% Encoding: UTF-8 % An Empirical Study of Training Self-Supervised Vision Transformers @inproceedings{chen2021empirical, title={An empirical study of training self-supervised vision transformers}, author={Chen, Xinlei and Xie, Saining and He, Kaiming}, booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision}, pages={9640--9649}, year={2021} } % 2D positional embedding @article{raisi20202d, title={2D positional embedding-based transformer for scene text recognition}, author={Raisi, Zobeir and Naiel, Mohamed A and Fieguth, Paul and Wardell, Steven and Zelek, John}, journal={Journal of Computational Vision and Imaging Systems}, volume={6}, number={1}, pages={1--4}, year={2020} } % Layer Normalization @article{ba2016layer, title={Layer normalization}, author={Ba, Jimmy Lei and Kiros, Jamie Ryan and Hinton, Geoffrey E}, journal={arXiv preprint arXiv:1607.06450}, year={2016} } % Batch Normalization @inproceedings{ioffe2015batch, title={Batch normalization: Accelerating deep network training by reducing internal covariate shift}, author={Ioffe, Sergey and Szegedy, Christian}, booktitle={International conference on machine learning}, pages={448--456}, year={2015}, organization={PMLR} } % ReLU @article{fukushima1975cognitron, title={Cognitron: A self-organizing multilayered neural network}, author={Fukushima, Kunihiko}, journal={Biological cybernetics}, volume={20}, number={3}, pages={121--136}, year={1975}, publisher={Springer} } % Weight Normalization @article{salimans2016weight, title={Weight normalization: A simple reparameterization to accelerate training of deep neural networks}, author={Salimans, Tim and Kingma, Durk P}, journal={Advances in neural information processing systems}, volume={29}, year={2016} } % Stochastic depth @inproceedings{huang2016deep, title={Deep networks with stochastic depth}, author={Huang, Gao and Sun, Yu and Liu, Zhuang and Sedra, Daniel and Weinberger, Kilian Q}, booktitle={European conference on computer vision}, pages={646--661}, year={2016}, organization={Springer} } % Stereo Matching Algorithm @article{zhong2020displacement, title={Displacement-invariant cost computation for efficient stereo matching}, author={Zhong, Yiran and Loop, Charles and Byeon, Wonmin and Birchfield, Stan and Dai, Yuchao and Zhang, Kaihao and Kamenev, Alexey and Breuel, Thomas and Li, Hongdong and Kautz, Jan}, journal={arXiv preprint arXiv:2012.00899}, year={2020} } % wandb @misc{wandb, title = {Experiment Tracking with Weights and Biases}, year = {2020}, note = {Software available from wandb.com}, url={https://www.wandb.com/}, author = {Biewald, Lukas}, } % @article{borji2015salient, title={Salient object detection: A benchmark}, author={Borji, Ali and Cheng, Ming-Ming and Jiang, Huaizu and Li, Jia}, journal={IEEE transactions on image processing}, volume={24}, number={12}, pages={5706--5722}, year={2015}, publisher={IEEE} } % SOD metrics @misc{sodmetrics, title = {PySODMetrics: A simple and efficient implementation of SOD metrics}, howpublished = {\url{https://github.com/lartpang/PySODMetrics}}, note = {Accessed: 2022-10-31} } % MAE @inproceedings{perazzi2012saliency, title={Saliency filters: Contrast based filtering for salient region detection}, author={Perazzi, Federico and Kr{\"a}henb{\"u}hl, Philipp and Pritch, Yael and Hornung, Alexander}, booktitle={2012 IEEE conference on computer vision and pattern recognition}, pages={733--740}, year={2012}, organization={IEEE} } % F-measure @inproceedings{achanta2009frequency, title={Frequency-tuned salient region detection}, author={Achanta, Radhakrishna and Hemami, Sheila and Estrada, Francisco and Susstrunk, Sabine}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={1597--1604}, year={2009}, organization={IEEE} } % E-measure @article{fan2018enhanced, title={Enhanced-alignment measure for binary foreground map evaluation}, author={Fan, Deng-Ping and Gong, Cheng and Cao, Yang and Ren, Bo and Cheng, Ming-Ming and Borji, Ali}, journal={arXiv preprint arXiv:1805.10421}, year={2018} } % S-measure @inproceedings{fan2017structure, title={Structure-measure: A new way to evaluate foreground maps}, author={Fan, Deng-Ping and Cheng, Ming-Ming and Liu, Yun and Li, Tao and Borji, Ali}, booktitle={Proceedings of the IEEE international conference on computer vision}, pages={4548--4557}, year={2017} } % GELU @article{hendrycks2016gaussian, title={Gaussian error linear units (gelus)}, author={Hendrycks, Dan and Gimpel, Kevin}, journal={arXiv preprint arXiv:1606.08415}, year={2016} } % Instance normalization @article{ulyanov2016instance, title={Instance normalization: The missing ingredient for fast stylization}, author={Ulyanov, Dmitry and Vedaldi, Andrea and Lempitsky, Victor}, journal={arXiv preprint arXiv:1607.08022}, year={2016} } % Group normalization @inproceedings{wu2018group, title={Group normalization}, author={Wu, Yuxin and He, Kaiming}, booktitle={Proceedings of the European conference on computer vision (ECCV)}, pages={3--19}, year={2018} } % timm @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} } % taskonomy @inproceedings{zamir2018taskonomy, title={Taskonomy: Disentangling task transfer learning}, author={Zamir, Amir R and Sax, Alexander and Shen, William and Guibas, Leonidas J and Malik, Jitendra and Savarese, Silvio}, booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition}, pages={3712--3722}, year={2018} } @Comment{jabref-meta: databaseType:bibtex;}