RMHalak commited on
Commit
842df92
·
verified ·
1 Parent(s): b3fa682

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -53
app.py CHANGED
@@ -1,54 +1,7 @@
1
  import streamlit as st
2
  import pandas as pd
3
  import pickle
4
- from utils import create_new_features, normalize
5
-
6
- min_dict = {'bedrooms': 0,
7
- 'bathrooms': 0,
8
- 'sqft_living': 370,
9
- 'sqft_lot': 638,
10
- 'floors': 1,
11
- 'waterfront': 0,
12
- 'view': 0,
13
- 'condition': 1,
14
- 'sqft_above': 370,
15
- 'sqft_basement': 0,
16
- 'yr_built': 1900,
17
- 'yr_renovated': 0,
18
- 'house_age': 0,
19
- 'years_since_renovation': 0}
20
-
21
- max_dict = {'bedrooms': 9,
22
- 'bathrooms': 8,
23
- 'sqft_living': 13540,
24
- 'sqft_lot': 1074218,
25
- 'floors': 3,
26
- 'waterfront': 1,
27
- 'view': 4,
28
- 'condition': 5,
29
- 'sqft_above': 9410,
30
- 'sqft_basement': 4820,
31
- 'yr_built': 2014,
32
- 'yr_renovated': 2014,
33
- 'house_age': 114,
34
- 'years_since_renovation': 2014}
35
-
36
- columns = ['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors',
37
- 'waterfront', 'view', 'condition', 'sqft_above', 'sqft_basement',
38
- 'yr_built', 'yr_renovated', 'house_age', 'years_since_renovation',
39
- 'has_basement', 'city_Algona', 'city_Auburn', 'city_Beaux Arts Village',
40
- 'city_Bellevue', 'city_Black Diamond', 'city_Bothell', 'city_Burien',
41
- 'city_Carnation', 'city_Clyde Hill', 'city_Covington',
42
- 'city_Des Moines', 'city_Duvall', 'city_Enumclaw', 'city_Fall City',
43
- 'city_Federal Way', 'city_Inglewood-Finn Hill', 'city_Issaquah',
44
- 'city_Kenmore', 'city_Kent', 'city_Kirkland', 'city_Lake Forest Park',
45
- 'city_Maple Valley', 'city_Medina', 'city_Mercer Island', 'city_Milton',
46
- 'city_Newcastle', 'city_Normandy Park', 'city_North Bend',
47
- 'city_Pacific', 'city_Preston', 'city_Ravensdale', 'city_Redmond',
48
- 'city_Renton', 'city_Sammamish', 'city_SeaTac', 'city_Seattle',
49
- 'city_Shoreline', 'city_Skykomish', 'city_Snoqualmie',
50
- 'city_Snoqualmie Pass', 'city_Tukwila', 'city_Vashon',
51
- 'city_Woodinville', 'city_Yarrow Point']
52
 
53
  with open('./trained_model.pkl', 'rb') as file:
54
  model = pickle.load(file)
@@ -56,9 +9,7 @@ with open('./trained_model.pkl', 'rb') as file:
56
  new_pred = st.text_area('Enter text')
57
 
58
  if new_pred:
59
- new_pred = {key:0 for key in columns}
60
- new_pred['date'] = pd.to_datetime('2014-07-10') # do not change
61
-
62
  new_pred['bedrooms'] = 5
63
  new_pred['bathrooms'] = 3
64
  new_pred['sqft_living'] = 10000
@@ -75,8 +26,7 @@ if new_pred:
75
  new_pred = pd.DataFrame([new_pred])
76
 
77
  new_pred = create_new_features(new_pred)
78
- for col in numerical_features:
79
- new_pred[col] = normalize(new_pred, col, min_dict, max_dict)
80
 
81
  predicted_price = model.predict(new_pred)
82
  st.json(predicted_price[0][0])
 
1
  import streamlit as st
2
  import pandas as pd
3
  import pickle
4
+ from utils import create_new_features, normalize, init_new_pred
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
  with open('./trained_model.pkl', 'rb') as file:
7
  model = pickle.load(file)
 
9
  new_pred = st.text_area('Enter text')
10
 
11
  if new_pred:
12
+ new_pred = init_new_pred()
 
 
13
  new_pred['bedrooms'] = 5
14
  new_pred['bathrooms'] = 3
15
  new_pred['sqft_living'] = 10000
 
26
  new_pred = pd.DataFrame([new_pred])
27
 
28
  new_pred = create_new_features(new_pred)
29
+ new_pred = normalize(new_pred)
 
30
 
31
  predicted_price = model.predict(new_pred)
32
  st.json(predicted_price[0][0])