# create new features def create_new_features(df): df['year_sold'] = df['date'].dt.year df = df.drop(columns=['date']) df['house_age'] = df['year_sold'] - df['yr_built'] df['years_since_renovation'] = df['year_sold'] - df['yr_renovated'] df.drop(columns=['year_sold'], inplace=True) df['has_basement'] = df['sqft_basement'].apply(lambda x: 1 if x > 0 else 0) return df def normalize(df, col, min_dict, max_dict): numerical_features = ['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'waterfront', 'view', 'condition', 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'house_age', 'years_since_renovation'] df[col] = df[col].apply(lambda x: (x-min_dict[col])/(max_dict[col]-min_dict[col])) return df[col]