Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import datasets
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
|
| 5 |
+
|
| 6 |
+
dataset = datasets.load_dataset("beans")
|
| 7 |
+
labels = dataset["train"].features["labels"].names
|
| 8 |
+
|
| 9 |
+
extractor = AutoFeatureExtractor.from_pretrained("RKoops/BeanLeaf")
|
| 10 |
+
model = AutoModelForImageClassification.from_pretrained("RKoops/BeanLeaf")
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def classify(im):
|
| 14 |
+
features = extractor(im, return_tensors="pt")
|
| 15 |
+
logits = model(features["pixel_values"])[-1]
|
| 16 |
+
probability = torch.nn.functional.softmax(logits, dim=-1)
|
| 17 |
+
probs = probability[0].detach().numpy()
|
| 18 |
+
confidences = {label: float(probs[i]) for i, label in enumerate(labels)}
|
| 19 |
+
return confidences
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
interface = gr.Interface(
|
| 23 |
+
classify,
|
| 24 |
+
inputs="image",
|
| 25 |
+
outputs="label",
|
| 26 |
+
title="Bean plant disease classifier",
|
| 27 |
+
description="Detect diseases in beans using images of leaves",
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
interface.launch()
|