full[0] // stride_level)
        self.P_W = max(1, self.patch_size_full[1] // stride_level)

        if self.dim_tokens is not None:
            self.init(dim_tokens=dim_tokens)

    def init(self, dim_tokens: int = 768):
        """
        Initialize parts of encoder that are dependent on dimension of tokens.
        Should be called when setting up MultiMAE.

        :param dim_tokens: Dimension of tokens
        """
        self.dim_tokens = dim_tokens

        # Task embedding identifying from which task a given token comes from
        # Fixed-size positional embeddings. Can be interpolated to different input sizes
        h_posemb = self.image_size[0] // (self.stride_level * self.P_H)
        w_posemb = self.image_size[1] // (self.stride_level * self.P_W)
        if self.sincos_pos_emb:
            self.pos_emb = build_2d_sincos_posemb(
                h=h_posemb, w=w_posemb, embed_dim=self.dim_tokens
            )
            self.pos_emb = nn.Parameter(
                self.pos_emb, requires_grad=self.learnable_pos_emb
            )
        else:
            self.pos_emb = nn.Parameter(
                torch.zeros(1, self.dim_tokens, h_posemb, w_posemb)
            )
            trunc_normal_(self.pos_emb, std=0.02)

        # Image -> tokens projection
        self.proj = nn.Conv2d(
            in_channels=self.num_channels,
            out_channels=self.dim_tokens,
            kernel_size=(self.P_H, self.P_W),
            stride=(self.P_H, self.P_W),
        )

    @torch.jit.ignore
    def no_weight_decay(self):
        return {"pos_emb"}

    def forward(self, x: Tensor) -> Tensor:
        """
        Forward pass through input adapter, transforming image to sequence of tokens.
        Adds task and positional encodings.

        :param x: Input image tensor
        """
        B, C, H, W = x.shape
        assert (
            self.dim_tokens is not None
        ), "Need to call init(dim_tokens) function first"
        assert (H % self.P_H == 0) and (
            W % self.P_W == 0
        ), f"Image sizes {H}x{W} must be divisible by patch sizes {self.P_H}x{self.P_W}"
        N_H, N_W = H // self.P_H, W // self.P_W  # Number of patches in height and width

        # Create patches [B, C, H, W] -> [B, (H*W), C]
        projected_x = self.proj(x)
        x_patch = rearrange(projected_x, "b d nh nw -> b (nh nw) d")

        # Create positional embedding
        x_pos_emb = F.interpolate(
            self.pos_emb, size=(N_H, N_W), mode="bicubic", align_corners=False
        )
        x_pos_emb = rearrange(x_pos_emb, "b d nh nw -> b (nh nw) d")

        # Add patches and positional embeddings
        x = x_patch + x_pos_emb

        return x


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks)."""

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x: Tensor) -> Tensor:
        return drop_path(x, self.drop_prob, self.training)

    def extra_repr(self) -> str:
        return "p={}".format(self.drop_prob)


class ConvNeXtBlock(nn.Module):
    r"""ConvNeXt Block. There are two equivalent implementations:
    (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
    (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
    We use (2) as we find it slightly faster in PyTorch

    Args:
        dim (int): Number of input channels.
        drop_path: Stochastic depth rate. Default: 0.0
        layer_scale_init_value (float): Init value for Layer Scale. Default: 0 (disabled for isotropic ConvNeXt).

    Code from: https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py
    """

    def __init__(self, dim, drop_path=0.0, layer_scale_init_value=0.0):
        super().__init__()
        self.dwconv = nn.Conv2d(
            dim, dim, kernel_size=7, padding=3, groups=dim
        )  # depthwise conv
        self.norm = nn.LayerNorm(dim, eps=1e-6)
        self.pwconv1 = nn.Linear(
            dim, 4 * dim
        )  # pointwise/1x1 convs, implemented with linear layers
        self.act = nn.GELU()
        self.pwconv2 = nn.Linear(4 * dim, dim)
        self.gamma = (
            nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
            if layer_scale_init_value > 0
            else None
        )
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

    def forward(self, x: Tensor) -> Tensor:
        input = x
        x = self.dwconv(x)
        x = x.permute(0, 2, 3, 1)  # (N, C, H, W) -> (N, H, W, C)
        x = self.norm(x)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.pwconv2(x)
        if self.gamma is not None:
            x = self.gamma * x
        x = x.permute(0, 3, 1, 2)  # (N, H, W, C) -> (N, C, H, W)

        x = input + self.drop_path(x)
        return x


class ConvNeXtAdapter(nn.Module):
    """Output adapter with ConvNext blocks for semantic segmentation

    :param num_classes: Number of classes
    :param num_heads: Number of attention heads
    :param embed_dim: Token dimension after projection, and before reshaping operation.
    :param preds_per_patch: Increases size of feature map by reshaping each patch  Each patch gets reshaped
        from embed_dim x 1 x 1 to (embed_dim / preds_per_patch) x (preds_per_patch ** 0.5) x (preds_per_patch ** 0.5)
    :param main_tasks: Tasks to use for the adapter. Only tokens coming from these tasks are kept.
    :param patch_size: Size of patches
    :param depth: Number of ConvNeXt blocks
    :interpolate_mode: Interpolation mode for final upsampling
    """

    def __init__(
        self,
        image_size: int,
        num_classes: int,
        embed_dim: int = 6144,
        preds_per_patch: int = 16,
        main_tasks: Iterable[str] = ("rgb",),
        patch_size: int = 16,
        depth: int = 4,
        interpolate_mode: str = "bilinear",
        act_fn: nn.Module = nn.GELU,
        dec_kernel: int = 1,
    ):
        super().__init__()
        self.main_tasks = main_tasks
        self.patch_size = patch_size
        self.embed_dim = embed_dim
        self.preds_per_patch = preds_per_patch
        self.class_dim = embed_dim // preds_per_patch
        self.num_classes = num_classes
        self.interpolate_mode = interpolate_mode
        self.image_size = image_size

        self.blocks = nn.Sequential(
            *[ConvNeXtBlock(dim=self.class_dim) for _ in range(depth)]
        )
        if dec_kernel == 1:
            self.final_layer_1 = nn.Sequential(
                nn.Conv2d(self.class_dim, self.class_dim // 4, 1),
                nn.BatchNorm2d(self.class_dim // 4),
                act_fn(),
                nn.Upsample(scale_factor=2, mode=self.interpolate_mode),
            )

            self.final_layer_2 = nn.Sequential(
                nn.Conv2d(self.class_dim // 4, self.class_dim // 16, 1),
                nn.BatchNorm2d(self.class_dim // 16),
                act_fn(),
                nn.Upsample(size=image_size, mode=self.interpolate_mode),
            )

            self.final_layer = nn.Conv2d(self.class_dim // 16, self.num_classes, 1)
        elif dec_kernel == 3:
            self.final_layer_1 = nn.Sequential(
                nn.Conv2d(
                    self.class_dim,
                    self.class_dim // 4,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                ),
                nn.BatchNorm2d(self.class_dim // 4),
                act_fn(),
                nn.Upsample(scale_factor=2, mode=self.interpolate_mode),
            )

            self.final_layer_2 = nn.Sequential(
                nn.Conv2d(
                    self.class_dim // 4,
                    self.class_dim // 16,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                ),
                nn.BatchNorm2d(self.class_dim // 16),
                act_fn(),
                nn.Upsample(size=image_size, mode=self.interpolate_mode),
            )

            self.final_layer = nn.Conv2d(
                self.class_dim // 16,
                self.num_classes,
                kernel_size=3,
                stride=1,
                padding=1,
            )
        else:
            raise Exception(f"Unsupported dec_kernel {dec_kernel}")

        self.apply(self._init_weights)

    def init(self, dim_tokens_enc: int = 768):
        """
        Initialize parts of decoder that are dependent on dimension of encoder tokens.
        Should be called when setting up MultiMAE.

        :param dim_tokens_enc: Dimension of tokens coming from encoder
        """
        self.in_channels = dim_tokens_enc * len(self.main_tasks)

        # Projection of encoder tokens to the patch dimension
        self.proj_dec = nn.Linear(self.in_channels, self.embed_dim)
        self._init_weights(self.proj_dec)

    def _init_weights(self, m: nn.Module):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=0.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def adapt_tokens(self, encoder_tokens: Tensor, input_info: Dict):
        # Adapt tokens
        x = []
        for task in self.main_tasks:
            start_idx = input_info["tasks"][task]["start_idx"]
            end_idx = input_info["tasks"][task]["end_idx"]
            x.append(encoder_tokens[:, start_idx:end_idx])

        x = torch.cat(x, dim=-1)
        return x

    def forward(self, encoder_tokens: Tensor, input_info: Dict) -> Tensor:
        H, W = input_info["image_size"]
        N_H, N_W = H // self.patch_size, W // self.patch_size

        x = self.adapt_tokens(encoder_tokens, input_info)

        x = self.proj_dec(x)
        x = rearrange(
            x,
            "b n (p c) -> b (n p) c",
            n=N_H * N_W,
            p=self.preds_per_patch,
            c=self.class_dim,
        )
        x = rearrange(
            x,
            "b (nh nw ph pw) c -> b c (nh ph) (nw pw)",
            nh=N_H,
            nw=N_W,
            ph=int(self.preds_per_patch**0.5),
            pw=int(self.preds_per_patch**0.5),
        )

        x = self.blocks(x)

        # for block in self.blocks:
        #     x = block(x)
        #     print(x.shape)

        # print(x.shape)
        x = self.final_layer_1(x)
        # print(x.shape)
        x = self.final_layer_2(x)
        # print(x.shape)
        x = self.final_layer(x)
        # print(x.shape)

        # Interpolate to sod res
        # x = F.interpolate(x, size=(H, W), mode=self.interpolate_mode)

        return x


class Attention(nn.Module):
    def __init__(
        self,
        dim: int,
        num_heads=8,
        qkv_bias=False,
        attn_drop=0.0,
        proj_drop=0.0,
    ):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim**-0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x: Tensor) -> Tensor:
        B, N, C = x.shape
        qkv = (
            self.qkv(x)
            .reshape(B, N, 3, self.num_heads, C // self.num_heads)
            .permute(2, 0, 3, 1, 4)
        )
        q, k, v = qkv.unbind(0)  # make torchscript happy (cannot use tensor as tuple)

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Mlp(nn.Module):
    def __init__(
        self,
        in_features: int,
        hidden_features: Optional[int] = None,
        out_features: Optional[int] = None,
        act_layer: nn.Module = nn.GELU,
        drop: float = 0.0,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x: Tensor) -> Tensor:
        x = self.fc1(x)
        x = self.act(x)
        # x = self.drop(x)
        # commit this for the orignal BERT implement
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Block(nn.Module):
    def __init__(
        self,
        dim: int,
        num_heads: int,
        mlp_ratio=4.0,
        qkv_bias=False,
        drop=0.0,
        attn_drop=0.0,
        drop_path=0.0,
        act_layer=nn.GELU,
        norm_layer=nn.LayerNorm,
    ):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=drop,
        )
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=drop,
        )

    def forward(self, x: Tensor) -> Tensor:
        x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class MultiMAE(nn.Module):
    """MultiMAE: Multi-task Multi-modal Masked Autoencoder
    This module performs masking in its forward pass.
    The MultiViT module defined below inherits from this module and performs a regular forward pass,
    and should be used instead for downstream tasks


    :param input_adapters: Dictionary of task -> input adapters
    :param output_adapters: Optional dictionary of task -> output adapters

    :param num_global_tokens: Number of additional global tokens to add (like cls tokens), default is 1
    :param dim_tokens: Dimension of encoder tokens
    :param depth: Depth of encoder
    :param num_heads: Number of attention heads
    :param mlp_ratio: MLP hidden dim ratio
    :param qkv_bias: Set to False to disable bias
    :param drop_rate: Dropout after MLPs and Attention
    :param attn_drop_rate: Attention matrix drop rate
    :param drop_path_rate: DropPath drop rate
    :param norm_layer: Type of normalization layer
    """

    def __init__(
        self,
        input_adapters: Dict[str, PatchedInputAdapter],
        output_adapters: Dict[str, ConvNeXtAdapter],
        num_global_tokens: int = 1,
        dim_tokens: int = 768,
        depth: int = 12,
        num_heads: int = 12,
        mlp_ratio: float = 4.0,
        qkv_bias: bool = True,
        drop_rate: float = 0.0,
        attn_drop_rate: float = 0.0,
        drop_path_rate: float = 0.0,
        norm_layer: nn.Module = partial(nn.LayerNorm, eps=1e-6),
        freeze_encoder: bool = False,
        num_additional_gt_tokens: int = 0,  # @deprecated
        actual_num_additional_gt_tokens: int = 0,  # @deprecated
        learnable_additional_gt_tokens: bool = False,
        additional_gt_tokens_mlp_channels: List[int] = [],
        ground_truth_version: int = -1,
        A: float = 0.5,
    ):
        super().__init__()
        self.dim_tokens = dim_tokens
        self.ground_truth_version = ground_truth_version
        # Initialize input and output adapters
        for adapter in input_adapters.values():
            adapter.init(dim_tokens=dim_tokens)
        self.input_adapters = nn.ModuleDict(input_adapters)
        for adapter in output_adapters.values():
            adapter.init(dim_tokens_enc=dim_tokens)
        self.output_adapters = nn.ModuleDict(output_adapters)

        # Additional learnable tokens that can be used by encoder to process/store global information
        self.num_global_tokens = num_global_tokens
        self.global_tokens = nn.Parameter(torch.zeros(1, num_global_tokens, dim_tokens))
        trunc_normal_(self.global_tokens, std=0.02)

        self.num_additional_gt_tokens = num_additional_gt_tokens  # @deprecated
        self.actual_num_additional_gt_tokens = (
            actual_num_additional_gt_tokens  # @deprecated
        )
        self.A = A
        self.additional_gt_tokens_mlp_channels = additional_gt_tokens_mlp_channels
        self.learnable_additional_gt_tokens = learnable_additional_gt_tokens
        self.init_gt_tokens()

        # Transformer encoder
        dpr = [
            x.item() for x in torch.linspace(0, drop_path_rate, depth)
        ]  # stochastic depth decay rule
        self.encoder = nn.Sequential(
            *[
                Block(
                    dim=dim_tokens,
                    num_heads=num_heads,
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    drop=drop_rate,
                    attn_drop=attn_drop_rate,
                    drop_path=dpr[i],
                    norm_layer=norm_layer,
                )
                for i in range(depth)
            ]
        )

        print(f"Encoder {count_parameters(self.encoder)}")

        if freeze_encoder:
            print("Freeze encoder")
            for param in self.encoder.parameters():
                param.requires_grad = False

        self.apply(self._init_weights)
        for name, m in self.named_modules():
            if isinstance(m, nn.Linear):
                if "qkv" in name:
                    # treat the weights of Q, K, V separately
                    val = math.sqrt(
                        6.0 / float(m.weight.shape[0] // 3 + m.weight.shape[1])
                    )
                    nn.init.uniform_(m.weight, -val, val)
                elif "kv" in name:
                    # treat the weights of K, V separately
                    val = math.sqrt(
                        6.0 / float(m.weight.shape[0] // 2 + m.weight.shape[1])
                    )
                    nn.init.uniform_(m.weight, -val, val)

            if isinstance(m, nn.Conv2d):
                if ".proj" in name:
                    # From MAE, initialize projection like nn.Linear (instead of nn.Conv2d)
                    w = m.weight.data
                    nn.init.xavier_uniform_(w.view([w.shape[0], -1]))

        print(f"Total params: {count_parameters(self)}")

    def init_gt_tokens(self):
        """Just prepare beforehand to save time in training
        In inference, there is no need"""
        addtional_gt_tokens: List[Tensor] = []
        if self.num_additional_gt_tokens == 0:
            self.token_mlp = nn.Identity()
            return
        if len(self.additional_gt_tokens_mlp_channels) > 0:
            self.token_mlp = MLP(
                self.dim_tokens,
                self.additional_gt_tokens_mlp_channels + [self.dim_tokens],
            )
        else:
            self.token_mlp = nn.Identity()

        if self.ground_truth_version != 6:
            T = 1 / (self.num_additional_gt_tokens * 4)
            for i in range(self.actual_num_additional_gt_tokens):
                t = [
                    2 * math.pi * (offset / self.dim_tokens - i * T)
                    for offset in range(self.dim_tokens)
                ]
                addtional_gt_tokens.append(
                    nn.Parameter(
                        self.A * torch.cos(Tensor(t).unsqueeze(0).unsqueeze(0)),
                        requires_grad=self.learnable_additional_gt_tokens,
                    )
                )
            self.addtional_gt_tokens = nn.ParameterList(addtional_gt_tokens)

    def _init_weights(self, m: nn.Module) -> None:
        if isinstance(m, nn.Linear):
            nn.init.xavier_uniform_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        no_wd_set = {"global_tokens"}

        for task, adapter in self.input_adapters.items():
            if hasattr(adapter, "no_weight_decay"):
                to_skip = adapter.no_weight_decay()
                to_skip = set([f"input_adapters.{task}.{name}" for name in to_skip])
                no_wd_set = no_wd_set | to_skip

        for task, adapter in self.output_adapters.items():
            if hasattr(adapter, "no_weight_decay"):
                to_skip = adapter.no_weight_decay()
                to_skip = set([f"output_adapters.{task}.{name}" for name in to_skip])
                no_wd_set = no_wd_set | to_skip

        return no_wd_set

    def generate_input_info(
        self, input_task_tokens: Dict[str, Tensor], image_size: Tuple[int, int]
    ) -> Dict[str, Tensor]:
        input_info = OrderedDict()
        i = 0
        input_info["tasks"] = {}
        for domain, tensor in input_task_tokens.items():
            num_tokens: Union[int, Tensor] = tensor.shape[1]

            if type(num_tokens) == Tensor:
                num_tokens = num_tokens.item()

            d = {
                "num_tokens": num_tokens,
                "has_2d_posemb": True,
                "start_idx": i,
                "end_idx": i + num_tokens,
            }
            i += num_tokens
            input_info["tasks"][domain] = d

        input_info["image_size"] = image_size
        input_info["num_task_tokens"] = i
        input_info["num_global_tokens"] = self.num_global_tokens

        return input_info


class MultiViT(MultiMAE):
    def extract_B_H_W(self, x: Dict[str, Tensor]) -> Tuple[int, int, int]:
        # If input x is a Tensor, assume it's RGB
        # x = {'rgb': x} if isinstance(x, Tensor) else x
        # Need image size for tokens->image reconstruction
        if "rgb" in x:
            B, _, H, W = x["rgb"].shape
        elif "sod" in x:
            B, H, W = x["sod"].shape
            H *= self.input_adapters["sod"].stride_level
            W *= self.input_adapters["sod"].stride_level
        else:
            B, _, H, W = list(x.values())[0].shape
        return B, H, W

    def process_input(
        self,
        x: Dict[str, Tensor],
        gt_index_lst: List[int],
        num_gts_lst: List[int],
    ) -> Tuple[Tensor, Dict[str, Tensor]]:
        """
        len(gt_i) must equal to x.shape[0] when self.num_additional_gt_tokens > 0
        """
        B, H, W = self.extract_B_H_W(x)

        # Encode selected inputs to tokens
        input_task_tokens: Dict[str, Tensor] = {
            domain: self.input_adapters[domain](tensor)
            for domain, tensor in x.items()
            if domain in self.input_adapters
        }

        input_info = self.generate_input_info(
            input_task_tokens=input_task_tokens, image_size=(H, W)
        )
        input_tokens = torch.cat(
            [task_tokens for task_tokens in input_task_tokens.values()], dim=1
        )

        # Add global tokens to input tokens
        global_tokens = repeat(self.global_tokens, "() n d -> b n d", b=B)

        if self.ground_truth_version == 6:
            # We need two inputs: gt_index, num_gts
            assert len(gt_index_lst) == len(num_gts_lst)
            additional_gt_tokens = []
            for gt_index, num_gts in zip(gt_index_lst, num_gts_lst):
                T = 1 / num_gts
                i = gt_index
                t = [
                    2 * math.pi * (offset / self.dim_tokens - i * T)
                    for offset in range(self.dim_tokens)
                ]
                additional_gt_token = self.A * torch.cos(
                    Tensor(t).unsqueeze(0).unsqueeze(0)
                )
                additional_gt_tokens.append(additional_gt_token)
            additional_gt_tokens = torch.cat(additional_gt_tokens, dim=0).to(
                input_tokens.device
            )
            additional_gt_tokens = self.token_mlp(additional_gt_tokens)
            input_tokens = torch.cat(
                [input_tokens, global_tokens, additional_gt_tokens], dim=1
            )
        else:
            if self.num_additional_gt_tokens > 0:

                assert gt_index_lst is not None and len(gt_index_lst) == B
                additional_gt_tokens: Tensor = torch.cat(
                    [self.addtional_gt_tokens[gt_i] for gt_i in gt_index_lst], dim=0
                )
                additional_gt_tokens = self.token_mlp(additional_gt_tokens)
                input_tokens = torch.cat(
                    [input_tokens, global_tokens, additional_gt_tokens], dim=1
                )
            else:
                input_tokens = torch.cat([input_tokens, global_tokens], dim=1)

        return input_tokens, input_info

    def forward(
        self,
        x: Dict[str, Tensor],
        gt_index_lst: Optional[List[int]] = None,
        max_gts_lst: Optional[List[int]] = None,
    ) -> Dict[str, Tensor]:
        """
        Forward pass through input adapters, transformer encoder and output adapters.

        :param x: Dictionary of tensors
        :param outputs: List of outputs. For ex: outputs=['sod', 'depth']. Make sure 'sod' placed first!
        """
        input_tokens, input_info = self.process_input(x, gt_index_lst, max_gts_lst)

        # Pass tokens through Transformer
        encoder_tokens = self.encoder(input_tokens)

        # Decode tokens for each task using task-specific output adapters
        preds = {
            domain: self.output_adapters[domain](
                encoder_tokens=encoder_tokens,
                input_info=input_info,
            )
            for domain in self.output_adapters
        }

        return preds


def interpolate_pos_embed_multimae(
    model: MultiViT,
    checkpoint_model: Dict[str, Tensor],
) -> None:
    pattern = "input_adapters\.(.*)\.pos_emb"
    matched_keys = [k for k in checkpoint_model if bool(re.match(pattern, k))]

    for key in matched_keys:
        domain = re.match(pattern, key).group(1)  # group(0) is entire matched regex
        if getattr(model.input_adapters, domain, None) is not None:
            pos_embed_checkpoint = checkpoint_model[key]
            _, _, orig_H, orig_W = pos_embed_checkpoint.shape
            _, _, new_H, new_W = getattr(model.input_adapters, domain).pos_emb.shape
            if (orig_H != new_H) or (orig_W != new_W):
                print(
                    f"Key {key}: Position interpolate from {orig_H}x{orig_W} to {new_H}x{new_W}"
                )
                pos_embed_checkpoint = torch.nn.functional.interpolate(
                    pos_embed_checkpoint,
                    size=(new_H, new_W),
                    mode="bicubic",
                    align_corners=False,
                )
                checkpoint_model[key] = pos_embed_checkpoint


def construct_adapters(cfg: base_cfg):
    INPUT_ADAPTERS = {
        "rgb": PatchedInputAdapter(
            num_channels=3,
            stride_level=1,
            patch_size_full=cfg.input_patch_size,
            image_size=cfg.image_size,
            learnable_pos_emb=cfg.learnable_pos_emb,
        ),
        "depth": PatchedInputAdapter(
            num_channels=1,
            stride_level=1,
            patch_size_full=cfg.input_patch_size,
            image_size=cfg.image_size,
            learnable_pos_emb=cfg.learnable_pos_emb,
        ),
    }

    num_classes = cfg.num_classes
    if cfg.ground_truth_version in [5, 6]:
        num_classes = 1

    OUTPUT_ADAPTERS = {
        "sod": partial(
            ConvNeXtAdapter,
            num_classes=num_classes,
            image_size=cfg.image_size,
            embed_dim=cfg.embed_dim,
            patch_size=cfg.input_patch_size,
            preds_per_patch=cfg.output_patch_size,
            depth=cfg.decoder_depth,
            interpolate_mode=cfg.decoder_interpolate_mode,
            main_tasks=cfg.decoder_main_tasks,
            act_fn=cfg.act_fn,
            dec_kernel=cfg.dec_kernel,
        ),
        "rgb": partial(
            ConvNeXtAdapter,
            num_classes=3,
            image_size=cfg.image_size,
            embed_dim=cfg.embed_dim,
            patch_size=cfg.input_patch_size,
            preds_per_patch=cfg.output_patch_size,
            depth=cfg.decoder_depth,
            interpolate_mode=cfg.decoder_interpolate_mode,
            main_tasks=cfg.decoder_main_tasks,
            act_fn=cfg.act_fn,
            dec_kernel=cfg.dec_kernel,
        ),
        "depth": partial(
            ConvNeXtAdapter,
            num_classes=1,
            image_size=cfg.image_size,
            embed_dim=cfg.embed_dim,
            patch_size=cfg.input_patch_size,
            preds_per_patch=cfg.output_patch_size,
            depth=cfg.decoder_depth,
            interpolate_mode=cfg.decoder_interpolate_mode,
            main_tasks=cfg.decoder_main_tasks,
            act_fn=cfg.act_fn,
            dec_kernel=cfg.dec_kernel,
        ),
    }

    if cfg.ground_truth_version == 3:
        for i in range(cfg.num_classes):
            OUTPUT_ADAPTERS[f"sod{i}"] = partial(
                ConvNeXtAdapter,
                num_classes=1,
                image_size=cfg.image_size,
                embed_dim=cfg.embed_dim,
                patch_size=cfg.input_patch_size,
                preds_per_patch=cfg.output_patch_size,
                depth=cfg.decoder_depth,
                interpolate_mode=cfg.decoder_interpolate_mode,
                main_tasks=cfg.decoder_main_tasks,
                act_fn=cfg.act_fn,
                dec_kernel=cfg.dec_kernel,
            )
    return INPUT_ADAPTERS, OUTPUT_ADAPTERS


def generate_smultimae_model(cfg: base_cfg) -> Tuple[MultiViT, List[Dict]]:
    """MULTIMAE"""
    assert len(cfg.decoder_main_tasks) == len(
        cfg.outputs
    ), "Length of decoder main tasks must match length of outputs"

    INPUT_ADAPTERS, OUTPUT_ADAPTERS = construct_adapters(cfg)

    input_adapters = dict()
    for input_key in cfg.inputs:
        input_adapters[input_key] = INPUT_ADAPTERS[input_key]

    output_adapters = dict()
    for output_key, decoder_main_tasks_per_output in zip(
        cfg.outputs, cfg.decoder_main_tasks
    ):
        output_adapters[output_key] = OUTPUT_ADAPTERS[output_key](
            main_tasks=decoder_main_tasks_per_output
        )

    num_additional_gt_tokens = 0  # @deprecated
    actual_num_additional_gt_tokens = 0  # @deprecated
    if cfg.ground_truth_version in [5, 6]:  # @deprecated
        num_additional_gt_tokens = cfg.num_classes  # @deprecated
        actual_num_additional_gt_tokens = cfg.actual_num_classes  # @deprecated
    model = MultiViT(
        input_adapters=input_adapters,
        output_adapters=output_adapters,
        freeze_encoder=cfg.freeze_encoder,
        drop_path_rate=0.1,
        dim_tokens=cfg.dim_tokens,
        depth=cfg.encoder_depth,
        num_heads=cfg.num_heads,
        mlp_ratio=4,
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        num_additional_gt_tokens=num_additional_gt_tokens,  # @deprecated
        actual_num_additional_gt_tokens=actual_num_additional_gt_tokens,  # @deprecated
        ground_truth_version=cfg.ground_truth_version,
    )

    # return load_pretrained_backbone(cfg, model)
    return model, []