Spaces:
Sleeping
Sleeping
File size: 6,389 Bytes
6e9c433 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
from PIL import Image
from glob import glob
import random
from typing import Dict, List
from torch import nn, Tensor
import os, shutil
import torch
import matplotlib.pyplot as plt
import numpy as np
import gc, cv2
from .visualizer import post_processing_depth
"""
This module should not depend on other s_multimae modules.
"""
num_format = "{:,}".format
def list_dirs(dir_root: str) -> List[str]:
return list(
sorted(
[
item
for item in os.listdir(dir_root)
if os.path.isdir(f"{dir_root}/{item}")
]
)
)
def clean_cache() -> None:
torch.cuda.empty_cache()
gc.collect()
def count_parameters(model: nn.Module) -> str:
"""Count the number of learnable parameters of a model"""
return num_format(sum(p.numel() for p in model.parameters() if p.requires_grad))
def ranking_gts_to_dict(
ranking_gts: List[np.ndarray | str],
) -> Dict[str, np.ndarray | str]:
"""
Return:
dict(
gt0=ranking_gts[0],
gt1=ranking_gts[1],
gt2=ranking_gts[2],
gt3=ranking_gts[3],
gt4=ranking_gts[4],
)
"""
return {f"gt{i}": v for i, v in enumerate(ranking_gts)}
def dict_to_ranking_gts(d: Dict[str, np.ndarray], l=5) -> List[np.ndarray]:
"""
Return: [ranking_gts["gt0"], ranking_gts["gt1"], ...]
"""
return [d[f"gt{i}"] for i in range(l)]
def random_choice(p: float) -> bool:
"""Return True if random float <= p"""
return random.random() <= p
def fname_without_ext(p: str) -> str:
return os.path.splitext(os.path.basename(p))[0]
def list_files(
dirpaths: List[str] = [
"datasets/v1/train/RGB",
"datasets/v1/train/GT",
"datasets/v1/train/depths",
],
) -> List[List[str]]:
assert len(dirpaths) >= 1, "dirnames must contain at least 1 item"
fullpaths_lst: List[List[str]] = []
names_lst: List[List[str]] = []
for dirname in dirpaths:
fullpaths = list(sorted(glob(os.path.join(dirname, "*"))))
names = [fname_without_ext(fullpath) for fullpath in fullpaths]
fullpaths_lst.append(fullpaths)
names_lst.append(names)
rs: List[List[str]] = [fullpaths_lst[0]] + [[] for _ in range(len(dirpaths) - 1)]
# Ensure integrity
assert (
len(set([len(e) for e in names_lst])) == 1
), f"Data is not integrity {[len(e) for e in names_lst]} | dirpath = {dirpaths}"
for name in names_lst[0]:
for i, names in enumerate(names_lst[1:]):
idx = names.index(name)
rs[i + 1].append(fullpaths_lst[i + 1][idx])
return rs
def scale_saliency_maps(inputs: Tensor) -> Tensor:
"""Input: Tensor, shape of (B, C, H, W)"""
min_v = (
torch.min(torch.flatten(inputs, 1), dim=1)[0]
.unsqueeze(1)
.unsqueeze(1)
.unsqueeze(1)
)
max_v = (
torch.max(torch.flatten(inputs, 1), dim=1)[0]
.unsqueeze(1)
.unsqueeze(1)
.unsqueeze(1)
)
return (inputs - min_v) / (max_v - min_v + 1e-8)
def get_epoch_from_ckpt_path(ckpt_path: str) -> int:
"""Example ckpt_path
os.path.join(experiment_dir_path, 'cfgv2.3', 'checkpoint_100.pt')
"""
return int(ckpt_path.split("_")[-1].split(".")[0])
def clean_dir(dir_path: str) -> None:
"""Remove a directory if existed and create an empty directory"""
if os.path.isdir(dir_path):
shutil.rmtree(dir_path)
os.makedirs(dir_path, exist_ok=True)
def get_sota_type(experiment_name: str) -> int:
"""0 for SOTAs, 4 for experiment version 4, e.g. ..."""
if "cfgv" not in experiment_name:
return 0
half_right = experiment_name.split("cfgv")[1]
return int(half_right.split("_")[0])
def hex_to_rgb(hex: str) -> np.ndarray:
"""Convert hex color to rgb color
Args:
hex (str): "#00f900"
Returns:
np.ndarray: numpy array of rgb color
"""
hex = hex[1:]
rgb = []
for i in (0, 2, 4):
decimal = int(hex[i : i + 2], 16)
rgb.append(decimal)
return (np.array(rgb) / 255.0)[::-1]
def normalize(data: np.ndarray) -> np.ndarray:
return (data - data.min()) / (data.max() - data.min() + 1e-8)
def post_processing_depth(depth_path: str) -> np.ndarray:
depth = np.array(Image.open(depth_path).convert("L"))
depth = (normalize(depth) * 255).astype(np.uint8)
return cv2.applyColorMap(depth, cv2.COLORMAP_SUMMER)
def convert_batch_tensors_to_numpy_images(images: Tensor) -> np.ndarray:
"""images of shape (batch_size, channels, width, height)"""
images = torch.permute(images, (0, 2, 3, 1))
images = images.numpy()
if images.shape[3] == 1:
return np.squeeze(images, axis=3)
else:
return images
def join_horizontally(lst: List[np.ndarray]) -> np.ndarray:
return np.concatenate(lst, axis=1)
def join_vertically(lst: List[np.ndarray]) -> np.ndarray:
return np.concatenate(lst, axis=0)
def plot_batch_of_pairs(
images: Tensor,
depths: Tensor,
gts: Tensor,
save_file_path: str,
) -> None:
images = convert_batch_tensors_to_numpy_images(images)
depths = convert_batch_tensors_to_numpy_images(depths)
gts = convert_batch_tensors_to_numpy_images(gts)
batch_size = images.shape[0]
samples: List[np.ndarray] = []
# fig, axes = plt.subplots(batch_size, 3, figsize=(3*batch_size, 20)) # (number of images, 3)
for i in range(batch_size):
samples.append(
join_horizontally(
[
((images[i] + 1.0) / 2 * 255).astype(np.uint8),
post_processing_depth(depths[i]),
post_processing_depth(gts[i]),
]
)
)
# axes[i, 0].imshow(images[i])
# axes[i, 1].imshow(depths[i])
# axes[i, 2].imshow(gts[i])
# plt.show()
final = join_vertically(samples)
cv2.imwrite(save_file_path, cv2.cvtColor(final, cv2.COLOR_RGB2BGR))
print(f"Saved to file {save_file_path}")
def plot_pairs(image: np.ndarray, depth: np.ndarray, gt: np.ndarray) -> None:
batch_size = 1
fig, axes = plt.subplots(
batch_size, 3, figsize=(3 * batch_size, 20)
) # (number of images, 3)
for i in range(batch_size):
axes[i, 0].imshow(image)
axes[i, 1].imshow(depth)
axes[i, 2].imshow(gt)
plt.show()
|