RICHARDMENSAH commited on
Commit
a39c327
·
1 Parent(s): b35a71a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -62
app.py CHANGED
@@ -1,74 +1,74 @@
1
- import streamlit as st
2
- import transformers
3
- import torch
4
 
5
- # Load the model and tokenizer
6
- #model = transformers.AutoModelForSequenceClassification.from_pretrained("RICHARDMENSAH/twitter_xlm_roberta_base")
7
- # tokenizer = transformers.AutoTokenizer.from_pretrained("RICHARDMENSAH/twitter_xlm_roberta_base")
8
 
9
- model_name = "RICHARDMENSAH/twitter_xlm_roberta_base"
10
- tokenizer_name = "RICHARDMENSAH/twitter_xlm_roberta_base"
11
 
12
- model = transformers.pipeline("text-classification", model=model_name, tokenizer=tokenizer_name)
13
 
14
- # Define the function for sentiment analysis
15
- @st.cache_resource
16
- def predict_sentiment(text):
17
- result = model(text)
18
- labell = result[0]['label']
19
- if labell == 'label_0':
20
- sentiment = 'Negative'
21
- elif labell == 'label_1':
22
- sentiment = 'Neutral'
23
- elif labell == 'label_2':
24
- sentiment = 'Positive'
25
- else: sentiment = labell
26
- score = result[0]['score']
27
- return sentiment, score
28
 
29
- # Setting the page configurations
30
- st.set_page_config(
31
- page_title="Sentiment Analysis App",
32
- page_icon=":smile:",
33
- layout="wide",
34
- initial_sidebar_state="auto",
35
- )
36
 
37
- # Add description and title
38
- st.write("""
39
- # How Positive or Negative is your Text?
40
- Enter some text and we'll tell you if it has a positive, negative, or neutral sentiment!
41
- """ )
42
 
43
- # Add image
44
- image = st.image("https://i0.wp.com/thedatascientist.com/wp-content/uploads/2018/10/sentiment-analysis.png", width=400)
45
 
46
- # Get user input
47
- text = st.text_input("Enter some text here:")
48
 
49
- # Define the CSS style for the app
50
- st.markdown(
51
- """
52
- <style>
53
- body {
54
- background-color: #f5f5f5;
55
- }
56
 
57
- h1 {
58
- color: #4e79a7;
59
- }
60
- </style>
61
- """,
62
- unsafe_allow_html=True
63
- )
64
 
65
 
66
- # Show sentiment output
67
- if text:
68
- sentiment, score = predict_sentiment(text)
69
- if sentiment == "Positive":
70
- st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
71
- elif sentiment == "Negative":
72
- st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
73
- else:
74
- st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
 
1
+ # import streamlit as st
2
+ # import transformers
3
+ # import torch
4
 
5
+ # # Load the model and tokenizer
6
+ # #model = transformers.AutoModelForSequenceClassification.from_pretrained("RICHARDMENSAH/twitter_xlm_roberta_base")
7
+ # # tokenizer = transformers.AutoTokenizer.from_pretrained("RICHARDMENSAH/twitter_xlm_roberta_base")
8
 
9
+ # model_name = "RICHARDMENSAH/twitter_xlm_roberta_base"
10
+ # tokenizer_name = "RICHARDMENSAH/twitter_xlm_roberta_base"
11
 
12
+ # model = transformers.pipeline("text-classification", model=model_name, tokenizer=tokenizer_name)
13
 
14
+ # # Define the function for sentiment analysis
15
+ # @st.cache_resource
16
+ # def predict_sentiment(text):
17
+ # result = model(text)
18
+ # labell = result[0]['label']
19
+ # if labell == 'label_0':
20
+ # sentiment = 'Negative'
21
+ # elif labell == 'label_1':
22
+ # sentiment = 'Neutral'
23
+ # elif labell == 'label_2':
24
+ # sentiment = 'Positive'
25
+ # else: sentiment = labell
26
+ # score = result[0]['score']
27
+ # return sentiment, score
28
 
29
+ # # Setting the page configurations
30
+ # st.set_page_config(
31
+ # page_title="Sentiment Analysis App",
32
+ # page_icon=":smile:",
33
+ # layout="wide",
34
+ # initial_sidebar_state="auto",
35
+ # )
36
 
37
+ # # Add description and title
38
+ # st.write("""
39
+ # # How Positive or Negative is your Text?
40
+ # Enter some text and we'll tell you if it has a positive, negative, or neutral sentiment!
41
+ # """ )
42
 
43
+ # # Add image
44
+ # image = st.image("https://i0.wp.com/thedatascientist.com/wp-content/uploads/2018/10/sentiment-analysis.png", width=400)
45
 
46
+ # # Get user input
47
+ # text = st.text_input("Enter some text here:")
48
 
49
+ # # Define the CSS style for the app
50
+ # st.markdown(
51
+ # """
52
+ # <style>
53
+ # body {
54
+ # background-color: #f5f5f5;
55
+ # }
56
 
57
+ # h1 {
58
+ # color: #4e79a7;
59
+ # }
60
+ # </style>
61
+ # """,
62
+ # unsafe_allow_html=True
63
+ # )
64
 
65
 
66
+ # # Show sentiment output
67
+ # if text:
68
+ # sentiment, score = predict_sentiment(text)
69
+ # if sentiment == "Positive":
70
+ # st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
71
+ # elif sentiment == "Negative":
72
+ # st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
73
+ # else:
74
+ # st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")