File size: 4,799 Bytes
3026887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Create vecdb - notebook"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_community.vectorstores import Chroma\n",
    "from langchain_together.embeddings import TogetherEmbeddings\n",
    "\n",
    "\n",
    "import os\n",
    "from dotenv import load_dotenv\n",
    "load_dotenv()\n",
    "together_api_key = os.getenv(\"TOGETHER_API_KEY\")\n",
    "\n",
    "embeddings = TogetherEmbeddings(model=\"togethercomputer/m2-bert-80M-2k-retrieval\")\n",
    "\n",
    "# Load\n",
    "from langchain_community.document_loaders import WebBaseLoader\n",
    "loader = WebBaseLoader(\"https://lexfridman.com/sam-altman-2-transcript/\")\n",
    "data = loader.load()\n",
    "\n",
    "# Split\n",
    "from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
    "text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=250)\n",
    "all_splits = text_splitter.split_documents(data)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Add to vectorDB\n",
    "vectorstore = Chroma.from_documents(persist_directory=\"vecdb_test\",\n",
    "                                    documents=all_splits, \n",
    "                                    collection_name=\"rag-chroma\",\n",
    "                                    embedding=embeddings,\n",
    "                                    )\n",
    "retriever = vectorstore.as_retriever()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Huggingface transformers embeddings\n",
    "\n",
    "more complicated but \"free\" way of creating embeddings\n",
    "you will need to install\n",
    "```\n",
    "sentence-transformers\n",
    "einops\n",
    "opt_einsum\n",
    "```"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_community.embeddings import HuggingFaceEmbeddings"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/opt/miniconda3/envs/langcorn/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n",
      "No sentence-transformers model found with name togethercomputer/m2-bert-80M-2k-retrieval. Creating a new one with MEAN pooling.\n",
      "You are using a model of type m2_bert to instantiate a model of type bert. This is not supported for all configurations of models and can yield errors.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "-- Bidirectional: True\n",
      "-- Using Long Conv Residual: True\n",
      "-- Hyena w: 10\n",
      "-- Hyena w mod: 1\n",
      "-- Hyena filter order: 128\n",
      "-- Hyena filter dropout: 0.2\n",
      "-- Hyena filter wd: 0.1\n",
      "-- Hyena filter emb dim: 5\n",
      "-- Hyena filter lr: 0.001\n",
      "-- Hyena filter lr pos emb: 1e-05\n"
     ]
    }
   ],
   "source": [
    "model_name = \"togethercomputer/m2-bert-80M-2k-retrieval\"\n",
    "model_kwargs = {'device': 'cpu', 'trust_remote_code': True}\n",
    "encode_kwargs = {'normalize_embeddings': False}\n",
    "hf = HuggingFaceEmbeddings(\n",
    "    model_name=model_name,\n",
    "    model_kwargs=model_kwargs,\n",
    "    encode_kwargs=encode_kwargs\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Add to vectorDB\n",
    "vectorstore = Chroma.from_documents(persist_directory=\"vecdb_hf_test\",\n",
    "                                    documents=all_splits, \n",
    "                                    collection_name=\"rag-chroma\",\n",
    "                                    embedding=hf,\n",
    "                                    )\n",
    "retriever = vectorstore.as_retriever()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "langcorn",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}