File size: 22,380 Bytes
6e9c433
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
import colorsys
from typing import Union
import numpy as np
import cv2
import matplotlib.colors as mplc
import pycocotools.mask as mask_util
import matplotlib.figure as mplfigure
from matplotlib.backends.backend_agg import FigureCanvasAgg
import matplotlib as mpl
from enum import Enum, unique
from PIL import Image

_LARGE_MASK_AREA_THRESH = 120000
_COLORS = (
    np.array(
        [
            0.000,
            0.447,
            0.741,
            0.850,
            0.325,
            0.098,
            0.929,
            0.694,
            0.125,
            0.494,
            0.184,
            0.556,
            0.466,
            0.674,
            0.188,
            0.301,
            0.745,
            0.933,
            0.635,
            0.078,
            0.184,
            0.300,
            0.300,
            0.300,
            0.600,
            0.600,
            0.600,
            1.000,
            0.000,
            0.000,
            1.000,
            0.500,
            0.000,
            0.749,
            0.749,
            0.000,
            0.000,
            1.000,
            0.000,
            0.000,
            0.000,
            1.000,
            0.667,
            0.000,
            1.000,
            0.333,
            0.333,
            0.000,
            0.333,
            0.667,
            0.000,
            0.333,
            1.000,
            0.000,
            0.667,
            0.333,
            0.000,
            0.667,
            0.667,
            0.000,
            0.667,
            1.000,
            0.000,
            1.000,
            0.333,
            0.000,
            1.000,
            0.667,
            0.000,
            1.000,
            1.000,
            0.000,
            0.000,
            0.333,
            0.500,
            0.000,
            0.667,
            0.500,
            0.000,
            1.000,
            0.500,
            0.333,
            0.000,
            0.500,
            0.333,
            0.333,
            0.500,
            0.333,
            0.667,
            0.500,
            0.333,
            1.000,
            0.500,
            0.667,
            0.000,
            0.500,
            0.667,
            0.333,
            0.500,
            0.667,
            0.667,
            0.500,
            0.667,
            1.000,
            0.500,
            1.000,
            0.000,
            0.500,
            1.000,
            0.333,
            0.500,
            1.000,
            0.667,
            0.500,
            1.000,
            1.000,
            0.500,
            0.000,
            0.333,
            1.000,
            0.000,
            0.667,
            1.000,
            0.000,
            1.000,
            1.000,
            0.333,
            0.000,
            1.000,
            0.333,
            0.333,
            1.000,
            0.333,
            0.667,
            1.000,
            0.333,
            1.000,
            1.000,
            0.667,
            0.000,
            1.000,
            0.667,
            0.333,
            1.000,
            0.667,
            0.667,
            1.000,
            0.667,
            1.000,
            1.000,
            1.000,
            0.000,
            1.000,
            1.000,
            0.333,
            1.000,
            1.000,
            0.667,
            1.000,
            0.333,
            0.000,
            0.000,
            0.500,
            0.000,
            0.000,
            0.667,
            0.000,
            0.000,
            0.833,
            0.000,
            0.000,
            1.000,
            0.000,
            0.000,
            0.000,
            0.167,
            0.000,
            0.000,
            0.333,
            0.000,
            0.000,
            0.500,
            0.000,
            0.000,
            0.667,
            0.000,
            0.000,
            0.833,
            0.000,
            0.000,
            1.000,
            0.000,
            0.000,
            0.000,
            0.167,
            0.000,
            0.000,
            0.333,
            0.000,
            0.000,
            0.500,
            0.000,
            0.000,
            0.667,
            0.000,
            0.000,
            0.833,
            0.000,
            0.000,
            1.000,
            0.000,
            0.000,
            0.000,
            0.143,
            0.143,
            0.143,
            0.857,
            0.857,
            0.857,
            1.000,
            1.000,
            1.000,
        ]
    )
    .astype(np.float32)
    .reshape(-1, 3)
)


def random_color(rgb=False, maximum=255):
    """
    Args:
        rgb (bool): whether to return RGB colors or BGR colors.
        maximum (int): either 255 or 1

    Returns:
        ndarray: a vector of 3 numbers
    """
    idx = np.random.randint(0, len(_COLORS))
    ret = _COLORS[idx] * maximum
    if not rgb:
        ret = ret[::-1]
    return ret


@unique
class ColorMode(Enum):
    """
    Enum of different color modes to use for instance visualizations.
    """

    IMAGE = 0
    """
    Picks a random color for every instance and overlay segmentations with low opacity.
    """
    SEGMENTATION = 1
    """
    Let instances of the same category have similar colors
    (from metadata.thing_colors), and overlay them with
    high opacity. This provides more attention on the quality of segmentation.
    """
    IMAGE_BW = 2
    """
    Same as IMAGE, but convert all areas without masks to gray-scale.
    Only available for drawing per-instance mask predictions.
    """


class VisImage:
    def __init__(self, img, scale=1.0):
        """
        Args:
            img (ndarray): an RGB image of shape (H, W, 3) in range [0, 255].
            scale (float): scale the input image
        """
        self.img = img
        self.scale = scale
        self.width, self.height = img.shape[1], img.shape[0]
        self._setup_figure(img)

    def _setup_figure(self, img):
        """
        Args:
            Same as in :meth:`__init__()`.

        Returns:
            fig (matplotlib.pyplot.figure): top level container for all the image plot elements.
            ax (matplotlib.pyplot.Axes): contains figure elements and sets the coordinate system.
        """
        fig = mplfigure.Figure(frameon=False)
        self.dpi = fig.get_dpi()
        # add a small 1e-2 to avoid precision lost due to matplotlib's truncation
        # (https://github.com/matplotlib/matplotlib/issues/15363)
        fig.set_size_inches(
            (self.width * self.scale + 1e-2) / self.dpi,
            (self.height * self.scale + 1e-2) / self.dpi,
        )
        self.canvas = FigureCanvasAgg(fig)
        # self.canvas = mpl.backends.backend_cairo.FigureCanvasCairo(fig)
        ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
        ax.axis("off")
        self.fig = fig
        self.ax = ax
        self.reset_image(img)

    def reset_image(self, img):
        """
        Args:
            img: same as in __init__
        """
        img = img.astype("uint8")
        self.ax.imshow(
            img, extent=(0, self.width, self.height, 0), interpolation="nearest"
        )

    def save(self, filepath):
        """
        Args:
            filepath (str): a string that contains the absolute path, including the file name, where
                the visualized image will be saved.
        """
        self.fig.savefig(filepath)

    def get_image(self):
        """
        Returns:
            ndarray:
                the visualized image of shape (H, W, 3) (RGB) in uint8 type.
                The shape is scaled w.r.t the input image using the given `scale` argument.
        """
        canvas = self.canvas
        s, (width, height) = canvas.print_to_buffer()
        # buf = io.BytesIO()  # works for cairo backend
        # canvas.print_rgba(buf)
        # width, height = self.width, self.height
        # s = buf.getvalue()

        buffer = np.frombuffer(s, dtype="uint8")

        img_rgba = buffer.reshape(height, width, 4)
        rgb, alpha = np.split(img_rgba, [3], axis=2)
        return rgb.astype("uint8")


class GenericMask:
    """
    Attribute:
        polygons (list[ndarray]): list[ndarray]: polygons for this mask.
            Each ndarray has format [x, y, x, y, ...]
        mask (ndarray): a binary mask
    """

    def __init__(self, mask_or_polygons, height, width):
        self._mask = self._polygons = self._has_holes = None
        self.height = height
        self.width = width

        m = mask_or_polygons
        if isinstance(m, dict):
            # RLEs
            assert "counts" in m and "size" in m
            if isinstance(m["counts"], list):  # uncompressed RLEs
                h, w = m["size"]
                assert h == height and w == width
                m = mask_util.frPyObjects(m, h, w)
            self._mask = mask_util.decode(m)[:, :]
            return

        if isinstance(m, list):  # list[ndarray]
            self._polygons = [np.asarray(x).reshape(-1) for x in m]
            return

        if isinstance(m, np.ndarray):  # assumed to be a binary mask
            assert m.shape[1] != 2, m.shape
            assert m.shape == (
                height,
                width,
            ), f"mask shape: {m.shape}, target dims: {height}, {width}"
            self._mask = m.astype("uint8")
            return

        raise ValueError(
            "GenericMask cannot handle object {} of type '{}'".format(m, type(m))
        )

    @property
    def mask(self):
        if self._mask is None:
            self._mask = self.polygons_to_mask(self._polygons)
        return self._mask

    @property
    def polygons(self):
        if self._polygons is None:
            self._polygons, self._has_holes = self.mask_to_polygons(self._mask)
        return self._polygons

    @property
    def has_holes(self):
        if self._has_holes is None:
            if self._mask is not None:
                self._polygons, self._has_holes = self.mask_to_polygons(self._mask)
            else:
                self._has_holes = (
                    False  # if original format is polygon, does not have holes
                )
        return self._has_holes

    def mask_to_polygons(self, mask):
        # cv2.RETR_CCOMP flag retrieves all the contours and arranges them to a 2-level
        # hierarchy. External contours (boundary) of the object are placed in hierarchy-1.
        # Internal contours (holes) are placed in hierarchy-2.
        # cv2.CHAIN_APPROX_NONE flag gets vertices of polygons from contours.
        mask = np.ascontiguousarray(
            mask
        )  # some versions of cv2 does not support incontiguous arr
        res = cv2.findContours(
            mask.astype("uint8"), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE
        )
        hierarchy = res[-1]
        if hierarchy is None:  # empty mask
            return [], False
        has_holes = (hierarchy.reshape(-1, 4)[:, 3] >= 0).sum() > 0
        res = res[-2]
        res = [x.flatten() for x in res]
        # These coordinates from OpenCV are integers in range [0, W-1 or H-1].
        # We add 0.5 to turn them into real-value coordinate space. A better solution
        # would be to first +0.5 and then dilate the returned polygon by 0.5.
        res = [x + 0.5 for x in res if len(x) >= 6]
        return res, has_holes

    def polygons_to_mask(self, polygons):
        rle = mask_util.frPyObjects(polygons, self.height, self.width)
        rle = mask_util.merge(rle)
        return mask_util.decode(rle)[:, :]

    def area(self):
        return self.mask.sum()

    def bbox(self):
        p = mask_util.frPyObjects(self.polygons, self.height, self.width)
        p = mask_util.merge(p)
        bbox = mask_util.toBbox(p)
        bbox[2] += bbox[0]
        bbox[3] += bbox[1]
        return bbox


class Visualizer:
    """
    Visualizer that draws data about detection/segmentation on images.

    It contains methods like `draw_{text,box,circle,line,binary_mask,polygon}`
    that draw primitive objects to images, as well as high-level wrappers like
    `draw_{instance_predictions,sem_seg,panoptic_seg_predictions,dataset_dict}`
    that draw composite data in some pre-defined style.

    Note that the exact visualization style for the high-level wrappers are subject to change.
    Style such as color, opacity, label contents, visibility of labels, or even the visibility
    of objects themselves (e.g. when the object is too small) may change according
    to different heuristics, as long as the results still look visually reasonable.

    To obtain a consistent style, you can implement custom drawing functions with the
    abovementioned primitive methods instead. If you need more customized visualization
    styles, you can process the data yourself following their format documented in
    tutorials (:doc:`/tutorials/models`, :doc:`/tutorials/datasets`). This class does not
    intend to satisfy everyone's preference on drawing styles.

    This visualizer focuses on high rendering quality rather than performance. It is not
    designed to be used for real-time applications.
    """

    # TODO implement a fast, rasterized version using OpenCV

    def __init__(
        self,
        img_rgb: Union[Image.Image, np.ndarray],
        scale=1.0,
        instance_mode=ColorMode.IMAGE,
    ):
        """
        Args:
            img_rgb: a numpy array of shape (H, W, C), where H and W correspond to
                the height and width of the image respectively. C is the number of
                color channels. The image is required to be in RGB format since that
                is a requirement of the Matplotlib library. The image is also expected
                to be in the range [0, 255].
            instance_mode (ColorMode): defines one of the pre-defined style for drawing
                instances on an image.
        """
        if type(img_rgb) == np.ndarray:
            img_rgb = img_rgb[:, :, ::-1]
        else:
            img_rgb = np.array(img_rgb)[:, :, ::-1]
        self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8)
        self.output = VisImage(self.img, scale=scale)

        # too small texts are useless, therefore clamp to 9
        self._default_font_size = max(
            np.sqrt(self.output.height * self.output.width) // 90, 10 // scale
        )
        self._instance_mode = instance_mode

    def draw_binary_mask(
        self,
        binary_mask,
        color=None,
        *,
        edge_color=None,
        text=None,
        alpha=0.5,
        area_threshold=10,
    ):
        """
        Args:
            binary_mask (ndarray): numpy array of shape (H, W), where H is the image height and
                W is the image width. Each value in the array is either a 0 or 1 value of uint8
                type.
            color: color of the mask. Refer to `matplotlib.colors` for a full list of
                formats that are accepted. If None, will pick a random color.
            edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a
                full list of formats that are accepted.
            text (str): if None, will be drawn on the object
            alpha (float): blending efficient. Smaller values lead to more transparent masks.
            area_threshold (float): a connected component smaller than this area will not be shown.

        Returns:
            output (VisImage): image object with mask drawn.
        """
        if color is None:
            color = random_color(rgb=True, maximum=1)
        color = mplc.to_rgb(color)

        has_valid_segment = False
        binary_mask = binary_mask.astype("uint8")  # opencv needs uint8
        mask = GenericMask(binary_mask, self.output.height, self.output.width)
        shape2d = (binary_mask.shape[0], binary_mask.shape[1])

        if not mask.has_holes:
            # draw polygons for regular masks
            for segment in mask.polygons:
                area = mask_util.area(
                    mask_util.frPyObjects([segment], shape2d[0], shape2d[1])
                )
                if area < (area_threshold or 0):
                    continue
                has_valid_segment = True
                segment = segment.reshape(-1, 2)
                self.draw_polygon(
                    segment, color=color, edge_color=edge_color, alpha=alpha
                )
        else:
            # TODO: Use Path/PathPatch to draw vector graphics:
            # https://stackoverflow.com/questions/8919719/how-to-plot-a-complex-polygon
            rgba = np.zeros(shape2d + (4,), dtype="float32")
            rgba[:, :, :3] = color
            rgba[:, :, 3] = (mask.mask == 1).astype("float32") * alpha
            has_valid_segment = True
            self.output.ax.imshow(
                rgba, extent=(0, self.output.width, self.output.height, 0)
            )

        if text is not None and has_valid_segment:
            lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
            self._draw_text_in_mask(binary_mask, text, lighter_color)
        return self.output

    def draw_polygon(self, segment, color, edge_color=None, alpha=0.5):
        """
        Args:
            segment: numpy array of shape Nx2, containing all the points in the polygon.
            color: color of the polygon. Refer to `matplotlib.colors` for a full list of
                formats that are accepted.
            edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a
                full list of formats that are accepted. If not provided, a darker shade
                of the polygon color will be used instead.
            alpha (float): blending efficient. Smaller values lead to more transparent masks.

        Returns:
            output (VisImage): image object with polygon drawn.
        """
        if edge_color is None:
            # make edge color darker than the polygon color
            if alpha > 0.8:
                edge_color = self._change_color_brightness(
                    color, brightness_factor=-0.7
                )
            else:
                edge_color = color
        edge_color = mplc.to_rgb(edge_color) + (1,)

        polygon = mpl.patches.Polygon(
            segment,
            fill=True,
            facecolor=mplc.to_rgb(color) + (alpha,),
            edgecolor=edge_color,
            linewidth=max(self._default_font_size // 15 * self.output.scale, 1),
        )
        self.output.ax.add_patch(polygon)
        return self.output

    """
    Internal methods:
    """

    def _change_color_brightness(self, color, brightness_factor):
        """
        Depending on the brightness_factor, gives a lighter or darker color i.e. a color with
        less or more saturation than the original color.

        Args:
            color: color of the polygon. Refer to `matplotlib.colors` for a full list of
                formats that are accepted.
            brightness_factor (float): a value in [-1.0, 1.0] range. A lightness factor of
                0 will correspond to no change, a factor in [-1.0, 0) range will result in
                a darker color and a factor in (0, 1.0] range will result in a lighter color.

        Returns:
            modified_color (tuple[double]): a tuple containing the RGB values of the
                modified color. Each value in the tuple is in the [0.0, 1.0] range.
        """
        assert brightness_factor >= -1.0 and brightness_factor <= 1.0
        color = mplc.to_rgb(color)
        polygon_color = colorsys.rgb_to_hls(*mplc.to_rgb(color))
        modified_lightness = polygon_color[1] + (brightness_factor * polygon_color[1])
        modified_lightness = 0.0 if modified_lightness < 0.0 else modified_lightness
        modified_lightness = 1.0 if modified_lightness > 1.0 else modified_lightness
        modified_color = colorsys.hls_to_rgb(
            polygon_color[0], modified_lightness, polygon_color[2]
        )
        return modified_color

    def _draw_text_in_mask(self, binary_mask, text, color):
        """
        Find proper places to draw text given a binary mask.
        """
        # TODO sometimes drawn on wrong objects. the heuristics here can improve.
        _num_cc, cc_labels, stats, centroids = cv2.connectedComponentsWithStats(
            binary_mask, 8
        )
        if stats[1:, -1].size == 0:
            return
        largest_component_id = np.argmax(stats[1:, -1]) + 1

        # draw text on the largest component, as well as other very large components.
        for cid in range(1, _num_cc):
            if cid == largest_component_id or stats[cid, -1] > _LARGE_MASK_AREA_THRESH:
                # median is more stable than centroid
                # center = centroids[largest_component_id]
                center = np.median((cc_labels == cid).nonzero(), axis=1)[::-1]
                self.draw_text(text, center, color=color)

    def get_output(self):
        """
        Returns:
            output (VisImage): the image output containing the visualizations added
            to the image.
        """
        return self.output


def apply_threshold(pred: np.ndarray) -> np.ndarray:
    """Apply threshold to a salient map

    Args:
        pred (np.ndarray): each pixel is in range [0, 255]

    Returns:
        np.ndarray: each pixel is only 0.0 or 1.0
    """
    binary_mask = pred / 255.0
    binary_mask[binary_mask >= 0.5] = 1.0
    binary_mask[binary_mask < 0.5] = 0.0
    return binary_mask


def normalize(data: np.ndarray) -> np.ndarray:
    return (data - data.min()) / (data.max() - data.min() + 1e-8)


def post_processing_depth(depth: np.ndarray) -> np.ndarray:
    depth = (normalize(depth) * 255).astype(np.uint8)
    return cv2.applyColorMap(depth, cv2.COLORMAP_OCEAN)


def apply_vis_to_image(
    rgb: np.ndarray, binary_mask: np.ndarray, color: np.ndarray
) -> np.ndarray:
    if rgb.shape[:2] != binary_mask.shape[:2]:
        print(rgb.shape, binary_mask.shape)
        binary_mask = cv2.resize(binary_mask, [rgb.shape[1], rgb.shape[0]])
    visualizer = Visualizer(rgb)
    vis_image: VisImage = visualizer.draw_binary_mask(binary_mask, color)
    vis_image = vis_image.get_image()[:, :, ::-1]
    return vis_image