Spaces:
Running
Running
File size: 22,380 Bytes
6e9c433 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 |
import colorsys
from typing import Union
import numpy as np
import cv2
import matplotlib.colors as mplc
import pycocotools.mask as mask_util
import matplotlib.figure as mplfigure
from matplotlib.backends.backend_agg import FigureCanvasAgg
import matplotlib as mpl
from enum import Enum, unique
from PIL import Image
_LARGE_MASK_AREA_THRESH = 120000
_COLORS = (
np.array(
[
0.000,
0.447,
0.741,
0.850,
0.325,
0.098,
0.929,
0.694,
0.125,
0.494,
0.184,
0.556,
0.466,
0.674,
0.188,
0.301,
0.745,
0.933,
0.635,
0.078,
0.184,
0.300,
0.300,
0.300,
0.600,
0.600,
0.600,
1.000,
0.000,
0.000,
1.000,
0.500,
0.000,
0.749,
0.749,
0.000,
0.000,
1.000,
0.000,
0.000,
0.000,
1.000,
0.667,
0.000,
1.000,
0.333,
0.333,
0.000,
0.333,
0.667,
0.000,
0.333,
1.000,
0.000,
0.667,
0.333,
0.000,
0.667,
0.667,
0.000,
0.667,
1.000,
0.000,
1.000,
0.333,
0.000,
1.000,
0.667,
0.000,
1.000,
1.000,
0.000,
0.000,
0.333,
0.500,
0.000,
0.667,
0.500,
0.000,
1.000,
0.500,
0.333,
0.000,
0.500,
0.333,
0.333,
0.500,
0.333,
0.667,
0.500,
0.333,
1.000,
0.500,
0.667,
0.000,
0.500,
0.667,
0.333,
0.500,
0.667,
0.667,
0.500,
0.667,
1.000,
0.500,
1.000,
0.000,
0.500,
1.000,
0.333,
0.500,
1.000,
0.667,
0.500,
1.000,
1.000,
0.500,
0.000,
0.333,
1.000,
0.000,
0.667,
1.000,
0.000,
1.000,
1.000,
0.333,
0.000,
1.000,
0.333,
0.333,
1.000,
0.333,
0.667,
1.000,
0.333,
1.000,
1.000,
0.667,
0.000,
1.000,
0.667,
0.333,
1.000,
0.667,
0.667,
1.000,
0.667,
1.000,
1.000,
1.000,
0.000,
1.000,
1.000,
0.333,
1.000,
1.000,
0.667,
1.000,
0.333,
0.000,
0.000,
0.500,
0.000,
0.000,
0.667,
0.000,
0.000,
0.833,
0.000,
0.000,
1.000,
0.000,
0.000,
0.000,
0.167,
0.000,
0.000,
0.333,
0.000,
0.000,
0.500,
0.000,
0.000,
0.667,
0.000,
0.000,
0.833,
0.000,
0.000,
1.000,
0.000,
0.000,
0.000,
0.167,
0.000,
0.000,
0.333,
0.000,
0.000,
0.500,
0.000,
0.000,
0.667,
0.000,
0.000,
0.833,
0.000,
0.000,
1.000,
0.000,
0.000,
0.000,
0.143,
0.143,
0.143,
0.857,
0.857,
0.857,
1.000,
1.000,
1.000,
]
)
.astype(np.float32)
.reshape(-1, 3)
)
def random_color(rgb=False, maximum=255):
"""
Args:
rgb (bool): whether to return RGB colors or BGR colors.
maximum (int): either 255 or 1
Returns:
ndarray: a vector of 3 numbers
"""
idx = np.random.randint(0, len(_COLORS))
ret = _COLORS[idx] * maximum
if not rgb:
ret = ret[::-1]
return ret
@unique
class ColorMode(Enum):
"""
Enum of different color modes to use for instance visualizations.
"""
IMAGE = 0
"""
Picks a random color for every instance and overlay segmentations with low opacity.
"""
SEGMENTATION = 1
"""
Let instances of the same category have similar colors
(from metadata.thing_colors), and overlay them with
high opacity. This provides more attention on the quality of segmentation.
"""
IMAGE_BW = 2
"""
Same as IMAGE, but convert all areas without masks to gray-scale.
Only available for drawing per-instance mask predictions.
"""
class VisImage:
def __init__(self, img, scale=1.0):
"""
Args:
img (ndarray): an RGB image of shape (H, W, 3) in range [0, 255].
scale (float): scale the input image
"""
self.img = img
self.scale = scale
self.width, self.height = img.shape[1], img.shape[0]
self._setup_figure(img)
def _setup_figure(self, img):
"""
Args:
Same as in :meth:`__init__()`.
Returns:
fig (matplotlib.pyplot.figure): top level container for all the image plot elements.
ax (matplotlib.pyplot.Axes): contains figure elements and sets the coordinate system.
"""
fig = mplfigure.Figure(frameon=False)
self.dpi = fig.get_dpi()
# add a small 1e-2 to avoid precision lost due to matplotlib's truncation
# (https://github.com/matplotlib/matplotlib/issues/15363)
fig.set_size_inches(
(self.width * self.scale + 1e-2) / self.dpi,
(self.height * self.scale + 1e-2) / self.dpi,
)
self.canvas = FigureCanvasAgg(fig)
# self.canvas = mpl.backends.backend_cairo.FigureCanvasCairo(fig)
ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
ax.axis("off")
self.fig = fig
self.ax = ax
self.reset_image(img)
def reset_image(self, img):
"""
Args:
img: same as in __init__
"""
img = img.astype("uint8")
self.ax.imshow(
img, extent=(0, self.width, self.height, 0), interpolation="nearest"
)
def save(self, filepath):
"""
Args:
filepath (str): a string that contains the absolute path, including the file name, where
the visualized image will be saved.
"""
self.fig.savefig(filepath)
def get_image(self):
"""
Returns:
ndarray:
the visualized image of shape (H, W, 3) (RGB) in uint8 type.
The shape is scaled w.r.t the input image using the given `scale` argument.
"""
canvas = self.canvas
s, (width, height) = canvas.print_to_buffer()
# buf = io.BytesIO() # works for cairo backend
# canvas.print_rgba(buf)
# width, height = self.width, self.height
# s = buf.getvalue()
buffer = np.frombuffer(s, dtype="uint8")
img_rgba = buffer.reshape(height, width, 4)
rgb, alpha = np.split(img_rgba, [3], axis=2)
return rgb.astype("uint8")
class GenericMask:
"""
Attribute:
polygons (list[ndarray]): list[ndarray]: polygons for this mask.
Each ndarray has format [x, y, x, y, ...]
mask (ndarray): a binary mask
"""
def __init__(self, mask_or_polygons, height, width):
self._mask = self._polygons = self._has_holes = None
self.height = height
self.width = width
m = mask_or_polygons
if isinstance(m, dict):
# RLEs
assert "counts" in m and "size" in m
if isinstance(m["counts"], list): # uncompressed RLEs
h, w = m["size"]
assert h == height and w == width
m = mask_util.frPyObjects(m, h, w)
self._mask = mask_util.decode(m)[:, :]
return
if isinstance(m, list): # list[ndarray]
self._polygons = [np.asarray(x).reshape(-1) for x in m]
return
if isinstance(m, np.ndarray): # assumed to be a binary mask
assert m.shape[1] != 2, m.shape
assert m.shape == (
height,
width,
), f"mask shape: {m.shape}, target dims: {height}, {width}"
self._mask = m.astype("uint8")
return
raise ValueError(
"GenericMask cannot handle object {} of type '{}'".format(m, type(m))
)
@property
def mask(self):
if self._mask is None:
self._mask = self.polygons_to_mask(self._polygons)
return self._mask
@property
def polygons(self):
if self._polygons is None:
self._polygons, self._has_holes = self.mask_to_polygons(self._mask)
return self._polygons
@property
def has_holes(self):
if self._has_holes is None:
if self._mask is not None:
self._polygons, self._has_holes = self.mask_to_polygons(self._mask)
else:
self._has_holes = (
False # if original format is polygon, does not have holes
)
return self._has_holes
def mask_to_polygons(self, mask):
# cv2.RETR_CCOMP flag retrieves all the contours and arranges them to a 2-level
# hierarchy. External contours (boundary) of the object are placed in hierarchy-1.
# Internal contours (holes) are placed in hierarchy-2.
# cv2.CHAIN_APPROX_NONE flag gets vertices of polygons from contours.
mask = np.ascontiguousarray(
mask
) # some versions of cv2 does not support incontiguous arr
res = cv2.findContours(
mask.astype("uint8"), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE
)
hierarchy = res[-1]
if hierarchy is None: # empty mask
return [], False
has_holes = (hierarchy.reshape(-1, 4)[:, 3] >= 0).sum() > 0
res = res[-2]
res = [x.flatten() for x in res]
# These coordinates from OpenCV are integers in range [0, W-1 or H-1].
# We add 0.5 to turn them into real-value coordinate space. A better solution
# would be to first +0.5 and then dilate the returned polygon by 0.5.
res = [x + 0.5 for x in res if len(x) >= 6]
return res, has_holes
def polygons_to_mask(self, polygons):
rle = mask_util.frPyObjects(polygons, self.height, self.width)
rle = mask_util.merge(rle)
return mask_util.decode(rle)[:, :]
def area(self):
return self.mask.sum()
def bbox(self):
p = mask_util.frPyObjects(self.polygons, self.height, self.width)
p = mask_util.merge(p)
bbox = mask_util.toBbox(p)
bbox[2] += bbox[0]
bbox[3] += bbox[1]
return bbox
class Visualizer:
"""
Visualizer that draws data about detection/segmentation on images.
It contains methods like `draw_{text,box,circle,line,binary_mask,polygon}`
that draw primitive objects to images, as well as high-level wrappers like
`draw_{instance_predictions,sem_seg,panoptic_seg_predictions,dataset_dict}`
that draw composite data in some pre-defined style.
Note that the exact visualization style for the high-level wrappers are subject to change.
Style such as color, opacity, label contents, visibility of labels, or even the visibility
of objects themselves (e.g. when the object is too small) may change according
to different heuristics, as long as the results still look visually reasonable.
To obtain a consistent style, you can implement custom drawing functions with the
abovementioned primitive methods instead. If you need more customized visualization
styles, you can process the data yourself following their format documented in
tutorials (:doc:`/tutorials/models`, :doc:`/tutorials/datasets`). This class does not
intend to satisfy everyone's preference on drawing styles.
This visualizer focuses on high rendering quality rather than performance. It is not
designed to be used for real-time applications.
"""
# TODO implement a fast, rasterized version using OpenCV
def __init__(
self,
img_rgb: Union[Image.Image, np.ndarray],
scale=1.0,
instance_mode=ColorMode.IMAGE,
):
"""
Args:
img_rgb: a numpy array of shape (H, W, C), where H and W correspond to
the height and width of the image respectively. C is the number of
color channels. The image is required to be in RGB format since that
is a requirement of the Matplotlib library. The image is also expected
to be in the range [0, 255].
instance_mode (ColorMode): defines one of the pre-defined style for drawing
instances on an image.
"""
if type(img_rgb) == np.ndarray:
img_rgb = img_rgb[:, :, ::-1]
else:
img_rgb = np.array(img_rgb)[:, :, ::-1]
self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8)
self.output = VisImage(self.img, scale=scale)
# too small texts are useless, therefore clamp to 9
self._default_font_size = max(
np.sqrt(self.output.height * self.output.width) // 90, 10 // scale
)
self._instance_mode = instance_mode
def draw_binary_mask(
self,
binary_mask,
color=None,
*,
edge_color=None,
text=None,
alpha=0.5,
area_threshold=10,
):
"""
Args:
binary_mask (ndarray): numpy array of shape (H, W), where H is the image height and
W is the image width. Each value in the array is either a 0 or 1 value of uint8
type.
color: color of the mask. Refer to `matplotlib.colors` for a full list of
formats that are accepted. If None, will pick a random color.
edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a
full list of formats that are accepted.
text (str): if None, will be drawn on the object
alpha (float): blending efficient. Smaller values lead to more transparent masks.
area_threshold (float): a connected component smaller than this area will not be shown.
Returns:
output (VisImage): image object with mask drawn.
"""
if color is None:
color = random_color(rgb=True, maximum=1)
color = mplc.to_rgb(color)
has_valid_segment = False
binary_mask = binary_mask.astype("uint8") # opencv needs uint8
mask = GenericMask(binary_mask, self.output.height, self.output.width)
shape2d = (binary_mask.shape[0], binary_mask.shape[1])
if not mask.has_holes:
# draw polygons for regular masks
for segment in mask.polygons:
area = mask_util.area(
mask_util.frPyObjects([segment], shape2d[0], shape2d[1])
)
if area < (area_threshold or 0):
continue
has_valid_segment = True
segment = segment.reshape(-1, 2)
self.draw_polygon(
segment, color=color, edge_color=edge_color, alpha=alpha
)
else:
# TODO: Use Path/PathPatch to draw vector graphics:
# https://stackoverflow.com/questions/8919719/how-to-plot-a-complex-polygon
rgba = np.zeros(shape2d + (4,), dtype="float32")
rgba[:, :, :3] = color
rgba[:, :, 3] = (mask.mask == 1).astype("float32") * alpha
has_valid_segment = True
self.output.ax.imshow(
rgba, extent=(0, self.output.width, self.output.height, 0)
)
if text is not None and has_valid_segment:
lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
self._draw_text_in_mask(binary_mask, text, lighter_color)
return self.output
def draw_polygon(self, segment, color, edge_color=None, alpha=0.5):
"""
Args:
segment: numpy array of shape Nx2, containing all the points in the polygon.
color: color of the polygon. Refer to `matplotlib.colors` for a full list of
formats that are accepted.
edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a
full list of formats that are accepted. If not provided, a darker shade
of the polygon color will be used instead.
alpha (float): blending efficient. Smaller values lead to more transparent masks.
Returns:
output (VisImage): image object with polygon drawn.
"""
if edge_color is None:
# make edge color darker than the polygon color
if alpha > 0.8:
edge_color = self._change_color_brightness(
color, brightness_factor=-0.7
)
else:
edge_color = color
edge_color = mplc.to_rgb(edge_color) + (1,)
polygon = mpl.patches.Polygon(
segment,
fill=True,
facecolor=mplc.to_rgb(color) + (alpha,),
edgecolor=edge_color,
linewidth=max(self._default_font_size // 15 * self.output.scale, 1),
)
self.output.ax.add_patch(polygon)
return self.output
"""
Internal methods:
"""
def _change_color_brightness(self, color, brightness_factor):
"""
Depending on the brightness_factor, gives a lighter or darker color i.e. a color with
less or more saturation than the original color.
Args:
color: color of the polygon. Refer to `matplotlib.colors` for a full list of
formats that are accepted.
brightness_factor (float): a value in [-1.0, 1.0] range. A lightness factor of
0 will correspond to no change, a factor in [-1.0, 0) range will result in
a darker color and a factor in (0, 1.0] range will result in a lighter color.
Returns:
modified_color (tuple[double]): a tuple containing the RGB values of the
modified color. Each value in the tuple is in the [0.0, 1.0] range.
"""
assert brightness_factor >= -1.0 and brightness_factor <= 1.0
color = mplc.to_rgb(color)
polygon_color = colorsys.rgb_to_hls(*mplc.to_rgb(color))
modified_lightness = polygon_color[1] + (brightness_factor * polygon_color[1])
modified_lightness = 0.0 if modified_lightness < 0.0 else modified_lightness
modified_lightness = 1.0 if modified_lightness > 1.0 else modified_lightness
modified_color = colorsys.hls_to_rgb(
polygon_color[0], modified_lightness, polygon_color[2]
)
return modified_color
def _draw_text_in_mask(self, binary_mask, text, color):
"""
Find proper places to draw text given a binary mask.
"""
# TODO sometimes drawn on wrong objects. the heuristics here can improve.
_num_cc, cc_labels, stats, centroids = cv2.connectedComponentsWithStats(
binary_mask, 8
)
if stats[1:, -1].size == 0:
return
largest_component_id = np.argmax(stats[1:, -1]) + 1
# draw text on the largest component, as well as other very large components.
for cid in range(1, _num_cc):
if cid == largest_component_id or stats[cid, -1] > _LARGE_MASK_AREA_THRESH:
# median is more stable than centroid
# center = centroids[largest_component_id]
center = np.median((cc_labels == cid).nonzero(), axis=1)[::-1]
self.draw_text(text, center, color=color)
def get_output(self):
"""
Returns:
output (VisImage): the image output containing the visualizations added
to the image.
"""
return self.output
def apply_threshold(pred: np.ndarray) -> np.ndarray:
"""Apply threshold to a salient map
Args:
pred (np.ndarray): each pixel is in range [0, 255]
Returns:
np.ndarray: each pixel is only 0.0 or 1.0
"""
binary_mask = pred / 255.0
binary_mask[binary_mask >= 0.5] = 1.0
binary_mask[binary_mask < 0.5] = 0.0
return binary_mask
def normalize(data: np.ndarray) -> np.ndarray:
return (data - data.min()) / (data.max() - data.min() + 1e-8)
def post_processing_depth(depth: np.ndarray) -> np.ndarray:
depth = (normalize(depth) * 255).astype(np.uint8)
return cv2.applyColorMap(depth, cv2.COLORMAP_OCEAN)
def apply_vis_to_image(
rgb: np.ndarray, binary_mask: np.ndarray, color: np.ndarray
) -> np.ndarray:
if rgb.shape[:2] != binary_mask.shape[:2]:
print(rgb.shape, binary_mask.shape)
binary_mask = cv2.resize(binary_mask, [rgb.shape[1], rgb.shape[0]])
visualizer = Visualizer(rgb)
vis_image: VisImage = visualizer.draw_binary_mask(binary_mask, color)
vis_image = vis_image.get_image()[:, :, ::-1]
return vis_image
|