import torch from torch import Tensor import math import warnings from typing import Tuple, Union from einops import rearrange import os from definition import PRETRAINED_BACKBONE from ..configs.base_config import base_cfg def pair(t: Union[int, Tuple[int, int]]) -> Tuple[int, int]: return t if isinstance(t, tuple) else (t, t) def build_2d_sincos_posemb(h: int, w: int, embed_dim=1024, temperature=10000.0): """Sine-cosine positional embeddings from MoCo-v3 Source: https://github.com/facebookresearch/moco-v3/blob/main/vits.py """ grid_w = torch.arange(w, dtype=torch.float32) grid_h = torch.arange(h, dtype=torch.float32) grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing="xy") assert ( embed_dim % 4 == 0 ), "Embed dimension must be divisible by 4 for 2D sin-cos position embedding" pos_dim = embed_dim // 4 omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim omega = 1.0 / (temperature**omega) out_w = torch.einsum("m,d->md", [grid_w.flatten(), omega]) out_h = torch.einsum("m,d->md", [grid_h.flatten(), omega]) pos_emb = torch.cat( [torch.sin(out_w), torch.cos(out_w), torch.sin(out_h), torch.cos(out_h)], dim=1 )[None, :, :] pos_emb = rearrange(pos_emb, "b (h w) d -> b d h w", h=h, w=w, d=embed_dim) return pos_emb def _no_grad_trunc_normal_(tensor: Tensor, mean: float, std: float, a: float, b: float): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn( "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2, ) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.0)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor: Tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): # type: (Tensor, float, float, float, float) -> Tensor r"""Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. Args: tensor: an n-dimensional `Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) def drop_path(x: Tensor, drop_prob: float = 0.0, training: bool = False): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * ( x.ndim - 1 ) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output