Spaces:
Running
Running
File size: 2,570 Bytes
6e9c433 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import os, sys
sys.path.append(os.getcwd())
import multiprocessing
import streamlit as st
from app_utils.color_selection_ui import color_selection_ui
from app_utils.depth_selection_ui import depth_selection_ui
from app_utils.device import device
from app_utils.sod_selection_ui import sod_selection_ui
class MODE:
IMAGE = "image"
VIDEO = "video"
WEBRTC = "webrtc"
DEMO = "demo"
TITLE = "S-MultiMAE: A Multi-Ground Truth approach for RGB-D Saliency Detection"
st.set_page_config(
page_title=TITLE,
page_icon="🧊",
layout="wide",
# initial_sidebar_state="expanded",
# menu_items={
# 'Get Help': 'https://www.extremelycoolapp.com/help',
# 'Report a bug': "https://www.extremelycoolapp.com/bug",
# 'About': "# This is a header. This is an *extremely* cool app!"
# }
)
st.title(TITLE)
with st.expander("INTRODUCTION"):
st.text(
f"""Demo for S-MultiMAE.
Device: {device.type}
Number of CPU(s): {multiprocessing.cpu_count()}"""
)
st.image("docs/figures/proposed_method_v5.drawio.png", use_column_width="always")
with st.expander("SETTINGS", expanded=True):
col1, col2 = st.columns(2)
with col1:
mode = st.radio(
"Mode",
(
MODE.IMAGE,
# MODE.VIDEO,
# MODE.WEBRTC,
# MODE.DEMO,
),
)
st.markdown("---")
color = color_selection_ui()
with col2:
depth_model = depth_selection_ui()
st.markdown("---")
sod_model, da = sod_selection_ui()
with st.expander("HOW TO USE", expanded=True):
st.text(
"(1) You can change the model type (using different backbones) in the settings."
)
st.text("(2) Upload an RGB image.")
st.text(
"(3) (Optional) Provide its corresponding depth. If not present, a pseudo-depth will be inferred by a rgb2depth model."
)
st.text(
"(4) You may try a different number of sets of salient objects the model can produce."
)
st.text("""(5) Click "Predict Salient Objects".""")
if mode == MODE.IMAGE:
from app_utils.image_inference import image_inference
image_inference(depth_model, sod_model, da, color)
# elif mode == MODE.VIDEO:
# from video_inference import video_inference
# video_inference(depth_model, sod_model, color)
# elif mode == MODE.WEBRTC:
# from webrtc_app import webrtc_app
# webrtc_app(depth_model, sod_model, color)
# elif mode == MODE.DEMO:
# from demo import demo
# demo()
|